WO2023224104A1 - Optical laminate and image display device using same - Google Patents

Optical laminate and image display device using same Download PDF

Info

Publication number
WO2023224104A1
WO2023224104A1 PCT/JP2023/018649 JP2023018649W WO2023224104A1 WO 2023224104 A1 WO2023224104 A1 WO 2023224104A1 JP 2023018649 W JP2023018649 W JP 2023018649W WO 2023224104 A1 WO2023224104 A1 WO 2023224104A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical laminate
functional layer
meth
acrylate
optical
Prior art date
Application number
PCT/JP2023/018649
Other languages
French (fr)
Japanese (ja)
Inventor
怜士 金田
拓也 木▲崎▼
匠 齋藤
Original Assignee
凸版印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 凸版印刷株式会社 filed Critical 凸版印刷株式会社
Publication of WO2023224104A1 publication Critical patent/WO2023224104A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/111Anti-reflection coatings using layers comprising organic materials
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/18Coatings for keeping optical surfaces clean, e.g. hydrophobic or photo-catalytic films
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/86Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays

Definitions

  • the present invention relates to an optical laminate and an image display device using the same.
  • the AG (anti-glare) film is equipped with an anti-glare layer having fine irregularities on its surface, and the fine irregularities diffuse reflected light, thereby suppressing the reflection of external light. Furthermore, an AGLR film is known in which a low refractive index layer (LR) is laminated on an anti-glare layer and further uses optical interference to suppress reflected light, and is used in various displays.
  • LR low refractive index layer
  • the anti-glare properties of AG films and AGLR films are mainly determined by the uneven shape of the surface of the anti-glare layer.
  • a suitable uneven shape on the surface of an anti-glare layer has often been expressed using a surface roughness parameter defined in ISO 25178 or a line roughness parameter defined in JIS B 0601 (for example, Patent Document (See 1 to 3).
  • AG films and AGLR films for use in displays with touch panels are required to have good anti-glare properties as well as ease of wiping away fingerprints and the like that adhere to the film during operation.
  • Patent No. 5360616 Patent No. 5382034 Patent No. 6135131
  • the fingerprint wiping properties required for optical laminates for use in displays with touch panels vary depending on the shape of the irregularities on the outermost surface. Therefore, as a method for expressing the fingerprint wiping property of an optical laminate, it is possible to employ the above-mentioned roughness parameter and design an optical laminate having good fingerprint wiping property based on the roughness parameter.
  • the conventional roughness parameters described above cannot represent all random uneven shapes and complex uneven shapes.
  • the arithmetic mean height Sa specified in ISO 25178 is an index commonly used when evaluating surface roughness, but even if the Sa value is the same, the uneven shape and fingerprint wiping performance are It may vary greatly. Therefore, conventional roughness parameters are not suitable for expressing fingerprint wiping properties.
  • An object of the present invention is to provide an optical laminate with excellent optical properties and fingerprint wiping properties, and an image display device using the same.
  • the optical laminate according to the present invention is characterized in that it has an uneven shape on its outermost surface and satisfies the following conditions (1) to (3) at the same time. 40,000 ⁇ A ⁇ 300,000 (1) 300 ⁇ B ⁇ 1,000 (2) 30 ⁇ C ⁇ 500 (3)
  • the three-dimensional data of the height of the unevenness measured by the optical interference method or the contact method is converted into first image data whose pixel value is the height of the unevenness, and the first image data is subjected to fast Fourier transformation. Convert it to a second image by , and calculate the spatial frequency f of the X coordinate of the power spectrum of the image that passes through the origin and within a range of ⁇ 20 pixels on the positive X axis and Y axis direction.
  • A average value of power spectrum intensity in the range of 0 ⁇ f ⁇ 100cycle/mm
  • B average value of power spectrum intensity in the range of 100cycle/mm ⁇ f ⁇ 200cycle/mm
  • C Average value of power spectrum intensity in the range of 200 cycles/mm ⁇ f ⁇ 300 cycles/mm.
  • An image display device includes the optical laminate described above.
  • an optical laminate with excellent optical properties, appearance, and fingerprint wiping properties, and an image display device using the same.
  • FIG. 1 is a cross-sectional view schematically showing an example of an optical laminate according to an embodiment.
  • FIG. 2 is a cross-sectional view schematically showing another example of the optical laminate according to the embodiment.
  • FIG. 3 is a diagram showing a method for evaluating anti-glare properties.
  • FIG. 4 is a diagram showing an example of evaluation of anti-glare properties.
  • FIG. 1 is a cross-sectional view schematically showing an example of an optical laminate according to an embodiment.
  • the optical laminate 11 includes a transparent support 2 and an anti-glare layer 3 (AG layer) laminated on one side of the transparent support 2.
  • the optical laminate 11 is an optical film that suppresses reflection of external light by scattering incident light with fine irregularities on the outermost surface (also referred to as "AG film").
  • the transparent support 2 is a film that serves as the base of the optical laminate 11, and is made of a material that has excellent visible light transmittance.
  • Materials for forming the transparent support 2 include polyolefins such as polyethylene and polypropylene, polyesters such as polyethylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate, polyacrylates such as polymethyl methacrylate, polyamides such as nylon 6 and nylon 66, polyimides, Transparent resins such as polyarylate, polycarbonate, triacetyl cellulose, polyacrylate, polyvinyl alcohol, polyvinyl chloride, cycloolefin copolymer, norbornene-containing resin, polyether sulfone, polysulfone, and inorganic glass can be used.
  • the thickness of the transparent support 2 is not particularly limited, but is preferably 10 to 200 ⁇ m. Furthermore, when a low water vapor permeability is required, it is preferable to use a film made of a material with a low water vapor permeability such as polyethylene terephthalate, cycloolefin polymer, polypropylene, or the like.
  • the surface of the transparent support 2 may be subjected to surface modification treatment in order to improve adhesion to other layers to be laminated.
  • surface modification treatment include alkali treatment, corona treatment, plasma treatment, sputtering treatment, application of a surfactant or silane coupling agent, Si vapor deposition, and the like.
  • the anti-glare layer 3 is a functional layer that forms fine irregularities on the outermost surface of the optical laminate 11.
  • the anti-glare layer 3 is formed by applying a coating solution containing an active energy ray-curable compound and organic fine particles and/or inorganic fine particles (filler) to the transparent support 2 and curing the coating film. .
  • a monofunctional, bifunctional, or trifunctional or more functional (meth)acrylate monomer can be used as the active energy ray-curable compound.
  • (meth)acrylate is a generic term for both acrylate and methacrylate
  • (meth)acryloyl is a generic term for both acryloyl and methacryloyl.
  • Examples of monofunctional (meth)acrylate compounds include 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 2-hydroxybutyl (meth)acrylate, n-butyl (meth)acrylate, and isobutyl (meth)acrylate.
  • difunctional (meth)acrylates include ethylene glycol di(meth)acrylate, diethylene glycol di(meth)acrylate, butanediol di(meth)acrylate, hexanediol di(meth)acrylate, and nonanediol di(meth)acrylate.
  • ethoxylated hexanediol di(meth)acrylate, propoxylated hexanediol di(meth)acrylate diethylene glycol di(meth)acrylate, polyethylene glycol di(meth)acrylate, tripropylene glycol di(meth)acrylate, polypropylene glycol di(meth)acrylate, ) acrylate, neopentyl glycol di(meth)acrylate, ethoxylated neopentyl glycol di(meth)acrylate, tripropylene glycol di(meth)acrylate, di(meth)acrylate such as neopentyl glycol hydroxypivalate di(meth)acrylate Examples include acrylate.
  • trifunctional or higher functional (meth)acrylates examples include trimethylolpropane tri(meth)acrylate, ethoxylated trimethylolpropane tri(meth)acrylate, propoxylated trimethylolpropane tri(meth)acrylate, and tris-2-hydroxyethyl isocyanate.
  • Trifunctional tri(meth)acrylates such as nurate tri(meth)acrylate, glycerin tri(meth)acrylate, pentaerythritol tri(meth)acrylate, dipentaerythritol tri(meth)acrylate, and ditrimethylolpropane tri(meth)acrylate (meth)acrylate compounds, pentaerythritol tetra(meth)acrylate, ditrimethylolpropane tetra(meth)acrylate, dipentaerythritol tetra(meth)acrylate, dipentaerythritol penta(meth)acrylate, ditrimethylolpropane penta(meth)acrylate Acrylate, dipentaerythritol hexa(meth)acrylate, ditrimethylolpropane hexa(meth)acrylate, and other polyfunctional (meth)acrylate compounds with three or more functionalities, or some of these (me
  • urethane (meth)acrylate can also be used as a polyfunctional monomer.
  • examples of urethane (meth)acrylate include those obtained by reacting a (meth)acrylate monomer having a hydroxyl group with a product obtained by reacting a polyester polyol with an isocyanate monomer or a prepolymer. .
  • urethane (meth)acrylates examples include pentaerythritol triacrylate hexamethylene diisocyanate urethane prepolymer, dipentaerythritol pentaacrylate hexamethylene diisocyanate urethane prepolymer, pentaerythritol triacrylate toluene diisocyanate urethane prepolymer, dipentaerythritol pentaacrylate toluene diisocyanate Examples include urethane prepolymer, pentaerythritol triacrylate isophorone diisocyanate urethane prepolymer, dipentaerythritol pentaacrylate isophorone diisocyanate urethane prepolymer.
  • the above-mentioned polyfunctional monomers may be used alone or in combination of two or more. Further, the above-mentioned polyfunctional monomer may be a monomer in the coating liquid, or may be a partially polymerized oligomer.
  • the organic fine particles are a material that mainly forms fine irregularities on the surface of the anti-glare layer 3 and provides a function of diffusing external light.
  • Organic fine particles are made of translucent resin materials such as acrylic resin, polystyrene resin, styrene-(meth)acrylate copolymer, polyethylene resin, epoxy resin, silicone resin, polyvinylidene fluoride, and polyethylene fluoride resin. Resin particles can be used. In order to adjust the refractive index and the dispersion of the resin particles, two or more types of resin particles having different materials (refractive indexes) may be mixed and used.
  • the inorganic fine particles added to the composition for forming an anti-glare layer are preferably nanoparticles with an average particle size of 10 to 200 nm.
  • the inorganic fine particles are a material mainly for adjusting sedimentation and aggregation of the organic fine particles in the anti-glare layer 3.
  • silica fine particles silica fine particles, metal oxide fine particles, various mineral fine particles, etc.
  • silica fine particles for example, colloidal silica, silica fine particles surface-modified with a reactive functional group such as a (meth)acryloyl group, etc.
  • metal oxide fine particles for example, alumina, zinc oxide, tin oxide, antimony oxide, indium oxide, titania, zirconia, etc. can be used.
  • mineral fine particles examples include mica, synthetic mica, vermiculite, montmorillonite, iron-montmorillonite, bentonite, beidellite, saponite, hectorite, stevensite, nontronite, magadiite, islarite, kanemite, layered titanate, smectite, and synthetic. Smectite etc. can be used.
  • the mineral fine particles may be either natural products or synthetic products (including substituted products and derivatives), and a mixture of both may be used.
  • layered organic clay is more preferable. Layered organic clay refers to a swellable clay in which organic onium ions are introduced between the layers.
  • the organic onium ion is not limited as long as it can be organicized using the cation exchange properties of the swelling clay.
  • the above-mentioned synthetic smectite can be suitably used.
  • Synthetic smectite has the function of increasing the viscosity of the composition for forming an anti-glare layer, suppressing sedimentation of resin particles and inorganic fine particles, and adjusting the uneven shape of the surface of the optical functional layer.
  • a polymerization initiator may be added to cure the composition for forming an anti-glare layer by irradiating ultraviolet rays.
  • a polymerization initiator that generates radicals upon irradiation with ultraviolet light can be used.
  • radical polymerization initiators such as acetophenone, benzophenone, thioxanthone, benzoin, benzoin methyl ether, and acylphosphine oxide can be used.
  • a polymerization initiator for example, diphenyl(2,4,6-trimethylbenzoyl)phosphine oxide, bis(2,4,6-trimethylbenzoyl)phenylphosphine oxide, 2,2-diethoxyacetophenone, 1-hydroxycyclohexylphenyl ketone , 2,2-dimethoxy-phenylacetophenone, dibenzoyl, benzoin, benzoin methyl ether, benzoin ethyl ether, p-chlorobenzophenone, p-methoxybenzophenone, Michler's ketone, acetophenone, 2-chlorothioxanthone, and the like.
  • diphenyl(2,4,6-trimethylbenzoyl)phosphine oxide bis(2,4,6-trimethylbenzoyl)phenylphosphine oxide
  • 2,2-diethoxyacetophenone 1-hydroxycyclohexylphenyl ketone
  • an antifouling agent a leveling agent, an oil repellent, a water repellent, and an anti-fingerprint agent to the composition for forming an anti-glare layer as components for improving antifouling properties.
  • fluorine-containing compounds and silicone compounds can be suitably used.
  • an antifouling compound By adding an antifouling compound to the antiglare layer 3, which is the outermost layer, fingerprint wiping properties can be further improved.
  • Other additives include antistatic agents, antifoaming agents, antioxidants, ultraviolet absorbers, infrared absorbers, colorants, light stabilizers, polymerization inhibitors, photosensitizers, antibacterial agents, antiviral agents, etc. may be added as necessary.
  • a solvent may be added to the composition for forming an anti-glare layer, if necessary.
  • solvents include alcohols such as methanol, ethanol, 1-propanol, 2-propanol, butanol, isopropyl alcohol, and isobutanol, ketones such as acetone, methyl ethyl ketone, cyclohexanone, and methyl isobutyl ketone, and ketone alcohols such as diacetone alcohol.
  • aromatic hydrocarbons such as benzene, toluene, xylene, glycols such as ethylene glycol, propylene glycol, hexylene glycol, ethyl cellosolve, butyl cellosolve, ethyl carbitol, butyl carbitol, diethyl cellosolve, diethyl carbitol, propylene glycol Glycol ethers such as monomethyl ether, esters such as methyl lactate, ethyl lactate, methyl acetate, ethyl acetate, butyl acetate, amyl acetate, ethers such as dimethyl ether and diethyl ether, N-methylpyrrolidone, dimethylformamide, etc. , one type or a mixture of two or more types can be used.
  • glycols such as ethylene glycol, propylene glycol, hexylene glycol, ethyl cellosolve, butyl cell
  • FIG. 2 is a cross-sectional view schematically showing another example of the optical film according to the embodiment.
  • the optical laminate 12 includes a transparent support 2, an anti-glare layer 3 laminated on one side of the transparent support 2, and a low refractive index layer 4 (AR layer) laminated on the surface of the anti-glare layer 3. .
  • the optical laminate 12 is an optical film that suppresses reflection and reflection of external light by utilizing scattering of incident light and optical interference due to minute irregularities on the outermost surface (also referred to as "AGLR film"). .
  • the low refractive index layer 4 is a functional layer that has a refractive index lower than that of the anti-glare layer 3 below, and suppresses reflection by optical interference.
  • the low refractive index layer 4 can be formed by applying a composition containing an active energy ray-curable compound to the surface of the anti-glare layer 3 and curing the coating film.
  • the low refractive index layer 4 may contain low refractive index fine particles to adjust the refractive index.
  • low refractive index fine particles examples include fine particles such as LiF, MgF, 3NaF ⁇ AlF, or AlF (all have a refractive index of 1.4), or Na 3 AlF 6 (cryolite, a refractive index of 1.33), Silica fine particles having voids inside can be preferably used. Silica fine particles having voids inside can have the refractive index of air (approximately 1) in the void portion, and are therefore free to lower the refractive index of the low refractive index layer 4. Specifically, porous silica particles and shell-structured silica particles can be used.
  • the low refractive index fine particles are not necessarily necessary, and if the refractive index of the active energy ray-curable compound after curing is lower than the refractive index of the anti-glare layer 3, the low refractive index fine particles may be omitted.
  • the active energy ray-curable compound the polymerizable compounds described in the anti-glare layer can be used. Further, the above-mentioned polymerization initiator and solvent may be appropriately added to the composition for forming a low refractive index layer.
  • the composition for forming the low refractive index layer contains an antifouling agent, a leveling agent, an oil repellent, and a water repellent as components for improving antifouling properties. It is preferable to add an anti-fingerprint agent.
  • an anti-fingerprint agent fluorine-containing compounds and silicone compounds can be suitably used.
  • Other additives include antistatic agents, antifoaming agents, antioxidants, ultraviolet absorbers, infrared absorbers, colorants, light stabilizers, polymerization inhibitors, photosensitizers, antibacterial agents, antiviral agents, etc. may be added as necessary.
  • the antibacterial agent and antiviral agent mentioned above may be a component that functions as either an antibacterial agent or an antiviral agent, or a component that functions as both an antibacterial agent and an antiviral agent, It may be a component whose function as an antibacterial agent or an antiviral agent changes depending on conditions such as the amount added.
  • the antibacterial agent and antiviral agent may be an inorganic material or an organic material. Further, the antibacterial agent and antiviral agent may or may not be particulate. When the antibacterial agent or antiviral agent is in particulate form, the average particle diameter is preferably 1 ⁇ m or less.
  • Functional components of inorganic materials that can be used as antibacterial agents and antiviral agents include, for example, metals such as silver, copper, and zinc, metal oxides such as zinc oxide, and metal hydroxides such as calcium hydroxide.
  • the above-mentioned metal may be a metal particle, or may be in the form of an ion, a complex, or a salt.
  • the metal may be supported on a carrier.
  • the carrier include zeolite, phosphate carriers such as zirconium phosphate, silica gel, activated carbon, and glass materials.
  • the functional component of the inorganic material may be a non-photocatalyst such as titania phosphate or a compound that functions as a photocatalyst such as titanium oxide. These compounds may be used in combination with the above metals.
  • the functional component of the inorganic material inorganic particles containing a metal or a metal oxide are preferably used, and in particular, a material containing silver is suitably used.
  • the functional component of the organic material that can be used as an antibacterial agent or antiviral agent may be a synthetic component or a natural component.
  • synthetic components include quaternary ammonium salts, biguanide compounds such as polyhexamethylene biguanide, and triclosan.
  • natural ingredients are hinokitiol, terpenes, etc.
  • a hard coat layer, a high refractive index layer, a medium refractive index layer, an antistatic layer, an electromagnetic wave blocking layer, an infrared absorbing layer, an ultraviolet absorbing layer, a color correction layer, etc. are provided between the transparent support 2 and the anti-glare layer 3.
  • One or more functional layers may be stacked.
  • the coating method of the anti-glare layer forming composition and the low refractive index layer forming composition described above is not particularly limited, and examples thereof include a spin coater, a roll coater, a reverse roll coater, a gravure coater, a microgravure coater, a knife coater, Coating can be performed using a bar coater, wire bar coater, die coater, dip coater, spray coater, applicator, etc.
  • the uneven shape on the outermost surface of the optical functional laminate according to this embodiment satisfies the following conditions (1) to (3) at the same time. 40,000 ⁇ A ⁇ 300,000 (1) 300 ⁇ B ⁇ 1,000 (2) 30 ⁇ C ⁇ 500 (3)
  • A, B, and C are images obtained by fast Fourier transform (hereinafter referred to as "FFT") of the image data generated from the measurement data of the height of unevenness on the surface of the optical laminate. This is a value derived from the spatial frequency f calculated from a predetermined range.
  • FFT fast Fourier transform
  • A is the average value of the power spectrum intensity in the range of 0 ⁇ f ⁇ 100cycle/mm
  • B is the average value of the power spectrum intensity in the range of 100cycle/mm ⁇ f ⁇ 200cycle/mm
  • C is the average value of the power spectrum intensity in the range of 200cycle/mm. /mm ⁇ f ⁇ 300cycle/mm.
  • three-dimensional data of the height of the unevenness on the outermost surface of the optical laminate is obtained by measurement.
  • the three-dimensional data of the height of the unevenness includes the position within the measurement plane and the height of the unevenness.
  • the three-dimensional data of the height of the irregularities on the outermost surface can be measured by an optical interference method or a contact method.
  • the acquired three-dimensional data is converted into an image (first image) whose pixel value is the height of the unevenness.
  • FFT is performed on the first image to obtain an image after FFT processing (second image).
  • the X coordinate of the power spectrum in a predetermined range in the second image after FFT processing is converted into a spatial frequency f.
  • the average value of the antilog of the power spectrum intensity in the range of 0 ⁇ f ⁇ 100cycle/mm, the range of 100cycle/mm ⁇ f ⁇ 200cycle/mm, and the range of 200cycle/mm ⁇ f ⁇ 300cycle/mm are calculated and set as the values of A, B, and C above.
  • fingerprint wiping performance is improved due to the oil-repellent effect (lotus effect) due to the unique surface unevenness, and because the surface unevenness is physically easy to wipe off. This is thought to be due to a combination of factors such as the easy-to-use shape. If any value of A to C is out of the range of conditions (1) to (3), fingerprint wiping performance will deteriorate, or surface scattering will become stronger, resulting in higher haze or whitish appearance. etc., the optical properties deteriorate. In addition, mechanical properties such as scratch resistance may also deteriorate.
  • the optical laminates 11 and 12 according to the present embodiment have excellent fingerprint wiping properties because the uneven shape of the outermost surface satisfies the conditions (1) to (3) above. Further, by adding an antifouling component such as an antifouling agent to the functional layer serving as the outermost layer, the fingerprint wiping property can be further improved.
  • an antifouling component such as an antifouling agent
  • the optical laminates 11 and 12 according to this embodiment are used on the outermost surface of a device that can be touched with a finger. Due to the recent social situation regarding the new coronavirus, the optical laminates 11 and 12 are also required to have antibacterial and antiviral properties. Therefore, by adding an antibacterial agent and/or an antiviral agent to the antiglare layer 3 or the low refractive index layer 4, antibacterial and/or antiviral properties can be imparted.
  • an antibacterial agent and/or an antiviral agent is added to the outermost layer of the optical laminate, it is easy to obtain a higher antibacterial and/or antiviral effect; Even when an antibacterial and/or antiviral agent is added to layer 3, if the antibacterial component or antiviral component is eluted, the antibacterial and/or antiviral property will be exhibited.
  • the values of A to C are controlled by adjusting the particle size and amount of the filler added to the anti-glare layer 3, the amount of additive, the thickness of the anti-glare layer 3, and the agglomeration state of the filler in the film forming process. be able to.
  • the optical laminates 11 and 12 according to this embodiment can be used to configure an image display device by being laminated to the outermost surface of an image display panel such as a liquid crystal panel or an organic EL panel.
  • a touch panel may be provided between the optical laminates 11 and 12 and the image display panel.
  • the optical laminates 11 and 12 according to this embodiment have excellent fingerprint wiping properties and are therefore suitable as optical films provided on the outermost surface of an image display device.
  • Example 1a The following hard coat (HC) compositions were prepared.
  • HC composition 1 for forming anti-glare layer
  • organic fine particles manufactured by Techpolymer, SSX-2035
  • PETA photopolymerization initiator
  • HC composition 2 for forming a low refractive index layer
  • PETA Vinyl-Coupled A
  • a photopolymerization initiator for UV curing Add 3.0 parts by mass of a photoinitiator and 2.0 parts by mass of a fluorine-based antifouling agent (manufactured by Shin-Etsu Chemical Co., Ltd., KY-1203) to isopropyl alcohol so that the total solid concentration is 3.5% by mass.
  • the mixture was stirred in a paint shaker for 40 minutes to obtain HC Composition 2.
  • HC composition 1 was applied to one side of the transparent support using a bar coater, and a dryer was used. It was dried at 100°C for 1 minute.
  • the coating film is irradiated with ultraviolet rays in a nitrogen atmosphere (oxygen concentration 500 ppm or less) so that the cumulative exposure amount is 200 mJ/ cm2 , and the coating film is cured to form an anti-glare layer. did.
  • the coating amount of HC composition 1 was adjusted so that the film thickness after curing was 5 ⁇ m.
  • HC composition 2 was applied onto the anti-glare layer using a bar coater, and dried in a dryer at 100° C. for 1 minute.
  • the coating film was irradiated in a nitrogen atmosphere (oxygen concentration of 500 ppm or less) with a cumulative exposure dose of 200 mJ/cm 2 to harden the coating film and form a low refractive index layer.
  • Example 2a An optical laminate was produced in the same manner as in Example 1a, except that no fluorine-based antifouling agent was added to HC composition 2 and 47.0 parts by mass of PETA was blended.
  • Example 3a The blending amount of PETA in HC composition 1 was 90.0 parts by mass, 2.0 parts by mass of a fluorine-based antifouling agent (manufactured by Shin-Etsu Chemical Co., Ltd., KY-1203) was added, and a low refractive index layer was not formed. Except for this, an optical laminate was produced in the same manner as in Example 1a.
  • a fluorine-based antifouling agent manufactured by Shin-Etsu Chemical Co., Ltd., KY-1203
  • Example 4a An optical laminate was produced in the same manner as in Example 1a, except that the low refractive index layer was not formed.
  • Example 5a An optical laminate was produced in the same manner as in Example 1a, except that in HC Composition 1, the time for dispersing organic particles using a paint shaker and the stirring time for the coating liquid were both 60 minutes.
  • Example 6a An optical laminate was produced in the same manner as in Example 1a, except that the time for dispersing the organic fine particles using the paint shaker in HC Composition 1 was 60 minutes.
  • Example 7a An optical laminate was produced in the same manner as in Example 1a, except that the organic fine particles in HC Composition 1 were changed to organic fine particles (manufactured by Techpolymer, SSX-103) with an average particle size of 3.0 ⁇ m.
  • Example 8a An optical laminate was produced in the same manner as in Example 7a, except that no fluorine-based antifouling agent was added to HC composition 2 and the amount of PETA was 47.0 parts by mass.
  • Example 9a The blending amount of PETA in HC composition 1 was 90.0 parts by mass, 2.0 parts by mass of a fluorine-based antifouling agent (manufactured by Shin-Etsu Chemical Co., Ltd., KY-1203) was added, and a low refractive index layer was not formed. Except for this, an optical laminate was produced in the same manner as in Example 7a.
  • a fluorine-based antifouling agent manufactured by Shin-Etsu Chemical Co., Ltd., KY-1203
  • Example 10a An optical laminate was produced in the same manner as in Example 7a, except that the low refractive index layer was not formed.
  • Example 11a An optical laminate was produced in the same manner as in Example 1a, except that the coating amount of HC Composition 1 was changed so that the film thickness after curing was 6.0 ⁇ m.
  • Example 12a An optical laminate was produced in the same manner as in Example 11a, except that no fluorine-based antifouling agent was added to HC composition 2 and the amount of PETA was 47.0 parts by mass.
  • Example 13a The blending amount of PETA in HC composition 1 was 90.0 parts by mass, 2.0 parts by mass of a fluorine-based antifouling agent (manufactured by Shin-Etsu Chemical Co., Ltd., KY-1203) was added, and a low refractive index layer was not formed. Except for this, an optical laminate was produced in the same manner as in Example 11a.
  • a fluorine-based antifouling agent manufactured by Shin-Etsu Chemical Co., Ltd., KY-1203
  • Example 14a An optical laminate was produced in the same manner as in Example 11a, except that the low refractive index layer was not formed.
  • Example 1b-1 5.0 parts by mass of PETA of HC composition 1, particles of an antibacterial and antiviral agent (silver-based antibacterial and antiviral agent (manufactured by Dainichiseika Chemical Co., Ltd.: PTC-NT (ST)) were crushed with a bead mill and subjected to dispersion treatment, average An optical laminate was produced in the same manner as in Example 1a, except that the particles were replaced with particles (particle size: 0.5 ⁇ m).
  • an antibacterial and antiviral agent silica-based antibacterial and antiviral agent (manufactured by Dainichiseika Chemical Co., Ltd.: PTC-NT (ST)
  • Example 1b-2 Examples except that 10.0 parts by weight of PETA in HC composition 1 was replaced with an antibacterial and antiviral agent (a quaternary ammonium salt-based antibacterial and antiviral agent (manufactured by Kobayashi Pharmaceutical: KOBA-GUARD, non-particle))
  • An optical laminate was produced in the same manner as 1a.
  • Example 1c Optical lamination was performed in the same manner as in Example 1a, except that the transparent support in Example 1b-1 was replaced with a 75 ⁇ mm thick polyethylene terephthalate (PET) film (Lumirror #75-U34, manufactured by Toray Industries). The body was created.
  • PET polyethylene terephthalate
  • Example 2b to 14b 5.0 parts by mass of PETA of HC composition 1, particles of an antibacterial and antiviral agent (silver-based antibacterial and antiviral agent (manufactured by Dainichiseika Chemical Co., Ltd.: PTC-NT (ST)) were crushed with a bead mill and subjected to dispersion treatment, average Optical laminates were produced in the same manner as in Examples 2a to 14a, except that the particles were replaced with particles (particle size: 0.5 ⁇ m).
  • an antibacterial and antiviral agent silica-based antibacterial and antiviral agent (manufactured by Dainichiseika Chemical Co., Ltd.: PTC-NT (ST)
  • Example 2 An optical laminate was produced in the same manner as in Example 1a, except that the coating amount of HC Composition 1 was changed so that the film thickness after curing was 7.0 ⁇ m.
  • Example 3 An optical laminate was produced in the same manner as in Example 1a, except that the organic fine particles in HC Composition 1 were changed to organic fine particles (manufactured by Techpolymer, SSX-105) with an average particle size of 5.0 ⁇ m.
  • Example 4 An optical laminate was produced in the same manner as in Example 1a, except that the organic fine particles in HC Composition 1 were changed to organic fine particles (manufactured by Techpolymer, SSX-102) with an average particle size of 2.5 ⁇ m.
  • Example 5 The optical composition was prepared in the same manner as in Example 1a, except that the amount of PETA in HC Composition 1 was 90.0 parts by mass, and the amount of organic fine particles (manufactured by Techpolymer, SSX-2035) was 7.0 parts by mass. A laminate was produced.
  • Example 6 An optical laminate was produced in the same manner as in Example 1a, except that the amount of PETA in HC Composition 1 was 94.0 parts by mass, and the amount of organic fine particles was 3.0 parts by mass.
  • Example 7 An optical laminate was produced in the same manner as in Example 1a, except that the time for dispersing organic particles using a paint shaker in HC Composition 1 was changed to 20 minutes.
  • Comparative example 8 An optical laminate was produced in the same manner as Comparative Example 7, except that no fluorine-based antifouling agent was added to HC Composition 2 and the amount of PETA was 47.0 parts by mass.
  • Comparative example 12 An optical laminate was produced in the same manner as Comparative Example 11, except that no fluorine-based antifouling agent was added to HC Composition 2 and the amount of PETA was 47.0 parts by mass.
  • Comparative example 13 The blending amount of PETA in HC composition 1 was 90.0 parts by mass, 2.0 parts by mass of a fluorine-based antifouling agent (manufactured by Shin-Etsu Chemical Co., Ltd., KY-1203) was added, and a low refractive index layer was not formed. An optical laminate was produced in the same manner as Comparative Example 11 except for this.
  • optical laminates according to each Example and each Comparative Example were evaluated as follows.
  • ⁇ Evaluation 1 Surface unevenness shape> (Acquisition of 3D data) Using Vertscan (manufactured by Ryoka System Co., Ltd., R3300H Lite), three-dimensional data of the uneven shape of the outermost surface of the optical laminate was measured by an optical interference method. The measurement conditions are as follows. The height of the unevenness was based on the lowest position within the measurement range.
  • ⁇ Camera model Sony HR-50 1/3 ⁇ Objective lens magnification: 5XTI ⁇ Lens barrel: 1X ⁇ Zoom lens: 1X ⁇ Light source: 530white ⁇ Wavelength filter: 520nm
  • ⁇ Measurement device Piezo ⁇ Measurement mode: Phase ⁇ Scan speed: 4 ⁇ m/sec ⁇ Scan range: 10 ⁇ m to -10 ⁇ m ⁇ Number of effective pixels: 0% ⁇ Measurement range: 940.8 ⁇ m x 705.6 ⁇ m, 640pixel x 480pixel ⁇ XY direction resolution: 1 pixel 1.47 ⁇ m
  • FFT analysis FFT analysis was performed using free software "ImageJ 1.53h" under Windows (registered trademark) 10 environment. The steps are as follows. 1. The three-dimensional data was converted to TIFF image data in which the height is the pixel value. 2. FFT was performed with reference to the original three-dimensional data values (height measurements). The image size after FFT processing was 1024 pixels x 1024 pixels. 3. The image after the FFT processing was processed to restore the power spectrum intensity to the actual measured value. 4. In the processed image, a range of ⁇ 20 pixels on the positive X axis passing through the origin was specified, and the power spectrum intensity was output. 5. The X coordinate of the output power spectrum was converted into a spatial frequency f based on the pixel size of the original three-dimensional data. 6. From the calculated spatial frequency, the average value (A ⁇ C value) was calculated.
  • optical properties The optical properties of the optical laminate were evaluated according to the following criteria based on the evaluation of haze, antiglare, and reflectance shown below. ⁇ : There is one or more evaluations ⁇ for haze, anti-glare property, reflectance, and the remaining evaluations are ⁇ : All evaluations for haze, anti-glare property, reflectance are ⁇ : Haze, anti-glare property, reflectance There is one or more ⁇ rating in
  • Haze The haze was measured using a haze meter (NDH7000, manufactured by Nippon Denshoku Kogyo Co., Ltd.) in accordance with the haze test method of JIS K 7136, a method for testing optical properties of plastics.
  • the evaluation criteria for optical properties are as follows. ⁇ : Haze is 6% or more and less than 8% ⁇ : Haze is 4% or more and less than 6%, or 8% or more and less than 10% ⁇ : Haze is less than 4% or 10% or more
  • FIG. 3 is a diagram showing a method for evaluating anti-glare properties
  • FIG. 4 is a diagram showing an example of evaluating anti-glare properties.
  • the obtained optical laminate was bonded to a blackboard using an optical adhesive so that the functional side faced the surface.
  • three-wavelength fluorescent lamps and optical laminates were installed so that the light hits the functional surfaces perpendicularly. Observe the surface of the optical laminate from the direction in which the line connecting the viewpoint and the image of the three-wavelength fluorescent lamp reflected on the functional surface is 70° to the perpendicular drawn from the three-wavelength fluorescent lamp to the functional surface, and observe the following. Anti-glare properties were evaluated according to standards.
  • The outline of the three-wavelength fluorescent lamp can be seen, but the edges are blurry and unclear.
  • the spectral reflectance of the functional layer surface of the obtained optical laminate at an incident angle of 5° was measured using an automatic spectrophotometer (U-4100, manufactured by Hitachi, Ltd.), and evaluated according to the following criteria. During the measurement, a matte black paint was applied to the back surface of the TAC film (the surface on which no functional layer was formed) to prevent reflection.
  • Reflectance is less than 0.5%
  • Reflectance is 0.5% or more and less than 1%
  • Reflectance is 1% or more
  • the optical laminate was attached to a blackboard using an optical adhesive so that the functional side faced the surface.
  • the artificial leather coated with the olive oil reagent was pressed onto the functional surface to coat it with olive oil, and the attached olive oil was repeatedly wiped off using tissue paper (Scotty (registered trademark), manufactured by Nippon Paper Kracie Co., Ltd.) under a load of 1 kg. After each wipe, the reflection spectrum of the olive oil-attached area was measured using a spectrophotometer (CM-2500d, manufactured by Konica Minolta). The measurement conditions are as follows.
  • The number of times of wiping is less than 5 times (fingerprint wiping performance is very good)
  • Number of times of wiping is 5 or more and less than 10 times (good fingerprint wiping performance)
  • The number of times of wiping is 10 or more and less than 30 times (difficult to wipe off fingerprints)
  • The number of times of wiping is 30 times or more (fingerprints are very difficult to wipe off or cannot be wiped off)
  • Antibacterial tests against Escherichia coli and Staphylococcus aureus were conducted on the functional surface of the optical laminate in accordance with JIS Z 2801. A polyethylene film was used as an unprocessed sample and evaluated according to the following criteria.
  • Antibacterial activity value of at least one of E. coli and Staphylococcus aureus is less than 2.0
  • Tables 1 to 3 show the evaluation results.
  • the optical laminates according to Examples 1a to 14a satisfy conditions (1) to (3) in A to C, have excellent optical properties and fingerprint wiping properties, and have excellent scratch resistance. was also good. The fingerprint wiping property was good even when no antifouling agent was added to the outermost functional layer, but it became very good when an antifouling agent was added to the outermost functional layer.
  • the optical laminates according to Examples 1b-1, 1b-2, 1c, and 2b to 14b also satisfy conditions (1) to (3) in A to C, and have excellent optical properties, fingerprint wiping properties, and resistance. It had excellent scratch resistance.
  • optical laminates according to Examples 1b-1, 1b-2, 1c, and 2b to 14b had both antibacterial and antiviral properties because the antibacterial and antiviral agent was contained in the antiglare layer.
  • the optical laminate according to Example 1c had a reduced water vapor permeability because a PET film with low moisture permeability was used as the transparent support.
  • the present invention can be used as an optical film provided on the outermost surface of an image display device.

Abstract

Provided is an optical laminate having excellent optical characteristics and fingerprint wipeability, and an image display device that uses the optical laminate. Provided is an optical laminate having recesses and protrusions in the outermost surface shape thereof, the optical laminate being characterized by satisfying conditions (1) through (3) simultaneously. (1): 40,000 ≤ A ≤ 300,000. (2): 300 ≤ B ≤ 1,000. (3): 30 ≤ C ≤ 500. Here, when a spatial frequency f is calculated by performing frequency analysis by fast Fourier transform of an image based on three-dimensional data of the recess/protrusion height of the recessed/protruding shape measured by an optical interference method or a contact method, A is the average value of the power spectrum intensity in a range of 0 < f ≤ 100 cycles/mm, B is the average value of the power spectrum intensity in a range of 100 cycles/mm < f ≤ 200 cycles/mm, and C is the average value of the power spectrum intensity in a range of 200 cycles/mm < f ≤ 300 cycles/mm.

Description

光学積層体及びこれを用いた画像表示装置Optical laminate and image display device using the same
 本発明は、光学積層体及びこれを用いた画像表示装置に関する。 The present invention relates to an optical laminate and an image display device using the same.
 AG(アンチグレア)フィルムは、表面に微細な凹凸形状を有する防眩層を備え、この微細な凹凸が反射光を拡散することにより、外光の映り込みを抑制する。また、防眩層上に低屈折率層(LR)を積層し、更に光学干渉を利用して反射光を抑制するAGLRフィルムも知られており、様々なディスプレイに利用されている。 The AG (anti-glare) film is equipped with an anti-glare layer having fine irregularities on its surface, and the fine irregularities diffuse reflected light, thereby suppressing the reflection of external light. Furthermore, an AGLR film is known in which a low refractive index layer (LR) is laminated on an anti-glare layer and further uses optical interference to suppress reflected light, and is used in various displays.
 AGフィルム及びAGLRフィルムの防眩性は、主に防眩層表面の凹凸形状によって定まる。従来、防眩層表面の好適な凹凸形状は、ISO 25178に規定される面粗さパラメータや、JIS B 0601に規定される線粗さパラメータを用いて表されることが多い(例えば、特許文献1~3参照)。 The anti-glare properties of AG films and AGLR films are mainly determined by the uneven shape of the surface of the anti-glare layer. Conventionally, a suitable uneven shape on the surface of an anti-glare layer has often been expressed using a surface roughness parameter defined in ISO 25178 or a line roughness parameter defined in JIS B 0601 (for example, Patent Document (See 1 to 3).
 また、タッチパネル付きディスプレイ用途のAGフィルム及びAGLRフィルムには、防眩性に加え、操作時に付着した指紋等の拭き取り性が良好であることが求められる。 Furthermore, AG films and AGLR films for use in displays with touch panels are required to have good anti-glare properties as well as ease of wiping away fingerprints and the like that adhere to the film during operation.
特許第5360616号公報Patent No. 5360616 特許第5382034号公報Patent No. 5382034 特許第6135131号公報Patent No. 6135131
 タッチパネル付きディスプレイ用途の光学積層体に求められる指紋拭き取り性は、最表面の凹凸形状によって異なる。そこで、光学積層体の指紋拭き取り性を表す手法として、上述した粗さパラメータを採用し、粗さパラメータに基づいて良好な指紋拭き取り性を有する光学積層体を設計することが考えられる。 The fingerprint wiping properties required for optical laminates for use in displays with touch panels vary depending on the shape of the irregularities on the outermost surface. Therefore, as a method for expressing the fingerprint wiping property of an optical laminate, it is possible to employ the above-mentioned roughness parameter and design an optical laminate having good fingerprint wiping property based on the roughness parameter.
 しかしながら、上述した従来の粗さパラメータでは、ランダムな凹凸形状や複雑な凹凸形状の全てを表すことができない。例えば、ISO 25178に規定される算術平均高さSaは、面粗さを評価する際に一般的に使用される指標であるが、Sa値が同じであっても、凹凸形状及び指紋拭き取り性が大きく異なる場合がある。したがって、従来の粗さパラメータは指紋拭き取り性を表現するのに適していない。 However, the conventional roughness parameters described above cannot represent all random uneven shapes and complex uneven shapes. For example, the arithmetic mean height Sa specified in ISO 25178 is an index commonly used when evaluating surface roughness, but even if the Sa value is the same, the uneven shape and fingerprint wiping performance are It may vary greatly. Therefore, conventional roughness parameters are not suitable for expressing fingerprint wiping properties.
 本発明は、光学特性及び指紋拭き取り性に優れた光学積層体及びこれを用いた画像表示装置を提供することを目的とする。 An object of the present invention is to provide an optical laminate with excellent optical properties and fingerprint wiping properties, and an image display device using the same.
 本発明に係る光学積層体は、最表面に凹凸形状を有し、以下の条件(1)~(3)を同時に満足することを特徴とするものである。
  40,000≦A≦300,000 (1)
  300≦B≦1,000 (2)
  30≦C≦500 (3)
ここで、凹凸形状を光学干渉方式または接触方式で計測した凹凸高さの3次元データを、凹凸高さを画素値とする第1の画像データに変換し、第1の画像データを高速フーリエ変換により第2の画像に変換し、第2の画像のうち、原点を通り、かつ、正のX軸上及びY軸方向の±20Pixelの範囲の画像のパワースペクトラムのX座標の空間周波数fを算出した場合において、
A:0<f≦100cycle/mmの範囲のパワースペクトラム強度の平均値、
B:100cycle/mm<f≦200cycle/mmの範囲のパワースペクトラム強度の平均値、
C:200cycle/mm<f≦300cycle/mmの範囲のパワースペクトラム強度の平均値
である。
The optical laminate according to the present invention is characterized in that it has an uneven shape on its outermost surface and satisfies the following conditions (1) to (3) at the same time.
40,000≦A≦300,000 (1)
300≦B≦1,000 (2)
30≦C≦500 (3)
Here, the three-dimensional data of the height of the unevenness measured by the optical interference method or the contact method is converted into first image data whose pixel value is the height of the unevenness, and the first image data is subjected to fast Fourier transformation. Convert it to a second image by , and calculate the spatial frequency f of the X coordinate of the power spectrum of the image that passes through the origin and within a range of ±20 pixels on the positive X axis and Y axis direction. In the case that
A: average value of power spectrum intensity in the range of 0<f≦100cycle/mm,
B: average value of power spectrum intensity in the range of 100cycle/mm<f≦200cycle/mm,
C: Average value of power spectrum intensity in the range of 200 cycles/mm<f≦300 cycles/mm.
 本発明に係る画像表示装置は、上記の光学積層体を備える。 An image display device according to the present invention includes the optical laminate described above.
 本発明によれば、光学特性及び外観及び指紋拭き取り性に優れた光学積層体及びこれを用いた画像表示装置を提供できる。 According to the present invention, it is possible to provide an optical laminate with excellent optical properties, appearance, and fingerprint wiping properties, and an image display device using the same.
図1は、実施形態に係る光学積層体の一例を模式的に示す断面図である。FIG. 1 is a cross-sectional view schematically showing an example of an optical laminate according to an embodiment. 図2は、実施形態に係る光学積層体の他の一例を模式的に示す断面図である。FIG. 2 is a cross-sectional view schematically showing another example of the optical laminate according to the embodiment. 図3は、防眩性の評価方法を示す図である。FIG. 3 is a diagram showing a method for evaluating anti-glare properties. 図4は、防眩性の評価例を示す図である。FIG. 4 is a diagram showing an example of evaluation of anti-glare properties.
 図1は、実施形態に係る光学積層体の一例を模式的に示す断面図である。 FIG. 1 is a cross-sectional view schematically showing an example of an optical laminate according to an embodiment.
 光学積層体11は、透明支持体2と、透明支持体2の一方面に積層された防眩層3(AG層)とを備える。光学積層体11は、最表面の微細な凹凸で入射光を散乱させて外光の映り込みを抑制する光学フィルムである(「AGフィルム」とも称される)。 The optical laminate 11 includes a transparent support 2 and an anti-glare layer 3 (AG layer) laminated on one side of the transparent support 2. The optical laminate 11 is an optical film that suppresses reflection of external light by scattering incident light with fine irregularities on the outermost surface (also referred to as "AG film").
 透明支持体2は、光学積層体11の基体となるフィルムであり、可視光線の透過性に優れた材料により形成される。透明支持体2の形成材料としては、ポリエチレン、ポリプロピレン等のポリオレフィン、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等のポリエステル、ポリメチルメタクリレート等のポリアクリレート、ナイロン6、ナイロン66等のポリアミド、ポリイミド、ポリアリレート、ポリカーボネート、トリアセチルセルロース、ポリアクリレート、ポリビニルアルコール、ポリ塩化ビニル、シクロオレフィンコポリマー、含ノルボルネン樹脂、ポリエーテルサルフォン、ポリサルフォン等の透明樹脂や無機ガラスを利用できる。透明支持体2の厚みは、特に限定されないが、10~200μmとすることが好ましい。また、低い水蒸気透過率が求められる場合、ポリエチレンテレフタレート、シクロオレフィンポリマー、ポリプロピレン等の水蒸気透過率の低い材料で構成されたフィルムを用いることが好ましい。 The transparent support 2 is a film that serves as the base of the optical laminate 11, and is made of a material that has excellent visible light transmittance. Materials for forming the transparent support 2 include polyolefins such as polyethylene and polypropylene, polyesters such as polyethylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate, polyacrylates such as polymethyl methacrylate, polyamides such as nylon 6 and nylon 66, polyimides, Transparent resins such as polyarylate, polycarbonate, triacetyl cellulose, polyacrylate, polyvinyl alcohol, polyvinyl chloride, cycloolefin copolymer, norbornene-containing resin, polyether sulfone, polysulfone, and inorganic glass can be used. The thickness of the transparent support 2 is not particularly limited, but is preferably 10 to 200 μm. Furthermore, when a low water vapor permeability is required, it is preferable to use a film made of a material with a low water vapor permeability such as polyethylene terephthalate, cycloolefin polymer, polypropylene, or the like.
 透明支持体2の表面には、積層する他の層との密着性を向上させるために、表面改質処理を施しても良い。表面改質処理としては、アルカリ処理、コロナ処理、プラズマ処理、スパッタ処理、界面活性剤やシランカップリング剤等の塗布、Si蒸着等を例示できる。 The surface of the transparent support 2 may be subjected to surface modification treatment in order to improve adhesion to other layers to be laminated. Examples of the surface modification treatment include alkali treatment, corona treatment, plasma treatment, sputtering treatment, application of a surfactant or silane coupling agent, Si vapor deposition, and the like.
 防眩層3は、光学積層体11の最表面の微細な凹凸形状を形成する機能層である。 The anti-glare layer 3 is a functional layer that forms fine irregularities on the outermost surface of the optical laminate 11.
 防眩層3は、活性エネルギー線硬化型化合物と、有機微粒子及び/または無機微粒子(フィラー)とを含有する塗工液を透明支持体2に塗布し、塗膜を硬化させることによって形成される。 The anti-glare layer 3 is formed by applying a coating solution containing an active energy ray-curable compound and organic fine particles and/or inorganic fine particles (filler) to the transparent support 2 and curing the coating film. .
 活性エネルギー線硬化型化合物としては、例えば、単官能、2官能または3官能以上の(メタ)アクリレートモノマーを使用できる。尚、本明細書において、「(メタ)アクリレート」は、アクリレートとメタクリレートの両方の総称であり、「(メタ)アクリロイル」は、アクリロイルとメタクリロイルの両方の総称である。 As the active energy ray-curable compound, for example, a monofunctional, bifunctional, or trifunctional or more functional (meth)acrylate monomer can be used. In this specification, "(meth)acrylate" is a generic term for both acrylate and methacrylate, and "(meth)acryloyl" is a generic term for both acryloyl and methacryloyl.
 単官能の(メタ)アクリレート化合物の例としては、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、グリシジル(メタ)アクリレート、アクリロイルモルフォリン、N-ビニルピロリドン、テトラヒドロフルフリールアクリレート、シクロヘキシル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、イソデシル(メタ)アクリレート、ラウリル(メタ)アクリレート、トリデシル(メタ)アクリレート、セチル(メタ)アクリレート、ステアリル(メタ)アクリレート、ベンジル(メタ)アクリレート、2-エトキシエチル(メタ)アクリレート、3-メトキシブチル(メタ)アクリレート、エチルカルビトール(メタ)アクリレート、リン酸(メタ)アクリレート、エチレンオキサイド変性リン酸(メタ)アクリレート、フェノキシ(メタ)アクリレート、エチレンオキサイド変性フェノキシ(メタ)アクリレート、プロピレンオキサイド変性フェノキシ(メタ)アクリレート、ノニルフェノール(メタ)アクリレート、エチレンオキサイド変性ノニルフェノール(メタ)アクリレート、プロピレンオキサイド変性ノニルフェノール(メタ)アクリレート、メトキシジエチレングリコール(メタ)アクリレート、メトキシポリチレングリコール(メタ)アクリレート、メトキシプロピレングリコール(メタ)アクリレート、2-(メタ)アクリロイルオキシエチル-2-ヒドロキシプロピルフタレート、2-ヒドロキシ-3-フェノキシプロピル(メタ)アクリレート、2-(メタ)アクリロイルオキシエチルハイドロゲンフタレート、2-(メタ)アクリロイルオキシプロピルハイドロゲンフタレート、2-(メタ)アクリロイルオキシプロピルヘキサヒドロハイドロゲンフタレート、2-(メタ)アクリロイルオキシプロピルテトラヒドロハイドロゲンフタレート、ジメチルアミノエチル(メタ)アクリレート、トリフルオロエチル(メタ)アクリレート、テトラフルオロプロピル(メタ)アクリレート、ヘキサフルオロプロピル(メタ)アクリレート、オクタフルオロプロピル(メタ)アクリレート、2-アダマンタン、アダマンタンジオールから誘導される1価のモノ(メタ)アクリレートを有するアダマンチルアクリレート等のアダマンタン誘導体モノ(メタ)アクリレート等が挙げられる。 Examples of monofunctional (meth)acrylate compounds include 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 2-hydroxybutyl (meth)acrylate, n-butyl (meth)acrylate, and isobutyl (meth)acrylate. meth)acrylate, t-butyl(meth)acrylate, glycidyl(meth)acrylate, acryloylmorpholine, N-vinylpyrrolidone, tetrahydrofurfuryl acrylate, cyclohexyl(meth)acrylate, 2-ethylhexyl(meth)acrylate, isobornyl(meth)acrylate, ) acrylate, isodecyl (meth)acrylate, lauryl (meth)acrylate, tridecyl (meth)acrylate, cetyl (meth)acrylate, stearyl (meth)acrylate, benzyl (meth)acrylate, 2-ethoxyethyl (meth)acrylate, 3- Methoxybutyl (meth)acrylate, ethyl carbitol (meth)acrylate, phosphoric acid (meth)acrylate, ethylene oxide modified phosphoric acid (meth)acrylate, phenoxy (meth)acrylate, ethylene oxide modified phenoxy (meth)acrylate, propylene oxide modified Phenoxy (meth)acrylate, nonylphenol (meth)acrylate, ethylene oxide-modified nonylphenol (meth)acrylate, propylene oxide-modified nonylphenol (meth)acrylate, methoxydiethylene glycol (meth)acrylate, methoxypolyethylene glycol (meth)acrylate, methoxypropylene glycol ( meth)acrylate, 2-(meth)acryloyloxyethyl-2-hydroxypropyl phthalate, 2-hydroxy-3-phenoxypropyl(meth)acrylate, 2-(meth)acryloyloxyethyl hydrogen phthalate, 2-(meth)acryloyloxy Propyl hydrogen phthalate, 2-(meth)acryloyloxypropyl hexahydrohydrogen phthalate, 2-(meth)acryloyloxypropyl tetrahydrohydrogen phthalate, dimethylaminoethyl (meth)acrylate, trifluoroethyl (meth)acrylate, tetrafluoropropyl (meth) ) acrylate, hexafluoropropyl (meth)acrylate, octafluoropropyl (meth)acrylate, 2-adamantane, adamantane derivative mono(meth)acrylate such as adamantyl acrylate having a monovalent mono(meth)acrylate derived from adamantane diol etc.
 2官能の(メタ)アクリレートの例としては、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、ブタンジオールジ(メタ)アクリレート、ヘキサンジオールジ(メタ)アクリレート、ノナンジオールジ(メタ)アクリレート、エトキシ化ヘキサンジオールジ(メタ)アクリレート、プロポキシ化ヘキサンジオールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ネオペンチルグリコ-ルジ(メタ)アクリレート、エトキシ化ネオペンチルグリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ヒドロキシピバリン酸ネオペンチルグリコールジ(メタ)アクリレート等のジ(メタ)アクリレート等が挙げられる。 Examples of difunctional (meth)acrylates include ethylene glycol di(meth)acrylate, diethylene glycol di(meth)acrylate, butanediol di(meth)acrylate, hexanediol di(meth)acrylate, and nonanediol di(meth)acrylate. , ethoxylated hexanediol di(meth)acrylate, propoxylated hexanediol di(meth)acrylate, diethylene glycol di(meth)acrylate, polyethylene glycol di(meth)acrylate, tripropylene glycol di(meth)acrylate, polypropylene glycol di(meth)acrylate, ) acrylate, neopentyl glycol di(meth)acrylate, ethoxylated neopentyl glycol di(meth)acrylate, tripropylene glycol di(meth)acrylate, di(meth)acrylate such as neopentyl glycol hydroxypivalate di(meth)acrylate Examples include acrylate.
 3官能以上の(メタ)アクリレートの例としては、トリメチロールプロパントリ(メタ)アクリレート、エトキシ化トリメチロールプロパントリ(メタ)アクリレート、プロポキシ化トリメチロールプロパントリ(メタ)アクリレート、トリス2-ヒドロキシエチルイソシアヌレートトリ(メタ)アクリレート、グリセリントリ(メタ)アクリレート等のトリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールトリ(メタ)アクリレート、ジトリメチロールプロパントリ(メタ)アクリレート等の3官能の(メタ)アクリレート化合物や、ペンタエリスリトールテトラ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジトリメチロールプロパンペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジトリメチロールプロパンヘキサ(メタ)アクリレート等の3官能以上の多官能(メタ)アクリレート化合物や、これら(メタ)アクリレートの一部をアルキル基やε-カプロラクトンで置換した多官能(メタ)アクリレート化合物等が挙げられる。 Examples of trifunctional or higher functional (meth)acrylates include trimethylolpropane tri(meth)acrylate, ethoxylated trimethylolpropane tri(meth)acrylate, propoxylated trimethylolpropane tri(meth)acrylate, and tris-2-hydroxyethyl isocyanate. Trifunctional tri(meth)acrylates such as nurate tri(meth)acrylate, glycerin tri(meth)acrylate, pentaerythritol tri(meth)acrylate, dipentaerythritol tri(meth)acrylate, and ditrimethylolpropane tri(meth)acrylate (meth)acrylate compounds, pentaerythritol tetra(meth)acrylate, ditrimethylolpropane tetra(meth)acrylate, dipentaerythritol tetra(meth)acrylate, dipentaerythritol penta(meth)acrylate, ditrimethylolpropane penta(meth)acrylate Acrylate, dipentaerythritol hexa(meth)acrylate, ditrimethylolpropane hexa(meth)acrylate, and other polyfunctional (meth)acrylate compounds with three or more functionalities, or some of these (meth)acrylates with an alkyl group or ε-caprolactone. Examples include substituted polyfunctional (meth)acrylate compounds.
 また、多官能モノマーとして、ウレタン(メタ)アクリレートも使用できる。ウレタン(メタ)アクリレートとしては、例えば、ポリエステルポリオールにイソシアネートモノマー、もしくはプレポリマーを反応させて得られた生成物に水酸基を有する(メタ)アクリレートモノマーを反応させることによって得られるものを挙げることができる。 Additionally, urethane (meth)acrylate can also be used as a polyfunctional monomer. Examples of urethane (meth)acrylate include those obtained by reacting a (meth)acrylate monomer having a hydroxyl group with a product obtained by reacting a polyester polyol with an isocyanate monomer or a prepolymer. .
 ウレタン(メタ)アクリレートの例としては、ペンタエリスリトールトリアクリレートヘキサメチレンジイソシアネートウレタンプレポリマー、ジペンタエリスリトールペンタアクリレートヘキサメチレンジイソシアネートウレタンプレポリマー、ペンタエリスリトールトリアクリレートトルエンジイソシアネートウレタンプレポリマー、ジペンタエリスリトールペンタアクリレートトルエンジイソシアネートウレタンプレポリマー、ペンタエリスリトールトリアクリレートイソホロンジイソシアネートウレタンプレポリマー、ジペンタエリスリトールペンタアクリレートイソホロンジイソシアネートウレタンプレポリマー等が挙げられる。 Examples of urethane (meth)acrylates include pentaerythritol triacrylate hexamethylene diisocyanate urethane prepolymer, dipentaerythritol pentaacrylate hexamethylene diisocyanate urethane prepolymer, pentaerythritol triacrylate toluene diisocyanate urethane prepolymer, dipentaerythritol pentaacrylate toluene diisocyanate Examples include urethane prepolymer, pentaerythritol triacrylate isophorone diisocyanate urethane prepolymer, dipentaerythritol pentaacrylate isophorone diisocyanate urethane prepolymer.
 上述した多官能モノマーは1種を用いても良いし、2種以上を組み合わせて用いても良い。また、上述した多官能モノマーは、塗工液中でモノマーであっても良いし、一部が重合したオリゴマーであっても良い。 The above-mentioned polyfunctional monomers may be used alone or in combination of two or more. Further, the above-mentioned polyfunctional monomer may be a monomer in the coating liquid, or may be a partially polymerized oligomer.
 有機微粒子は、主として防眩層3の表面に微細な凹凸を形成し、外光を拡散させる機能を付与する材料である。有機微粒子としては、アクリル樹脂、ポリスチレン樹脂、スチレン-(メタ)アクリル酸エステル共重合体、ポリエチレン樹脂、エポキシ樹脂、シリコーン樹脂、ポリフッ化ビニリデン、ポリフッ化エチレン系樹脂等の透光性樹脂材料からなる樹脂粒子を使用できる。屈折率や樹脂粒子の分散を調整するために、材質(屈折率)の異なる2種類以上の樹脂粒子を混合して使用しても良い。 The organic fine particles are a material that mainly forms fine irregularities on the surface of the anti-glare layer 3 and provides a function of diffusing external light. Organic fine particles are made of translucent resin materials such as acrylic resin, polystyrene resin, styrene-(meth)acrylate copolymer, polyethylene resin, epoxy resin, silicone resin, polyvinylidene fluoride, and polyethylene fluoride resin. Resin particles can be used. In order to adjust the refractive index and the dispersion of the resin particles, two or more types of resin particles having different materials (refractive indexes) may be mixed and used.
 防眩層形成用組成物に添加する無機微粒子は、平均粒径が10~200nmのナノ粒子であることが好ましい。 The inorganic fine particles added to the composition for forming an anti-glare layer are preferably nanoparticles with an average particle size of 10 to 200 nm.
 無機微粒子は、主として防眩層3中の有機微粒子の沈降や凝集を調整するための材料である。無機微粒子としては、シリカ微粒子や、金属酸化物微粒子、各種の鉱物微粒子等を使用することができる。シリカ微粒子としては、例えば、コロイダルシリカや(メタ)アクリロイル基等の反応性官能基で表面修飾されたシリカ微粒子等を使用することができる。金属酸化物微粒子としては、例えば、アルミナや酸化亜鉛、酸化スズ、酸化アンチモン、酸化インジウム、チタニア、ジルコニア等を使用することができる。鉱物微粒子としては、例えば、雲母、合成雲母、バーミキュライト、モンモリロナイト、鉄モンモリロナイト、ベントナイト、バイデライト、サポナイト、ヘクトライト、スチーブンサイト、ノントロナイト、マガディアイト、アイラライト、カネマイト、層状チタン酸、スメクタイト、合成スメクタイト等を使用することができる。鉱物微粒子は、天然物及び合成物(置換体、誘導体を含む)のいずれであっても良く、両者の混合物を使用しても良い。鉱物微粒子の中でも、層状有機粘土がより好ましい。層状有機粘土とは、膨潤性粘土の層間に有機オニウムイオンを導入したものをいう。有機オニウムイオンは、膨潤性粘土の陽イオン交換性を利用して有機化することができるものであれば制限されない。鉱物微粒子として、層状有機粘土鉱物を用いる場合、上述した合成スメクタイトを好適に使用できる。合成スメクタイトは、防眩層形成用組成物の粘性を増加させ、樹脂粒子及び無機微粒子の沈降を抑制して、光学機能層の表面の凹凸形状を調整する機能を有する。 The inorganic fine particles are a material mainly for adjusting sedimentation and aggregation of the organic fine particles in the anti-glare layer 3. As the inorganic fine particles, silica fine particles, metal oxide fine particles, various mineral fine particles, etc. can be used. As the silica fine particles, for example, colloidal silica, silica fine particles surface-modified with a reactive functional group such as a (meth)acryloyl group, etc. can be used. As the metal oxide fine particles, for example, alumina, zinc oxide, tin oxide, antimony oxide, indium oxide, titania, zirconia, etc. can be used. Examples of mineral fine particles include mica, synthetic mica, vermiculite, montmorillonite, iron-montmorillonite, bentonite, beidellite, saponite, hectorite, stevensite, nontronite, magadiite, islarite, kanemite, layered titanate, smectite, and synthetic. Smectite etc. can be used. The mineral fine particles may be either natural products or synthetic products (including substituted products and derivatives), and a mixture of both may be used. Among the mineral fine particles, layered organic clay is more preferable. Layered organic clay refers to a swellable clay in which organic onium ions are introduced between the layers. The organic onium ion is not limited as long as it can be organicized using the cation exchange properties of the swelling clay. When using a layered organic clay mineral as the mineral fine particles, the above-mentioned synthetic smectite can be suitably used. Synthetic smectite has the function of increasing the viscosity of the composition for forming an anti-glare layer, suppressing sedimentation of resin particles and inorganic fine particles, and adjusting the uneven shape of the surface of the optical functional layer.
 防眩層形成用組成物を紫外線照射により硬化させるため、重合開始剤を添加しても良い。重合開始剤としては、紫外線照射によりラジカルを発生する重合開始剤を使用することができる。重合開始剤としては、アセトフェノン系、ベンゾフェノン系、チオキサントン系、ベンゾイン、ベンゾインメチルエーテル、アシルフォスフィンオキシド等のラジカル重合開始剤に使用することができる。重合開始剤として、例えば、ジフェニル(2,4,6-トリメチルベンゾイル)ホスフィンオキシド、ビス(2,4,6-トリメチルベンゾイル)フェニルホスフィンオキシド、2,2-ジエトキシアセトフェノン、1-ヒドロキシシクロヘキシルフェニルケトン、2,2-ジメトキシ-フェニルアセトフェノン、ジベンゾイル、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、p-クロロベンゾフェノン、p-メトキシベンゾフェノン、ミヒラーケトン、アセトフェノン、2-クロロチオキサントン等を使用できる。これらのうち1種類を単独で使用しても良いし、2種類以上を組み合わせて使用しても良い。 A polymerization initiator may be added to cure the composition for forming an anti-glare layer by irradiating ultraviolet rays. As the polymerization initiator, a polymerization initiator that generates radicals upon irradiation with ultraviolet light can be used. As the polymerization initiator, radical polymerization initiators such as acetophenone, benzophenone, thioxanthone, benzoin, benzoin methyl ether, and acylphosphine oxide can be used. As a polymerization initiator, for example, diphenyl(2,4,6-trimethylbenzoyl)phosphine oxide, bis(2,4,6-trimethylbenzoyl)phenylphosphine oxide, 2,2-diethoxyacetophenone, 1-hydroxycyclohexylphenyl ketone , 2,2-dimethoxy-phenylacetophenone, dibenzoyl, benzoin, benzoin methyl ether, benzoin ethyl ether, p-chlorobenzophenone, p-methoxybenzophenone, Michler's ketone, acetophenone, 2-chlorothioxanthone, and the like. One type of these may be used alone, or two or more types may be used in combination.
 また、防眩層形成用組成物には、防汚性を向上する成分として、防汚剤、レベリング剤、撥油剤、撥水剤、指紋付着防止剤を添加することが好ましい。これらの添加剤として、含フッ素化合物やシリコーン化合物を好適に使用することができる。最表層となる防眩層3に防汚性の化合物を添加することによって、指紋拭き取り性を一層向上させることができる。その他、帯電防止剤、消泡剤、酸化防止剤、紫外線吸収剤、赤外線吸収剤、色材、光安定剤、重合禁止剤、光増感剤、抗菌剤、抗ウイルス剤等の各種添加剤等を必要に応じて添加しても良い。 Furthermore, it is preferable to add an antifouling agent, a leveling agent, an oil repellent, a water repellent, and an anti-fingerprint agent to the composition for forming an anti-glare layer as components for improving antifouling properties. As these additives, fluorine-containing compounds and silicone compounds can be suitably used. By adding an antifouling compound to the antiglare layer 3, which is the outermost layer, fingerprint wiping properties can be further improved. Other additives include antistatic agents, antifoaming agents, antioxidants, ultraviolet absorbers, infrared absorbers, colorants, light stabilizers, polymerization inhibitors, photosensitizers, antibacterial agents, antiviral agents, etc. may be added as necessary.
 更に、防眩層形成用組成物には、必要に応じて、溶剤を添加しても良い。溶剤としては、メタノール、エタノール、1-プロパノール、2-プロパノール、ブタノール、イソプロピルアルコール、イソブタノール等のアルコール類、アセトン、メチルエチルケトン、シクロヘキサノン、メチルイソブチルケトン等のケトン類、ジアセトンアルコール等のケトンアルコール類、ベンゼン、トルエン、キシレン等の芳香族炭化水素類、エチレングリコール、プロピレングリコール、ヘキシレングリコール等のグリコール類、エチルセロソルブ、ブチルセロソルブ、エチルカルビトール、ブチルカルビトール、ジエチルセロソルブ、ジエチルカルビトール、プロピレングリコールモノメチルエーテル等のグリコールエーテル類、乳酸メチル、乳酸エチル、酢酸メチル、酢酸エチル、酢酸ブチル、酢酸アミル等のエステル類、ジメチルエーテル、ジエチルエーテル等のエーテル類、N-メチルピロリドン、ジメチルフォルムアミド等のうち、1種類または2種類以上を混合して使用できる。 Furthermore, a solvent may be added to the composition for forming an anti-glare layer, if necessary. Examples of solvents include alcohols such as methanol, ethanol, 1-propanol, 2-propanol, butanol, isopropyl alcohol, and isobutanol, ketones such as acetone, methyl ethyl ketone, cyclohexanone, and methyl isobutyl ketone, and ketone alcohols such as diacetone alcohol. , aromatic hydrocarbons such as benzene, toluene, xylene, glycols such as ethylene glycol, propylene glycol, hexylene glycol, ethyl cellosolve, butyl cellosolve, ethyl carbitol, butyl carbitol, diethyl cellosolve, diethyl carbitol, propylene glycol Glycol ethers such as monomethyl ether, esters such as methyl lactate, ethyl lactate, methyl acetate, ethyl acetate, butyl acetate, amyl acetate, ethers such as dimethyl ether and diethyl ether, N-methylpyrrolidone, dimethylformamide, etc. , one type or a mixture of two or more types can be used.
 図2は、実施形態に係る光学フィルムの他の一例を模式的に示す断面図である。 FIG. 2 is a cross-sectional view schematically showing another example of the optical film according to the embodiment.
 光学積層体12は、透明支持体2と、透明支持体2の一方面に積層された防眩層3と、防眩層3の表面に積層された低屈折率層4(AR層)を備える。光学積層体12は、最表面の微細な凹凸による入射光の散乱と光学干渉とを利用して、外光の映り込み及び反射を抑制する光学フィルムである(「AGLRフィルム」とも称される)。 The optical laminate 12 includes a transparent support 2, an anti-glare layer 3 laminated on one side of the transparent support 2, and a low refractive index layer 4 (AR layer) laminated on the surface of the anti-glare layer 3. . The optical laminate 12 is an optical film that suppresses reflection and reflection of external light by utilizing scattering of incident light and optical interference due to minute irregularities on the outermost surface (also referred to as "AGLR film"). .
 低屈折率層4は、下層の防眩層3の屈折率よりも低い屈折率を有し、光学干渉により反射を抑制する機能層である。 The low refractive index layer 4 is a functional layer that has a refractive index lower than that of the anti-glare layer 3 below, and suppresses reflection by optical interference.
 低屈折率層4は、活性エネルギー線硬化型化合物を含有する組成物を防眩層3の表面に塗布し、塗膜を硬化させることにより形成することができる。低屈折率層4は、屈折率調整のために、低屈折率微粒子を含有しても良い。 The low refractive index layer 4 can be formed by applying a composition containing an active energy ray-curable compound to the surface of the anti-glare layer 3 and curing the coating film. The low refractive index layer 4 may contain low refractive index fine particles to adjust the refractive index.
 低屈折率微粒子としては、例えば、LiF、MgF、3NaF・AlFまたはAlF(いずれも、屈折率1.4)、もしくはNaAlF(氷晶石、屈折率1.33)等の微粒子や、内部に空隙を有するシリカ微粒子を好適に使用することができる。内部に空隙を有するシリカ微粒子は、空隙の部分を空気の屈折率(約1)とすることができるので、低屈折率層4の低屈折率化に遊離である。具体的には、多孔質シリカ粒子、シェル(殻)構造のシリカ粒子を用いることができる。尚、低屈折率微粒子は必ずしも必要ではなく、活性エネルギー線硬化型化合物の硬化後の屈折率が防眩層3の屈折率よりも低い場合は、低屈折率微粒子を省略しても良い。 Examples of low refractive index fine particles include fine particles such as LiF, MgF, 3NaF・AlF, or AlF (all have a refractive index of 1.4), or Na 3 AlF 6 (cryolite, a refractive index of 1.33), Silica fine particles having voids inside can be preferably used. Silica fine particles having voids inside can have the refractive index of air (approximately 1) in the void portion, and are therefore free to lower the refractive index of the low refractive index layer 4. Specifically, porous silica particles and shell-structured silica particles can be used. Note that the low refractive index fine particles are not necessarily necessary, and if the refractive index of the active energy ray-curable compound after curing is lower than the refractive index of the anti-glare layer 3, the low refractive index fine particles may be omitted.
 活性エネルギー線硬化型化合物としては、防眩層で説明した重合性化合物を使用することができる。また、低屈折率層形成用組成物には、上述した重合開始剤や溶剤を適宜添加しても良い。 As the active energy ray-curable compound, the polymerizable compounds described in the anti-glare layer can be used. Further, the above-mentioned polymerization initiator and solvent may be appropriately added to the composition for forming a low refractive index layer.
 低屈折率層4は、最表層となる機能層であるため、低屈折率層形成用組成物には、防汚性を向上する成分として、防汚剤、レベリング剤、撥油剤、撥水剤、指紋付着防止剤を添加することが好ましい。これらの添加剤として、含フッ素化合物やシリコーン化合物を好適に使用することができる。その他、帯電防止剤、消泡剤、酸化防止剤、紫外線吸収剤、赤外線吸収剤、色材、光安定剤、重合禁止剤、光増感剤、抗菌剤、抗ウイルス剤等の各種添加剤等を必要に応じて添加しても良い。 Since the low refractive index layer 4 is a functional layer that is the outermost layer, the composition for forming the low refractive index layer contains an antifouling agent, a leveling agent, an oil repellent, and a water repellent as components for improving antifouling properties. It is preferable to add an anti-fingerprint agent. As these additives, fluorine-containing compounds and silicone compounds can be suitably used. Other additives include antistatic agents, antifoaming agents, antioxidants, ultraviolet absorbers, infrared absorbers, colorants, light stabilizers, polymerization inhibitors, photosensitizers, antibacterial agents, antiviral agents, etc. may be added as necessary.
 上述した抗菌剤及び抗ウイルス剤は、抗菌剤及び抗ウイルス剤のいずれか一方として機能する成分であってもよいし、抗菌剤及び抗ウイルス剤の両方として機能する成分であってもよいし、添加量等の条件によって抗菌剤として機能するか抗ウイルス剤として機能するかが変わる成分であってもよい。 The antibacterial agent and antiviral agent mentioned above may be a component that functions as either an antibacterial agent or an antiviral agent, or a component that functions as both an antibacterial agent and an antiviral agent, It may be a component whose function as an antibacterial agent or an antiviral agent changes depending on conditions such as the amount added.
 抗菌剤、抗ウイルス剤は、無機系材料であってもよいし、有機系材料であってもよい。また、抗菌剤、抗ウイルス剤の形状は、粒子状であってもよいし、粒子状でなくてもよい。抗菌剤、抗ウイルス剤が粒子状である場合、その平均粒子径は、1μm以下であることが好ましい。 The antibacterial agent and antiviral agent may be an inorganic material or an organic material. Further, the antibacterial agent and antiviral agent may or may not be particulate. When the antibacterial agent or antiviral agent is in particulate form, the average particle diameter is preferably 1 μm or less.
 抗菌剤、抗ウイルス剤として使用できる無機系材料の機能成分は、例えば、銀、銅、亜鉛等の金属、酸化亜鉛等の金属酸化物、水酸化カルシウム等の金属水酸化物である。上記金属は、金属粒子であってもよいし、イオン、錯体、塩の形態であってもよい。また、上記金属は、担体に担持されていてもよい。担体は、例えば、ゼオライト、リン酸ジルコニウム等のリン酸塩系担体、シリカゲル、活性炭、ガラス材料等である。また、無機系材料の機能成分は、リン酸チタニア等の無光触媒や、酸化チタン等の光触媒として機能する化合物であってもよい。これらの化合物は上記金属と混合して用いてもよい。上記のなかでも、無機系材料の機能成分としては、金属または金属酸化物を含む無機系粒子が好適に用いられ、特に、銀を含む材料が好適に用いられる。 Functional components of inorganic materials that can be used as antibacterial agents and antiviral agents include, for example, metals such as silver, copper, and zinc, metal oxides such as zinc oxide, and metal hydroxides such as calcium hydroxide. The above-mentioned metal may be a metal particle, or may be in the form of an ion, a complex, or a salt. Further, the metal may be supported on a carrier. Examples of the carrier include zeolite, phosphate carriers such as zirconium phosphate, silica gel, activated carbon, and glass materials. Further, the functional component of the inorganic material may be a non-photocatalyst such as titania phosphate or a compound that functions as a photocatalyst such as titanium oxide. These compounds may be used in combination with the above metals. Among the above, as the functional component of the inorganic material, inorganic particles containing a metal or a metal oxide are preferably used, and in particular, a material containing silver is suitably used.
 抗菌剤、抗ウイルス剤として使用できる有機系材料の機能成分は、合成成分であってもよいし、天然成分であってもよい。合成成分の例は、第4級アンモニウム塩、ポリヘキサメチレンビグアナイド等のビグアナイド系化合物、トリクロサン等である。天然成分の例は、ヒノキチオール、テルペン等である。 The functional component of the organic material that can be used as an antibacterial agent or antiviral agent may be a synthetic component or a natural component. Examples of synthetic components include quaternary ammonium salts, biguanide compounds such as polyhexamethylene biguanide, and triclosan. Examples of natural ingredients are hinokitiol, terpenes, etc.
 透明支持体2と防眩層3との間に、ハードコート層、高屈折率層、中屈折率層、帯電防止層、電磁波遮断層、赤外線吸収層、紫外線吸収層、色補正層等の他の機能層が1層以上積層されても良い。 A hard coat layer, a high refractive index layer, a medium refractive index layer, an antistatic layer, an electromagnetic wave blocking layer, an infrared absorbing layer, an ultraviolet absorbing layer, a color correction layer, etc. are provided between the transparent support 2 and the anti-glare layer 3. One or more functional layers may be stacked.
 上記の防眩層形成用組成物及び低屈折率層形成用組成物の塗工方法は特に限定されず、例えば、スピンコーター、ロールコーター、リバースロールコーター、グラビアコーター、マイクログラビアコーター、ナイフコーター、バーコーター、ワイヤーバーコーター、ダイコーター、ディップコーター、スプレーコーター、アプリケーター等を用いて塗工することができる。 The coating method of the anti-glare layer forming composition and the low refractive index layer forming composition described above is not particularly limited, and examples thereof include a spin coater, a roll coater, a reverse roll coater, a gravure coater, a microgravure coater, a knife coater, Coating can be performed using a bar coater, wire bar coater, die coater, dip coater, spray coater, applicator, etc.
 ここで、本実施形態に係る光学積層体の表面凹凸形状の詳細を説明する。 Here, details of the surface unevenness shape of the optical laminate according to this embodiment will be explained.
 本実施形態に係る光学機能積層体の最表面の凹凸形状は、以下の条件(1)~(3)を同時に満足する。
  40,000≦A≦300,000 (1)
  300≦B≦1,000 (2)
  30≦C≦500 (3)
ここで、A、B及びCは、光学積層体表面の凹凸高さの測定データから生成した画像データを高速フーリエ変換(以下、「FFT」という)し、変換後の画像(パワースペクトラム画像)の所定範囲から算出した空間周波数fから導き出される値である。Aは、0<f≦100cycle/mmの範囲のパワースペクトラム強度の平均値であり、Bは、100cycle/mm<f≦200cycle/mmの範囲のパワースペクトラム強度の平均値であり、Cは、200cycle/mm<f≦300cycle/mmの範囲のパワースペクトラム強度の平均値である。
The uneven shape on the outermost surface of the optical functional laminate according to this embodiment satisfies the following conditions (1) to (3) at the same time.
40,000≦A≦300,000 (1)
300≦B≦1,000 (2)
30≦C≦500 (3)
Here, A, B, and C are images obtained by fast Fourier transform (hereinafter referred to as "FFT") of the image data generated from the measurement data of the height of unevenness on the surface of the optical laminate. This is a value derived from the spatial frequency f calculated from a predetermined range. A is the average value of the power spectrum intensity in the range of 0<f≦100cycle/mm, B is the average value of the power spectrum intensity in the range of 100cycle/mm<f≦200cycle/mm, and C is the average value of the power spectrum intensity in the range of 200cycle/mm. /mm<f≦300cycle/mm.
 上記A、B及びCの値の算出方法は、以下の通りである。 The method for calculating the values of A, B, and C above is as follows.
 まず、光学積層体の最表面の凹凸高さの3次元データを計測により取得する。凹凸高さの3次元データは、計測面内の位置と凹凸の高さとを含む。最表面の凹凸高さの3次元データは、光学干渉方式または接触方式により計測することができる。取得した3次元データは、凹凸高さを画素値とする画像(第1の画像)に変換する。次に、第1の画像に対してFFTを行って、FFT処理後の画像(第2の画像)を得る。次に、FFT処理後の第2の画像内の所定範囲のパワースペクトラムのX座標を空間周波数fに変換する。得られた空間周波数から、0<f≦100cycle/mmの範囲、100cycle/mm<f≦200cycle/mmの範囲、200cycle/mm<f≦300cycle/mmの範囲におけるパワースペクトラム強度の真数の平均値を算出し、上記A、B及びCの値とする。 First, three-dimensional data of the height of the unevenness on the outermost surface of the optical laminate is obtained by measurement. The three-dimensional data of the height of the unevenness includes the position within the measurement plane and the height of the unevenness. The three-dimensional data of the height of the irregularities on the outermost surface can be measured by an optical interference method or a contact method. The acquired three-dimensional data is converted into an image (first image) whose pixel value is the height of the unevenness. Next, FFT is performed on the first image to obtain an image after FFT processing (second image). Next, the X coordinate of the power spectrum in a predetermined range in the second image after FFT processing is converted into a spatial frequency f. From the obtained spatial frequency, the average value of the antilog of the power spectrum intensity in the range of 0<f≦100cycle/mm, the range of 100cycle/mm<f≦200cycle/mm, and the range of 200cycle/mm<f≦300cycle/mm are calculated and set as the values of A, B, and C above.
 従来、指紋拭き取り性を発現させるためには、最表面層にフッ素化合物やシリコーン化合物等の防汚成分を含有させることが一般的であるが、防汚成分の添加のみでは、指紋拭き取り性の向上に限界があった。本願発明者らが検討したところ、指紋拭き取り性には、最表面の材質や含有成分だけでなく、表面凹凸形状も影響していることがわかった。また、本願発明者らが指紋拭き取り性を向上ができる凹凸形状を検討したところ、空間周波数50cycle/mm付近のパワースペクトラム強度が、指紋拭き取り性に大きく関係しており、空間周波数50cycle/mm付近のパワースペクトラム強度が高いほど(すなわち、凹凸高さが高いほど)、指紋ふき取り性が向上することが分かった。 Conventionally, in order to improve fingerprint wiping properties, it is common to include antifouling ingredients such as fluorine compounds and silicone compounds in the outermost layer, but adding antifouling ingredients alone does not improve fingerprint wiping properties. There was a limit. The inventors of the present invention have conducted studies and found that the fingerprint wiping property is affected not only by the material of the outermost surface and the components contained therein, but also by the shape of the surface irregularities. In addition, when the inventors of the present application investigated uneven shapes that can improve fingerprint wiping performance, it was found that the power spectrum intensity around a spatial frequency of 50 cycles/mm is greatly related to fingerprint wiping performance; It was found that the higher the power spectrum intensity (that is, the higher the unevenness height), the better the fingerprint wiping property was.
 上記条件(1)~(3)を満たす場合に指紋拭き取り性が向上するのは、特有の表面凹凸形状を有することによる撥油効果(ロータス効果)や、表面凹凸形状が物理的な拭き取りがしやすい形状となっていることなどが複合的に影響しているためと考えられる。A~Cのいずれかの値が条件(1)~(3)の範囲を外れた場合、指紋拭き取り性が悪化するか、表面散乱が強まることでヘイズが高くなったり、外観が白っぽくなったりするなど、光学特性が悪化する。加えて耐擦傷性など、機械特性も悪化する場合がある。 When the above conditions (1) to (3) are met, fingerprint wiping performance is improved due to the oil-repellent effect (lotus effect) due to the unique surface unevenness, and because the surface unevenness is physically easy to wipe off. This is thought to be due to a combination of factors such as the easy-to-use shape. If any value of A to C is out of the range of conditions (1) to (3), fingerprint wiping performance will deteriorate, or surface scattering will become stronger, resulting in higher haze or whitish appearance. etc., the optical properties deteriorate. In addition, mechanical properties such as scratch resistance may also deteriorate.
 本実施形態に係る光学積層体11及び12は、最表面の凹凸形状が上記条件(1)~(3)を満足することにより、優れた指紋拭き取り性を有する。また、最表層となる機能層に防汚剤等の防汚成分を添加することにより、指紋拭き取り性を更に向上させることができる。 The optical laminates 11 and 12 according to the present embodiment have excellent fingerprint wiping properties because the uneven shape of the outermost surface satisfies the conditions (1) to (3) above. Further, by adding an antifouling component such as an antifouling agent to the functional layer serving as the outermost layer, the fingerprint wiping property can be further improved.
 本実施形態に係る光学積層体11及び12は、指で触れるデバイスの最表面に用いられる。近年の新型コロナウイルスに関する社会情勢から、光学積層体11及び12には、抗菌性や抗ウイルス性能も求められている。そこで、抗菌剤及び/または抗ウイルス剤を防眩層3または低屈折率層4に添加することで、抗菌性及び/または抗ウイルス性を持たせることができる。抗菌剤及び/または抗ウイルス剤を光学積層体の最表面層に添加すれば、より抗菌性及び/または抗ウイルスの効果が高く得られやすいが、光学積層体12のような積層体の防眩層3に抗菌性及び/または抗ウイルス剤を添加した場合でも、抗菌成分あるいは抗ウイルス成分が溶出すれば抗菌性及び/または抗ウイルス性が発現する。 The optical laminates 11 and 12 according to this embodiment are used on the outermost surface of a device that can be touched with a finger. Due to the recent social situation regarding the new coronavirus, the optical laminates 11 and 12 are also required to have antibacterial and antiviral properties. Therefore, by adding an antibacterial agent and/or an antiviral agent to the antiglare layer 3 or the low refractive index layer 4, antibacterial and/or antiviral properties can be imparted. If an antibacterial agent and/or an antiviral agent is added to the outermost layer of the optical laminate, it is easy to obtain a higher antibacterial and/or antiviral effect; Even when an antibacterial and/or antiviral agent is added to layer 3, if the antibacterial component or antiviral component is eluted, the antibacterial and/or antiviral property will be exhibited.
 尚、A~Cの値は、防眩層3に添加するフィラーの粒径や添加量、添加剤の量、防眩層3の膜厚、成膜プロセスにおけるフィラーの凝集状態の調整により制御することができる。 The values of A to C are controlled by adjusting the particle size and amount of the filler added to the anti-glare layer 3, the amount of additive, the thickness of the anti-glare layer 3, and the agglomeration state of the filler in the film forming process. be able to.
 本実施形態に係る光学積層体11及び12は、液晶パネルや有機ELパネル等の画像表示パネルの最表面に貼合して画像表示装置を構成するのに利用することができる。光学積層体11及び12と画像表示パネルとの間にタッチパネルが設けられても良い。本実施形態に係る光学積層体11及び12は、指紋拭き取り性に優れるため、画像表示装置の最表面に設ける光学フィルムとして好適である。 The optical laminates 11 and 12 according to this embodiment can be used to configure an image display device by being laminated to the outermost surface of an image display panel such as a liquid crystal panel or an organic EL panel. A touch panel may be provided between the optical laminates 11 and 12 and the image display panel. The optical laminates 11 and 12 according to this embodiment have excellent fingerprint wiping properties and are therefore suitable as optical films provided on the outermost surface of an image display device.
 以下、本発明を具体的に実施した実施例を説明する。 Examples in which the present invention was specifically implemented will be described below.
(実施例1a)
 以下のハードコート(HC)組成物を調製した。
(Example 1a)
The following hard coat (HC) compositions were prepared.
(HC組成物1:防眩層形成用)
 ペイントシェイカーを用い、平均粒径3.5μmの有機微粒子(テクポリマー製、SSX-2035)をトルエンに40分間分散させた後、有機微粒子5.0質量部、下記式で表されるペンタエリスリトールとアクリル酸の縮合物(大阪有機化学工業製、ビスコート#300、以下、「PETA」という)92.0質量部、光重合開始剤(IGM Resins B.V.製、Omnirad 184)の3.0質量部の割合でトルエンに混合した。組成物中の全固形分濃度は、50質量%に調整した。混合物をペイントシェイカーにて40分間攪拌し、HC組成物1とした。
(HC composition 1: for forming anti-glare layer)
Using a paint shaker, organic fine particles (manufactured by Techpolymer, SSX-2035) with an average particle size of 3.5 μm were dispersed in toluene for 40 minutes, and then 5.0 parts by mass of organic fine particles, pentaerythritol expressed by the following formula, and 92.0 parts by mass of a condensate of acrylic acid (manufactured by Osaka Organic Chemical Industry Co., Ltd., Viscoat #300, hereinafter referred to as "PETA"), 3.0 parts by mass of a photopolymerization initiator (manufactured by IGM Resins B.V., Omnirad 184) 1 part toluene. The total solid content concentration in the composition was adjusted to 50% by mass. The mixture was stirred in a paint shaker for 40 minutes to obtain HC composition 1.
(HC組成物2:低屈折率層形成用)
 PETA(大阪有機化学工業製、ビスコート#300、)45.0質量部、平均粒径75nmのイソプロピルアルコール分散中空シリカ微粒子を固形分で50.0質量部、UV硬化させるための光重合開始剤の光開始剤を3.0質量部、フッ素系防汚剤(信越化学工業製、KY-1203)2.0質量部を添加し、全固形分濃度が3.5質量%となるようイソプロピルアルコールに混合し、混合物をペイントシェイカーにて40分間攪拌し、HC組成物2とした。
(HC composition 2: for forming a low refractive index layer)
45.0 parts by mass of PETA (Viscoat #300, manufactured by Osaka Organic Chemical Industry Co., Ltd.), 50.0 parts by mass of hollow silica particles dispersed in isopropyl alcohol with an average particle size of 75 nm, and a photopolymerization initiator for UV curing. Add 3.0 parts by mass of a photoinitiator and 2.0 parts by mass of a fluorine-based antifouling agent (manufactured by Shin-Etsu Chemical Co., Ltd., KY-1203) to isopropyl alcohol so that the total solid concentration is 3.5% by mass. The mixture was stirred in a paint shaker for 40 minutes to obtain HC Composition 2.
 次に、厚さ60μmのトリアセチルセルロース(TAC)フィルム(富士フィルム製、TJ40)を透明支持体とし、透明支持体の一方面に、HC組成物1をバーコーターを用いて塗布し、乾燥機で100℃で1分間乾燥させた。高圧水銀UV装置を用い、窒素雰囲気下(酸素濃度500ppm以下)にて、積算露光量が200mJ/cmとなるように塗膜に紫外線を照射し、塗膜を硬化させて防眩層を形成した。尚、HC組成物1の塗工量は、硬化後の膜厚が5μmとなるように調節した。 Next, using a triacetyl cellulose (TAC) film (manufactured by Fuji Film, TJ40) with a thickness of 60 μm as a transparent support, HC composition 1 was applied to one side of the transparent support using a bar coater, and a dryer was used. It was dried at 100°C for 1 minute. Using a high-pressure mercury UV device, the coating film is irradiated with ultraviolet rays in a nitrogen atmosphere (oxygen concentration 500 ppm or less) so that the cumulative exposure amount is 200 mJ/ cm2 , and the coating film is cured to form an anti-glare layer. did. The coating amount of HC composition 1 was adjusted so that the film thickness after curing was 5 μm.
 次に、防眩層上に、HC組成物2をバーコーターを用いて塗布し、乾燥機で100℃で1分間乾燥させた。高圧水銀UV装置を用い、窒素雰囲気下(酸素濃度500ppm以下)、積算露光量が200mJ/cmとなるように塗膜西凱旋を照射し、塗膜を硬化させて低屈折率層を形成した。尚、HC組成物2の塗工量は、硬化後の光学膜厚nd(nd=屈折率n×膜厚d(nm))が、550/4nmとなるように調節した。 Next, HC composition 2 was applied onto the anti-glare layer using a bar coater, and dried in a dryer at 100° C. for 1 minute. Using a high-pressure mercury UV device, the coating film was irradiated in a nitrogen atmosphere (oxygen concentration of 500 ppm or less) with a cumulative exposure dose of 200 mJ/cm 2 to harden the coating film and form a low refractive index layer. . The coating amount of HC composition 2 was adjusted so that the optical film thickness nd (nd = refractive index n x film thickness d (nm)) after curing was 550/4 nm.
(実施例2a)
 HC組成物2にフッ素系防汚剤を添加せず、PETAを47.0質量部配合したことを除き、実施例1aと同様に光学積層体を作製した。
(Example 2a)
An optical laminate was produced in the same manner as in Example 1a, except that no fluorine-based antifouling agent was added to HC composition 2 and 47.0 parts by mass of PETA was blended.
(実施例3a)
 HC組成物1におけるPETAの配合量を90.0質量部とし、フッ素系防汚剤(信越化学工業製、KY-1203)を2.0質量部添加し、低屈折率層を形成しなかったことを除き、実施例1aと同様に光学積層体を作製した。
(Example 3a)
The blending amount of PETA in HC composition 1 was 90.0 parts by mass, 2.0 parts by mass of a fluorine-based antifouling agent (manufactured by Shin-Etsu Chemical Co., Ltd., KY-1203) was added, and a low refractive index layer was not formed. Except for this, an optical laminate was produced in the same manner as in Example 1a.
(実施例4a)
 低屈折率層を形成しなかったことを除き、実施例1aと同様に光学積層体を作製した。
(Example 4a)
An optical laminate was produced in the same manner as in Example 1a, except that the low refractive index layer was not formed.
(実施例5a)
 HC組成物1におけるペイントシェイカーによる有機微粒子の分散時間及び塗液の攪拌時間をいずれも60分間としたことを除き、実施例1aと同様に光学積層体を作製した。
(Example 5a)
An optical laminate was produced in the same manner as in Example 1a, except that in HC Composition 1, the time for dispersing organic particles using a paint shaker and the stirring time for the coating liquid were both 60 minutes.
(実施例6a)
 HC組成物1におけるペイントシェイカーによる有機微粒子の分散時間を60分間としたことを除き、実施例1aと同様に光学積層体を作製した。
(Example 6a)
An optical laminate was produced in the same manner as in Example 1a, except that the time for dispersing the organic fine particles using the paint shaker in HC Composition 1 was 60 minutes.
(実施例7a)
 HC組成物1における有機微粒子を平均粒径3.0μmの有機微粒子(テクポリマー製、SSX-103)に変更したことを除き、実施例1aと同様に光学積層体を作製した。
(Example 7a)
An optical laminate was produced in the same manner as in Example 1a, except that the organic fine particles in HC Composition 1 were changed to organic fine particles (manufactured by Techpolymer, SSX-103) with an average particle size of 3.0 μm.
(実施例8a)
 HC組成物2にフッ素系防汚剤を添加せず、PETAの配合量を47.0質量部としたことを除き、実施例7aと同様に光学積層体を作製した。
(Example 8a)
An optical laminate was produced in the same manner as in Example 7a, except that no fluorine-based antifouling agent was added to HC composition 2 and the amount of PETA was 47.0 parts by mass.
(実施例9a)
 HC組成物1におけるPETAの配合量を90.0質量部とし、フッ素系防汚剤(信越化学工業製、KY-1203)を2.0質量部添加し、低屈折率層を形成しなかったことを除き、実施例7aと同様に光学積層体を作製した。
(Example 9a)
The blending amount of PETA in HC composition 1 was 90.0 parts by mass, 2.0 parts by mass of a fluorine-based antifouling agent (manufactured by Shin-Etsu Chemical Co., Ltd., KY-1203) was added, and a low refractive index layer was not formed. Except for this, an optical laminate was produced in the same manner as in Example 7a.
(実施例10a)
 低屈折率層を形成しなかったことを除き、実施例7aと同様に光学積層体を作製した。
(Example 10a)
An optical laminate was produced in the same manner as in Example 7a, except that the low refractive index layer was not formed.
(実施例11a)
 HC組成物1の塗工量を、硬化後の膜厚が6.0μmとなるように変更したことを除き、実施例1aと同様に光学積層体を作製した。
(Example 11a)
An optical laminate was produced in the same manner as in Example 1a, except that the coating amount of HC Composition 1 was changed so that the film thickness after curing was 6.0 μm.
(実施例12a)
 HC組成物2にフッ素系防汚剤を添加せず、PETAの配合量を47.0質量部としたことを除き、実施例11aと同様に光学積層体を作製した。
(Example 12a)
An optical laminate was produced in the same manner as in Example 11a, except that no fluorine-based antifouling agent was added to HC composition 2 and the amount of PETA was 47.0 parts by mass.
(実施例13a)
 HC組成物1におけるPETAの配合量を90.0質量部とし、フッ素系防汚剤(信越化学工業製、KY-1203)を2.0質量部添加し、低屈折率層を形成しなかったことを除き、実施例11aと同様に光学積層体を作製した。
(Example 13a)
The blending amount of PETA in HC composition 1 was 90.0 parts by mass, 2.0 parts by mass of a fluorine-based antifouling agent (manufactured by Shin-Etsu Chemical Co., Ltd., KY-1203) was added, and a low refractive index layer was not formed. Except for this, an optical laminate was produced in the same manner as in Example 11a.
(実施例14a)
 低屈折率層を形成しなかったことを除き、実施例11aと同様に光学積層体を作製した。
(Example 14a)
An optical laminate was produced in the same manner as in Example 11a, except that the low refractive index layer was not formed.
(実施例1b-1)
 HC組成物1のPETAを5.0質量部、抗菌抗ウイルス剤(銀系抗菌抗ウイルス剤(大日精化製:PTC-NT(ST)をビーズミルで粉砕して分散処理を施した粒子、平均粒子径:0.5μm)に置き換えたことを除き、実施例1aと同様に光学積層体を作製した。
(Example 1b-1)
5.0 parts by mass of PETA of HC composition 1, particles of an antibacterial and antiviral agent (silver-based antibacterial and antiviral agent (manufactured by Dainichiseika Chemical Co., Ltd.: PTC-NT (ST)) were crushed with a bead mill and subjected to dispersion treatment, average An optical laminate was produced in the same manner as in Example 1a, except that the particles were replaced with particles (particle size: 0.5 μm).
(実施例1b-2)
 HC組成物1のPETAを10.0重量部、抗菌抗ウイルス剤(第4級アンモニウム塩系抗菌抗ウイルス剤(小林製薬製:KOBA-GUARD、非粒子))に置き換えたことを除き、実施例1aと同様に光学積層体を作製した。
(Example 1b-2)
Examples except that 10.0 parts by weight of PETA in HC composition 1 was replaced with an antibacterial and antiviral agent (a quaternary ammonium salt-based antibacterial and antiviral agent (manufactured by Kobayashi Pharmaceutical: KOBA-GUARD, non-particle)) An optical laminate was produced in the same manner as 1a.
(実施例1c)
 実施例1b-1の透明支持体を、厚さ75μmmのポリエチレンテレフタレート(PET)フィルム(東レ製、ルミラー#75-U34)を透明支持体に置き換えたことを除き、実施例1aと同様に光学積層体を作製した。
(Example 1c)
Optical lamination was performed in the same manner as in Example 1a, except that the transparent support in Example 1b-1 was replaced with a 75 μmm thick polyethylene terephthalate (PET) film (Lumirror #75-U34, manufactured by Toray Industries). The body was created.
(実施例2b~14b)
 HC組成物1のPETAを5.0質量部、抗菌抗ウイルス剤(銀系抗菌抗ウイルス剤(大日精化製:PTC-NT(ST)をビーズミルで粉砕して分散処理を施した粒子、平均粒子径:0.5μm)に置き換えたことを除き、実施例2a~14aと同様に光学積層体を作製した。
(Examples 2b to 14b)
5.0 parts by mass of PETA of HC composition 1, particles of an antibacterial and antiviral agent (silver-based antibacterial and antiviral agent (manufactured by Dainichiseika Chemical Co., Ltd.: PTC-NT (ST)) were crushed with a bead mill and subjected to dispersion treatment, average Optical laminates were produced in the same manner as in Examples 2a to 14a, except that the particles were replaced with particles (particle size: 0.5 μm).
(比較例1)
 HC組成物1の塗工量を、硬化後の膜厚が4.0μmとなるように変更したことを除き、実施例1aと同様に光学積層体を作製した。
(Comparative example 1)
An optical laminate was produced in the same manner as in Example 1a, except that the coating amount of HC composition 1 was changed so that the film thickness after curing was 4.0 μm.
(比較例2)
 HC組成物1の塗工量を、硬化後の膜厚が7.0μmとなるように変更したことを除き、実施例1aと同様に光学積層体を作製した。
(Comparative example 2)
An optical laminate was produced in the same manner as in Example 1a, except that the coating amount of HC Composition 1 was changed so that the film thickness after curing was 7.0 μm.
(比較例3)
 HC組成物1における有機微粒子を平均粒径5.0μmの有機微粒子(テクポリマー製、SSX-105)に変更したことを除き、実施例1aと同様に光学積層体を作製した。
(Comparative example 3)
An optical laminate was produced in the same manner as in Example 1a, except that the organic fine particles in HC Composition 1 were changed to organic fine particles (manufactured by Techpolymer, SSX-105) with an average particle size of 5.0 μm.
(比較例4)
 HC組成物1における有機微粒子を平均粒径2.5μmの有機微粒子(テクポリマー製、SSX-102)に変更したことを除き、実施例1aと同様に光学積層体を作製した。
(Comparative example 4)
An optical laminate was produced in the same manner as in Example 1a, except that the organic fine particles in HC Composition 1 were changed to organic fine particles (manufactured by Techpolymer, SSX-102) with an average particle size of 2.5 μm.
(比較例5)
 HC組成物1におけるPETAの配合量を90.0質量部とし、有機微粒子(テクポリマー製、SSX-2035)の配合量を7.0質量部としたことを除き、実施例1aと同様に光学積層体を作製した。
(Comparative example 5)
The optical composition was prepared in the same manner as in Example 1a, except that the amount of PETA in HC Composition 1 was 90.0 parts by mass, and the amount of organic fine particles (manufactured by Techpolymer, SSX-2035) was 7.0 parts by mass. A laminate was produced.
(比較例6)
 HC組成物1におけるPETAの配合量を94.0質量部とし、有機微粒子の配合量を3.0質量部としたことを除き、実施例1aと同様に光学積層体を作製した。
(Comparative example 6)
An optical laminate was produced in the same manner as in Example 1a, except that the amount of PETA in HC Composition 1 was 94.0 parts by mass, and the amount of organic fine particles was 3.0 parts by mass.
(比較例7)
 HC組成物1におけるペイントシェイカーによる有機微粒子の分散時間を20分間に変更したことを除き、実施例1aと同様に光学積層体を作製した。
(Comparative example 7)
An optical laminate was produced in the same manner as in Example 1a, except that the time for dispersing organic particles using a paint shaker in HC Composition 1 was changed to 20 minutes.
(比較例8)
 HC組成物2にフッ素系防汚剤を添加せず、PETAの配合量を47.0質量部としたことを除き、比較例7と同様に光学積層体を作製した。
(Comparative example 8)
An optical laminate was produced in the same manner as Comparative Example 7, except that no fluorine-based antifouling agent was added to HC Composition 2 and the amount of PETA was 47.0 parts by mass.
(比較例9)
 HC組成物1におけるPETAの配合量を90.0質量部とし、フッ素系防汚剤(信越化学工業製、KY-1203)を2.0質量部添加し、低屈折率層を形成しなかったことを除き、比較例7と同様に光学積層体を作製した。
(Comparative example 9)
The blending amount of PETA in HC composition 1 was 90.0 parts by mass, 2.0 parts by mass of a fluorine-based antifouling agent (manufactured by Shin-Etsu Chemical Co., Ltd., KY-1203) was added, and a low refractive index layer was not formed. An optical laminate was produced in the same manner as Comparative Example 7 except for this.
(比較例10)
 低屈折率層を形成しなかったことを除き、比較例7と同様に光学積層体を作製した。
(Comparative example 10)
An optical laminate was produced in the same manner as Comparative Example 7 except that the low refractive index layer was not formed.
(比較例11)
 HC組成物1におけるペイントシェイカーによる有機微粒子の分散時間及び塗液の攪拌時間を80分間に変更したことを除き、実施例1aと同様に光学積層体を作製した。
(Comparative Example 11)
An optical laminate was produced in the same manner as in Example 1a, except that in HC Composition 1, the time for dispersing organic particles using a paint shaker and the stirring time for the coating liquid were changed to 80 minutes.
(比較例12)
 HC組成物2にフッ素系防汚剤を添加せず、PETAの配合量を47.0質量部としたことを除き、比較例11と同様に光学積層体を作製した。
(Comparative example 12)
An optical laminate was produced in the same manner as Comparative Example 11, except that no fluorine-based antifouling agent was added to HC Composition 2 and the amount of PETA was 47.0 parts by mass.
(比較例13)
 HC組成物1におけるPETAの配合量を90.0質量部とし、フッ素系防汚剤(信越化学工業製、KY-1203)を2.0質量部添加し、低屈折率層を形成しなかったことを除き、比較例11と同様に光学積層体を作製した。
(Comparative example 13)
The blending amount of PETA in HC composition 1 was 90.0 parts by mass, 2.0 parts by mass of a fluorine-based antifouling agent (manufactured by Shin-Etsu Chemical Co., Ltd., KY-1203) was added, and a low refractive index layer was not formed. An optical laminate was produced in the same manner as Comparative Example 11 except for this.
(比較例14)
 低屈折率層を形成しなかったことを除き、比較例11と同様に光学積層体を作製した。
(Comparative example 14)
An optical laminate was produced in the same manner as Comparative Example 11 except that the low refractive index layer was not formed.
 各実施例及び各比較例に係る光学積層体を以下の通り評価した。 The optical laminates according to each Example and each Comparative Example were evaluated as follows.
<評価1:表面凹凸形状>
(3次元データの取得)
 Vertscan(菱化システム社製、R3300H Lite)を用いて、光学積層体の最表面の凹凸形状の3次元データを光学干渉方式にて測定した。測定条件は次の通りである。凹凸高さは、測定範囲内で最も低い位置を基準とした。
・カメラ機種:Sony HR-50 1/3
・対物レンズ倍率:5XTI
・鏡筒:1X
・ズームレンズ:1X
・光源:530white
・波長フィルタ:520nm
・測定デバイス:ピエゾ
・測定モード:Phase
・スキャンスピード:4μm/sec
・スキャンレンジ:10μm~-10μm
・有効ピクセル数:0%
・測定範囲:940.8μm×705.6μm、640pixel×480pixel
・XY方向分解能:1pixel 1.47μm
<Evaluation 1: Surface unevenness shape>
(Acquisition of 3D data)
Using Vertscan (manufactured by Ryoka System Co., Ltd., R3300H Lite), three-dimensional data of the uneven shape of the outermost surface of the optical laminate was measured by an optical interference method. The measurement conditions are as follows. The height of the unevenness was based on the lowest position within the measurement range.
・Camera model: Sony HR-50 1/3
・Objective lens magnification: 5XTI
・Lens barrel: 1X
・Zoom lens: 1X
・Light source: 530white
・Wavelength filter: 520nm
・Measurement device: Piezo ・Measurement mode: Phase
・Scan speed: 4μm/sec
・Scan range: 10μm to -10μm
・Number of effective pixels: 0%
・Measurement range: 940.8μm x 705.6μm, 640pixel x 480pixel
・XY direction resolution: 1 pixel 1.47 μm
(FFT解析)
 フリーソフト「ImageJ 1.53h」をWindows(登録商標)10環境下で使用してFFT解析を実施した。手順は次の通りである。
1.3次元データを、高さを画素値とするTIFF画像データに変換した。
2.元の3次元データ値(高さの測定値)を参照してFFTを実施した。FFT処理後の画像サイズは1024pixel×1024pixelとした。
3.FFT処理後の画像に対して、パワースペクトラム強度を実測値に復元する処理を行った。
4.処理後の画像における、原点を通り正のX軸上±20Pixelの範囲を指定し、パワースペクトラム強度を出力した。
5.出力したパワースペクトラムのX座標を、元の3次元データの画素サイズを元に空間周波数fに変換した。
6.算出した空間周波数から、0<f≦100cycle/mm、100cycle/mm<f≦200cycle/mm、200cycle/mm<f≦300cycle/mmの各範囲内のパワースペクトラム強度の真数での平均値(A~Cの値)を算出した。
(FFT analysis)
FFT analysis was performed using free software "ImageJ 1.53h" under Windows (registered trademark) 10 environment. The steps are as follows.
1. The three-dimensional data was converted to TIFF image data in which the height is the pixel value.
2. FFT was performed with reference to the original three-dimensional data values (height measurements). The image size after FFT processing was 1024 pixels x 1024 pixels.
3. The image after the FFT processing was processed to restore the power spectrum intensity to the actual measured value.
4. In the processed image, a range of ±20 pixels on the positive X axis passing through the origin was specified, and the power spectrum intensity was output.
5. The X coordinate of the output power spectrum was converted into a spatial frequency f based on the pixel size of the original three-dimensional data.
6. From the calculated spatial frequency, the average value (A ~C value) was calculated.
<評価2.光学特性>
 光学積層体の光学特性は、以下に示すヘイズ・防眩性・反射率の評価に基づき、下記基準によって評価した。
◎:ヘイズ・防眩性・反射率に評価◎が1つ以上あり、残りの評価が〇
〇:ヘイズ・防眩性・反射率の全ての評価が〇
×:ヘイズ・防眩性・反射率に評価×が1つ以上ある
<Evaluation 2. Optical properties>
The optical properties of the optical laminate were evaluated according to the following criteria based on the evaluation of haze, antiglare, and reflectance shown below.
◎: There is one or more evaluations ◎ for haze, anti-glare property, reflectance, and the remaining evaluations are 〇〇: All evaluations for haze, anti-glare property, reflectance are 〇×: Haze, anti-glare property, reflectance There is one or more × rating in
(ヘイズ)
 ヘイズは、プラスチックの光学的特性試験方法JIS K 7136のヘイズ試験方法に準拠し、ヘイズメーター(NDH7000、日本電色工業株式会社製)を用いて測定した。光学特性の評価基準は次の通りである。
◎:ヘイズが6%以上8%未満
〇:ヘイズが4%以上6%未満、または、8%以上10%未満
×:ヘイズが4%未満または10%以上
(Haze)
The haze was measured using a haze meter (NDH7000, manufactured by Nippon Denshoku Kogyo Co., Ltd.) in accordance with the haze test method of JIS K 7136, a method for testing optical properties of plastics. The evaluation criteria for optical properties are as follows.
◎: Haze is 6% or more and less than 8% 〇: Haze is 4% or more and less than 6%, or 8% or more and less than 10% ×: Haze is less than 4% or 10% or more
(防眩性)
 図3は、防眩性の評価方法を示す図であり、図4は、防眩性の評価例を示す図である。
(Anti-glare)
FIG. 3 is a diagram showing a method for evaluating anti-glare properties, and FIG. 4 is a diagram showing an example of evaluating anti-glare properties.
 得られた光学積層体を機能面が表面となるように黒板に光学粘着剤を用いて貼合した。また、機能面に対して垂直に光が当たるように三波長蛍光灯と光学積層体を設置した。視点と機能面に写った三波長蛍光灯の像とを結んだ線が、三波長蛍光灯から機能面に下ろした垂線に対して70°となる方向から光学積層体の表面を観察し、下記基準によって防眩性を評価した。
〇:三波長蛍光灯の概形はわかるが、縁がぼやけてはっきりしない
×:三波長蛍光灯の概形がわからないほどぼやけている、あるいは、縁がはっきり見える
The obtained optical laminate was bonded to a blackboard using an optical adhesive so that the functional side faced the surface. In addition, three-wavelength fluorescent lamps and optical laminates were installed so that the light hits the functional surfaces perpendicularly. Observe the surface of the optical laminate from the direction in which the line connecting the viewpoint and the image of the three-wavelength fluorescent lamp reflected on the functional surface is 70° to the perpendicular drawn from the three-wavelength fluorescent lamp to the functional surface, and observe the following. Anti-glare properties were evaluated according to standards.
〇: The outline of the three-wavelength fluorescent lamp can be seen, but the edges are blurry and unclear.
(反射率)
 得られた光学積層体の機能層表面の入射角5°における分光反射率を、自動分光光度計(U-4100、日立製作所製)を用いて測定し、下記基準によって評価した。測定の際には、TACフィルムの裏面(機能層が形成されていない面)につや消し黒色塗料を塗布し、反射防止の処置を施した。
◎:反射率が0.5%未満
〇:反射率が0.5%以上1%未満
×:反射率が1%以上
(reflectance)
The spectral reflectance of the functional layer surface of the obtained optical laminate at an incident angle of 5° was measured using an automatic spectrophotometer (U-4100, manufactured by Hitachi, Ltd.), and evaluated according to the following criteria. During the measurement, a matte black paint was applied to the back surface of the TAC film (the surface on which no functional layer was formed) to prevent reflection.
◎: Reflectance is less than 0.5% 〇: Reflectance is 0.5% or more and less than 1% ×: Reflectance is 1% or more
<評価3.指紋拭き取り性>
 光学積層体を機能面が表面になるように黒板に光学粘着剤を用いて貼合した。オリーブ油試薬を付着させた人工皮革を機能面に押し付けてオリーブ油を付着させ、付着したオリーブ油をティッシュペーパー(スコッティ(登録商標)、日本製紙クラシエ(株)製)を用いて1kgの荷重で繰り返し拭き取り、拭き取るごとにオリーブ油付着箇所の反射分光を分光測色計(CM-2500d、コニカミノルタ製)で測定した。測定条件は次の通りである。
・測定径:Φ8mm
・項目:SCI/SCE
・光源:D65
・UV設定:100%
・観察視野:10°
オリーブ油付着前とふき取り後の色差ΔE*abを算出し、色差ΔE*abが0.5以下になった時のふき取り回数を評価値とし、下記基準によって評価した。
◎:ふき取り回数が5回未満(指紋拭き取り性が非常に良好)
〇:ふき取り回数が5回以上10回未満(指紋拭き取り性が良好)
△:ふき取り回数が10回以上30回未満(指紋を拭き取りにくい)
×:ふき取り回数が30回以上(指紋を非常に拭き取りにくい、または拭き取れない)
<Rating 3. Fingerprint wiping performance>
The optical laminate was attached to a blackboard using an optical adhesive so that the functional side faced the surface. The artificial leather coated with the olive oil reagent was pressed onto the functional surface to coat it with olive oil, and the attached olive oil was repeatedly wiped off using tissue paper (Scotty (registered trademark), manufactured by Nippon Paper Kracie Co., Ltd.) under a load of 1 kg. After each wipe, the reflection spectrum of the olive oil-attached area was measured using a spectrophotometer (CM-2500d, manufactured by Konica Minolta). The measurement conditions are as follows.
・Measurement diameter: Φ8mm
・Item: SCI/SCE
・Light source: D65
・UV setting: 100%
・Observation field of view: 10°
The color difference ΔE*ab before and after wiping off the olive oil was calculated, and the number of times of wiping when the color difference ΔE*ab became 0.5 or less was used as an evaluation value, and the evaluation was made according to the following criteria.
◎: The number of times of wiping is less than 5 times (fingerprint wiping performance is very good)
○: Number of times of wiping is 5 or more and less than 10 times (good fingerprint wiping performance)
△: The number of times of wiping is 10 or more and less than 30 times (difficult to wipe off fingerprints)
×: The number of times of wiping is 30 times or more (fingerprints are very difficult to wipe off or cannot be wiped off)
<評価4.抗菌性>
 光学積層体の機能面表面に対し、JIS Z 2801に準拠して、大腸菌及び黄色ブドウ球菌のそれぞれに対しての抗菌試験を実施した。未加工試料としてはポリエチレンフィルムを使用し、下記基準によって評価した。
〇:大腸菌、黄色ブドウ球菌の両方の抗菌活性値が2.0以上
×:大腸菌、黄色ブドウ球菌の少なくとも一方の抗菌活性値が2.0未満
<Rating 4. Antibacterial>
Antibacterial tests against Escherichia coli and Staphylococcus aureus were conducted on the functional surface of the optical laminate in accordance with JIS Z 2801. A polyethylene film was used as an unprocessed sample and evaluated according to the following criteria.
○: Antibacterial activity value of both E. coli and Staphylococcus aureus is 2.0 or more ×: Antibacterial activity value of at least one of E. coli and Staphylococcus aureus is less than 2.0
<評価5.抗ウイルス性>
 光学積層体の機能面表面に対し、ISO 21702に準拠して、A型インフルエンザウイルス及びネコカリシウイルスのそれぞれに対しての抗ウイルス試験を実施した。未加工試料としてはポリエチレンフィルムを使用し、下記基準によって評価した。
〇:A型インフルエンザウイルス、ネコカリシウイルスの少なくとも一方について抗ウイルス活性値が2.0以上
×:A型インフルエンザウイルス、ネコカリシウイルスの両方の抗ウイルス活性値が2.0未満
<Rating 5. Antiviral>
Antiviral tests against influenza A virus and feline calicivirus were conducted on the functional surface of the optical laminate in accordance with ISO 21702. A polyethylene film was used as an unprocessed sample and evaluated according to the following criteria.
○: Antiviral activity value of at least one of influenza A virus and feline calicivirus is 2.0 or more ×: Antiviral activity value of both influenza A virus and feline calicivirus is less than 2.0
<評価6.耐擦傷性>
 得られた光学積層体を、学振型摩擦堅牢度試験機(AB-301、テスター産業株式会社製)にセットし、光学積層体の表面にスチールウール(Bonstar #0000)を500g/cmの圧力で接触させて10回往復させる耐擦傷試験を行った。耐擦傷試験後、光学積層体の表面を目視で観察し、下記基準によって評価した。
〇:キズ無し
×:キズが1本以上
<Rating 6. Scratch resistance>
The obtained optical laminate was set in a Gakushin type abrasion fastness tester (AB-301, manufactured by Tester Sangyo Co., Ltd.), and 500 g/cm 2 of steel wool (Bonstar #0000) was applied to the surface of the optical laminate. A scratch resistance test was conducted by making contact with pressure and reciprocating 10 times. After the scratch resistance test, the surface of the optical laminate was visually observed and evaluated according to the following criteria.
〇: No scratches ×: One or more scratches
<評価7.水蒸気透過率>
 得られた光学フィルムの透湿度と、上記の透明基材の透湿度とを、JIS Z 0208:1976に規定される、防湿包装材料の透湿度試験法(カップ法)に準拠して、40℃90RH%の条件で測定し、下記基準によって評価した。
〇:透湿度値150g/(m・day)以下
×:透湿度値150g/(m・day)超
<Rating 7. Water vapor transmission rate>
The moisture permeability of the obtained optical film and the moisture permeability of the above-mentioned transparent base material were measured at 40°C in accordance with the moisture permeability test method (cup method) for moisture-proof packaging materials specified in JIS Z 0208:1976. It was measured under the condition of 90RH% and evaluated according to the following criteria.
〇: Moisture permeability value 150g/(m 2・day) or less ×: Moisture permeability value exceeding 150g/(m 2・day)
 表1~3に評価結果を示す。 Tables 1 to 3 show the evaluation results.
 表1に示すように、実施例1a~14aに係る光学積層体は、A~Cが条件(1)~(3)を満たしており、光学特性及び指紋拭き取り性の両方に優れ、耐擦傷性も良好であった。指紋拭き取り性は、最表面の機能層に防汚剤が添加されていない場合でも良好であったが、最表面の機能層への防汚剤の添加により非常に良好となった。また、実施例1b-1、1b-2、1c、2b~14bに係る光学積層体もまた、A~Cが条件(1)~(3)を満たしており、光学特性、指紋拭き取り性及び耐擦傷性に優れていた。加えて、実施例1b-1、1b-2、1c、2b~14bに係る光学積層体は、防眩層に抗菌抗ウイルス剤を含有させているため、抗菌性及び抗ウイルス性を兼ね備えていた。実施例1cに係る光学積層体は、透明支持体として低透湿性のPETフィルムを使用したため、水蒸気透過率が低減されていた。 As shown in Table 1, the optical laminates according to Examples 1a to 14a satisfy conditions (1) to (3) in A to C, have excellent optical properties and fingerprint wiping properties, and have excellent scratch resistance. was also good. The fingerprint wiping property was good even when no antifouling agent was added to the outermost functional layer, but it became very good when an antifouling agent was added to the outermost functional layer. In addition, the optical laminates according to Examples 1b-1, 1b-2, 1c, and 2b to 14b also satisfy conditions (1) to (3) in A to C, and have excellent optical properties, fingerprint wiping properties, and resistance. It had excellent scratch resistance. In addition, the optical laminates according to Examples 1b-1, 1b-2, 1c, and 2b to 14b had both antibacterial and antiviral properties because the antibacterial and antiviral agent was contained in the antiglare layer. . The optical laminate according to Example 1c had a reduced water vapor permeability because a PET film with low moisture permeability was used as the transparent support.
 一方、比較例1~14に係る光学積層体は、A~Cのうち1つ以上が上記条件を満たしておらず、光学特性及び指紋拭き取り性の一方または両方の評価が低かった。 On the other hand, in the optical laminates according to Comparative Examples 1 to 14, one or more of A to C did not satisfy the above conditions, and the evaluation of one or both of optical properties and fingerprint wiping properties was low.
 以上より、上述したA~Cが条件(1)~(3)を同時に満足することによって、光学特性及び指紋拭き取り性に優れた光学積層体を実現できることが確認された。 From the above, it was confirmed that by simultaneously satisfying conditions (1) to (3) for A to C described above, an optical laminate with excellent optical properties and fingerprint wiping properties can be realized.
 本発明は、画像表示装置の最表面に設けられる光学フィルムとして利用できる。 The present invention can be used as an optical film provided on the outermost surface of an image display device.
1 光学積層体
2 透明支持体
3 防眩層
4 低屈折率層
1 Optical laminate 2 Transparent support 3 Anti-glare layer 4 Low refractive index layer

Claims (11)

  1.  最表面に凹凸形状を有する光学積層体であって、
     以下の条件(1)~(3)を同時に満足することを特徴とする、光学積層体。
      40,000≦A≦300,000 (1)
      300≦B≦1,000 (2)
      30≦C≦500 (3)
    ここで、凹凸形状を光学干渉方式または接触方式で計測した凹凸高さの3次元データを、凹凸高さを画素値とする第1の画像データに変換し、第1の画像データを高速フーリエ変換により第2の画像に変換し、第2の画像のうち、原点を通り、かつ、正のX軸上及びY軸方向の±20Pixelの範囲の画像のパワースペクトラムのX座標の空間周波数fを算出した場合において、
    A:0<f≦100cycle/mmの範囲のパワースペクトラム強度の平均値、
    B:100cycle/mm<f≦200cycle/mmの範囲のパワースペクトラム強度の平均値、
    C:200cycle/mm<f≦300cycle/mmの範囲のパワースペクトラム強度の平均値
    である。
    An optical laminate having an uneven shape on the outermost surface,
    An optical laminate characterized by simultaneously satisfying the following conditions (1) to (3).
    40,000≦A≦300,000 (1)
    300≦B≦1,000 (2)
    30≦C≦500 (3)
    Here, the three-dimensional data of the height of the unevenness measured by the optical interference method or the contact method is converted into first image data whose pixel value is the height of the unevenness, and the first image data is subjected to fast Fourier transformation. Convert it to a second image by , and calculate the spatial frequency f of the X coordinate of the power spectrum of the image that passes through the origin and within a range of ±20 pixels on the positive X axis and Y axis direction. In the case that
    A: average value of power spectrum intensity in the range of 0<f≦100cycle/mm,
    B: average value of power spectrum intensity in the range of 100cycle/mm<f≦200cycle/mm,
    C: Average value of power spectrum intensity in the range of 200 cycles/mm<f≦300 cycles/mm.
  2.  前記光学積層体は、透明支持体と、前記透明支持体の少なくとも片方の面に積層された第1の機能層とを有し、最表面の凹凸形状が前記第1の機能層により形成されていることを特徴とする、請求項1に記載の光学積層体。 The optical laminate includes a transparent support and a first functional layer laminated on at least one surface of the transparent support, and the uneven shape of the outermost surface is formed by the first functional layer. The optical laminate according to claim 1, characterized in that:
  3.  前記第1の機能層上に、前記第1の機能層の屈折率よりも低い屈折率を有する第2の機能層を備えていることを特徴とする請求項2に記載の光学積層体。 The optical laminate according to claim 2, further comprising a second functional layer having a refractive index lower than the refractive index of the first functional layer on the first functional layer.
  4.  前記第1の機能層が防汚剤を含有することを特徴とする、請求項2に記載の光学積層体。 The optical laminate according to claim 2, wherein the first functional layer contains an antifouling agent.
  5.  前記第2の機能層が防汚剤を含有することを特徴とする、請求項3に記載の光学積層体。 The optical laminate according to claim 3, wherein the second functional layer contains an antifouling agent.
  6.  前記第1の機能層が含フッ素化合物またはシリコーン化合物を含有することを特徴とする、請求項2に記載の光学積層体。 The optical laminate according to claim 2, wherein the first functional layer contains a fluorine-containing compound or a silicone compound.
  7.  前記第2の機能層が含フッ素化合物またはシリコーン化合物を含有することを特徴とする、請求項3に記載の光学積層体。 The optical laminate according to claim 3, wherein the second functional layer contains a fluorine-containing compound or a silicone compound.
  8.  前記第1の機能層が抗菌剤及び/または抗ウイルス剤を含有することを特徴とする、請求項2に記載の光学積層体。 The optical laminate according to claim 2, wherein the first functional layer contains an antibacterial agent and/or an antiviral agent.
  9.  前記第1の機能層または前記第2の機能層が抗菌剤及び/または抗ウイルス剤を含有することを特徴とする、請求項3に記載の光学積層体。 The optical laminate according to claim 3, wherein the first functional layer or the second functional layer contains an antibacterial agent and/or an antiviral agent.
  10.  前記透明支持体が低透湿性の材料からなることを特徴とする、請求項2に記載の光学積層体。 The optical laminate according to claim 2, wherein the transparent support is made of a material with low moisture permeability.
  11.  請求項1~10のいずれか一項に記載の光学積層体を備える、画像表示装置。 An image display device comprising the optical laminate according to any one of claims 1 to 10.
PCT/JP2023/018649 2022-05-20 2023-05-18 Optical laminate and image display device using same WO2023224104A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-082923 2022-05-20
JP2022082923 2022-05-20

Publications (1)

Publication Number Publication Date
WO2023224104A1 true WO2023224104A1 (en) 2023-11-23

Family

ID=88835322

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/018649 WO2023224104A1 (en) 2022-05-20 2023-05-18 Optical laminate and image display device using same

Country Status (1)

Country Link
WO (1) WO2023224104A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010234717A (en) * 2009-03-31 2010-10-21 Dainippon Printing Co Ltd Optical sheet, and method of manufacturing the same
JP2011017829A (en) * 2009-07-08 2011-01-27 Sumitomo Chemical Co Ltd Anti-glare film and method for manufacturing the same
JP2011186386A (en) * 2010-03-11 2011-09-22 Sumitomo Chemical Co Ltd Antiglare film and antiglare polarizing plate
WO2013015039A1 (en) * 2011-07-26 2013-01-31 株式会社きもと Electrostatic-capacitance-type touch panel and anti-glare film
JP2013189007A (en) * 2012-02-13 2013-09-26 Central Glass Co Ltd Fingerprint resistance transparent substrate
JP2014126598A (en) * 2012-12-25 2014-07-07 Sumitomo Chemical Co Ltd Anti-glare film and anti-glare polarizing plate
JP2014232159A (en) * 2013-05-28 2014-12-11 住友化学株式会社 Antiglare film, mold for producing antiglare film, and method for producing the same
JP2015537250A (en) * 2012-11-21 2015-12-24 スリーエム イノベイティブ プロパティズ カンパニー Light diffusing film and method for producing the same
JP2016122140A (en) * 2014-12-25 2016-07-07 日油株式会社 Anti-glare anti-reflection film and image display device using the same
JP2017021681A (en) * 2015-07-14 2017-01-26 日油株式会社 Resin composition for forming finger sliding layer, finger sliding film, and image display device using the same

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010234717A (en) * 2009-03-31 2010-10-21 Dainippon Printing Co Ltd Optical sheet, and method of manufacturing the same
JP2011017829A (en) * 2009-07-08 2011-01-27 Sumitomo Chemical Co Ltd Anti-glare film and method for manufacturing the same
JP2011186386A (en) * 2010-03-11 2011-09-22 Sumitomo Chemical Co Ltd Antiglare film and antiglare polarizing plate
WO2013015039A1 (en) * 2011-07-26 2013-01-31 株式会社きもと Electrostatic-capacitance-type touch panel and anti-glare film
JP2013189007A (en) * 2012-02-13 2013-09-26 Central Glass Co Ltd Fingerprint resistance transparent substrate
JP2015537250A (en) * 2012-11-21 2015-12-24 スリーエム イノベイティブ プロパティズ カンパニー Light diffusing film and method for producing the same
JP2014126598A (en) * 2012-12-25 2014-07-07 Sumitomo Chemical Co Ltd Anti-glare film and anti-glare polarizing plate
JP2014232159A (en) * 2013-05-28 2014-12-11 住友化学株式会社 Antiglare film, mold for producing antiglare film, and method for producing the same
JP2016122140A (en) * 2014-12-25 2016-07-07 日油株式会社 Anti-glare anti-reflection film and image display device using the same
JP2017021681A (en) * 2015-07-14 2017-01-26 日油株式会社 Resin composition for forming finger sliding layer, finger sliding film, and image display device using the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Monthly display", 13 April 2011, TECHNO TIMES KK, JP, ISBN: 978-4-9905791-0-4, article KIMURA, YASUHIRO: "NOF's optical films for displays. 4. Anti-fingerprint film "Clear Touch"", pages: 174 - 175, XP009550706 *

Similar Documents

Publication Publication Date Title
KR100867338B1 (en) Coating composition, coating film thereof, antireflection coating, antireflection film, image display, and intermediate product
JP5064649B2 (en) Anti-reflection laminate
KR101237822B1 (en) Antireflection laminate
KR101207176B1 (en) Optical laminate and hardcoat film
KR100679905B1 (en) Antireflection films and image display device containing the same
JP4836316B2 (en) Antireflection film, polarizing plate, and image display device
JP5526468B2 (en) Anti-reflection laminate
JP6317256B2 (en) Photosensitive resin composition and antireflection film
JP5032785B2 (en) Antireflection laminate and method for producing the same
US9371467B2 (en) Forming material, paint material composition and production method for forming material
KR20100039869A (en) Antireflection laminate
JP4712236B2 (en) Antireflection film, antireflection film, image display device, and manufacturing method thereof
JP2003292826A (en) Composite, coating composition, its coated film, reflection preventive membrane, reflection preventive film, and image displaying device
JP2003027003A (en) Coating composition, coating film using the same, anti- reflection coating film, and anti-reflection film
JP6492683B2 (en) Anti-glare film and image display device using the same
JP4899263B2 (en) Coating composition and coating film thereof
KR101432987B1 (en) Fingerprint resistant anti-glare coating composition having improved trasmittance and fingerprint resistant anti-glare film using the composition
JP2022164699A (en) Low reflection member, and display device and article using the same
JP4857496B2 (en) Composite, coating composition, coating film thereof, antireflection film, antireflection film, and image display device
WO2023224104A1 (en) Optical laminate and image display device using same
JP7121479B2 (en) Optical laminate, polarizing plate and display device
WO2023223785A1 (en) Optical laminate and image display device including same
JP5096069B2 (en) Optical laminate, polarizing plate, and image display device
WO2023090300A1 (en) Optical laminate and display device using same
WO2018003763A1 (en) Optical laminate, polarizing plate, and display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23807705

Country of ref document: EP

Kind code of ref document: A1