JP6492683B2 - Anti-glare film and image display device using the same - Google Patents

Anti-glare film and image display device using the same Download PDF

Info

Publication number
JP6492683B2
JP6492683B2 JP2015009590A JP2015009590A JP6492683B2 JP 6492683 B2 JP6492683 B2 JP 6492683B2 JP 2015009590 A JP2015009590 A JP 2015009590A JP 2015009590 A JP2015009590 A JP 2015009590A JP 6492683 B2 JP6492683 B2 JP 6492683B2
Authority
JP
Japan
Prior art keywords
fine particles
antiglare
film
layer
pdia
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015009590A
Other languages
Japanese (ja)
Other versions
JP2016133722A (en
Inventor
将幸 村瀬
将幸 村瀬
孝之 野島
孝之 野島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NOF Corp
Original Assignee
NOF Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NOF Corp filed Critical NOF Corp
Priority to JP2015009590A priority Critical patent/JP6492683B2/en
Publication of JP2016133722A publication Critical patent/JP2016133722A/en
Application granted granted Critical
Publication of JP6492683B2 publication Critical patent/JP6492683B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Liquid Crystal (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Laminated Bodies (AREA)
  • Optical Elements Other Than Lenses (AREA)

Description

本発明は、防眩性フィルムであって、ディスプレイのぎらつきが少なく、フリック時の指のすべり易さが良好な防眩性フィルムに関する。また、その防眩性フィルムを用いた画像表示装置に関する。   The present invention relates to an anti-glare film, which is less glaring on a display and has a good finger slipperiness during flicking. The present invention also relates to an image display device using the antiglare film.

カーナビやスマートフォン、テレビなどのディスプレイは、その視認性を高めるために蛍光灯や太陽光などの外部光源から照射された光線の反射が少ないことが求められる。ディスプレイの表面で光が反射すると、ディスプレイにその前方の像が映り込み、表示画像が見えにくくなるためである。そこで、表面に微細な凹凸が形成された防眩性フィルムをディスプレイの表面に設けることにより、反射光を散乱させて映り込みを目立たなくしている。   A display such as a car navigation system, a smartphone, or a television is required to reflect less light emitted from an external light source such as a fluorescent lamp or sunlight in order to improve the visibility. This is because when the light is reflected on the surface of the display, an image in front of the light is reflected on the display, making it difficult to see the display image. Therefore, by providing an antiglare film having fine irregularities on the surface, the reflected light is scattered to make the reflection inconspicuous.

従来、通常のディスプレイのピクセル数は、画面の縦横25.4mm(=1インチ) あたり100〜150程度であり、従来の防眩性フィルムを使用すれば、問題無く映像を鑑賞することが可能になる。しかし、カーナビやスマートフォン、8Kテレビなど、1インチあたりのピクセル数が多く、高精細な画像を映し出すディスプレイが増加しており、例えば、ピクセル数を画面の縦横25.4mmあたり300程度、即ち、上記の通常のディスプレイの2倍以上の高精細のものとすることがある。その目的の一つは、通常の用途のディスプレイの映像をより緻密にすることである。ところが、ピクセル数を上記のように2倍にしたディスプレイに、従来の防眩性フィルムを適用すると、かえって視認性を著しく損なう。それは、従来の防眩性フィルムをディスプレイの表面に設けると、ディスプレイの各ピクセルの境界にあるブラックマスク(もしくはブラックマトリックスとも言い、例えば、縦横に設けられた黒線部である。)と、防眩性フィルムの凹凸の凸部とが重なった箇所においては、特に問題が生じないが、ブラックマスクと防眩性フィルムの凹部が重なった箇所においては、映像光が散乱するために、その部分がキラキラとぎらついて光るシンチレーション(面ギラ)現象が生じるためである。ピクセル数を上記のように2倍にしたディスプレイに、従来の防眩性フィルムを適用すると、シンチレーション(面ギラ)現象が顕著になり、文字、線、絵、もしくは写真等、特に文字や線の視認性を著しく損なうのである。   Conventionally, the number of pixels of a normal display is about 100 to 150 per 25.4 mm (= 1 inch) in the vertical and horizontal directions of the screen, and if a conventional anti-glare film is used, it is possible to view images without problems. Become. However, the number of pixels per inch, such as car navigation systems, smartphones, and 8K televisions, is increasing, and the number of displays that display high-definition images is increasing. For example, the number of pixels is about 300 per 25.4 mm in length and width of the screen. In some cases, a high-definition display more than twice that of a normal display. One of the purposes is to make the image of a display for normal use more precise. However, when a conventional antiglare film is applied to a display in which the number of pixels is doubled as described above, the visibility is remarkably impaired. That is, when a conventional anti-glare film is provided on the surface of the display, a black mask (or a black matrix, for example, a black line portion provided vertically and horizontally) at the boundary of each pixel of the display, and prevention. There is no particular problem at the location where the concave and convex portions of the glare film overlap, but at the location where the black mask and the concave portion of the antiglare film overlap, the image light is scattered, This is because a scintillation phenomenon that glitters and glitters occurs. When a conventional anti-glare film is applied to a display with the number of pixels doubled as described above, scintillation (surface glare) phenomenon becomes prominent, and characters, lines, pictures, photographs, etc., especially characters and lines Visibility is significantly impaired.

特許文献1には、シンチレーションの低下を目的とする防眩性フィルムが開示されている。この防眩性フィルムは、透明基材フィルムの表面に、特定の屈折率差を有する大小のプラスチックビーズを含む防眩層が積層されている。より大きいビーズの粒子径は防眩層の膜厚より大きく、防眩層の表面より0.1〜0.3μm突出し、防眩性、主に反射防止製に寄与しているとされる。一方、より小さいビーズは防眩層全体に含有されるとともに一部は防眩層の表面より突出しており、主に光拡散・シンチレーション防止に寄与しているとされる。   Patent Document 1 discloses an antiglare film for the purpose of reducing scintillation. In this antiglare film, an antiglare layer containing large and small plastic beads having a specific refractive index difference is laminated on the surface of a transparent substrate film. The particle size of the larger beads is larger than the film thickness of the antiglare layer and protrudes 0.1 to 0.3 μm from the surface of the antiglare layer, which is considered to contribute to antiglare properties, mainly antireflection. On the other hand, smaller beads are contained in the entire anti-glare layer and partly protrude from the surface of the anti-glare layer, which is considered to contribute mainly to the prevention of light diffusion and scintillation.

特開2009−86677号公報JP 2009-86677 A

ところで、近年になってマルチタッチ機能を有する静電容量式タッチパネルを搭載したカーナビや携帯電話が普及したため、表面フィルムに対する要求性能のトレンドが変化し、反射防止機能の要求だけでなく、指のすべり性という従来は無かった新たなニーズが高まっている。しかし、従来の防眩性フィルムは、反射防止の機能に特化しており、指のすべり性を高めるニーズに応えることができていない。   By the way, as car navigation systems and mobile phones equipped with a capacitive touch panel having a multi-touch function have become popular in recent years, the trend of required performance for surface films has changed, and not only anti-reflection function requirements but also finger slipping There is a new need for sex that has never existed before. However, the conventional anti-glare film is specialized in the function of preventing reflection and cannot meet the needs for improving the slipperiness of the finger.

そこで、本発明の目的とするところは、ディスプレイのぎらつきが少なく、フリック時の指のすべり易さが良好な防眩性フィルムを提供することにある。   Accordingly, an object of the present invention is to provide an anti-glare film with less display glare and good slipperiness of a finger during flicking.

本発明の防眩性フィルムは、透明基材フィルムに防眩層が積層されており、該防眩層は、大径微粒子と、該大径微粒子よりも比重が大きく粒子径の小さい小径微粒子とを含む。前記大径微粒子は、粒子径Pdiaが0.1μm≦Pdia≦5μmであり、且つ、前記防眩層の膜厚tと粒子径Pdiaの比t/Pdiaが0.05≦t/Pdia≦1.7である。前記小径微粒子の粒子径Mdiaは0.01μm≦Mdia≦0.1μmである。前記小径微粒子の比重Mdenと前記大径微粒子の比重Pdenの比Mden/Pdenが6.0≧Mden/Pden≧2.7であり、前記防眩層の全体積に占める前記大径微粒子の体積割合が0.5%以上40%以下であり、前記防眩層の全体積に占める前記小径微粒子の体積割合が15%以上65%以下である。   In the antiglare film of the present invention, an antiglare layer is laminated on a transparent substrate film, and the antiglare layer comprises large-sized fine particles, and small-sized fine particles having a specific gravity larger than the large-sized fine particles and a smaller particle diameter. including. The large-sized fine particles have a particle diameter Pdia of 0.1 μm ≦ Pdia ≦ 5 μm, and a ratio t / Pdia between the film thickness t of the antiglare layer and the particle diameter Pdia is 0.05 ≦ t / Pdia ≦ 1. 7. The particle diameter Mdia of the small-sized fine particles is 0.01 μm ≦ Mdia ≦ 0.1 μm. The ratio Mden / Pden of the specific gravity Mden of the small particle and the specific gravity Pden of the large particle is 6.0 ≧ Mden / Pden ≧ 2.7, and the volume ratio of the large particle to the total volume of the antiglare layer Is 0.5% or more and 40% or less, and the volume ratio of the small-diameter fine particles in the total volume of the antiglare layer is 15% or more and 65% or less.

前記防眩層の膜厚tと前記大径微粒子の粒子径Pdiaの比t/Pdiaは、0.05≦t/Pdia≦1.3であるとより好ましい。   The ratio t / Pdia between the film thickness t of the antiglare layer and the particle diameter Pdia of the large fine particles is more preferably 0.05 ≦ t / Pdia ≦ 1.3.

前記防眩層の全体積に占める前記小径微粒子の体積割合は、15%以上55%以下であるとより好ましい。   The volume ratio of the small-sized fine particles in the total volume of the antiglare layer is more preferably 15% or more and 55% or less.

前記小径微粒子は、好ましくは、酸化ジルコニウム、酸化チタン、ジルコニア、酸化亜鉛、アンチモン酸亜鉛、錫ドープ酸化インジウム、アンチモンドープ酸化錫、シリカからなる群より選ばれる少なくとも一種である。   The small-diameter fine particles are preferably at least one selected from the group consisting of zirconium oxide, titanium oxide, zirconia, zinc oxide, zinc antimonate, tin-doped indium oxide, antimony-doped tin oxide, and silica.

前記大径微粒子は、好ましくは、アクリル樹脂、ポリスチレン、ポリメタクリルスチレン、架橋アクリル−スチレン共重合樹脂、シリカ、ベンゾグアナミンホルムアルデヒド縮合物、ベンゾグアナミン・メラミン・ホルムアルデヒド縮合物、メラミン・ホルムアルデヒド縮合物、ポリエチレン樹脂、エポキシ樹脂、シリコーン樹脂、ポリフッ化ビニリデン及びポリフッ化エチレン系樹脂からなる群より選ばれる少なくとも一種である。   The large-diameter fine particles are preferably acrylic resin, polystyrene, polymethacrylstyrene, cross-linked acrylic-styrene copolymer resin, silica, benzoguanamine formaldehyde condensate, benzoguanamine / melamine / formaldehyde condensate, melamine / formaldehyde condensate, polyethylene resin, It is at least one selected from the group consisting of epoxy resins, silicone resins, polyvinylidene fluoride, and polyfluorinated ethylene resins.

前記透明基材フィルムと前記防眩層との間にハードコート層を積層してもよい。   A hard coat layer may be laminated between the transparent substrate film and the antiglare layer.

本発明の防眩性フィルムは、画像表示装置の表面に備えられる。   The antiglare film of the present invention is provided on the surface of an image display device.

本発明によれば、ディスプレイのぎらつきが少なく、フリック時の指のすべり易さが良好な防眩性フィルムを提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the glare of a display can be provided and the anti-glare film with the ease of a finger | toe slip at the time of a flick can be provided.

<防眩性フィルム>
防眩性フィルムは、透明基材フィルムをベースとし、その少なくとも一方の面に防眩層が積層されており、適宜、透明基材フィルムと防眩層の間にハードコート層が積層されている。
<Anti-glare film>
The antiglare film is based on a transparent substrate film, and an antiglare layer is laminated on at least one surface thereof, and a hard coat layer is appropriately laminated between the transparent substrate film and the antiglare layer. .

≪透明基材フィルム≫
透明基材フィルムは、無色透明であれば特に制限されない。そのような透明基材フィルムを形成する材料としては、例えばトリアセチルセルロース、ポリエチレンテレフタレート等のポリエステル、シクロオレフィンポリマー、ポリカーボネート樹脂、又はポリメチルメタクリレート樹脂、ポリアリレート、ポリエーテルスルフォンなどがある。これらのうち、トリアセチルセルロース、ポリエチレンテレフタレートが、汎用性が高い点で好ましい。これらの透明基材フィルムの589nmの光に対する屈折率は、概ね1.47〜1.70である。
≪Transparent substrate film≫
The transparent substrate film is not particularly limited as long as it is colorless and transparent. Examples of the material for forming such a transparent substrate film include polyesters such as triacetyl cellulose and polyethylene terephthalate, cycloolefin polymers, polycarbonate resins, or polymethyl methacrylate resins, polyarylate, and polyether sulfone. Of these, triacetyl cellulose and polyethylene terephthalate are preferable in terms of high versatility. These transparent base films have a refractive index of about 1.47 to 1.70 for light of 589 nm.

透明基材フィルムの厚みは、好ましくは25〜400μm程度、より好ましくは50〜200μm程度である。透明基材フィルムの厚みが25μmより薄い場合や400μmより厚い場合には、防眩性フィルムの製造時及び使用時における取り扱い性が低下する。   The thickness of the transparent substrate film is preferably about 25 to 400 μm, more preferably about 50 to 200 μm. When the thickness of the transparent substrate film is thinner than 25 μm or thicker than 400 μm, the handleability during production and use of the antiglare film is lowered.

≪防眩層≫
防眩層は、光透過性を有する。防眩層は、表面に微細な凹凸を有し、その凹凸により反射光を散乱させてぎらつきを低減するとともに、指滑り性を高める。
≪Anti-glare layer≫
The antiglare layer has light transmittance. The antiglare layer has fine irregularities on the surface, and the irregularities scatter reflected light to reduce glare and improve finger slipping.

防眩層は、粒子径及び比重の異なる大径微粒子及び小径微粒子と、バインダー樹脂とを少なくとも含む。防眩層は、大径微粒子、小径微粒子、バインダー樹脂及び適宜光重合開始剤を含む防眩層用樹脂組成物を硬化させることにより形成することができる。   The antiglare layer includes at least a large particle and a small particle having different particle diameters and specific gravity, and a binder resin. The antiglare layer can be formed by curing a resin composition for an antiglare layer containing large fine particles, small fine particles, a binder resin, and a photopolymerization initiator as appropriate.

<大径微粒子>
大径微粒子は、球形であり、小径微粒子に比べて粒子径が大きく比重が小さい。大径微粒子により防眩性フィルムの表面に凹凸形状が形成される。大径微粒子の粒子径Pdiaは、0.1μm≦Pdia≦5μmである。粒子径Pdiaが0.1μm未満の場合、表面凹凸(≒Ra)が小さくなりすぎるため、防眩性が発現しない。一方、粒子径Pdiaが5μmを超えると、表面の凹凸間隔(≒Sm)が大きくなるため、ぎらつき抑制作用が低下する。また、指との接触面積が大きくなるなので指滑り性も低下する。好ましくは、0.5μm≦Pdia≦3μmである。0.5μm≦Pdia≦3μmに制御すると、表面凹凸(≒Ra)の大きさと表面の凹凸間隔(≒Sm)をより適度に調整することができる。
<Large diameter fine particles>
Large diameter fine particles are spherical and have a larger particle size and a lower specific gravity than small diameter fine particles. An uneven shape is formed on the surface of the antiglare film by the large-diameter fine particles. The particle diameter Pdia of the large-sized fine particles is 0.1 μm ≦ Pdia ≦ 5 μm. When the particle diameter Pdia is less than 0.1 μm, the surface unevenness (≈Ra) becomes too small, and thus no antiglare property is exhibited. On the other hand, when the particle diameter Pdia exceeds 5 μm, the surface irregularity interval (≈Sm) becomes large, and the glare-suppressing action is reduced. Moreover, since the contact area with a finger becomes large, finger slipperiness also falls. Preferably, 0.5 μm ≦ Pdia ≦ 3 μm. By controlling to 0.5 μm ≦ Pdia ≦ 3 μm, the size of the surface unevenness (≈Ra) and the surface unevenness interval (≈Sm) can be adjusted more appropriately.

大径微粒子の粒子径Pdiaは、粒子の平均粒径を測定する方法であれば、任意の測定方法が適用できるが、好ましくは、透過型電子顕微鏡(倍率2万〜200万倍)で粒子の観察を行い、粒子100個を観察し、その平均値をもって(平均)粒子径とする。   As long as the particle diameter Pdia of the large-diameter fine particles is a method for measuring the average particle diameter of the particles, any measuring method can be applied. Preferably, the particle diameter Pdia is measured with a transmission electron microscope (magnification of 20,000 to 2,000,000 times). Observation is performed to observe 100 particles, and the average value is defined as the (average) particle diameter.

大径微粒子の粒子径Pdiaは、上記範囲内において、防眩層の膜厚tとの比t/Pdiaが、0.05≦t/Pdia≦1.7を満たす。ここで、防眩層の膜厚tとは、防眩層において、粒子よる突出(凸)のない部分の厚さのことである。防眩層の膜厚tは、膜厚を測定する方法であれば、任意の測定方法が適用できるが、好ましくは、分光膜厚計によって粒子よる突出(凸)のない部分の反射スペクトルを測定し、得られた反射スペクトルからピークバレイ法によって算出される。t/Pdia>1.7であると、膜厚tに対して大径微粒子の粒子径が小さく表面凹凸の大きさが小さくなるので、防眩性が低下する。0.05≦t/Pdia≦1.7であると、防眩性及びぎらつき抑制作用に優れ、且つ指滑り性が良好となる。t/Pdia≦1.3であると、ぎらつき抑制作用が一層優れる。また、t/Pdia≦1であると、防眩性フィルムの表面硬度を高めることができる。膜厚tは、0.1μm≦t≦5μmであるのが好ましい。0.1μm>tであると、防眩層の強度が低下する傾向がある。t>5μmであると、表面凹凸の間隔が大きくなる傾向があり、ぎらつきが強くなる傾向がある。   Within the above range, the particle diameter Pdia of the large-sized fine particles satisfies the ratio t / Pdia with the film thickness t of the antiglare layer satisfies 0.05 ≦ t / Pdia ≦ 1.7. Here, the film thickness t of the anti-glare layer is the thickness of the portion of the anti-glare layer where there is no protrusion (convex) due to particles. As long as the film thickness t of the antiglare layer is a method for measuring the film thickness, any measurement method can be applied, but preferably, the reflection spectrum of the portion without protrusion (convex) due to particles is measured by a spectral film thickness meter. Then, it is calculated from the obtained reflection spectrum by the peak valley method. When t / Pdia> 1.7, the particle size of the large-sized fine particles is small with respect to the film thickness t and the size of the surface irregularities is small, so that the antiglare property is lowered. When 0.05 ≦ t / Pdia ≦ 1.7, the antiglare property and the glare suppressing action are excellent, and the finger slipping property is good. When t / Pdia ≦ 1.3, the glare-suppressing action is further improved. Moreover, the surface hardness of an anti-glare film can be raised as it is t / Pdia <= 1. The film thickness t is preferably 0.1 μm ≦ t ≦ 5 μm. If the thickness is 0.1 μm> t, the strength of the antiglare layer tends to decrease. When t> 5 μm, the gap between the surface irregularities tends to increase, and the glare tends to increase.

大径微粒子は、小径微粒子との比重の比が後述する範囲となれば、材質は特に限定されないが、目安として、比重Pdenが、Pden≦3.0であるものを選択することができる。そのような材料として、樹脂やシリカ等が挙げられる。樹脂としては、アクリル樹脂、ポリスチレン、ポリメタクリルスチレン、架橋アクリル‐スチレン共重合樹脂、ベンゾグアナミンホルムアルデヒド縮合物、ベンゾグアナミン・メラミン・ホルムアルデヒド縮合物、メラミン・ホルムアルデヒド縮合物、ポリエチレン樹脂、エポキシ樹脂、シリコーン樹脂、ポリフッ化ビニリデン、ポリフッ化エチレン系樹脂等が挙げられる。なかでも、アクリル、ポリスチレン、架橋アクリル‐スチレン共重合樹脂は、比重が軽く防眩性を発現しやすいため好ましい。大径微粒子は、一種のみを用いても、二種以上を組み合わせて用いてもよい。   The material of the large-sized fine particles is not particularly limited as long as the ratio of the specific gravity with the small-sized fine particles is within the range described below, but as a guide, a specific gravity having a specific gravity Pden of Pden ≦ 3.0 can be selected. Examples of such a material include resin and silica. Resins include acrylic resin, polystyrene, polymethacrylstyrene, cross-linked acrylic-styrene copolymer resin, benzoguanamine formaldehyde condensate, benzoguanamine / melamine / formaldehyde condensate, melamine / formaldehyde condensate, polyethylene resin, epoxy resin, silicone resin, polyfluoride. And vinylidene chloride and polyfluoroethylene-based resin. Of these, acrylic, polystyrene, and a cross-linked acrylic-styrene copolymer resin are preferable because they have a low specific gravity and easily exhibit antiglare properties. The large-sized fine particles may be used alone or in combination of two or more.

防眩層の全体積に占める大径微粒子の体積の割合は、0.5%以上40%以下である。大径微粒子の体積の割合が0.5%未満であると、十分な防眩性が得られない。一方、大径微粒子の体積の割合が40%を超えると、表面の凹凸が大きくなりすぎるため防眩性が強くなりすぎ、視認性が低下する。   The ratio of the volume of the large-sized fine particles to the total volume of the antiglare layer is 0.5% or more and 40% or less. If the volume ratio of the large fine particles is less than 0.5%, sufficient antiglare property cannot be obtained. On the other hand, if the volume ratio of the large-sized fine particles exceeds 40%, the surface irregularities become too large, so that the antiglare property becomes too strong and the visibility is lowered.

<小径微粒子>
小径微粒子は、大径微粒子に比べて粒子径が小さく比重が大きく、大径微粒子を防眩層の上層部へ偏析させる。小径微粒子は、典型的には球形である。小径微粒子の粒子径Mdiaは、0.01μm≦Mdia≦0.1μmである。粒子径Mdiaが0.01μm未満の場合、粒子が凝集しやすく、均一な防眩性を発現しにくいことがある。一方、粒子径Mdiaが0.1μmを越えると可視光が散乱しやすいため、ヘイズが上昇することがある。粒子径Mdiaが0.02μm≦Mdia≦0.07μmに制御される場合、大径微粒子を均一に防眩層の上層部に偏析させる効果が発現するため、好ましい。
<Small particle size>
The small-sized fine particles have a smaller particle size and a larger specific gravity than the large-sized fine particles, and segregate the large-sized fine particles to the upper layer portion of the antiglare layer. The small particle is typically spherical. The particle diameter Mdia of the small-sized fine particles is 0.01 μm ≦ Mdia ≦ 0.1 μm. When the particle diameter Mdia is less than 0.01 μm, the particles are likely to aggregate and it may be difficult to achieve uniform antiglare properties. On the other hand, if the particle diameter Mdia exceeds 0.1 μm, visible light is likely to be scattered, and thus haze may increase. When the particle diameter Mdia is controlled to 0.02 μm ≦ Mdia ≦ 0.07 μm, it is preferable because an effect of segregating large-sized fine particles uniformly on the upper layer portion of the antiglare layer is preferable.

小径微粒子の粒子径は、粒子の平均粒径を測定する方法であれば、任意の測定方法が適用できるが、好ましくは、透過型電子顕微鏡(倍率2万〜200万倍)で粒子の観察を行い、粒子100個を観察し、その平均値をもって(平均)粒子径とする。   As the particle size of the small-sized fine particles, any measuring method can be applied as long as it is a method for measuring the average particle size of the particles. Preferably, the particles are observed with a transmission electron microscope (magnification of 20,000 to 2,000,000 times). And 100 particles are observed, and the average value is defined as the (average) particle diameter.

小径微粒子の比重Mdenは、大径微粒子の比重Pdenとの比Mden/Pdenが、6.0≧Mden/Pden≧2.7である。Mden/Pden<2.7であると、大径微粒子を防眩層の上層部に偏析しにくくなるため、防眩性が発現し難くなる。Mden/Pden>6.0であると小径微粒子の種類が限定され、金微粒子などの高価な粒子を選択せざるを得ないなど材料を選択する自由度が低下するため、好ましくない。   The specific gravity Mden of the small-sized fine particles is such that the ratio Mden / Pden with the specific gravity Pden of the large-sized fine particles is 6.0 ≧ Mden / Pden ≧ 2.7. When Mden / Pden <2.7, it becomes difficult for the large-diameter fine particles to segregate in the upper layer portion of the antiglare layer, so that the antiglare property is hardly exhibited. Mden / Pden> 6.0 is not preferable because the kind of small-diameter fine particles is limited, and the degree of freedom in selecting a material is reduced, for example, expensive particles such as gold fine particles have to be selected.

小径微粒子は、大径微粒子との比重の比が上記範囲となれば、材質は特に限定されないが、目安として、比重Mdenが、Mden≧2.5であるものを選択することができる。そのような材料として、金属酸化物やシリカ等が挙げられる。金属酸化物としては、酸化ジルコニウム、酸化チタン、ジルコニア、酸化亜鉛、アンチモン酸亜鉛、錫ドープ酸化インジウム、アンチモンドープ酸化錫等が挙げられる。なかでも、酸化チタン、酸化ジルコニウムは、屈折率が高く、比重も大きいため好ましい。小径微粒子は、一種のみを用いても、二種以上を組み合わせて用いてもよい。   The material of the small-diameter fine particles is not particularly limited as long as the ratio of the specific gravity to the large-diameter fine particles falls within the above range, but as a guide, one having a specific gravity Mden of Mden ≧ 2.5 can be selected. Examples of such a material include metal oxide and silica. Examples of the metal oxide include zirconium oxide, titanium oxide, zirconia, zinc oxide, zinc antimonate, tin-doped indium oxide, and antimony-doped tin oxide. Of these, titanium oxide and zirconium oxide are preferable because of their high refractive index and large specific gravity. The small-diameter fine particles may be used alone or in combination of two or more.

防眩層中の小径微粒子の含有量は、防眩層の全体積に占める小径微粒子の体積の割合が、15%以上65%以下である。小径微粒子の体積の割合が15%未満であると、表面の凹凸間隔(≒Sm)が大きくなり、ぎらつき抑制作用が低下する。また、指との接触面積が大きくなるなので指滑り性も低下する。一方、小径微粒子の体積の割合が65%を越えると、相対的にバインダー樹脂の含有量が少なくなり、防眩性フィルムの表面硬度が低下する傾向がある。より好ましくは、小径微粒子の体積の割合が55%以下である。この場合、防眩性フィルムの表面硬度を高めることができる。   The content of the small-sized fine particles in the anti-glare layer is such that the proportion of the volume of the small-sized fine particles in the total volume of the anti-glare layer is 15% or more and 65% or less. If the volume ratio of the small-diameter fine particles is less than 15%, the surface irregularity interval (≈Sm) becomes large, and the glare-suppressing action decreases. Moreover, since the contact area with a finger becomes large, finger slipperiness also falls. On the other hand, when the volume ratio of the small-diameter fine particles exceeds 65%, the content of the binder resin is relatively decreased, and the surface hardness of the antiglare film tends to be lowered. More preferably, the volume ratio of the small-diameter fine particles is 55% or less. In this case, the surface hardness of the antiglare film can be increased.

<バインダー樹脂>
バインダー樹脂としては、アクリロイル基、メタクリロイル基、アクリロイルオキシ基、メタクリロイルオキシ基等のラジカル重合性官能基や、エポキシ基、ビニルエーテル基、オキセタン基等のカチオン重合性官能基を有するモノマー、オリゴマー、プレポリマーを単独で、または適宜混合した組成物が用いられる。モノマーの例としては、アクリル酸メチル、メチルメタクリレート、メトキシポリエチレンメタクリレート、シクロヘキシルメタクリレート、フェノキシエチルメタクリレート、エチレングリコールジメタクリレート、ジペンタエリスリトールヘキサアクリレート、トリメチロールプロパントリメタクリレート、ペンタエリスリトールトリアクリレート等を挙げることができる。オリゴマー、プレポリマーとしては、ポリエステルアクリレート、ポリウレタンアクリレート、多官能ウレタンアクリレート、エポキシアクリレート、ポリエーテルアクリレート、アルキットアクリレート、メラミンアクリレート、シリコーンアクリレート等のアクリレート化合物、不飽和ポリエステル、テトラメチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、ビスフェノールAジグリシジルエーテルや各種脂環式エポキシ等のエポキシ系化合物、3−エチル−3−ヒドロキシメチルオキセタン、1,4-ビス{[(3−エチル−3−オキセタニル)メトキシ]メチル}ベンゼン、ジ[1−エチル(3−オキセタニル)]メチルエーテル等のオキセタン化合物を挙げることができる。これらは単独、もしくは複数混合して使用することができる。
<Binder resin>
Binder resins include monomers, oligomers, and prepolymers having radical polymerizable functional groups such as acryloyl group, methacryloyl group, acryloyloxy group, and methacryloyloxy group, and cationic polymerizable functional groups such as epoxy group, vinyl ether group, and oxetane group. Are used alone, or a composition obtained by appropriately mixing them. Examples of monomers include methyl acrylate, methyl methacrylate, methoxy polyethylene methacrylate, cyclohexyl methacrylate, phenoxyethyl methacrylate, ethylene glycol dimethacrylate, dipentaerythritol hexaacrylate, trimethylolpropane trimethacrylate, pentaerythritol triacrylate, and the like. it can. As oligomers and prepolymers, polyester acrylate, polyurethane acrylate, polyfunctional urethane acrylate, epoxy acrylate, polyether acrylate, acrylate compounds such as alkit acrylate, melamine acrylate, silicone acrylate, unsaturated polyester, tetramethylene glycol diglycidyl ether, Epoxy compounds such as propylene glycol diglycidyl ether, neopentyl glycol diglycidyl ether, bisphenol A diglycidyl ether and various alicyclic epoxies, 3-ethyl-3-hydroxymethyloxetane, 1,4-bis {[(3- Examples include oxetane compounds such as ethyl-3-oxetanyl) methoxy] methyl} benzene and di [1-ethyl (3-oxetanyl)] methyl ether. Door can be. These can be used alone or in combination.

防眩層中のバインダー樹脂の含有量は、防眩層の全体積に占めるバインダー樹脂の体積の割合が、83.5%以下であるのが好ましい。83.5%を超えると、大径微粒子及び小径微粒子の含有量が少なくなるため、表面凹凸が小さくなり、防眩性が発現し難くなる。また、バインダー樹脂の体積の割合は、5%以上であるのが好ましい。5%未満であると、膜中に空隙が発生し、強度が低下する。より好ましくは、バインダー樹脂の体積の割合は、30%以上である。この場合、防眩層の硬度を高めることができる。   The binder resin content in the antiglare layer is preferably such that the volume ratio of the binder resin in the total volume of the antiglare layer is 83.5% or less. If it exceeds 83.5%, the content of the large-sized fine particles and the small-sized fine particles decreases, so that the surface unevenness becomes small and the antiglare property is hardly exhibited. Further, the volume ratio of the binder resin is preferably 5% or more. If it is less than 5%, voids are generated in the film and the strength is lowered. More preferably, the volume ratio of the binder resin is 30% or more. In this case, the hardness of the antiglare layer can be increased.

<光重合開始剤>
光重合開始剤は、紫外線(UV)等の活性エネルギー線により防眩性ハードコート層用樹脂組成物を硬化させて塗膜を形成する際の重合開始剤として用いられる。光重合開始剤としては、活性エネルギー線照射により重合を開始するものであれば特に限定されず、公知の化合物を使用できる。例えば、1−ヒドロキシシクロへキシルフェニルケトン、2−ヒドロキシ−2−メチル−1−フェニルプロパン−1−オン、2−メチル−1−[4−(メチルチオ)フェニル]−2−モルフェリノプロパン−1−オン、1−[4−(2−ヒドロキシエトキシ)フェニル]−2−ヒドロキシ−2−メチル−1−プロパン−1−オン等のアセトフェノン系重合開始剤、ベンゾイン、2,2−ジメトキシ1,2−ジフェニルエタン−1−オン等のベンゾイン系重合開始剤、ベンゾフェノン、[4−(メチルフェニルチオ)フェニル]フェニルメタノン、4−ヒドロキシベンゾフェノン、4−フェニルベンゾフェノン、3,3’,4,4’−テトラ(t−ブチルパーオキシカルボニル)ベンゾフェノン等のベンゾフェノン系重合開始剤、2−クロロチオキサントン、2,4−ジエチルチオキサントン等のチオキサントン系重合開始剤等が挙げられる。
<Photopolymerization initiator>
The photopolymerization initiator is used as a polymerization initiator when the antiglare hard coat layer resin composition is cured by active energy rays such as ultraviolet rays (UV) to form a coating film. The photopolymerization initiator is not particularly limited as long as it initiates polymerization upon irradiation with active energy rays, and known compounds can be used. For example, 1-hydroxycyclohexyl phenyl ketone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropane-1 -One, acetophenone polymerization initiators such as 1- [4- (2-hydroxyethoxy) phenyl] -2-hydroxy-2-methyl-1-propan-1-one, benzoin, 2,2-dimethoxy 1,2 -Benzoin polymerization initiators such as diphenylethane-1-one, benzophenone, [4- (methylphenylthio) phenyl] phenylmethanone, 4-hydroxybenzophenone, 4-phenylbenzophenone, 3,3 ', 4,4' -Benzophenone polymerization initiators such as tetra (t-butylperoxycarbonyl) benzophenone, 2-chlorothio Sandton, such thioxanthone type polymerization initiators such as 2,4-diethyl thioxanthone, and the like.

前記光重合開始剤の防眩層の全体積に占める体積の割合は、1%以上25%であることが好ましい。光重合開始剤が前記範囲より少ないと、重合が不充分となり、密着性を発揮できなくなる。一方、前記範囲より多いと、膜の架橋密度が低くなるため、強度が弱くなる。   The volume ratio of the photopolymerization initiator in the total volume of the antiglare layer is preferably 1% or more and 25%. When the photopolymerization initiator is less than the above range, the polymerization becomes insufficient and the adhesion cannot be exhibited. On the other hand, when the amount is larger than the above range, the cross-linking density of the film is lowered, and the strength is weakened.

<添加物>
防眩層用樹脂組成物は、必要に応じて、表面調製剤、フッ素系防汚剤、シリコン系防汚剤、レベリング剤、紫外線吸収剤、紫外線安定剤、酸化防止剤、帯電防止剤、消泡剤等の従来公知の添加物を、本発明の効果を損なわない範囲で含有していても良い。
<Additives>
The resin composition for the antiglare layer may be prepared as required by a surface preparation agent, a fluorine-based antifouling agent, a silicon-based antifouling agent, a leveling agent, an ultraviolet absorber, an ultraviolet stabilizer, an antioxidant, an antistatic agent, You may contain conventionally well-known additives, such as a foaming agent, in the range which does not impair the effect of this invention.

≪ハードコート層≫
透明基材フィルムと防眩層の間には、防眩性フィルムの表面硬度を高めるために、ハードコート層を設けることができる。ハードコート層の屈折率nhは、特に制限されることはなく、適宜適用できるが、透明基材フィルムの屈折率nbとの差|nb-nh|が0.35を超過しない方が好ましい。透明基材フィルムの屈折率nbとハードコート層の屈折率nhの差|nb-nh|が0.35を超過すると、透明基材フィルム/ハードコート層の界面での反射率が大きくなるため、透過率が減少する。また、さらに好ましくは、ハードコート層の屈折率nhは基材の屈折率nb以上であり、かつ、防眩層の屈折率na以下であることが好ましい。ハードコート層の屈折率nhが透明基材フィルムの屈折率nbよりも低い場合、ハードコート層/防眩層の界面での反射率が大きくなるため、透過率が減少する。また、ハードコート層の屈折率nhが防眩層の屈折率naよりも高い場合、基材/ハードコート層の界面での反射率が大きくなるため、透過率が低下する。ハードコート層の屈折率は、1.49〜1.85であるのが好ましい。屈折率が1.85を超える場合には、透明基材フィルムとハードコート層の屈折率差から生じる干渉により、干渉ムラが表れる場合がある。
≪Hard coat layer≫
A hard coat layer can be provided between the transparent substrate film and the antiglare layer in order to increase the surface hardness of the antiglare film. The refractive index nh of the hard coat layer is not particularly limited and can be appropriately applied. However, it is preferable that the difference | nb−nh | from the refractive index nb of the transparent base film does not exceed 0.35. If the difference | nb−nh | between the refractive index nb of the transparent substrate film and the refractive index nh of the hard coat layer exceeds 0.35, the reflectance at the transparent substrate film / hard coat layer interface increases. Transmittance decreases. More preferably, the refractive index nh of the hard coat layer is not less than the refractive index nb of the base material and not more than the refractive index na of the antiglare layer. When the refractive index nh of the hard coat layer is lower than the refractive index nb of the transparent substrate film, the reflectance at the hard coat layer / antiglare layer interface increases, and the transmittance decreases. Further, when the refractive index nh of the hard coat layer is higher than the refractive index na of the antiglare layer, the reflectance at the substrate / hard coat layer interface increases, and the transmittance decreases. The refractive index of the hard coat layer is preferably 1.49 to 1.85. When the refractive index exceeds 1.85, interference unevenness may appear due to interference caused by the difference in refractive index between the transparent base film and the hard coat layer.

また、ハードコート層の膜厚は、1μm以上が好ましい。膜厚が1μm未満の場合は、表面硬度を効果的に高めることができないため好ましくない。また、ハードコート層の膜厚は、3μm以上が好ましい。20μmを超える場合は、耐屈曲性の低下等の問題が生じるから好ましくない。   The film thickness of the hard coat layer is preferably 1 μm or more. A film thickness of less than 1 μm is not preferable because the surface hardness cannot be increased effectively. Further, the film thickness of the hard coat layer is preferably 3 μm or more. When the thickness exceeds 20 μm, problems such as a decrease in flex resistance occur, which is not preferable.

ハードコート層の材料としては、従来より反射防止フィルム等に用いられている公知のものであれば、特に制限されない。例えば、テトラエトキシシラン等の反応性珪素化合物や、活性エネルギー線硬化型樹脂を用いることができ、これらを混合してもよい。そして、これらに光重合開始剤を加えて調製したハードコート層用塗液に紫外線や電子線等の活性エネルギー線を照射して硬化させてハードコート層を形成することができる。   The material for the hard coat layer is not particularly limited as long as it is a known material conventionally used for an antireflection film or the like. For example, a reactive silicon compound such as tetraethoxysilane or an active energy ray curable resin can be used, and these may be mixed. And the hard-coat layer can be formed by irradiating and hardening | curing active energy rays, such as an ultraviolet-ray and an electron beam, to the coating liquid for hard-coat layers prepared by adding a photoinitiator to these.

活性エネルギー線硬化型樹脂としては、例えば単官能(メタ)アクリレート、多官能(メタ)アクリレートなどが挙げられる。単官能(メタ)アクリレートとして具体的には、(メタ)アクリル酸アルキルエステル、(メタ)アクリル酸(ポリ)エチレングリコール基含有(メタ)アクリル酸エステル等が好ましい。多官能(メタ)アクリレートとしては、多価アルコールと(メタ)アクリル酸とのエステル化合物、ウレタン変性アクリレート等の(メタ)アクリロイル基を2個以上含む多官能重合性化合物等が挙げられる。   Examples of the active energy ray-curable resin include monofunctional (meth) acrylate and polyfunctional (meth) acrylate. Specifically as monofunctional (meth) acrylate, (meth) acrylic acid alkyl ester, (meth) acrylic acid (poly) ethylene glycol group-containing (meth) acrylic acid ester and the like are preferable. Examples of the polyfunctional (meth) acrylate include ester compounds of polyhydric alcohol and (meth) acrylic acid, polyfunctional polymerizable compounds containing two or more (meth) acryloyl groups such as urethane-modified acrylate, and the like.

これらのうち生産性及び硬度を両立させる観点より、鉛筆硬度(評価法:JIS−K5600−5−4)がH以上となる活性エネルギー線硬化型樹脂を含む組成物の硬化物であることが好ましい。そのような活性エネルギー線硬化型樹脂を含む組成物としては特に限定されるものではないが、例えば、公知の活性エネルギー線硬化型樹脂、又は公知の活性エネルギー線硬化型樹脂を2種類以上混合して調製したもの、紫外線硬化性ハードコート材として市販されているものを用いることができる。   Among these, from the viewpoint of achieving both productivity and hardness, a cured product of a composition containing an active energy ray-curable resin having a pencil hardness (evaluation method: JIS-K5600-5-4) of H or higher is preferable. . The composition containing such an active energy ray curable resin is not particularly limited. For example, a known active energy ray curable resin or a mixture of two or more known active energy ray curable resins may be mixed. And those commercially available as ultraviolet curable hard coat materials.

光重合開始剤は、紫外線(UV)等の活性エネルギー線によりハードコート層用塗液を硬化させて塗膜を形成する際の重合開始剤として用いられる。光重合開始剤としては、活性エネルギー線照射により重合を開始するものであれば特に限定されず、公知の化合物を使用できる。例えば、1−ヒドロキシシクロへキシルフェニルケトン、2−ヒドロキシ−2−メチル−1−フェニルプロパン−1−オン、2−メチル−1−[4−(メチルチオ)フェニル]−2−モルフェリノプロパン−1−オン、1−[4−(2−ヒドロキシエトキシ)フェニル]−2−ヒドロキシ−2−メチル−1−プロパン−1−オン等のアセトフェノン系重合開始剤、ベンゾイン、2,2−ジメトキシ1,2−ジフェニルエタン−1−オン等のベンゾイン系重合開始剤、ベンゾフェノン、[4−(メチルフェニルチオ)フェニル]フェニルメタノン、4−ヒドロキシベンゾフェノン、4−フェニルベンゾフェノン、3,3’,4,4’−テトラ(t−ブチルパーオキシカルボニル)ベンゾフェノン等のベンゾフェノン系重合開始剤、2−クロロチオキサントン、2,4−ジエチルチオキサントン等のチオキサントン系重合開始剤等が挙げられる。   The photopolymerization initiator is used as a polymerization initiator when a coating film is formed by curing the hard coat layer coating liquid with an active energy ray such as ultraviolet (UV). The photopolymerization initiator is not particularly limited as long as it initiates polymerization upon irradiation with active energy rays, and known compounds can be used. For example, 1-hydroxycyclohexyl phenyl ketone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropane-1 -One, acetophenone polymerization initiators such as 1- [4- (2-hydroxyethoxy) phenyl] -2-hydroxy-2-methyl-1-propan-1-one, benzoin, 2,2-dimethoxy 1,2 -Benzoin polymerization initiators such as diphenylethane-1-one, benzophenone, [4- (methylphenylthio) phenyl] phenylmethanone, 4-hydroxybenzophenone, 4-phenylbenzophenone, 3,3 ', 4,4' -Benzophenone polymerization initiators such as tetra (t-butylperoxycarbonyl) benzophenone, 2-chlorothio Xanthone, such thioxanthone type polymerization initiators such as 2,4-diethyl thioxanthone, and the like.

塗液の溶媒は、この種の反射防止フィルム等において各層形成用の塗液に従来から使用されている公知のものであれば特に制限は無く、例えばアルコール系、ケトン系、エステル系の溶媒が適時選択できる。   The solvent of the coating solution is not particularly limited as long as it is a known one that has been conventionally used for the coating solution for forming each layer in this type of antireflection film, and examples thereof include alcohol-based, ketone-based, and ester-based solvents. Can be selected in a timely manner.

更に、ハードコート層は、その他添加剤を含有していても良い。その他の添加剤としては、屈折率調整用の無機粒子、帯電防止剤、表面調整剤等が挙げられる。帯電防止剤としては、ATO微粒子、ITO微粒子などのような導電性金属酸化物微粒子や、PEDOTのような導電性ポリマーや、4級アンモニウム塩などの界面活性剤を使用することができる。表面調整剤としては、ポリジメチルシロキサンなどのシリコン系レベリング剤や、アクリル系レベリング剤を使用することができる。   Furthermore, the hard coat layer may contain other additives. Other additives include inorganic particles for adjusting the refractive index, antistatic agents, surface adjusting agents, and the like. As the antistatic agent, conductive metal oxide fine particles such as ATO fine particles and ITO fine particles, conductive polymers such as PEDOT, and surfactants such as quaternary ammonium salts can be used. As the surface conditioner, a silicon leveling agent such as polydimethylsiloxane or an acrylic leveling agent can be used.

≪各層の形成≫
防眩層及びハードコート層の形成方法は特に制限されず、例えば、ウェットコーティング法の塗布方法により、各層用樹脂組成物を適宜溶剤で希釈して調整した各塗液を透明基材フィルムに、塗布し、硬化させる方法を採用することができる。塗布方法としては、生産性や生産コストの面より、特にウェットコーティング法が好ましい。ウェットコーティング法は公知の方法でよく、例えばロールコート法、ダイコート法、スピンコート法、そしてディップコート法等が代表的なものとして挙げられる。これらの中では、ロールコート法等、連続的に塗膜を形成できる方法が生産性の点より好ましい。形成された塗膜は、加熱や紫外線、電子線等の活性エネルギー線照射によって硬化反応を行うことにより硬化被膜を形成することができる。
≪Formation of each layer≫
The method for forming the antiglare layer and the hard coat layer is not particularly limited.For example, by applying the wet coating method, each coating liquid prepared by appropriately diluting the resin composition for each layer with a solvent is applied to the transparent base film. The method of apply | coating and hardening can be employ | adopted. As the coating method, the wet coating method is particularly preferable in terms of productivity and production cost. The wet coating method may be a known method, and typical examples include a roll coating method, a die coating method, a spin coating method, and a dip coating method. In these, the method which can form a coating film continuously, such as a roll coat method, is preferable from the point of productivity. The formed coating film can form a cured film by performing a curing reaction by heating, irradiation with active energy rays such as ultraviolet rays and electron beams.

<防眩性フィルムを表面に備えた画像表示装置>
上記防眩性フィルムを画面の表面に備える画像表示装置は、画面にて光の反射を抑制するとともに、ぎらつきを抑制することができ、且つフリック時の指のすべり易さが良好である。画像表示装置としては、例えば、カーナビ、スマートフォン、モバイルPC、電子黒板のディスプレイなどが挙げられる。防眩性フィルムは、OCA(optical clear adhesive)を介して画像表示装置の観察側の表面に貼り合わせたり、偏光フィルムとして観察側の表面に装着される。防眩性フィルムを偏光フィルムとして使用する場合の形態について説明すると、偏光フィルムは一般に、ヨウ素又は二色性染料が吸着配向されたポリビニルアルコール系樹脂フィルムからなる偏光子の少なくとも片面に、保護フィルムが積層された形のものが多いが、このような偏光フィルムの一方の面に、上記防眩性フィルムを貼合すれば、防眩性反射防止効果のある偏光フィルムとなる。また、上記防眩性フィルムを保護フィルムと兼用し、その防眩層が積層された一方の面が外側となるよう偏光子の片面に貼合することによっても、防眩性反射防止効果のある偏光フィルムとすることができる。
<Image display device with antiglare film on its surface>
An image display device including the antiglare film on the surface of the screen can suppress reflection of light on the screen, suppress glare, and can easily slide a finger during flicking. Examples of the image display device include a car navigation system, a smartphone, a mobile PC, and an electronic blackboard display. The antiglare film is attached to the observation side surface of the image display device via an OCA (optical clear adhesive) or attached to the observation side surface as a polarizing film. In the case of using an antiglare film as a polarizing film, the polarizing film is generally provided with a protective film on at least one surface of a polarizer composed of a polyvinyl alcohol-based resin film adsorbed and oriented with iodine or a dichroic dye. Although there are many things of the laminated | stacked form, if the said anti-glare film is bonded to one side of such a polarizing film, it will become a polarizing film with an anti-glare antireflection effect. Further, the antiglare film has an antiglare antireflection effect by using the antiglare film also as a protective film and pasting the antiglare film on one surface of the polarizer so that one surface on which the antiglare layer is laminated becomes the outside. It can be set as a polarizing film.

以下に、実施例及び比較例を挙げて前記実施形態をさらに具体的に説明するが、本発明はそれら実施例の範囲に限定されるものではない。   Hereinafter, the embodiment will be described more specifically with reference to examples and comparative examples, but the present invention is not limited to the scope of these examples.

〔透明基材フィルム〕
各実施例及び比較例において、透明基材フィルムとしては、以下のものを使用した。
トリアセチルセルロース(TAC)
富士フイルム(株)製「TD80UL」80μm、屈折率1.48
ポリエチレンテレフタレート(PET)
東レ(株)製「U403」100μm、屈折率1.65
シクロオレフィンポリマー(COP)
日本ゼオン株式会社製「ゼオノアフィルム」80μm、屈折率1.53
[Transparent substrate film]
In each Example and Comparative Example, the following were used as the transparent substrate film.
Triacetyl cellulose (TAC)
“TD80UL” manufactured by FUJIFILM Corporation 80 μm, refractive index 1.48
Polyethylene terephthalate (PET)
“U403” 100 μm manufactured by Toray Industries, Inc., refractive index 1.65
Cycloolefin polymer (COP)
“ZEONOR FILM” manufactured by Nippon Zeon Co., Ltd. 80 μm, refractive index 1.53

〔防眩層用樹脂組成物〕
防眩層用樹脂組成物として、次の原料を使用し、各原料を下記表1〜6に記載した組成にて混合し、防眩層用樹脂組成物AG−1〜AG−39を調製した。なお、各原料の体積割合は、防眩層用樹脂組成物全体積における当該原料の体積の割合を示す。
[Resin composition for anti-glare layer]
As the resin composition for the antiglare layer, the following raw materials were used, and the respective raw materials were mixed in the compositions described in Tables 1 to 6 below to prepare resin compositions AG-1 to AG-39 for the antiglare layer. . In addition, the volume ratio of each raw material shows the ratio of the volume of the said raw material in the resin composition whole volume for glare-proof layers.

<小径微粒子>
酸化チタン微粒子(分散液)
CIKナノテック(株)製「RTTMEK25WT%−F02」、粒子径0.015μm
ジルコニア(分散液)
シーアイ化成(株)製「ZRMEK25%−F47」、粒子径径0.015μm
アンチモン酸亜鉛微粒子(AZO)(分散液)
日産化学工業(株)製「セルナックスCX−603M−F2」、粒子径0.05μm
ITO微粒子(分散液)
大日本塗料(株)製「コンダクティブEI−3NMHR3、35%」、粒子径0.05μm
シリカ超微粒子(分散液)
日産化学(株)製「IPA−ST、30%」、粒子径0.03μm
シリカ超微粒子
CIKナノテック(株)製「SIMIBK15WT%-H58」、粒子径0.1μm
アンチモン‐酸化スズ微粒子(ATO)
日産化学工業(株)製 商品名:ATO、粒子径径0.05μm
酸化亜鉛
エア・ブラウン株式会社(株)製「TECNAPOW-ZNO」、粒子径0.02μm
<Small particle size>
Titanium oxide fine particles (dispersion)
“RTTMEK25WT% -F02” manufactured by CIK Nanotech Co., Ltd., particle size 0.015 μm
Zirconia (dispersion)
"ZRMEK25% -F47" manufactured by CII Kasei Co., Ltd., particle size 0.015 µm
Zinc antimonate fine particles (AZO) (dispersion)
“CELNAX CX-603M-F2” manufactured by Nissan Chemical Industries, Ltd., particle size 0.05 μm
ITO fine particles (dispersion)
“Conductive EI-3NMHR3, 35%” manufactured by Dainippon Paint Co., Ltd., particle size 0.05 μm
Silica ultrafine particles (dispersion)
“IPA-ST, 30%” manufactured by Nissan Chemical Co., Ltd., particle size 0.03 μm
Silica ultrafine particle “SIMIBK15WT% -H58” manufactured by CIK Nanotech Co., Ltd., particle size 0.1 μm
Antimony-tin oxide fine particles (ATO)
Product name: ATO, particle size 0.05 μm, manufactured by Nissan Chemical Industries
Zinc oxide Air Brown Co., Ltd. “TECNAPOW-ZNO”, particle size 0.02μm

<大径微粒子>
アクリル(PMMA)、粒子径0.8μm 綜研化学(株)製「MX-80H3wT」
アクリル(PMMA)、粒子径3μm 綜研化学(株)製「MX-300」
アクリル(PMMA)、粒子径5μm 綜研化学(株)製「MX-500」
アクリル(PMMA)、粒子径8μm 積水化成品工業(株)製「SSX-108」
ポリスチレン(PS)、粒子径3.5μm 「綜研化学(株)製、SX-350H」
架橋アクリル−スチレン共重合樹脂(MS)、粒子径0.8μm
積水化成品(株)製「SSX1008QXE」
架橋アクリル−スチレン共重合樹脂(MS)、粒子径5μm
積水化成品(株)製「SSX1055QXE」粒子径の揃った単分散な微粒子
シリカ、粒子径0.8μm コアフロント(株) 製「sicastar 43-00-802」
<Large diameter fine particles>
Acrylic (PMMA), particle size 0.8μm “MX-80H3wT” by Soken Chemical Co., Ltd.
Acrylic (PMMA), particle size 3μm “MX-300” manufactured by Soken Chemical Co., Ltd.
Acrylic (PMMA), particle size 5μm “MX-500” manufactured by Soken Chemical Co., Ltd.
Acrylic (PMMA), particle size 8μm “SSX-108” manufactured by Sekisui Plastics Co., Ltd.
Polystyrene (PS), particle size 3.5 μm “Made by Soken Chemical Co., Ltd., SX-350H”
Cross-linked acrylic-styrene copolymer resin (MS), particle size 0.8μm
"SSX1008QXE" manufactured by Sekisui Plastics Co., Ltd.
Cross-linked acrylic-styrene copolymer resin (MS), particle size 5 μm
"SSX1055QXE" manufactured by Sekisui Plastics Co., Ltd. Monodispersed fine particle silica with uniform particle size, particle size 0.8μm "Sicastar 43-00-802" manufactured by Corefront Co., Ltd.

<バインダー樹脂>
ジペンタエリスリトールヘキサアクリレート、日本化薬(株)製「KAYARAD DPHA」
ウレタンアクリレート
日本合成化学工業(株)製「紫光UV7600B」分子量1400、60℃における粘度が2500〜4500Pa・s
ペンタエリスリトールトリアクリレート(PE3A)
日本化薬(株)製「PET30」
<Binder resin>
Dipentaerythritol hexaacrylate, “KAYARAD DPHA” manufactured by Nippon Kayaku Co., Ltd.
Urethane acrylate “Shikou UV7600B” manufactured by Nippon Synthetic Chemical Industry Co., Ltd., molecular weight 1400, viscosity at 60 ° C. is 2500 to 4500 Pa · s
Pentaerythritol triacrylate (PE3A)
“PET30” manufactured by Nippon Kayaku Co., Ltd.

<光重合開始剤>
チバ・スペシャルティ・ケミカルズ(株)製「IRGACURE184(I−184)」
<Photopolymerization initiator>
“IRGACURE 184 (I-184)” manufactured by Ciba Specialty Chemicals Co., Ltd.

〔ハードコート層用樹脂組成物〕
ハードコート層用樹脂組成物として、下記の市販品を用いた。
東洋インキ(株)製 ハードコート「リオデュラスLAS1303NL」
[Resin composition for hard coat layer]
The following commercially available products were used as the resin composition for the hard coat layer.
Hard coat "Rioduras LAS1303NL" manufactured by Toyo Ink Co., Ltd.

(実施例1−1)
富士フイルム製TACフィルム「TD80UL、80μm」の一面に、防眩用樹脂組成物(AG−1)をバーコーターにて硬化後の膜厚(粒子の存在しない部分の膜厚)が0.2μmとなるように塗布し、120W高圧水銀灯にて400mJの紫外線を照射して硬化させることにより防眩層を形成して防眩性フィルムを作製した。
(Example 1-1)
On one side of FUJIFILM TAC film “TD80UL, 80 μm”, the film thickness after curing the resin composition for anti-glare (AG-1) with a bar coater (the film thickness of the part where particles are not present) is 0.2 μm. The antiglare film was prepared by forming the antiglare layer by applying 400 mJ of ultraviolet light with a 120 W high pressure mercury lamp and curing it.

(実施例1−2〜1−19、1−21〜30、比較例1−1〜1−13)
表7〜11に示される材料を使用して実施例1−1と同様に防眩性フィルムを作成した。
(Examples 1-2 to 1-19, 1-21 to 30, Comparative Examples 1-1 to 1-13)
Using the materials shown in Tables 7 to 11, antiglare films were prepared in the same manner as in Example 1-1.

(実施例1−20)
富士フイルム製TACフィルム「TD80UL、80μm」の一面に、ハードコート用樹脂組成物をバーコーターにて硬化後の膜厚が4μmとなるように塗布し、120W高圧水銀灯にて400mJの紫外線を照射して硬化させることによりクリアハードコート層を形成した。ついで、クリアハードコート層上へ、実施例1−1と同様の手法にて防眩層を設け、防眩性フィルムを作成した。
(Example 1-20)
A hard coat resin composition was applied to one surface of a TAC film “TD80UL, 80 μm” made by Fuji Film so that the film thickness after curing was 4 μm with a bar coater, and irradiated with 400 mJ ultraviolet rays with a 120 W high pressure mercury lamp. A clear hard coat layer was formed by curing. Next, an antiglare layer was provided on the clear hard coat layer by the same method as in Example 1-1 to produce an antiglare film.

得られた各実施例及び比較例の防眩性フィルムについて、各種特性を下記方法にて測定し評価した。その結果も表7〜11に示す。   About the obtained anti-glare film of each Example and a comparative example, various characteristics were measured and evaluated by the following method. The results are also shown in Tables 7-11.

<透明基材フィルムの屈折率>
JIS K 7142−2014記載の方法にて測定した。
<Refractive index of transparent substrate film>
It measured by the method of JISK7142-2014.

<硬化後の各層組成物屈折率>
(1)TACフィルム〔商品名「TD80UL」、富士フイルム(株)製〕上に、バーコーターにより、各層用塗液をそれぞれ乾燥硬化後の膜厚で100〜1000nmになるように層の厚さを調整して塗布した。乾燥後、紫外線照射装置〔岩崎電気(株)製〕により窒素雰囲気下で120W高圧水銀灯を用いて、400mJの紫外線を照射して硬化し、屈折率測定用フィルムを作製した。
(2)作製したフィルムの裏面をサンドペーパーで荒らし、黒色塗料で塗りつぶしたものを反射分光膜厚計〔「FE-3000」、大塚電子(株)製〕により、反射スペクトルを測定した。
(3)反射スペクトルより読み取った反射率から、下記に示すn-Cauchyの波長分散式(式1)の定数を求め、光の波長589nmにおける屈折率を求めた。
N(λ)=a/λ+b/λ+c (式1)
なお、防眩層の屈折率は、防眩層を構成する組成物のうち、大径粒子を除く組成物を硬化して硬化膜を形成し、その硬化膜の反射スペクトルを測定することで算出した。
<The refractive index of each layer composition after curing>
(1) On the TAC film [trade name “TD80UL”, manufactured by FUJIFILM Corporation], the thickness of each layer is such that the coating liquid for each layer is 100 to 1000 nm in thickness after drying and curing by a bar coater. Was adjusted and applied. After drying, the film was cured by irradiating with 400 mJ of ultraviolet light using a 120 W high-pressure mercury lamp in a nitrogen atmosphere with an ultraviolet irradiation device (manufactured by Iwasaki Electric Co., Ltd.) to prepare a film for refractive index measurement.
(2) The reflection spectrum was measured with a reflection spectral film thickness meter [“FE-3000”, manufactured by Otsuka Electronics Co., Ltd.] after roughening the back surface of the produced film with sandpaper and painting with black paint.
(3) From the reflectance read from the reflection spectrum, the constant of the wavelength dispersion formula (Formula 1) of n-Cauchy shown below was obtained, and the refractive index at the wavelength of 589 nm was obtained.
N (λ) = a / λ 4 + b / λ 2 + c (Formula 1)
The refractive index of the antiglare layer is calculated by curing a composition excluding the large particles among the compositions constituting the antiglare layer to form a cured film, and measuring the reflection spectrum of the cured film. did.

<防眩層の膜厚>
分光膜厚計(FE3000,大塚電子製)によって、粒子による突出(凸)のない部分の反射スペクトルを測定し、得られた反射スペクトルからピークバレイ法によって算出した。
<Film thickness of antiglare layer>
The reflection spectrum of a portion without protrusion (convex) due to particles was measured with a spectral film thickness meter (FE3000, manufactured by Otsuka Electronics Co., Ltd.), and the peak reflection method was calculated from the obtained reflection spectrum.

<表面粗さ>
(株)小坂研究所製、表面粗さ測定機、サーフコーダSE500を使用し、走査範囲4mm、走査速度0.2mm/sの条件で、JIS B 0601−1994の規定に準拠して算術平均粗さRa(μm)、凹凸の平均間隔Sm(mm)を測定した。
<Surface roughness>
Arithmetic average roughness in accordance with the provisions of JIS B 0601-1994, using a surface roughness measuring machine manufactured by Kosaka Laboratory Co., Ltd., Surfcorder SE500, under conditions of a scanning range of 4 mm and a scanning speed of 0.2 mm / s. Ra (μm) and the average interval Sm (mm) of the irregularities were measured.

<視感度反射率>
測定面の裏面反射を除くため、裏面をサンドペーパーで粗し、黒色塗料で塗り潰したものを分光光度計〔日本分光(株)製、商品名:U−best560〕により、光の波長380nm〜780nmの5°、−5°正反射スペクトルを測定した。得られる光の波長380nm〜780nmの分光反射率と、CIE標準イルミナントD65の相対分光分布を用いて、JIS Z8701で想定されているXYZ表色系における、反射による物体色の三刺激値Yを視感度反射率(%)とした。
<Visibility reflectance>
In order to remove the back surface reflection of the measurement surface, the back surface was roughened with sandpaper and painted with a black paint, and a light wavelength of 380 nm to 780 nm was measured with a spectrophotometer [trade name: U-best 560 manufactured by JASCO Corporation]. The 5 ° and −5 ° specular reflection spectra were measured. Viewing the tristimulus value Y of the object color due to reflection in the XYZ color system assumed in JIS Z8701, using the spectral reflectance of the obtained light with a wavelength of 380 nm to 780 nm and the relative spectral distribution of the CIE standard illuminant D65. Sensitivity reflectance (%) was used.

<全ヘイズ>
ヘイズメーター〔日本電色工業(株)製、NDH2000〕を使用し、光学特性としてのヘイズ値(%)を測定した。
<All haze>
A haze meter (Nippon Denshoku Industries Co., Ltd., NDH2000) was used, and the haze value (%) as an optical characteristic was measured.

<内部ヘイズ>
内部ヘイズ値は、防眩性ハードコート層表面に水滴を落とし、そこにガラスを押し当てて測定したヘイズ値である。
<Internal haze>
The internal haze value is a haze value measured by dropping water droplets on the surface of the antiglare hard coat layer and pressing glass there.

<外部ヘイズ>
外部ヘイズ=全へイズ−内部へイズにより算出した。
<External haze>
External haze = total haze-calculated by internal haze.

<防眩性:反射の像非鮮明性>
防眩性ハードコート層が積層された面に蛍光灯距離3m、入射角10°となるように蛍光灯の灯りを映り込ませた場合、10°で正反射した蛍光灯の輪郭がどれほどぼけるかを下記に示す評価基準に従って評価した。蛍光灯はパナソニック(株)製FHF32EXNHを使用した。
○:輪郭が確認できないほどぼけている。
×:輪郭はぼけていない、または、輪郭が確認できないほどぼけているが、画像の視認性が悪い。
<Anti-Glare: Reflected image is unclear>
When the fluorescent lamp light is reflected so that the fluorescent lamp distance is 3 m and the incident angle is 10 ° on the surface on which the antiglare hard coat layer is laminated, how much the outline of the fluorescent lamp reflected regularly at 10 ° is blurred. Was evaluated according to the following evaluation criteria. As the fluorescent lamp, FHF32EXNH manufactured by Panasonic Corporation was used.
○: Blurred so that the outline cannot be confirmed.
X: The outline is not blurred or blurred so that the outline cannot be confirmed, but the visibility of the image is poor.

<ぎらつき>
高精細液晶ディスプレイとしての高精細液晶タッチパネルの画像表示側の最表面に防眩性フィルムを置き、目視にてぎらつきを測定し、下記の3段階で評価した。
◎:ぎらつきなし、○:ぎらつき若干あるが、気にならない、×:気になる程のぎらつきあり。
<Glitter>
An anti-glare film was placed on the outermost surface on the image display side of a high-definition liquid crystal touch panel as a high-definition liquid crystal display, and the glare was measured visually and evaluated in the following three stages.
A: No glare, B: Slight glare, but not worrisome, X: Glitter as worrisome.

<指滑り性>
JISK7125−1999に準拠した測定方法にてウレタンエラストマー素材の人工皮膚モデル(商品名:バイオスキンプレート プレート#BSカラー1、ビューラックス株式会社製)に対する動摩擦係数を測定した。本評価方法にて評価した摩擦係数は、人の指でフリックする際のすべり性と相関しており、摩擦係数が小さいほど指がすべり易く、摩擦係数が大きいほど、指がすべりにくいと官能的に評価された。また、摩擦係数が摩擦係数≦0.5となる場合、評価者(N=30)の90%以上がフリック時に指が滑りやすいと判定した。
<Finger slipperiness>
The coefficient of dynamic friction with respect to an artificial skin model of urethane elastomer material (trade name: Bio Skin Plate Plate #BS Color 1, manufactured by Beaulux Co., Ltd.) was measured by a measurement method based on JIS K 7125-1999. The coefficient of friction evaluated by this evaluation method correlates with the slipperiness when flicking with a human finger. The smaller the coefficient of friction, the easier the finger slides, and the higher the coefficient of friction, the less sensitive the finger is. It was evaluated. In addition, when the friction coefficient is such that the friction coefficient ≦ 0.5, 90% or more of the evaluators (N = 30) determined that the finger is easy to slip when flicking.

<表面硬度>
荷重は750gとし、JIS K 5600に準拠し評価した。
<Surface hardness>
The load was set to 750 g and evaluated according to JIS K 5600.

実施例の結果より、防眩層に含まれる大径微粒子の粒子径Pdiaが0.1μm≦Pdia≦5μmであり、且つ、防眩層の膜厚tと粒子径Pdiaの比t/Pdiaが0.05≦t/Pdia≦1.7であり、小径微粒子の粒子径Mdiaが0.01μm≦Mdia≦0.1μmであり、小径微粒子の比重Mdenと大径微粒子の比重Pdenの比Mden/Pdenが6.0≧Mden/Pden≧2.7であり、防眩層の全体積に占める大径微粒子の体積割合が0.5%以上40%以下であり、防眩層の全体積に占める小径微粒子の体積割合が15%以上65%以下のとき、防眩性フィルムに適度な凹凸が形成され、防眩性に優れ、ぎらつきが少なく、フリック時の指滑り易さが良好となる。   From the results of the examples, the particle diameter Pdia of the large-sized fine particles contained in the antiglare layer is 0.1 μm ≦ Pdia ≦ 5 μm, and the ratio t / Pdia of the film thickness t of the antiglare layer and the particle diameter Pdia is 0. 0.05 ≦ t / Pdia ≦ 1.7, the particle diameter Mdia of the small particle is 0.01 μm ≦ Mdia ≦ 0.1 μm, and the ratio Mden / Pden of the specific gravity Mden of the small particle and the specific gravity Pden of the large particle is 6.0 ≧ Mden / Pden ≧ 2.7, and the volume ratio of the large diameter fine particles occupying the total volume of the antiglare layer is 0.5% to 40%, and the small diameter fine particles occupying the total volume of the antiglare layer When the volume ratio is 15% or more and 65% or less, moderate unevenness is formed on the anti-glare film, the anti-glare property is excellent, the glare is small, and the ease of finger sliding during flicking is good.

これに対し、比較例1−1,1−4,1−12,1−13では、防眩層の全体積に占める小径微粒子の体積割合が少なく、防眩性が劣る。比較例1−2では、防眩層の全体積に占める大径微粒子の体積割合が少なく防眩性が劣る。比較例1−3では、防眩層の全体積に占める大径微粒子の体積割合が多く、適度な凹凸が形成されないため防眩性が劣るとともにヘイズが大きい。比較例1−5では、膜厚に対して大径微粒子の粒子径が小さいため、適度な凹凸が形成されず防眩性が劣る。比較例1−6〜1−10では、大径微粒子と小径微粒子の比重差が小さいため防眩性が劣り、ぎらつきが多い。また、指滑り性も劣る。比較例1−11では、大径微粒子の粒子径が大きく、ぎらつきが大きい。   On the other hand, in Comparative Examples 1-1, 1-4, 1-12, and 1-13, the volume ratio of the small-diameter fine particles in the total volume of the antiglare layer is small, and the antiglare property is inferior. In Comparative Example 1-2, the volume ratio of the large-sized fine particles in the total volume of the antiglare layer is small, and the antiglare property is inferior. In Comparative Example 1-3, the volume ratio of the large-sized fine particles occupying the entire volume of the antiglare layer is large, and since appropriate unevenness is not formed, the antiglare property is inferior and the haze is large. In Comparative Example 1-5, since the particle diameter of the large-sized fine particles is small with respect to the film thickness, moderate unevenness is not formed and the antiglare property is inferior. In Comparative Examples 1-6 to 1-10, since the specific gravity difference between the large-sized fine particles and the small-sized fine particles is small, the antiglare property is inferior and the glare is large. Moreover, finger slipperiness is also inferior. In Comparative Example 1-11, the particle diameter of the large-sized fine particles is large and the glare is large.

Claims (8)

透明基材フィルムに防眩層が積層されており、
前記防眩層は、大径微粒子と、該大径微粒子よりも比重が大きく粒子径の小さい小径微粒子とを含み、
前記大径微粒子は、粒子径Pdiaが0.1μm≦Pdia≦5μmであり、且つ、前記防眩層の膜厚tと粒子径Pdiaの比t/Pdiaが0.05≦t/Pdia≦1.7であり、前記小径微粒子の粒子径Mdiaは0.01μm≦Mdia≦0.1μmであり、
前記小径微粒子の比重Mdenと前記大径微粒子の比重Pdenの比Mden/Pdenが6.0≧Mden/Pden≧2.7であり、
前記防眩層の全体積に占める前記大径微粒子の体積割合が0.5%以上40%以下であり、前記防眩層の全体積に占める前記小径微粒子の体積割合が15%以上65%以下である防眩性フィルム。
An antiglare layer is laminated on the transparent substrate film,
The antiglare layer includes large-sized fine particles, and small-sized fine particles having a specific gravity larger than the large-sized fine particles and a small particle size,
The large fine particles have a particle diameter Pdia of 0.1 μm ≦ Pdia ≦ 5 μm, and a ratio t / Pdia of the film thickness t of the antiglare layer to the particle diameter Pdia is 0.05 ≦ t / Pdia ≦ 1. 7 and the particle diameter Mdia of the small-sized fine particles is 0.01 μm ≦ Mdia ≦ 0.1 μm,
The ratio Mden / Pden of the specific gravity Mden of the small particle and the specific gravity Pden of the large particle is 6.0 ≧ Mden / Pden ≧ 2.7,
The volume ratio of the large-sized fine particles in the total volume of the anti-glare layer is 0.5% or more and 40% or less, and the volume ratio of the small-sized particles in the total volume of the anti-glare layer is 15% or more and 65% or less. An anti-glare film.
前記防眩層の全体積に占める前記大径微粒子の体積割合が1%以上37%以下であり、前記防眩層の全体積に占める前記小径微粒子の体積割合が15%以上62%以下である請求項1に記載の防眩性フィルム。The volume ratio of the large-sized fine particles in the total volume of the anti-glare layer is 1% or more and 37% or less, and the volume ratio of the small-sized fine particles in the total volume of the anti-glare layer is 15% or more and 62% or less. The antiglare film according to claim 1. 前記防眩層の膜厚tと前記大径微粒子の粒子
径Pdiaの比t/Pdiaが0.05≦t/Pdia≦1.3である請求項1または請求項2に記載の防眩性フィルム。
The antiglare film according to claim 1 or 2 , wherein a ratio t / Pdia of a film thickness t of the antiglare layer and a particle diameter Pdia of the large-sized fine particles is 0.05 ≦ t / Pdia ≦ 1.3. .
前記防眩層の全体積に占める前記小径微粒子の体積割合が15%以上55%以下である請求項1から請求項3のうちいずれか一項に記載の防眩性フィルム。 The antiglare film according to any one of claims 1 to 3, wherein a volume ratio of the small-diameter fine particles in the total volume of the antiglare layer is 15% or more and 55% or less. 前記小径微粒子は、酸化ジルコニウム、酸化チタン、ジルコニア、酸化亜鉛、アンチモン酸亜鉛、錫ドープ酸化インジウム、アンチモンドープ酸化錫、シリカからなる群より選ばれる少なくとも一種である請求項1から請求項のうちいずれか一項に記載の防眩性フィルム。 The small-sized fine particles are zirconium oxide, titanium oxide, zirconia, zinc oxide, zinc antimonate, among tin-doped indium oxide, antimony-doped tin oxide, claim 1 is at least one selected from the group consisting of silica according to claim 4 The anti-glare film as described in any one of Claims. 前記大径微粒子は、アクリル樹脂、ポリスチレン、ポリメタクリルスチレン、架橋アクリル−スチレン共重合樹脂、シリカ、ベンゾグアナミンホルムアルデヒド縮合物、ベンゾグアナミン・メラミン・ホルムアルデヒド縮合物、メラミン・ホルムアルデヒド縮合物、ポリエチレン樹脂、エポキシ樹脂、シリコーン樹脂、ポリフッ化ビニリデン及びポリフッ化エチレン系樹脂からなる群より選ばれる少なくとも一種である請求項1から請求項のうちいずれか一項に記載の防眩性フィルム。 The large-sized fine particles are acrylic resin, polystyrene, polymethacrylstyrene, crosslinked acrylic-styrene copolymer resin, silica, benzoguanamine formaldehyde condensate, benzoguanamine / melamine / formaldehyde condensate, melamine / formaldehyde condensate, polyethylene resin, epoxy resin, The antiglare film according to any one of claims 1 to 5 , wherein the antiglare film is at least one selected from the group consisting of a silicone resin, polyvinylidene fluoride, and a polyvinyl fluoride resin. 前記透明基材フィルムと前記防眩層との間にハードコート層が積層されている請求項1から請求項のうちいずれか一項に記載の防眩性フィルム。 The antiglare film according to any one of claims 1 to 6 , wherein a hard coat layer is laminated between the transparent substrate film and the antiglare layer. 請求項1から請求項のうちいずれか一項に記載の防眩性フィルムを表面に備える画像表示装置。 An image display device comprising the antiglare film according to any one of claims 1 to 7 on a surface thereof.
JP2015009590A 2015-01-21 2015-01-21 Anti-glare film and image display device using the same Active JP6492683B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015009590A JP6492683B2 (en) 2015-01-21 2015-01-21 Anti-glare film and image display device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015009590A JP6492683B2 (en) 2015-01-21 2015-01-21 Anti-glare film and image display device using the same

Publications (2)

Publication Number Publication Date
JP2016133722A JP2016133722A (en) 2016-07-25
JP6492683B2 true JP6492683B2 (en) 2019-04-03

Family

ID=56437862

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015009590A Active JP6492683B2 (en) 2015-01-21 2015-01-21 Anti-glare film and image display device using the same

Country Status (1)

Country Link
JP (1) JP6492683B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6884045B2 (en) 2017-06-13 2021-06-09 リンテック株式会社 Manufacturing method of anti-glare hard coat film and anti-glare hard coat film
JP2019105694A (en) * 2017-12-11 2019-06-27 株式会社ダイセル Antiglare film, and method for producing the same and application
JP7335718B2 (en) * 2017-12-11 2023-08-30 株式会社ダイセル Anti-glare film and its manufacturing method and use
CN110927848A (en) * 2019-12-27 2020-03-27 浙江启诚新材料科技有限公司 Reflecting film and preparation method thereof
WO2021235491A1 (en) * 2020-05-22 2021-11-25 恵和株式会社 Optical sheet, backlight unit, liquid crystal display apparatus, and information device
JP2023170856A (en) * 2022-05-20 2023-12-01 Toppanホールディングス株式会社 Optical laminate and image display device using the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002202402A (en) * 2000-10-31 2002-07-19 Fuji Photo Film Co Ltd Antidazzle reflection preventing film and picture display device
JP4393088B2 (en) * 2003-03-20 2010-01-06 日本製紙株式会社 Anti-glare film

Also Published As

Publication number Publication date
JP2016133722A (en) 2016-07-25

Similar Documents

Publication Publication Date Title
JP6520114B2 (en) Antiglare antireflective film and image display device using the same
KR101870473B1 (en) Anti-reflective film, anti-reflective film production method, polarization plate and image display device
JP6492683B2 (en) Anti-glare film and image display device using the same
JP7188500B2 (en) anti-reflection optical film
JP6221018B1 (en) Optical laminate, polarizing plate and display device
KR101487039B1 (en) Optical laminated film
CN107111012B (en) Optical laminate, polarizing plate, and display device
JP6575191B2 (en) Finger sliding layer forming resin composition, finger sliding film and image display device using the same
JP6244760B2 (en) Antireflection film
KR102026541B1 (en) Optical multilayer element, polarizer, and display device
KR101432987B1 (en) Fingerprint resistant anti-glare coating composition having improved trasmittance and fingerprint resistant anti-glare film using the composition
JPWO2016030738A1 (en) Antiglare laminate
JP6565094B2 (en) Touch panel, display device, optical sheet, optical sheet sorting method, and optical sheet manufacturing method
JP2010186020A (en) Antiglare antireflection film
JP2010078698A (en) Anti-glare anti-reflection film and image display including the same
KR102194639B1 (en) Optical laminate, polarizer and display device
JP6484847B2 (en) Touch panel, display device, optical sheet, optical sheet sorting method, and optical sheet manufacturing method
JP6565096B2 (en) Touch panel, display device, optical sheet, optical sheet sorting method, and optical sheet manufacturing method
WO2017002779A1 (en) Hard coat film
JP6225428B2 (en) Resin composition for low refractive index layer and antireflection film
KR102045055B1 (en) Visibility improvement film for display panel and display device comprising the same
JP6484846B2 (en) Touch panel, display device, optical sheet, optical sheet sorting method, and optical sheet manufacturing method
JP6565095B2 (en) Touch panel, display device, optical sheet, optical sheet sorting method, and optical sheet manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171211

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180815

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180911

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181016

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190218

R150 Certificate of patent or registration of utility model

Ref document number: 6492683

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250