WO2023226163A1 - 一种中继线圈ipt系统的优化方法和系统 - Google Patents

一种中继线圈ipt系统的优化方法和系统 Download PDF

Info

Publication number
WO2023226163A1
WO2023226163A1 PCT/CN2022/103942 CN2022103942W WO2023226163A1 WO 2023226163 A1 WO2023226163 A1 WO 2023226163A1 CN 2022103942 W CN2022103942 W CN 2022103942W WO 2023226163 A1 WO2023226163 A1 WO 2023226163A1
Authority
WO
WIPO (PCT)
Prior art keywords
relay coil
ipt system
efficiency
model
input voltage
Prior art date
Application number
PCT/CN2022/103942
Other languages
English (en)
French (fr)
Inventor
吴宁
肖静
吴晓锐
尹立群
龚文兰
陈绍南
韩帅
陈卫东
卢健斌
阮诗雅
郭敏
郭小璇
孙乐平
赵立夏
Original Assignee
广西电网有限责任公司电力科学研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广西电网有限责任公司电力科学研究院 filed Critical 广西电网有限责任公司电力科学研究院
Publication of WO2023226163A1 publication Critical patent/WO2023226163A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/50Circuit arrangements or systems for wireless supply or distribution of electric power using additional energy repeaters between transmitting devices and receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/40Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices

Definitions

  • the invention belongs to the field of electronic design, and in particular relates to an optimization method and system for a relay coil IPT system.
  • Wireless Power Transfer is an emerging technology that can transfer energy from the power side to the load side without direct contact. It avoids safety problems such as contact sparks and leakage in traditional plug-type systems, making human The way to apply electrical energy is more flexible.
  • inductive power transfer technology Inductive Power Transfer, IPT
  • IPT inductive Power Transfer
  • the energy transmitting end structural unit includes three parts: high-frequency inverter, transmitting end resonance compensation network and transmitting coil.
  • the function of the high-frequency inverter is to convert DC power into high-frequency AC power, and then through the resonance compensation network, a high-frequency AC magnetic field is generated in the transmitting coil and coupled to the receiving end unit;
  • the energy receiving end structural unit includes a receiving coil, a receiving end
  • resonance compensation network and passive rectifier.
  • the receiving coil senses the high-frequency magnetic field generated by the transmitting coil, it outputs high-frequency alternating current to the passive rectifier through the receiving end resonance compensation network.
  • the passive rectifier converts the alternating current into direct current to provide the required power to the load, thereby achieving Wireless transmission of energy from the source side to the load side.
  • the IPT system using relay coils has significant advantages in the field of high-voltage and long-distance power transmission, and can be used for wireless power supply of online monitoring equipment for transmission lines.
  • the energy transmission coil is embedded into the composite insulator to form an integrated energy transmission structure.
  • the coil When the coil is packaged into the insulator, its mutual inductance, self-inductance and other parameters cannot be changed.
  • the types and quantities of online monitoring equipment configured are different, and the required power supply is also different. Therefore, it is necessary to design the required input voltage of the multi-relay IPT system according to the load situation to match the power required by the load and the optimal transmission efficiency point.
  • the present invention provides an optimization method and system for the relay coil IPT system.
  • the specific technical solutions are as follows:
  • the present invention provides an optimization method for a relay coil IPT system, which includes: establishing an equivalent circuit model of the relay coil IPT system to be optimized; obtaining a corresponding efficiency model based on the equivalent circuit model; analyzing the efficiency model to determine Influencing factors; based on the influencing factors, obtain the corresponding optimal load value and optimal input voltage when the relay coil IPT system is at its highest efficiency.
  • establishing the equivalent circuit model of the relay coil IPT system to be optimized includes: based on one of SS topology, SP topology, P topology S and PP topology, simplifying the relay coil IPT system to obtain the equivalent circuit model. Effective circuit model.
  • obtaining the corresponding efficiency model based on the equivalent circuit model includes: setting the coil loop equation through Kirchhoff's voltage law; obtaining the inverter equivalent resistance and operating frequency based on the coil loop equation. , coil mutual inductance, internal resistance, system input voltage and equivalent AC load resistance, calculate the relationship of the coil current; calculate the active power and output power of the loop according to the relationship of the coil current; calculate the active power and output power of the loop according to the relationship of the coil current power, and obtain the efficiency model corresponding to the relay coil IPT system.
  • the optimization method further includes: based on the mutual inductance between the coils, eliminating the mutual inductance between two or more coils located at different positions from each other to simplify the coil loop equation.
  • analyzing the efficiency model to determine the influencing factors includes: simplifying the relational expression of the coil current based on the known circuit structure and operating frequency of the relay coil IPT system; The relational expression determines the equivalent AC load resistance and the system input voltage as influencing factors of power.
  • obtaining the corresponding optimal load value and optimal input voltage of the relay coil IPT system at the highest efficiency includes: using the equivalent AC load resistance as the proposed factor; using the efficiency The model calculates to obtain the optimal load value corresponding to the relay coil IPT system when it is at the highest efficiency; the system input voltage is used as the drafting factor; the optimal load value is calculated through the efficiency model and the optimal load value Input voltage.
  • the optimization method also includes calculating the corresponding DC resistance R Ld_opt according to the optimal load value R Leq_opt ,
  • the method further includes calculating the corresponding DC voltage according to the optimal input voltage V in_opt
  • the invention provides an optimization system for a relay coil IPT system, which includes: a first unit, which establishes an equivalent circuit model of the relay coil IPT system to be optimized; and a second unit, which obtains a corresponding efficiency model based on the equivalent circuit model. ;
  • the third unit analyzes the efficiency model to determine the influencing factors;
  • the fourth unit based on the influencing factors, obtains the corresponding optimal load value and optimal input voltage of the relay coil IPT system at the highest efficiency.
  • the beneficial effects of the present invention are: by establishing an equivalent circuit model, the complexity of circuit analysis can be reduced; by establishing an efficiency model to analyze and obtain influencing factors, the factors affecting the relay coil IPT system can be further determined, which is helpful for subsequent analysis of the influence. When determining the highest efficiency, the corresponding optimal load value and optimal input voltage are determined.
  • Figure 1 is a schematic diagram of the optimization method of the relay coil IPT system according to the present invention.
  • Figure 2 is a schematic diagram of an optimization system of the relay coil IPT system according to the present invention.
  • the present invention provides an optimization method for a relay coil IPT system as shown in Figure 1, which includes: S1. Establishing an equivalent circuit model of the relay coil IPT system to be optimized; S2. Obtaining the corresponding efficiency based on the equivalent circuit model. model; S3. Analyze the efficiency model to determine the influencing factors; S4. Based on the influencing factors, obtain the corresponding optimal load value and optimal input voltage of the relay coil IPT system at the highest efficiency.
  • the relay coil IPT system has a variety of components. If each component is represented by a corresponding formula, it will increase the amount of calculation and easily cause errors and omissions.
  • the equivalent circuit method is a practical circuit analysis method. By establishing the equivalent circuit model of the relay coil IPT system to be optimized, the ability of circuit analysis can be improved. In order to solve the problem of designing the required input voltage according to the load situation to match the power required by the load and the optimal transmission efficiency point, it is necessary to set up a corresponding efficiency model and determine the relevant influencing factors based on this model. After determining the influencing factors, adjust these influencing factors to find the optimal load value and optimal input voltage corresponding to the relay coil IPT system at its highest efficiency.
  • the establishment of the equivalent circuit model of the relay coil IPT system to be optimized includes: based on one of SS topology, SP topology, P topology S and PP topology, simplifying the relay coil IPT system to obtain the equivalent circuit model .
  • the current flowing through each coil can be expressed as the relationship between the inverter equivalent resistance, operating frequency, coil mutual inductance, internal resistance, system input voltage and equivalent AC load resistance:
  • I t is the current in coil t
  • f() is a function
  • the influencing factors include: R inv is the internal resistance, R i is the equivalent resistance of the inverter, f is the operating frequency, M ij coil mutual inductance, and V in is the system Input voltage, R leq is the equivalent AC load resistance.
  • F() is a function or function set
  • R inv is the internal resistance
  • R i is the equivalent resistance of the inverter
  • f is the operating frequency
  • V in is the system input voltage
  • R leq is the equivalent AC load Resistance is a parameter of the function.
  • the current size of each coil is only related to the system input voltage and equivalent AC load resistance; then the system power is also related to the system input voltage and equivalent AC load resistance.
  • the system power model can be simplified to:
  • the system input voltage V in is formulated as the design parameter, and the optimal load resistance R Leq_opt under maximum efficiency is obtained, which can further obtain the input voltage V in_opt that meets the power demand.
  • the method for calculating the DC resistance corresponding to the AC load resistance at maximum efficiency is as follows:
  • R Leq_opt is the DC resistance.
  • the method of calculating the input voltage and corresponding DC voltage that matches the target output power P ref is as follows:
  • V in_opt is the optimal input voltage
  • V dc_opt is the DC voltage
  • Obtaining the corresponding efficiency model based on the equivalent circuit model includes: setting the coil loop equation through Kirchhoff's voltage law; obtaining the equivalent resistance, operating frequency, and coil mutual inductance based on the inverter through the coil loop equation. , internal resistance, system input voltage and equivalent AC load resistance, calculate the relational expression of the coil current; calculate the active power and output power of the loop according to the relational expression of the coil current; according to the active power and the output power, we get The efficiency model corresponding to the relay coil IPT system.
  • the optimization method also includes: based on the mutual inductance between the coils, eliminating the mutual inductance between two or more coils located at different positions from each other to simplify the coil loop equation.
  • the analysis of the efficiency model to determine the influencing factors includes: simplifying the relational expression of the coil current based on the known circuit structure and operating frequency of the relay coil IPT system; through the simplified relational expression of the coil current, The equivalent AC load resistance and the system input voltage are determined as influencing factors of power.
  • obtaining the corresponding optimal load value and optimal input voltage of the relay coil IPT system at the highest efficiency includes: using the equivalent AC load resistance as the proposed factor; calculating through the efficiency model When the relay coil IPT system is at its highest efficiency, the corresponding optimal load value is; the system input voltage is used as a drafting factor; the optimal input voltage is calculated through the efficiency model and the optimal load value.
  • the optimization method also includes calculating the corresponding DC resistance R Ld_opt according to the optimal load value R Leq_opt ,
  • the method further includes calculating the corresponding DC voltage according to the optimal input voltage V in_opt
  • the simplified circuit is the equivalent AC load resistance RLeq; the purpose of calculating the DC resistance is to Configure the DC load RLd of the power-receiving end device to achieve the purpose of maximum efficiency transmission. It is the actual parameter that is controlled.
  • the primary side is usually the DC voltage Vdc that is converted into AC power Vin through the inverter circuit and then serves as the voltage source of the WPT system. Therefore, the actual quantity that needs to be regulated is the DC voltage Vdc, which is related to whether the WPT system can achieve the target output power.
  • the present invention provides an optimization system for a relay coil IPT system, which includes: a first unit 1, which establishes an equivalent circuit model of the relay coil IPT system to be optimized; and a second unit 2, which obtains the corresponding circuit model based on the equivalent circuit model.
  • Efficiency model the third unit 3, analyzes the efficiency model to determine the influencing factors; the fourth unit 4, based on the influencing factors, obtains the corresponding optimal load value and optimal input voltage of the relay coil IPT system at the highest efficiency .
  • division of units is only a logical function division. In actual implementation, there may be other division methods. For example, multiple units may be combined into one unit, and one unit may be detached. Divided into multiple units, or some features can be ignored, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

本发明属于电子设计领域,尤其涉及中继线圈IPT系统的优化方法和系统,方法:建立待优化的中继线圈IPT系统的等效电路模型;根据所述等效电路模型以获取对应的效率模型;解析所述效率模型以确定影响因素;基于所述影响因素,获取中继线圈IPT系统在最高效率时,对应的最优负载值和最优输入电压。通过通过建立等效电路模型,能够降低电路分析的复杂度;通过建立效率模型以解析得到影响因素,能够进一步确定影响中继线圈IPT系统的因素,有助于后续根据该影响确定最高效率时,对应的最优负载值和最优输入电压。

Description

一种中继线圈IPT系统的优化方法和系统 技术领域
本发明属于电子设计领域,尤其涉及一种中继线圈IPT系统的优化方法和系统。
背景技术
无线电能传输(Wireless Power Transfer,WPT)是一种不需要直接接触便可将能量由电源侧传递到负载侧的新兴技术,它避免了传统插头式系统中接触火花和漏电等安全问题,使人类应用电能的方式更加灵活。其中,感应式电能传输技术(Inductive Power Transfer,IPT)因其安全、可靠等优点,已被广泛应用于植入式医疗设备,电动汽车以及手机等移动设备的无线充电领域。
传统IPT系统通常包括能量发射端结构单元和能量接收端结构单元两部分。能量发射端结构单元包括高频逆变器、发射端谐振补偿网络和发射线圈三部分。其中,高频逆变器的功能是将直流电变为高频交流电,之后经过谐振补偿网络,在发射线圈中产生高频交流磁场耦合到接收端单元;能量接收端结构单元包括接收线圈、接收端谐振补偿网络和无源整流器三部分。其中,接收线圈感应到发射线圈产生的高频磁场后,经过接收端谐振补偿网络,向无源整流器输出高频交流电,无源整流器则将交流电变为直流电,向负荷提供所需电能,进而实现能量从电源侧到负载侧的无线传输。
采用中继线圈的IPT系统在高压、远距离电能传输领域具有显著优势,可用于输电线路在线监测设备的无线供电。通常采取将传能线圈嵌入到复合绝缘子形成一体化传能结构,当线圈封装进绝缘子后,其互感、自感等参数无法改变。而在不同线路或者杆塔上,所配置的在线监测设备种类和数量不同,所需要的供电功率也不同。因此,需要根据负载情况,来设计出所需的多中继IPT 系统输入电压,从而匹配负载需要的功率与最优传输效率点。
发明内容
为了解决或者改善上述问题,本发明提供了一种中继线圈IPT系统的优化方法和系统,具体技术方案如下:
本发明提供一种中继线圈IPT系统的优化方法,包括:建立待优化的中继线圈IPT系统的等效电路模型;根据所述等效电路模型以获取对应的效率模型;解析所述效率模型以确定影响因素;基于所述影响因素,获取中继线圈IPT系统在最高效率时,对应的最优负载值和最优输入电压。
优选的,所述建立待优化的中继线圈IPT系统的等效电路模型包括:基于SS拓扑、SP拓扑、P拓扑S和PP拓扑之中的一种,简化所述中继线圈IPT系统得到所述等效电路模型。
优选的,所述根据所述等效电路模型以获取对应的效率模型包括:通过基尔霍夫电压定律设置线圈回路方程;通过所述线圈回路方程,获得基于逆变器等效电阻、工作频率、线圈互感、内阻、系统输入电压和等效交流负载电阻,计算线圈电流的关系式;根据所述线圈电流的关系式计算回路的有功功率和输出功率;根据所述有功功率和所述输出功率,得到所述中继线圈IPT系统对应的效率模型。
优选的,优化方法还包括:根据线圈之间内的互感,排除彼此位置相间两个及以上的线圈间的互感,以简化所述线圈回路方程。
优选的,所述解析所述效率模型以确定影响因素包括:根据已知的所述中继线圈IPT系统的电路结构和工作频率,简化所述线圈电流的关系式;通过简化的所述线圈电流的关系式,确定所述等效交流负载电阻和所述系统输入电压为功率的影响因素。
优选的,所述通过简化的所述线圈电流的关系式,确定所述等效交流负载电阻和所述系统输入电压为功率的影响因素包括:根据简化的所述线圈电流的关系式,设置对应的功率模型
Figure PCTCN2022103942-appb-000001
和对应的效率模型η=G(R Leq),其中,P out为目标输出功率,F()为函数,V in为输入电压,η为效率,G()为函数,R leq为等效负载;根据所述功率模型,确定所述等效交流负载电阻和所述系统输入电压为功率的影响因素;根据所述效率模型确定所述等效交流负载电阻为效率的影响因素。
优选的,所述基于所述影响因素,获取中继线圈IPT系统在最高效率时,对应的最优负载值和最优输入电压包括:以所述等效交流负载电阻作为拟定因素;通过所述效率模型计算得到所述中继线圈IPT系统在最高效率时,对应的最优负载值;以所述系统输入电压作为拟定因素;通过所述效率模型和所述最优负载值,计算得到所述最优输入电压。
优选的,优化方法还包括根据所述最优负载值R Leq_opt计算对应的直流电阻R Ld_opt
Figure PCTCN2022103942-appb-000002
优选的,方法还包括根据所述最优输入电压V in_opt计算对应的直流电压
Figure PCTCN2022103942-appb-000003
本发明提供一种中继线圈IPT系统的优化系统,包括:第一单元,建立待优化的中继线圈IPT系统的等效电路模型;第二单元,根据所述等效电路模型以获取对应的效率模型;第三单元,解析所述效率模型以确定影响因素;第四单元,基于所述影响因素,获取中继线圈IPT系统在最高效率时,对应的最优负载值和最优输入电压。
本发明的有益效果为:通过建立等效电路模型,能够降低电路分析的复杂 度;通过建立效率模型以解析得到影响因素,能够进一步确定影响中继线圈IPT系统的因素,有助于后续根据该影响确定最高效率时,对应的最优负载值和最优输入电压。
附图说明
图1是根据本发明的中继线圈IPT系统的优化方法的示意图;
图2是根据本发明的中继线圈IPT系统的优化系统的示意图。
主要附图标记说明:
1-第一单元,2-第二单元。3-第三单元,4-第四单元。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保密的范围。
应当理解,当在本说明书和所附权利要求书中使用时,术语“包括”和“包含”指示所描述特征、整体、步骤、操作、元素和/或组件的存在,但并不排除一个或多个其它特征、整体、步骤、操作、元素、组件和/或其集合的存在或添加。
还应当理解,在本发明说明书中所使用的术语仅仅是出于描述特定实施例的目的而并不意在限制本发明。如在本发明说明书和所附权利要求书中所使用的那样,除非上下文清楚地指明其它情况,否则单数形式的“一”、“一个”及“该”意在包括复数形式。
还应当进一步理解,在本发明说明书和所附权利要求书中使用的术语“和/ 或”是指相关联列出的项中的一个或多个的任何组合以及所有可能组合,并且包括这些组合。
本发明提供如图1所示一种中继线圈IPT系统的优化方法,包括:S1、建立待优化的中继线圈IPT系统的等效电路模型;S2、根据所述等效电路模型以获取对应的效率模型;S3、解析所述效率模型以确定影响因素;S4、基于所述影响因素,获取中继线圈IPT系统在最高效率时,对应的最优负载值和最优输入电压。
中继线圈IPT系统具备多种元件,如果将每一个元件都设置一个对应的公式来表示,会造成计算量的徒增且容易造成错漏。通过等效电路的方式,属于实践可行的电路解析方法。通过建立待优化的中继线圈IPT系统的等效电路模型可以提高电路解析的能力。为了解决需要根据负载情况,来设计出所需输入电压,从而匹配负载需要的功率与最优传输效率点的问题,需要设置对应的效率模型,并根据这个模型确定相关的影响因素。确定影响因素之后,通过调整这些影响因素来找到中继线圈IPT系统在最高效率时,对应的最优负载值和最优输入电压。
所述建立待优化的中继线圈IPT系统的等效电路模型包括:基于SS拓扑、SP拓扑、P拓扑S和PP拓扑之中的一种,简化所述中继线圈IPT系统得到所述等效电路模型。
建立中继线圈IPT系统的等效电路模型,采取方式不限,可以从SS拓扑、SP拓扑、P拓扑S和PP拓扑中选一种。具体以SS拓扑的方式说明:
基于SS拓扑简化等效电路模型,依据基尔霍夫电压定律,列写n个线圈回路方程,并确定各个回路的电流:
Figure PCTCN2022103942-appb-000004
其中,
Figure PCTCN2022103942-appb-000005
为输入电压
Figure PCTCN2022103942-appb-000006
R inv为逆变器等效电阻,R 1…,R n为各个回路线圈的等效电阻;j表示阻抗和感抗间相位相差90°;ω=2*pi*f,表示角频率;M为线圈间的互感,R leq为等效电阻,
Figure PCTCN2022103942-appb-000007
为各回路电流。
通过仿真和实验,结果表明中继线圈IPT系统中彼此位置相间两个及以上的线圈间的互感变化对传能功效的影响可忽略不计;为减少运算及简化表达式,可以只考虑相邻及相间一个线圈的互感。若此处只考虑相邻和相间一个线圈间的互感,则回路的电流方程可简化为:
Figure PCTCN2022103942-appb-000008
依据矩阵求逆原理,各回路电流
Figure PCTCN2022103942-appb-000009
可表示为:
Figure PCTCN2022103942-appb-000010
其中,
Figure PCTCN2022103942-appb-000011
为输入电压,R 1…,R n为各个回路线圈的等效电阻;j表示阻抗和感抗间相位相差90°;ω=2*pi*f,表示角频率;M为线圈间的互感,n为回路线圈序号,R leq为等效电阻。
得到流经各线圈的电流可以表示为有关逆变器等效电阻、工作频率、线圈 互感、内阻、系统输入电压和等效交流负载电阻的关系式:
Figure PCTCN2022103942-appb-000012
其中,I t为线圈t中的电流,f()为函数,影响因素包括:R inv为内阻,R i逆变器等效电阻,f为工作频率,M ij线圈互感,V in为系统输入电压,R leq为等效交流负载电阻。
依据所求各个回路电流,即可确定各个回路的有功功率和输出功率的表达式:
Figure PCTCN2022103942-appb-000013
其中,P为回路1~n的有功功率,P out为系统的输出功率。对应的,系统效率η可表示为:
Figure PCTCN2022103942-appb-000014
为了分析各个影响因素对系统功率的影响,依据输出功率的表达式,并结合式错误!未找到引用源。的电流关系式,则可以建立多个因素影响下的系统功率模型:
Figure PCTCN2022103942-appb-000015
其中,F()为函数或者函数集合,R inv为内阻,R i逆变器等效电阻,f为工作频率,M ij线圈互感,V in为系统输入电压,R leq为等效交流负载电阻为函数的参数。
一旦传能系统的结构和工作频率确定,各线圈电流大小仅与系统输入电压和等效交流负载电阻有关;则系统功率也与系统输入电压和等效交流负载电阻相关。系统功率模型可简化为:
Figure PCTCN2022103942-appb-000016
同样地,为了分析各个因素对系统效率的影响,提升系统的传输效率,依据系统效率表达式,可以得到多个因素影响下的系统效率模型:η=G(R Leq)。
根据系统效率模型,通过实践验证可知,系统效率也与等效交流负载电阻 相关,但不受系统输入电压V in的影响。
基于多因素影响下的系统效率模型,在确定传能系统的结构和工作频率后,i拟定等效交流负载电阻R Leq为设计参数,通过需要优化的目标函数:maxη(R Leq)=G(R Leq),以寻找最大效率下的最优负载阻值R Leq_opt
基于多因素影响的系统功率模型,拟定系统输入电压V in为设计参数,得到的最大效率下的最优负载电阻R Leq_opt,可进一步得到满足功率需求的输入电压V in_opt
计算最大效率下的交流负载电阻对应的直流电阻方法如下:
Figure PCTCN2022103942-appb-000017
其中,R Leq_opt为直流电阻。
计算匹配目标输出功率P ref的输入电压及对应直流电压的方法如下:
Figure PCTCN2022103942-appb-000018
P out=P ref
Figure PCTCN2022103942-appb-000019
其中,V in_opt为最优输入电压,V dc_opt为直流电压。
所述根据所述等效电路模型以获取对应的效率模型包括:通过基尔霍夫电压定律设置线圈回路方程;通过所述线圈回路方程,获得基于逆变器等效电阻、工作频率、线圈互感、内阻、系统输入电压和等效交流负载电阻,计算线圈电流的关系式;根据所述线圈电流的关系式计算回路的有功功率和输出功率;根据所述有功功率和所述输出功率,得到所述中继线圈IPT系统对应的效率模型。
优化方法还包括:根据线圈之间内的互感,排除彼此位置相间两个及以上的线圈间的互感,以简化所述线圈回路方程。
所述解析所述效率模型以确定影响因素包括:根据已知的所述中继线圈IPT系统的电路结构和工作频率,简化所述线圈电流的关系式;通过简化的所述线圈电流的关系式,确定所述等效交流负载电阻和所述系统输入电压为功率的影 响因素。
所述通过简化的所述线圈电流的关系式,确定所述等效交流负载电阻和所述系统输入电压为功率的影响因素包括:根据简化的所述线圈电流的关系式,设置对应的功率模型
Figure PCTCN2022103942-appb-000020
和对应的效率模型η=G(R Leq),其中,P out为目标输出功率,F()为函数,V in为输入电压,η为效率,G()为函数,R leq为等效负载;根据所述功率模型,确定所述等效交流负载电阻和所述系统输入电压为功率的影响因素;根据所述效率模型确定所述等效交流负载电阻为效率的影响因素。
所述基于所述影响因素,获取中继线圈IPT系统在最高效率时,对应的最优负载值和最优输入电压包括:以所述等效交流负载电阻作为拟定因素;通过所述效率模型计算得到所述中继线圈IPT系统在最高效率时,对应的最优负载值;以所述系统输入电压作为拟定因素;通过所述效率模型和所述最优负载值,计算得到所述最优输入电压。
优化方法还包括根据所述最优负载值R Leq_opt计算对应的直流电阻R Ld_opt
Figure PCTCN2022103942-appb-000021
优选的,方法还包括根据所述最优输入电压V in_opt计算对应的直流电压
Figure PCTCN2022103942-appb-000022
在实际的IPT系统中,通常需要在副边加上整流电路将高频交流电转换为直流电供负载电阻RLd使用,而简化电路中是等效后的交流负载电阻RLeq;计算直流电阻的目的是通过配置受电端设备的直流负载RLd,来达到最大效率传输的目的,它是实际被调控的参数。
同样地,原边通常是直流电Vdc经逆变电路转换为交流电Vin后充当WPT 系统电压源,因此实际需要调控的量是直流电压Vdc,它关系到WPT系统能否达到目标输出功率。
本发明提供一种中继线圈IPT系统的优化系统,包括:第一单元1,建立待优化的中继线圈IPT系统的等效电路模型;第二单元2,根据所述等效电路模型以获取对应的效率模型;第三单元3,解析所述效率模型以确定影响因素;第四单元4,基于所述影响因素,获取中继线圈IPT系统在最高效率时,对应的最优负载值和最优输入电压。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
在本申请所提供的实施例中,应该理解到,单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元可结合为一个单元,一个单元可拆分为多个单元,或一些特征可以忽略等。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围,其均应涵盖在本发明的权利要求和说明书的范围当中。

Claims (10)

  1. 一种中继线圈IPT系统的优化方法,其特征在于,包括:
    建立待优化的中继线圈IPT系统的等效电路模型;
    根据所述等效电路模型以获取对应的效率模型;
    解析所述效率模型以确定影响因素;
    基于所述影响因素,获取中继线圈IPT系统在最高效率时,对应的最优负载值和最优输入电压。
  2. 根据权利要求1所述中继线圈IPT系统的优化方法,其特征在于,所述建立待优化的中继线圈IPT系统的等效电路模型包括:
    基于SS拓扑、SP拓扑、P拓扑S和PP拓扑之中的一种,简化所述中继线圈IPT系统得到所述等效电路模型。
  3. 根据权利要求2所述中继线圈IPT系统的优化方法,其特征在于,所述根据所述等效电路模型以获取对应的效率模型包括:
    通过基尔霍夫电压定律设置线圈回路方程;
    通过所述线圈回路方程,获得基于逆变器等效电阻、工作频率、线圈互感、内阻、系统输入电压和等效交流负载电阻,计算线圈电流的关系式;
    根据所述线圈电流的关系式计算回路的有功功率和输出功率;
    根据所述有功功率和所述输出功率,得到所述中继线圈IPT系统对应的效率模型。
  4. 根据权利要求3所述中继线圈IPT系统的优化方法,其特征在于,还包括:
    根据线圈之间内的互感,排除彼此位置相间两个及以上的线圈间的互感,以简化所述线圈回路方程。
  5. 根据权利要求3所述中继线圈IPT系统的优化方法,其特征在于,所述 解析所述效率模型以确定影响因素包括:
    根据已知的所述中继线圈IPT系统的电路结构和工作频率,简化所述线圈电流的关系式;
    通过简化的所述线圈电流的关系式,确定所述等效交流负载电阻和所述系统输入电压为功率的影响因素。
  6. 根据权利要求5所述中继线圈IPT系统的优化方法,其特征在于,所述通过简化的所述线圈电流的关系式,确定所述等效交流负载电阻和所述系统输入电压为功率的影响因素包括:
    根据简化的所述线圈电流的关系式,设置对应的功率模型
    Figure PCTCN2022103942-appb-100001
    和对应的效率模型η=G(R Leq),其中,P out为目标输出功率,F()为函数,V in为输入电压,η为效率,G()为函数,R leq为等效负载;
    根据所述功率模型,确定所述等效交流负载电阻和所述系统输入电压为功率的影响因素;
    根据所述效率模型确定所述等效交流负载电阻为效率的影响因素。
  7. 根据权利要求5所述中继线圈IPT系统的优化方法,其特征在于,所述基于所述影响因素,获取中继线圈IPT系统在最高效率时,对应的最优负载值和最优输入电压包括:
    以所述等效交流负载电阻作为拟定因素;
    通过所述效率模型计算得到所述中继线圈IPT系统在最高效率时,对应的最优负载值;
    以所述系统输入电压作为拟定因素;
    通过所述效率模型和所述最优负载值,计算得到所述最优输入电压。
  8. 据权利要求7所述中继线圈IPT系统的优化方法,其特征在于,还包括 根据所述最优负载值R Leq_opt计算对应的直流电阻R Ld_opt
    Figure PCTCN2022103942-appb-100002
  9. 据权利要求7所述中继线圈IPT系统的优化方法,其特征在于,还包括根据所述最优输入电压V in_opt计算对应的直流电压
    Figure PCTCN2022103942-appb-100003
  10. 一种中继线圈IPT系统的优化系统,其特征在于,包括:
    第一单元,建立待优化的中继线圈IPT系统的等效电路模型;
    第二单元,根据所述等效电路模型以获取对应的效率模型;
    第三单元,解析所述效率模型以确定影响因素;
    第四单元,基于所述影响因素,获取中继线圈IPT系统在最高效率时,对应的最优负载值和最优输入电压。
PCT/CN2022/103942 2022-05-23 2022-07-05 一种中继线圈ipt系统的优化方法和系统 WO2023226163A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210562886.3 2022-05-23
CN202210562886.3A CN114793024A (zh) 2022-05-23 2022-05-23 一种中继线圈ipt系统的优化方法和系统

Publications (1)

Publication Number Publication Date
WO2023226163A1 true WO2023226163A1 (zh) 2023-11-30

Family

ID=82463398

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/103942 WO2023226163A1 (zh) 2022-05-23 2022-07-05 一种中继线圈ipt系统的优化方法和系统

Country Status (2)

Country Link
CN (1) CN114793024A (zh)
WO (1) WO2023226163A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114793024A (zh) * 2022-05-23 2022-07-26 广西电网有限责任公司电力科学研究院 一种中继线圈ipt系统的优化方法和系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109950983A (zh) * 2019-03-22 2019-06-28 金陵科技学院 一种多发射单接收无线电能传输系统参数配置方法
CN111030316A (zh) * 2019-12-25 2020-04-17 国网福建省电力有限公司龙岩供电公司 一种多中继mc-wpt系统效率的建模、分析及系统原理分析方法
CN112242751A (zh) * 2020-10-30 2021-01-19 西安理工大学 用于四线圈磁耦合谐振无线输电的lcc-sss补偿电路结构
WO2021072736A1 (zh) * 2019-10-15 2021-04-22 浙江大学 一种非完全补偿的无线电能传输系统
CN113962178A (zh) * 2021-10-13 2022-01-21 广西电网有限责任公司电力科学研究院 一种远距离wpt系统效率模型优化方法及装置
CN113962179A (zh) * 2021-10-13 2022-01-21 广西电网有限责任公司电力科学研究院 一种远距离wpt系统多中继线圈耦合结构优化方法及装置
CN114793024A (zh) * 2022-05-23 2022-07-26 广西电网有限责任公司电力科学研究院 一种中继线圈ipt系统的优化方法和系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109950983A (zh) * 2019-03-22 2019-06-28 金陵科技学院 一种多发射单接收无线电能传输系统参数配置方法
WO2021072736A1 (zh) * 2019-10-15 2021-04-22 浙江大学 一种非完全补偿的无线电能传输系统
CN111030316A (zh) * 2019-12-25 2020-04-17 国网福建省电力有限公司龙岩供电公司 一种多中继mc-wpt系统效率的建模、分析及系统原理分析方法
CN112242751A (zh) * 2020-10-30 2021-01-19 西安理工大学 用于四线圈磁耦合谐振无线输电的lcc-sss补偿电路结构
CN113962178A (zh) * 2021-10-13 2022-01-21 广西电网有限责任公司电力科学研究院 一种远距离wpt系统效率模型优化方法及装置
CN113962179A (zh) * 2021-10-13 2022-01-21 广西电网有限责任公司电力科学研究院 一种远距离wpt系统多中继线圈耦合结构优化方法及装置
CN114793024A (zh) * 2022-05-23 2022-07-26 广西电网有限责任公司电力科学研究院 一种中继线圈ipt系统的优化方法和系统

Also Published As

Publication number Publication date
CN114793024A (zh) 2022-07-26

Similar Documents

Publication Publication Date Title
WO2021008203A1 (zh) 一种无线电能传输系统在最大效率跟踪下的阻抗匹配网络优化方法
CN105186718B (zh) 复合谐振式ecpt系统及其参数设计方法
Sohn et al. General unified analyses of two-capacitor inductive power transfer systems: Equivalence of current-source SS and SP compensations
CN108039778B (zh) 基于lcl-lcc补偿网络的恒压恒流wpt系统及其参数设计方法
CN112165183B (zh) 一种无线充电系统恒流恒压输出的参数控制方法及系统
CN103683305B (zh) 一种增强型铁路功率调节装置
WO2023226163A1 (zh) 一种中继线圈ipt系统的优化方法和系统
CN113659684A (zh) 副边cl/s恒流恒压ipt充电系统及其参数设计方法
CN110601377A (zh) 无线充电发射装置、接收装置、系统及谐振参数匹配方法
CN111106676A (zh) Lcc-s型mc-wpt系统的磁耦合机构参数多目标优化方法
CN110233523A (zh) 一种移动式无线电能传输系统耦合网络参数设计方法
Xiao et al. Matching capacitance and transfer efficiency of four wireless power transfer systems via magnetic coupling resonance
CN114844240A (zh) 一种基于功率匹配的多中继线圈ipt系统
Shen et al. Research on optimization of compensation topology parameters for a wireless power transmission system with wide coupling coefficient fluctuation
Zhou et al. Design of CPT system with multiple constant output voltage pickups using inverse hybrid parameters of capacitive coupler
CN108162775A (zh) 用于恒功率充电的电动汽车无线能量传输装置
CN106202690B (zh) 一种降低无线充电系统电应力的设计方法
CN207559698U (zh) 一种无线能量传输装置
CN110138097A (zh) 一种采用特殊拓扑结构实现恒流恒压磁感应式充电系统
CN112383057B (zh) 基于电网潮流的电力耦合系统互感和自感设计方法
CN108964062A (zh) 一种确定分布式潮流控制器3次谐波电流取值范围的方法
CN112104095A (zh) 具有强抗偏移能力的恒压或恒流型补偿拓扑的设计方法
CN109067184B (zh) 一种恒流恒压无缝切换的感应电能传输系统
CN216134292U (zh) 副边cl/s恒流恒压ipt充电系统
CN115603468A (zh) 基于频率切换恒流/恒压输出的ec-wpt系统及其参数设计方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22943354

Country of ref document: EP

Kind code of ref document: A1