WO2017002779A1 - Hard coat film - Google Patents

Hard coat film Download PDF

Info

Publication number
WO2017002779A1
WO2017002779A1 PCT/JP2016/069072 JP2016069072W WO2017002779A1 WO 2017002779 A1 WO2017002779 A1 WO 2017002779A1 JP 2016069072 W JP2016069072 W JP 2016069072W WO 2017002779 A1 WO2017002779 A1 WO 2017002779A1
Authority
WO
WIPO (PCT)
Prior art keywords
hard coat
fine particles
coat layer
film
ionizing radiation
Prior art date
Application number
PCT/JP2016/069072
Other languages
French (fr)
Japanese (ja)
Inventor
大智 安藤
悠樹 村田
Original Assignee
日本製紙株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製紙株式会社 filed Critical 日本製紙株式会社
Publication of WO2017002779A1 publication Critical patent/WO2017002779A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings

Definitions

  • the present invention relates to a hard coat film, and more particularly to a hard coat film provided with a hard coat layer on a transparent film substrate that can be used as a protective film for display device parts such as a touch panel-mounted display.
  • an air gap method in which an air layer gap is provided between the touch panel unit and the liquid crystal display unit may be used.
  • this method when the touch panel is touched with a finger or pen, the touch panel is distorted and the distance between the lower part of the touch panel and the polarizing plate on the upper part of the liquid crystal display unit is reduced, thereby causing rippled optical interference called “Newton ring”. Stripes are generated.
  • a hard coat film having surface irregularities may be used for the upper polarizing plate, and in order to obtain a sufficient anti-Newton ring effect (hereinafter abbreviated as “AN effect”).
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2007-265100
  • Patent Document 2 discloses a light-transmitting material having an average particle diameter of 0.5 to 5 ⁇ m and a difference in refractive index from the transmissive resin of 0.02 to 0.2.
  • a translucent film containing conductive fine particles is disclosed.
  • the difference in refractive index between the transparent resin constituting the layer and the transparent fine particles contained therein is set to 0.02 to 0.2, thereby diffusing and transmitting the light.
  • the image definition can be maintained high even if the haze value is increased to reduce glare.
  • the haze value of the specifically obtained film is as high as 10% or more and has an antiglare property, while the coating film becomes whitish and the transmittance and contrast are remarkably reduced.
  • the object of the present invention is to achieve both the provision of a good AN effect and the maintenance of visibility, and the haze value is kept low, thereby suppressing the deterioration of contrast and the decrease in transmittance, thereby improving the visibility of the display. It is providing the hard coat film which can be maintained in this.
  • the present inventors have found that the above problem can be solved by providing the following configuration. That is, the present invention has the following configuration.
  • a first invention is a hard coat film having a hard coat layer containing fine particles A and an ionizing radiation curable resin on a transparent film substrate, wherein the fine particles A are organic fine particles, A film made of the ionizing radiation curable resin in the hard coat layer, wherein the refractive index difference between the fine particles A in the coating layer and the ionizing radiation curable resin is in the range of more than 0.001 and not more than 0.050.
  • a hard coat film having a thickness of 0.7 to 2.0 times the average particle diameter of the fine particles A.
  • a difference in refractive index between the fine particles A in the hard coat layer and the ionizing radiation curable resin is in the range of more than 0.001 and 0.030 or less. It is the hard coat film characterized.
  • a third invention is the hard coat film according to the first or second invention, wherein the fine particles A have an average particle diameter of 2.0 ⁇ m to 18.0 ⁇ m.
  • the fine particles A and an average particle diameter are 0.3 to 0.8 times that of the fine particles A.
  • a hard coat film comprising fine particles B having a refractive index difference from the ionizing radiation curable resin in the range of more than 0.001 and 0.050 or less.
  • the fine particle B in the hard coat layer has a refractive index difference from the ionizing radiation curable resin in the range of more than 0.001 and 0.030 or less.
  • the amount of the fine particles A is 0.002 to 2 parts by weight with respect to 100 parts by weight of the ionizing radiation curable resin. It is the hard coat film characterized.
  • An eighth invention is characterized in that, in any one of the first to seventh inventions, an average inclination angle of the irregularities on the surface of the hard coat layer is in a range of 0.1 degrees to 1.5 degrees. Hard coat film.
  • a ninth invention is a hard coat film according to any one of the first to eighth inventions, wherein the hard coat layer is cured by irradiation with ionizing radiation in an air atmosphere.
  • the hard coat film has a haze value of 0.1 to 10.0% and a total light transmittance of 91.00 or more. It is the hard coat film characterized.
  • the present invention it is possible to maintain good visibility of the display by suppressing both deterioration of the contrast and reduction of transmittance by keeping the haze value low while simultaneously providing a good AN effect and maintaining the visibility.
  • the hard coat film which can be provided can be provided.
  • a hard coat film having a hard coat layer containing fine particles A and an ionizing radiation curable resin on a transparent film substrate.
  • the fine particles A are organic fine particles, and the refractive index difference between the fine particles A in the hard coat layer and the ionizing radiation curable resin is more than 0.001 (that is, more than 0.001).
  • the film thickness of the ionizing radiation curable resin in the hard coat layer is 0.7 to 2.0 times the average particle diameter of the fine particles A. It is characterized by this.
  • FIG. 1 is a schematic cross-sectional view showing an embodiment of a hard coat film according to the present invention.
  • a hard coat film 10 according to an embodiment of the present invention has a hard coat layer 2 containing fine particles A and an ionizing radiation curable resin on a transparent film substrate 1.
  • the fine particles A are organic fine particles.
  • the refractive index difference between the fine particles A in the hard coat layer 2 and the ionizing radiation curable resin is in the range of more than 0.001 and 0.050 or less, and the ionizing radiation curing in the hard coat layer 2 is performed.
  • the film thickness T made of the mold resin is 0.7 to 2.0 times the average particle diameter of the fine particles A.
  • FIG. 1 schematically shows a cross section of the hard coat film, and the size (particle size) and shape of the fine particles A, the state of inclusion of the fine particles A, the size of the fine particles A and the film of the hard coat layer It does not necessarily accurately represent the relationship with thickness.
  • the said transparent film base material 1 which can be used for this invention is not specifically limited, For example, a polyethylene terephthalate film (PET; refractive index 1.665), a polycarbonate film (PC; refractive index 1.582), a triacetyl cellulose A film (TAC; refractive index 1.485), norbornene film (NB; refractive index 1.525), etc. can be used.
  • PET polyethylene terephthalate film
  • PC polycarbonate film
  • TAC triacetyl cellulose A film
  • NB norbornene film
  • the refractive index of a general ionizing radiation curable resin is about 1.52
  • a TAC film or an NB film close to the refractive index of the ionizing radiation curable resin is preferable in order to increase the visibility.
  • a PET film is preferable.
  • the resin contained in the hard coat layer 2 of the present invention can be used without particular limitation as long as it is a resin that forms a film.
  • the hard coat layer surface is provided with hard properties (pencil hardness, scratch resistance).
  • ionizing radiation curable resins are preferably used in that a large amount of heat is not required when forming the hard coat layer.
  • the hard coat layer 2 has a leveling agent, an antifoaming agent, a lubricant, an ultraviolet absorber, a light stabilizer, a polymerization inhibitor, a wetting and dispersing agent, a rheology control agent, an oxidation, within a range not impairing the effects of the present invention.
  • Antistatic agent, antifouling agent an antistatic agent, a conductive agent and the like may be contained as necessary.
  • the ionizing radiation curable resin is not particularly limited as long as it is a transparent resin that is cured by irradiation with an electron beam or ultraviolet rays.
  • a urethane acrylate resin, a polyester acrylate resin, and an epoxy acrylate It can be appropriately selected from among resin based resins.
  • What is preferable as the ionizing radiation curable resin is composed of an ultraviolet curable polyfunctional acrylate having two or more (meth) acryloyl groups in the molecule in order to obtain good adhesion to the transparent film substrate 1. Is preferred.
  • UV-curable polyfunctional acrylate having two or more (meth) acryloyl groups in the molecule include neopentyl glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, and trimethylol.
  • Polyol polyacrylates such as propane tri (meth) acrylate, ditrimethylolpropane tetra (meth) acrylate, pentaerythritol tetra (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol hexa (meth) acrylate, bisphenol A diglycidyl Epoxys such as diacrylate of ether, diacrylate of neopentyl glycol diglycidyl ether, di (meth) acrylate of 1,6-hexanediol diglycidyl ether ( A) Polyester (meth) acrylate, polyhydric alcohol, polyisocyanate and hydroxyl group-containing (meta) which can be obtained by esterifying acrylate, polyhydric alcohol and polyhydric carboxylic acid and / or anhydride and acrylic acid ) Urethane (meth) acrylate obtained by reacting acrylate,
  • the above-mentioned UV-curable polyfunctional acrylate may be used alone or in combination of two or more, and the content thereof is preferably 50 to 95% by weight based on the resin solid content of the hard coat layer coating material.
  • the content thereof is preferably 50 to 95% by weight based on the resin solid content of the hard coat layer coating material.
  • the above polyfunctional (meth) acrylate preferably 10% by weight or less of 2-hydroxy (meth) acrylate and 2-hydroxypropyl (meth) acrylate with respect to the resin solid content of the hard coat layer coating material.
  • Monofunctional acrylates such as glycidyl (meth) acrylate can also be added.
  • a polymerizable oligomer used for the purpose of adjusting the hardness can be added to the hard coat layer 2.
  • oligomers include terminal (meth) acrylate polymethyl (meth) acrylate, terminal styryl poly (meth) acrylate, terminal (meth) acrylate polystyrene, terminal (meth) acrylate polyethylene glycol, terminal (meth) acrylate acrylonitrile-styrene copolymer.
  • macromonomers such as polymers and terminal (meth) acrylate styrene-methyl methacrylate copolymers, and the content thereof is preferably 5 to 50% by weight based on the solid content of the resin in the coating material for the hard coat layer. It is.
  • the material for forming the fine particles A contained in the hard coat layer 2 of the present invention is not particularly limited, but it is easy to form a true sphere and forms a uniform inclination angle when it appears on the surface of the hard coat layer. It is preferable to use organic fine particles that are easily formed. Examples of such organic fine particles include vinyl chloride resin (refractive index 1.53), acrylic resin (refractive index 1.49), (meth) acrylic resin (refractive index 1.52 to 1.53), Examples thereof include fine particles made of polystyrene resin (refractive index 1.59), melamine resin (refractive index 1.57), polyethylene resin, polycarbonate resin, acrylic-styrene copolymer resin (refractive index 1.49 to 1.59), and the like. .
  • organic fine particles include vinyl chloride resin (refractive index 1.53), acrylic resin (refractive index 1.49), (meth) acrylic resin (refractive index 1.52 to 1.53), Examples thereof include fine particles made of polystyrene resin (refractive index 1.5
  • the fine particles A used in the present invention have a refractive index difference in the range of more than 0.001 to 0.050 with respect to the refractive index of the ionizing radiation curable resin constituting the hard coat layer 2 (the refractive index after curing). It is necessary to use fine particles that are Preferably, the difference in refractive index from the ionizing radiation curable resin is in the range of more than 0.001 to 0.04 or less, more preferably the difference in refractive index from the ionizing radiation curable resin is more than 0.001 to 0.03. Fine particles A having a refractive index difference within the following range, more preferably within a range of more than 0.001 and not more than 0.01 are used.
  • the refractive index of a general ionizing radiation curable resin is, for example, about 1.52 to 1.53, it is preferable to use fine particles A having a refractive index of 1.47 to 1.58.
  • the fine particles A contained in the hard coat layer 2 are transparent.
  • Use of the fine particles A in which the refractive index range with the ionizing radiation curable resin is appropriately adjusted is preferable because the haze value of the hard coat layer 2 can be suppressed low and the sharpness and contrast can be maintained high.
  • the fine particles A used in the present invention preferably have an average particle size in the range of 2.0 ⁇ m to 18.0 ⁇ m.
  • the fine particles A having an average particle diameter satisfying the above range are preferable for use in the present invention because the formation of irregularities such as irregularities on the surface of the hard coat layer and the frequency of irregularities can be easily adjusted. More preferable are fine particles A having an average particle diameter of 6 ⁇ m to 18.0 ⁇ m.
  • the average particle diameter may be a generally used particle diameter measuring method, such as laser diffraction particle size measurement that can obtain the average length of fine particles. It is possible to represent the effective diameter obtained by measuring the mode diameter with a device SALD2200 (manufactured by Shimadzu Corporation). Further, by using COULTERMULTISIZER (manufactured by Beckman Coulter, Inc.), it is also possible to represent the equivalent diameter estimated by a geometric formula from direct measurement values such as the projected area and volume of particles.
  • the amount of the fine particles A is preferably 0.002 to 2 parts by weight, more preferably 0.02 to 2 parts by weight with respect to 100 parts by weight of the ionizing radiation curable resin in the hard coat layer 2. 1 part by weight. More preferably, it is 0.04 to 0.5 part by weight.
  • the blending amount of the fine particles A is within the above range, it becomes easy to adjust the ratio between the film thickness of the ionizing radiation curable resin in the hard coat layer and the average particle diameter of the fine particles A.
  • the film thickness T made of the ionizing radiation curable resin in the hard coat layer 2 (hereinafter simply referred to as “film thickness of the hard coat layer”) is 0 of the average particle diameter of the fine particles A. .7 times to 2.0 times. More preferably, the thickness of the hard coat layer is 0.8 to 1.2 times the average particle diameter of the fine particles A.
  • the film thickness of the hard coat layer is less than 0.7 times the average particle diameter of the fine particles A, the fine particles A frequently appear on the hard coat layer surface, the surface roughness increases, and glare occurs.
  • the film thickness of the hard coat layer exceeds 2.0 times the average particle diameter of the fine particles A, the fine AN is difficult to appear on the surface of the hard coat layer, so that the expected AN effect cannot be obtained.
  • the film thickness of the hard coat layer is within the above range with respect to the average particle diameter of the fine particles A contained in the hard coat layer, a balance between the obtained AN effect and suppression of glare is achieved. As a result, it is possible to achieve both the AN effect and the maintenance of visibility.
  • the hard coat layer 2 contains other fine particles having an average particle diameter different from that of the fine particles A.
  • the fine particles A and the average particle size is 0.3 to 0.8 times that of the fine particles A.
  • FIG. 2 is a schematic cross-sectional view showing another embodiment of the hard coat film according to the present invention.
  • the hard coat layer 2 contains both fine particles A and fine particles B. ing.
  • FIG. 2 also schematically shows a cross section of the hard coat film, and the size (particle size) and shape of the fine particles B, the content of the fine particles B, the relationship with the size of the fine particles A, etc. are not necessarily limited. It is not an exact representation.
  • fine particles B having a smaller particle diameter than the fine particles A that is, an average particle size of 0.3 to 0.8 times that of the fine particles A are contained in the hard coat layer together with the fine particles A.
  • fine particles B that are 0.5 to 0.75 times the average particle size of the fine particles A.
  • the fine particles B are also preferably organic fine particles, and the material thereof is the same as the material of the fine particles A.
  • the fine particle B also has a refractive index difference in the range of more than 0.001 to 0.050 with respect to the refractive index of the ionizing radiation curable resin constituting the hard coat layer 2 (the refractive index after curing).
  • the difference in refractive index from the ionizing radiation curable resin is in the range of more than 0.001 to 0.04 or less, more preferably the difference in refractive index from the ionizing radiation curable resin is more than 0.001 to 0.00.
  • the haze value of the hard coat layer 2 is obtained by using fine particles having a refractive index within a range of 03 or less, more preferably a difference in refractive index from the ionizing radiation curable resin within a range of more than 0.001 and 0.01 or less. Is low, and the sharpness and contrast can be maintained high, which is preferable.
  • the AN effect can be improved with low haze and excellent suppression of glare.
  • other fine particles may be included within a range not impairing the effects of the present invention.
  • corrugation on the said hard-coat layer surface is an upper point from the lower point of the protrusion obtained by cross-sectional analysis based on the cross-sectional curve of the surface of the hard coat film measured using a three-dimensional surface roughness meter.
  • X-axis direction distance ( ⁇ X) and the height ( ⁇ Y) of the point are averaged with respect to the value of the inclination angle defined by the following equation.
  • Inclination angle ⁇ tan ⁇ 1 ( ⁇ Y / ⁇ X)
  • the film thickness T made of the ionizing radiation curable resin in the hard coat layer 2 and the average particle diameter of the fine particles A are suitable (for example, hard as described above).
  • the hard layer formed by the fine particles A and the hard coat layer is designed so that the film thickness of the coat layer is 0.7 to 2.0 times the average particle diameter of the fine particles A).
  • the average inclination angle of the irregularities on the surface of the coat layer can be in the range of 0.1 to 1.5 degrees.
  • the average inclination angle is less than 0.1 degree, the hard coat layer surface does not have sufficient unevenness (such as unevenness size and frequency) and the AN effect is not sufficiently exhibited.
  • the average inclination angle exceeds 1.5 degrees, the unevenness of the hard coat layer surface is too large, and glare is likely to occur.
  • the average inclination angle is preferably in the range of 0.5 ° to 1.0 °.
  • the average inclination angle is adjusted to 0.1 degree by adjusting the particle size, blending amount, film thickness, and the like of each fine particle. It can be adjusted within the range of 1.5 degrees or more.
  • the average inclination angle satisfies the above range, the effect of the present invention can be easily obtained, and the range of 0.5 ° to 1.0 ° is more preferable because the effect of the present invention can be further enhanced.
  • the hard coat layer 2 can be formed by applying and drying a paint in which the resin and fine particles are dissolved and dispersed in a solvent on the transparent film substrate 1.
  • the solvent can be appropriately selected depending on the solubility of the resin, and may be any solvent that can uniformly dissolve or disperse at least solid content (resin, fine particles, catalyst, curing agent, and other additives).
  • Examples of such a solvent include ketones (acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, etc.), ethers (dioxane, tetrahydrofuran, etc.), aliphatic hydrocarbons (hexane, etc.), alicyclic hydrocarbons ( Cyclohexane, etc.), aromatic hydrocarbons (toluene, xylene, etc.), halogenated carbons (dichloromethane, dichloroethane, etc.), esters (methyl acetate, ethyl acetate, butyl acetate, etc.), alcohols (methanol, ethanol, isopropanol, Butanol, cyclohexanol, etc.), cellosolves (methyl cellosolve, ethyl cellosolve, etc.), cellosolve acetates, sulfoxides, amides and the like.
  • the coating method is not particularly limited, but it can be applied with a method that allows easy adjustment of the coating thickness, such as gravure coating, microgravure coating, bar coating, slide die coating, slot die coating, dip coating, etc. Is possible.
  • the film thickness T of the hard coat layer 2 can be measured by observing a film cross-sectional photograph with a microscope or the like and actually measuring from the coating film interface to the surface.
  • the curing method of the hard coat layer 2 by irradiation with ionizing radiation is not particularly limited, but it is preferably cured in an air atmosphere.
  • Surface that can improve the AN effect while maintaining visibility by adjusting the shape of the surface irregularity by inhibiting the curing reaction by oxygen by curing in the air atmosphere when curing the hard coat layer 2 by ionizing radiation irradiation It is possible to adjust the unevenness (the size of the unevenness, the average inclination angle, the frequency, etc.).
  • haze value can be restrained low.
  • the haze value is preferably 0.1% to 10%, more preferably 0.1% to 8.0%, still more preferably 0.1% to 2.0%. Further, the total light transmittance is preferably 91.00 or more.
  • an antireflection layer can be provided on the hard coat layer 2 containing the fine particles A and the resin.
  • the antireflection layer in this case preferably has a Y value of the tristimulus values based on JIS Z 8701 as a reflectance, and the reflectance is 2% or less.
  • the hard coat film of the present invention by having the above-described configuration, both a good AN effect and visibility can be achieved, the haze value is kept low, the contrast is deteriorated, and the transmittance is lowered. Is suppressed, and a hard coat film capable of maintaining good display visibility can be obtained.
  • the reason why the hard coat film of the present invention exhibits an excellent effect is presumed as follows.
  • the film thickness of the hard coat layer is adjusted within a suitable range in relation to the average particle diameter of the fine particles A so that the contained fine particles A have appropriate unevenness from the surface of the hard coat layer.
  • the surface of the hard coat layer that can achieve both the AN effect and the visibility is formed.
  • the fine particle B having an average particle size smaller than the fine particle A is contained together with the fine particle A in the hard coat layer, thereby suppressing glare.
  • the AN effect can be further enhanced.
  • the fine particles contained in these hard coat layers are kept close to the ionizing radiation curable resin forming the hard coat layer, and the difference in refractive index thereof, so that even if these fine particles are contained, low haze is maintained, High transparency is ensured.
  • Example 1 ⁇ Hardcoat layer paint> To 50 parts of toluene, 0.1 part of Sekisui Plastics Co., Ltd. acrylic-styrene copolymer particles (average particle size 8.0 ⁇ m, refractive index 1.525) is added as fine particles A, and an appropriate amount of a dispersant (by Big Chemie) is added. After that, it was sufficiently stirred. To this solution, 47.8 parts of an ultraviolet curable resin (urethane acrylate manufactured by Shin-Nakamura Chemical Co., Ltd., product name U-15HA, refractive index 1.53) and Irgacure 184 (manufactured by BASF, photopolymerization initiator) are added in appropriate amounts and stirred sufficiently.
  • an ultraviolet curable resin urethane acrylate manufactured by Shin-Nakamura Chemical Co., Ltd., product name U-15HA, refractive index 1.53
  • Irgacure 184 manufactured by BASF, photopolymerization initiator
  • a paint for a hard coat layer was prepared.
  • TAC film triacetyl cellulose film
  • the above hard coat layer coating was applied using a Meyer bar to a film thickness of 7.0 ⁇ m and dried at 80 ° C. for 1 minute.
  • the hard coat layer was cured by irradiating with 200 mJ / cm 2 ultraviolet light (light source: Fusion Japan UV lamp) in an air atmosphere to obtain a hard coat film.
  • Example 2 In the coating material for hard coat layer of Example 1, the same as Example 1 except that acrylic-styrene copolymer particles (average particle diameter of 8.0 ⁇ m, refractive index of 1.505) manufactured by Sekisui Plastics Co., Ltd. were used as the fine particles A. The produced hard coat film was obtained.
  • Example 3 A hard coat film produced in the same manner as in Example 1 was obtained except that 0.5 part of fine particles A was added and the film thickness was 15 ⁇ m in the paint for hard coat layer of Example 1.
  • Example 4 A hard coat film produced in the same manner as in Example 1 was obtained except that the coating thickness for the hard coat layer in Example 1 was changed to 15 ⁇ m.
  • Example 5 A hard coat film produced in the same manner as in Example 1 was obtained except that the thickness of the paint for hard coat layer in Example 1 was 9.5 ⁇ m.
  • Example 6 A hard coat film produced in the same manner as in Example 1 was obtained except that the film thickness of the paint for hard coat layer in Example 1 was 6.5 ⁇ m.
  • Example 7 In the hard coat layer coating material of Example 1, the amount of the UV curable resin added was 43.7 parts, and the fine particles B were acryl-styrene copolymer particles (average particle size of 4.0 ⁇ m, refractive index) manufactured by Sekisui Plastics Co., Ltd. (Rate 1.525) A hard coat film produced in the same manner as in Example 1 was obtained except that 4.1 parts were added.
  • Example 8 Example except that 4.1 parts of Sekisui Plastics Co., Ltd. acrylic-styrene copolymer particles (average particle size 6.0 ⁇ m, refractive index 1.525) were added as fine particles B to the hard coat layer coating material of Example 7. The hard coat film produced similarly to 7 was obtained.
  • Example 9 Example except that 4.1 parts of Sekisui Plastics Co., Ltd. acrylic-styrene copolymer particles (average particle size 2.5 ⁇ m, refractive index 1.525) were added as fine particles B to the hard coat layer paint of Example 7. The hard coat film produced similarly to 7 was obtained.
  • Example 10 In the hard coat layer coating material of Example 7, the addition amount of the ultraviolet curable resin was 44.8 parts, the addition amount of the fine particles A was 1.5 parts, and the addition amount of the fine particles B was 1.5 parts. Except for the above, a hard coat film produced in the same manner as in Example 7 was obtained.
  • Example 11 In the hard coat film of Example 1, except that the hard coat layer coating was applied, dried at 80 ° C. for 1 minute, and then cured by irradiation with ultraviolet rays in a nitrogen atmosphere set to an oxygen concentration of 1000 ppm or less. A hard coat film produced in the same manner as in Example 1 was obtained.
  • Example 12 A hard coat film with an antireflection layer obtained by laminating the following antireflection layer on the hard coat film produced in Example 7 was obtained.
  • This paint was applied onto the hard coat layer of the hard coat film obtained above using a Meyer bar, dried at 80 ° C. for 1 minute, and then irradiated with 200 mJ / cm 2 ultraviolet light (the light source was the same as above). ) To form an antireflection layer of about 0.1 ⁇ m.
  • a hard coat film with an antireflection layer of Example 12 (hereinafter simply referred to as “hard coat film”) was obtained.
  • Example 13 Except that 4.1 parts of acrylic-styrene copolymer particles (average particle diameter 5.0 ⁇ m, refractive index 1.50) manufactured by Sekisui Plastics Co., Ltd. were added as fine particles B in the paint for hard coat layer of Example 7. A hard coat film produced in the same manner as in Example 7 was obtained.
  • Example 14 A hard coat film produced in the same manner as in Example 7 was obtained except that 2.5 parts of fine particles B were added to the paint for hard coat layer of Example 13.
  • Example 15 In the hard coat layer coating material of Example 7, 0.1 part of Sekisui Plastics Co., Ltd. acrylic-styrene copolymer particles (average particle diameter 6.0 ⁇ m, refractive index 1.525) was added as fine particles A, and the film A hard coat film produced in the same manner as in Example 7 was obtained except that the thickness was 5.5 ⁇ m.
  • Example 16 In the coating material for hard coat layer of Example 7, 0.1 part of acrylic-styrene copolymer particles (average particle size 5.0 ⁇ m, refractive index 1.525) manufactured by Sekisui Plastics Co., Ltd. was added as fine particles A. Example 7 except that 4.1 parts of Sekisui Plastics Co., Ltd. acrylic-styrene copolymer particles (average particle size 2.0 ⁇ m, refractive index 1.50) were added and the film thickness was 4.8 ⁇ m. A similarly produced hard coat film was obtained.
  • Example 17 Example except that 4.1 parts of Sekisui Plastics Co., Ltd. acrylic polymer particles (average particle size: 4.0 ⁇ m, refractive index: 1.49) were added as fine particles B in the paint for hard coat layer of Example 7. The hard coat film produced similarly to 7 was obtained.
  • Example 18 In Example 7 except that 0.1 part of acrylic polymer particles (average particle size: 8.0 ⁇ m, refractive index: 1.49) manufactured by Sekisui Plastics Co., Ltd. was added as fine particles A in the paint for hard coat layer of Example 7. The hard coat film produced similarly to 7 was obtained.
  • Example 19 In the coating material for hard coat layer of Example 7, 0.1 part of acrylic-styrene copolymer particles (average particle size 2.5 ⁇ m, refractive index 1.525) manufactured by Sekisui Plastics Co., Ltd. was added as fine particles A, and as fine particles B Manufactured in the same manner as in Example 7 except that 4.1 parts of acrylic polymer particles (average particle size 1.8 ⁇ m, refractive index 1.49) manufactured by Sekisui Plastics Co., Ltd. were added and the film thickness was 2.3 ⁇ m. A hard coat film was obtained.
  • Example 20 In the paint for hard coat layer of Example 7, 0.1 part of acrylic polymer particles (average particle size 15.0 ⁇ m, refractive index 1.49) manufactured by Sekisui Plastics Co., Ltd. was added as fine particles A, and Sekisui Plastics was used as fine particles B. Hard coat produced in the same manner as in Example 7 except that 4.1 parts of acrylic polymer particles (average particle size 8.0 ⁇ m, refractive index 1.49) were added and the film thickness was 12.5 ⁇ m. A film was obtained.
  • Example 1 A hard coat film produced in the same manner as in Example 1 was obtained except that the fine particle A was not added in the paint for the hard coat layer of Example 1.
  • Example 2 A hard coat film produced in the same manner as in Example 1 was obtained except that the paint for hard coat layer of Example 1 was applied using a Meyer bar so as to have a film thickness of 17.0 ⁇ m.
  • Example 3 A hard coat film produced in the same manner as in Example 1 was obtained except that the paint for hard coat layer of Example 1 was applied using a Meyer bar so as to have a film thickness of 5.0 ⁇ m.
  • Example 4 It was produced in the same manner as in Example 1 except that the fine particles A contained in the hard coat layer coating material of Example 1 were changed to glass filler CF0093 (manufactured by Nippon Frit Co., Ltd., average particle size 8.0 ⁇ m, refractive index 1.50). A hard coat film was obtained.
  • the average inclination angle of the irregularities on the hard coat layer surface was measured using a three-dimensional surface roughness meter “VertScan2.0” manufactured by Ryoka System Co., Ltd.
  • the average inclination angle is a distance ( ⁇ X) in the X-axis direction from the lower point to the upper point of the protrusion, which is obtained by cross-sectional analysis based on the cross-sectional curve of the hard coat film surface measured using the three-dimensional surface roughness meter.
  • the height of the point ( ⁇ Y), and the value of the inclination angle calculated by the following equation is averaged.
  • Inclination angle ⁇ tan ⁇ 1 ( ⁇ Y / ⁇ X)
  • the setting of the measurement conditions is the same as that in the case of the film thickness measurement.
  • each hard coat film 10 is attached to a black acrylic plate 20 having no irregularities, and a moderately flexible thin glass plate 30 is overlapped with a 300 ⁇ m gap from above.
  • the thin film glass plate 30 was pressed to the acrylic plate 20 side with a constant load at a distance of 5 cm, the degree of occurrence of Newton rings generated at a distance of 5 cm under monochromatic light was visually evaluated.
  • a case where the Newton ring cannot be visually recognized is “5”, and a case where the Newton ring can be clearly seen at regular intervals is “1”. The closer to “5”, the harder the Newton ring becomes visible (see FIG. 4).
  • the evaluation is “3” or more with respect to the AN property, it is a pass product.
  • the hard coat films of the examples according to the present invention have good AN properties and can suppress glare, so that a good AN effect is imparted and visibility is maintained.
  • it is possible to obtain a hard coat film that can maintain good visibility of the display because the haze value can be kept low, contrast deterioration and transmittance reduction are suppressed, and the total light transmittance is also good.
  • the balance between the AN effect and the glare suppressing effect is further improved. Can do.
  • the AN effect can be further improved by curing the hard coat layer in an air atmosphere.
  • the unevenness suitable for the hard coat layer surface is suitable. Is not formed (the unevenness is large). As a result, although the AN property is obtained, the occurrence of glare cannot be suppressed. Further, in the hard coat film of Comparative Example 4 in which a glass filler is contained in the hard coat layer in place of the organic fine particles, the haze value becomes high although the effect of suppressing AN property and glare can be obtained. When a coated film is used, the image quality of the display is degraded.
  • an antireflection layer can be laminated on the hard coat layer (see Example 12).

Abstract

The present invention provides a hard coat film that offers excellent anti-Newton ring effects and sustained visibility, reduces the haze value, suppresses contrast degradation and drops in transmittance, and can sustain the visibility of a display. This hard coat film 10 comprises a hard coat layer 2 on a transparent film base material 1, the hard coat layer 2 containing fine particles A and an ionizing radiation-curable resin. The fine particles A are organic particles. The difference in the refractive indices of the ionizing radiation-curable resin and the fine particles A in the hard coat layer 2 is greater than 0.001 and at most 0.050, and the film thickness T from the ionizing radiation-curable resin in the hard coat layer 2 is 0.7-2.0 times the average particle size of the fine particles A.

Description

ハードコートフィルムHard coat film
 本発明は、ハードコートフィルムに関し、更に詳しくは、タッチパネル搭載型ディスプレイ等の表示装置部品の保護フィルムとして使用することができる透明フィルム基材上にハードコート層を設けたハードコートフィルムに関する。 The present invention relates to a hard coat film, and more particularly to a hard coat film provided with a hard coat layer on a transparent film substrate that can be used as a protective film for display device parts such as a touch panel-mounted display.
 タッチパネル搭載型ディスプレイなどでは、タッチパネルユニットと液晶ディスプレイユニットの間に空気層の間隙を設けるエアギャップ方式が用いられることがある。しかしながら、この方式を用いる場合、タッチパネルを指やペンでタッチした際にタッチパネルが歪み、タッチパネル下部と液晶ディスプレイユニット上部の偏光板との間隔が縮むことで「ニュートンリング」と呼ばれる波紋状の光学干渉縞が発生してしまう。このニュートンリングを解消するために上部偏光板には表面凹凸を有するハードコートフィルムが用いられることがあり、十分なアンチニュートンリング効果(以下、「AN効果」と略記する。)を得るためには、ハードコート層表面の凹凸形状を大きくする、あるいは凹凸の頻度を増やす方法がある。しかし、ハードコート層表面の凹凸形状を大きくする、あるいは凹凸の頻度を増やすことで、高解像度の画面ではフィルム表面にいわゆるシンチレーション(ギラツキ、面ぎら)と呼ばれるキラキラ光る輝きが強くなってしまい、映像の視認性が悪化してしまう。 In a touch panel-mounted display, an air gap method in which an air layer gap is provided between the touch panel unit and the liquid crystal display unit may be used. However, when this method is used, when the touch panel is touched with a finger or pen, the touch panel is distorted and the distance between the lower part of the touch panel and the polarizing plate on the upper part of the liquid crystal display unit is reduced, thereby causing rippled optical interference called “Newton ring”. Stripes are generated. In order to eliminate this Newton ring, a hard coat film having surface irregularities may be used for the upper polarizing plate, and in order to obtain a sufficient anti-Newton ring effect (hereinafter abbreviated as “AN effect”). There are methods of increasing the uneven shape on the surface of the hard coat layer or increasing the frequency of the unevenness. However, by increasing the uneven shape on the hard coat layer surface or increasing the frequency of the unevenness, the so-called scintillation (glare, glare) on the film surface becomes stronger on high-resolution screens, resulting in a stronger image. Visibility will deteriorate.
 例えば、特開2007-265100号公報(特許文献1)で提案されているような表面粗さの大きいハードコートフィルムでは、AN効果は得られるもののハードコートフィルムの表面凹凸によりギラツキが強く発生し、視認性が悪化してしまう。 For example, in a hard coat film having a large surface roughness as proposed in Japanese Patent Application Laid-Open No. 2007-265100 (Patent Document 1), although the AN effect is obtained, the surface unevenness of the hard coat film causes strong glare, Visibility deteriorates.
 そこでAN効果を得つつギラツキの抑制を両立させるためには、AN効果を持つハードコート層内部のヘイズ値(霞度)を上昇させることでヘイズによる光の内部散乱を強め、ギラツキを抑制できることが知られている。しかし、ヘイズ値が上昇することで、ハードコート層が白濁していくため、画面が白くボケること(コントラストの悪化)や、透過率の低下が生じ、表示装置の表示輝度を低下させてしまう弊害があった。 Therefore, in order to achieve both the suppression of glare while obtaining the AN effect, it is possible to increase glaze by increasing the internal scattering of light by haze by increasing the haze value (degree) of the hard coat layer having the AN effect. Are known. However, as the haze value increases, the hard coat layer becomes cloudy, causing the screen to blur white (decrease in contrast) and decrease in transmittance, thereby reducing the display brightness of the display device. There was an evil.
 例えば、特開平11-326608号公報(特許文献2)には、平均粒子径が0.5~5μmであり、透過性樹脂との屈折率の差が0.02~0.2である透光性微粒子を配合した透光性フィルムが開示されている。当該特許文献2の記載によれば、層を構成する透過性樹脂と、これに含まれる透光性微粒子の屈折率の差を0.02~0.2とすることによって、拡散・透光性を低下させることなく、像鮮明度を向上させ、また、この場合、ヘイズ値を高くしてギラツキを低減させても、像鮮明度を高く維持することができるとしている。しかしながら、具体的に得られるフィルムのヘイズ値は10%以上と高く防眩性を有する一方、塗膜が白っぽくなり、透過率とコントラストの低下が著しい。 For example, Japanese Patent Application Laid-Open No. 11-326608 (Patent Document 2) discloses a light-transmitting material having an average particle diameter of 0.5 to 5 μm and a difference in refractive index from the transmissive resin of 0.02 to 0.2. A translucent film containing conductive fine particles is disclosed. According to the description in Patent Document 2, the difference in refractive index between the transparent resin constituting the layer and the transparent fine particles contained therein is set to 0.02 to 0.2, thereby diffusing and transmitting the light. In this case, the image definition can be maintained high even if the haze value is increased to reduce glare. However, the haze value of the specifically obtained film is as high as 10% or more and has an antiglare property, while the coating film becomes whitish and the transmittance and contrast are remarkably reduced.
特開2007-265100号広報JP 2007-265100 PR 特開平11-326608号公報Japanese Patent Laid-Open No. 11-326608
 上述したように、従来技術においては十分なAN効果を得られるようにハードコート層の設計を行うと、ギラツキによる視認性の悪化が懸念された。また、AN効果と視認性の維持を両立させるためには、ハードコート層内部のヘイズを上昇させる手段が取られていたが、ヘイズの上昇は画面のコントラストの悪化や透過率の低下により、ディスプレイの視認性が悪化し画質が低下してしまうという問題があった。 As described above, in the prior art, when the hard coat layer is designed so as to obtain a sufficient AN effect, there is a concern that the visibility deteriorates due to glare. Further, in order to achieve both the AN effect and the maintenance of visibility, means for increasing the haze inside the hard coat layer has been taken, but the increase in haze is caused by the deterioration of the contrast of the screen and the decrease of the transmittance. There is a problem that the visibility of the image quality deteriorates and the image quality deteriorates.
 そこで、本発明の目的は、良好なAN効果の付与と視認性の維持を両立させるとともに、ヘイズ値を低く抑えることで、コントラストの悪化や透過率の低下を抑制し、ディスプレイの視認性を良好に維持できるハードコートフィルムを提供することである。 Therefore, the object of the present invention is to achieve both the provision of a good AN effect and the maintenance of visibility, and the haze value is kept low, thereby suppressing the deterioration of contrast and the decrease in transmittance, thereby improving the visibility of the display. It is providing the hard coat film which can be maintained in this.
 本発明者らは、鋭意研究した結果、以下の構成を備えることにより、上記課題を解決できることを見出した。すなわち、本発明は、以下の構成を有するものである。 As a result of earnest research, the present inventors have found that the above problem can be solved by providing the following configuration. That is, the present invention has the following configuration.
 第1の発明は、透明フィルム基材上に、微粒子A及び電離放射線硬化型樹脂を含有するハードコート層を有するハードコートフィルムであって、前記微粒子Aは、有機系微粒子であって、前記ハードコート層中の前記微粒子Aと前記電離放射線硬化型樹脂との屈折率差が0.001超0.050以下の範囲内であり、且つ前記ハードコート層中の前記電離放射線硬化型樹脂からなる膜厚が、前記微粒子Aの平均粒子径の0.7倍~2.0倍であることを特徴とするハードコートフィルムである。 A first invention is a hard coat film having a hard coat layer containing fine particles A and an ionizing radiation curable resin on a transparent film substrate, wherein the fine particles A are organic fine particles, A film made of the ionizing radiation curable resin in the hard coat layer, wherein the refractive index difference between the fine particles A in the coating layer and the ionizing radiation curable resin is in the range of more than 0.001 and not more than 0.050. A hard coat film having a thickness of 0.7 to 2.0 times the average particle diameter of the fine particles A.
 第2の発明は、上記第1の発明において、前記ハードコート層中の前記微粒子Aと前記電離放射線硬化型樹脂との屈折率差が0.001超0.030以下の範囲内であることを特徴とするハードコートフィルムである。
 第3の発明は、上記第1又は第2の発明において、前記微粒子Aは、平均粒子径が2.0μm~18.0μmであることを特徴とするハードコートフィルムである。
According to a second invention, in the first invention, a difference in refractive index between the fine particles A in the hard coat layer and the ionizing radiation curable resin is in the range of more than 0.001 and 0.030 or less. It is the hard coat film characterized.
A third invention is the hard coat film according to the first or second invention, wherein the fine particles A have an average particle diameter of 2.0 μm to 18.0 μm.
 第4の発明は、上記第1乃至第3のいずれかの発明において、前記ハードコート層中に、前記微粒子A及び、平均粒子径が前記微粒子Aの0.3倍~0.8倍であり且つ前記電離放射線硬化型樹脂との屈折率差が0.001超0.050以下の範囲内にある微粒子Bを含有することを特徴とするハードコートフィルムである。 In a fourth invention according to any one of the first to third inventions, in the hard coat layer, the fine particles A and an average particle diameter are 0.3 to 0.8 times that of the fine particles A. A hard coat film comprising fine particles B having a refractive index difference from the ionizing radiation curable resin in the range of more than 0.001 and 0.050 or less.
 第5の発明は、上記第4の発明において、前記ハードコート層中の前記微粒子Bは、前記電離放射線硬化型樹脂との屈折率差が0.001超0.030以下の範囲内であることを特徴とするハードコートフィルムである。
 第6の発明は、上記第4又は第5の発明において、前記微粒子Aと前記微粒子Bの配合比率(重量比)が、微粒子A:微粒子B=50:50~2:98の範囲であることを特徴とするハードコートフィルムである。
In a fifth aspect based on the fourth aspect, the fine particle B in the hard coat layer has a refractive index difference from the ionizing radiation curable resin in the range of more than 0.001 and 0.030 or less. Is a hard coat film characterized by
According to a sixth invention, in the fourth or fifth invention, the mixing ratio (weight ratio) of the fine particles A and the fine particles B is in the range of fine particles A: fine particles B = 50: 50 to 2:98. Is a hard coat film characterized by
 第7の発明は、上記第1乃至第6のいずれかの発明において、前記微粒子Aの配合量が、前記電離放射線硬化型樹脂100重量部に対して0.002~2重量部であることを特徴とするハードコートフィルムである。 According to a seventh invention, in any one of the first to sixth inventions, the amount of the fine particles A is 0.002 to 2 parts by weight with respect to 100 parts by weight of the ionizing radiation curable resin. It is the hard coat film characterized.
 第8の発明は、上記第1乃至第7のいずれかの発明において、前記ハードコート層表面の凹凸の平均傾斜角が、0.1度以上1.5度以下の範囲にあることを特徴とするハードコートフィルムである。 An eighth invention is characterized in that, in any one of the first to seventh inventions, an average inclination angle of the irregularities on the surface of the hard coat layer is in a range of 0.1 degrees to 1.5 degrees. Hard coat film.
 第9の発明は、上記第1乃至第8のいずれかの発明において、前記ハードコート層は、大気雰囲気下で電離放射線照射により硬化させたものであることを特徴とするハードコートフィルムである。 A ninth invention is a hard coat film according to any one of the first to eighth inventions, wherein the hard coat layer is cured by irradiation with ionizing radiation in an air atmosphere.
 第10の発明は、上記第1乃至第9のいずれかの発明において、前記ハードコートフィルムのヘイズ値が0.1~10.0%で、全光線透過率が91.00以上であることを特徴とするハードコートフィルムである。 According to a tenth aspect of the present invention, in any one of the first to ninth aspects, the hard coat film has a haze value of 0.1 to 10.0% and a total light transmittance of 91.00 or more. It is the hard coat film characterized.
 本発明によれば、良好なAN効果の付与と視認性の維持を両立させるとともに、ヘイズ値を低く抑えることで、コントラストの悪化や透過率の低下を抑制し、ディスプレイの視認性を良好に維持できるハードコートフィルムを提供することができる。 According to the present invention, it is possible to maintain good visibility of the display by suppressing both deterioration of the contrast and reduction of transmittance by keeping the haze value low while simultaneously providing a good AN effect and maintaining the visibility. The hard coat film which can be provided can be provided.
本発明に係るハードコートフィルムの一実施の形態を示す模式的断面図である。It is a typical sectional view showing one embodiment of the hard coat film concerning the present invention. 本発明に係るハードコートフィルムの他の実施の形態を示す模式的断面図である。It is typical sectional drawing which shows other embodiment of the hard coat film which concerns on this invention. AN特性の評価方法を説明するための模式的断面図である。It is typical sectional drawing for demonstrating the evaluation method of AN characteristic. AN特性の評価基準を示す写真である。It is a photograph which shows the evaluation criteria of AN characteristics.
 以下、本発明の実施の形態について詳細に説明する。
 なお、本明細書(特許請求の範囲においても同様)において、「○○~△△」との記載は、特に断りのない限り、「○○以上△△以下」を意味するものとする。
Hereinafter, embodiments of the present invention will be described in detail.
In the present specification (the same applies to the claims), the description “XX to ΔΔ” means “from XX to ΔΔ” unless otherwise specified.
 本発明に係るハードコートフィルムの一実施の形態は、上記の第1の発明にあるとおり、透明フィルム基材上に、微粒子A及び電離放射線硬化型樹脂を含有するハードコート層を有するハードコートフィルムであって、前記微粒子Aは、有機系微粒子であって、前記ハードコート層中の前記微粒子Aと前記電離放射線硬化型樹脂との屈折率差が0.001超(すなわち、0.001よりも大きく)0.050以下の範囲内であり、且つ前記ハードコート層中の前記電離放射線硬化型樹脂からなる膜厚が、前記微粒子Aの平均粒子径の0.7倍~2.0倍であることを特徴とするものである。 In one embodiment of the hard coat film according to the present invention, as in the first invention, a hard coat film having a hard coat layer containing fine particles A and an ionizing radiation curable resin on a transparent film substrate. The fine particles A are organic fine particles, and the refractive index difference between the fine particles A in the hard coat layer and the ionizing radiation curable resin is more than 0.001 (that is, more than 0.001). The film thickness of the ionizing radiation curable resin in the hard coat layer is 0.7 to 2.0 times the average particle diameter of the fine particles A. It is characterized by this.
 図1は、本発明に係るハードコートフィルムの一実施の形態を示す模式的断面図である。
 図1に示すとおり、本発明の一実施の形態のハードコートフィルム10は、透明フィルム基材1上に、微粒子A及び電離放射線硬化型樹脂を含有するハードコート層2を有する。ここで、微粒子Aは、有機系微粒子である。また、上記のとおり、ハードコート層2中の微粒子Aと電離放射線硬化型樹脂との屈折率差が0.001超0.050以下の範囲内であり、且つハードコート層2中の電離放射線硬化型樹脂からなる膜厚Tは、微粒子Aの平均粒子径の0.7倍~2.0倍である。
FIG. 1 is a schematic cross-sectional view showing an embodiment of a hard coat film according to the present invention.
As shown in FIG. 1, a hard coat film 10 according to an embodiment of the present invention has a hard coat layer 2 containing fine particles A and an ionizing radiation curable resin on a transparent film substrate 1. Here, the fine particles A are organic fine particles. Further, as described above, the refractive index difference between the fine particles A in the hard coat layer 2 and the ionizing radiation curable resin is in the range of more than 0.001 and 0.050 or less, and the ionizing radiation curing in the hard coat layer 2 is performed. The film thickness T made of the mold resin is 0.7 to 2.0 times the average particle diameter of the fine particles A.
 なお、図1は、あくまでもハードコートフィルムの断面を模式的に示したものであり、微粒子Aの大きさ(粒径)や形状、微粒子Aの含有状態、微粒子Aの大きさとハードコート層の膜厚との関係、等を必ずしも正確に現したものではない。 Note that FIG. 1 schematically shows a cross section of the hard coat film, and the size (particle size) and shape of the fine particles A, the state of inclusion of the fine particles A, the size of the fine particles A and the film of the hard coat layer It does not necessarily accurately represent the relationship with thickness.
 本発明に用いることのできる上記透明フィルム基材1は、特に限定されないが、たとえば、ポリエチレンテレフタレートフィルム(PET;屈折率1.665)、ポリカーボネートフィルム(PC;屈折率1.582)、トリアセチルセルロースフィルム(TAC;屈折率1.485)、ノルボルネンフィルム(NB;屈折率1.525)などが使用できる。フィルム厚さも特に制限はないが、例えば25μm~250μm程度が汎用的に使用されている。一般的な電離放射線硬化型樹脂の屈折率は、1.52程度であるので、視認性を高くするためには上記電離放射線硬化型樹脂の屈折率に近いTACフィルム、NBフィルムが好ましく、また、価格的にはPETフィルムが好ましい。  Although the said transparent film base material 1 which can be used for this invention is not specifically limited, For example, a polyethylene terephthalate film (PET; refractive index 1.665), a polycarbonate film (PC; refractive index 1.582), a triacetyl cellulose A film (TAC; refractive index 1.485), norbornene film (NB; refractive index 1.525), etc. can be used. The thickness of the film is not particularly limited, but, for example, about 25 μm to 250 μm is generally used. Since the refractive index of a general ionizing radiation curable resin is about 1.52, a TAC film or an NB film close to the refractive index of the ionizing radiation curable resin is preferable in order to increase the visibility. In terms of price, a PET film is preferable. *
 本発明のハードコート層2に含有される樹脂としては、被膜を形成する樹脂であれば特に制限なく用いることができるが、特にハードコート層表面にハード性(鉛筆硬度、耐擦傷性)を付与し、またハードコート層形成時に多量の熱を必要としないという点で、電離放射線硬化型樹脂が好ましく用いられる。また、上記ハードコート層2には、本発明の効果を損なわない範囲で、レベリング剤、消泡剤、滑剤、紫外線吸収剤、光安定剤、重合禁止剤、湿潤分散剤、レオロジーコントロール剤、酸化防止剤、防汚剤)、帯電防止剤、導電剤などを必要に応じて含有してもよい。 The resin contained in the hard coat layer 2 of the present invention can be used without particular limitation as long as it is a resin that forms a film. In particular, the hard coat layer surface is provided with hard properties (pencil hardness, scratch resistance). In addition, ionizing radiation curable resins are preferably used in that a large amount of heat is not required when forming the hard coat layer. Further, the hard coat layer 2 has a leveling agent, an antifoaming agent, a lubricant, an ultraviolet absorber, a light stabilizer, a polymerization inhibitor, a wetting and dispersing agent, a rheology control agent, an oxidation, within a range not impairing the effects of the present invention. (Antistatic agent, antifouling agent), an antistatic agent, a conductive agent and the like may be contained as necessary.
 上記電離放射線硬化型樹脂は、電子線または紫外線等を照射することによって硬化する透明な樹脂であれば、特に限定されるものではなく、例えば、ウレタンアクリレート系樹脂、ポリエステルアクリレート系樹脂、及びエポキシアクリレート系樹脂等の中から適宜選択することができる。電離放射線硬化型樹脂として好ましいものは、透明フィルム基材1との良好な密着性を得るために、分子内に2個以上の(メタ)アクリロイル基を有する紫外線硬化可能な多官能アクリレートからなるものが好ましく挙げられる。分子内に2個以上の(メタ)アクリロイル基を有する紫外線硬化可能な多官能アクリレートの具体例としては、ネオペンチルグリコールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート等のポリオールポリアクリレート、ビスフェノールAジグリシジルエーテルのジアクリレート、ネオペンチルグリコールジグリシジルエーテルのジアクリレート、1,6-ヘキサンジオールジグリシジルエーテルのジ(メタ)アクリレートなどのエポキシ(メタ)アクリレート、多価アルコールと多価カルボン酸及び/またはその無水物とアクリル酸とをエステル化することによって得ることができるポリエステル(メタ)アクリレート、多価アルコール、多価イソシアネート及び水酸基含有(メタ)アクリレートを反応させることによって得られるウレタン(メタ)アクリレート、ポリシロキサンポリ(メタ)アクリレート等を挙げることができる。 The ionizing radiation curable resin is not particularly limited as long as it is a transparent resin that is cured by irradiation with an electron beam or ultraviolet rays. For example, a urethane acrylate resin, a polyester acrylate resin, and an epoxy acrylate It can be appropriately selected from among resin based resins. What is preferable as the ionizing radiation curable resin is composed of an ultraviolet curable polyfunctional acrylate having two or more (meth) acryloyl groups in the molecule in order to obtain good adhesion to the transparent film substrate 1. Is preferred. Specific examples of the UV-curable polyfunctional acrylate having two or more (meth) acryloyl groups in the molecule include neopentyl glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, and trimethylol. Polyol polyacrylates such as propane tri (meth) acrylate, ditrimethylolpropane tetra (meth) acrylate, pentaerythritol tetra (meth) acrylate, pentaerythritol tri (meth) acrylate, dipentaerythritol hexa (meth) acrylate, bisphenol A diglycidyl Epoxys such as diacrylate of ether, diacrylate of neopentyl glycol diglycidyl ether, di (meth) acrylate of 1,6-hexanediol diglycidyl ether ( A) Polyester (meth) acrylate, polyhydric alcohol, polyisocyanate and hydroxyl group-containing (meta) which can be obtained by esterifying acrylate, polyhydric alcohol and polyhydric carboxylic acid and / or anhydride and acrylic acid ) Urethane (meth) acrylate obtained by reacting acrylate, polysiloxane poly (meth) acrylate, and the like.
 上記の紫外線硬化可能な多官能アクリレートは単独または2種以上混合して用いてもよく、その含有量はハードコート層用塗料の樹脂固形分に対して、好ましくは50~95重量%である。なお、上記の多官能(メタ)アクリレートの他に、ハードコート層用塗料の樹脂固形分に対して、好ましくは10重量%以下の2-ヒドロキシ(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、グリシジル(メタ)アクリレート等の単官能アクリレートを添加することもできる。 The above-mentioned UV-curable polyfunctional acrylate may be used alone or in combination of two or more, and the content thereof is preferably 50 to 95% by weight based on the resin solid content of the hard coat layer coating material. In addition to the above polyfunctional (meth) acrylate, preferably 10% by weight or less of 2-hydroxy (meth) acrylate and 2-hydroxypropyl (meth) acrylate with respect to the resin solid content of the hard coat layer coating material. Monofunctional acrylates such as glycidyl (meth) acrylate can also be added.
 また、上記ハードコート層2には硬度を調整する目的で使用される重合性オリゴマーを添加することができる。このようなオリゴマーとしては、末端(メタ)アクリレートポリメチル(メタ)アクリレート、末端スチリルポリ(メタ)アクリレート、末端(メタ)アクリレートポリスチレン、末端(メタ)アクリレートポリエチレングリコール、末端(メタ)アクリレートアクリロニトリル-スチレン共重合体、末端(メタ)アクリレートスチレン-メチルメタクリレート共重合体などのマクロモノマーを挙げることができ、その含有量はハードコート層用塗料中の樹脂固形分に対して、好ましくは5~50重量%である。 In addition, a polymerizable oligomer used for the purpose of adjusting the hardness can be added to the hard coat layer 2. Such oligomers include terminal (meth) acrylate polymethyl (meth) acrylate, terminal styryl poly (meth) acrylate, terminal (meth) acrylate polystyrene, terminal (meth) acrylate polyethylene glycol, terminal (meth) acrylate acrylonitrile-styrene copolymer. Examples thereof include macromonomers such as polymers and terminal (meth) acrylate styrene-methyl methacrylate copolymers, and the content thereof is preferably 5 to 50% by weight based on the solid content of the resin in the coating material for the hard coat layer. It is.
 本発明のハードコート層2に含有される上記微粒子Aを形成する材料としては、特に限定はないが、真球状を形成しやすく、ハードコート層表面に現出した際に均一な傾斜角を形成しやすい、有機系微粒子を用いることが好ましい。そのような有機系微粒子しては、例えば、塩化ビニル樹脂(屈折率1.53)、アクリル樹脂(屈折率1.49)、(メタ)アクリル樹脂(屈折率1.52~1.53)、ポリスチレン樹脂(屈折率1.59)、メラミン樹脂(屈折率1.57)、ポリエチレン樹脂、ポリカーボネート樹脂、アクリル-スチレン共重合樹脂(屈折率1.49~1.59)等からなる微粒子が挙げられる。 The material for forming the fine particles A contained in the hard coat layer 2 of the present invention is not particularly limited, but it is easy to form a true sphere and forms a uniform inclination angle when it appears on the surface of the hard coat layer. It is preferable to use organic fine particles that are easily formed. Examples of such organic fine particles include vinyl chloride resin (refractive index 1.53), acrylic resin (refractive index 1.49), (meth) acrylic resin (refractive index 1.52 to 1.53), Examples thereof include fine particles made of polystyrene resin (refractive index 1.59), melamine resin (refractive index 1.57), polyethylene resin, polycarbonate resin, acrylic-styrene copolymer resin (refractive index 1.49 to 1.59), and the like. .
 本発明に用いる微粒子Aは、ハードコート層2を構成する上記電離放射線硬化型樹脂の屈折率(硬化後の屈折率)に対し、屈折率の差が0.001超0.050以下の範囲内である微粒子を用いること必要である。好ましくは電離放射線硬化型樹脂との屈折率の差が0.001超0.04以下の範囲内であり、より好ましくは電離放射線硬化型樹脂との屈折率の差が0.001超0.03以下の範囲内であり、さらに好ましくは電離放射線硬化型樹脂との屈折率の差が0.001超0.01以下の範囲内である微粒子Aを用いることである。つまり、一般的な電離放射線硬化型樹脂の屈折率は、例えば1.52~1.53程度であるので、屈折率が1.47~1.58の微粒子Aを使用することが好ましい。例えば、ハードコート層2を構成する樹脂が電離放射線硬化型樹脂の(メタ)アクリル樹脂、ウレタンアクリレート(屈折率=1.52)の場合、ハードコート層2に含有される微粒子Aは、透明性に優れる(メタ)アクリル樹脂(屈折率1.52~1.53)、もしくはアクリル-スチレン共重合樹脂で屈折率を1.49~1.53、より好ましくは屈折率を1.51~1.53に調整した微粒子を使用することが好ましい。上記電離放射線硬化型樹脂との屈折率範囲を適切に調整した微粒子Aを用いることで、ハードコート層2のヘイズ値を低く抑え、鮮明度やコントラストを高く維持することができるので好ましい。 The fine particles A used in the present invention have a refractive index difference in the range of more than 0.001 to 0.050 with respect to the refractive index of the ionizing radiation curable resin constituting the hard coat layer 2 (the refractive index after curing). It is necessary to use fine particles that are Preferably, the difference in refractive index from the ionizing radiation curable resin is in the range of more than 0.001 to 0.04 or less, more preferably the difference in refractive index from the ionizing radiation curable resin is more than 0.001 to 0.03. Fine particles A having a refractive index difference within the following range, more preferably within a range of more than 0.001 and not more than 0.01 are used. That is, since the refractive index of a general ionizing radiation curable resin is, for example, about 1.52 to 1.53, it is preferable to use fine particles A having a refractive index of 1.47 to 1.58. For example, when the resin constituting the hard coat layer 2 is an ionizing radiation curable resin (meth) acrylic resin or urethane acrylate (refractive index = 1.52), the fine particles A contained in the hard coat layer 2 are transparent. (Meth) acrylic resin (refractive index 1.52 to 1.53) or acrylic-styrene copolymer resin having a refractive index of 1.49 to 1.53, more preferably a refractive index of 1.51 to 1.3. It is preferable to use fine particles adjusted to 53. Use of the fine particles A in which the refractive index range with the ionizing radiation curable resin is appropriately adjusted is preferable because the haze value of the hard coat layer 2 can be suppressed low and the sharpness and contrast can be maintained high.
 本発明に用いられる上記微粒子Aは、平均粒子径が2.0μm~18.0μmの範囲のものであることが好ましい。平均粒子径が該範囲を満たす微粒子Aは、ハードコート層表面の凹凸形状や凹凸の頻度など、凹凸の形成を調整しやすく、本発明に用いるのに好ましい。さらに好ましくは、平均粒子径6μm~18.0μmの微粒子Aである。
 なお、本発明において、上記平均粒子径とは、一般的に用いられる粒子径の測定方法を用いることができ、そのようなものとしては例えば、微粒子の長さ平均径を得られるレーザー回折粒度測定器SALD2200(島津製作所社製)によってモード径を測定した有効径で表すことが可能である。またCOULTERMULTISIZER(ベックマン・コールター社製)を用いることにより、粒子の投影面積や体積等の直接的な測定値から幾何学公式により推算される相当径によっても表すことが可能である。
The fine particles A used in the present invention preferably have an average particle size in the range of 2.0 μm to 18.0 μm. The fine particles A having an average particle diameter satisfying the above range are preferable for use in the present invention because the formation of irregularities such as irregularities on the surface of the hard coat layer and the frequency of irregularities can be easily adjusted. More preferable are fine particles A having an average particle diameter of 6 μm to 18.0 μm.
In the present invention, the average particle diameter may be a generally used particle diameter measuring method, such as laser diffraction particle size measurement that can obtain the average length of fine particles. It is possible to represent the effective diameter obtained by measuring the mode diameter with a device SALD2200 (manufactured by Shimadzu Corporation). Further, by using COULTERMULTISIZER (manufactured by Beckman Coulter, Inc.), it is also possible to represent the equivalent diameter estimated by a geometric formula from direct measurement values such as the projected area and volume of particles.
 本発明において、上記微粒子Aの配合量は、ハードコート層2中の前記電離放射線硬化型樹脂100重量部に対して0.002~2重量部であることが好ましく、より好ましくは0.02~1重量部である。さらに好ましくは0.04~0.5重量部である。
 微粒子Aの配合量が上記範囲であることにより、ハードコート層中の電離放射線硬化型樹脂からなる膜厚と微粒子Aの平均粒子径との比を調整しやすくなる。
In the present invention, the amount of the fine particles A is preferably 0.002 to 2 parts by weight, more preferably 0.02 to 2 parts by weight with respect to 100 parts by weight of the ionizing radiation curable resin in the hard coat layer 2. 1 part by weight. More preferably, it is 0.04 to 0.5 part by weight.
When the blending amount of the fine particles A is within the above range, it becomes easy to adjust the ratio between the film thickness of the ionizing radiation curable resin in the hard coat layer and the average particle diameter of the fine particles A.
 本発明において、ハードコート層2中の前記電離放射線硬化型樹脂からなる膜厚T(以下、単に「ハードコート層の膜厚」とも呼ぶこととする。)は、微粒子Aの平均粒子径の0.7倍~2.0倍である。また、ハードコート層の膜厚が、微粒子Aの平均粒子径の0.8倍~1.2倍であることがより好ましい。 In the present invention, the film thickness T made of the ionizing radiation curable resin in the hard coat layer 2 (hereinafter simply referred to as “film thickness of the hard coat layer”) is 0 of the average particle diameter of the fine particles A. .7 times to 2.0 times. More preferably, the thickness of the hard coat layer is 0.8 to 1.2 times the average particle diameter of the fine particles A.
 ハードコート層の膜厚が微粒子Aの平均粒子径の0.7倍未満の場合、ハードコート層表面に微粒子Aが頻繁に現出して表面の粗さが増し、ギラツキが発生する。一方、ハードコート層の膜厚が微粒子Aの平均粒子径の2.0倍を超える場合、ハードコート層の表面に微粒子Aが現出し難くなるため、期待されるAN効果が得られない。本発明においては、ハードコート層の膜厚が、ハードコート層中に含有される上記微粒子Aの平均粒子径に対して上記範囲内であることにより、得られるAN効果とギラツキの抑制とのバランスが好ましく発揮されるため、その結果、AN効果と視認性の維持を両立させることが可能になる。 When the film thickness of the hard coat layer is less than 0.7 times the average particle diameter of the fine particles A, the fine particles A frequently appear on the hard coat layer surface, the surface roughness increases, and glare occurs. On the other hand, when the film thickness of the hard coat layer exceeds 2.0 times the average particle diameter of the fine particles A, the fine AN is difficult to appear on the surface of the hard coat layer, so that the expected AN effect cannot be obtained. In the present invention, when the film thickness of the hard coat layer is within the above range with respect to the average particle diameter of the fine particles A contained in the hard coat layer, a balance between the obtained AN effect and suppression of glare is achieved. As a result, it is possible to achieve both the AN effect and the maintenance of visibility.
 また、本発明においては、ハードコート層2中に上記微粒子Aと平均粒子径の異なる他の微粒子を含有することも好ましい実施形態である。本発明のハードコートフィルムの他の実施の形態としては、上記第4の発明にあるとおり、ハードコート層中に、上記微粒子A及び、平均粒子径が微粒子Aの0.3倍~0.8倍であり且つ前記電離放射線硬化型樹脂との屈折率差が0.001超0.050以下の範囲内にある微粒子Bを含有することである。 In the present invention, it is also a preferred embodiment that the hard coat layer 2 contains other fine particles having an average particle diameter different from that of the fine particles A. As another embodiment of the hard coat film of the present invention, as described in the fourth invention, in the hard coat layer, the fine particles A and the average particle size is 0.3 to 0.8 times that of the fine particles A. And a fine particle B having a refractive index difference from the ionizing radiation curable resin in the range of more than 0.001 and 0.050 or less.
 図2は、本発明に係るハードコートフィルムの他の実施の形態を示す模式的断面図であるが、図2に示されるとおり、ハードコート層2中に微粒子Aと微粒子Bの両方を含有している。なお、図2についてもハードコートフィルムの断面を模式的に示したものであり、微粒子Bの大きさ(粒径)や形状、微粒子Bの含有状態、微粒子Aの大きさとの関係、等を必ずしも正確に現したものではない。 FIG. 2 is a schematic cross-sectional view showing another embodiment of the hard coat film according to the present invention. As shown in FIG. 2, the hard coat layer 2 contains both fine particles A and fine particles B. ing. Note that FIG. 2 also schematically shows a cross section of the hard coat film, and the size (particle size) and shape of the fine particles B, the content of the fine particles B, the relationship with the size of the fine particles A, etc. are not necessarily limited. It is not an exact representation.
 本実施の形態のように、ハードコート層中に、上記微粒子Aよりも小粒径の、すなわち平均粒子径が微粒子Aの0.3倍~0.8倍の微粒子Bを微粒子Aとともに含有させることにより、ギラツキを抑制しつつ、AN効果をより向上させる効果を奏する。 As in the present embodiment, fine particles B having a smaller particle diameter than the fine particles A, that is, an average particle size of 0.3 to 0.8 times that of the fine particles A are contained in the hard coat layer together with the fine particles A. Thus, the effect of further improving the AN effect is achieved while suppressing glare.
 また、微粒子Aの平均粒子径の0.5倍~0.75倍である微粒子Bを含むことがより好ましい。
 上記微粒子Bについても、有機系微粒子を用いることが好ましく、その材質は上記微粒子Aの材質と同様のものが挙げられる。
Further, it is more preferable to include fine particles B that are 0.5 to 0.75 times the average particle size of the fine particles A.
The fine particles B are also preferably organic fine particles, and the material thereof is the same as the material of the fine particles A.
 また、上記微粒子Bについても、ハードコート層2を構成する上記電離放射線硬化型樹脂の屈折率(硬化後の屈折率)に対し、屈折率の差が0.001超0.050以下の範囲内(好ましくは電離放射線硬化型樹脂との屈折率の差が0.001超0.04以下の範囲内であり、より好ましくは電離放射線硬化型樹脂との屈折率の差が0.001超0.03以下の範囲内であり、さらに好ましくは電離放射線硬化型樹脂との屈折率の差が0.001超0.01以下の範囲内)である微粒子を用いることが、ハードコート層2のヘイズ値を低く抑え、鮮明度やコントラストを高く維持することができるので好ましい。 The fine particle B also has a refractive index difference in the range of more than 0.001 to 0.050 with respect to the refractive index of the ionizing radiation curable resin constituting the hard coat layer 2 (the refractive index after curing). (Preferably the difference in refractive index from the ionizing radiation curable resin is in the range of more than 0.001 to 0.04 or less, more preferably the difference in refractive index from the ionizing radiation curable resin is more than 0.001 to 0.00. The haze value of the hard coat layer 2 is obtained by using fine particles having a refractive index within a range of 03 or less, more preferably a difference in refractive index from the ionizing radiation curable resin within a range of more than 0.001 and 0.01 or less. Is low, and the sharpness and contrast can be maintained high, which is preferable.
 本発明において、上記微粒子Bが上記微粒子Aと併用される場合、上記微粒子B単独の配合量は特に限定されるわけではないが、ハードコート層2中の微粒子Aと微粒子Bの配合比率(重量比)においては、微粒子A:微粒子B=50:50~2:98の範囲であることが好ましく、より好ましくは、微粒子A:微粒子B=10:90~2:98の範囲である。 In the present invention, when the fine particles B are used in combination with the fine particles A, the amount of the fine particles B alone is not particularly limited, but the mixing ratio (weight) of the fine particles A and the fine particles B in the hard coat layer 2 is not limited. Ratio) is preferably in the range of fine particles A: fine particles B = 50: 50 to 2:98, more preferably in the range of fine particles A: fine particles B = 10: 90 to 2:98.
 ハードコート層中に、上記微粒子Aと上記微粒子Bを上記の配合比率で含有させることにより、低ヘイズで、かつギラツキを良好に抑制したままAN効果を改善することができる。
 また、本発明の効果を阻害しない範囲において、上記微粒子Aと微粒子Bのほかに、さらに別の微粒子を含むこともできる。
By including the fine particles A and the fine particles B in the hard coat layer in the above-described mixing ratio, the AN effect can be improved with low haze and excellent suppression of glare.
Further, in addition to the fine particles A and the fine particles B, other fine particles may be included within a range not impairing the effects of the present invention.
 また、本発明において、上記ハードコート層表面の凹凸の平均傾斜角が、0.1度以上1.5度以下の範囲にあることが好適である。
 ここで、上記ハードコート層表面の凹凸の平均傾斜角とは、三次元表面粗計を用いて測定したハードコートフィルム表面の断面曲線に基づく断面解析により得られる、突起部の下点から上点までのX軸方向の距離(ΔX)とその点の高低さ(ΔY)を用い、以下の式により定義される傾斜角の値を平均したものである。
  傾斜角θ=tan-1(ΔY/ΔX)
Moreover, in this invention, it is suitable for the average inclination | tilt angle of the unevenness | corrugation on the said hard-coat layer surface to exist in the range of 0.1 degree or more and 1.5 degrees or less.
Here, the average inclination angle of the irregularities on the surface of the hard coat layer is an upper point from the lower point of the protrusion obtained by cross-sectional analysis based on the cross-sectional curve of the surface of the hard coat film measured using a three-dimensional surface roughness meter. X-axis direction distance (ΔX) and the height (ΔY) of the point are averaged with respect to the value of the inclination angle defined by the following equation.
Inclination angle θ = tan −1 (ΔY / ΔX)
 たとえば上記微粒子Aの粒径、配合量などの調整により、ハードコート層2中の前記電離放射線硬化型樹脂からなる膜厚Tと上記微粒子Aの平均粒子径を適する範囲(例えば上記のようにハードコート層の膜厚が微粒子Aの平均粒子径の0.7倍~2.0倍)に設計することにより、本発明のハードコート層においては、微粒子Aとハードコート層とで形成されるハードコート層表面の凹凸の平均傾斜角が、0.1度以上1.5度以下の範囲とすることができる。該平均傾斜角が0.1度未満の場合、ハードコート層表面は十分な凹凸性(凹凸の大きさと頻度など)を有せずAN効果が十分に発現されない。一方、該平均傾斜角が1.5度を超える場合、ハードコート層表面の凹凸性が大きすぎ、ギラツキが発生し易くなる。本発明の効果を得るのにより好ましくは該平均傾斜角が0.5度以上1.0度以下の範囲である。 For example, by adjusting the particle diameter, blending amount, etc. of the fine particles A, a range in which the film thickness T made of the ionizing radiation curable resin in the hard coat layer 2 and the average particle diameter of the fine particles A are suitable (for example, hard as described above). In the hard coat layer of the present invention, the hard layer formed by the fine particles A and the hard coat layer is designed so that the film thickness of the coat layer is 0.7 to 2.0 times the average particle diameter of the fine particles A). The average inclination angle of the irregularities on the surface of the coat layer can be in the range of 0.1 to 1.5 degrees. When the average inclination angle is less than 0.1 degree, the hard coat layer surface does not have sufficient unevenness (such as unevenness size and frequency) and the AN effect is not sufficiently exhibited. On the other hand, when the average inclination angle exceeds 1.5 degrees, the unevenness of the hard coat layer surface is too large, and glare is likely to occur. In order to obtain the effect of the present invention, the average inclination angle is preferably in the range of 0.5 ° to 1.0 °.
 本発明のハードコート層においては、上記微粒子Aの他に上記微粒子Bが含まれる場合においても、各微粒子の粒径、配合量、膜厚などの調整により、上記平均傾斜角を0.1度以上1.5度以下の範囲に調整することができる。該平均傾斜角が上記範囲内を満たすことにより、本発明の効果を得られやすく、さらに0.5度以上1.0度以下の範囲であると本発明の効果がより高く得られるため好ましい。 In the hard coat layer of the present invention, even when the fine particles B are included in addition to the fine particles A, the average inclination angle is adjusted to 0.1 degree by adjusting the particle size, blending amount, film thickness, and the like of each fine particle. It can be adjusted within the range of 1.5 degrees or more. When the average inclination angle satisfies the above range, the effect of the present invention can be easily obtained, and the range of 0.5 ° to 1.0 ° is more preferable because the effect of the present invention can be further enhanced.
 上記ハードコート層2は、前記樹脂と微粒子等を溶剤に溶解、分散した塗料を透明フィルム基材1上に塗工乾燥して形成することができる。溶媒としては、前記樹脂の溶解性に応じて適宜選択でき、少なくとも固形分(樹脂、微粒子、触媒、硬化剤、その他添加剤) を均一に溶解あるいは分散できる溶媒であればよい。そのような溶媒としては、例えば、ケトン類(アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等)、エーテル類(ジオキサン、テトラヒドロフラン等)、脂肪族炭化水素類(ヘキサン等)、脂環式炭化水素類(シクロヘキサン等)、芳香族炭化水素類(トルエン、キシレン等)、ハロゲン化炭素類(ジクロロメタン、ジクロロエタン等) 、エステル類( 酢酸メチル、酢酸エチル、酢酸ブチル等)、アルコール類(メタノール、エタノール、イソプロパノール、ブタノール、シクロヘキサノール等)、セロソルブ類(メチルセロソルブ、エチルセロソルブ等)、セロソルブアセテート類、スルホキシド類、アミド類などが例示できる。また、溶媒は単独で使用しても混合して使用してもよい。 The hard coat layer 2 can be formed by applying and drying a paint in which the resin and fine particles are dissolved and dispersed in a solvent on the transparent film substrate 1. The solvent can be appropriately selected depending on the solubility of the resin, and may be any solvent that can uniformly dissolve or disperse at least solid content (resin, fine particles, catalyst, curing agent, and other additives). Examples of such a solvent include ketones (acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, etc.), ethers (dioxane, tetrahydrofuran, etc.), aliphatic hydrocarbons (hexane, etc.), alicyclic hydrocarbons ( Cyclohexane, etc.), aromatic hydrocarbons (toluene, xylene, etc.), halogenated carbons (dichloromethane, dichloroethane, etc.), esters (methyl acetate, ethyl acetate, butyl acetate, etc.), alcohols (methanol, ethanol, isopropanol, Butanol, cyclohexanol, etc.), cellosolves (methyl cellosolve, ethyl cellosolve, etc.), cellosolve acetates, sulfoxides, amides and the like. Further, the solvents may be used alone or in combination.
 塗工方法については特に限定しないが、グラビア塗工、マイクログラビア塗工、バー塗工、スライドダイ塗工、スロットダイ塗工、デイップコートなど、塗膜厚さの調整が容易な方式で塗工が可能である。なお、ハードコート層2の膜厚Tは、フィルム断面写真を顕微鏡等で観察し、塗膜界面から表面までを実測することにより測定可能である。 The coating method is not particularly limited, but it can be applied with a method that allows easy adjustment of the coating thickness, such as gravure coating, microgravure coating, bar coating, slide die coating, slot die coating, dip coating, etc. Is possible. The film thickness T of the hard coat layer 2 can be measured by observing a film cross-sectional photograph with a microscope or the like and actually measuring from the coating film interface to the surface.
 また、ハードコート層2の電離放射線照射による硬化方法については特に限定しないが、大気雰囲気下で硬化させることが好ましい。ハードコート層2の電離放射線照射による硬化時に、大気雰囲気下で硬化させることで、酸素による硬化反応阻害により表面凹凸の形状を調整し、視認性を維持しつつAN効果をさらに向上させるような表面凹凸性(凹凸の大きさや平均傾斜角、頻度など)に調整することができる。その結果、従来の表面凹凸を有するハードコートフィルムに比べ、良好なAN効果と視認性を両立するとともに、ヘイズ値を低く抑えることができる。 Further, the curing method of the hard coat layer 2 by irradiation with ionizing radiation is not particularly limited, but it is preferably cured in an air atmosphere. Surface that can improve the AN effect while maintaining visibility by adjusting the shape of the surface irregularity by inhibiting the curing reaction by oxygen by curing in the air atmosphere when curing the hard coat layer 2 by ionizing radiation irradiation It is possible to adjust the unevenness (the size of the unevenness, the average inclination angle, the frequency, etc.). As a result, compared with the hard coat film which has the conventional surface unevenness | corrugation, while being able to make favorable AN effect and visibility compatible, haze value can be restrained low.
 また、本発明のハードコートフィルムにおいては、ヘイズ値が0.1%~10%であることが好ましく、より好ましくは0.1%~8.0%であり、更に好ましくは0.1%~2.0%である。さらに全光線透過率は91.00以上であることが好ましい。 In the hard coat film of the present invention, the haze value is preferably 0.1% to 10%, more preferably 0.1% to 8.0%, still more preferably 0.1% to 2.0%. Further, the total light transmittance is preferably 91.00 or more.
 また、本発明のハードコートフィルムにおいては、上記微粒子Aおよび樹脂を含有するハードコート層2上に、反射防止層を設けることができる。この場合の反射防止層は、JIS Z 8701に基づく三刺激値のうちY値を反射率とし、その反射率が2%以下であることが好ましい。 In the hard coat film of the present invention, an antireflection layer can be provided on the hard coat layer 2 containing the fine particles A and the resin. The antireflection layer in this case preferably has a Y value of the tristimulus values based on JIS Z 8701 as a reflectance, and the reflectance is 2% or less.
 以上説明したように、本発明のハードコートフィルムによれば、上述の構成とすることで、良好なAN効果と視認性を両立できるともに、ヘイズ値を低く抑え、コントラストの悪化や透過率の低下を抑制し、ディスプレイの視認性を良好に維持できるハードコートフィルムが得られる。本発明のハードコートフィルムが優れた効果を発現する理由は以下のように推測される。 As described above, according to the hard coat film of the present invention, by having the above-described configuration, both a good AN effect and visibility can be achieved, the haze value is kept low, the contrast is deteriorated, and the transmittance is lowered. Is suppressed, and a hard coat film capable of maintaining good display visibility can be obtained. The reason why the hard coat film of the present invention exhibits an excellent effect is presumed as follows.
 すなわち、ハードコート層の膜厚を上記微粒子Aの平均粒子径との関係で好適な範囲内に調整して、含有される上記微粒子Aをハードコート層の表面から適切な凹凸性となるように突出させることにより、AN効果と視認性を両立できるハードコート層の表面を形成する。さらに、ハードコート層中に、上記微粒子Aよりも小径(好ましくはハードコート層の膜厚よりも小さい)の平均粒子径を持つ微粒子Bが微粒子Aとともに含有されることにより、ギラツキを抑制しつつよりAN効果を高めることができる。また、これらハードコート層に含有される微粒子が、ハードコート層を形成する電離放射線硬化型樹脂と、その屈折率差が近しいものとすることにより、これら微粒子が含有されても低ヘイズを保ち、透明性が高く確保される。 That is, the film thickness of the hard coat layer is adjusted within a suitable range in relation to the average particle diameter of the fine particles A so that the contained fine particles A have appropriate unevenness from the surface of the hard coat layer. By projecting, the surface of the hard coat layer that can achieve both the AN effect and the visibility is formed. Furthermore, the fine particle B having an average particle size smaller than the fine particle A (preferably smaller than the film thickness of the hard coat layer) is contained together with the fine particle A in the hard coat layer, thereby suppressing glare. The AN effect can be further enhanced. In addition, the fine particles contained in these hard coat layers are kept close to the ionizing radiation curable resin forming the hard coat layer, and the difference in refractive index thereof, so that even if these fine particles are contained, low haze is maintained, High transparency is ensured.
 以下、本発明の実施の形態を実施例により更に詳細に説明するが、本発明は要旨を超えない限りこれらの実施例に限定されるものではない。なお、以下において「部」および「%」は特に断らない限り、それぞれ重量部および重量%を示すものとする。 Hereinafter, the embodiments of the present invention will be described in more detail by way of examples. However, the present invention is not limited to these examples unless it exceeds the gist. In the following, “parts” and “%” respectively represent parts by weight and weight% unless otherwise specified.
[実施例1]
<ハードコート層用塗料>
 トルエン50部に、微粒子Aとして、積水化成品工業社製アクリル-スチレン共重合粒子(平均粒子径8.0μm、屈折率1.525)0.1部を添加し、分散剤(ビックケミー社製)を適量添加した後十分攪拌した。この液に紫外線硬化型樹脂(新中村化学社製ウレタンアクリレート、製品名U-15HA、屈折率1.53)47.8部とイルガキュア184(BASF社製、光重合開始剤)を適量添加し、十分攪拌しハードコート層用塗料を調製した。
<ハードコートフィルム作製>
 厚さ(40μm)のTACフィルム(トリアセチルセルロースフィルム)上に、上記ハードコート層用塗料を、マイヤーバーを用いて膜厚7.0μmとなるように塗工し、80℃で1分間乾燥後、大気雰囲気下で200mJ/cm2の紫外線(光源:Fusion Japan社製UVランプ)を照射して上記ハードコート層を硬化させ、ハードコートフィルムを得た。
[Example 1]
<Hardcoat layer paint>
To 50 parts of toluene, 0.1 part of Sekisui Plastics Co., Ltd. acrylic-styrene copolymer particles (average particle size 8.0 μm, refractive index 1.525) is added as fine particles A, and an appropriate amount of a dispersant (by Big Chemie) is added. After that, it was sufficiently stirred. To this solution, 47.8 parts of an ultraviolet curable resin (urethane acrylate manufactured by Shin-Nakamura Chemical Co., Ltd., product name U-15HA, refractive index 1.53) and Irgacure 184 (manufactured by BASF, photopolymerization initiator) are added in appropriate amounts and stirred sufficiently. Then, a paint for a hard coat layer was prepared.
<Hard coat film production>
On the TAC film (triacetyl cellulose film) having a thickness (40 μm), the above hard coat layer coating was applied using a Meyer bar to a film thickness of 7.0 μm and dried at 80 ° C. for 1 minute. The hard coat layer was cured by irradiating with 200 mJ / cm 2 ultraviolet light (light source: Fusion Japan UV lamp) in an air atmosphere to obtain a hard coat film.
[実施例2]
 実施例1のハードコート層用塗料において、微粒子Aとして、積水化成品工業社製アクリル-スチレン共重合粒子(平均粒子径8.0μm、屈折率1.505)を用いた以外は、実施例1と同様に作製したハードコートフィルムを得た。
[Example 2]
In the coating material for hard coat layer of Example 1, the same as Example 1 except that acrylic-styrene copolymer particles (average particle diameter of 8.0 μm, refractive index of 1.505) manufactured by Sekisui Plastics Co., Ltd. were used as the fine particles A. The produced hard coat film was obtained.
[実施例3]
 実施例1のハードコート層用塗料において、微粒子Aを0.5部添加とし、且つ膜厚を15μmとした以外は、実施例1と同様に作製したハードコートフィルムを得た。
[Example 3]
A hard coat film produced in the same manner as in Example 1 was obtained except that 0.5 part of fine particles A was added and the film thickness was 15 μm in the paint for hard coat layer of Example 1.
[実施例4]
 実施例1のハードコート層用塗料において、膜厚を15μmとした以外は、実施例1と同様に作製したハードコートフィルムを得た。
[Example 4]
A hard coat film produced in the same manner as in Example 1 was obtained except that the coating thickness for the hard coat layer in Example 1 was changed to 15 μm.
[実施例5]
 実施例1のハードコート層用塗料において、膜厚を9.5μmとした以外は、実施例1と同様に作製したハードコートフィルムを得た。
[Example 5]
A hard coat film produced in the same manner as in Example 1 was obtained except that the thickness of the paint for hard coat layer in Example 1 was 9.5 μm.
[実施例6]
 実施例1のハードコート層用塗料において、膜厚を6.5μmとした以外は、実施例1と同様に作製したハードコートフィルムを得た。
[Example 6]
A hard coat film produced in the same manner as in Example 1 was obtained except that the film thickness of the paint for hard coat layer in Example 1 was 6.5 μm.
[実施例7]
 実施例1のハードコート層用塗料において、紫外線硬化型樹脂の添加量を43.7部とし、さらに微粒子Bとして、積水化成品工業社製アクリル-スチレン共重合粒子(平均粒径4.0μm、屈折率1.525)4.1部添加したこと以外は、実施例1と同様に作製したハードコートフィルムを得た。
[Example 7]
In the hard coat layer coating material of Example 1, the amount of the UV curable resin added was 43.7 parts, and the fine particles B were acryl-styrene copolymer particles (average particle size of 4.0 μm, refractive index) manufactured by Sekisui Plastics Co., Ltd. (Rate 1.525) A hard coat film produced in the same manner as in Example 1 was obtained except that 4.1 parts were added.
[実施例8]
 実施例7のハードコート層塗料において、微粒子Bとして、積水化成品工業社製アクリル-スチレン共重合粒子(平均粒径6.0μm、屈折率1.525)4.1部添加したこと以外は、実施例7と同様に作製したハードコートフィルムを得た。
[Example 8]
Example except that 4.1 parts of Sekisui Plastics Co., Ltd. acrylic-styrene copolymer particles (average particle size 6.0 μm, refractive index 1.525) were added as fine particles B to the hard coat layer coating material of Example 7. The hard coat film produced similarly to 7 was obtained.
[実施例9]
 実施例7のハードコート層塗料において、微粒子Bとして、積水化成品工業社製アクリル-スチレン共重合粒子(平均粒径2.5μm、屈折率1.525)4.1部添加したこと以外は、実施例7と同様に作製したハードコートフィルムを得た。
[Example 9]
Example except that 4.1 parts of Sekisui Plastics Co., Ltd. acrylic-styrene copolymer particles (average particle size 2.5 μm, refractive index 1.525) were added as fine particles B to the hard coat layer paint of Example 7. The hard coat film produced similarly to 7 was obtained.
[実施例10]
 実施例7のハードコート層用塗料において、紫外線硬化型樹脂の添加量を44.8部とし、微粒子Aの添加量を1.5部とし、微粒子Bの添加量を1.5部添加したこと以外は、実施例7と同様に作製したハードコートフィルムを得た。
[Example 10]
In the hard coat layer coating material of Example 7, the addition amount of the ultraviolet curable resin was 44.8 parts, the addition amount of the fine particles A was 1.5 parts, and the addition amount of the fine particles B was 1.5 parts. Except for the above, a hard coat film produced in the same manner as in Example 7 was obtained.
[実施例11]
 実施例1のハードコートフィルムにおいて、ハードコート層用塗料を塗工し、80℃で1分間乾燥後、酸素濃度1000ppm以下となるように設定した窒素雰囲気下で紫外線照射し硬化させた以外は、実施例1と同様に作製したハードコートフィルムを得た。
[Example 11]
In the hard coat film of Example 1, except that the hard coat layer coating was applied, dried at 80 ° C. for 1 minute, and then cured by irradiation with ultraviolet rays in a nitrogen atmosphere set to an oxygen concentration of 1000 ppm or less. A hard coat film produced in the same manner as in Example 1 was obtained.
[実施例12]
 実施例7で作製したハードコートフィルムに、下記の反射防止層を積層した反射防止層付きハードコートフィルムを得た。
<反射防止層の積層>
 tert-ブチルアルコール72部に、反射防止層用塗料オプスターJUA204(フッ素系樹脂、JSR社製)28部を添加し十分攪拌して反射防止層用塗料を調整した。この塗料を上記で得られたハードコートフィルムのハードコート層上にマイヤーバーを用いて塗工し、80℃で1分間乾燥後、窒素雰囲気下で200mJ/cm2の紫外線(光源は上記と同じ)を照射し約0.1μmの反射防止層を形成した。こうして実施例12の反射防止層付きハードコートフィルム(以下、単に「ハードコートフィルム」と呼ぶ。)を得た。
[Example 12]
A hard coat film with an antireflection layer obtained by laminating the following antireflection layer on the hard coat film produced in Example 7 was obtained.
<Lamination of antireflection layer>
28 parts of anti-reflective layer paint OPSTA JUA204 (fluorine resin, manufactured by JSR) was added to 72 parts of tert-butyl alcohol, and stirred sufficiently to prepare an anti-reflective layer paint. This paint was applied onto the hard coat layer of the hard coat film obtained above using a Meyer bar, dried at 80 ° C. for 1 minute, and then irradiated with 200 mJ / cm 2 ultraviolet light (the light source was the same as above). ) To form an antireflection layer of about 0.1 μm. Thus, a hard coat film with an antireflection layer of Example 12 (hereinafter simply referred to as “hard coat film”) was obtained.
[実施例13]
 実施例7のハードコート層用塗料において、微粒子Bとして、積水化成品工業社製アクリル-スチレン共重合粒子(平均粒径5.0μm、屈折率1.50)4.1部添加したこと以外は、実施例7と同様に作製したハードコートフィルムを得た。
[Example 13]
Except that 4.1 parts of acrylic-styrene copolymer particles (average particle diameter 5.0 μm, refractive index 1.50) manufactured by Sekisui Plastics Co., Ltd. were added as fine particles B in the paint for hard coat layer of Example 7. A hard coat film produced in the same manner as in Example 7 was obtained.
[実施例14]
 実施例13のハードコート層用塗料において、微粒子Bを2.5部添加したこと以外は、実施例7と同様に作製したハードコートフィルムを得た。
[Example 14]
A hard coat film produced in the same manner as in Example 7 was obtained except that 2.5 parts of fine particles B were added to the paint for hard coat layer of Example 13.
[実施例15]
 実施例7のハードコート層用塗料において、微粒子Aとして、積水化成品工業社製アクリル-スチレン共重合粒子(平均粒径6.0μm、屈折率1.525)0.1部添加とし、且つ膜厚を5.5μmとしたこと以外は、実施例7と同様に作製したハードコートフィルムを得た。
[Example 15]
In the hard coat layer coating material of Example 7, 0.1 part of Sekisui Plastics Co., Ltd. acrylic-styrene copolymer particles (average particle diameter 6.0 μm, refractive index 1.525) was added as fine particles A, and the film A hard coat film produced in the same manner as in Example 7 was obtained except that the thickness was 5.5 μm.
[実施例16]
 実施例7のハードコート層用塗料において、微粒子Aとして積水化成品工業社製アクリル-スチレン共重合粒子(平均粒径5.0μm、屈折率1.525)0.1部添加とし、微粒子Bとして積水化成品工業社製アクリル-スチレン共重合粒子(平均粒径2.0μm、屈折率1.50)4.1部添加とし、且つ膜厚を4.8μmとしたこと以外は、実施例7と同様に作製したハードコートフィルムを得た。
[Example 16]
In the coating material for hard coat layer of Example 7, 0.1 part of acrylic-styrene copolymer particles (average particle size 5.0 μm, refractive index 1.525) manufactured by Sekisui Plastics Co., Ltd. was added as fine particles A. Example 7 except that 4.1 parts of Sekisui Plastics Co., Ltd. acrylic-styrene copolymer particles (average particle size 2.0 μm, refractive index 1.50) were added and the film thickness was 4.8 μm. A similarly produced hard coat film was obtained.
[実施例17]
 実施例7のハードコート層用塗料において、微粒子Bとして、積水化成品工業社製アクリル重合粒子(平均粒径4.0μm、屈折率1.49)4.1部添加したこと以外は、実施例7と同様に作製したハードコートフィルムを得た。
[Example 17]
Example except that 4.1 parts of Sekisui Plastics Co., Ltd. acrylic polymer particles (average particle size: 4.0 μm, refractive index: 1.49) were added as fine particles B in the paint for hard coat layer of Example 7. The hard coat film produced similarly to 7 was obtained.
[実施例18]
 実施例7のハードコート層用塗料において、微粒子Aとして、積水化成品工業社製アクリル重合粒子(平均粒径8.0μm、屈折率1.49)0.1部添加したこと以外は、実施例7と同様に作製したハードコートフィルムを得た。
[Example 18]
In Example 7 except that 0.1 part of acrylic polymer particles (average particle size: 8.0 μm, refractive index: 1.49) manufactured by Sekisui Plastics Co., Ltd. was added as fine particles A in the paint for hard coat layer of Example 7. The hard coat film produced similarly to 7 was obtained.
[実施例19]
 実施例7のハードコート層用塗料において、微粒子Aとして積水化成品工業社製アクリル-スチレン共重合粒子(平均粒径2.5μm、屈折率1.525)0.1部添加とし、微粒子Bとして積水化成品工業社製アクリル重合粒子(平均粒径1.8μm、屈折率1.49)4.1部添加とし、且つ膜厚を2.3μmとしたこと以外は、実施例7と同様に作製したハードコートフィルムを得た。
[Example 19]
In the coating material for hard coat layer of Example 7, 0.1 part of acrylic-styrene copolymer particles (average particle size 2.5 μm, refractive index 1.525) manufactured by Sekisui Plastics Co., Ltd. was added as fine particles A, and as fine particles B Manufactured in the same manner as in Example 7 except that 4.1 parts of acrylic polymer particles (average particle size 1.8 μm, refractive index 1.49) manufactured by Sekisui Plastics Co., Ltd. were added and the film thickness was 2.3 μm. A hard coat film was obtained.
[実施例20]
 実施例7のハードコート層用塗料において、微粒子Aとして積水化成品工業社製アクリル重合粒子(平均粒径15.0μm、屈折率1.49)0.1部添加とし、微粒子Bとして積水化成品工業社製アクリル重合粒子(平均粒径8.0μm、屈折率1.49)4.1部添加とし、且つ膜厚を12.5μmとしたこと以外は、実施例7と同様に作製したハードコートフィルムを得た。
[Example 20]
In the paint for hard coat layer of Example 7, 0.1 part of acrylic polymer particles (average particle size 15.0 μm, refractive index 1.49) manufactured by Sekisui Plastics Co., Ltd. was added as fine particles A, and Sekisui Plastics was used as fine particles B. Hard coat produced in the same manner as in Example 7 except that 4.1 parts of acrylic polymer particles (average particle size 8.0 μm, refractive index 1.49) were added and the film thickness was 12.5 μm. A film was obtained.
[比較例1]
 実施例1のハードコート層用塗料において、微粒子Aを無添加とした以外は実施例1と同様に作製したハードコートフィルムを得た。
[Comparative Example 1]
A hard coat film produced in the same manner as in Example 1 was obtained except that the fine particle A was not added in the paint for the hard coat layer of Example 1.
[比較例2]
 実施例1のハードコート層用塗料を、マイヤーバーを用い膜厚17.0μmとなるように塗工した以外は、実施例1と同様にして作製したハードコートフィルムを得た。
[Comparative Example 2]
A hard coat film produced in the same manner as in Example 1 was obtained except that the paint for hard coat layer of Example 1 was applied using a Meyer bar so as to have a film thickness of 17.0 μm.
[比較例3]
 実施例1のハードコート層用塗料を、マイヤーバーを用い膜厚5.0μmとなるように塗工した以外は、実施例1と同様にして作製したハードコートフィルムを得た。
[Comparative Example 3]
A hard coat film produced in the same manner as in Example 1 was obtained except that the paint for hard coat layer of Example 1 was applied using a Meyer bar so as to have a film thickness of 5.0 μm.
[比較例4]
 実施例1のハードコート層用塗料に含有される微粒子Aを、ガラスフィラーCF0093(日本フリット社製、平均粒子径8.0μm、屈折率1.50)に変更した以外は、実施例1と同様に作製したハードコートフィルムを得た。
[Comparative Example 4]
It was produced in the same manner as in Example 1 except that the fine particles A contained in the hard coat layer coating material of Example 1 were changed to glass filler CF0093 (manufactured by Nippon Frit Co., Ltd., average particle size 8.0 μm, refractive index 1.50). A hard coat film was obtained.
 以上のようにして作製された実施例及び比較例の各ハードコートフィルムを次の項目について評価し、その結果を纏めて後記表1に示した。
(1)ハードコート層膜厚
(株)菱化システム製の三次元表面粗計「VertScan2.0」を用いて測定した。層断面解析により得られたZ方向の干渉縞の強度を表示し、その干渉縞の強度のピーク間を測定することで膜厚を求めた。測定条件の設定は以下のとおりである。
<光学条件>
Camera:SONY HR-50 1/3型
Objective:10×(10倍)
Tube:1×Body
Relay:No Relay
Filter:530white
※光量調節:Lampの値が50~95の範囲内に入るよう自動で実施。
<測定条件>
Mode:Wave
Size:640×480
Range(μm):Start(15)、Stop(-10)
Each of the hard coat films of Examples and Comparative Examples produced as described above was evaluated for the following items, and the results are summarized in Table 1 below.
(1) Hard Coat Layer Film Thickness Measured using a three-dimensional surface roughness meter “VertScan2.0” manufactured by Ryoka System Co., Ltd. The intensity of the interference fringes in the Z direction obtained by the layer cross-sectional analysis was displayed, and the film thickness was determined by measuring between the intensity peaks of the interference fringes. The measurement conditions are set as follows.
<Optical conditions>
Camera: SONY HR-50 1/3 type Objective: 10 x (10 times)
Tube: 1 x Body
Relay: No Relay
Filter: 530 white
* Light intensity adjustment: Automatically performed so that the Lamp value falls within the range of 50 to 95.
<Measurement conditions>
Mode: Wave
Size: 640 × 480
Range (μm): Start (15), Stop (−10)
(2)ハードコート層表面の凹凸の平均傾斜角
(株)菱化システム製の三次元表面粗計「VertScan2.0」を用いて測定した。上記平均傾斜角は、上記三次元表面粗計を用いて測定したハードコートフィルム表面の断面曲線に基づく断面解析により得られる、突起部の下点から上点までのX軸方向の距離(ΔX)とその点の高低さ(ΔY)を用い、以下の式により算出される傾斜角の値を平均したものである。
  傾斜角θ=tan-1(ΔY/ΔX)
 なお、測定条件の設定は上記の膜厚測定の場合と同一である。
(2) The average inclination angle of the irregularities on the hard coat layer surface was measured using a three-dimensional surface roughness meter “VertScan2.0” manufactured by Ryoka System Co., Ltd. The average inclination angle is a distance (ΔX) in the X-axis direction from the lower point to the upper point of the protrusion, which is obtained by cross-sectional analysis based on the cross-sectional curve of the hard coat film surface measured using the three-dimensional surface roughness meter. And the height of the point (ΔY), and the value of the inclination angle calculated by the following equation is averaged.
Inclination angle θ = tan −1 (ΔY / ΔX)
The setting of the measurement conditions is the same as that in the case of the film thickness measurement.
(3)ヘイズ値
 村上色彩技術研究所製ヘイズメーター「HM150」を用いて測定した。
(3) Haze value The haze value was measured using a haze meter “HM150” manufactured by Murakami Color Research Laboratory.
(4)ギラツキ
 全面緑色表示させた解像度264ppiの液晶表示体(LCD)の上に各フィルムを重ね、画面のキラキラ光る輝きの発生度合いを目視で評価した。なお、LCD表面には予めギラツキの発生しないクリアタイプのハードコートフィルムを設置した。ギラツキがないもの「5」、ギラツキの強いものを「1」とし、「5」に近いほどギラツキの発生が少なくなる。なお、ギラツキに関して「3」以上の評価であれば、合格品である。
(4) Glitter Each film was layered on a liquid crystal display (LCD) with a resolution of 264 ppi that was displayed in green on the entire surface, and the degree of occurrence of glittering screen was visually evaluated. In addition, a clear type hard coat film which does not generate glare was previously set on the LCD surface. “5” without glare and “1” with strong glare, the closer to “5”, the less glare occurs. In addition, if it is "3" or more regarding glare, it is a pass product.
(5)AN性(アンチニュートンリング)
 図3に示すように凹凸の無い黒いアクリル板20に各ハードコートフィルム10を貼り付け、その上部から適度に柔軟性のある薄膜ガラス板30を300μmのギャップを設けて重ねる。その薄膜ガラス板30をアクリル板20側へ5cmの間隔で一定の荷重で押し付けた際に、単色光下で5cmの間隔に発生するニュートンリングの発生程度を目視にて評価した。ニュートンリングが視認できないものを「5」、ニュートンリングが一定間隔で明確に視認できるものを「1」とし、「5」に近づくほどニュートンリングは視認しづらくなる(図4を参照)。なお、AN性に関して「3」以上の評価であれば、合格品である。
(5) AN (Anti-Newton ring)
As shown in FIG. 3, each hard coat film 10 is attached to a black acrylic plate 20 having no irregularities, and a moderately flexible thin glass plate 30 is overlapped with a 300 μm gap from above. When the thin film glass plate 30 was pressed to the acrylic plate 20 side with a constant load at a distance of 5 cm, the degree of occurrence of Newton rings generated at a distance of 5 cm under monochromatic light was visually evaluated. A case where the Newton ring cannot be visually recognized is “5”, and a case where the Newton ring can be clearly seen at regular intervals is “1”. The closer to “5”, the harder the Newton ring becomes visible (see FIG. 4). In addition, if the evaluation is “3” or more with respect to the AN property, it is a pass product.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 以上の表1の結果から明らかなように、本発明に係る実施例のハードコートフィルムは、良好なAN性を持ち、且つギラツキを抑制できるので、良好なAN効果の付与と視認性の維持を両立させることができ、しかもヘイズ値を低く抑え、コントラスト悪化や透過率低下を抑制し、全光線透過率も良好であるため、ディスプレイの視認性を良好に維持できるハードコートフィルムを得ることができる。
 また、ハードコート層に微粒子Aと微粒子Aよりも小粒径の微粒子Bを併用した実施例7~10および13~20のハードコートフィルムでは、AN効果とギラツキ抑制効果のバランスをより向上させることができる。
 また、実施例1と実施例11との対比からもわかるように、ハードコート層を大気雰囲気下で硬化させることにより、AN効果をより向上させることができる。
As is clear from the results in Table 1 above, the hard coat films of the examples according to the present invention have good AN properties and can suppress glare, so that a good AN effect is imparted and visibility is maintained. In addition, it is possible to obtain a hard coat film that can maintain good visibility of the display because the haze value can be kept low, contrast deterioration and transmittance reduction are suppressed, and the total light transmittance is also good. .
Further, in the hard coat films of Examples 7 to 10 and 13 to 20 in which the fine particle A and the fine particle B having a smaller particle diameter than the fine particle A are used in combination in the hard coat layer, the balance between the AN effect and the glare suppressing effect is further improved. Can do.
Further, as can be seen from the comparison between Example 1 and Example 11, the AN effect can be further improved by curing the hard coat layer in an air atmosphere.
 一方、微粒子Aを無添加とした比較例1のハードコートフィルムでは、ギラツキはないものの、AN性は得られない。また、微粒子Aの平均粒子径とハードコート層の膜厚との比率が本発明の範囲外(2.13倍)である比較例2のハードコートフィルムでは、ハードコート層表面に適切な凹凸性が形成されず(凹凸性が小さい)、平均傾斜角も非常に小さく、その結果、ギラツキの発生は抑制されるものの、AN性はほとんど得られていない。また、微粒子Aの平均粒子径とハードコート層の膜厚との比率が本発明の範囲外(0.63倍)である比較例3のハードコートフィルムでは、ハードコート層表面に適切な凹凸性が形成されず(凹凸性が大きい)、その結果、AN性は得られるものの、ギラツキの発生を抑制できない。また、ハードコート層に有機微粒子の代わりにガラスフィラーを含有させた比較例4のハードコートフィルムでは、AN性、ギラツキの抑制効果は得られるものの、ヘイズ値が高くなってしまい、このようなハードコートフィルムを使用するとディスプレイの画質が低下してしまう。 On the other hand, in the hard coat film of Comparative Example 1 in which the fine particles A were not added, although there was no glare, the AN property was not obtained. Further, in the hard coat film of Comparative Example 2 in which the ratio between the average particle diameter of the fine particles A and the film thickness of the hard coat layer is outside the range of the present invention (2.13 times), the unevenness suitable for the hard coat layer surface is suitable. Is not formed (irregularity is small) and the average inclination angle is very small. As a result, the occurrence of glare is suppressed, but the AN property is hardly obtained. Further, in the hard coat film of Comparative Example 3 in which the ratio between the average particle diameter of the fine particles A and the film thickness of the hard coat layer is outside the range of the present invention (0.63 times), the unevenness suitable for the hard coat layer surface is suitable. Is not formed (the unevenness is large). As a result, although the AN property is obtained, the occurrence of glare cannot be suppressed. Further, in the hard coat film of Comparative Example 4 in which a glass filler is contained in the hard coat layer in place of the organic fine particles, the haze value becomes high although the effect of suppressing AN property and glare can be obtained. When a coated film is used, the image quality of the display is degraded.
 なお、上記実施例の各ハードコートフィルムには、ハードコート層上に反射防止層を積層することができる(実施例12参照)。 In each of the hard coat films of the above examples, an antireflection layer can be laminated on the hard coat layer (see Example 12).
1 透明フィルム基材
2 ハードコート層
10 ハードコートフィルム
20 黒アクリル板
30 薄膜ガラス板
A,B 微粒子
DESCRIPTION OF SYMBOLS 1 Transparent film base material 2 Hard coat layer 10 Hard coat film 20 Black acrylic board 30 Thin film glass board A, B Fine particle

Claims (10)

  1.  透明フィルム基材上に、微粒子A及び電離放射線硬化型樹脂を含有するハードコート層を有するハードコートフィルムであって、
     前記微粒子Aは、有機系微粒子であって、
     前記ハードコート層中の前記微粒子Aと前記電離放射線硬化型樹脂との屈折率差が0.001超0.050以下の範囲内であり、且つ前記ハードコート層中の前記電離放射線硬化型樹脂からなる膜厚が、前記微粒子Aの平均粒子径の0.7倍~2.0倍であることを特徴とするハードコートフィルム。
    A hard coat film having a hard coat layer containing fine particles A and an ionizing radiation curable resin on a transparent film substrate,
    The fine particles A are organic fine particles,
    The refractive index difference between the fine particles A in the hard coat layer and the ionizing radiation curable resin is in the range of more than 0.001 and not more than 0.050, and from the ionizing radiation curable resin in the hard coat layer. A hard coat film, wherein the film thickness is 0.7 to 2.0 times the average particle diameter of the fine particles A.
  2.  前記ハードコート層中の前記微粒子Aと前記電離放射線硬化型樹脂との屈折率差が0.001超0.030以下の範囲内であることを特徴とする請求項1に記載のハードコートフィルム。 The hard coat film according to claim 1, wherein a difference in refractive index between the fine particles A in the hard coat layer and the ionizing radiation curable resin is in the range of more than 0.001 and 0.030 or less.
  3.  前記微粒子Aは、平均粒子径が2.0μm~18.0μmであることを特徴とする請求項1又は2に記載のハードコートフィルム。 3. The hard coat film according to claim 1, wherein the fine particles A have an average particle diameter of 2.0 μm to 18.0 μm.
  4.  前記ハードコート層中に、前記微粒子A及び、平均粒子径が前記微粒子Aの0.3倍~0.8倍であり且つ前記電離放射線硬化型樹脂との屈折率差が0.001超0.050以下の範囲内にある微粒子Bを含有することを特徴とする請求項1乃至3のいずれかに記載のハードコートフィルム。 In the hard coat layer, the fine particles A and the average particle diameter are 0.3 to 0.8 times that of the fine particles A, and the refractive index difference from the ionizing radiation curable resin is more than 0.001 to 0.00. The hard coat film according to claim 1, comprising fine particles B in a range of 050 or less.
  5.  前記ハードコート層中の前記微粒子Bは、前記電離放射線硬化型樹脂との屈折率差が0.001超0.030以下の範囲内であることを特徴とする請求項4に記載のハードコートフィルム。 5. The hard coat film according to claim 4, wherein the fine particles B in the hard coat layer have a refractive index difference from the ionizing radiation curable resin in a range of more than 0.001 and 0.030 or less. .
  6.  前記微粒子Aと前記微粒子Bの配合比率(重量比)が、微粒子A:微粒子B=50:50~2:98の範囲であることを特徴とする請求項4又は5に記載のハードコートフィルム。 6. The hard coat film according to claim 4, wherein a mixing ratio (weight ratio) of the fine particles A and the fine particles B is in the range of fine particles A: fine particles B = 50: 50 to 2:98.
  7.  前記微粒子Aの配合量が、前記電離放射線硬化型樹脂100重量部に対して0.002~2重量部であることを特徴とする請求項1乃至6のいずれかに記載のハードコートフィルム。 The hard coat film according to any one of claims 1 to 6, wherein the amount of the fine particles A is 0.002 to 2 parts by weight with respect to 100 parts by weight of the ionizing radiation curable resin.
  8.  前記ハードコート層表面の凹凸の平均傾斜角が、0.1度以上1.5度以下の範囲にあることを特徴とする請求項1乃至7のいずれかに記載のハードコートフィルム。 The hard coat film according to any one of claims 1 to 7, wherein an average inclination angle of irregularities on the surface of the hard coat layer is in a range of 0.1 degrees to 1.5 degrees.
  9.  前記ハードコート層は、大気雰囲気下で電離放射線照射により硬化させたものであることを特徴とする請求項1乃至8のいずれかに記載のハードコートフィルム。 The hard coat film according to any one of claims 1 to 8, wherein the hard coat layer is cured by irradiation with ionizing radiation in an air atmosphere.
  10.  前記ハードコートフィルムのヘイズ値が0.1~10.0%で、全光線透過率が91.00以上であることを特徴とする請求項1乃至9のいずれかに記載のハードコートフィルム。 10. The hard coat film according to claim 1, wherein the hard coat film has a haze value of 0.1 to 10.0% and a total light transmittance of 91.00 or more.
PCT/JP2016/069072 2015-06-28 2016-06-28 Hard coat film WO2017002779A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-129358 2015-06-28
JP2015129358 2015-06-28

Publications (1)

Publication Number Publication Date
WO2017002779A1 true WO2017002779A1 (en) 2017-01-05

Family

ID=57608702

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/069072 WO2017002779A1 (en) 2015-06-28 2016-06-28 Hard coat film

Country Status (2)

Country Link
TW (1) TW201710089A (en)
WO (1) WO2017002779A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019142220A (en) * 2018-02-22 2019-08-29 リケンテクノス株式会社 Antiglare hard coat laminate film
US11773229B2 (en) 2017-05-10 2023-10-03 Riken Technos Corporation Hard coat laminated film

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009175722A (en) * 2007-12-26 2009-08-06 Fujifilm Corp Optical film, polarizing plate, and image display
JP2011133881A (en) * 2009-11-30 2011-07-07 Dainippon Printing Co Ltd Optical film and touch panel
JP2011186888A (en) * 2010-03-10 2011-09-22 Toppan Printing Co Ltd Hard coat substrate for touch panel and touch panel using the same
JP2013022843A (en) * 2011-07-21 2013-02-04 Nitto Denko Corp Transparent conductive film, and touch panel
JP2013195606A (en) * 2012-03-19 2013-09-30 Nippon Paper Industries Co Ltd Antiglare hard coat film

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009175722A (en) * 2007-12-26 2009-08-06 Fujifilm Corp Optical film, polarizing plate, and image display
JP2011133881A (en) * 2009-11-30 2011-07-07 Dainippon Printing Co Ltd Optical film and touch panel
JP2011186888A (en) * 2010-03-10 2011-09-22 Toppan Printing Co Ltd Hard coat substrate for touch panel and touch panel using the same
JP2013022843A (en) * 2011-07-21 2013-02-04 Nitto Denko Corp Transparent conductive film, and touch panel
JP2013195606A (en) * 2012-03-19 2013-09-30 Nippon Paper Industries Co Ltd Antiglare hard coat film

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11773229B2 (en) 2017-05-10 2023-10-03 Riken Technos Corporation Hard coat laminated film
JP2019142220A (en) * 2018-02-22 2019-08-29 リケンテクノス株式会社 Antiglare hard coat laminate film
WO2019163416A1 (en) * 2018-02-22 2019-08-29 リケンテクノス株式会社 Antiglare hardcoat multilayer film
JP7333174B2 (en) 2018-02-22 2023-08-24 リケンテクノス株式会社 Anti-glare hard-coated laminated film

Also Published As

Publication number Publication date
TW201710089A (en) 2017-03-16

Similar Documents

Publication Publication Date Title
JP5653378B2 (en) Anti-glare hard coat film
JP4848072B2 (en) Anti-glare hard coat film
JP5175672B2 (en) Antiglare film, antireflection film, polarizing plate and image display device
JP6826803B2 (en) A photocurable resin composition, a cured film and antiglare film formed from the composition, an image display device, and a method for producing the cured film and antiglare film.
JP2010256851A (en) Antiglare hard coat film
US8220940B2 (en) Antiglare film, antireflection film, polarizing plate and image display device
CN107250963B (en) Touch panel, display device, optical sheet, method for selecting optical sheet, and method for manufacturing optical sheet
JP6492683B2 (en) Anti-glare film and image display device using the same
JP7113760B2 (en) hard coat film
WO2019116661A1 (en) Anti-glare film, method for producing same, and use thereof
JP2013257359A (en) Antidazzle hard coat film
WO2019116664A1 (en) Anti-glare film, method for producing same, and use thereof
JP2008299007A (en) Antiglare hard coat film, polarizing plate using the same and display apparatus
JP6500495B2 (en) Touch panel, display device, optical sheet, method of sorting optical sheet, and method of manufacturing optical sheet
JP2019113877A (en) Antiglare film and method for producing the same, and application
WO2017002779A1 (en) Hard coat film
WO2019116663A1 (en) Anti-glare film, method for producing same, and use thereof
JP2005247939A (en) Hard coat film and method for producing the same
JP2013045031A (en) Antiglare hard coat film
JP2013195606A (en) Antiglare hard coat film
JP2011209717A (en) Antiglare hard coat film
WO2020100958A1 (en) Antiglare film, method for manufacturing antiglare film, optical member, and image display device
WO2019116662A1 (en) Anti-glare film, method for producing same, and use thereof
JP2014071395A (en) Anti-glare hard coat film
JP2012220768A (en) Antireflection film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16817887

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16817887

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP