WO2023224418A1 - 지방 알코올로부터 다양한 합성수지 제조용 단량체들을 생산하는 방법 - Google Patents

지방 알코올로부터 다양한 합성수지 제조용 단량체들을 생산하는 방법 Download PDF

Info

Publication number
WO2023224418A1
WO2023224418A1 PCT/KR2023/006804 KR2023006804W WO2023224418A1 WO 2023224418 A1 WO2023224418 A1 WO 2023224418A1 KR 2023006804 W KR2023006804 W KR 2023006804W WO 2023224418 A1 WO2023224418 A1 WO 2023224418A1
Authority
WO
WIPO (PCT)
Prior art keywords
ether
producing
functionalized
dialkyl
ether compound
Prior art date
Application number
PCT/KR2023/006804
Other languages
English (en)
French (fr)
Inventor
안정오
전우영
여인석
장민정
서성화
Original Assignee
안정오
전우영
여인석
장민정
서성화
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020230063745A external-priority patent/KR20230161895A/ko
Application filed by 안정오, 전우영, 여인석, 장민정, 서성화 filed Critical 안정오
Publication of WO2023224418A1 publication Critical patent/WO2023224418A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/02Preparation of compounds containing amino groups bound to a carbon skeleton by substitution of hydrogen atoms by amino groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/01Compounds containing amino groups bound to a carbon skeleton having amino groups bound to acyclic carbon atoms
    • C07C211/02Compounds containing amino groups bound to a carbon skeleton having amino groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C213/00Preparation of compounds containing amino and hydroxy, amino and etherified hydroxy or amino and esterified hydroxy groups bound to the same carbon skeleton
    • C07C213/08Preparation of compounds containing amino and hydroxy, amino and etherified hydroxy or amino and esterified hydroxy groups bound to the same carbon skeleton by reactions not involving the formation of amino groups, hydroxy groups or etherified or esterified hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C215/00Compounds containing amino and hydroxy groups bound to the same carbon skeleton
    • C07C215/02Compounds containing amino and hydroxy groups bound to the same carbon skeleton having hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton
    • C07C215/04Compounds containing amino and hydroxy groups bound to the same carbon skeleton having hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being saturated
    • C07C215/06Compounds containing amino and hydroxy groups bound to the same carbon skeleton having hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being saturated and acyclic
    • C07C215/08Compounds containing amino and hydroxy groups bound to the same carbon skeleton having hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being saturated and acyclic with only one hydroxy group and one amino group bound to the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C227/00Preparation of compounds containing amino and carboxyl groups bound to the same carbon skeleton
    • C07C227/04Formation of amino groups in compounds containing carboxyl groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C229/00Compounds containing amino and carboxyl groups bound to the same carbon skeleton
    • C07C229/02Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton
    • C07C229/04Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated
    • C07C229/06Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated having only one amino and one carboxyl group bound to the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C27/00Processes involving the simultaneous production of more than one class of oxygen-containing compounds
    • C07C27/10Processes involving the simultaneous production of more than one class of oxygen-containing compounds by oxidation of hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C31/00Saturated compounds having hydroxy or O-metal groups bound to acyclic carbon atoms
    • C07C31/18Polyhydroxylic acyclic alcohols
    • C07C31/20Dihydroxylic alcohols
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/347Preparation of carboxylic acids or their salts, halides or anhydrides by reactions not involving formation of carboxyl groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C59/00Compounds having carboxyl groups bound to acyclic carbon atoms and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups
    • C07C59/01Saturated compounds having only one carboxyl group and containing hydroxy or O-metal groups

Definitions

  • the present invention relates to a method of producing various monomers used in the production of synthetic resins from fatty alcohols.
  • Bioplatform compounds are produced through biological or chemical conversion based on biomass-derived raw materials and are used for the synthesis of polymer monomers and new materials.
  • bioplatform compounds hydroxyalkanoic acid, aminoalkanoic acid, alkanediol, aminoalkanol, diaminoalkane, etc. are substances used as monomers for producing synthetic resins such as polyamide and polyester.
  • alkane or alkanol compounds which are raw materials for manufacturing these bioplatform compounds, if they are short chains with 6 or less carbon atoms, they cause cytotoxicity. Therefore, using these short chain alkane compounds, the above-mentioned biological methods can be used. There was a problem in that it was actually difficult to manufacture bioplatform compounds.
  • the purpose of the present invention is to provide a method for producing monomers for producing synthetic resins from fatty alcohols.
  • one aspect of the present invention includes the steps of synthesizing a dialkyl ether compound from fatty alcohol; Fermenting the dialkyl ether compound with a genetically recombinant transformant to produce a dialkyl ether compound functionalized at both ends; and decomposing the dialkyl ether compound functionalized at both ends of the fatty alcohol.
  • another aspect of the present invention includes synthesizing an asymmetric fatty ether compound from fatty alcohol; fermenting the asymmetric fatty ether compound with a genetically recombinant transformant to produce an asymmetric fatty ether compound functionalized at both ends; and decomposing the asymmetric fatty ether compound functionalized at both ends. It provides a method for producing a monomer for producing a synthetic resin from fatty alcohol, including a step.
  • Figure 1 schematically illustrates the entire process of the present invention for producing monomers for producing synthetic resins from fatty alcohols.
  • Figure 2a is a graph showing the results of synthesizing dioctyl ether with bio-derived 1-octanol
  • Figure 2b is a graph showing the results confirming the cytotoxicity of dioctyl ether produced as above.
  • Figure 2c is a graph showing the results of synthesizing didodecyl ether with bio-derived 1-dodecanol
  • Figure 2d is a graph showing the results confirming the cytotoxicity of didodecyl ether produced as above.
  • Figure 3 is a graph showing the results of confirming the cytotoxicity of dialkyl ether compounds with various carbon numbers against the ⁇ , ⁇ -carboxylated recombinant strain of the present invention.
  • Figures 4a and 4b show that dioctyl ether produced from bio-derived 1-octanol and didodecyl ether synthesized from bio-derived 1-dodecanol, respectively, by the ⁇ , ⁇ -carboxylated recombinant strain of the present invention.
  • This graph confirms the result of both terminals being functionalized with carboxyl groups.
  • Figure 5 is a graph confirming the results of dioctyl ether functionalized with carboxyl groups at both ends functionalized with hydroxy groups by the ⁇ , ⁇ -hydroxylated recombinant strain of the present invention.
  • Figure 6 is a graph confirming the results of dioctyl ether functionalized with hydroxy groups at both ends being functionalized with amine groups at both ends by the ⁇ , ⁇ -aminated recombinant strain of the present invention.
  • Figure 7 is a graph showing the results of hydrolysis of dioctyl ether functionalized with carboxyl groups at both ends to produce 2 equivalents of 8-hydroxyoctanoic acid.
  • Figure 8 is a graph showing the results of hydrolysis of dioctyl ether functionalized with hydroxy groups at both ends to produce 2 equivalents of 1,8-octanediol.
  • a first step of synthesizing a dialkyl ether compound from fatty alcohol A second step of fermenting the dialkyl ether compound with a genetically recombinant transformant to produce a dialkyl ether compound functionalized at both ends; and a third step of decomposing the dialkyl ether compound functionalized at both ends. It relates to a method of producing a monomer for producing a synthetic resin from fatty alcohol, comprising a.
  • the fatty alcohol is a compound in which one end of a saturated hydrocarbon with n carbon atoms is substituted with a hydroxy group.
  • the carbon number n of the hydrocarbon may be an integer of 3 to 20, for example, an integer of 4 to 18, specifically an integer of 5 to 16, especially an integer of 6 to 14. Additionally, the hydrocarbon may be straight chain or branched, but may especially be straight chain.
  • the first genetically recombined transformant is used to oxidize both ends of the dialkyl ether compound produced in the first step to introduce a carboxyl group at the ⁇ , ⁇ -position of the dialkyl ether compound. You can.
  • the first transformant may be a recombinant transformant capable of ⁇ -oxidation, for example, the ⁇ -oxidation pathway is blocked, CYP450, CPRb (CYP450 reductase complex), FADH (fatty alcohol dehydrogenase), FAO (fatty alcohol dehydrogenase) It may be a microorganism that has been genetically engineered to overexpress alcohol oxidase (FALDH), fatty aldehyde dehydrogenase (FALDH), or a combination thereof.
  • FALDH alcohol oxidase
  • FALDH fatty aldehyde dehydrogenase
  • a dialkyl ether compound functionalized with a carboxyl group at both ends is converted into a dialkyl ether compound functionalized with a hydroxy group at both ends using a genetically recombinant second transformant or an appropriate catalyst.
  • the second transformant may be a recombinant transformant capable of ⁇ -reduction, for example, genetically engineered to overexpress CAR (carboxylic acid reductase), Sfp (4'-phosphopantetheinyl transferase), or a combination thereof. It could be a microorganism.
  • a dialkyl ether compound functionalized with hydroxy groups at both ends is converted into a dialkyl ether compound functionalized with amine groups at both ends using a third genetically recombinant transformant or an appropriate catalyst.
  • the third transformant may be a recombinant transformant capable of ⁇ -amination, for example, overexpressing ⁇ -TA ( ⁇ -transaminase), AlaDH (alanine dehydrogenase), ADH (Alcohol dehydrogenase), or a combination thereof.
  • it can be a genetically engineered microorganism.
  • various types of monomers such as hydroxyalkanoic acid, aminoalkanoic acid, alkanediol, aminoalkanol, diaminoalkane, etc. can be produced through hydrolysis of the ether bond.
  • synthetic resins such as polyamide and polyester can be manufactured using various types of monomers produced in the third step.
  • lactone compounds or lactam compounds can be produced using hydroxyalkanoic acid monomers. can be manufactured.
  • a first' step of synthesizing an asymmetric fatty ether compound from fatty alcohol A second' step of fermenting the asymmetric fatty ether compound with a genetically recombinant transformant to produce an asymmetric fatty ether compound functionalized at both ends; and a third' step of decomposing the asymmetric fatty ether compound functionalized at both ends.
  • the fatty alcohol is a compound in which one end of a saturated or unsaturated aliphatic hydrocarbon with m or n carbon atoms is substituted with a hydroxy group.
  • the carbon number m of the hydrocarbon may be an integer of 1 to 20, for example, an integer of 1 to 12, specifically an integer of 1 to 6, especially an integer of 1 to 3.
  • the carbon number n of the hydrocarbon may be an integer of 3 to 20, for example, an integer of 4 to 18, specifically an integer of 5 to 16, especially an integer of 6 to 14.
  • the hydrocarbons may be straight chain or branched, but may especially be straight chain.
  • both ends of the dialkyl ether compound produced in the first step are oxidized using the first genetically recombined transformant to form a carboxyl group at the ⁇ , ⁇ -position of the dialkyl ether compound. can be introduced.
  • the first transformant may be a recombinant transformant capable of ⁇ -oxidation, for example, the ⁇ -oxidation pathway is blocked, CYP450, CPRb (CYP450 reductase complex), FADH (fatty alcohol dehydrogenase), FAO (fatty alcohol dehydrogenase) It may be a microorganism that has been genetically engineered to overexpress alcohol oxidase (FALDH), fatty aldehyde dehydrogenase (FALDH), or a combination thereof.
  • FALDH alcohol oxidase
  • FALDH fatty aldehyde dehydrogenase
  • a dialkyl ether compound functionalized with a carboxyl group at both ends is converted into a dialkyl ether compound functionalized with a hydroxy group at both ends using a genetically recombinant second transformant or an appropriate catalyst.
  • the second transformant may be a recombinant transformant capable of ⁇ -reduction, for example, genetically engineered to overexpress CAR (carboxylic acid reductase), Sfp (4'-phosphopantetheinyl transferase), or a combination thereof. It could be a microorganism.
  • a dialkyl ether compound functionalized with hydroxy groups at both ends is converted into a dialkyl ether compound functionalized with amine groups at both ends using a third genetically recombinant transformant or an appropriate catalyst.
  • the third transformant may be a recombinant transformant capable of ⁇ -amination, for example, overexpressing ⁇ -TA ( ⁇ -transaminase), AlaDH (alanine dehydrogenase), ADH (Alcohol dehydrogenase), or a combination thereof.
  • it can be a genetically engineered microorganism.
  • various types of monomers such as hydroxyalkanoic acid, aminoalkanoic acid, alkanediol, aminoalkanol, diaminoalkane, etc. can be produced through hydrolysis of the ether bond.
  • synthetic resins such as polyamide and polyester can be manufactured using various types of monomers produced in the third step.
  • lactone compounds or lactam compounds can be produced using hydroxyalkanoic acid monomers. can be manufactured.
  • Embodiment 1 Strategy for Mediating Symmetric Dialkyl Ether Compounds
  • One aspect of the present invention provides a method for producing monomers for producing synthetic resins from fatty alcohols.
  • the method of the present invention includes synthesizing a dialkyl ether compound from fatty alcohol; Fermenting the dialkyl ether compound with a genetically recombinant transformant to produce a dialkyl ether compound functionalized at both ends; and decomposing the dialkyl ether compound functionalized at both ends.
  • a dialkyl ether compound is synthesized from fatty alcohol.
  • the fatty alcohol is a compound in which one end of a saturated hydrocarbon with n carbon atoms is substituted with a hydroxy group.
  • the carbon number n of the hydrocarbon may be an integer of 3 to 20, for example, an integer of 4 to 18, specifically an integer of 5 to 16, especially an integer of 6 to 14. Additionally, the hydrocarbon may be straight chain or branched, but may especially be straight chain.
  • the fatty alcohol described above can be converted into a dialkyl ether compound through a reaction shown in Chemical Formula 1 below.
  • a dialkyl ether compound having 2n carbon atoms can be produced from a fatty alcohol containing n carbon atoms through the process shown below.
  • the dialkyl ether compound produced at this time has the same type of hydrocarbon group with n carbon atoms on both sides of the O atom of the ether bond, so it is called a symmetrical dialkyl ether compound.
  • dibutyl ether C 8 H 18 O
  • dipentyl ether C 10 H 22 O
  • dihexyl ether C 12 H 26 O
  • diheptyl ether C 14 H 30 O
  • dioctyl ether C 16 H 34 O
  • dinonyl ether C 18 H 38 O
  • Dialkyl ether compounds such as syl ether (C 20 H 42 O), diundecyl ether (C 22 H 46 O), and didodecyl ether (C 24 H 50 O) can be produced.
  • Formula 1 as described above can be carried out through methods well known in the technical field to which the present invention pertains, for example, nucleophilic substitution at a temperature of 130 to 140 degrees Celsius using an acid catalyst such as sulfuric acid (H 2 SO 4 ). It can be performed by proceeding with the reaction, but is not limited to this.
  • an acid catalyst such as sulfuric acid (H 2 SO 4 ). It can be performed by proceeding with the reaction, but is not limited to this.
  • the dialkyl ether compound produced in the first step is fermented with a genetically recombinant transformant to produce a dialkyl ether compound functionalized at both ends.
  • both ends of the dialkyl ether compound produced in the first step are oxidized to form a carboxyl group at the ⁇ , ⁇ -position of the dialkyl ether compound, as shown in Chemical Formula 2 below. introduce.
  • the first transformant may be a recombinant transformant capable of ⁇ -oxidation, for example, the ⁇ -oxidation pathway is blocked, CYP450, CPRb (CYP450 reductase complex), FADH (fatty alcohol dehydrogenase), FAO (fatty alcohol dehydrogenase) It may be a microorganism genetically engineered to overexpress alcohol oxidase (FALDH), fatty aldehyde dehydrogenase (FALDH), or a combination thereof, but is not limited thereto, and a person skilled in the art may use an appropriate microorganism for ⁇ -oxidation.
  • FALDH alcohol oxidase
  • FALDH fatty aldehyde dehydrogenase
  • FALDH fatty aldehyde dehydrogenase
  • the microorganisms include Escherichia, Corynebacterium, Clostridium, Zymonomas, Salmonella, Rhodococcus, Pseudomonas, Bacillus, Lactobacillus, Enterococcus, Alcaligenes, Klesiella, Paenibacillus, Arthrobacter, Brevibacterium , Pichia, Candida, Hansenula, Synechococcus, Synechocystis, Anabaena, Ralstonia, Lactococcus ( It may be a microorganism of the genus Lactococcus or Saccharomyces, but is not limited thereto.
  • the carbon at the ⁇ -position of the dialkyl ether compound can be oxidized and functionalized into a carboxyl group.
  • the dialkyl ether compound produced as above is further converted into a dialkyl ether compound, both ends of which are functionalized with a hydroxy group, as shown in the following formula (3). It can be converted to alkyl ether compounds.
  • the second transformant may be a recombinant transformant capable of ⁇ -reduction, and is genetically engineered to overexpress, for example, CAR (carboxylic acid reductase), Sfp (4'-phosphopantetheinyl transferase), or a combination thereof. It may be a microorganism, but is not limited thereto, and if a person skilled in the art of the present invention genetically recombines an appropriate microorganism to enable ⁇ -reduction, it can be used as the second transformant of the present invention without limitation. .
  • CAR carboxylic acid reductase
  • Sfp 4'-phosphopantetheinyl transferase
  • the microorganisms include Escherichia, Corynebacterium, Clostridium, Zymonomas, Salmonella, Rhodococcus, Pseudomonas, Bacillus, Lactobacillus, Enterococcus, Alcaligenes, Klesiella, Paenibacillus, Arthrobacter, Brevibacterium , Pichia, Candida, Hansenula, Synechococcus, Synechocystis, Anabaena, Ralstonia, Lactococcus ( It may be a microorganism of the genus Lactococcus or Saccharomyces, but is not limited thereto.
  • the dialkyl ether compound functionalized with carboxyl groups at both ends is supplied as a substrate to the second transformant for fermentation, the carboxyl group at the ⁇ -position of the dialkyl ether compound functionalized with carboxyl groups at both ends is reduced to a hydroxy group. It can be functionalized.
  • dialkyl ether compound produced as above can be converted into a dialkyl ether compound, both ends of which are functionalized with amine groups, as shown in the following formula (4). It can be converted to alkyl ether compounds.
  • the third transformant may be a recombinant transformant capable of ⁇ -amination, for example, ⁇ -TA ( ⁇ -transaminase), AlaDH (alanine dehydrogenase), ADH (Alcohol dehydrogenase), or a combination thereof. It may be a microorganism that has been genetically engineered to overexpress, but is not limited to this, and if a person skilled in the art to which the present invention pertains has genetically recombined an appropriate microorganism to enable ⁇ -amination, the third transformation of the present invention may be performed without limitation. It can be used as a sieve.
  • the microorganisms include Escherichia, Corynebacterium, Clostridium, Zymonomas, Salmonella, Rhodococcus, Pseudomonas, Bacillus, Lactobacillus, Enterococcus, Alcaligenes, Klesiella, Paenibacillus, Arthrobacter, Brevibacterium , Pichia, Candida, Hansenula, Synechococcus, Synechocystis, Anabaena, Ralstonia, Lactococcus ( It may be a microorganism of the genus Lactococcus or Saccharomyces, but is not limited thereto.
  • the dialkyl ether compound functionalized with hydroxy groups at both ends is supplied to the third transformant as a substrate for fermentation, the hydroxy group at the ⁇ -position of the dialkyl ether compound functionalized with hydroxy groups at both ends is aminated to form an amine. It can be functionalized.
  • the dialkyl ether compound functionalized at both ends produced in the second step is decomposed.
  • the decomposition is to hydrolyze the ether bond of the dialkyl ether compound functionalized at both ends, and the hydrolysis of the ether bond can be performed through a method well known in the art to which the present invention pertains, for example, sulfuric acid. It can be performed by reacting at a temperature of 200 degrees Celsius using an acid catalyst such as (H 2 SO 4 ), but is not limited to this.
  • a dialkyl ether compound with 2n carbon atoms functionalized with carboxyl groups at both ends is hydrolyzed to produce 2 equivalents of hydroxyalkanoic acid with n carbon atoms or 2 equivalents of aminoalkanoic acid with n carbon atoms, or a dialkyl ether compound with 2n carbon atoms functionalized with a hydroxyl group at both ends is produced.
  • a dialkyl ether compound having 2n carbon atoms is hydrolyzed to produce 2 equivalents of an alkanediol with n carbon atoms or 2 equivalents of an aminoalkanol with n carbon atoms, or a dialkyl ether compound with 2n carbon atoms functionalized with amine groups at both ends is hydrolyzed.
  • 2 equivalents of aminoalkanol with n carbon atoms or 2 equivalents of diaminoalkane with n carbon atoms can be produced.
  • hydroxyalkanoic acids are lactone compounds through reactions known in previously known literature (e.g., Pyo et al . (2020), Green Chem. , 22 : 4450-4455 (2020), etc.) It can be converted to, and these lactone compounds are also described in various previously known literature (Rankic et al. , J. Org. Chem. , 82(23): 12791-12797 (2017), Decker et al. , Tetrahedron, 60 ( 21): 4567-4678 (2004), etc.), it can be converted to a lactam through a known reaction, and can be used in a wider variety of ways.
  • Another aspect of the present invention provides a method for producing monomers for producing synthetic resins from fatty alcohols.
  • the method of the present invention includes synthesizing an asymmetric fatty ether compound from fatty alcohol; fermenting the asymmetric fatty ether compound with a genetically recombinant transformant to produce an asymmetric fatty ether compound functionalized at both ends; and decomposing the asymmetric fatty ether compound functionalized at both ends.
  • an asymmetric fatty ether compound is synthesized from fatty alcohol.
  • the fatty alcohol is a compound in which one terminal of a saturated or unsaturated aliphatic hydrocarbon having m or n carbon atoms is substituted with a hydroxy group.
  • the carbon number m of the hydrocarbon may be an integer of 1 to 20, for example, an integer of 1 to 12, specifically an integer of 1 to 6, especially an integer of 1 to 3.
  • the carbon number n of the hydrocarbon may be an integer of 3 to 20, for example, an integer of 4 to 18, specifically an integer of 5 to 16, especially an integer of 6 to 14.
  • the hydrocarbons may be straight chain or branched, but may especially be straight chain.
  • the above fatty alcohol can be converted into an asymmetric fatty ether compound through a reaction shown in the following Chemical Formula 5.
  • a fatty alcohol with a carbon number of m and a fatty alcohol with a carbon number of n can be converted into a fat with a carbon number of m + n.
  • Ether compounds may be formed.
  • m and n are different numbers, and the fatty ether compound produced at this time has a hydrocarbon group with m carbon atoms and a hydrocarbon group with n carbon atoms on both sides centered on the O atom of the ether bond, so it is an asymmetric fatty ether compound. It is said that
  • methanol an alcohol with an m of 1, reacts with fatty alcohols such as butanol, pentanol, hexanol, heptanol, octanol, nonanol, decanol, undecanol, and dodecanol, each produces methylbutyl ether ( or 1-methoxybutane (C 5 H 12 O)), methylpentyl ether (1-methoxypentane (C 6 H 14 O)), methylhexyl ether (1-methoxyhexane (C 7 H 16 O)).
  • fatty alcohols such as butanol, pentanol, hexanol, heptanol, octanol, nonanol, decanol, undecanol, and dodecanol
  • methylbutyl ether or 1-methoxybutane (C 5 H 12 O)
  • methylpentyl ether (1-methoxypent
  • methylheptyl ether (1-methoxyheptane (C 8 H 18 O)), methyl octyl ether (1-methoxyoctane (C 9 H 20 O)), methylnonyl ether (1-methoxynonane (C 10 H 22 O)), methyldecyl ether (1-methoxydecane (C 11 H 24 O)), methyl undecyl ether (1-methoxyundecane (C 12 H 26 O)), methyl dodecyl ether (1- Asymmetric dialkyl ether compounds such as methoxydodecane (C 13 H 28 O)) can be prepared.
  • Chemical Formula 5 as described above can be performed through methods well known in the technical field to which the present invention pertains, for example, nucleophilic substitution at a temperature of 130 to 140 degrees Celsius using an acid catalyst such as sulfuric acid (H 2 SO 4 ). It can be performed by proceeding with the reaction, using dimethyl sulfuric acid ((CH 3 ) 2 SO 4 ) as shown in Formula 6 below, or diethyl sulfuric acid ((CH 3 CH 2 ) 2 SO 4 ) as shown in Formula 7. It can also be manufactured by reacting with fatty alcohol, but is not limited to this.
  • an acid catalyst such as sulfuric acid (H 2 SO 4 ). It can be performed by proceeding with the reaction, using dimethyl sulfuric acid ((CH 3 ) 2 SO 4 ) as shown in Formula 6 below, or diethyl sulfuric acid ((CH 3 CH 2 ) 2 SO 4 ) as shown in Formula 7. It can also be manufactured by reacting with fatty alcohol, but is not limited to this.
  • the asymmetric fatty ether compound produced in the first' step is fermented with a genetically recombinant transformant to produce an asymmetric fatty ether compound functionalized at both ends.
  • step 2 of the first embodiment This can be performed in the same way as in step 2 of the first embodiment, and once the first genetically recombined transformant is used, both ends are oxidized to oxidize the ⁇ , ⁇ -position of the asymmetric fatty ether compound.
  • a carboxyl group can be introduced.
  • the asymmetric fatty ether compound produced as described above whose both ends are functionalized with carboxyl groups can be functionalized at both ends with hydroxy groups.
  • the asymmetric fatty ether compound produced as described above whose both ends are functionalized with hydroxy groups can be functionalized at both ends with amine groups.
  • step 2 of the first embodiment Since the second' step of functionalizing both ends of the asymmetric fatty ether compound is the same biological or chemical method as step 2 of the first embodiment, a detailed description thereof is provided in step 2 of the first embodiment. Parts are used and detailed explanations are omitted.
  • the asymmetric fatty ether compound functionalized at both ends produced in the second' step is decomposed.
  • the decomposition also hydrolyzes the ether bond of the asymmetric fatty ether compound functionalized at both ends, and the hydrolysis of the ether bond as described above can be performed through a method well known in the art to which the present invention pertains. , can be performed in the same way as in step 3 of the first embodiment.
  • the hydrolysis of the ether bond as described above can be performed on all types of asymmetric fatty ether compounds functionalized at both ends that can be produced in step 2'. Therefore, by hydrolyzing an asymmetric aliphatic ether compound with m + n carbon atoms functionalized with carboxyl groups at both ends, 1 equivalent of hydroxyalkanoic acid with m carbon atoms and 1 equivalent of hydroxyalkanoic acid with n carbon atoms or amino acid with m carbon atoms are obtained.
  • hydroxyalkanoic acids are lactone compounds through reactions known in previously known literature (e.g., Pyo et al . (2020), Green Chem. , 22 : 4450-4455 (2020), etc.) It can be converted to, and these lactone compounds are also described in various previously known literature (Rankic et al. , J. Org. Chem. , 82(23): 12791-12797 (2017), Decker et al. , Tetrahedron, 60 ( 21): 4567-4678 (2004), etc.), it can be converted to a lactam through a known reaction, and can be used in a wider variety of ways.
  • the synthesis was carried out by adding sulfuric acid to 0.01 mol% of bio-derived 1-octanol and reacting at 200°C for 20 hours.
  • Dioctyl ether was separated from the reactant through fractional distillation under reduced pressure conditions of 20 torr.
  • the purity of the isolated dioctyl ether was confirmed by a gas chromatography-mass spectrometry system (GC-MS) equipped with a quadrupole electron selective ionization detector (EI) operated at 70 eV.
  • GC-MS gas chromatography-mass spectrometry system
  • EI quadrupole electron selective ionization detector
  • An Agilent HP-5MS column (30 m length, 0.25 mm inner diameter, and 0.25 ⁇ m film thickness) was used at a 10:1 split ratio.
  • Helium (flow rate 1.2 mL/min) was used as a carrier gas, and the oven temperature ranged from 100°C to 320°C (10°C/min).
  • the synthesized substrate and an equal volume of diethyl ether were used to extract the substrate, and tetradecane was used as an internal standard.
  • the purity of the synthesized substrate was more than 97% as shown in Figure 2a, and the impurity was unreacted 1-octanol that did not participate in the reaction.
  • the synthesis was carried out by adding sulfuric acid to 0.01 mol% of bio-derived 1-dodecanol and reacting at 200°C for 20 hours. Didodecyl ether was separated from the reactant through fractional distillation under reduced pressure conditions of 20 torr. The purity of the isolated didodecyl ether was confirmed by a gas chromatography-mass spectrometry system (GC-MS) equipped with a quadrupole electron selective ionization detector (EI) operated at 70 eV. An Agilent HP-5MS column (30 m length, 0.25 mm inner diameter, and 0.25 ⁇ m film thickness) was used at a 10:1 split ratio.
  • GC-MS gas chromatography-mass spectrometry system
  • EI quadrupole electron selective ionization detector
  • the cell growth toxicity of didodecyl ether synthesized as above was analyzed.
  • the Gompertz growth equation the maximum growth rate and delay time were obtained. As a result, as shown in Figure 2d, it was confirmed that the synthesized didodecyl ether had almost no cytotoxicity.
  • the Candida tropicalis Ct6 strain was maintained in 15% glycerol at -70 degrees Celsius, and the stock strain was grown on YPD agar medium (10g/L yeast extract, 20g/L Bacto peptone, 20g/L glucose, and 20g/L agarose). The plate was plated and cultured overnight at 30 degrees Celsius.
  • YPD medium (10g/L Yeast extract, 20g/L Bacto peptone, 20g/L glucose) and ether compounds with different carbon numbers (dibutyl ether, dipentyl ether, dihexyl ether, diheptyl ether, dioctyl ether, Didecyl ether, diundecyl ether, and didodecyl ether; obtained from each TCI company) were prepared by mixing them at different concentrations (0, 0.25, 0.5, 1, 2, 3, 4, 5%). Then, 200 uL of the mixed solution of YPD and reagent was added to each well of the 48-well plate.
  • ether compounds with different carbon numbers dibutyl ether, dipentyl ether, dihexyl ether, diheptyl ether, dioctyl ether, Didecyl ether, diundecyl ether, and didodecyl ether; obtained from each TCI company
  • Example [2-1] The ⁇ , ⁇ -carboxylated recombinant strain prepared in Example [2-1] was inoculated into 2 mL YPD medium and pre-cultured at 30 degrees Celsius and 200 rpm for 24 hours.
  • the culture medium pre-cultured as above was placed in a 2 L baffled flask containing 200 mL of YPD medium, and cultured at 30 degrees Celsius and 200 rpm for 24 hours.
  • all 200 mL of culture medium cultured the previous day was added to a fermenter containing 1.8 L of medium containing the same ingredients as shown in Table 3 below to make the final volume 2 L.
  • Table 3 the final composition of the 2 L culture medium is shown in Table 3 below.
  • Glycerol 80 CaCl 2 ⁇ 2H 2 O 0.1 NaCl 0.1 Yeast extract 20 (NH 4 ) 2 SO 4 8 KH 2 PO 4 2 Trace element 1mL Antifoam 0.3mL MgSO 4 ⁇ 7H 2 O
  • the feeding medium 600 g/L glucose, 30 g/L NH 4 Cl
  • TCI dodecane
  • the culture medium was treated with acid after 6 hours and an equal volume of diethyl ether was used to extract the substrate and product for GC-MS analysis.
  • the substrate and product were then analyzed using a gas chromatography-mass spectrometry (GC-MS) system equipped with a quadrupole electron selective ionization detector operated at 70 eV, using an Agilent HP-5MS column (30 m long, i.d. 0.25 mm and a film thickness of 0.25 um) was used at a split ratio of 10:1.
  • Helium flow rate 1.2 mL/min
  • Tetradecane was used as an internal standard, and the carboxylated dialkyl ether compound was inferred from the fragmentation profile of GC-MS because there was no commercially available reagent.
  • Dibutyl ether (C8) 65.91 ⁇ 0.17 67.66 ⁇ 0.52 Dipentyl ether (C10) 44.80 ⁇ 0.31 70.79 ⁇ 0.23 Dihexyl ether (C12) 54.54 ⁇ 1.06 73.14 ⁇ 0.55 Diheptyl ether (C14) 80.66 ⁇ 4.89 100 Dioctyl ether (C16) 90.17 ⁇ 0.62 100 Didecyl ether (C20) 65.37 ⁇ 1.35 76.24 ⁇ 1.42 Diundecyl ether (C22) 97.31 ⁇ 1.44 100 Didodecyl ether (C24) 75.58 ⁇ 3.00 100
  • the CAR (carboxylic acid reductase) gene (WP_00582584.1) from Mycobacterium abscessu and the Sfp (4'-phosphopantetheinyl transferase) gene (WP_00234549.1) from Bacillus sp .
  • the base sequence of SEQ ID No. 1 was requested to be synthesized by ATUM, an American company, and this synthesized gene was inserted into the BamHI and HindIII sites of pJ281 (ATUM).
  • the recombinant vector pJ281-CAR-Sfp as described above was transfected into Escherichia coli MG1665(DE3) strain (Novagen) to produce an ⁇ , ⁇ -hydroxylated recombinant strain.
  • the ⁇ , ⁇ -hydroxylated recombinant E. coli strain was maintained in 15% glycerol at -70 degrees Celsius, and the stock strain was grown on LB agar medium containing kanamycin (5g/L yeast extract, 10g/L Bacto tryptone, 10g/L L NaCl, 20 g/L agarose, and 50 mg/L Kanamycin) and cultured overnight at 37 degrees Celsius.
  • kanamycin 5g/L yeast extract, 10g/L Bacto tryptone, 10g/L L NaCl, 20 g/L agarose, and 50 mg/L Kanamycin
  • Example 1 the dioctyl ether synthesized in Example 1 in Examples [2-4] was bioconverted. One culture was centrifuged to remove cells, and then the supernatant was used as a substrate solution to confirm the formation of ⁇ , ⁇ -hydroxylated dioctyl ether.
  • the ⁇ , ⁇ -hydroxylated recombinant strain prepared in Example [3-1] was cultured in 2 mL LB medium containing kanamycin (5 g/L yeast extract, 10 g/L Bacto tryptone, 10 g/L NaCl, and 50 mg/L L Kanamycin) and pre-cultured for one day at 37 degrees Celsius and 200 rpm.
  • the culture medium pre-cultured as above was placed in a 2L baffled flask containing 200mL LB medium containing kanamycin, and cultured for one day at 37 degrees Celsius and 200 rpm.
  • the supply medium 800 g/L glucose, 30 g/L NH 4 Cl
  • the substrate ⁇ , ⁇ -carboxyl produced in Example [2-4] Sylated dioctyl ether
  • the pH was maintained at 7 using ammonia water
  • the pH was maintained at 7.5 using 6N NaOH.
  • Dissolved oxygen was adjusted by adjusting the stirring speed and maintained above 30%, and the temperature of the fermenter was maintained at 35 degrees Celsius, and the components of the culture solution were analyzed in the same manner as in Example [2-3].
  • ADH (alcohole dehydrogenase) gene (WP_130157107.1) from Aeribacillus pallidus , ⁇ -TA ( ⁇ -transaminase) gene (WP_011135573.1) from Chromobacterium violaceum, and
  • the AlaDH (alanine dehydrogenase) gene (WP_003243280.1) derived from Bacillus subtilis was requested to be synthesized in an operon structure in the form of the base sequence of SEQ ID NO. ) was inserted into the SmaI and HindIII sites.
  • the recombinant vector as described above was transfected into Escherichia coli MG1665(DE3) strain (Novagen) to produce an ⁇ , ⁇ -aminated recombinant strain.
  • the ⁇ , ⁇ -aminated recombinant E. coli strain was maintained in 15% glycerol at -70 degrees Celsius, and the stock strain was grown on LB agar medium containing kanamycin (5g/L yeast extract, 10g/L Bacto tryptone, 10g/L NaCl, 20 g/L agarose, and 50 mg/L Kanamycin) and cultured overnight at 37 degrees Celsius.
  • kanamycin 5g/L yeast extract, 10g/L Bacto tryptone, 10g/L NaCl, 20 g/L agarose, and 50 mg/L Kanamycin
  • Example [3-2] in order to confirm the validity of biological ⁇ , ⁇ -amination of dialkyl ether compounds functionalized with hydroxy groups at both ends, ⁇ , ⁇ -hydroxylated dioctyl was bioconverted in Example [3-2].
  • the culture solution in which ether was produced was centrifuged to remove the supernatant, and then methanol and water were sequentially added to the precipitate to induce crystallization of ⁇ , ⁇ -hydroxylated dioctyl ether. Then, the crystals filtered through cellulose paper were dissolved in methanol again and 0.5% activated carbon was added to induce decolorization.
  • the ⁇ , ⁇ -aminated recombinant strain prepared in Example [4-1] was batch cultured in a 5L fermenter with a medium containing the ingredients shown in Table 5 below, then the culture was centrifuged and the supernatant was removed. , cells were stored at -70 degrees Celsius.
  • a bioconversion mixture was prepared by dissolving the composition shown in Table 6 in 0.1M phosphate buffer (pH 8.0), and 50 mL of the bioconversion mixture was heated to 37 degrees Celsius in a 500 mL baffled flask for 24 hours. While culturing for more than an hour, the components of the culture solution were analyzed in the same manner as in Example [2-3].
  • Example [2-3] 10 g of the ⁇ , ⁇ -carboxylated dioctyl ether produced in Example [2-4] and the ⁇ , ⁇ -hydroxylated dioctyl ether produced in Example [3-2] were dissolved in 1N sulfuric acid. After dissolving to /L and reacting at 200 degrees Celsius for more than 1 hour using a high pressure reactor, the components of the reactant were analyzed in the same manner as in Example [2-3].
  • the culture medium in which the dioctyl ether synthesized in Example 1 was bioconverted was centrifuged to remove cells, and then H 2 SO 4 was added to the supernatant to lower the pH to 4 and ⁇ , ⁇ -carboxylated Precipitation of dioctyl ether was induced. Then, it was filtered through cellulose paper to obtain precipitated ⁇ , ⁇ -carboxylated dioctyl ether.
  • Acetic acid was added to the ⁇ , ⁇ -carboxylated dioctyl ether obtained as above, completely dissolved at 95 degrees Celsius, and then lowered to room temperature to induce crystallization of the ⁇ , ⁇ -carboxylated dioctyl ether. . Then, it was again filtered through cellulose paper and washed with water to separate and purify ⁇ , ⁇ -carboxylated dioctyl ether with a purity of 86.79%. And this was used as a substrate for hydrolysis.
  • Example 4 Hydrolysis of ⁇ , ⁇ -aminated dioctyl ether was carried out in Example 4 by adding sulfuric acid to a concentration of 1N to the bioconversion mixture containing ⁇ , ⁇ -aminated dioctyl ether and then using a high pressure reactor. After reacting at 200 degrees Celsius for more than 1 hour, the components of the reactant were analyzed in the same manner as in Example [2-3]. As a result, it was confirmed that 8-aminooctanol was produced.
  • the purity of the product was confirmed using a gas chromatography-mass spectrometry (GC-MS) system equipped with a quadrupole electron selective ionization detector operated at 70 eV, using an Agilent HP-5MS column (30 m long, 0.25 mm i.d. and Film thickness of 0.25 ⁇ m) was used at a 10:1 split ratio.
  • Helium flow rate 1.2 mL/min
  • the oven temperature was 100 to 320 degrees Celsius (10 degrees Celsius/min).
  • the synthesized substrate and an equal volume of diethyl ether were used to extract the substrate, and tetradecane was used as an internal standard.
  • the purity of the synthesized ethyldodecyl ether was over 97%, and the impurity was unreacted 1-decanol that did not participate in the reaction.
  • Example [2-3] while supplying ethyldodecyl ether prepared in Example [5-1] as a substrate, ⁇ , ⁇ -carboxylic acid prepared in Example [2-1] was used as a substrate. Fermentation was performed with a live recombinant strain.
  • a substrate After adding ethyldodecyl ether, a substrate, the culture medium was treated with acid, and an equal volume of diethyl ether was used to extract the substrate and product for GC-MS analysis.
  • the substrate and product were then analyzed using a gas chromatography-mass spectrometry (GC-MS) system equipped with a quadrupole electron selective ionization detector operated at 70 eV, using an Agilent HP-5MS column (30 m long, i.d. 0.25 mm and a film thickness of 0.25 um) was used at a split ratio of 10:1.
  • Helium flow rate 1.2 mL/min
  • Tetradecane was used as an internal standard, and the carboxylated dialkyl ether compound was inferred from the fragmentation profile of GC-MS because there was no commercially available reagent.
  • 12-hydroxydodecanoic acid produced as above, lactone is formed through a reaction known in Pyo et al . (2020) (Pyo et al. , Green Chem. , 22: 4450-4455 (2020))
  • 12-hydroxydodecanoic acid is reacted with thionyl chloride in a suitable solvent such as dichloromethane or chloroform to convert to the corresponding acid chloride, and the resulting acid chloride solution is mixed with triethylamine, pyridine, etc.
  • a solution of a suitable lactone occluding agent such as triethyl orthoformate or diisopropyl azodicarboxylate is added to the reaction mixture and the mixture is allowed to sit at room temperature for some time. Stir. Then, the mixture is heated under reflux for a considerable period of time at a temperature of about 80 to 100 degrees Celsius to promote lactonization of the acid chloride to form lactone.
  • the reactant is cooled and the unreacted acid chloride is dissolved in water or an appropriate aqueous solution. Add and quench.
  • High-purity dodecane lactone can be produced by extracting dodecane lactone from the reaction mixture using a suitable solvent such as ethyl acetate or dichloromethane and purifying it by distillation or recrystallization.
  • dodecane lactone produced as described above has been described in various prior literature (Rankic et al. , J. Org. Chem. , 82(23): 12791-12797 (2017), Decker et al. , Tetrahedron, 60(21) ): 4567-4678 (2004), etc.) can be converted to dodecalactam through a known reaction, for example, dodecane lactone is dissolved in an appropriate solvent such as methanol or ethanol, and ammonium hydroxide solution is added to the dodecane lactone solution.
  • an appropriate solvent such as methanol or ethanol
  • the mixture is then stirred at room temperature for a significant period of time, and then the reaction mixture is heated under reflux conditions at a temperature of about 120 to 140 degrees Celsius for a period of time to promote cyclization of the lactone to form the lactam.
  • the reaction is completed, the mixture is cooled, the pH is adjusted to about 7 using hydrochloric acid, and then dodecane lactam is extracted from the reaction mixture using a suitable solvent such as ethyl acetate or dichloromethane, and purified by recrystallization or chromatography to obtain high purity. of dodecane lactam can be produced.
  • the present invention relates to a method of producing various monomers used in the production of synthetic resins from fatty alcohols.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

본 발명은 지방 알코올로부터 합성수지의 제조에 이용되는 다양한 단량체들을 생산하는 방법에 관한 것이다.

Description

지방 알코올로부터 다양한 합성수지 제조용 단량체들을 생산하는 방법
본 발명은 지방 알코올로부터 합성수지의 제조에 이용되는 다양한 단량체들을 생산하는 방법에 관한 것이다.
바이오플랫폼 화합물은 바이오매스 유래 원료를 기반으로 하여 생물학적 또는 화학적 전환을 통해 생산된 것으로, 고분자 모노머, 신소재 등의 합성에 사용되고 있다.
바이오플랫폼 화합물 중 히드록시알칸산, 아미노알칸산, 알칸디올, 아미노알칸올, 디아미노알칸 등은 폴리아미드, 폴리에스터 등의 합성 수지를 제조하기 위한 단량체로 사용되는 물질이다. 그런데, 이러한 바이오플랫폼 화합물을 제조하기 위한 원료가 되는 알칸 또는 알칸올 화합물의 경우 탄소수가 6개 이하인 단쇄인 경우에 세포 독성을 유발하기 때문에, 이러한 단쇄의 알칸 화합물을 이용해서는 생물학적 방법으로 상기와 같은 바이오플랫폼 화합물을 제조하기가 사실상 어려운 문제점이 있었다.
따라서 단쇄의 바이오플랫폼 화합물을 생물학적으로 생산할 수 있는 기술의 연구 또는 개발이 필요한 실정이다.
본 발명의 목적은 지방 알코올로부터 합성수지 제조용 단량체를 제조하는 방법을 제공하는 것이다.
상기의 목적을 달성하기 위하여, 본 발명의 일 측면은 지방 알코올로부터 디알킬 에테르 화합물을 합성하는 단계; 상기 디알킬 에테르 화합물을 유전적으로 재조합된 형질전환체로 발효시켜 양 말단이 기능화된 디알킬 에테르 화합물을 생성하는 단계; 및 상기 양 말단이 기능화된 디알킬 에테르 화합물을 분해하는 단계를 포함하는, 지방 알코올로부터 합성수지 제조용 단량체를 제조하는 방법을 제공한다.
또한, 상기 목적을 달성하기 위하여, 본 발명의 다른 측면은 지방 알코올로부터 비대칭형의 지방 에테르 화합물을 합성하는 단계; 상기 비대칭형의 지방 에테르 화합물을 유전적으로 재조합된 형질전환체로 발효시켜 양 말단이 기능화된 비대칭형의 지방 에테르 화합물을 생성하는 단계; 및 상기 양 말단이 기능화된 비대칭형의 지방 에테르 화합물을 분해하는 단계;를 포함하는, 지방 알코올로부터 합성수지 제조용 단량체를 제조하는 방법을 제공한다.
본 발명에서와 같이 지방 알코올을 디알킬 에테르 화합물로 변형시켜 기질로 이용하는 경우에는 기능화된 생성물을 가수분해하는 과정을 통해 양 말단이 카르복실화, 히드록실화 또는 아민화되어 있는 다양한 형태의 단량체를 2당량씩 생성할 수 있고, 기존에 기능화가 쉽지 않은 단쇄의 지방 알코올의 경우에도 기능화가 가능하고, 양 말단의 관능기가 다른 형태로 제조가 가능하다. 따라서, 종래에 비해 다양한 형태의 합성수지 제조용 단량체를 용이하게 생성할 수 있는 장점이 있다.
다만, 본 발명의 효과는 상기에서 언급한 효과로 제한되지 아니하며, 언급되지 않은 또 다른 효과들은 하기의 기재로부터 당업자에게 명확히 이해될 수 있을 것이다.
도 1은 지방 알코올로부터 합성수지 제조용 단량체를 제조하는 본 발명의 전체 공정을 개략적으로 도식화한 것이다.
도 2a는 바이오 유래의 1-옥탄올로 디옥틸 에테르를 합성한 결과를 나타내는 그래프이고, 도 2b는 상기와 같이 생성된 디옥틸 에테르의 세포 독성을 확인한 결과를 나타내는 그래프이다.
도 2c는 바이오 유래의 1-도데칸올로 디도데실 에테르를 합성한 결과를 나타내는 그래프이고, 도 2d는 상기와 같이 생성된 디도데실 에테르의 세포 독성을 확인한 결과를 나타내는 그래프이다.
도 3은 본 발명의 α,ψ-카르복실화 재조합 균주에 대한, 다양한 탄소수의 디알킬 에테르 화합물의 세포 독성을 확인한 결과를 나타낸 그래프이다.
도 4a 및 도 4b는 각각 바이오 유래의 1-옥탄올로부터 생성된 디옥틸 에테르와 바이오 유래의 1-도데칸올로부터 합성된 디도데실 에테르가, 본 발명의 α,ψ-카르복실화 재조합 균주에 의해 그 양 말단이 카르복시기로 기능화되는 결과를 확인한 그래프이다.
도 5는 양 말단이 카르복시기로 기능화된 디옥틸 에테르가, 본 발명의 α,ψ-히드록실화 재조합 균주에 의해 그 양 말단이 히드록시기로 기능화되는 결과를 확인한 그래프이다.
도 6은 양 말단이 히드록시기로 기능화된 디옥틸 에테르가, 본 발명의 α,ψ-아민화 재조합 균주에 의해 그 양 말단이 아민기로 기능화되는 결과를 확인한 그래프이다.
도 7은 양 말단이 카르복시기로 기능화된 디옥틸 에테르가, 가수분해 되어 2당량의 8-히드록시옥탄산이 생성되는 결과를 나타낸 그래프이다.
도 8은 양 말단이 히드록시기로 기능화된 디옥틸 에테르가, 가수분해 되어 2당량의 1,8-옥탄디올이 생성되는 결과를 나타낸 그래프이다.
도 9는 에틸도데실에테르의 양 말단이 카르복실화가 된 화합물인 카르복시메틸 11-카르복시운데실 에테르(=12-(카르복시메톡시)도데칸산)이 생성되는 결과를 나타낸 그래프이다.
본 발명의 일 구현 예에 따르면, 지방 알코올로부터 디알킬 에테르 화합물을 합성하는 제1 단계; 상기 디알킬 에테르 화합물을 유전적으로 재조합된 형질전환체로 발효시켜 양 말단이 기능화된 디알킬 에테르 화합물을 생성하는 제2 단계; 및 상기 양 말단이 기능화된 디알킬 에테르 화합물을 분해하는 제3 단계;를 포함하는 지방 알코올로부터 합성수지 제조용 단량체를 제조하는 방법에 관한 것이다.
상기 제1 단계에서 상기 지방 알코올은 탄소수가 n인 포화 탄화수소의 일 말단이 히드록시기로 치환된 화합물이다. 상기 탄화수소의 탄소수 n은 3 내지 20의 정수, 예컨대 4 내지 18의 정수, 구체적으로 5 내지 16의 정수, 특히 6 내지 14의 정수일 수 있다. 또한, 상기 탄화수소는 직쇄 또는 분지쇄일 수 있으나, 특히 직쇄일 수 있다.
상기 제2 단계에서, 유전적으로 재조합된 제1 형질전환체를 이용하여 상기 제1 단계에서 생성된 디알킬 에테르 화합물의 양 말단을 산화시켜 디알킬 에테르 화합물의 α,ψ-위치에 카르복실기를 도입할 수 있다. 이때 상기 제1 형질전환체는 ψ-산화가 가능하도록 재조합된 형질전환체일 수 있고, 예컨대 β-산화 경로가 차단되고, CYP450, CPRb(CYP450 reductase complex), FADH(fatty alcohol dehydrogenase), FAO(fatty alcohol oxidase), FALDH(fatty aldehyde dehydrogenase), 또는 이들의 조합 등이 과발현되도록 유전적으로 조작된 미생물일 수 있다.
상기 제2 단계에서, 추가로 유전적으로 재조합된 제2 형질전환체 또는 적절한 촉매를 이용하여, 양 말단이 카르복시기로 기능화된 디알킬 에테르 화합물을 양 말단이 히드록시기로 기능화된 디알킬 에테르 화합물로 전환시킬 수 있다. 상기 제2 형질전환체는 ψ-환원이 가능하도록 재조합된 형질전환체일 수 있고, 예컨대 CAR(carboxylic acid reductase), Sfp(4'-phosphopantetheinyl transferase), 또는 이들의 조합 등이 과발현되도록 유전적으로 조작된 미생물일 수 있다.
상기 제2 단계에서, 추가로 유전적으로 재조합된 제3 형질전환체 또는 적절한 촉매를 이용하여, 양 말단이 히드록시기로 기능화된 디알킬 에테르 화합물을 양 말단이 아민기로 기능화된 디알킬 에테르 화합물로 전환시킬 수 있다. 상기 제3 형질전환체는 ψ-아민화가 가능하도록 재조합된 형질전환체일 수 있고, 예컨대 ψ-TA(ψ-transaminase), AlaDH(alanine dehydrogenase), ADH(Alcohol dehydrogenase), 또는 이들의 조합 등이 과발현되도록 유전적으로 조작된 미생물일 수 있다.
상기 제3 단계에서는 에테르 결합의 가수분해를 통해 히드록시알칸산, 아미노알칸산, 알칸디올, 아미노알칸올, 디아미노알칸 등과 같은 다양한 종류의 단량체들이 생성될 수 있다.
나아가, 본 발명에서는 상기 제3 단계에서 생성된 다양한 종류의 단량체들을 이용하여 폴리아미드, 폴리에스터 등의 합성 수지를 제조할 수 있고, 특히, 히드록시알칸산 단량체를 이용하여 락톤 화합물이나, 락탐 화합물을 제조할 수 있다.
본 발명의 다른 구현 예에 따르면, 지방 알코올로부터 비대칭형의 지방 에테르 화합물을 합성하는 제1' 단계; 상기 비대칭형의 지방 에테르 화합물을 유전적으로 재조합된 형질전환체로 발효시켜 양 말단이 기능화된 비대칭형의 지방 에테르 화합물을 생성하는 제2' 단계; 및 상기 양 말단이 기능화된 비대칭형의 지방 에테르 화합물을 분해하는 제3' 단계;를 포함하는 지방 알코올로부터 합성수지 제조용 단량체를 제조하는 방법에 관한 것이다.
상기 제1' 단계에서 상기 지방 알코올은 탄소수가 m 또는 n인 포화 또는 불포화의 지방족 탄화수소의 일 말단이 히드록시기로 치환된 화합물이다. 상기 탄화수소의 탄소수 m은 1 내지 20의 정수, 예컨대 1 내지 12의 정수, 구체적으로 1 내지 6의 정수, 특히 1 내지 3의 정수일 수 있다. 또한, 상기 탄화수소의 탄소수 n은 3 내지 20의 정수, 예컨대 4 내지 18의 정수, 구체적으로 5 내지 16의 정수, 특히 6 내지 14의 정수일 수 있다. 또한, 상기 탄화수소들은 직쇄 또는 분지쇄일 수 있으나, 특히 직쇄일 수 있다.
상기 상기 제2' 단계에서, 유전적으로 재조합된 제1 형질전환체를 이용하여 상기 제1 단계에서 생성된 디알킬 에테르 화합물의 양 말단을 산화시켜 디알킬 에테르 화합물의 α,ψ-위치에 카르복실기를 도입할 수 있다. 이때 상기 제1 형질전환체는 ψ-산화가 가능하도록 재조합된 형질전환체일 수 있고, 예컨대 β-산화 경로가 차단되고, CYP450, CPRb(CYP450 reductase complex), FADH(fatty alcohol dehydrogenase), FAO(fatty alcohol oxidase), FALDH(fatty aldehyde dehydrogenase), 또는 이들의 조합 등이 과발현되도록 유전적으로 조작된 미생물일 수 있다.
상기 제2' 단계에서, 추가로 유전적으로 재조합된 제2 형질전환체 또는 적절한 촉매를 이용하여, 양 말단이 카르복시기로 기능화된 디알킬 에테르 화합물을 양 말단이 히드록시기로 기능화된 디알킬 에테르 화합물로 전환시킬 수 있다. 상기 제2 형질전환체는 ψ-환원이 가능하도록 재조합된 형질전환체일 수 있고, 예컨대 CAR(carboxylic acid reductase), Sfp(4'-phosphopantetheinyl transferase), 또는 이들의 조합 등이 과발현되도록 유전적으로 조작된 미생물일 수 있다.
상기 제2' 단계에서, 추가로 유전적으로 재조합된 제3 형질전환체 또는 적절한 촉매를 이용하여, 양 말단이 히드록시기로 기능화된 디알킬 에테르 화합물을 양 말단이 아민기로 기능화된 디알킬 에테르 화합물로 전환시킬 수 있다. 상기 제3 형질전환체는 ψ-아민화가 가능하도록 재조합된 형질전환체일 수 있고, 예컨대 ψ-TA(ψ-transaminase), AlaDH(alanine dehydrogenase), ADH(Alcohol dehydrogenase), 또는 이들의 조합 등이 과발현되도록 유전적으로 조작된 미생물일 수 있다.
상기 제3' 단계에서는 에테르 결합의 가수분해를 통해 히드록시알칸산, 아미노알칸산, 알칸디올, 아미노알칸올, 디아미노알칸 등과 같은 다양한 종류의 단량체들이 생성될 수 있다.
나아가, 본 발명에서는 상기 제3 단계에서 생성된 다양한 종류의 단량체들을 이용하여 폴리아미드, 폴리에스터 등의 합성 수지를 제조할 수 있고, 특히, 히드록시알칸산 단량체를 이용하여 락톤 화합물이나, 락탐 화합물을 제조할 수 있다.
이하, 본 발명을 상세히 설명한다.
1. 제1 구현예 - 대칭형의 디알킬 에테르 화합물을 매개하는 전략
본 발명의 일 측면은 지방 알코올로부터 합성수지 제조용 단량체를 제조하는 방법을 제공한다.
상기 본 발명의 방법은 지방 알코올로부터 디알킬 에테르 화합물을 합성하는 단계; 상기 디알킬 에테르 화합물을 유전적으로 재조합된 형질전환체로 발효시켜 양 말단이 기능화된 디알킬 에테르 화합물을 생성하는 단계; 및 상기 양 말단이 기능화된 디알킬 에테르 화합물을 분해하는 단계;를 포함한다.
제1 단계
먼저, 지방 알코올로부터 디알킬 에테르 화합물을 합성한다.
상기 지방 알코올은 탄소수가 n인 포화 탄화수소의 일 말단이 히드록시기로 치환된 화합물이다. 상기 탄화수소의 탄소수 n은 3 내지 20의 정수, 예컨대 4 내지 18의 정수, 구체적으로 5 내지 16의 정수, 특히 6 내지 14의 정수일 수 있다. 또한, 상기 탄화수소는 직쇄 또는 분지쇄일 수 있으나, 특히 직쇄일 수 있다.
상기와 같은 지방 알코올은 하기 화학식 1과 같은 반응을 통해 디알킬 에테르 화합물로 전환될 수 있는데, 하기와 같은 과정을 통해 탄수소 n의 지방 알코올으로부터 탄소수 2n의 디알킬 에테르 화합물이 생성될 수 있다. 이때 생성되는 상기 디알킬 에테르 화합물은 에테르 결합의 O 원자를 중심으로 양 쪽의 탄소수가 각각 n개로 동일한 형태의 탄화수소기가 존재하므로, 이를 대칭형의 디알킬 에테르 화합물이라고 한다.
[화학식 1]
Figure PCTKR2023006804-appb-img-000001
따라서 부탄올, 펜탄올, 헥산올, 헵탄올, 옥탄올, 노난올, 데칸올, 운데칸올, 도데칸올 등과 같은 지방 알코올로부터, 각각 디부틸에테르(C8H18O), 디펜틸에테르(C10H22O), 디헥실에테르(C12H26O), 디헵틸에테르(C14H30O), 디옥틸에테르(C16H34O), 디노닐에테르(C18H38O), 디데실에테르(C20H42O), 디운데실에테르(C22H46O), 디도데실에테르(C24H50O) 등과 같은 디알킬 에테르 화합물을 제조할 수 있다.
또한, 상기와 같은 화학식 1은 본 발명이 속하는 기술분야에서 널리 알려진 방법을 통해 수행될 수 있으며, 예컨대 황산(H2SO4) 등과 같은 산 촉매로 이용하여 섭씨 130 내지 140도의 온도에서 친핵성 치환 반응을 진행시킴으로써 수행될 수 있으나, 이에 한정되지 아니한다.
제2 단계
상기 제1 단계에서 생성된 디알킬 에테르 화합물을 유전적으로 재조합된 형질전환체로 발효시켜 양 말단이 기능화된 디알킬 에테르 화합물을 생성한다.
일단, 유전적으로 재조합된 제1 형질전환체를 이용하여, 하기 화학식 2와 같이, 상기 제1 단계에서 생성된 디알킬 에테르 화합물의 양 말단을 산화시켜 디알킬 에테르 화합물의 α,ψ-위치에 카르복실기를 도입한다.
[화학식 2]
Figure PCTKR2023006804-appb-img-000002
따라서 상기 제1 형질전환체는 ψ-산화가 가능하도록 재조합된 형질전환체일 수 있고, 예컨대 β-산화 경로가 차단되고, CYP450, CPRb(CYP450 reductase complex), FADH(fatty alcohol dehydrogenase), FAO(fatty alcohol oxidase), FALDH(fatty aldehyde dehydrogenase), 또는 이들의 조합 등이 과발현되도록 유전적으로 조작된 미생물일 수 있으나, 이에 한정되지 아니하고 본 발명이 속하는 기술분야의 통상의 기술자가 적절한 미생물을 ψ-산화가 가능하도록 유전적으로 재조합한 것이라면 제한없이 본 발명의 상기 제1 형질전환체로 이용될 수 있다. 여기서, 상기 미생물은 에스체리치아 (Escherichia), 코리네박테리움 (Corynebacterium), 클로스트리듐 (Clostridium), 자이모노마스 (Zymonomas), 살모넬라 (Salmonella), 로도코커스 (Rhodococcus), 슈도모나스 (Pseudomonas), 바실러스 (Bacillus), 락토바실러스 (Lactobacillus), 엔테로코커스 (Enterococcus), 알칼리제네스 (Alcaligenes), 클레시엘라 (Klesiella), 패니바실러스 (Paenibacillus), 아트로박터 (Arthrobacter), 브레비박테리움 (Brevibacterium), 피치아 (Pichia), 캔디다 (Candida), 한세눌라 (Hansenula), 사이네초코커스 (Synechococcus), 사이네초사이스티스 (Synechocystis), 아나배나 (Anabaena), 랄스토니아 (Ralstonia), 락토코커스 (Lactococcus) 또는 사카로마이세스 (Saccharomyces) 속 미생물일 수 있으나, 이에 한정되는 것은 아니다.
상기 제1 형질전환체에 상기 디알킬 에테르 화합물을 기질로 공급하여 발효시키면, 상기 디알킬 에테르 화합물의 ψ-위치의 탄소를 산화시켜 카르복시기로 기능화될 수 있다.
한편, 유전적으로 재조합된 제2 형질전환체 또는 적절한 촉매를 이용하여, 하기 화학식 3과 같이, 추가적으로 상기와 같이 생성된 양 말단이 카르복시기로 기능화된 디알킬 에테르 화합물을 양 말단이 히드록시기로 기능화된 디알킬 에테르 화합물로 전환시킬 수 있다.
[화학식 3]
Figure PCTKR2023006804-appb-img-000003
따라서 상기 제2 형질전환체는 ψ-환원이 가능하도록 재조합된 형질전환체일 수 있고, 예컨대 CAR(carboxylic acid reductase), Sfp(4'-phosphopantetheinyl transferase), 또는 이들의 조합 등이 과발현되도록 유전적으로 조작된 미생물일 수 있으나, 이에 한정되지 아니하고 본 발명이 속하는 기술분야의 통상의 기술자가 적절한 미생물을 ψ-환원이 가능하도록 유전적으로 재조합한 것이라면 제한없이 본 발명의 상기 제2 형질전환체로 이용될 수 있다. 여기서, 상기 미생물은 에스체리치아 (Escherichia), 코리네박테리움 (Corynebacterium), 클로스트리듐 (Clostridium), 자이모노마스 (Zymonomas), 살모넬라 (Salmonella), 로도코커스 (Rhodococcus), 슈도모나스 (Pseudomonas), 바실러스 (Bacillus), 락토바실러스 (Lactobacillus), 엔테로코커스 (Enterococcus), 알칼리제네스 (Alcaligenes), 클레시엘라 (Klesiella), 패니바실러스 (Paenibacillus), 아트로박터 (Arthrobacter), 브레비박테리움 (Brevibacterium), 피치아 (Pichia), 캔디다 (Candida), 한세눌라 (Hansenula), 사이네초코커스 (Synechococcus), 사이네초사이스티스 (Synechocystis), 아나배나 (Anabaena), 랄스토니아 (Ralstonia), 락토코커스 (Lactococcus) 또는 사카로마이세스 (Saccharomyces) 속 미생물일 수 있으나, 이에 한정되는 것은 아니다.
상기 제2 형질전환체에 상기 양 말단이 카르복시기로 기능화된 디알킬 에테르 화합물을 기질로 공급하여 발효시키면, 상기 양 말단이 카르복시기로 기능화된 디알킬 에테르 화합물의 ψ-위치의 카르복실기가 환원되어 히드록시기로 기능화될 수 있다.
나아가, 유전적으로 재조합된 제3 형질전환체 또는 적절한 촉매를 이용하여, 하기 화학식 4와 같이, 추가적으로 상기와 같이 생성된 양 말단이 히드록시기로 기능화된 디알킬 에테르 화합물을 양 말단이 아민기로 기능화된 디알킬 에테르 화합물로 전환시킬 수 있다.
[화학식 4]
Figure PCTKR2023006804-appb-img-000004
따라서 상기 제3 형질전환체는 ψ-아민화가 가능하도록 재조합된 형질전환체일 수 있고, 예컨대 ψ-TA(ψ-transaminase), AlaDH(alanine dehydrogenase), ADH(Alcohol dehydrogenase), 또는 이들의 조합 등이 과발현되도록 유전적으로 조작된 미생물일 수 있으나, 이에 한정되지 아니하고 본 발명이 속하는 기술분야의 통상의 기술자가 적절한 미생물을 ψ-아민화가 가능하도록 유전적으로 재조합한 것이라면 제한없이 본 발명의 상기 제3 형질전환체로 이용될 수 있다. 여기서, 상기 미생물은 에스체리치아 (Escherichia), 코리네박테리움 (Corynebacterium), 클로스트리듐 (Clostridium), 자이모노마스 (Zymonomas), 살모넬라 (Salmonella), 로도코커스 (Rhodococcus), 슈도모나스 (Pseudomonas), 바실러스 (Bacillus), 락토바실러스 (Lactobacillus), 엔테로코커스 (Enterococcus), 알칼리제네스 (Alcaligenes), 클레시엘라 (Klesiella), 패니바실러스 (Paenibacillus), 아트로박터 (Arthrobacter), 브레비박테리움 (Brevibacterium), 피치아 (Pichia), 캔디다 (Candida), 한세눌라 (Hansenula), 사이네초코커스 (Synechococcus), 사이네초사이스티스 (Synechocystis), 아나배나 (Anabaena), 랄스토니아 (Ralstonia), 락토코커스 (Lactococcus) 또는 사카로마이세스 (Saccharomyces) 속 미생물일 수 있으나, 이에 한정되는 것은 아니다.
상기 제3 형질전환체에 상기 양 말단이 히드록시기로 기능화된 디알킬 에테르 화합물을 기질로 공급하여 발효시키면, 상기 양 말단이 히드록시기로 기능화된 디알킬 에테르 화합물의 ψ-위치의 히드록시기가 아민화되어 아민기로 기능화될 수 있다.
제3 단계
상기 제2 단계에서 생성된 양 말단이 기능화된 디알킬 에테르 화합물을 분해한다. 상기 분해는 상기 양 말단이 기능화된 디알킬 에테르 화합물의 에테르 결합을 가수분해하는 것이고, 상기와 같은 에테르 결합의 가수분해는 본 발명이 속하는 기술분야에서 널리 알려진 방법을 통해 수행될 수 있으며, 예컨대 황산(H2SO4) 등과 같은 산 촉매로 이용하여 섭씨 200도의 온도에서 반응시킴으로써 수행될 수 있으나, 이에 한정되지 아니한다.
상기와 같은 에테르 결합의 가수분해는 상기 단계 2에서 생성될 수 있는 모든 종류의 양 말단이 기능화된 디알킬 에테르 화합물을 대상으로 수행될 수 있다. 따라서 양 말단이 카르복시기로 기능화된 탄소수 2n의 디알킬 에테르 화합물을 가수분해하여 탄소수가 n인 히드록시알칸산 2당량 또는 탄소수가 n인 아미노알칸산 2당량을 생성하거나, 양 말단이 히드록시기로 기능화된 탄소수 2n의 디알킬 에테르 화합물을 가수분해하여 탄소수가 n인 알칸디올 2당량 또는 탄소수가 n인 아미노알칸올 2당량을 생성하거나, 또는 양 말단이 아민기로 기능화된 탄소수 2n의 디알킬 에테르 화합물을 가수분해하여 탄소수가 n인 아미노알칸올 2당량 또는 탄소수가 n인 디아미노알칸 2당량을 생성할 수 있다.
상기와 같이 제조된 히드록시알칸산, 아미노알칸산, 알칸디올, 아미노알칸올, 디아미노알칸 등과 같은 다양한 종류의 단량체들은 폴리아미드, 폴리에스터 등의 합성 수지를 제조하는데 유용하게 이용될 수 있다. 특히, 히드록시알칸산은 종래 공지된 문헌들(예, Pyo et al.(2020) 문헌(Pyo et al., Green Chem., 22: 4450-4455 (2020)) 등)에서 알려진 반응을 통해 락톤 화합물로 전환될 수 있고, 이러한 락톤 화합물 역시 종래 공지된 여러 문헌들(Rankic et al., J. Org. Chem., 82(23): 12791-12797 (2017), Decker et al., Tetrahedron, 60(21): 4567-4678 (2004) 등)에서 알려진 반응을 통해 락탐으로 전환될 수 있어, 보다 다양하게 활용될 수 있다.
2. 제2 구현예 - 비대칭형의 지방 에테르 화합물을 매개하는 전략
본 발명의 다른 측면은 지방 알코올로부터 합성수지 제조용 단량체를 제조하는 방법을 제공한다.
상기 본 발명의 방법은 지방 알코올로부터 비대칭형의 지방 에테르 화합물을 합성하는 단계; 상기 비대칭형의 지방 에테르 화합물을 유전적으로 재조합된 형질전환체로 발효시켜 양 말단이 기능화된 비대칭형의 지방 에테르 화합물을 생성하는 단계; 및 상기 양 말단이 기능화된 비대칭형의 지방 에테르 화합물을 분해하는 단계;를 포함한다.
제1' 단계
먼저, 지방 알코올로부터 비대칭형의 지방 에테르 화합물을 합성한다.
상기 지방 알코올은 탄소수가 m 또는 n인 포화 또는 불포화의 지방족 탄화수소의 일 말단이 히드록시기로 치환된 화합물이다. 상기 탄화수소의 탄소수 m은 1 내지 20의 정수, 예컨대 1 내지 12의 정수, 구체적으로 1 내지 6의 정수, 특히 1 내지 3의 정수일 수 있다. 또한, 상기 탄화수소의 탄소수 n은 3 내지 20의 정수, 예컨대 4 내지 18의 정수, 구체적으로 5 내지 16의 정수, 특히 6 내지 14의 정수일 수 있다. 또한, 상기 탄화수소들은 직쇄 또는 분지쇄일 수 있으나, 특히 직쇄일 수 있다.
상기와 같은 지방 알코올은 하기 화학식 5와 같은 반응을 통해 비대칭형의 지방 에테르 화합물로 전환될 수 있는데, 하기와 같은 과정을 통해 탄소수 m의 지방 알코올과 탄소수 n의 지방 알코올으로부터 탄소수 m+n의 지방 에테르 화합물이 생성될 수 있다. 여기서 m과 n은 서로 다른 숫자로, 이때 생성되는 상기 지방 에테르 화합물은 에테르 결합의 O 원자를 중심으로 양 쪽에 탄소수가 m개인 탄화수소기와 탄소수가 n개인 탄화수소기가 존재하므로, 이를 비대칭형의 지방 에테르 화합물이라고 한다.
[화학식 5]
Figure PCTKR2023006804-appb-img-000005
예컨대, m이 1인 알코올인 메탄올을 부탄올, 펜탄올, 헥산올, 헵탄올, 옥탄올, 노난올, 데칸올, 운데칸올, 도데칸올 등과 같은 지방 알코올들과 반응을 하면, 각각 메틸부틸에테르(또는 1-메톡시부탄(C5H12O)), 메틸펜틸에테르(1-메톡시펜탄(C6H14O)), 메틸헥실에테르(1-메톡시헥산(C7H16O)), 메틸헵틸에테르(1-메톡시헵탄(C8H18O)), 메틸옥틸에테르(1-메톡시옥탄(C9H20O)), 메틸노닐에테르(1-메톡시노난(C10H22O)), 메틸데실에테르(1-메톡시데칸(C11H24O)), 메틸운데실에테르(1-메톡시운데칸(C12H26O)), 메틸도데실에테르(1-메톡시도데칸(C13H28O)) 등과 같은 비대칭형의 디알킬 에테르 화합물을 제조할 수 있다.
또한, m이 2인 알코올인 에탄올을 부탄올, 펜탄올, 헥산올, 헵탄올, 옥탄올, 노난올, 데칸올, 운데칸올, 도데칸올 등과 같은 지방 알코올들과 반응을 하면, 각각 에틸부틸에테르(1-에톡시부탄(C6H14O)), 에틸펜틸에테르(1-에톡시펜탄(C7H16O)), 에틸헥실에테르(1-에톡시헥산(C8H18O)), 에틸헵틸에테르(1-에톡시헵탄(C9H20O)), 에틸옥틸에테르(1-에톡시헵탄(C10H22O)), 에틸노닐에테르(1-에톡시노난(C11H24O)), 에틸데실에테르(1-에톡시데칸(C12H26O)), 에틸운데실에테르(1-에톡시운데칸(C13H28O)), 에틸도데실에테르(1-에톡시도데칸(C14H30O)) 등과 같은 비대칭형의 디알킬 에테르 화합물을 제조할 수 있다.
나아가, m이 3 이상인 알코올의 경우에도 부탄올, 펜탄올, 헥산올, 헵탄올, 옥탄올, 노난올, 데칸올, 운데칸올, 도데칸올 등과 같은 지방 알코올들과 반응하여 다양한 비대칭형의 디알킬 에테르 화합물이 생성될 수 있다.
또한, 상기와 같은 화학식 5는 본 발명이 속하는 기술분야에서 널리 알려진 방법을 통해 수행될 수 있으며, 예컨대 황산(H2SO4) 등과 같은 산 촉매로 이용하여 섭씨 130 내지 140도의 온도에서 친핵성 치환 반응을 진행시킴으로써 수행될 수 있으며, 아래 화학식 6과 같이 디메틸황산((CH3)2SO4)을 이용하거나, 또는 화학식 7과 같이 디에틸황산((CH3CH2)2SO4))을 이용하여 지방 알코올과 반응시켜 제조할 수도 있으나, 이에 한정되지 아니한다.
[화학식 6]
Figure PCTKR2023006804-appb-img-000006
[화학식 7]
Figure PCTKR2023006804-appb-img-000007
한편, 하기 표 1에서와 같이 대칭형의 디알킬 에테르 합성을 위해 사용한 지방 알코올의 탄소수 n이 14개 이상이 되면, 생성되는 탄소수 2n의 디알킬 에테르 화합물의 녹는점이 섭씨 45도를 넘기 때문에 본 발명에서 사용된 생물학적 전환 반응을 통한 양 말단의 기능화가 어려운 문제점이 있다. 결과적으로, 대칭형의 디알킬 에테르 화합물을 이용하는 전략만으로는, 탄소수가 14개 이상인 히드록시알칸산, 아미노알칸산, 알칸디올, 아미노알칸올, 디아미노알칸 등은 생산하기 어려운 문제점이 있다. 하지만, 하기 표 1에 기재된 바와 같이, 비대칭형 지방 에테르 화합물의 경우 m이 2인 에탄올과 n이 16인 헥사데칸올을 이용하여 생성된 총 탄소수 18의 에틸헥사데실에테르의 경우에도 그 녹는점이 섭씨 18도 정도에 불과하여 본 발명에서 사용된 생물학적 전환 반응이 일어나기 용이하다. 따라서, 비대칭형 지방 에테르 화합물을 이용하는 전략에 따르면 대칭형의 디알킬 에테르 화합물을 이용하는 전략보다, 탄소수가 더 많은 히드록시알칸산, 아미노알칸산, 알칸디올, 아미노알칸올, 디아미노알칸 등을 생산할 수 있는 장점이 있다.
대칭형 디알킬 에테르 녹는점
(섭씨 온도)
비대칭형 지방 에테르 녹는점
(섭씨 온도)
디옥틸에테르(Dioctyl ether)(CH3(CH2)7-O-(CH2)7CH3) -7.6 에틸옥틸에테르(1-Ethoxyoctane)
(CH3(CH2)-O-(CH2)7CH3)
12.5
디데실에테르(Didecyl ether)
(CH3(CH2)9-O-(CH2)9CH3)
16 에틸데실에테르(1-Ethoxydecane)
(CH3(CH2)-O-(CH2)9CH3)
12.5<,
<16
디운데실에테르(Diundecyl ether)
(CH3(CH2)10-O-(CH2)10CH3)
24 에틸운데실에테르(1-Ethoxyundecane)
(CH3(CH2)-O-(CH2)10CH3)
디도데실에테르(Didodecyl ether)(CH3(CH2)11-O-(CH2)11CH3) 32 에틸도데실에테르(1-Ethoxydodecane)
(CH3(CH2)-O-(CH2)11CH3)
디테테르데실에테르(Ditetradecyl ether)
(CH3(CH2)13-O-(CH2)13CH3)
45 에틸테트라데실에테르(1-Ethoxytetradecane)
(CH3(CH2)-O-(CH2)13CH3)
16
디헥사데실에테르(Dihexadecyl ether)(CH3(CH2)15-O-(CH2)15CH3) 55 에틸헥사데실에테르(1-Ethoxyhexadecane)
(CH3(CH2)-O-(CH2)15CH3)
18
제2' 단계
상기 제1' 단계에서 생성된 비대칭형의 지방 에테르 화합물을 유전적으로 재조합된 형질전환체로 발효시켜 양 말단이 기능화된 비대칭형의 지방 에테르 화합물을 생성한다.
이는 상기 제1 구현예의 단계 2에서와 동일한 방법으로 수행될 수 있고, 일단 유전적으로 재조합된 상기 제1 형질전환체를 이용하여, 양 말단을 산화시켜 비대칭형의 지방 에테르 화합물의 α,ψ-위치에 카르복실기를 도입할 수 있다.
또한, 유전적으로 재조합된 제2 형질전환체 또는 적절한 촉매를 이용하여, 추가적으로 상기와 같이 생성된 양 말단이 카르복시기로 기능화된 비대칭형의 지방 에테르 화합물을 양 말단을 히드록시기로 기능화시킬 수 있다.
나아가, 유전적으로 재조합된 제3 형질전환체 또는 적절한 촉매를 이용하여, 추가적으로 상기와 같이 생성된 양 말단이 히드록시기로 기능화된 비대칭형의 지방 에테르 화합물을 양 말단을 아민기로 기능화시킬 수 있다.
상기와 같은 비대칭형의 지방 에테르 화합물의 양 말단을 기능화하는 제2' 단계는, 상기 제1 구현예의 단계 2와 동일한 생물학적 또는 화학적 방법을 거치므로, 이에 대한 구체적인 설명은 상기 제1 구현예의 단계 2 부분을 원용하며, 자세한 설명은 생략하도록 한다.
제3' 단계
상기 제2' 단계에서 생성된 양 말단이 기능화된 비대칭형의 지방 에테르 화합물을 분해한다. 상기 분해 역시 상기 양 말단이 기능화된 비대칭형의 지방 에테르 화합물의 에테르 결합을 가수분해하는 것이고, 상기와 같은 에테르 결합의 가수분해는 본 발명이 속하는 기술분야에서 널리 알려진 방법을 통해 수행될 수 있는 것으로서, 상기 제1 구현예의 단계 3에서와 동일한 방법으로 수행될 수 있다.
따라서 상기와 같은 에테르 결합의 가수분해는 상기 단계 2'에서 생성될 수 있는 모든 종류의 양 말단이 기능화된 비대칭형의 지방 에테르 화합물을 대상으로 수행될 수 있다. 따라서 양 말단이 카르복시기로 기능화된 탄소수 m+n의 비대칭형의 지방족 에테르 화합물을 가수분해하여 탄소수가 m인 히드록시알칸산 1당량과 탄소수가 n인 히드록시알칸산 1당량 또는 탄소수가 m인 아미노알칸산 1당량과 탄소수가 n인 아미노알칸산 1당량을 생성하거나, 양 말단이 히드록시기로 기능화된 탄소수 m+n의 비대칭형의 지방족 에테르 화합물을 가수분해하여 탄소수가 m인 알칸디올 1당량과 탄소수가 n인 알칸디올 1당량 또는 탄소수가 m인 아미노알칸올 1당량과 탄소수가 n인 아미노알칸올 1당량을 생성하거나, 또는 양 말단이 아민기로 기능화된 탄소수 m+n의 비대칭형의 지방족 에테르 화합물을 가수분해하여 탄소수가 m인 아미노알칸올 1당량과 탄소수가 n인 아미노알칸올 1당량 또는 탄소수가 m인 디아미노알칸 1당량과 탄소수가 n인 디아미노알칸 1당량을 생성할 수 있다.
상기와 같이 제조된 히드록시알칸산, 아미노알칸산, 알칸디올, 아미노알칸올, 디아미노알칸 등과 같은 다양한 종류의 단량체들은 폴리아미드, 폴리에스터 등의 합성 수지를 제조하는데 유용하게 이용될 수 있다. 특히, 히드록시알칸산은 종래 공지된 문헌들(예, Pyo et al.(2020) 문헌(Pyo et al., Green Chem., 22: 4450-4455 (2020)) 등)에서 알려진 반응을 통해 락톤 화합물로 전환될 수 있고, 이러한 락톤 화합물 역시 종래 공지된 여러 문헌들(Rankic et al., J. Org. Chem., 82(23): 12791-12797 (2017), Decker et al., Tetrahedron, 60(21): 4567-4678 (2004) 등)에서 알려진 반응을 통해 락탐으로 전환될 수 있어, 보다 다양하게 활용될 수 있다.
이하, 본 발명을 실시예에 의하여 상세히 설명한다.
단, 하기 실시예는 본 발명을 구체적으로 예시하는 것이며, 본 발명의 내용이 하기 실시예에 의해 한정되지 아니한다.
[실시예 1]
지방 알코올로부터 디알킬 에테르 화합물의 합성
[1-1] 디옥틸 에테르(dioctyl ether)의 합성
바이오 유래의 1-옥탄올에 0.01 mol%가 되도록 황산을 가한 후, 200℃에서 20시간 반응하여 합성을 진행하였다. 반응물은 20torr 감압 조건에서 분별증류를 통하여 디옥틸 에테르를 분리하였다. 분리된 디옥틸 에테르는 70eV에서 작동되는 4중극자 전자 선택 이온화 검출기(EI)가 장착된 가스 크로마토그래피-질량 분석 시스템(GC-MS)에 의해 순도를 확인하였다. Agilent HP-5MS 컬럼(길이 30m, 내경 0.25mm 및 필름 두께 0.25μm)을 10:1 분할 비율로 사용하였다. 캐리어 가스로서 헬륨(flow rate 1.2mL/min)을 사용하였고, 오븐 온도는 100℃ 내지 320℃ 범위(10℃/min)였다. 합성한 기질 및 동등한 부피의 디에틸 에테르를 사용하여 기질을 추출하였고, 내부 표준으로서 테트라데칸이 사용되었다. 합성된 기질의 순도는 도 2a에 도시된 바와 같이 97% 이상이었으며, 불순물은 상기 반응에 참여하지 못한 미반응 1-옥탄올이었다.
상기와 같이 합성된 디옥틸 에테르의 세포 성장 독성을 분석하였다. 48-well plate에 YPD 배지(10g/L Yeast extract, 20g/L Bacto peptone, 20g/L glucose)와 디옥틸 에테르의 농도별 혼합 용액(0, 0.25, 0.5, 1, 2, 3, 4, 5%)을 200㎕씩 넣는다. YPD 배지에서 30℃, 200rpm으로 밤새 배양한 재조합 캔디다 트로피칼리스(Candida tropicalis) Ct6 균주의 배양액 2㎕를 각 well에 추가로 넣어준 후, plate reader를 이용하여 30℃에서 15분 간격으로 24시간 이상 600nm에서 흡광도를 측정한다. Gompertz 성장 방정식을 이용하여, 최대비 성장속도(μ m)와 지연시간(lag time)을 구하였다. 그 결과, 도 2b에 도시된 바와 같이, 상기 합성된 디옥틸 에테르의 경우 세포 독성이 거의 없는 것으로 확인되었다.
[1-2] 디도데실 에테르(didodecyl ether)의 합성
바이오 유래의 1-도데칸올에 0.01 mol%가 되도록 황산을 가한 후, 200℃에서 20시간 반응하여 합성을 진행하였다. 반응물은 20torr 감압 조건에서 분별증류를 통하여 디도데실 에테르를 분리하였다. 분리된 디도데실 에테르는 70eV에서 작동되는 4중극자 전자 선택 이온화 검출기(EI)가 장착된 가스 크로마토그래피-질량 분석 시스템(GC-MS)에 의해 순도를 확인하였다. Agilent HP-5MS 컬럼(길이 30m, 내경 0.25mm 및 필름 두께 0.25μm)을 10:1 분할 비율로 사용하였다. 캐리어 가스로서 헬륨(flow rate 1.2mL/min)을 사용하였고, 오븐 온도는 100℃ 내지 320℃ 범위(10℃/min)였다. 합성한 기질 및 동등한 부피의 디에틸 에테르를 사용하여 기질을 추출하였고, 내부 표준으로서 테트라데칸이 사용되었다. 합성된 기질의 순도는 도 2c에 도시된 바와 같이 97% 이상이었으며, 불순물은 상기 반응에 참여하지 못한 미반응 1-도데칸올이었다.
상기와 같이 합성된 디도데실 에테르의 세포 성장 독성을 분석하였다. 48-well plate에 YPD 배지와 디도데실 에테르의 농도별 혼합 용액(0, 0.25, 0.5, 1, 2, 3, 4, 5%)을 200㎕씩 넣는다. YPD 배지에서 30℃, 200rpm으로 밤새 배양한 재조합 캔디다 트로피칼리스 Ct6 균주의 배양액 2㎕를 각 well에 추가로 넣어준 후, plate reader를 이용하여 33℃에서 15분 간격으로 24시간 이상 600nm에서 흡광도를 측정한다. Gompertz 성장 방정식을 이용하여, 최대비 성장속도와 지연시간을 구하였다. 그 결과, 도 2d에 도시된 바와 같이, 상기 합성된 디도데실 에테르의 경우 세포 독성이 거의 없는 것으로 확인되었다.
[실시예 2]
알킬 에테르 화합물로부터 양 말단이 카르복시기로 기능화된 디알킬 에테르 화합물의 생성
[2-1] α,ψ-카르복실화 재조합 균주의 준비
Jeon et al.(2019) 문헌(Jeon et al., Green Chem, 21, 6491-6501 (2019))에 기재된, 하기 표 2와 같은 유전자형을 갖는 재조합 캔디다 트로피칼리스(Candida tropicalis) Ct6 균주를 이용하였다.
재조합 균주 유전자형
C. tropicalis Ct6 ura3/ura3 pox2Δ::CYP52A19/POX2 pox4/pox4 pox5Δ::CPRB-URA3/pox5
상기 캔디다 트로피칼리스 Ct6 균주는 섭씨 영하 70도에서 15% 글리세롤에 넣어 유지하였고, 스톡 균주를 YPD 한천 배지(10g/L yeast extract, 20g/L Bacto peptone, 20g/L glucose 및 20g/L agarose)에 도말하여 섭씨 30도에서 밤새 배양하였다.
[2-2] α,ψ-카르복실화 재조합 균주의 독성 확인
알킬 에테르 화합물들의 생물 전환에 앞서, 기질의 농도에 따른 α,ψ-카르복실화 재조합 균주의 독성 검사를 수행하였다.
우선 YPD 배지(10g/L Yeast extract, 20g/L Bacto peptone, 20g/L glucose)와 탄소수가 서로 다른 에테르 화합물들(디부틸 에테르, 디펜틸 에테르, 디헥실 에테르, 디헵틸 에테르, 디옥틸 에테르, 디데실 에테르, 디운데실 에테르, 디도데실 에테르; 각 TCI社에서 입수)을 농도별(0, 0.25, 0.5, 1, 2, 3, 4, 5%)로 섞어 준비하였다. 그런 다음, 48-웰 플레이트의 각 웰에 YPD와 시약의 혼합 용액을 200uL씩 나누어 담았다. 상기 혼합 용액이 담긴 각 웰에, 전날 2mL YPD 배지에 접종하여 섭씨 30도에서 200rpm으로 하루 동안 배양한 상기 실시예 [2-1]의 α,ψ-카르복실화 재조합 균주를 2uL씩 접종하고, 플레이트 리더(plate reader, Tecan社)를 이용하여 15분 간격으로 24시간 동안 상기 α,ψ-카르복실화 재조합 균주의 성장을 측정하였다. 측정된 결과를 이용하여 Gompertz 성장 방정식에 근접하는 값을 구하여, 최대비 성장속도 (um, maximum specific growth rate) 및 지연 시간 (μ, lag time)을 구하였다.
그 결과, 도 3에 도시된 바와 같이, 탄소수가 12개 이하인 에테르 화합물에 비해 탄소수가 14개 이상인 에테르 화합물들이 균주의 생장을 덜 저해하는 것으로 확인되었고, 특히 탄소수가 16개 이상인 에테르 화합물들은 5%의 높은 기질의 농도에서도 세포 성장을 거의 저해하지 않는 것으로 확인되었다.
[2-3] 디알킬 에테르 화합물의 α,ψ-카르복실화 가부 확인
먼저 디알킬 에테르 화합물들의 생물학적 α,ψ-카르복실화 가부를 확인하기 위하여, 실험실 규모의 5 L 배양 실험을 진행하였다. 상기 실시예 [2-1]에서 준비한 α,ψ-카르복실화 재조합 균주를 2mL YPD 배지에 접종하고 섭씨 30도에서 200rpm으로 24시간 동안 전배양하였다. 상기와 같이 전배양한 배양액을 200mL의 YPD 배지를 함유하는 2L 바플드 플라스크(baffled flask)에 넣고, 섭씨 30도에서 200rpm으로 24시간 동안 배양하였다. 그런 다음, 하기 표 3과 같은 성분의 배지 1.8L가 함유된 발효조에 전날 배양한 200mL의 배양액을 전부 넣어 최종 부피가 2L가 되게 하였고, 이때 2L 배양액의 최종 조성은 하기 표 3과 같다.
성분 농도(g/L)
Glycerol 80
CaCl2·2H2O 0.1
NaCl 0.1
Yeast extract 20
(NH4)2SO4 8
KH2PO4 2
Trace element 1 mL
Antifoam 0.3 mL
MgSO4·7H2O 1
초기 배양액에 포함된 글리세롤이 모두 소모가 되면, 공급 배지(600g/L glucose, 30g/L NH4Cl)를 0.167mL/min의 속도로 계속적으로 투입하였다. 상기 α,ψ-카르복실화 재조합 균주의 ψ-산화 경로의 활성화를 위하여, 3mL의 도데칸(TCI社)을 공급 배지의 투입과 함께 넣어주었다. 도데칸 공급 3시간 후 10mL의 기질(디부틸 에테르, 디펜틸 에테르, 디헥실 에테르, 디헵틸 에테르, 디옥틸 에테르, 디데실 에테르, 디운데실 에테르, 디도데실 에테르)을 배양액에 투입하여 반응을 진행하였다. 초기 세포 성장은 pH를 6으로 유지하였고, 기질이 투입되면 pH를 7.5가 되도록 조정하였다. 배양액의 pH는 6N NaOH 용액을 사용하여 조정하였다. 용존 산소는 교반 속도를 조절함으로써 조정하였고 30% 이상을 유지하도록 하였으며, 발효조의 온도는 섭씨 30도(디운데실 에테르와 디도데실 에테르의 경우, 섭씨 33도)를 유지하게 하였다.기질 투입 후 4시간 및 6시간이 경과한 시점의 배양액을 대상으로 산처리하고 동등한 부피의 디에틸 에테르를 이용하여 GC-MS 분석을 위한 기질 및 생성물의 추출을 수행하였다. 그런 다음, 70eV에서 작동되는 4중 극자 전자 선택 이온화 검출기가 장착된 가스 크로마토그래피-질량 분석(GC-MS) 시스템을 이용하여 기질과 생성물을 분석하였고, 이때 Agilent HP-5MS 컬럼 (길이 30m, 내경 0.25mm 및 필름 두께 0.25um)을 10:1의 분할 비율로 사용하였다. 캐리어 가스로서 헬륨(flow rate 1.2mL/min)을 사용하였고, 오븐 온도는 섭씨 100도 내지 320도(섭씨 10도/min)로 하였다. 내부 표준 물질로는 테트라데칸을 이용하였으며, 카르복실화 된 디알킬 에테르 화합물은 시판하는 시약이 없어서 GC-MS의 단편화 프로파일(fragmentation profile)로 유추하였다.
그 결과, 기질로 이용된 디알킬 에테르 화합물 모두 각각의 화합물에 대응하는 α,ψ-카르복실화 생성물로 전환되는 것으로 확인되었고, 그 전환율은 하기 표 4와 같았다.
기질 전환율(%)
기질 투입 4시간 경화 후 기질 투입 6시간 경과 후
디부틸 에테르 (C8) 65.91 ± 0.17 67.66 ± 0.52
디펜틸 에테르 (C10) 44.80 ± 0.31 70.79 ± 0.23
디헥실 에테르 (C12) 54.54 ± 1.06 73.14 ± 0.55
디헵틸 에테르 (C14) 80.66 ± 4.89 100
디옥틸 에테르 (C16) 90.17 ± 0.62 100
디데실 에테르 (C20) 65.37 ± 1.35 76.24 ± 1.42
디운데실 에테르 (C22) 97.31 ± 1.44 100
디도데실 에테르 (C24) 75.58 ± 3.00 100
[2-4] 바이오 유래 디알킬 에테르 화합물의 α,ψ-카르복실화 가부 확인다음으로, 바이오 유래의 디알킬 에테르 화합물도 상기 실시예 [2-1]에서 준비한 α,ψ-카르복실화 재조합 균주에 의해 생물학적으로 α,ψ-카르복실화 될 수 있는지 여부를 확인하기 위하여, 기질로 상기 실시예 1에서 합성한 디옥틸 에테르와 디도데실 에테르를 이용하면서, 상기 실시예 [2-3]과 동일한 방법으로 디알킬 에테르 화합물의 α,ψ-카르복실화를 수행하였다.
그 결과, 도 4a에 도시된 바와 같이 120시간 경과 후에 160g/L의 α,ψ-카르복실화 된 디옥틸 에테르가, 그리고 도 4b에 도시된 바와 같이 85시간 경과 후에 110g/L의 α,ψ-카르복실화 된 디도데실 에테르가 각각 생성되는 것으로 확인되었다.
[실시예 3]
양 말단이 카르복시기로 기능화된 디알킬 에테르 화합물로부터 양 말단이 히드록시기로 기능화된 디알킬 에테르 화합물의 생성
[3-1] α,ψ-히드록실화 재조합 균주의 준비
미코박테리움 앱세수스(Mycobacteroides abscessu) 유래의 CAR(carboxylic acid reductase) 유전자(WP_00582584.1)와 바실러스 종(Bacillus sp.) 유래의 Sfp(4'-phosphopantetheinyl transferase) 유전자(WP_00234549.1)가 Tac promoter 하에 오페론 구조로 위치하기 위하여 서열번호 1의 염기서열을 미국의 ATUM 회사에 합성을 의뢰하였으며, 이 합성된 유전자를 pJ281(ATUM)의 BamHI과 HindIII site에 삽입하였다. 상기와 같이 재조합된 벡터 pJ281-CAR-Sfp를 대장균(Escherichia coli) MG1665(DE3) 균주(Novagen)에 형질주입하여 α,ψ-히드록실화 재조합 균주를 제작하였다.
상기 α,ψ-히드록실화 재조합 대장균 균주는 섭씨 영하 70도에서 15% 글리세롤에 넣어 유지하였고, 스톡 균주를 카나마이신이 포함된 LB 한천 배지 (5g/L yeast extract, 10g/L Bacto tryptone, 10g/L NaCl, 20g/L agarose 및 50 mg/L Kanamycin)에 도말하여 섭씨 37도에서 밤새 배양하였다.
[3-2] 양 말단이 카르복시기로 기능화된 디알킬 에테르 화합물의 α,ψ-히드록실화 가부 확인
다음으로, 양 말단이 카르복시기로 기능화된 디알킬 에테르 화합물들의 생물학적 α,ψ-히드록실화 가부를 확인하기 위하여, 상기 실시예 [2-4]에서 실시예 1에서 합성한 디옥틸 에테르를 생물 전환한 배양액을 원심분리하여 세포를 제거한 후 상등액을 기질 용액으로 이용하여 α,ψ-히드록실화 된 디옥틸 에테르의 생성 여부를 확인하였다.
이를 위해, 상기 실시예 [3-1]에서 준비한 α,ψ-히드록실화 재조합 균주를 카나마이신이 포함된 2mL LB 배지(5g/L yeast extract, 10g/L Bacto tryptone, 10g/L NaCl 및 50mg/L Kanamycin)에 접종하고 섭씨 37도에서 200rpm으로 하루 동안 전배양하였다. 상기와 같이 전배양한 배양액을 카나마이신이 포함된 200mL LB 배지를 함유하는 2L 바플드 플라스크에 넣고, 섭씨 37도에서 200rpm으로 하루 동안 배양하였다. 그런 다음, 하기 표 5와 같은 성분의 배지 1.8L가 함유된 발효조에 전날 배양한 200mL의 배양액을 전부 넣어 최종 부피가 2L가 되게 하였고, 이때 2L 배양액의 최종 조성은 하기 표 5와 같다.
성분 농도(g/L)
Glucose 15
Galactose 15
Glycerol 80
Soy peptone 10
Yeast extract 10
(NH4)2SO4 5
KH2PO4 6
Trace element 1 mL
Antifoam 0.3 mL
MgSO4·7H2O 2
Kanamycin 0.05
초기 배양액에 포함된 글루코오스, 글리세롤 등의 탄소원이 모두 소모되면, 공급 배지(800g/L glucose, 30g/L NH4Cl)와 기질(실시예 [2-4]에서 생성된 α,ψ-카르복실화 된 디옥틸 에테르)을 0.167mL/min의 속도로 계속적으로 투입하였다. 초기 세포의 성장을 위하여 암모니아수를 사용하여 pH를 7로 유지하였고, 기질이 투입되면 6N NaOH를 사용하여 pH를 7.5로 유지하였다. 용존 산소는 교반 속도를 조절함으로써 조정하였고 30% 이상을 유지하도록 하였으며, 발효조의 온도는 섭씨 35도로 유지하면서, 상기 실시예 [2-3]에서와 같은 방법으로 배양액의 성분을 분석하였다.그 결과, 도 5에 도시된 바와 같이, α,ψ-카르복실화 된 디옥틸 에테르의 양 말단이 히드록실화되어 α,ψ-히드록실화 된 디옥틸 에테르가 생성되는 것으로 확인되었다.
[실시예 4]
양 말단이 히드록시기로 기능화된 디알킬 에테르 화합물로부터 양 말단이 아민기로 기능화된 디알킬 에테르 화합물의 생성
[4-1] α,ψ-아민화 재조합 균주의 준비
아에리바실루스 팔리두스(Aeribacillus pallidus) 유래의 ADH(alcohole dehydrogenase) 유전자(WP_130157107.1), 크로모박테리움 비올라세움(Chromobacterium violaceum) 유래의 ψ-TA(ψ-transaminase) 유전자(WP_011135573.1) 및 바실루스 서브티리스(Bacillus subtilis) 유래의 AlaDH(alanine dehydrogenase) 유전자(WP_003243280.1)를 서열번호 2의 염기서열의 형태로 오페론 구조로 미국의 ATUM 회사에 합성을 의뢰하고 합성된 유전자를 pJ281 벡터(ATUM)의 SmaI과 HindIII 사이트에 삽입하였다. 상기와 같이 재조합된 벡터를 대장균(Escherichia coli) MG1665(DE3) 균주(Novagen)에 형질주입하여 α,ψ-아민화 재조합 균주를 제작하였다.
상기 α,ψ-아민화 재조합 대장균 균주는 섭씨 영하 70도에서 15% 글리세롤에 넣어 유지하였고, 스톡 균주를 카나마이신이 포함된 LB 한천 배지 (5g/L yeast extract, 10g/L Bacto tryptone, 10g/L NaCl, 20g/L agarose 및 50 mg/L Kanamycin)에 도말하여 섭씨 37도에서 밤새 배양하였다.
[4-2] 양 말단이 히드록시기로 기능화된 디알킬 에테르 화합물의 α,ψ-아민화 가부 확인
다음으로, 양 말단이 히드록시기로 기능화된 디알킬 에테르 화합물들의 생물학적 α,ψ-아민화 가부를 확인하기 위하여, 상기 실시예 [3-2]에서 생물 전환하여 α,ψ-히드록실화 된 디옥틸 에테르가 생성된 배양액을 원심분리하여 상등액을 제거한 후 침전물에 메탄올과 물을 순차적으로 첨가하여 α,ψ-히드록실화 된 디옥틸 에테르의 결정화를 유도하였다. 그런 다음, 셀룰로오스 종이로 여과한 결정을 다시 메탄올에 녹인 후 0.5% 활성탄을 첨가하여 탈색을 유도하였다. 그리고 물을 첨가하여 재결정화를 유도한 다음, 다시 셀룰로오스 종이로 여과하고 증류수로 세척한 후 섭씨 80도에서 건조하여, α,ψ-히드록실화 된 디옥틸 에테르를 99% 이상의 순도로 분리 및 정제하였다. 그리고 이를 기질로 이용하여 α,ψ-아민화 된 디옥틸 에테르의 생성 여부를 확인하였다.
이를 위해, 상기 실시예 [4-1]에서 준비한 α,ψ-아민화 재조합 균주를 하기 표 5와 같은 성분의 배지로 5L 발효조에서 회분식 배양을 수행한 다음, 배양액을 원심분리하고 상등액을 제거한 다음, 세포를 섭씨 영하 70도에서 보관하였다. 상기와 같이 보관된 균주를 이용하여 표 6과 같은 조성을 0.1M 인산 완충용액(phosphate buffer, pH 8.0)에 녹여 생물 전환 혼합물을 제조하고, 상기 생물 전환 혼합물 50mL을 500mL 바플드 플라스크에서 섭씨 37도로 24시간 이상 배양하면서, 상기 실시예 [2-3]에서와 같은 방법으로 배양액의 성분을 분석하였다.
성분 농도(g/L)
α,ψ-아민화 재조합 균주 (DCW) 70
NH4Cl 7.5
DMSO 20% (v/v)
L-Alanine 6.7
Benzylamine 6.7
α,ψ--히드록실화 된 디옥틸 에테르 10
그 결과, 도 6에 도시된 바와 같이, α,ψ-히드록실화 된 디옥틸 에테르의 양 말단이 아민화되어 α,ψ-아민화 된 디옥틸 에테르가 생성되는 것으로 확인되었다.
[실시예 5]
양 말단이 기능화된 디알킬 에테르 화합물의 가수분해
상기 실시예 [2-4]에서 생성된 α,ψ-카르복실화 된 디옥틸 에테르와 상기 실시예 [3-2]에서 생성된 α,ψ-히드록실화 된 디옥틸 에테르를 1N 황산에 10g/L가 되도록 용해시키 후, 고압 반응기를 이용하여 섭씨 200도에서 1시간 이상 반응시킨 후, 상기 실시예 [2-3]에서와 같은 방법으로 반응물의 성분을 분석하였다.
디옥틸 에테르의 경우, 실시예 1에서 합성한 디옥틸 에테르를 생물 전환한 배양액을 원심분리하여 세포를 제거한 후 상등액에 H2SO4를 첨가하여 pH를 4로 낮추고 α,ψ-카르복실화 된 디옥틸 에테르의 침전을 유도하였다. 그런 다음, 셀룰로오스 종이(cellulose paper)로 여과하여 침전된 α,ψ-카르복실화 된 디옥틸 에테르를 수득하였다. 상기와 같이 수득된 α,ψ-카르복실화 된 디옥틸 에테르에 아세트산을 첨가하고 섭씨 95도에서 완전히 용해시킨 후, 다시 상온으로 낮추어 α,ψ-카르복실화 된 디옥틸 에테르의 결정화를 유도하였다. 그리고 다시 셀룰로오스 종이로 여과하고 물로 세척하여, α,ψ-카르복실화 된 디옥틸 에테르를 86.79%의 순도로 분리 및 정제하였다. 그리고 이를 가수분해를 위한 기질로 사용하였다.
그 결과, 도 7에 도시된 바와 같이 α,ψ-카르복실화 된 디옥틸 에테르로부터 8-히드록시옥탄산이, 그리고 도 8에 도시된 바와 같이 α,ψ-히드록실화 된 디옥틸 에테르로부터 1,8-옥탄디올이 각각 생성되는 것으로 확인되었다.
α,ψ-아민화 된 디옥틸 에테르의 가수분해는 실시예 4에서 α,ψ-아민화 된 디옥틸 에테르를 함유한 생물 전환 혼합물에 황산을 1N 농도가 되도록 첨가한 후, 고압 반응기를 이용하여 섭씨 200도에서 1시간 이상 반응시킨 후, 상기 실시예 [2-3]에서와 같은 방법으로 반응물의 성분을 분석하였다. 결과적으로, 8-아미노옥탄올 이 생성되는 것을 확인하였다.
[실시예 6]
비대칭형의 디알킬 에테르 화합물로부터 합성수지 제조용 단량체의 제조
[6-1] 에틸도데실에테르(1-에톡시도데칸)의 합성
톨루엔과 바이오 유래의 1-도데칸올과 NaOH를 상온에서 혼합한 후 80도에서 1시간 반응 후 냉각하였다. 섭씨 30도에서 디에틸 설페이트((CH3CH2)2SO4)를 투입하고 1시간 동안 혼합한 후 섭씨 60도로 승온하여 6시간 동안 반응시켰다. 반응물을 여과하여 염을 제거 후 증류하여 에틸도데실에테르(1-에톡시도데칸)를 획득하였다.
70eV에서 작동되는 4중 극자 전자 선택 이온화 검출기가 장착된 가스 크로마토그래피-질량 분석(GC-MS) 시스템을 이용하여 생성물의 순도를 확인하였고, 이때 Agilent HP-5MS 컬럼(길이 30m, 내경 0.25mm 및 필름 두께 0.25μm)을 10:1 분할 비율로 사용하였다. 캐리어 가스로서 헬륨(flow rate 1.2mL/min)을 사용하였고, 오븐 온도는 섭씨 100도 내지 320도(섭씨 10도/min)로 하였다. 합성한 기질 및 동등한 부피의 디에틸 에테르를 사용하여 기질을 추출하였고, 내부 표준으로서 테트라데칸이 사용되었다. 합성된 에틸도데실에테르는 그 순도가 97% 이상이었으며, 불순물은 상기 반응에 참여하지 못한 미반응 1-데칸올이었다.
[6-2] 에틸도데실에테르로부터 양 말단이 카르복시기로 기능화된 비대칭형의 디알킬 에테르 화합물의 생성
상기 실시예 [2-3]에서와 같은 방법으로, 상기 실시예 [5-1]에서 제조된 에틸도데실에테르를 기질로 공급하면서 상기 실시예 [2-1]에서 준비한 α,ψ-카르복실화 재조합 균주로 발효를 수행하였다.
기질인 에틸도데실에테르를 투입한 후 배양액을 대상으로 산처리하고 동등한 부피의 디에틸 에테르를 이용하여 GC-MS 분석을 위한 기질 및 생성물의 추출을 수행하였다. 그런 다음, 70eV에서 작동되는 4중 극자 전자 선택 이온화 검출기가 장착된 가스 크로마토그래피-질량 분석(GC-MS) 시스템을 이용하여 기질과 생성물을 분석하였고, 이때 Agilent HP-5MS 컬럼 (길이 30m, 내경 0.25mm 및 필름 두께 0.25um)을 10:1의 분할 비율로 사용하였다. 캐리어 가스로서 헬륨(flow rate 1.2mL/min)을 사용하였고, 오븐 온도는 섭씨 100도 내지 320도(섭씨 10도/min)로 하였다. 내부 표준 물질로는 테트라데칸을 이용하였으며, 카르복실화 된 디알킬 에테르 화합물은 시판하는 시약이 없어서 GC-MS의 단편화 프로파일(fragmentation profile)로 유추하였다.
그 결과, 도 9에 도시된 바와 같이, 에틸도데실에테르의 양 말단이 카르복실화가 된 화합물인 카르복시메틸 11-카르복시운데실 에테르(=12-(카르복시메톡시)도데칸산)이 생성된 것으로 확인되었다.
[6-3] 양 말단이 카르복시기로 기능화된 비대칭형의 디알킬 에테르 화합물의 활용
상기 실시예 [5-2]에서 생성된 양 말단이 카르복시기로 기능화된 에틸도데실에테르(=카르복시메틸 11-카르복시운데실 에테르)는 상기 실시예 3 및 실시예 4에서와 같은 방법으로 양 말단을 히드록시기나 아민기로 추가로 기능화할 수 있고, 나아가 이러한 양 말단이 카르복시기, 히드록시기 또는 아민기로 기능화된 비대칭형의 디알킬 에테르 화합물을 대상으로 상기 실시예 5에서와 같은 방법으로 가수분해를 수행하여 12-히드록시도데칸산, 12-아미노도데칸올, 그리고 1,12-도데칸디올 등의 플라스틱용 단량체들을 다양하게 생산할 수 있다.
한편, 상기와 같이 생성되는 12-히드록시도데칸산의 경우, Pyo et al.(2020) 문헌(Pyo et al., Green Chem., 22: 4450-4455 (2020))에서 알려진 반응을 통해 락톤으로 전환될 수 있는데, 예컨대 12-히드록시도데칸산을 디클로로메탄이나 클로로포름 등과 같은 적합한 용매에서 티오닐 클로라이드와 반응시켜 상응하는 산 클로라이드로 전환하고, 생성된 산 클로라이드 용액을 트리에틸아민이나 피리딘 등과 같은 적합한 염기로 처리하여 반응 중에 생성된 염화수소를 중화시킨 다음, 트리에틸 오르토포르메이트나 디이소프로필 아조디카르복실레이트 등과 같은 적합한 락톤 폐쇄제 용액을 반응 혼합물에 첨가하고 혼합물을 실온에서 상당 시간 동안 교반한다. 그리고 약 섭씨 80도 내지 100도의 온도에서 상당 시간 동안 환류시키면서 상기 혼합물을 가열하여 락톤을 형성하는 산 클로라이드의 락톤화를 촉진하고, 반응 종료 후 상기 반응물을 식히고 미반응 산 클로라이드를 물 또는 적절한 수용액을 첨가하여 급냉시킨다. 그리고 에틸 아세테이트나 디클로로메탄 등과 같은 적합한 용매를 사용하여 반응 혼합물로부터 도데칸락톤을 추출하고 증류 또는 재결정하여 정제함으로써 고순도의 도데칸락톤을 생성할 수 있다.
나아가, 상기와 같이 생성된 도데칸락톤은 종래 여러 문헌들(Rankic et al., J. Org. Chem., 82(23): 12791-12797 (2017), Decker et al., Tetrahedron, 60(21): 4567-4678 (2004) 등)에서 알려진 반응을 통해 도데카락탐으로 전환될 수 있는데, 예컨대 도데칸락톤을 메탄올이나 에탄올 등과 같은 적절한 용매에 용해시키고, 도데칸락톤 용액에 수산화암모늄 용액을 첨가하여 혼합물을 실온에서 상당 시간 동안 교반한 다음, 반응 혼합물을 약 섭씨 120도 내지 140도의 온도의 환류 조건에서 상상 시간 동안 가열하여 락톤의 고리화를 촉진하여 락탐을 형성한다. 상기 반응이 종료되면 혼합물을 식히고 염산을 사용하여 pH를 7 정도로 조절한 다음, 에틸 아세테이트 또는 디클로로메탄 등과 같은 적합한 용매를 사용하여 반응 혼합물로부터 도데칸락탐을 추출하고 재결정화 또는 크로마토그래피로 정제함으로써 고순도의 도데칸락탐을 생성할 수 있다.
상기에서는 본 발명의 바람직한 실시예를 예시적으로 설명하였으나, 본 발명의 범위는 상기와 같은 특정 실시예에만 한정되지 아니하며, 해당 분야에서 통상의 지식을 가진 자라면 본 발명의 청구범위에 기재된 범주 내에서 적절하게 변경이 가능할 것이다.
본 발명은 지방 알코올로부터 합성수지의 제조에 이용되는 다양한 단량체들을 생산하는 방법에 관한 것이다.

Claims (9)

  1. 디알킬 에테르 화합물을 유전적으로 재조합된 형질전환체로 발효시켜 양 말단이 기능화된 디알킬 에테르 화합물을 생성하는 단계; 및
    상기 양 말단이 기능화된 디알킬 에테르 화합물을 분해하는 단계;
    를 포함하는, 합성수지 제조용 단량체를 제조하는 방법.
  2. 비대칭형의 지방 에테르 화합물을 유전적으로 재조합된 형질전환체로 발효시켜 양 말단이 기능화된 비대칭형의 지방 에테르 화합물을 생성하는 단계; 및
    상기 양 말단이 기능화된 비대칭형의 지방 에테르 화합물을 분해하는 단계;
    를 포함하는, 합성수지 제조용 단량체를 제조하는 방법.
  3. 청구항 1 또는 청구항 2에 있어서,
    상기 디알킬 에테르 화합물 또는 비대칭형의 지방 에테르 화합물은 지방 알코올로부터 합성되는 것인, 합성수지 제조용 단량체를 제조하는 방법.
  4. 청구항 3에 있어서,
    상기 지방 알코올은 탄수소 6 내지 20의 직쇄의 지방 알코올인 것인, 합성수지 제조용 단량체를 제조하는 방법.
  5. 청구항 1에 있어서,
    상기 디알킬 에테르 화합물은 디헥실에테르(C12H26O), 디헵틸에테르(C14H30O), 디옥틸에테르(C16H34O), 디노닐에테르(C18H38O), 디데실에테르(C20H42O), 디운데실에테르(C22H46O) 및 디도데실에테르(C24H50O)로 구성되는 군에서 선택되는 적어도 하나이고,
    상기 비대칭형의 지방 에테르 화합물은 메틸부틸에테르(또는 1-메톡시부탄(C5H12O)), 메틸펜틸에테르(1-메톡시펜탄(C6H14O)), 메틸헥실에테르(1-메톡시헥산(C7H16O)), 메틸헵틸에테르(1-메톡시헵탄(C8H18O)), 메틸옥틸에테르(1-메톡시옥탄(C9H20O)), 메틸노닐에테르(1-메톡시노난(C10H22O)), 메틸데실에테르(1-메톡시데칸(C11H24O)), 메틸운데실에테르(1-메톡시운데칸(C12H26O)), 메틸도데실에테르(1-메톡시도데칸(C13H28O)), 에틸부틸에테르(1-에톡시부탄(C6H14O)), 에틸펜틸에테르(1-에톡시펜탄(C7H16O)), 에틸헥실에테르(1-에톡시헥산(C8H18O)), 에틸헵틸에테르(1-에톡시헵탄(C9H20O)), 에틸옥틸에테르(1-에톡시헵탄(C10H22O)), 에틸노닐에테르(1-에톡시노난(C11H24O)), 에틸데실에테르(1-에톡시데칸(C12H26O)), 에틸운데실에테르(1-에톡시운데칸(C13H28O)), 에틸도데실에테르(1-에톡시도데칸(C14H30O))로 구성되는 군에서 선택되는 적어도 하나인 것인, 합성수지 제조용 단량체를 제조하는 방법.
  6. 청구항 1 또는 청구항 2에 있어서,
    상기 양 말단이 기능화된 디알킬 에테르 화합물 또는 비대칭형의 지방 에테르 화합물은, 디알킬 에테르 화합물 또는 비대칭형의 지방 에테르 화합물의 양 말단이 카르복시기, 히드록시기 및 아민기 중 어느 하나로 치환된 것인, 합성수지 제조용 단량체를 제조하는 방법.
  7. 청구항 1 또는 청구항 2에 있어서,
    상기 유전적으로 재조합된 형질전환체는 β-산화 경로가 차단되고, CYP450, CPRb(CYP450 reductase complex) 및 FAO(fatty alcohol oxidase)이 과발현된 미생물을 포함하는 것인, 합성수지 제조용 단량체를 제조하는 방법.
  8. 청구항 1 또는 청구항 2에 있어서,
    상기 분해는 가수분해인 것인, 합성수지 제조용 단량체를 제조하는 방법.
  9. 청구항 1 또는 청구항 2에 있어서,
    상기 합성수지 제조용 단량체는 지방족 알칸의 일 말단이 카르복시기, 히드록시기 및 아민기 중 어느 하나로 치환되고, 타 말단이 히드록시기 및 아민기 중 어느 하나로 치환된 것인, 합성수지 제조용 단량체를 제조하는 방법.
PCT/KR2023/006804 2022-05-18 2023-05-18 지방 알코올로부터 다양한 합성수지 제조용 단량체들을 생산하는 방법 WO2023224418A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2022-0060827 2022-05-18
KR20220060827 2022-05-18
KR10-2023-0063745 2023-05-17
KR1020230063745A KR20230161895A (ko) 2022-05-18 2023-05-17 지방 알코올로부터 다양한 합성수지 제조용 단량체들을 생산하는 방법

Publications (1)

Publication Number Publication Date
WO2023224418A1 true WO2023224418A1 (ko) 2023-11-23

Family

ID=88835851

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/006804 WO2023224418A1 (ko) 2022-05-18 2023-05-18 지방 알코올로부터 다양한 합성수지 제조용 단량체들을 생산하는 방법

Country Status (1)

Country Link
WO (1) WO2023224418A1 (ko)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995021145A2 (en) * 1994-01-28 1995-08-10 Institute Of Microbiology, Chinese Academy Of Sciences FERMENTATION PRODUCTION OF LONG CHAIN α,φ-DICARBOXYLIC ACIDS FROM ALKANES BY USE OF A MICROORGANISM
WO2013006730A2 (en) * 2011-07-06 2013-01-10 Verdezyne, Inc. Biological methods for preparing a fatty dicarboxylic acid

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995021145A2 (en) * 1994-01-28 1995-08-10 Institute Of Microbiology, Chinese Academy Of Sciences FERMENTATION PRODUCTION OF LONG CHAIN α,φ-DICARBOXYLIC ACIDS FROM ALKANES BY USE OF A MICROORGANISM
WO2013006730A2 (en) * 2011-07-06 2013-01-10 Verdezyne, Inc. Biological methods for preparing a fatty dicarboxylic acid

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
DAVID CRAFT, KRISHNA MADDURI, MARK ESHOO, WILSON: "Identification and characterization of the CYP52 family of Candida tropicalis ATCC 20336, important for the conversion of fatty acids and alkanes to alpha,omega-dicarboxylic acids.", APPLIED AND ENVIRONMENTAL MICROBIOLOGY, AMERICAN SOCIETY FOR MICROBIOLOGY., vol. 69, no. 10, 1 October 2003 (2003-10-01), pages 5983 - 5991, XP055041042, ISSN: 00992240, DOI: 10.1128/AEM.69.10.5983-5991.2003 *
ESCHENFELDT WILLIAM H ET AL: "Transformation of fatty acids catalyzed by cytochrome P450 monooxygenase enzymes of Candida tropicalis.", APPLIED AND ENVIRONMENTAL MICROBIOLOGY, AMERICAN SOCIETY FOR MICROBIOLOGY, US, vol. 69, no. 10, 1 October 2003 (2003-10-01), US , pages 5992 - 5999, XP002438651, ISSN: 0099-2240, DOI: 10.1128/AEM.69.10.5992-5999.2003 *
LEE HEESEOK, HAN CHANGPYO, LEE HYEOK-WON, PARK GYUYEON, JEON WOOYOUNG, AHN JUNGOH, LEE HONGWEON: "Development of a promising microbial platform for the production of dicarboxylic acids from biorenewable resources", BIOTECHNOLOGY FOR BIOFUELS, vol. 11, no. 1, 1 December 2018 (2018-12-01), pages 1 - 14, XP055800830, DOI: 10.1186/s13068-018-1310-x *

Similar Documents

Publication Publication Date Title
WO2009125924A2 (ko) 퓨트레신 고생성능을 가지는 변이 미생물 및 이를 이용한 퓨트레신의 제조방법
WO2014142463A1 (ko) L-발린 생산능이 향상된 균주 및 이를 이용한 l-발린 생산방법
WO2011046380A2 (en) Method for preparation of carbamic acid (r)-1-aryl-2-tetrazolyl-ethyl ester
WO2012018226A2 (ko) 카다베린 고생성능을 가지는 변이 미생물 및 이를 이용한 카다베린의 제조방법
WO2013095071A2 (ko) L-라이신 생산능을 갖는 미생물을 이용하여 l-라이신을 생산하는 방법
WO2013151393A1 (ko) 생물전환을 통한 장쇄 지방산으로부터 중쇄 오메가-하이드록시지방산, 알파,오메가-디카르복실산, 오메가-아미노지방산을 생산하는 방법
WO2014148754A1 (ko) 2,3-부탄디올의 생성능이 증강된 재조합 미생물 및 이를 이용한 2,3-부탄디올의 생산 방법
WO2019164346A1 (ko) L-트립토판을 생산하는 재조합 코리네형 미생물 및 이를 이용한 l-트립토판을 생산하는 방법
WO2015064917A1 (ko) L-라이신 생산능이 향상된 코리네박테리움 속 미생물 및 이를 이용한 l-라이신 생산방법
WO2015093831A1 (ko) D(-)2,3-부탄디올의 생성능이 증강된 재조합 미생물 및 이를 이용한 d(-)2,3-부탄디올의 생산 방법
WO2023224418A1 (ko) 지방 알코올로부터 다양한 합성수지 제조용 단량체들을 생산하는 방법
WO2015186990A1 (ko) O-아세틸-호모세린을 생산하는 미생물 및 이를 이용하여 o-아세틸-호모세린을 생산하는 방법
CN101108928A (zh) 一种粉末涂料固化剂及所使用的长碳链聚酐制备方法
WO2013103246A2 (ko) 퀴놀린산을 생산하는 재조합 미생물 및 이를 이용한 퀴놀린산의 생산 방법
WO2015163682A1 (ko) 2,3-부탄디올의 생성능이 증강된 재조합 미생물 및 이를 이용한 2,3-부탄디올의 생산 방법
WO2020075943A1 (ko) 고활성의 말산 탈수소효소가 도입된 숙신산 생성용 변이 미생물 및 이를 이용한 숙신산 제조방법
WO2015093832A1 (ko) 1,3-프로판디올 생성능이 개선된 재조합 미생물 및 이를 이용한 1,3-프로판디올의 생산 방법
Hill et al. Studies on the formation of long-chain dicarboxylic acids from pure n-alkanes by a mutant of Candida tropicalis
WO2012134253A2 (en) Corynebacterium sp. transformed with a fructokinase gene derived from escherichia sp. and process for preparing l-amino acid using the same
KR20230161895A (ko) 지방 알코올로부터 다양한 합성수지 제조용 단량체들을 생산하는 방법
WO2022239953A1 (ko) 3-메틸-2-옥소뷰타노에이트 하이드록시 메틸트랜스퍼라아제의 활성이 강화된 미생물, 및 이의 용도
WO2021080277A1 (ko) 신규 d-트레오닌 생산 효소 및 이를 이용한 d-트레오닌의 입체특이적 생산 방법
WO2015088178A1 (ko) 고수율 1,3-부타디엔의 제조방법
WO2016129895A1 (ko) 다이올 생산용 재조합 미생물
WO2017126861A1 (ko) 아크릴산 생성능을 가지는 재조합 변이 미생물 및 이를 이용한 아크릴산의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23807937

Country of ref document: EP

Kind code of ref document: A1