WO2023226969A1 - 一种稳流电路及其稳流方法、集成电路以及电子设备 - Google Patents

一种稳流电路及其稳流方法、集成电路以及电子设备 Download PDF

Info

Publication number
WO2023226969A1
WO2023226969A1 PCT/CN2023/095732 CN2023095732W WO2023226969A1 WO 2023226969 A1 WO2023226969 A1 WO 2023226969A1 CN 2023095732 W CN2023095732 W CN 2023095732W WO 2023226969 A1 WO2023226969 A1 WO 2023226969A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
driving
voltage
circuit
threshold
Prior art date
Application number
PCT/CN2023/095732
Other languages
English (en)
French (fr)
Inventor
陈敏
丁召明
Original Assignee
芯海科技(深圳)股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 芯海科技(深圳)股份有限公司 filed Critical 芯海科技(深圳)股份有限公司
Publication of WO2023226969A1 publication Critical patent/WO2023226969A1/zh

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/56Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/30Semiconductor lamps, e.g. solid state lamps [SSL] light emitting diodes [LED] or organic LED [OLED]

Definitions

  • the present application relates to the field of current stabilization technology, and in particular, to a current stabilization circuit and its current stabilization method, integrated circuits and electronic equipment.
  • an LDO Low Dropout Regulator, low dropout linear regulator
  • This application provides a current stabilizing circuit and its current stabilizing method, integrated circuits and electronic equipment, aiming to solve the problem in related technologies that the LDO voltage stabilizing power supply system has high jitter when the load switches between light load and heavy load. question.
  • the first aspect of the embodiment of the present application provides a current stabilizing circuit, including a current adjustment circuit and a driving circuit;
  • the drive circuit is used to output drive current
  • the current adjustment circuit is used to compensate the driving current according to the driving current and the load current, so that the driving current is stabilized within a preset current range.
  • the second aspect of the embodiment of the present application provides an integrated circuit, including the current stabilizing circuit described in the first aspect of the embodiment of the present application.
  • the third aspect of the embodiment of the present application provides an electronic device, including: a load, and as shown in the present application
  • the current stabilizing circuit described in the first aspect of the embodiment or the integrated circuit described in the second aspect of the embodiment of the present application is described in the third aspect of the embodiment of the present application.
  • the fourth aspect of the embodiment of the present application provides a current stabilizing method, which is applied to the current stabilizing circuit described in the first aspect of the embodiment of the present application; the current stabilizing method includes:
  • the current adjustment circuit is controlled to compensate the driving current according to the driving current and the load current, so that the driving current is stabilized within the preset current range.
  • the driving current output by the driving circuit will also change accordingly (i.e. increase or decrease); at this time, the current adjustment
  • the circuit will quickly adjust the drive circuit, that is, quickly compensate the drive current based on the drive current and load current obtained from the drive circuit, so that the compensated drive current is stable within the preset current range, thereby being able to respond to load changes.
  • the stable current effectively reduces the jitter of the circuit when the load changes.
  • Figure 1 is a first module block diagram of a current stabilizing circuit provided by an embodiment of the present application
  • Figure 2 is a schematic diagram of the first circuit structure of the current stabilizing circuit provided by the embodiment of the present application.
  • Figure 3 is a second module block diagram of the current stabilizing circuit provided by the embodiment of the present application.
  • Figure 4 is a schematic diagram of the second circuit structure of the current stabilizing circuit provided by the embodiment of the present application.
  • Figure 5 is a schematic flow chart of the flow stabilization method provided by the embodiment of the present application.
  • embodiments of the present application provide a current stabilizing circuit.
  • the current stabilizing circuit provided by the embodiment of the present application includes a current adjustment circuit 200 and a driving circuit 100.
  • the driving circuit 100 is used to output the driving current I q ; wherein the driving current I q is used to drive the load L.
  • the current adjustment circuit 200 is used to compensate the driving current I q according to the driving current I q and the load current IL obtained from the driving circuit 100 so that the driving current I q is stable within a preset current range; where, the load current I L is the current of load L.
  • the driving circuit 100 will provide the driving current I q to the load L to satisfy the normal operation of the load L.
  • the driving current I q output by the driving circuit 100 will also change accordingly. (i.e. increase or decrease).
  • the current adjustment circuit 200 will quickly adjust the drive circuit 100, that is, quickly compensate the drive current I q according to the drive current I q and the load current IL obtained from the drive circuit 100, so that the compensated drive current I q is stabilized within the preset current range, thereby achieving steady current flow in response to changes in load L, thereby effectively reducing the jitter of the circuit when load L changes.
  • the driving circuit 100 may include an operational amplifier AMP, a capacitor Cb, and an output stage branch.
  • the output terminal of the operational amplifier AMP is connected to the output stage branch through the capacitor Cb, and the output stage branch feeds back to the input terminal of the operational amplifier AMP.
  • the output terminal of the operational amplifier AMP is connected to the second terminal of the capacitor Cb,
  • the first end of the capacitor Cb is connected to the output stage branch to drive the output stage branch to output the driving voltage V q and the driving current I q .
  • the Capacitance Cb can use a bootstrap capacitor.
  • the current adjustment circuit 200 can be connected to the output stage branch to obtain the driving current I q and the load current IL so that the driving current I q can subsequently be adjusted according to the obtained driving current I q and the load current IL Compensation is performed so that the driving current I q is always stable within the preset current range.
  • the output stage branch may include a first output module and a second output module, and the first output module is used to output the first driving current I q1 , and the second output module is used to output the third Two driving currents I q2 ; among them, the first driving current I q1 is used to drive the load L.
  • the first output terminal of the operational amplifier AMP can be connected to the first output module through the capacitor Cb
  • the second output terminal of the operational amplifier AMP can be grounded through the second output module
  • the load L and the first input terminal of the operational amplifier AMP can be connected to the ground.
  • the second input end of the operational amplifier AMP can be connected to the preset voltage V ref , and the other end of the load L can be grounded.
  • the operational amplifier AMP can be used to amplify the difference voltage between the preset voltage V ref and the driving voltage V q , and output the amplified difference voltage; wherein, the amplified difference voltage and the capacitance
  • the voltage of Cb can be used to control the first output module to output the first driving current I q1 .
  • the current adjustment circuit 200 may be used to compensate the first driving current I q1 according to the first driving current I q1 and the load current IL obtained from the driving circuit 100 , or to compensate the first driving current I q1 according to the first driving current I q1 obtained from the driving circuit 100 .
  • the first driving current I q1 , the second driving current I q2 and the load current IL are used to compensate the first driving current I q1 so that the first driving current I q1 is stabilized within the preset current range.
  • the drive circuit 100 will provide the drive current I q (including the first drive current I q1 and the second drive current I q2 ) to the load L to satisfy the load L of normal operation.
  • the driving current I q output by the driving circuit 100 will also change accordingly. (i.e. increase or decrease).
  • the current adjustment circuit 200 will quickly adjust the drive circuit 100, that is, quickly according to the first drive current I q1 and the load current IL obtained from the drive circuit 100 (or the first drive current I q1 , the second drive current I q2 and load current L Effectively reduce the jitter of the circuit when load L changes.
  • the first output module may include a An output tube D1
  • the second output module may include a second output tube D2.
  • the current adjustment circuit 200 may include a control branch and a first current source Q1.
  • the control branch is used to control the first current source Q1 to output the compensation current I d for compensating the first drive current I q1 according to the first drive current I q1 and the load current IL obtained from the drive circuit 100 , or control the first current source Q1 to output the compensation current I used to compensate the first drive current I q1 according to the first drive current I q1 , the second drive current I q2 and the load current IL obtained from the drive circuit 100 d , so that the first driving current I q1 is stable within the preset current range.
  • the control branch is based on the first driving current I q1 and the load current IL obtained from the driving circuit 100 , or according to the first driving current I q1 obtained from the driving circuit 100 .
  • the driving current I q1 , the second driving current I q2 and the load current IL control the first current source Q1 to output the corresponding compensation current I d to compensate the first driving current I q1 so that the compensated first driving current I q1 is stable within the preset current range.
  • the compensation current I d output by the first current source Q1 may include the first compensation current I d1 and the second compensation current I d2
  • the lower limit threshold of the preset current range may be the first current threshold I t1 and the upper limit threshold.
  • the first current threshold I t1 can be 0, that is, the preset current range is [first current threshold I t1 , second current threshold I t2 ]; wherein, the compensation current I d actually It is the current of the first current source Q1, and the first compensation current I d1 and the second compensation current I d2 are just different values.
  • the control branch controls the first current source Q1 not to compensate the first driving current I q1 , that is, the condition for controlling the current of the first current source Q1 to remain unchanged can be: the first driving current I q1 belongs to (first current threshold I t1 , second current threshold I t2 ], that is, the first driving current I q1 takes a value between the first current threshold I t1 and the second current threshold I t2 , and the minimum value of the first driving current I q1 cannot be equal to the A current threshold I t1 , the maximum value of the first driving current I q1 is equal to the second current threshold I t2 ; at the same time, the second driving current I q2 is equal to the first current threshold I t1 .
  • the first current threshold I t1 in is taken to be 0.
  • the control branch when the first driving current I q1 is greater than the second current threshold I t2 , the control branch controls the first current source Q1 to output the first compensation current I d1 to correct the first driving current I q1 . direction compensation; when the first drive current I q1 is less than or equal to the first current threshold I t1 , and the second drive current I q2 is greater than the first current threshold I t1 , the control branch will control the first current source Q1 to output the second compensation current I d2 to the first The drive current I q1 performs reverse compensation.
  • the control branch controls the first current source Q1 to perform forward compensation on the first driving current I q1 with reference to the above-mentioned preset relational expression as follows: according to the first The value of a driving current I q1 exceeding the second current threshold I t2 determines the size of the first compensation current I d1 that needs to be provided by the first current source Q1, that is, the first compensation current I d1 is used to compensate the first driving current I q1 for exceeding the value. part of the second current threshold I t2 , thereby reducing the size of the first driving current I q1 so that the compensated first driving current I q1 stabilizes within the preset current range.
  • the control branch controls the first current source Q1 to control the first current source Q1 with reference to the above preset relational expression.
  • Reverse compensation of a driving current I q1 can be as follows: determining the size of the second compensation current I d2 based on the sum of the second driving current I q2 and the load current IL .
  • the second compensation current I d2 is the third current that needs to be controlled.
  • the reduced current of source Q3 that is to say, the reduced current of first current source Q1 is the second compensation current I d2 output by the first current source Q1, thereby increasing the size of the first driving current I q1 , so that the compensation
  • the final first driving current I q1 is stable within the preset current range.
  • the current adjustment circuit 200 may include an A/D conversion branch in addition to the control branch and the first current source Q1.
  • the A/D conversion branch is used to perform A/D conversion on the first driving current I q1 , the second driving current I q2 and the load current IL obtained from the driving circuit 100 , and output the converted first driving current I q1 , the second driving current I q2 and the load current IL .
  • the current I q1 , the converted second driving current I q2 and the converted load current IL are sent to the control branch.
  • the driving circuit 100 may include a charging branch in addition to the operational amplifier AMP, the capacitor Cb, and the output stage branch.
  • the charging branch is used to charge the first end of the capacitor Cb according to the reference voltage V TH and the voltage of the first end of the capacitor Cb, So that the voltage at the first terminal of the capacitor Cb is greater than or equal to the reference voltage V TH .
  • the charging branch when the first output tube D1 cannot output the first driving current I q1 , or when the first driving current I q1 cannot meet the driving requirements, the charging branch can be controlled to charge the first end of the capacitor Cb, so as to By increasing the voltage at the first end of the capacitor Cb, the driving voltage V q is increased until the first output tube D1 can output the first driving current I q1 that meets the driving requirements; when the first output tube D1 can output the first driving current I q1 that meets the driving requirements When the required driving current I q is reached, the charging branch can be controlled not to charge the first end of the capacitor Cb to reduce power consumption. By controlling the intermittent operation of the charging branch, the first driving current I q1 that meets the driving requirements can be quickly output without significantly increasing power consumption.
  • the driving voltage V q output by the first output tube D1 gradually increases from zero.
  • the driving voltage V q is small at the beginning, causing the first output tube D1 to be unable to output the first driving current I q1 , or the generated first driving current I q1 cannot meet the driving requirements.
  • charging the first end of the capacitor Cb through the charging branch can quickly increase the driving voltage V q so that it can quickly meet the driving requirements, thus The first driving current I q1 that meets the conditions is generated to satisfy the normal operation of the load L.
  • the capacitor can also be charged through the charging branch. The first end of Cb is charged to quickly pull the driving voltage V q back to the preset value, and increase the first driving current I q1 within a certain range to meet the increased load demand.
  • a reference voltage V TH can be set, so that the charging branch charges the first end of the capacitor Cb according to the voltage of the first end of the capacitor Cb and the reference voltage V TH , so that the third end of the capacitor Cb The voltage at one end is greater than or equal to the reference voltage V TH .
  • the charging branch can be controlled to charge the first terminal of the capacitor Cb; when the voltage of the capacitor Cb is greater than or equal to the reference voltage V TH , the charging can be controlled.
  • the branch stops charging the first terminal of the capacitor Cb.
  • the voltage at the first terminal of the capacitor Cb is less than the reference voltage V TH , indicating that the driving voltage V q is low, that is, the first output tube D1 cannot output the first driving current I q1 ; the voltage at the first terminal of the capacitor Cb is greater than or It is equal to the reference voltage V TH , indicating that the driving voltage V q meets the requirements, that is, the first output tube D1 can output the first driving current I q1 .
  • the current stabilizing circuit provided in the embodiment of the present application is powered on or the capacitor Cb has leakage, the voltage at the first end of the capacitor Cb will be less than the reference voltage V TH , and it is necessary to adjust the first end of the capacitor Cb. to charge.
  • the charging branch may include a comparator CMP1, a charge pump CP and a transistor TH.
  • the output end of the comparator CMP1 can be connected to one end of the charge pump CP
  • the first input end of the comparator CMP1 and the other end of the charge pump CP can be connected to the first end of the capacitor Cb respectively
  • both ends of the transistor TH can They are respectively connected to the other end of the capacitor Cb opposite to the first end (that is, the connection end of the capacitor Cb and the output end of the operational amplifier AMP) and the second input end of the comparator CMP1.
  • the comparison work of the comparator CMP1 will continue until the current stabilizing circuit provided by the embodiment of the present application is turned off.
  • the comparator CMP1 can be used to compare the voltage of the first terminal of the capacitor Cb with the threshold voltage of the transistor TH, and control the charge pump CP to charge the first terminal of the capacitor Cb according to the comparison result; wherein, the transistor The threshold voltage of TH is the reference voltage V TH mentioned above.
  • the charge pump CP can be controlled to charge the first end of the capacitor Cb; when the comparison result of the comparator CMP1 is that the capacitor When the voltage at the first end of Cb is greater than or equal to the threshold voltage of the transistor TH, the charge pump CP can be controlled to stop charging the first end of the capacitor Cb, thereby allowing the charge pump to work indirectly and reducing power consumption.
  • the voltage at the first end of the capacitor Cb will be less than the threshold voltage of the transistor TH, and it is necessary to adjust the first end of the capacitor Cb. to charge.
  • Figure 3 is a second module block diagram of the current stabilizing circuit provided by the embodiment of the present application; it can be seen from Figure 3 that the current stabilizing circuit provided by the embodiment of the present application can include
  • a voltage regulating circuit 300 connected to the driving circuit 100 may also be included.
  • the driving circuit 100 is also used to output the driving voltage V q .
  • the voltage adjustment circuit 200 is used to charge or discharge the driving circuit 100 according to the preset voltage threshold and the driving voltage V q obtained from the driving circuit 100 so that the driving voltage V q is stabilized within the preset voltage range.
  • the driving circuit 100 will provide the driving voltage Vq to the load L to meet the normal operation of the load L.
  • the driving voltage Vq output by the driving circuit 100 will also change accordingly.
  • the voltage adjustment circuit 300 will quickly adjust the driving circuit 100, that is, quickly charge or discharge the driving circuit 100 according to the preset voltage threshold and the driving voltage Vq obtained from the driving circuit 100, so that the adjusted driving voltage Vq is stable within the preset voltage range, thereby enabling rapid response to changes in load L.
  • the preset voltage range may be a range set based on the preset voltage Vref; specifically, a preset voltage Vref may be preset, and the preset voltage Vref may be used to determine the preset voltage range. For example, the voltage value is increased based on the preset voltage Vref to determine the upper limit threshold of the preset voltage range, and the voltage value is decreased based on the preset voltage Vref to determine the preset voltage.
  • the lower limit threshold of the range where the upper limit threshold, the lower limit threshold and the value of the preset voltage Vref have a small difference.
  • the preset voltage threshold can be set according to the preset voltage Vref; for example, the voltage value is increased based on the preset voltage Vref, or the voltage value is decreased based on the preset voltage Vref. .
  • the preset voltage threshold can also be set according to multiple voltage values within the preset voltage range; for example, multiple voltage values within the preset voltage range The voltage value is increased based on the average value of the voltage value, or the voltage value is decreased based on the average value of multiple voltage values within the preset voltage range.
  • Figure 4 is a schematic diagram of the second circuit structure of the current stabilizing circuit provided by the embodiment of the present application; the voltage adjustment circuit 300 can be connected to the second end of the capacitor Cb; wherein, the capacitor Cb The second terminal is the connection terminal between the capacitor Cb and the output terminal of the operational amplifier AMP.
  • the voltage adjustment circuit 300 can be used to charge or discharge the second end of the capacitor Cb according to the preset voltage threshold and the driving voltage V q obtained from the driving circuit 100, so that the driving voltage V q can be stabilized at within the preset voltage range.
  • the driving circuit 100 may be configured to output the driving voltage V q through the first end of the capacitor Cb to drive the output stage branch to output the driving current I q .
  • the preset voltage threshold may include a first voltage threshold and a Two voltage thresholds, and the first voltage threshold is smaller than the second voltage threshold; on this basis, the voltage adjustment circuit 300 may include a first adjustment branch and a second adjustment branch.
  • the first regulating branch may be used to compare the driving voltage V q obtained from the driving circuit 100 with a first voltage threshold, and charge the driving circuit 100 when the driving voltage V q is lower than the first voltage threshold.
  • the second adjustment branch may be used to compare the driving voltage V q obtained from the driving circuit 100 with the second voltage threshold, and discharge the driving circuit 100 when the driving voltage V q is higher than the second voltage threshold.
  • the first voltage threshold and the second voltage threshold are also set according to at least one voltage value within the preset voltage range.
  • the voltage value is increased based on any voltage value within the preset voltage range, or the voltage value is reduced based on any voltage value within the preset voltage range, to respectively set the third voltage value.
  • a voltage threshold and a second voltage threshold or, the voltage value is increased based on the average value of multiple voltage values within the preset voltage range, or the average value of multiple voltage values within the preset voltage range
  • the voltage value is reduced to respectively set the first voltage threshold and the second voltage threshold.
  • the voltage value can be increased based on the preset voltage V ref or the voltage value can be reduced based on the preset voltage V ref to set the first voltage threshold and the second voltage threshold respectively. voltage threshold.
  • the current stabilizing circuit provided by the embodiment of the present application will produce undervoltage fluctuation, that is, the driving voltage V q of the driving circuit 100 will decrease.
  • the first adjustment If the comparison result of the branch is that the driving voltage V q is lower than the first voltage threshold, the first regulating branch will charge the driving circuit 100 to increase the driving voltage V q so that the adjusted driving voltage V q is stabilized at the predetermined level. within the specified voltage range.
  • the current stabilizing circuit provided by the embodiment of the present application will produce overvoltage fluctuation, that is, the driving voltage V q of the driving circuit 100 will increase.
  • the second adjustment branch will discharge the driving circuit 100 to reduce the driving voltage V q so that the adjusted driving voltage V q is stabilized within the preset voltage range. .
  • the first adjustment branch may include a second comparator CMP2 and a second current source Q2.
  • the second comparator CMP2 may be used to compare the driving voltage V q obtained from the driving circuit 100 with the first voltage threshold, and when the driving voltage V q is lower than the first voltage threshold, control the second current source Q2 Charging the driving circuit 100; wherein, when the driving voltage V q obtained from the driving circuit 100 is lower than the first voltage threshold, the second comparator CMP2 outputs the corresponding comparison result, For example, a high level is output, and the high level is used to control the second current source Q2 to charge the driving circuit 100 to increase the driving voltage V q so that the adjusted driving voltage V q is stabilized within a preset voltage range.
  • the first voltage threshold may be the difference between any voltage value within the preset voltage range or the average value of multiple voltage values and the first preset voltage value V m , such as the difference between the preset voltage V ref and The difference between the first preset voltage value V m (V ref -V m ); where the first preset voltage value V m is the maximum allowable reduction of the driving voltage V q , and the preset voltage V ref can Considered as the target of the driving voltage V q , it is desired to maintain the driving voltage V q at the preset voltage V ref .
  • the second regulation branch may include a third comparator CMP3 and a third current source Q3.
  • the third comparator CMP3 may be used to compare the driving voltage V q obtained from the driving circuit 100 with the second voltage threshold, and when the driving voltage V q is higher than the second voltage threshold, control the third current source Q3 Discharge the driving circuit 100; wherein, when the driving voltage V q obtained from the driving circuit 100 is higher than the second voltage threshold, the third comparator CMP3 outputs a corresponding comparison result, such as outputting a low level, and the low level It is used to control the third current source Q3 to discharge the driving circuit 100 to reduce the driving voltage V q so that the adjusted driving voltage V q is stabilized within a preset voltage range.
  • the second voltage threshold may be the sum of any voltage value within the preset voltage range or the average of multiple voltage values and the second preset voltage value V n , such as the preset voltage V ref and the sum value (V ref +V n ) of the second preset voltage value V n ; where the second preset voltage value V n is the maximum allowable increase in the driving voltage V q .
  • the condition for the second comparator CMP2 to control the second current source Q2 to charge the driving circuit 100 is: the driving voltage V q obtained from the driving circuit 100 is less than the first voltage threshold, such as less than (V ref -V m ) ;
  • the condition for the third comparator CMP3 to control the third current source Q3 to discharge the driving circuit 100 is: the driving voltage V q obtained from the driving circuit 100 is greater than the second voltage threshold, such as greater than (V ref + V n ).
  • the output terminal of the second comparator CMP2 can be connected to the second current source Q2, the output terminal of the third comparator CMP3 can be grounded through the third current source Q3, and the first input terminal of the second comparator CMP2 and The first input terminal of the third comparator CMP3 can be connected to the first input terminal of the operational amplifier AMP respectively, the second input terminal of the second comparator CMP2 can be connected to the first voltage threshold, and the second input terminal of the third comparator CMP3
  • the terminal can be connected to the second voltage threshold, the second current source Q2 and the third current source Q3 can be connected to a node, and the node can be connected to the second terminal of the capacitor Cb to achieve the third
  • the second current source Q2 charges the second terminal of the capacitor Cb, or the third current source Q3 discharges the second terminal of the capacitor Cb.
  • the current stabilizing circuit when the load L changes from light load to heavy load, the current stabilizing circuit provided by the embodiment of the present application will produce undervoltage fluctuation, that is, the driving voltage V q of the driving circuit 100 will decrease.
  • the second comparator CMP2 controls the second current source Q2 to charge the driving circuit 100 , specifically charging the second end of the capacitor Cb to increase the voltage.
  • the voltage at the second end of the capacitor Cb causes the voltage at the first end of the capacitor Cb to rise accordingly, thereby increasing the driving voltage V q of the driving circuit 100 so that the adjusted driving voltage V q is stabilized within a preset voltage range.
  • the current stabilizing circuit When the load L changes from heavy load to light load, the current stabilizing circuit provided by the embodiment of the present application will produce overvoltage fluctuation, that is, the driving voltage V q of the driving circuit 100 will increase.
  • the third comparator CMP3 will control the third current source Q3 to discharge the driving circuit 100 , specifically to discharge the second end of the capacitor Cb to pull down the third terminal of the capacitor Cb.
  • the voltage at the two terminals causes the voltage at the first terminal of the capacitor Cb to be lowered, thereby reducing the driving voltage V q of the driving circuit 100 so that the adjusted driving voltage V q is stabilized within a preset voltage range.
  • the preset voltage range is [1V, 3V]; the preset voltage V ref is 1.2V; the first voltage threshold is 1.2VV m and the second voltage threshold is 1.2V+V n ; the preset current range is [0,10mA], that is, the first current threshold I t1 is 0, and the second current threshold I t2 is 10 mA; the condition for the control branch to control the first current source Q1 not to compensate the first drive current I q1 is: the first drive The current I q1 belongs to (0,10mA], and the second driving current I q2 is equal to 0.
  • the voltage at the first end of the capacitor Cb is 0, which is less than the reference voltage V TH , and the first output tube D1 cannot output the first driving current I q1 , and the first comparator CMP1 controls
  • the charge pump CP charges the first terminal of the capacitor Cb, causing the voltage of the first terminal of the capacitor Cb to increase; after the voltage of the first terminal of the capacitor Cb is greater than or equal to the reference voltage V TH , the first output tube D1 can Enough to output the first driving current I q1 , the first comparator CMP1 controls the charge pump CP to turn off, that is, it controls the charge pump CP to stop charging the first end of the capacitor Cb to reduce power consumption; Assume that the first output tube D1 supplies the load L After the first driving current I q1 is output, the load current IL is 100 ⁇ A.
  • the current stabilizing circuit provided by the embodiment of the present application generates undervoltage fluctuations, and the driving circuit The driving voltage V q of 100 is pulled down; at this time, if the comparison result of the second comparator CMP2 is that the driving voltage V q is less than the first voltage threshold (1.2VV m ), the second comparator CMP2 will control the second current source Q2 charges the driving circuit 100 to quickly increase the driving voltage V q to near the preset voltage V ref (1.2V), that is, the adjusted driving voltage V q is stabilized within the preset voltage range [1V, 3V].
  • the current stabilizing circuit provided in the embodiment of the present application generates an overvoltage.
  • the driving voltage V q of the driving circuit 100 is pulled high; at this time, if the comparison result of the third comparator CMP3 is that the driving voltage V q is greater than the second voltage threshold (1.2V+V Q2 ), then the third comparator CMP3
  • the third current source Q3 will be controlled to discharge the driving circuit 100 to quickly lower the driving voltage V q to near the preset voltage V ref (1.2V), that is, the adjusted driving voltage V q will be stabilized within the preset voltage range [ 1V,3V].
  • the current of the first current source Q1 is still the value 10.1mA after the load L changed from light load to heavy load in the previous stage.
  • the load current IL is equal to the value after compensation
  • the embodiment of the present application can quickly adjust the drive circuit, that is, quickly charge or discharge the drive circuit according to the preset voltage threshold and the current drive voltage, so that the adjusted drive voltage is stable at the preset level. voltage range, enabling fast response to load changes.
  • This application effectively improves the response speed of the voltage stabilizing circuit and reduces the jitter of the circuit when the load L changes through the correlation and combination of the current regulating circuit 200 and the voltage regulating circuit 200 .
  • embodiments of the present application provide a current stabilizing circuit.
  • the current stabilizing circuit can be applied to an integrated circuit including multiple circuits; wherein, the multiple circuits included in the integrated circuit include at least one current stabilizing circuit provided by the embodiment of the present application.
  • the above integrated circuit can be applied to electronic devices; where the electronic devices can include but are not limited to mobile phones, tablet computers, notebook computers, desktop computers, intelligent learning machines and intelligent wearable devices.
  • the current stabilizing circuit provided by the embodiment of the present application can also be applied to these electronic devices alone, and is no longer provided in these electronic devices in the form of the above-mentioned integrated circuit.
  • FIG. 5 is a schematic flowchart of a flow stabilization method provided by an embodiment of the present application.
  • the embodiment of the present application also provides a current stabilizing method, which is applied to the current stabilizing circuit provided by the embodiment of the present application; the current stabilizing method specifically includes the following steps:
  • Step 501 Control the driving circuit to output driving current.
  • the drive circuit 100 needs to be controlled to output the drive current I q to ensure the normal operation of the load L.
  • Step 502 Control the current adjustment circuit to compensate the driving current according to the driving current and the load current, so that the driving current is stabilized within a preset current range.
  • the current adjustment circuit 200 will quickly adjust the drive circuit 100, that is, quickly compensate the drive current I q according to the drive current I q and the load current IL obtained from the drive circuit 100, so that the compensated drive current I q is stabilized within the preset current range, which enables steady current flow to changes in load L, thereby reducing the jitter of the circuit when load L changes.
  • RAM random access memory
  • ROM read-only memory
  • electrically programmable ROM electrically erasable programmable ROM
  • registers hard disks, removable disks, CD-ROMs, or anywhere in the field of technology. any other known form of storage media.
  • a computer program product includes one or more computer instructions.
  • the computer may be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • Computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, e.g., computer instructions may be transmitted from a website, computer, server or data center via a wired link (e.g.
  • Coaxial cable, optical fiber, digital subscriber line) or wireless means to transmit to another website, computer, server or data center.
  • Computer-readable storage media can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or other integrated media that contains one or more available media. Available media may be magnetic media (eg, floppy disk, hard disk, tape), optical media (eg, DVD), or semiconductor media (eg, Solid State Disk), etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Continuous-Control Power Sources That Use Transistors (AREA)

Abstract

一种稳流电路、稳流方法、集成电路以及电子设备,稳流电路包括电流调节电路(200)和驱动电路(100);驱动电路(100)用于输出驱动电流(I q);电流调节电路(200)用于根据驱动电流(I q)和负载电流(I L),对驱动电流(I q)进行补偿,以使驱动电流(I q)稳定在预设电流范围内。当负载(L)发生变化后,驱动电路(100)所输出的驱动电流(I q)也会发生相应的改变;此时,电流调节电路(200)会快速对驱动电路(100)进行调节,即快速根据从驱动电路(100)获取的驱动电流(I q)和负载电流(I L),对驱动电流(I q)进行补偿,以使补偿后的驱动电流(I q)稳定在预设电流范围内,从而能够实现对负载(L)变化的稳流。

Description

一种稳流电路及其稳流方法、集成电路以及电子设备
【相关申请的交叉引用】
本申请要求于2022年5月24日提交的申请号为202210568484.4的中国申请的优先权,其在此处于所有目的通过引用将其全部内容并入本文。
【技术领域】
本申请涉及稳流技术领域,尤其涉及一种稳流电路及其稳流方法、集成电路以及电子设备。
【背景技术】
在芯片中,通常设置有LDO(Low Dropout Regulator,低压差线性稳压器),以通过LDO为芯片中的其它模块提供稳定的工作电压。
对于LDO的应用,需要重点考虑负载在轻载与重载间切换时LDO输出信号的稳定性和响应速度等特性。但是相关技术中,对于LDO的稳压供电系统而言,负载在轻载与重载间切换时,其响应速度较慢,抖动性较高。
因此,有必要对上述LDO的稳压供电系统进行改进。
【发明内容】
本申请提供了一种稳流电路及其稳流方法、集成电路以及电子设备,旨在解决相关技术中负载在轻载与重载间切换时,LDO的稳压供电系统的抖动性较高的问题。
为了解决上述技术问题,本申请实施例第一方面提供了一种稳流电路,包括电流调节电路和驱动电路;
所述驱动电路用于输出驱动电流;
所述电流调节电路用于根据所述驱动电流和负载电流,对所述驱动电流进行补偿,以使所述驱动电流稳定在预设电流范围内。
本申请实施例第二方面提供了一种集成电路,包括如本申请实施例第一方面所述的稳流电路。
本申请实施例第三方面提供了一种电子设备,包括:负载,以及如本申请 实施例第一方面所述的稳流电路或如本申请实施例第二方面所述的集成电路。
本申请实施例第四方面提供了一种稳流方法,应用于如本申请实施例第一方面所述的稳流电路;所述稳流方法包括:
控制所述驱动电路输出所述驱动电流;
控制所述电流调节电路根据所述驱动电流和所述负载电流,对所述驱动电流进行补偿,以使所述驱动电流稳定在所述预设电流范围内。
从上述描述可知,与相关技术相比,本申请的有益效果在于:
在负载发生变化(即由轻载变为重载或由重载变为轻载)后,驱动电路所输出的驱动电流也会发生相应的改变(即升高或降低);此时,电流调节电路会快速对驱动电路进行调节,即快速根据从驱动电路获取的驱动电流和负载电流,对驱动电流进行补偿,以使补偿后的驱动电流稳定在预设电流范围内,从而能够实现对负载变化的稳流,进而有效地降低了负载变化时电路的抖动性。
【附图说明】
为了更清楚地说明相关技术或本申请实施例中的技术方案,下面将对相关技术或本申请实施例的描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,而并非是全部实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的稳流电路的第一种模块框图;
图2为本申请实施例提供的稳流电路的第一种电路结构示意图;
图3为本申请实施例提供的稳流电路的第二种模块框图;
图4为本申请实施例提供的稳流电路的第二种电路结构示意图;
图5为本申请实施例提供的稳流方法的流程示意图。
【具体实施方式】
为了使本申请的目的、技术方案以及优点更加的明显和易懂,下面将结合本申请实施例以及相应的附图,对本申请进行清楚、完整地描述,其中,自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。应当理解的是,下面所描述的本申请的各个实施例仅仅用以解释本申请,并不 用于限定本申请,也即基于本申请的各个实施例,本领域的普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本申请保护的范围。此外,下面所描述的本申请的各个实施例中所涉及的技术特征只要彼此之间未构成冲突就可以相互组合。
对于LDO的应用,需要重点考虑负载在轻载与重载间切换时LDO输出信号的稳定性和响应速度等特性。但是相关技术中,对于LDO的稳压供电系统而言,负载在轻载与重载间切换时,其响应速度较慢,抖动性较高。为此,本申请实施例提供了一种稳流电路。
请参阅图1,图1为本申请实施例提供的稳流电路的第一种模块框图。从图1中可以看出,本申请实施例提供的稳流电路包括电流调节电路200和驱动电路100。具体地,驱动电路100用于输出驱动电流Iq;其中,驱动电流Iq用于驱动负载L。电流调节电路200用于根据从驱动电路100获取的驱动电流Iq和负载电流IL,对驱动电流Iq进行补偿,以使驱动电流Iq稳定在预设电流范围内;其中,负载电流IL即为负载L的电流。
在实际应用中,本申请实施例提供的稳流电路启动后,驱动电路100会为负载L提供驱动电流Iq,以满足负载L的正常工作。在负载L正常工作的过程中,如果负载L发生变化(即由轻载变为重载或由重载变为轻载),那么驱动电路100所输出的驱动电流Iq也会发生相应的改变(即升高或降低)。此时,电流调节电路200会快速对驱动电路100进行调节,即快速根据从驱动电路100获取的驱动电流Iq和负载电流IL,对驱动电流Iq进行补偿,以使补偿后的驱动电流Iq稳定在预设电流范围内,从而能够实现对负载L变化的稳流,进而能够有效地降低负载L变化时电路的抖动性。
在一些实施例中,请进一步参阅图2,图2为本申请实施例提供的稳流电路的第一种电路结构示意图;驱动电路100可以包括运算放大器AMP、电容Cb和输出级支路。其中,运算放大器AMP的输出端通过电容Cb与输出级支路连接,且输出级支路反馈至运算放大器AMP的输入端,具体地,运算放大器AMP的输出端连接于电容Cb的第二端,电容Cb的第一端则连接于所述输出级支路,以驱动输出级支路输出驱动电压Vq和驱动电流Iq。此处,有必要进行说明,电 容Cb可以采用自举电容。
对于本实施例,电流调节电路200可以连接于输出级支路,以获取驱动电流Iq和负载电流IL,以便后续根据所获取的驱动电流Iq和负载电流IL,对驱动电流Iq进行补偿,使得驱动电流Iq始终稳定在预设电流范围内。
作为一种实施方式,仍然参阅图2;输出级支路可以包括第一输出模块和第二输出模块,且第一输出模块用于输出第一驱动电流Iq1,第二输出模块用于输出第二驱动电流Iq2;其中,第一驱动电流Iq1用于驱动负载L。具体地,运算放大器AMP的第一输出端可以通过电容Cb与第一输出模块连接,运算放大器AMP的第二输出端可以通过第二输出模块接地,负载L和运算放大器AMP的第一输入端可以分别连接于第一输出模块,运算放大器AMP的第二输入端可以接入预设电压Vref,负载L的另一端可以接地。
对于本实施方式,运算放大器AMP可以用于对预设电压Vref与驱动电压Vq之间的差值电压进行放大,并输出放大后的差值电压;其中,放大后的差值电压和电容Cb的电压可以用于控制第一输出模块输出第一驱动电流Iq1
在本实施方式中,电流调节电路200具体可以用于根据从驱动电路100获取的第一驱动电流Iq1和负载电流IL,对第一驱动电流Iq1进行补偿,或根据从驱动电路100获取的第一驱动电流Iq1、第二驱动电流Iq2和负载电流IL,对第一驱动电流Iq1进行补偿,以使第一驱动电流Iq1稳定在预设电流范围内。
在实际应用中,本申请实施例提供的稳流电路启动后,驱动电路100会为负载L提供驱动电流Iq(包括第一驱动电流Iq1和第二驱动电流Iq2),以满足负载L的正常工作。在负载L正常工作的过程中,如果负载L发生变化(即由轻载变为重载或由重载变为轻载),那么驱动电路100所输出的驱动电流Iq也会发生相应的改变(即升高或降低)。此时,电流调节电路200会快速对驱动电路100进行调节,即快速根据从驱动电路100获取的第一驱动电流Iq1和负载电流IL(或第一驱动电流Iq1、第二驱动电流Iq2和负载电流IL),对第一驱动电流Iq1进行补偿,以使调节后的第一驱动电流Iq1稳定在预设电流范围内,从而能够实现对负载L变化的稳流,进而能够有效地降低负载L变化时电路的抖动性。
作为本实施方式的一种具体实现,仍然参阅图2;第一输出模块可以包括第 一输出管D1,第二输出模块可以包括第二输出管D2。
作为一种实施方式,仍然参阅图2;电流调节电路200可以包括控制支路以及第一电流源Q1。具体地,控制支路用于根据从驱动电路100获取的第一驱动电流Iq1和负载电流IL,控制第一电流源Q1输出用于对第一驱动电流Iq1进行补偿的补偿电流Id,或根据从驱动电路100获取的第一驱动电流Iq1、第二驱动电流Iq2和负载电流IL,控制第一电流源Q1输出用于对第一驱动电流Iq1进行补偿的补偿电流Id,以使第一驱动电流Iq1稳定在预设电流范围内。
在实际应用中,当负载L由轻载变为重载(即负载电流IL升高),或负载L由重载变为轻载(即负载电流IL降低)时,第一驱动电流Iq1和第二驱动电流Iq2均会发生相应的改变;此时,控制支路根据从驱动电路100获取的第一驱动电流Iq1和负载电流IL,或者根据从驱动电路100获取的第一驱动电流Iq1、第二驱动电流Iq2和负载电流IL,控制第一电流源Q1输出对应的补偿电流Id,以对第一驱动电流Iq1进行补偿,使得补偿后的第一驱动电流Iq1稳定在预设电流范围内。
对于本实施方式,第一电流源Q1输出的补偿电流Id可以包括第一补偿电流Id1和第二补偿电流Id2,预设电流范围的下限阈值可以为第一电流阈值It1、上限阈值可以为第二电流阈值It2,且第一电流阈值It1可以取0,即预设电流范围是[第一电流阈值It1,第二电流阈值It2];其中,补偿电流Id实际上就是第一电流源Q1的电流,而对于第一补偿电流Id1和第二补偿电流Id2而言,只不过是取值不同而已。基于此,控制支路控制第一电流源Q1不对第一驱动电流Iq1进行补偿,即控制第一电流源Q1的电流不变的条件可以为:第一驱动电流Iq1属于(第一电流阈值It1,第二电流阈值It2],即第一驱动电流Iq1在第一电流阈值It1与第二电流阈值It2之间取值,且第一驱动电流Iq1的最小值不能等于第一电流阈值It1,第一驱动电流Iq1的最大值等于第二电流阈值It2;同时,第二驱动电流Iq2等于第一电流阈值It1。此处,有必要进行说明,该具体实现中的第一电流阈值It1取0。
在本实施方式中,当第一驱动电流Iq1大于第二电流阈值It2时,控制支路会控制第一电流源Q1输出第一补偿电流Id1,以对第一驱动电流Iq1进行正向补偿;当第一驱动电流Iq1小于或等于第一电流阈值It1,且第二驱动电流Iq2大于第一电流阈值It1时,控制支路会控制第一电流源Q1输出第二补偿电流Id2,以对第一 驱动电流Iq1进行反向补偿。
进一步地,当第一驱动电流Iq1大于第二电流阈值It2时,控制支路参照上述预设关系式控制第一电流源Q1对第一驱动电流Iq1进行正向补偿可以为:根据第一驱动电流Iq1超出第二电流阈值It2的数值来确定需要通过第一电流源Q1提供的第一补偿电流Id1的大小,即通过第一补偿电流Id1补偿第一驱动电流Iq1超出第二电流阈值It2的部分,从而减小第一驱动电流Iq1的大小,使得补偿后的第一驱动电流Iq1稳定在预设电流范围内。当第一驱动电流Iq1小于或等于第一电流阈值It1,且第二驱动电流Iq2大于第一电流阈值It1时,控制支路参照上述预设关系式控制第一电流源Q1对第一驱动电流Iq1进行反向补偿可以为:根据第二驱动电流Iq2与负载电流IL之和确定第二补偿电流Id2的大小,该第二补偿电流Id2即为需要控制第三电流源Q3减小的电流,也就是说,第一电流源Q1减小的电流即为第一电流源Q1所输出的第二补偿电流Id2,从而增加第一驱动电流Iq1的大小,使得补偿后的第一驱动电流Iq1稳定在预设电流范围内。当第一驱动电流Iq1属于(第一电流阈值It1,第二电流阈值It2],且第二驱动电流Iq2等于第一电流阈值It1时,控制支路会控制第一电流源Q1保持原有补偿不变,即保持第一电流源Q1的电流不变。
作为一种实施方式,仍然参阅图2;电流调节电路200除了可以包括控制支路和第一电流源Q1外,还可以包括A/D转换支路。具体地,A/D转换支路用于对从驱动电路100获取的第一驱动电流Iq1、第二驱动电流Iq2和负载电流IL进行A/D转换,并输出转换后的第一驱动电流Iq1、转换后的第二驱动电流Iq2和转换后的负载电流IL至控制支路。
应当理解的是,上述实施方式仅作为本申请实施例的优选实现,并非是本申请实施例对输出级支路和电流调节电路200的具体构成的唯一限定;对此,本领域技术人员可以在本申请实施例的基础上,根据实际应用场景进行灵活设定。
在一些实施例中,仍然参阅图2,驱动电路100除了可以包括运算放大器AMP、电容Cb、输出级支路外,还可以包括充电支路。具体地,充电支路用于根据参考电压VTH和电容Cb的第一端的电压,对电容Cb的第一端进行充电, 以使电容Cb的第一端的电压大于或等于参考电压VTH
本实施例中,当第一输出管D1无法输出第一驱动电流Iq1时,或者第一驱动电流Iq1无法满足驱动要求时,可以控制充电支路对电容Cb的第一端进行充电,以通过增大电容Cb的第一端的电压的方式,提升驱动电压Vq,直至第一输出管D1能够输出满足驱动要求的第一驱动电流Iq1为止;当第一输出管D1能够输出满足驱动要求的驱动电流Iq时,可以控制充电支路不对电容Cb的第一端进行充电,以降低功耗。通过控制充电支路的间歇性工作,可以在不明显增加功耗的情况下,快速输出满足驱动要求的第一驱动电流Iq1。例如,在上电启动的过程中,第一输出管D1输出的驱动电压Vq从零逐渐增大,一开始驱动电压Vq较小,导致第一输出管D1无法输出第一驱动电流Iq1,或者产生的第一驱动电流Iq1无法满足驱动要求,此时,通过充电支路对电容Cb的第一端进行充电,可以快速增大驱动电压Vq,使其能快速满足驱动要求,从而产生符合条件的第一驱动电流Iq1,以满足负载L的正常工作。又如,在稳压电路正常工作时,如果负载突然增加,将导致驱动电压Vq被拉低,第一驱动电流Iq1也无法满足增加的负载需求,此时也可以通过充电支路对电容Cb的第一端进行充电,以将驱动电压Vq快速拉回到预设值,并在一定范围内增大第一驱动电流Iq1以满足增加的负载需求。
作为一种实施方式,可以设定一个参考电压VTH,以使充电支路根据电容Cb的第一端的电压和参考电压VTH,对电容Cb的第一端进行充电,使得电容Cb的第一端的电压大于或等于参考电压VTH。比如,当电容Cb的第一端的电压小于参考电压VTH时,可以控制充电支路对电容Cb的第一端进行充电;当电容Cb的电压大于或等于参考电压VTH时,可以控制充电支路停止对电容Cb的第一端的充电。可以理解,电容Cb的第一端的电压小于参考电压VTH,指示驱动电压Vq较低,即第一输出管D1无法输出第一驱动电流Iq1;电容Cb的第一端的电压大于或等于参考电压VTH,指示驱动电压Vq符合需求,即第一输出管D1能够输出第一驱动电流Iq1。例如,当本申请实施例提供的稳流电路上电启动时,或电容Cb存在漏电等情况时,电容Cb的第一端的电压会小于参考电压VTH,则需要对电容Cb的第一端进行充电。
作为一种实施方式,仍然参阅图2;充电支路可以包括比较器CMP1、电荷泵CP以及晶体管TH。具体地,比较器CMP1的输出端可以与电荷泵CP的一端连接,比较器CMP1的第一输入端和电荷泵CP的另一端可以分别连接于电容Cb的第一端,晶体管TH的两端可以分别连接于电容Cb与第一端相对的另一端(即电容Cb与运算放大器AMP的输出端的连接端)和比较器CMP1的第二输入端。此处,有必要进行说明,在本申请实施例提供的稳流电路启动后,比较器CMP1的比较工作会持续进行,直至本申请实施例提供的稳流电路关闭为止。
对于本实施方式,比较器CMP1可以用于对电容Cb的第一端的电压和晶体管TH的阈值电压进行比较,并根据比较结果控制电荷泵CP对电容Cb的第一端进行充电;其中,晶体管TH的阈值电压即为前文所述的参考电压VTH。比如,当比较器CMP1的比较结果为电容Cb的第一端的电压小于晶体管TH的阈值电压时,可以控制电荷泵CP对电容Cb的第一端进行充电;当比较器CMP1的比较结果为电容Cb的第一端的电压大于或等于晶体管TH的阈值电压时,可以控制电荷泵CP停止对电容Cb的第一端的充电,由此使得电荷泵得以间接性的工作,能够降低功耗。例如,当本申请实施例提供的稳流电路启动时,或电容Cb存在漏电等情况时,电容Cb的第一端的电压均会小于晶体管TH的阈值电压,则需要对电容Cb的第一端进行充电。
应当理解的是,上述实施方式仅作为本申请实施例的优选实现,并非是本申请实施例对充电支路的具体构成的唯一限定;对此,本领域技术人员可以在本申请实施例的基础上,根据实际应用场景进行灵活设定。
在一些实施例中,请进一步参阅图3,图3为本申请实施例提供的稳流电路的第二种模块框图;从图3中可以看出本申请实施例提供的稳流电路除了可以包括驱动电路100和电流调节电路200外,还可以包括连接于驱动电路100的电压调节电路300。其中,驱动电路100还用于输出驱动电压Vq。具体地,电压调节电路200用于根据预设电压阈值和从驱动电路100获取的驱动电压Vq,对驱动电路100进行充电或放电,以使驱动电压Vq稳定在预设电压范围内。
在实际应用中,本申请实施例提供的稳流电路启动后,驱动电路100会为负载L提供驱动电压Vq,以满足负载L的正常工作。在负载L正常工作的过程 中,如果负载L发生变化,即由轻载变为重载或由重载变为轻载,那么驱动电路100所输出的驱动电压Vq也会发生相应的改变。此时,电压调节电路300会快速对驱动电路100进行调节,即快速根据预设电压阈值和从驱动电路100获取的驱动电压Vq,对驱动电路100进行充电或放电,以使调节后的驱动电压Vq稳定在预设电压范围内,从而能够实现对负载L变化的快速响应。
作为一种实施方式,预设电压范围可以为基于预设电压Vref而设定的范围;具体地,可以预先设定一个预设电压Vref,并利用该预设电压Vref确定出预设电压范围。比如,在预设电压Vref的基础上进行电压值的增大,以确定出预设电压范围的上限阈值,以及在预设电压Vref的基础上进行电压值的减小,以确定出预设电压范围的下限阈值;其中,上限阈值、下限阈值与预设电压Vref的值相差较小。
进一步地,可以根据预设电压Vref对预设电压阈值进行设定;比如,在预设电压Vref的基础上进行电压值的增大,或在预设电压Vref的基础上进行电压值的减小。当然,也并非仅限于此,在其它实施方式中,也可以根据预设电压范围内的多个电压值,对预设电压阈值进行设定;比如,在预设电压范围内的多个电压值的平均值的基础上进行电压值的增大,或在预设电压范围内的多个电压值的平均值的基础上进行电压值的减小。
应当理解的是,上述实施方式仅作为本申请实施例的优选实现,并非是本申请实施例对预设电压范围和预设电压阈值的确定的唯一限定;对此,本领域技术人员可以在本申请实施例的基础上,根据实际应用场景进行灵活设定。
在一些实施例中,请进一步参阅图4,图4为本申请实施例提供的稳流电路的第二种电路结构示意图;电压调节电路300可以连接于电容Cb的第二端;其中,电容Cb的第二端为电容Cb与运算放大器AMP的输出端的连接端。
对于本实施例,电压调节电路300具体可以用于根据预设电压阈值和从驱动电路100获取的驱动电压Vq,对电容Cb的第二端进行充电或放电,以使驱动电压Vq稳定在预设电压范围内。驱动电路100具体可以用于通过电容Cb的第一端输出驱动电压Vq,以驱动输出级支路输出驱动电流Iq
在一些实施例中,仍然参阅图4;预设电压阈值可以包括第一电压阈值和第 二电压阈值,且第一电压阈值小于第二电压阈值;在此基础上,电压调节电路300可以包括第一调节支路和第二调节支路。具体地,第一调节支路可以用于对从驱动电路100获取的驱动电压Vq与第一电压阈值进行比较,并在驱动电压Vq低于第一电压阈值时,对驱动电路100进行充电;第二调节支路可以用于对从驱动电路100获取的驱动电压Vq与第二电压阈值进行比较,并在驱动电压Vq高于第二电压阈值时,对驱动电路100进行放电。
可以理解,由于预设电压阈值根据预设电压范围内的至少一个电压值设定,所以第一电压阈值和第二电压阈值也根据预设电压范围内的至少一个电压值设定。比如,在预设电压范围内的任一电压值的基础上进行电压值的增大,或在预设电压范围内的任一电压值的基础上进行电压值的减小,以分别设定第一电压阈值和第二电压阈值;或者,在预设电压范围内的多个电压值的平均值的基础上进行电压值的增大,或在预设电压范围内的多个电压值的平均值的基础上进行电压值的减小,以分别设定第一电压阈值和第二电压阈值。作为一种示例,可以在预设电压Vref的基础上进行电压值的增大,或在预设电压Vref的基础上进行电压值的减小,以分别设定第一电压阈值和第二电压阈值。
在实际应用中,当负载L由轻载变为重载时,本申请实施例提供的稳流电路会产生欠压波动,即驱动电路100的驱动电压Vq会降低,此时若第一调节支路的比较结果为驱动电压Vq低于第一电压阈值,则第一调节支路会对驱动电路100进行充电,以提升驱动电压Vq,使得调节后的驱动电压Vq被稳定在预设电压范围内。当负载L由重载变为轻载时,本申请实施例提供的稳流电路会产生过压波动,即驱动电路100的驱动电压Vq会升高,此时若第二调节支路的比较结果为驱动电压Vq高于第二电压阈值,则第二调节支路会对驱动电路100进行放电,以降低驱动电压Vq,使得调节后的驱动电压Vq被稳定在预设电压范围内。
作为一种实施方式,仍然参阅图4;第一调节支路可以包括第二比较器CMP2以及第二电流源Q2。具体地,第二比较器CMP2可以用于对从驱动电路100获取的驱动电压Vq与第一电压阈值进行比较,并在驱动电压Vq低于第一电压阈值时,控制第二电流源Q2对驱动电路100进行充电;其中,当从驱动电路100获取的驱动电压Vq低于第一电压阈值时,第二比较器CMP2输出相应的比较结果, 比如输出高电平,且该高电平用于控制第二电流源Q2对驱动电路100进行充电,以提升驱动电压Vq,使得调节后的驱动电压Vq被稳定在预设电压范围内。作为一种示例,第一电压阈值可以为预设电压范围内的任一电压值或多个电压值的平均值与第一预设电压值Vm的差值,比如为预设电压Vref与第一预设电压值Vm的差值(Vref-Vm);其中,第一预设电压值Vm为所能允许的驱动电压Vq的最大减少量,而预设电压Vref可以被看作为驱动电压Vq的目标,即希望将驱动电压Vq维持在预设电压Vref
第二调节支路可以包括第三比较器CMP3以及第三电流源Q3。具体地,第三比较器CMP3可以用于对从驱动电路100获取的驱动电压Vq与第二电压阈值进行比较,并在驱动电压Vq高于第二电压阈值时,控制第三电流源Q3对驱动电路100进行放电;其中,当从驱动电路100获取的驱动电压Vq高于第二电压阈值时,第三比较器CMP3输出相应的比较结果,比如输出低电平,且该低电平用于控制第三电流源Q3对驱动电路100进行放电,以降低驱动电压Vq,使得调节后的驱动电压Vq被稳定在预设电压范围内。作为一种示例,第二电压阈值可以为预设电压范围内的任一电压值或多个电压值的平均值,与第二预设电压值Vn的和值,比如为预设电压Vref与第二预设电压值Vn的和值(Vref+Vn);其中,第二预设电压值Vn为所能允许的驱动电压Vq的最大增大量。
基于此,第二比较器CMP2控制第二电流源Q2对驱动电路100进行充电的条件便为:从驱动电路100获取的驱动电压Vq小于第一电压阈值,比如小于(Vref-Vm);第三比较器CMP3控制第三电流源Q3对驱动电路100进行放电的条件便为:从驱动电路100获取的驱动电压Vq大于第二电压阈值,比如大于(Vref+Vn)。
对于本实施方式,第二比较器CMP2的输出端可以连接于第二电流源Q2,第三比较器CMP3的输出端可以通过第三电流源Q3接地,第二比较器CMP2的第一输入端和第三比较器CMP3的第一输入端可以分别连接于运算放大器AMP的第一输入端,第二比较器CMP2的第二输入端可以接入第一电压阈值,第三比较器CMP3的第二输入端可以接入第二电压阈值,第二电流源Q2和第三电流源Q3可以共接于一节点,该节点可以连接于电容Cb的第二端,以实现第 二电流源Q2对电容Cb的第二端的充电,或第三电流源Q3对电容Cb的第二端的放电。
在本实施例中,当负载L由轻载变为重载时,本申请实施例提供的稳流电路会产生欠压波动,即驱动电路100的驱动电压Vq会降低,此时若第二比较器CMP2的比较结果为驱动电压Vq小于第一电压阈值,则第二比较器CMP2会控制第二电流源Q2对驱动电路100进行充电,具体对电容Cb的第二端进行充电,以抬升电容Cb的第二端的电压,从而使得电容Cb的第一端的电压随之抬升,进而提升驱动电路100的驱动电压Vq,使得调节后的驱动电压Vq被稳定在预设电压范围内。当负载L由重载变为轻载时,本申请实施例提供的稳流电路会产生过压波动,即驱动电路100的驱动电压Vq会升高,此时若第三比较器CMP3的比较结果为驱动电压Vq大于第二电压阈值,则第三比较器CMP3会控制第三电流源Q3对驱动电路100进行放电,具体对电容Cb的第二端进行放电,以拉低电容Cb的第二端的电压,从而使得电容Cb的第一端的电压随之拉低,进而降低驱动电路100的驱动电压Vq,使得调节后的驱动电压Vq被稳定在预设电压范围内。
应当理解的是,上述实施方式仅作为本申请实施例的优选实现,并非是本申请实施例对电压调节电路300的具体构成的唯一限定;对此,本领域技术人员可以在本申请实施例的基础上,根据实际应用场景进行灵活设定。
为了清楚地理解本申请实施例提供的稳流电路,下面结合具体实例对本申请实施例提供的稳流电路的工作过程和原理进行详细地阐述。在该实例中,预设电压范围为[1V,3V];预设电压Vref为1.2V;第一电压阈值为1.2V-Vm,第二电压阈值为1.2V+Vn;预设电流范围为[0,10mA],即第一电流阈值It1为0,第二电流阈值It2为10mA;控制支路控制第一电流源Q1不对第一驱动电流Iq1进行补偿的条件为:第一驱动电流Iq1属于(0,10mA],且第二驱动电流Iq2等于0。
当本申请实施例提供的稳流电路启动时,电容Cb的第一端的电压为0,小于参考电压VTH,第一输出管D1无法输出第一驱动电流Iq1,第一比较器CMP1控制电荷泵CP对电容Cb的第一端进行充电,使得电容Cb的第一端的电压升高;在电容Cb的第一端的电压大于或等于参考电压VTH后,第一输出管D1能 够输出第一驱动电流Iq1,第一比较器CMP1控制电荷泵CP关闭,即控制电荷泵CP停止对电容Cb的第一端的充电,以降低功耗;假设第一输出管D1向负载L输出第一驱动电流Iq1后,负载电流IL为100μA。此时,第一驱动电流Iq1等于负载电流IL(即Iq1=IL=100μA),小于第二电流阈值(10mA),即属于(0,10mA];第一电流源Q1的电流等于0。
当负载电流IL增大ΔIL1=20mA,即负载L由轻载变为重载时,负载电流IL=100μA+ΔIL1,本申请实施例提供的稳流电路产生欠压波动,驱动电路100的驱动电压Vq被拉低;此时,若第二比较器CMP2的比较结果为驱动电压Vq小于第一电压阈值(1.2V-Vm),则第二比较器CMP2会控制第二电流源Q2对驱动电路100进行充电,以将驱动电压Vq迅速拉升至预设电压Vref(1.2V)附近,即将调节后的驱动电压Vq稳定在预设电压范围[1V,3V]内。之后,由于第一驱动电流Iq1等于负载电流IL,而负载电流IL为20.1mA,则第一驱动电流Iq1也为20.1mA,其大于第二电流阈值(10mA),那么控制支路会控制第一电流源Q1输出第一补偿电流Id1,以对第一驱动电流Iq1进行正向补偿,即增大第一电流源Q1的电流(比如增大至10.1mA;此时,Id1=10.1mA),使得第一驱动电流Iq1减小为10mA,以将第一驱动电流Iq1稳定在预设电流范围[0,10mA]内;此时,负载电流IL等于补偿后的第一驱动电流Iq1与第一补偿电流Id1之和,即IL=Iq1+Id1=10mA+10.1mA=20.1mA(这是因为Iq2+IL=Iq1+Id1,而Iq2=0,所以IL=Iq1+Id1)。
当负载电流IL继续减小ΔIL2=20mA,即负载L由重载变为轻载时,负载电流IL=20.1mA-ΔIL2=100μA,本申请实施例提供的稳流电路产生过压波动,驱动电路100的驱动电压Vq被拉高;此时,若第三比较器CMP3的比较结果为驱动电压Vq大于第二电压阈值(1.2V+VQ2),则第三比较器CMP3会控制第三电流源Q3对驱动电路100进行放电,以将驱动电压Vq迅速拉低至预设电压Vref(1.2V)附近,即将调节后的驱动电压Vq稳定在预设电压范围[1V,3V]内。此时,第一电流源Q1的电流仍为上一阶段负载L由轻载变为重载后的数值10.1mA,由于第一驱动电流Iq1与补偿电流Id(第一补偿电流Id1或第二补偿电流Id2)之和等于第二驱动电流Iq2与负载电流IL之和,即Iq1+Id(Id1或Id2)Iq2+IL,设定第一 驱动电流Iq1=0,则第二驱动电流Iq2=10.1mA-IL=10.1mA-100μA=10mA。之后,由于第一驱动电流Iq1=0,不属于(0,10mA],且第二驱动电流Iq2=10mA>0,则控制支路会控制第一电流源Q1输出第二补偿电流Id2,以对第一驱动电流Iq1进行反向补偿,即减小第一电流源Q1的电流(比如减小至0;此时,Id2=0),使得第一驱动电流Iq1的值增大至100μA,相应地,第二驱动电流Iq2的值变为0,从而将第一驱动电流Iq1稳定在预设电流范围[0,10mA]内;此时,负载电流IL等于补偿后的第一驱动电流Iq1与第二补偿电流Id2之和,即IL=Iq1+Id2=100μA(这是因为Iq2+IL=Iq1+Id2,而Iq2=0,所以IL=Iq1+Id2)。
本申请实施例通过增加电压调节电路,可以快速对驱动电路进行调节,即快速根据预设电压阈值和当前的驱动电压,对驱动电路进行充电或放电,以使调节后的驱动电压稳定在预设电压范围内,从而能够实现对负载变化的快速响应。本申请通过电流调节电路200与电压调节电路200的关联结合,有效地提升了稳压电路的响应速度,降低了负载L变化时电路的抖动性。
综合前文所述,本申请实施例提供了一种稳流电路。实际上,该稳流电路可以应用于包括多个电路的集成电路;其中,该集成电路所包括的多个电路中至少包括一个本申请实施例提供的稳流电路。
在此基础上,上述集成电路可以应用于电子设备;其中,该电子设备可以包括但不限于手机、平板电脑、笔记本电脑、台式电脑、智能学习机和智能穿戴设备。此外,本申请实施例提供的稳流电路也可以单独应用于这些电子设备,而不再以上述集成电路的形式设置在这些电子设备中。
请参阅图5,图5为本申请实施例提供的稳流方法的流程示意图。
如图5所示,本申请实施例还提供了一种稳流方法,应用于本申请实施例提供的稳流电路;该稳流方法具体包括如下步骤:
步骤501、控制驱动电路输出驱动电流。
在本申请实施例中,当本申请实施例提供的稳流电路启动后,需要控制驱动电路100输出驱动电流Iq,以保证负载L的正常工作。
步骤502、控制电流调节电路根据驱动电流和负载电流,对驱动电流进行补偿,以使驱动电流稳定在预设电流范围内。
在本申请实施例中,当负载L正常工作时,如果负载L发生变化(即由轻载变为重载或由重载变为轻载),那么驱动电路100所输出的驱动电流Iq也会发生相应的改变(即升高或降低)。此时,电流调节电路200会快速对驱动电路100进行调节,即快速根据从驱动电路100获取的驱动电流Iq和负载电流IL,对驱动电流Iq进行补偿,以使补偿后的驱动电流Iq稳定在预设电流范围内,从而能够实现对负载L变化的稳流,进而降低了负载L变化时电路的抖动性。
结合本文中所公开的实施例描述的方法或算法的步骤可以直接用硬件、处理器执行的软件模块,或者二者的结合来实施。软件模块可以置于随机存储器(RAM)、内存、只读存储器(ROM)、电可编程ROM、电可擦除可编程ROM、寄存器、硬盘、可移动磁盘、CD-ROM、或技术领域内所公知的任意其它形式的存储介质中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请所述的流程或功能。计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线)或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk)等。
需要说明的是,本申请内容中的各个实施例均采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似的部分互相参见即可。对于方法类实施例而言,由于其与产品类实施例相似,所以描述的比较简单,相关之处参见产品类实施例的部分说明即可。
还需要说明的是,在本申请内容中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本申请内容。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本申请内容中所定义的一般原理可以在不脱离本申请内容的精神或范围的情况下,在其它实施例中实现。因此,本申请内容将不会被限制于本申请内容所示的这些实施例,而是要符合与本申请内容所公开的原理和新颖特点相一致的最宽的范围。

Claims (15)

  1. 一种稳流电路,其特征在于,包括电流调节电路和驱动电路;
    所述驱动电路用于输出驱动电流;
    所述电流调节电路用于根据所述驱动电流和负载电流,对所述驱动电流进行补偿,以使所述驱动电流稳定在预设电流范围内。
  2. 如权利要求1所述的稳流电路,其特征在于,所述驱动电路包括运算放大器、电容和输出级支路;
    所述运算放大器的输出端通过所述电容连接于所述输出级支路,所述输出级支路反馈至所述运算放大器的输入端,通过所述输出级支路输出所述驱动电流,以驱动负载;
    所述电流调节电路连接于所述输出级电路,以对所述驱动电流进行补偿。
  3. 如权利要求2所述的稳流电路,其特征在于,所述输出级支路包括第一输出模块和第二输出模块;其中,所述第一输出模块用于输出第一驱动电流,所述第二输出模块用于输出第二驱动电流;
    所述电流调节电路用于根据所述第一驱动电流和所述负载电流,对所述第一驱动电流进行补偿,或根据所述第一驱动电流、所述第二驱动电流和所述负载电流,对所述第一驱动电流进行补偿,以使所述第一驱动电流稳定在所述预设电流范围内。
  4. 如权利要求3所述的稳流电路,其特征在于,所述电流调节电路包括控制支路以及第一电流源;
    所述控制支路用于根据所述第一驱动电流和所述负载电流,控制所述第一电流源输出对所述第一驱动电流进行补偿的补偿电流,或根据所述第一驱动电流、所述第二驱动电流和所述负载电流,控制所述第一电流源输出对所述第一驱动电流进行补偿的补偿电流,以使所述第一驱动电流稳定在所述预设电流范围内。
  5. 如权利要求4所述的稳流电路,其特征在于,所述预设电流范围的下限阈值为第一电流阈值、上限阈值为第二电流阈值,所述补偿电流包括第一补偿 电流和第二补偿电流;
    在所述第一驱动电流大于所述第二电流阈值时,所述控制支路控制所述第一电流源输出所述第一补偿电流,以对所述第一驱动电流进行正向补偿;
    在所述第一驱动电流小于或等于所述第一电流阈值,且所述第二驱动电流大于所述第一电流阈值时,所述控制支路控制所述第一电流源输出所述第二补偿电流,以对所述第一驱动电流进行反向补偿。
  6. 如权利要求5所述的稳流电路,其特征在于,在所述第一驱动电流大于所述第二电流阈值时,所述控制支路根据所述第一驱动电流超出所述第二电流阈值的数值确定所述第一补偿电流的大小;
    在所述第一驱动电流小于或等于所述第二电流阈值,且所述第二驱动电流大于所述第一电流阈值时,所述控制支路根据所述第二驱动电流与所述负载电流之和确定所述第二补偿电流的大小。
  7. 如权利要求2所述的稳流电路,其特征在于,所述驱动电路还包括充电支路;所述充电支路用于根据参考电压和所述电容的第一端的电压,对所述第一端进行充电;其中,所述第一端为所述电容与所述输出级支路的连接端。
  8. 如权利要求7所述的稳流电路,其特征在于,所述充电支路包括第一比较器和电荷泵;
    所述第一比较器用于对所述第一端的电压与所述参考电压进行比较,并根据比较结果控制所述电荷泵对所述第一端进行充电,以使所述第一端的电压大于或等于所述参考电压。
  9. 如权利要求2-8任一项所述的稳流电路,其特征在于,所述稳流电路还包括电压调节电路,所述驱动电路还用于输出驱动电压;
    所述电压调节电路用于根据预设电压阈值和所述驱动电压,对所述驱动电路进行充电或放电,以使所述驱动电压稳定在预设电压范围内。
  10. 如权利要求9所述的稳流电路,其特征在于,所述电压调节电路连接于所述电容的第二端,以对所述电容的第二端进行充电或放电;其中,所述第二端为所述电容与所述运算放大器的输出端的连接端;
    所述电容的第一端连接于所述输出级支路,以驱动所述输出级支路输出所 述驱动电压和所述驱动电流。
  11. 如权利要求9所述的稳流电路,其特征在于,所述预设电压阈值包括第一电压阈值和第二电压阈值;其中,所述第一电压阈值小于所述第二电压阈值;
    所述电压调节电路包括第一调节支路和第二调节支路;
    所述第一调节支路用于对所述驱动电压与所述第一电压阈值进行比较,并在所述驱动电压低于所述第一电压阈值时,对所述驱动电路进行充电;
    所述第二调节支路用于对所述驱动电压与所述第二电压阈值进行比较,并在所述驱动电压高于所述第二电压阈值时,对所述驱动电路进行放电。
  12. 如权利要求11所述的稳流电路,其特征在于,所述第一调节支路包括第二比较器和第二电流源;
    所述第二比较器用于对所述驱动电压与所述第一电压阈值进行比较,并在所述驱动电压低于所述第一电压阈值时,控制所述第二电流源对所述驱动电路进行充电;
    所述第二调节支路包括第三比较器和第三电流源;
    所述第三比较器用于对所述驱动电压与所述第二电压阈值进行比较,并在所述驱动电压高于所述第二电压阈值时,控制所述第三电流源对所述驱动电路进行放电。
  13. 一种集成电路,其特征在于,包括如权利要求1-12任一项所述的稳流电路。
  14. 一种电子设备,其特征在于,包括负载,以及如权利要求1-12任一项所述的稳流电路或如权利要求13所述的集成电路。
  15. 一种稳流方法,其特征在于,应用于如权利要求1-12任一项所述的稳流电路;所述稳流方法包括:
    控制所述驱动电路输出所述驱动电流;
    控制所述电流调节电路根据所述驱动电流和所述负载电流,对所述驱动电流进行补偿,以使所述驱动电流稳定在所述预设电流范围内。
PCT/CN2023/095732 2022-05-24 2023-05-23 一种稳流电路及其稳流方法、集成电路以及电子设备 WO2023226969A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210568484.4A CN114967809B (zh) 2022-05-24 2022-05-24 一种稳流电路及其稳流方法、集成电路以及电子设备
CN202210568484.4 2022-05-24

Publications (1)

Publication Number Publication Date
WO2023226969A1 true WO2023226969A1 (zh) 2023-11-30

Family

ID=82955356

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/095732 WO2023226969A1 (zh) 2022-05-24 2023-05-23 一种稳流电路及其稳流方法、集成电路以及电子设备

Country Status (2)

Country Link
CN (1) CN114967809B (zh)
WO (1) WO2023226969A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114967809B (zh) * 2022-05-24 2023-10-27 芯海科技(深圳)股份有限公司 一种稳流电路及其稳流方法、集成电路以及电子设备
CN115617105A (zh) * 2022-05-24 2023-01-17 芯海科技(深圳)股份有限公司 一种稳压电路及其稳压方法、集成电路以及电子设备

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102707757A (zh) * 2012-06-05 2012-10-03 电子科技大学 一种动态电荷放电电路以及集成该电路的ldo
US9588541B1 (en) * 2015-10-30 2017-03-07 Qualcomm Incorporated Dual loop regulator circuit
CN106940579A (zh) * 2017-03-27 2017-07-11 北京松果电子有限公司 低压差线性稳压器及其频率补偿方法
US20190025861A1 (en) * 2017-07-24 2019-01-24 Macronix International Co., Ltd. Fast transient response voltage regulator with pre-boosting
CN110231851A (zh) * 2019-06-20 2019-09-13 京东方科技集团股份有限公司 输出电压补偿电路、方法、稳压电路和显示装置
US20200042026A1 (en) * 2018-07-31 2020-02-06 Analog Devices Global Unlimited Company Load-dependent control of parallel regulators
CN210428229U (zh) * 2019-07-10 2020-04-28 深圳市锐能微科技有限公司 一种集成电路和低压差线性稳压电路
CN111290472A (zh) * 2020-02-25 2020-06-16 江苏润石科技有限公司 能快速响应的低压差线性稳压器
CN112558680A (zh) * 2019-09-25 2021-03-26 圣邦微电子(北京)股份有限公司 线性调整器及其控制电路
CN113970947A (zh) * 2020-07-24 2022-01-25 武汉杰开科技有限公司 一种低压差线性稳压器以及电子设备
CN216411985U (zh) * 2021-12-10 2022-04-29 纬联半导体(珠海)有限公司 电源稳压系统
US20220147082A1 (en) * 2020-11-09 2022-05-12 Cirrus Logic International Semiconductor Ltd. Voltage regulators
CN114967809A (zh) * 2022-05-24 2022-08-30 芯海科技(深圳)股份有限公司 一种稳流电路及其稳流方法、集成电路以及电子设备
CN115617105A (zh) * 2022-05-24 2023-01-17 芯海科技(深圳)股份有限公司 一种稳压电路及其稳压方法、集成电路以及电子设备

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5521736A (en) * 1994-09-29 1996-05-28 Vixel Corporation Control circuits for parallel optical interconnects
JP4651428B2 (ja) * 2005-03-28 2011-03-16 ローム株式会社 スイッチングレギュレータ及びこれを備えた電子機器
CN101552560B (zh) * 2009-01-13 2011-06-22 成都芯源系统有限公司 一种开关稳压电路及其控制方法
CN201954334U (zh) * 2011-03-08 2011-08-31 刘建超 开关稳流的恒定亮度led照明光源
CN103596319B (zh) * 2012-08-14 2015-05-27 华润矽威科技(上海)有限公司 非隔离led驱动系统及非隔离led驱动恒流控制电路
US9665111B2 (en) * 2014-01-29 2017-05-30 Semiconductor Components Industries, Llc Low dropout voltage regulator and method
CN104460797B (zh) * 2014-10-22 2016-05-25 中国电子科技集团公司第四十一研究所 一种高精度宽频谱分析仪的ytf压控电流驱动系统
CN105592605B (zh) * 2014-10-22 2018-11-20 上海新进半导体制造有限公司 一种led负载驱动电路
CN206023653U (zh) * 2016-05-18 2017-03-15 四川蓉幸实业有限公司 一种辣椒烘干系统振动装置电机用多电路处理的驱动电路
TWI701902B (zh) * 2019-09-10 2020-08-11 敦泰電子股份有限公司 運算放大器電路
CN110798946A (zh) * 2019-11-13 2020-02-14 惠州学院 一种高精度图像检测系统用的光源电流调节电路
CN111179870A (zh) * 2020-01-31 2020-05-19 北京京东方显示技术有限公司 一种电源驱动电路、其驱动方法及显示装置
CN113746163A (zh) * 2021-08-17 2021-12-03 芯海科技(深圳)股份有限公司 一种电源控制电路、集成电路、电源模组以及电子设备

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102707757A (zh) * 2012-06-05 2012-10-03 电子科技大学 一种动态电荷放电电路以及集成该电路的ldo
US9588541B1 (en) * 2015-10-30 2017-03-07 Qualcomm Incorporated Dual loop regulator circuit
CN106940579A (zh) * 2017-03-27 2017-07-11 北京松果电子有限公司 低压差线性稳压器及其频率补偿方法
US20190025861A1 (en) * 2017-07-24 2019-01-24 Macronix International Co., Ltd. Fast transient response voltage regulator with pre-boosting
US20200042026A1 (en) * 2018-07-31 2020-02-06 Analog Devices Global Unlimited Company Load-dependent control of parallel regulators
CN110231851A (zh) * 2019-06-20 2019-09-13 京东方科技集团股份有限公司 输出电压补偿电路、方法、稳压电路和显示装置
CN210428229U (zh) * 2019-07-10 2020-04-28 深圳市锐能微科技有限公司 一种集成电路和低压差线性稳压电路
CN112558680A (zh) * 2019-09-25 2021-03-26 圣邦微电子(北京)股份有限公司 线性调整器及其控制电路
CN111290472A (zh) * 2020-02-25 2020-06-16 江苏润石科技有限公司 能快速响应的低压差线性稳压器
CN113970947A (zh) * 2020-07-24 2022-01-25 武汉杰开科技有限公司 一种低压差线性稳压器以及电子设备
US20220147082A1 (en) * 2020-11-09 2022-05-12 Cirrus Logic International Semiconductor Ltd. Voltage regulators
CN216411985U (zh) * 2021-12-10 2022-04-29 纬联半导体(珠海)有限公司 电源稳压系统
CN114967809A (zh) * 2022-05-24 2022-08-30 芯海科技(深圳)股份有限公司 一种稳流电路及其稳流方法、集成电路以及电子设备
CN115617105A (zh) * 2022-05-24 2023-01-17 芯海科技(深圳)股份有限公司 一种稳压电路及其稳压方法、集成电路以及电子设备

Also Published As

Publication number Publication date
CN114967809A (zh) 2022-08-30
CN114967809B (zh) 2023-10-27

Similar Documents

Publication Publication Date Title
WO2023226969A1 (zh) 一种稳流电路及其稳流方法、集成电路以及电子设备
WO2023226971A1 (zh) 一种稳压电路及其稳压方法、集成电路以及电子设备
US9261892B2 (en) Low-dropout voltage regulator apparatus capable of adaptively adjusting current passing through output transistor to reduce transient response time and related method thereof
TWI486740B (zh) 基準信號產生電路、裝置及方法與電腦可讀媒體
US8026708B2 (en) Voltage regulator
US6900623B2 (en) Power supply having multi-vector error amplifier for power factor correction
EP2901244B1 (en) Low dropout regulator with hysteretic control
US10250128B2 (en) Type III switching converter error amplifier with fast transient response behavior
US7714551B2 (en) High PSRR linear voltage regulator and control method thereof
US20050057234A1 (en) Low drop-out voltage regulator and an adaptive frequency compensation method for the same
US11258360B2 (en) Switched-capacitor power converting apparatus and operating method thereof
JP2006158193A (ja) 高効率高スルーレートのスイッチングレギュレータ/アンプ
EP3300235B1 (en) Voltage regulator
US20200244160A1 (en) Feedback Scheme for Stable LDO Regulator Operation
US11342852B2 (en) Apparatus, system, and method for reducing voltage overshoot in voltage regulators
CN115328254A (zh) 一种基于多种频率补偿方式的高瞬态响应ldo电路
KR20040004518A (ko) 전력 증폭기용 전류 미러 보상 시스템
CN111367340B (zh) 一种低压差线性稳压电路
US10476610B2 (en) Semiconductor integrated circuit, semiconductor system, and electric source voltage control method
CN114138043B (zh) 线性稳压电路及电子设备
CN213843929U (zh) 带软启动功能的低压线性稳压器、芯片及电子设备
CN111367342A (zh) 一种低压差线性稳压电路
US11194357B2 (en) Systems and methods for operating a bias controller for an amplifier circuit
US10761550B2 (en) Current limitation for voltage regulator
CN116520922A (zh) 低压差稳压系统及其控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23811040

Country of ref document: EP

Kind code of ref document: A1