WO2020100958A1 - Antiglare film, method for manufacturing antiglare film, optical member, and image display device - Google Patents

Antiglare film, method for manufacturing antiglare film, optical member, and image display device Download PDF

Info

Publication number
WO2020100958A1
WO2020100958A1 PCT/JP2019/044614 JP2019044614W WO2020100958A1 WO 2020100958 A1 WO2020100958 A1 WO 2020100958A1 JP 2019044614 W JP2019044614 W JP 2019044614W WO 2020100958 A1 WO2020100958 A1 WO 2020100958A1
Authority
WO
WIPO (PCT)
Prior art keywords
antiglare
layer
less
weight
film
Prior art date
Application number
PCT/JP2019/044614
Other languages
French (fr)
Japanese (ja)
Inventor
佑輔 茂手木
尚樹 橋本
済木 雄二
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to CN201980075233.9A priority Critical patent/CN113039463A/en
Priority to KR1020217017909A priority patent/KR20210090240A/en
Priority to SG11202105022TA priority patent/SG11202105022TA/en
Publication of WO2020100958A1 publication Critical patent/WO2020100958A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0273Diffusing elements; Afocal elements characterized by the use
    • G02B5/0294Diffusing elements; Afocal elements characterized by the use adapted to provide an additional optical effect, e.g. anti-reflection or filter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/111Anti-reflection coatings using layers comprising organic materials
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/0236Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element
    • G02B5/0242Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element by means of dispersed particles
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0268Diffusing elements; Afocal elements characterized by the fabrication or manufacturing method
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133502Antiglare, refractive index matching layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/50OLEDs integrated with light modulating elements, e.g. with electrochromic elements, photochromic elements or liquid crystal elements

Definitions

  • the present invention relates to an antiglare film, a method for manufacturing an antiglare film, an optical member, and an image display device.
  • Various image display devices such as a cathode ray tube display device (CRT), a liquid crystal display device (LCD), a plasma display panel (PDP) and an electroluminescence display (ELD) include fluorescent lamps and sunlight on the surface of the image display device. Is subjected to anti-glare treatment to prevent a reduction in contrast due to reflection of external light or reflection of an image. Especially, as the screen of an image display device becomes larger, an anti-glare film is formed. The number of attached image display devices is increasing.
  • Patent Documents 1 and 2 There are many documents that describe the antiglare film, for example, Patent Documents 1 and 2.
  • the anti-glare film when the light source is reflected, a color difference with a wavy black and white shape (hereinafter referred to as “white haze”) may occur.
  • white haze a color difference with a wavy black and white shape
  • a display (image display device) or the like using an antiglare film if the appearance of white smear is remarkable, the appearance quality may be deteriorated.
  • an object of the present invention is to provide an antiglare film in which generation of white haze is suppressed, a method for producing an antiglare film, an optical member, and an image display device.
  • the first antiglare film of the present invention An antiglare film having an antiglare layer (B) laminated on a light transmissive substrate (A), Unevenness is formed on the outermost surface of the antiglare film on the antiglare layer (B) side, It is characterized in that the unevenness satisfies the following mathematical formulas (1) and (2).
  • ⁇ a ⁇ 0.24
  • Rz ⁇ 0.20
  • ⁇ a is the average inclination angle [°] of the unevenness
  • Rz is the ten-point average height [ ⁇ m] of the irregularities.
  • the second antiglare film of the present invention comprises An antiglare film in which an antiglare layer (B) and other layers are laminated on the light transmissive substrate (A) in the above order, Unevenness is formed on the outermost surface of the other layer, It is characterized in that the unevenness satisfies the following mathematical formulas (1) and (2).
  • the first and second antiglare films of the present invention may be collectively referred to as the “antiglare film of the present invention”.
  • ⁇ a ⁇ 0.24
  • Rz ⁇ 0.20
  • ⁇ a is the average inclination angle [°] of the unevenness
  • Rz is the ten-point average height [ ⁇ m] of the irregularities.
  • the method for producing the antiglare film of the present invention An antiglare layer (B) forming step of forming the antiglare layer (B) on the light transmissive substrate (A); An unevenness forming step of forming the unevenness on the outermost surface of the antiglare film on the antiglare layer (B) side so as to satisfy the mathematical formulas (1) and (2),
  • a coating step of applying a coating solution on the light-transmitting substrate (A) and a step of drying the applied coating solution to form a coating film In the step of forming the antiglare layer (B), a coating step of applying a coating solution on the light-transmitting substrate (A) and a step of drying the applied coating solution to form a coating film.
  • the coating liquid contains a resin and a solvent.
  • the optical member of the present invention is an optical member including the antiglare film of the present invention.
  • the image display device of the present invention is an image display device including the antiglare film of the present invention or the optical member of the present invention.
  • an antiglare film in which occurrence of white smear is suppressed, a method for producing an antiglare film, an optical member, and an image display device.
  • FIG. 1 is a sectional view showing an example of the constitution of the antiglare film of the present invention.
  • FIG. 2 is a cross-sectional view showing another example of the structure of the antiglare film of the present invention.
  • FIG. 3 is a sectional view showing still another example of the constitution of the antiglare film of the present invention.
  • FIG. 4 is a sectional view showing still another example of the structure of the antiglare film of the present invention.
  • the antiglare film of the present invention may further satisfy, for example, the following mathematical formula (3).
  • Ra is the arithmetic average surface roughness [ ⁇ m] of the irregularities.
  • another layer may be further laminated on the surface of the antiglare layer (B) opposite to the light transmissive substrate (A).
  • the other layer may be, for example, a low reflection layer.
  • the antiglare layer (B) may contain a binder resin and a cohesive filler.
  • the cohesive filler may be, for example, an organic clay.
  • the antiglare layer (B) may not include particles.
  • the antiglare layer (B) forming step may further include a curing step of curing the coating film.
  • the solvent may contain toluene and methyl ethyl ketone.
  • the antiglare film is an antiglare film including the other layer, and the unevenness forming step is performed on the antiglare layer (B).
  • Another layer forming step of forming another layer may be included.
  • the optical member of the present invention may be, for example, a polarizing plate.
  • the first antiglare film of the present invention is the antiglare film in which the antiglare layer (B) is laminated on the light transmissive substrate (A), and The outermost surface on the antiglare layer (B) side is formed with irregularities, and the irregularities satisfy the following mathematical formulas (1) and (2).
  • ⁇ a is the average inclination angle [°] of the unevenness
  • Rz is the ten-point average height [ ⁇ m] of the irregularities.
  • the second antiglare film of the present invention is an antiglare film in which the antiglare layer (B) and the other layers are laminated in the above order on the light transmissive substrate (A).
  • the unevenness is formed on the outermost surface of the other layer, and the unevenness satisfies the following mathematical formulas (1) and (2).
  • ⁇ a ⁇ 0.24
  • Rz ⁇ 0.20
  • ⁇ a is the average inclination angle [°] of the unevenness
  • Rz is the ten-point average height [ ⁇ m] of the irregularities.
  • FIG. 1 shows an example of the structure of the antiglare film of the present invention.
  • the antiglare film 10 has an antiglare layer (B) 12 laminated on one surface of a light transmissive substrate (A) 11.
  • the antiglare layer (B) 12 includes particles 12b and a thixotropy imparting agent 12c in the resin layer 12a.
  • a low reflection layer (C) 13 is further laminated as the other layer.
  • Unevenness is formed on the outermost surface of the antiglare film 10 on the antiglare layer (B) 12 side (the surface of the low reflection layer (C) 13 opposite to the light transmissive substrate (A) 11).
  • the average inclination angle ⁇ a of the irregularities is 0.24 ° or less as described above, and the ten-point average height (also referred to as ten-point average roughness or ten-point average surface roughness) Rz of the irregularities is as described above. As described above, it is 0.20 ⁇ m or less.
  • the antiglare film of the present invention is not limited to this, and for example, the particles 12b, the thixotropy imparting agent 12c, and the other layer (low reflection layer (C)) 13 may or may not be present.
  • the sectional view of FIG. 2 shows another example of the structure of the antiglare film of the present invention.
  • the structure of the antiglare film 10 is the same as that of the antiglare film 10 of FIG. 1 except that the other layer (low reflection layer (C)) 13 is not provided.
  • the outermost surface on the antiglare layer (B) 12 side is , Unevenness is formed.
  • the average inclination angle ⁇ a of the irregularities is 0.24 ° or less, and the ten-point average height Rz of the irregularities is 0.20 ⁇ m or less.
  • the sectional view of FIG. 3 shows still another example of the structure of the antiglare film of the present invention.
  • the structure of the antiglare film 10 is the same as that of FIG. 1 except that the antiglare layer (B) 12 does not contain the particles 12b.
  • the sectional view of FIG. 4 shows still another example of the configuration of the antiglare film of the present invention.
  • the structure of the antiglare film 10 is the same as that of FIG. 2 except that the antiglare layer (B) 12 does not contain the particles 12b.
  • the "outermost surface on the antiglare layer (B) side” is the outermost surface on the antiglare layer (B) side.
  • the “outermost surface on the antiglare layer (B) side” is the translucent substrate in the antiglare layer (B) when the other layer is not present (for example, FIGS. 2 and 4). This is the surface on the side opposite to (A).
  • the “outermost surface on the antiglare layer (B) side” means that when the other layer is present (for example, FIGS. 1 and 3), the other layer (the low reflection layer (C) 13 in FIGS. 1 and 3). 2) is the outermost surface on the side opposite to the translucent substrate (A).
  • the antiglare film of the present invention has excellent antiglare properties even if the ⁇ a and Rz are small and the unevenness of the outermost surface is gentle, and the occurrence of white smear can be suppressed as described above. Particularly, in a general antiglare film, when a low reflection layer is provided on the antiglare layer, the occurrence of white smear may be more remarkable. However, according to the antiglare film of the present invention, even if the low reflection layer (C) is provided on the antiglare layer (B), generation of white smear can be suppressed.
  • the other layer is the low reflection layer (C) 13, but in the antiglare film of the present invention, the other layer is not limited to the low reflection layer.
  • the other layer may be, for example, a low refractive index layer, a low reflective layer, a conductive layer, an antifouling layer, a high hardness layer, a high refractive index layer, a UV absorbing layer, or the like.
  • the other layer may be a single layer or a plurality of layers. In the case of a plurality of layers, one type or a plurality of types may be used.
  • the other layer may be an optical thin film whose thickness and refractive index are strictly controlled, or a laminate of two or more optical thin films.
  • the average inclination angle ⁇ a is 0.24 or less in the uneven shape of the outermost surface on the antiglare layer (B) side.
  • the average tilt angle ⁇ a may be, for example, 0.23 ° or less, 0.20 ° or less, or 0.19 ° or less.
  • the lower limit of the average inclination angle ⁇ a is not particularly limited, but is, for example, a value of 0 ° or more or a value exceeding 0 °, 0.10 ° or more, 0.11 ° or more, 0.13 ° or more, or 0.15. It may be more than °.
  • the average inclination angle ⁇ a is, for example, more than 0 ° and 0.23 ° or less, 0.10 ° or more and 0.23 ° or less, 0.11 ° or more and 0.23 ° or less, 0.13 ° or more and 0.23 °.
  • the average tilt angle ⁇ a is a value defined by the following mathematical expression (3).
  • the average inclination angle ⁇ a can be measured, for example, by the method described in Examples below.
  • Average tilt angle ⁇ a tan ⁇ 1 ⁇ a (3)
  • ⁇ a is, as shown in the following mathematical expression (4), the sum of the peaks and valleys of the adjacent peaks in the reference length L of the roughness curve defined in JIS B 0601 (1994 version). It is a value obtained by dividing the total (h1 + h2 + h3 ... + hn) of the difference (height h) from the lowest point by the reference length L.
  • the roughness curve is a curve obtained by removing a surface waviness component longer than a predetermined wavelength from a cross-section curve by a phase difference compensation type high-pass filter. Further, the cross-sectional curve is a contour that appears at the cut when the target surface is cut by a plane perpendicular to the target surface.
  • ⁇ a (h1 + h2 + h3 ... + hn) / L (4)
  • the ten-point average height Rz of the irregularities is 0.20 ⁇ m or less.
  • the ten-point average height Rz may be, for example, 0.19 ⁇ m or less, or 0.18 ⁇ m or less.
  • the lower limit of the ten-point average height Rz is not particularly limited, but is, for example, a value of 0 ⁇ m or more or a value exceeding 0 ⁇ m, 0.10 ⁇ m or more, 0.12 ⁇ m or more, 0.13 ⁇ m or more, or 0.17 ⁇ m or more. May be.
  • the ten-point average height Rz is, for example, more than 0 ⁇ m and 0.20 ⁇ m or less, 0.10 ⁇ m or more and 0.20 ⁇ m or less, 0.12 ⁇ m or more and 0.20 ⁇ m or less, 0.13 ⁇ m or more and 0.20 ⁇ m or less, 0.17 ⁇ m or more.
  • the ten-point average height Rz can be measured, for example, by the method described in Examples below.
  • the arithmetic average surface roughness (also referred to as arithmetic average height) Ra is not particularly limited, but is, for example, 0.050 ⁇ m or less as described above. Good.
  • the arithmetic average surface roughness Ra may be, for example, 0.048 ⁇ m or less, 0.045 ⁇ m or less, or 0.043 ⁇ m or less.
  • the lower limit of the arithmetic average surface roughness Ra is not particularly limited, but is, for example, a value of 0 ⁇ m or more or a value exceeding 0 ⁇ m, and is 0.010 ⁇ m or more, 0.020 ⁇ m or more, 0.030 ⁇ m or more, or 0.035 ⁇ m or more. May be.
  • the arithmetic average surface roughness Ra is, for example, more than 0 ⁇ m and 0.050 ⁇ m or less, 0.010 ⁇ m or more and 0.050 ⁇ m or less, 0.020 ⁇ m or more and 0.050 ⁇ m or less, 0.030 ⁇ m or more and 0.050 ⁇ m or less, 0.035 ⁇ m or more.
  • the surface has some roughness, that is, Ra is large to some extent.
  • Ra is in the above range, for example, when used in an image display device or the like, scattering of reflected light when viewed from an oblique direction is suppressed, white blur is improved, and contrast in a bright place is also improved. Can be improved.
  • the “arithmetic mean surface roughness Ra” is the arithmetic mean surface roughness Ra specified in JIS B 0601 (1994 version).
  • the average distance between the uneven surfaces Sm (mm) is not particularly limited, but may be in the range of 0.025 to 0.275, for example. Thereby, for example, an antiglare hard coat film having excellent antiglare properties and capable of preventing white blur is obtained.
  • the average unevenness distance Sm (mm) on the surface of the antiglare layer (B) is the average unevenness distance Sm (mm) on the surface measured according to JIS B0601 (1994 version).
  • the Sm may be, for example, 0.050 mm or more, 0.075 mm or more, 0.100 mm or more, or 0.125 mm or more, and 0.250 mm or less, 0.225 mm or less, 0.200 mm or less, or 0. It may be 175 mm or less.
  • the Sm is, for example, 0.050 mm to 0.250 mm, 0.050 mm to 0.225 mm, 0.050 mm to 0.200 mm, 0.050 mm to 0.175 mm, 0.075 mm to 0.250 mm.
  • 0.075 mm or more and 0.225 mm or less, 0.075 mm or more and 0.200 mm or less, 0.075 mm or more and 0.175 mm or less, 0.100 mm or more and 0.250 mm or less, 0.100 mm or more and 0.225 mm or less, 0.100 mm or more 0.200 mm or less, 0.100 mm or more and 0.175 mm or less, 0.125 mm or more and 0.250 mm or less, 0.125 mm or more and 0.225 mm or less, 0.125 mm or more and 0.200 mm or less, or 0.125 mm or more and 0.175 mm or less May be
  • the haze value is not particularly limited, but may be in the range of 0 to 10%, for example.
  • the haze value is the haze value (cloudiness) of the entire antiglare film according to JIS K 7136 (2000 version).
  • the haze value is more preferably in the range of 0 to 5%, further preferably in the range of 0 to 3%.
  • each of the light transmissive substrate (A), the antiglare layer (B) and the other layer will be described with further examples.
  • the antiglare layer (B) is an antiglare hard coat layer and a case where the other layer is a low reflection layer (C) are mainly described. Is not limited to this.
  • the light transmissive substrate (A) is not particularly limited, but examples thereof include a transparent plastic film substrate.
  • the transparent plastic film substrate is not particularly limited, but preferably has a visible light transmittance (preferably a light transmittance of 90% or more) and excellent transparency (preferably a haze value of 1% or less).
  • the transparent plastic film substrate described in JP-A-2008-90263 can be used.
  • the transparent plastic film substrate one having an optically small birefringence is preferably used.
  • the antiglare film of the present invention can be used, for example, in a polarizing plate as a protective film, and in this case, the transparent plastic film substrate includes triacetyl cellulose (TAC), polycarbonate, acrylic polymer, A film formed of a polyolefin or the like having a cyclic or norbornene structure is preferable. Further, in the present invention, as will be described later, the transparent plastic film substrate may be the polarizer itself. With such a configuration, a protective layer made of TAC or the like is not required and the structure of the polarizing plate can be simplified, so that the number of manufacturing steps of the polarizing plate or the image display device can be reduced and the production efficiency can be improved.
  • TAC triacetyl cellulose
  • acrylic polymer acrylic polymer
  • a film formed of a polyolefin or the like having a cyclic or norbornene structure is preferable.
  • the transparent plastic film substrate may be the polarizer itself.
  • the polarizing plate can be made thinner.
  • the antiglare layer (B) and the low reflection layer (C) serve as protective layers.
  • the antiglare film also has a function as a cover plate when it is mounted on the surface of the liquid crystal cell, for example.
  • the thickness of the light-transmissive substrate (A) is not particularly limited, but in consideration of workability such as strength and handleability and thin layer property, for example, 10 to 500 ⁇ m, 20 to 300 ⁇ m. Or in the range of 30 to 200 ⁇ m.
  • the refractive index of the light transmissive substrate (A) is not particularly limited. The refractive index is, for example, in the range of 1.30 to 1.80 or 1.40 to 1.70.
  • the resin contained in the light transmissive substrate (A) may contain an acrylic resin.
  • the light transmissive substrate (A) may be an acrylic film.
  • the antiglare layer (B) may contain a resin and a filler.
  • the filler may include at least one of particles and a thixotropic agent.
  • the antiglare film of the present invention in which the ⁇ a and Rz are small and the unevenness of the outermost surface is gentle can be obtained. It can. Further, even when the antiglare layer (B) contains a thixotropy-imparting agent and particles having a small particle size, similarly, the ⁇ a and Rz are small and the unevenness of the outermost surface is gentle. It can be a film.
  • the resin contained in the antiglare layer (B) may contain an acrylate resin (also referred to as an acrylic resin).
  • the resin contained in the antiglare layer (B) may contain a urethane acrylate resin.
  • the resin contained in the antiglare layer (B) may be a copolymer of a curable urethane acrylate resin and a polyfunctional acrylate.
  • the antiglare layer (B) is formed using an antiglare layer forming material containing a resin and a filler, and the antiglare layer (B) contains the filler.
  • the antiglare layer (B) may have an aggregating portion that forms a convex portion by aggregating.
  • a plurality of the fillers may be present in a state gathered in one direction in the surface direction of the antiglare layer (B).
  • the antiglare film of the present invention may be arranged such that one direction in which a plurality of the fillers are gathered and the long side direction of the black matrix pattern match.
  • the thixotropy-imparting agent may be, for example, at least one selected from the group consisting of organic clay, oxidized polyolefin, and modified urea. Further, the thixotropy imparting agent may be, for example, a thickener.
  • the thixotropy-imparting agent may be contained in the range of 0.2 to 5 parts by weight with respect to 100 parts by weight (mass) of the resin in the antiglare layer (B). Good.
  • the particles are contained in an amount of, for example, 0.2 to 12 parts by weight or 0.5 to 12 parts by weight with respect to 100 parts by weight of the resin in the antiglare layer (B). It may be.
  • the surface shape of the antiglare film is further adjusted by adjusting the number of parts by weight of the particles with respect to 100 parts by weight of the resin in the material for forming an antiglare layer. May be.
  • the antiglare film of the present invention in which the uneven shape of the antiglare film is gentle can be obtained. Further, for example, by having the agglomerated portion, the average inter-concave distance Sm (mm) on the surface of the antiglare layer (B) becomes large.
  • the antiglare film having such a surface shape can effectively prevent the reflection of a fluorescent lamp or the like.
  • the antiglare film of the present invention is not limited to this.
  • the antiglare layer (B) is applied, for example, by coating a coating liquid containing the resin, the filler and a solvent on at least one surface of the light transmissive substrate (A) as described below. It is formed by forming a film and then removing the solvent from the coating film.
  • the resin include a thermosetting resin and an ionizing radiation curable resin that is cured by ultraviolet rays or light.
  • the resin it is also possible to use a commercially available thermosetting resin, ultraviolet curable resin, or the like.
  • thermosetting resin or the ultraviolet curable resin for example, a curable compound having at least one group of an acrylate group and a methacrylate group that is cured by heat, light (such as ultraviolet rays) or an electron beam can be used.
  • Silicone resins, polyester resins, polyether resins, epoxy resins, urethane resins, alkyd resins, spiro acetal resins, polybutadiene resins, polythiol polyene resins, oligomers or prepolymers of polyfunctional compounds such as polyhydric alcohols such as acrylate and methacrylate. can give. These may be used alone or in combination of two or more.
  • a reactive diluent having at least one of an acrylate group and a methacrylate group can be used.
  • the reactive diluent for example, the reactive diluent described in JP-A-2008-88309 can be used, and examples thereof include monofunctional acrylate, monofunctional methacrylate, polyfunctional acrylate, and polyfunctional methacrylate.
  • the reactive diluent trifunctional or higher functional acrylate and trifunctional or higher functional methacrylate are preferable. This is because the hardness of the antiglare layer (B) can be made excellent.
  • Examples of the reactive diluent also include butanediol glycerin ether diacrylate, acrylate of isocyanuric acid, and methacrylate of isocyanuric acid. These may be used alone or in combination of two or more.
  • the particles for forming the antiglare layer (B) impart unevenness to the surface of the formed antiglare layer (B) to impart antiglare properties, and the haze value of the antiglare layer (B) is The main function is to control.
  • the haze value of the antiglare layer (B) can be designed by controlling the refractive index difference between the particles and the resin.
  • the particles include inorganic particles and organic particles.
  • the inorganic particles are not particularly limited, for example, silicon oxide particles, titanium oxide particles, aluminum oxide particles, zinc oxide particles, tin oxide particles, calcium carbonate particles, barium sulfate particles, talc particles, kaolin particles, calcium sulfate particles, etc. Can be given.
  • the organic particles are not particularly limited and include, for example, polymethylmethacrylate resin powder (PMMA particles), silicone resin powder, polystyrene resin powder, polycarbonate resin powder, acrylic styrene resin powder, benzoguanamine resin powder, melamine resin powder, polyolefin.
  • PMMA particles polymethylmethacrylate resin powder
  • silicone resin powder silicone resin powder
  • polystyrene resin powder polycarbonate resin powder
  • acrylic styrene resin powder acrylic styrene resin powder
  • benzoguanamine resin powder acrylic styrene resin powder
  • melamine resin powder polyolefin
  • polyolefin examples thereof include resin powder, polyester resin powder, polyamide resin powder, polyimide resin powder, polyfluorinated ethylene resin powder and the like.
  • the particle diameter (D) (weight average particle diameter) of the particles is not particularly limited, but is, for example, in the range of 2 to 10 ⁇ m.
  • the weight average particle diameter of the particles is not too small.
  • the weight average particle diameter of the particles is not too large.
  • the weight average particle diameter of the particles may be, for example, 2.2 ⁇ m or more, 2.3 ⁇ m or more, 2.5 ⁇ m or more, or 3.0 ⁇ m or more, and is 9.0 ⁇ m or less, 8.0 ⁇ m or less, 7.0 ⁇ m. Or less, or 6.0 ⁇ m or less.
  • the weight average particle diameter of the particles is, for example, 2.2 ⁇ m or more and 9.0 ⁇ m or less, 2.2 ⁇ m or more and 8.0 ⁇ m or less, 2.2 ⁇ m or more and 7.0 ⁇ m or less, 2.2 ⁇ m or more and 6.0 ⁇ m or less, 2.3 ⁇ m.
  • the weight average particle diameter of the particles can be measured, for example, by the Coulter counting method.
  • a particle size distribution measuring device (trade name: Coulter Multisizer, manufactured by Beckman Coulter, Inc.) using a pore electrical resistance method, an electrolyte solution corresponding to the volume of the particles when the particles pass through the pores is used. By measuring the electric resistance, the number and volume of the particles are measured, and the weight average particle diameter is calculated.
  • the shape of the particles is not particularly limited, and may be, for example, a bead-like substantially spherical shape, or an irregular shape such as powder, but a substantially spherical shape is preferable, and an aspect is more preferable.
  • the particles are substantially spherical particles having a ratio of 1.5 or less, and most preferably spherical particles.
  • the proportion of the particles in the antiglare layer (B) is, for example, 0.1 parts by weight or more, 0.2 parts by weight or more, 0.3 parts by weight or more, or 0.5 parts by weight with respect to 100 parts by weight of the resin.
  • the amount may be not less than 10 parts by weight, not more than 10 parts by weight, not more than 8 parts by weight, not more than 7 parts by weight, or not more than 6 parts by weight.
  • the ratio of the particles is, for example, 0.1 parts by weight or more and 10 parts by weight or less, 0.1 parts by weight or more and 8 parts by weight or less, 0.1 parts by weight or more and 7 parts by weight or less, and 0 parts by weight to 100 parts by weight of the resin.
  • the agglomerated portion can be preferably formed, and, for example, an antiglare film having more excellent antiglare properties and suppressed glare can be obtained. it can.
  • the filler may be particles and a thixotropy imparting agent.
  • the thixotropy-imparting agent may be contained alone, or in addition to the particles, the thixotropy-imparting agent may be further contained. By including the thixotropy-imparting agent, it is possible to easily control the aggregation state of the particles.
  • the thixotropy imparting agent include organic clay, polyolefin oxide, and modified urea.
  • the organic clay is preferably an organically treated layered clay in order to improve the affinity with the resin.
  • the organoclay may be prepared in-house or a commercially available product may be used. Examples of the commercially available products include Lucentite SAN, Lucentite STN, Lucentite SEN, Lucentite SPN, Someriff ME-100, Someriff MAE, Someriff MTE, Someriff MEE, Someriff MPE (trade names, all are Corp Chemical Co., Ltd.
  • the above-mentioned oxidized polyolefin may be prepared in-house or a commercially available product may be used.
  • the commercially available products include Disparlon 4200-20 (trade name, manufactured by Kusumoto Kasei Co., Ltd.), Flownon SA300 (trade name, manufactured by Kyoeisha Chemical Co., Ltd.), and the like.
  • the modified urea is a reaction product of an isocyanate monomer or its adduct and an organic amine.
  • the modified urea may be prepared in-house or a commercially available product may be used. Examples of the commercially available product include BYK410 (manufactured by Big Chemie).
  • the thixotropy-imparting agents may be used alone or in combination of two or more.
  • the proportion of the thixotropy imparting agent in the antiglare layer (B) is preferably 0.2 to 5 parts by weight, more preferably 0.4 to 4 parts by weight, based on 100 parts by weight of the resin. is there.
  • the maximum thickness (d ') of the antiglare layer (B) is not particularly limited, but is preferably in the range of 3 to 12 ⁇ m. By setting the maximum thickness (d ′) of the antiglare layer (B) within the above range, for example, it is possible to prevent the occurrence of curl in the antiglare film and reduce the productivity such as poor transportability. Can be avoided.
  • the thickness (d) is in the above range
  • the weight average particle diameter (D) of the particles is preferably in the range of 2 to 10 ⁇ m as described above.
  • the maximum thickness (d ') of the antiglare layer (B) is more preferably within the range of 3 to 8 ⁇ m.
  • the ratio D / d of the thickness (d ′) of the antiglare layer (B) and the weight average particle diameter (D) of the particles is, for example, 1 or less, 0.9 or less, 0.8 or less, 0.7. It may be less than or equal to or less than or equal to 0.6, and may be greater than or equal to 0.1, greater than or equal to 0.2, greater than or equal to 0.3, or greater than or equal to 0.4.
  • the D / d is, for example, 0.1 or more and 1 or less, 0.2 or more and 1 or less, 0.3 or more and 1 or less, 0.4 or more and 1 or less, 0.1 or more and 0.9 or less, and 0.2 or more and 0.
  • 0.9 or less 0.3 or more and 0.9 or less, 0.4 or more and 0.9 or less, 0.1 or more and 0.8 or less, 0.2 or more and 0.8 or less, 0.3 or more and 0.8 or less, 0 0.4 to 0.8, 0.1 to 0.7, 0.2 to 0.7, 0.3 to 0.7, 0.4 to 0.7, 0.1 to 0. It may be 6 or less, 0.2 or more and 0.6 or less, 0.3 or more and 0.6 or less, or 0.4 or more and 0.6 or less. By having such a relationship, it is possible to obtain an antiglare film which is more excellent in the antiglare property and in which glare is suppressed.
  • the antiglare layer (B) has an aggregated portion that forms a convex portion on the surface of the antiglare layer (B) due to aggregation of the filler.
  • a plurality of the fillers may be present in a state gathered in one direction in the plane direction of the antiglare layer (B). Thereby, for example, the reflection of a fluorescent lamp can be prevented.
  • the antiglare film of the present invention is not limited to this.
  • the antiglare film of the present invention includes, for example, a resin derived from the light transmissive substrate (A) between the light transmissive substrate (A) and the antiglare layer (B), and It may have an intermediate layer containing a resin derived from the antiglare layer (B).
  • the thickness of the intermediate layer By controlling the thickness of the intermediate layer, the surface shape of the antiglare layer (B) can be controlled. For example, if the thickness of the intermediate layer is increased, the Rz and ⁇ a are likely to be increased, and if the thickness of the intermediate layer is reduced, the Rz and ⁇ a are easily reduced.
  • the mechanism by which the intermediate layer (also referred to as a permeation layer or a compatible layer) is formed is not particularly limited, but, for example, it is formed in the drying step in the method for producing an antiglare film of the present inventor. .. Specifically, for example, in the drying step, the coating liquid for forming the antiglare layer (B) penetrates into the light transmissive base material (A), and is derived from the light transmissive base material (A). The intermediate layer containing a resin and a resin derived from the antiglare layer (B) is formed.
  • the resin contained in the intermediate layer is not particularly limited, and for example, the resin contained in the light transmissive substrate (A) and the resin contained in the antiglare layer (B) are simply mixed (compatible). It may be a thing. Further, the resin contained in the intermediate layer is, for example, at least one of the resin contained in the light transmissive substrate (A) and the resin contained in the antiglare layer (B) is heating, light irradiation, or the like. It may be chemically changed by.
  • the thickness ratio R of the intermediate layer defined by the following formula (5) is not particularly limited, but is, for example, 0.10 to 0.80, and is, for example, 0.15 or more, 0.20 or more, 0.25.
  • the above may be 0.30 or more, 0.40 or more, or 0.45 or more, and for example, 0.75 or less, 0.70 or less, 0.65 or less, 0.60 or less, 0.50 or less, It may be 0.40 or less, 0.45 or less, or 0.30 or less.
  • the intermediate layer can be confirmed, for example, by observing the cross section of the antiglare hard coat film with a transmission electron microscope (TEM), and the thickness can be measured.
  • TEM transmission electron microscope
  • the antiglare layer (B) is aggregated to form a convex portion on the surface of the antiglare layer (B) due to the aggregation of the filler.
  • the filler may be present in a state where a plurality of the fillers are gathered in one direction in the plane direction of the antiglare layer (B) in the aggregating portion forming the convex portion.
  • the convex portion has a gentle shape having anisotropy. Since the antiglare film has the convex portion having such a shape, it is possible to prevent the reflection of a fluorescent lamp and the like.
  • the antiglare film of the present invention is not limited to this.
  • the surface shape of the antiglare layer (B) can be arbitrarily designed by controlling the aggregation state of the filler contained in the material for forming the antiglare layer.
  • the aggregated state of the filler can be controlled by, for example, the material of the filler (for example, the chemically modified state of the particle surface, the affinity for a solvent or a resin, etc.), the type of resin (binder) or solvent, the combination, and the like.
  • the aggregation state of the particles can be precisely controlled by the thixotropy imparting agent.
  • the surface shape of the antiglare film can be controlled (adjusted) in a wide range, and for example, the aggregated state of the filler can be set as described above, and the convex shape can be obtained.
  • the shaped portion can have a gentle shape.
  • the surface shape of the antiglare film is controlled (adjusted) in a wider range by adjusting the number of parts by weight of the particles with respect to 100 parts by weight of the resin in the antiglare layer forming material. You can also do it.
  • the anti-glare film of the present invention may be one in which the convex portion has a gentle shape and can prevent generation of protrusions on the surface of the anti-glare layer (B), which is a defect in appearance. It is not limited to this.
  • the particles may be present to some extent at a position where the antiglare layer (B) directly or indirectly overlaps in the thickness direction.
  • the other layer is not particularly limited and may be, for example, a low refractive index layer, a low reflective layer, a conductive layer, an antifouling layer, a high hardness layer, a high refractive index layer, a UV absorbing layer, etc., as described above. Good. Further, the other layer may be a single layer or a plurality of layers, and in the case of a plurality of layers, one kind or plural kinds may be used. For example, the other layer may be an optical thin film whose thickness and refractive index are strictly controlled, or a laminate of two or more optical thin films. The case where the other layer is the low reflection layer (C) will be described below.
  • the low reflection layer (C) can reduce the surface reflection.
  • the antiglare layer (B) and the low reflection layer (C) may be formed on only one surface of the light transmissive substrate (A), or may be formed on both surfaces. Further, each of the antiglare layer (B) and the low reflection layer (C) may have a multi-layer structure in which two or more layers are laminated.
  • the low reflection layer (C) may be an optical thin film whose thickness and refractive index are strictly controlled, or a laminate of two or more layers of the optical thin films.
  • the low reflection layer (C) exerts an antireflection function by canceling mutually reversed phases of incident light and reflected light by utilizing the interference effect of light.
  • the wavelength range of visible light that exhibits an antireflection function is, for example, 380 to 780 nm, and the wavelength range of particularly high visibility is in the range of 450 to 650 nm, and the reflectance at 550 nm, which is the central wavelength, is minimized.
  • the low reflection layer (C) may be designed as follows.
  • a contamination prevention layer formed of a silane compound containing a fluorine group or an organic compound containing a fluorine group is further added. It may be laminated on the low reflection layer (C).
  • the method for producing the antiglare film of the present invention is not particularly limited and may be produced by any method, but it is preferably produced by the method for producing the antiglare film of the present invention.
  • the method for producing the antiglare film can be performed, for example, as follows.
  • the antiglare layer (B) is formed on the light transmissive substrate (A) so as to satisfy the mathematical expressions (1) and (2) (antiglare layer (B) forming step).
  • the antiglare layer (B) forming step includes a coating step of applying the coating solution onto the light-transmitting substrate (A), and a step of drying the applied coating solution to apply the coating solution.
  • the antiglare layer (B) forming step may further include a curing step of curing the coating film.
  • the curing can be performed, for example, after the drying, but is not limited thereto.
  • the curing can be performed, for example, by heating, light irradiation or the like.
  • the light is not particularly limited, but may be, for example, ultraviolet light.
  • the light source for the light irradiation is not particularly limited, but may be, for example, a high pressure mercury lamp or the like.
  • the coating liquid contains a resin and a solvent as described above.
  • the coating liquid may be, for example, an antiglare layer forming material (coating liquid) containing the resin, the particles, the thixotropy imparting agent, and the solvent.
  • the coating liquid preferably exhibits thixotropy, and the Ti value defined by the following formula is preferably in the range of 1.3 to 3.5, more preferably 1.4 to 3. It is in the range of 2, and more preferably in the range of 1.5 to 3.
  • Ti value ⁇ 1 / ⁇ 2
  • ⁇ 1 is a viscosity measured under the condition of shear rate 20 (1 / s) using HAAKE RheoStress RS6000
  • ⁇ 2 shear rate 200 (1 / s) using HAAKE Rheostress RS6000. The viscosity is measured under the conditions of.
  • the Ti value When the Ti value is 1.3 or more, problems such as appearance defects and deterioration of antiglare properties and white blur characteristics are unlikely to occur. Further, when the Ti value is 3.5 or less, problems such as the particles being in a dispersed state without aggregating are unlikely to occur.
  • the coating liquid may or may not contain a thixotropy-imparting agent, but it is preferable to contain the thixotropy-imparting agent because the thixotropy is easily exhibited.
  • the effect of preventing sedimentation of the particles can be obtained because the coating liquid contains the thixotropy imparting agent.
  • the surface shape of the antiglare film can be freely controlled in a wider range by shear aggregation of the thixotropy imparting agent itself.
  • the coating liquid does not contain particles and contains a thixotropy-imparting agent, as described above, the ⁇ a and Rz are small, and thus the antiglare film of the present invention in which the unevenness of the outermost surface is gentle can be obtained. it can.
  • the coating liquid also contains a thixotropy-imparting agent and particles having a small particle size, and similarly, the ⁇ a and Rz are small, and the unevenness of the outermost surface is gentle, and the antiglare film of the present invention. can do.
  • the solvent is not particularly limited, various solvents can be used, and one kind may be used alone, or two or more kinds may be used in combination.
  • the optimum solvent type and solvent ratio exist depending on the composition of the resin, the type and content of the particles and the thixotropy imparting agent.
  • the solvent is not particularly limited, but examples thereof include alcohols such as methanol, ethanol, isopropyl alcohol, butanol, and 2-methoxyethanol; ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclopentanone; methyl acetate, ethyl acetate.
  • Esters such as butyl acetate; ethers such as diisopropyl ether and propylene glycol monomethyl ether; glycols such as ethylene glycol and propylene glycol; cellosolves such as ethyl cellosolve and butyl cellosolve; aliphatic hydrocarbons such as hexane, heptane, octane Examples: aromatic hydrocarbons such as benzene, toluene, xylene and the like.
  • the solvent may include a hydrocarbon solvent and a ketone solvent.
  • the hydrocarbon solvent may be, for example, an aromatic hydrocarbon.
  • the aromatic hydrocarbon may be, for example, at least one selected from the group consisting of toluene, o-xylene, m-xylene, p-xylene, ethylbenzene, and benzene.
  • the ketone solvent may be, for example, cyclopentanone, and at least one selected from the group consisting of acetone, methyl ethyl ketone, methyl isobutyl ketone, diethyl ketone, cyclohexanone, isophorone, and acetophenone.
  • the solvent may be, for example, a solvent in which the hydrocarbon solvent and the ketone solvent are mixed in a mass ratio of 90:10 to 10:90.
  • the mass ratio of the hydrocarbon solvent to the ketone solvent may be, for example, 80:20 to 20:80, 70:30 to 30:70, or 40:60 to 60:40.
  • the hydrocarbon solvent may be toluene and the ketone solvent may be methyl ethyl ketone.
  • a good solvent for the acrylic film can be preferably used.
  • the solvent may be, for example, a solvent containing a hydrocarbon solvent and a ketone solvent as described above.
  • the hydrocarbon solvent may be, for example, an aromatic hydrocarbon.
  • the aromatic hydrocarbon may be, for example, at least one selected from the group consisting of toluene, o-xylene, m-xylene, p-xylene, ethylbenzene, and benzene.
  • the ketone solvent may be at least one selected from the group consisting of cyclopentanone, acetone, methyl ethyl ketone, methyl isobutyl ketone, diethyl ketone, cyclohexanone, isophorone, and acetophenone.
  • the solvent may be, for example, a solvent in which the hydrocarbon solvent and the ketone solvent are mixed in a mass ratio of 90:10 to 10:90.
  • the mass ratio of the hydrocarbon solvent to the ketone solvent may be, for example, 80:20 to 20:80, 70:30 to 30:70, or 40:60 to 60:40.
  • the hydrocarbon solvent may be toluene and the ketone solvent may be methyl ethyl ketone.
  • TAC triacetyl cellulose
  • a good solvent for TAC can be preferably used.
  • the solvent include ethyl acetate, methyl ethyl ketone, cyclopentanone and the like.
  • the thixotropy of the material for forming the antiglare layer (coating liquid) can be well exhibited when the thixotropy-imparting agent is contained.
  • toluene and xylene can be preferably used alone or in combination.
  • methyl ethyl ketone, ethyl acetate, propylene glycol monomethyl ether is preferably used alone. They can be used or used together.
  • a modified urea is used, butyl acetate and methyl isobutyl ketone are preferably used alone or in combination.
  • leveling agents may be added to the antiglare layer forming material.
  • a fluorine-based or silicone-based leveling agent can be used for the purpose of preventing coating unevenness (uniformizing the coated surface).
  • a low reflection layer (low refractive index layer) or a layer containing an interlayer filler is on the antiglare layer (B).
  • the leveling agent can be appropriately selected according to the case where the leveling agent is formed.
  • the coating liquid can be made to exhibit thixotropy, and thus coating unevenness is unlikely to occur.
  • the choice of the leveling agent can be expanded.
  • the blending amount of the leveling agent is, for example, 5 parts by weight or less, preferably 0.01 to 5 parts by weight, based on 100 parts by weight of the resin.
  • a pigment, a filler, a dispersant, a plasticizer, an ultraviolet absorber, a surfactant, an antifouling agent, an antioxidant, etc. are added within a range that does not impair the performance. May be done. These additives may be used alone or in combination of two or more.
  • a conventionally known photopolymerization initiator as described in JP-A-2008-88309 can be used.
  • Examples of the method for forming the coating film by coating the coating liquid on the light transmissive substrate (A) include, for example, a fan-ten coating method, a die coating method, a spin coating method, a spray coating method, and a gravure coating method.
  • a coating method such as a roll coating method or a bar coating method can be used.
  • the coating film is dried and cured to form the antiglare layer (B).
  • the drying may be, for example, natural drying, air drying by blowing air, heat drying, or a combination thereof.
  • the drying temperature of the coating liquid for forming the antiglare layer (B) may be, for example, in the range of 30 to 200 ° C.
  • the drying temperature may be, for example, 40 ° C or higher, 50 ° C or higher, 60 ° C or higher, 70 ° C or higher, 80 ° C or higher, 90 ° C or higher, or 100 ° C or higher, and 190 ° C or lower, 180 ° C or lower, 170. C. or lower, 160.degree. C. or lower, 150.degree. C. or lower, 140.degree. C. or lower, 135.degree. C. or lower, 130.degree. C. or lower, 120.degree. C. or lower, or 110.degree. C. or lower.
  • the drying time is not particularly limited, but may be, for example, 30 seconds or more, 40 seconds or more, 50 seconds or more, or 60 seconds or more, and is 150 seconds or less, 130 seconds or less, 110 seconds or less, or 90 seconds or less. May be.
  • the means for curing the coating film is not particularly limited, but UV curing is preferred.
  • the irradiation amount of the energy ray source is preferably 50 to 500 mJ / cm 2 as an integrated exposure amount at an ultraviolet wavelength of 365 nm.
  • the irradiation amount is 50 mJ / cm 2 or more, curing is likely to proceed sufficiently and the hardness of the antiglare layer (B) to be formed tends to be high. Further, when it is 500 mJ / cm 2 or less, coloring of the formed antiglare layer (B) can be prevented.
  • a laminate of the light transmissive substrate (A) and the antiglare layer (B) can be manufactured.
  • This laminate may be used as it is as the antiglare film of the present invention, or for example, the other layer may be formed on the antiglare layer (B) to give the antiglare film of the present invention.
  • the method for forming the other layer is not particularly limited, and for example, it can be performed by a method similar to or similar to the method for forming a general low refractive index layer, low reflection layer, or the like.
  • the step of forming the low reflection layer (C) low reflection layer forming step) when the other layer is the low reflection layer (C) will be described.
  • the low reflection layer forming coating liquid may contain, for example, a resin, a fluorine element-containing additive, hollow particles, solid particles, a diluting solvent, and the like, and can be produced by mixing these.
  • the above-mentioned resin includes, for example, a thermosetting resin and an ionizing radiation curable resin that is cured by ultraviolet rays or light.
  • a thermosetting resin and an ionizing radiation curable resin that is cured by ultraviolet rays or light.
  • the resin it is also possible to use a commercially available thermosetting resin, ultraviolet curable resin, or the like.
  • thermosetting resin or the ultraviolet curable resin for example, a curable compound having at least one group of an acrylate group and a methacrylate group that is cured by heat, light (such as ultraviolet rays) or an electron beam can be used.
  • Silicone resins, polyester resins, polyether resins, epoxy resins, urethane resins, alkyd resins, spiro acetal resins, polybutadiene resins, polythiol polyene resins, oligomers or prepolymers of polyfunctional compounds such as polyhydric alcohols such as acrylate and methacrylate. can give. These may be used alone or in combination of two or more.
  • a reactive diluent having at least one of an acrylate group and a methacrylate group can be used.
  • the reactive diluent for example, the reactive diluent described in JP-A-2008-88309 can be used, and examples thereof include monofunctional acrylate, monofunctional methacrylate, polyfunctional acrylate, and polyfunctional methacrylate.
  • the reactive diluent trifunctional or higher functional acrylate and trifunctional or higher functional methacrylate are preferable. This is because the hardness of the low reflection layer (C) can be made excellent.
  • the reactive diluent also include butanediol glycerin ether diacrylate, acrylate of isocyanuric acid, and methacrylate of isocyanuric acid. These may be used alone or in combination of two or more.
  • the resin may have a weight average molecular weight before curing of, for example, 100 or more, 300 or more, 500 or more, 1,000 or more, or 2,000 or more, 100,000 or less, 70,000 or less, 50 or less. It may be 2,000 or less, 30,000 or less, or 10,000 or less. If the weight average molecular weight before curing is high, the hardness is lowered, but cracks tend not to occur when bent. On the other hand, when the weight average molecular weight before curing is low, the intermolecular crosslink density tends to be improved and the hardness tends to be high.
  • a curing agent may be added.
  • the curing agent is not particularly limited, and for example, a known polymerization initiator (for example, a thermal polymerization initiator, a photopolymerization initiator, etc.) can be appropriately used.
  • the addition amount of the curing agent is not particularly limited, but is, for example, 0.5 parts by weight or more, 1.0 parts by weight or more, and 1.5 parts by weight with respect to 100 parts by weight of the resin in the coating liquid for forming the low reflection layer.
  • the additive element containing fluorine element is not particularly limited, but may be, for example, an organic compound or an inorganic compound containing fluorine in the molecule.
  • the organic compound is not particularly limited, and examples thereof include a fluorine-containing antifouling coating agent, a fluorine-containing acrylic compound, a fluorine- and silicon-containing acrylic compound, and the like.
  • Specific examples of the organic compound include trade names "KY-1203" and "KY-100" manufactured by Shin-Etsu Chemical Co., Ltd. and trade names "Megafuck” manufactured by DIC Corporation.
  • the inorganic compound is also not particularly limited.
  • the addition amount of the elemental fluorine-containing additive is not particularly limited, for example, the weight of the elemental fluorine in the solid content, relative to the total weight of the solid content in the low reflection layer forming coating liquid, for example, May be 0.05 wt% or more, 0.1 wt% or more, 0.15 wt% or more, 0.20 wt% or more, or 0.25 wt% or more, 20 wt% or less, 15 wt% or less It may be 10% by weight or less, 5% by weight or less, or 3% by weight or less.
  • the weight of the fluorine element-containing additive is, for example, 0.05% by weight or more, 0.1% by weight or more, 0% with respect to 100 parts by weight of the resin in the coating liquid for forming a low reflection layer. 15 wt% or more, 0.20 wt% or more, or 0.25 wt% or more, 20 wt% or less, 15 wt% or less, 10 wt% or less, 5 wt% or less, or 3 wt% It may be the following. From the viewpoint of scratch resistance of the low reflective layer (C), it is preferable that the addition amount of the fluorine element-containing additive is neither too large nor too small.
  • the hollow particles are not particularly limited, but may be, for example, silica particles, acrylic particles, acrylic-styrene copolymer particles, or the like.
  • silica particles include trade names "Thru rear 5320" and "Thru rear 4320” manufactured by JGC Catalysts & Chemicals Co., Ltd.
  • the weight average particle diameter of the hollow particles is not particularly limited, but may be, for example, 30 nm or more, 40 nm or more, 50 nm or more, 60 nm or more, or 70 nm or more, 150 nm or less, 140 nm or less, 130 nm or less, 120 nm or less, Alternatively, it may be 110 nm or less.
  • the shape of the hollow particles is not particularly limited, and may be, for example, a bead-shaped substantially spherical shape, or an irregular shape such as powder, but a substantially spherical shape is preferable, and more preferably,
  • the particles are substantially spherical particles having an aspect ratio of 1.5 or less, and most preferably spherical particles.
  • the amount of the hollow particles to be added is not particularly limited, but is, for example, 30 parts by weight or more, 50 parts by weight or more, 70 parts by weight or more, 90 parts by weight with respect to 100 parts by weight of the resin in the coating liquid for forming the low reflection layer. Or more, or 100 parts by weight or more, 300 parts by weight or less, 270 parts by weight or less, 250 parts by weight or less, 200 parts by weight or less, or 180 parts by weight or less. From the viewpoint of reducing the refractive index of the low reflective layer (C), it is preferable that the amount of the hollow particles added is not too small, and from the viewpoint of ensuring the mechanical properties of the low reflective layer (C), the addition of the hollow particles is preferable. It is preferred that the amount is not too high.
  • the solid particles are not particularly limited, but may be, for example, silica particles, zirconium oxide particles, titanium-containing particles (for example, titanium oxide particles) and the like.
  • examples of the silica particles include trade names “MEK-2140Z-AC”, “MIBK-ST”, “IPA-ST” manufactured by Nissan Chemical Industries, Ltd.
  • the weight average particle diameter of the solid particles is not particularly limited, but may be, for example, 5 nm or more, 10 nm or more, 15 nm or more, 20 nm or more, or 25 nm or more, 3300 nm or less, 250 nm or less, 200 nm or less, 150 nm or less. , Or 100 nm or less.
  • the shape of the solid particles is not particularly limited, and may be, for example, a bead-like substantially spherical shape, or an irregular shape such as powder, but a substantially spherical shape is preferable, and more preferable. , Substantially spherical particles having an aspect ratio of 1.5 or less, and most preferably spherical particles.
  • the fluorine element-containing additive is likely to be unevenly distributed on the surface of the coating liquid for forming the low reflection layer, and the low reflection layer (C) is scratch-resistant. Will be more likely. It is possible to realize a low refractive index of the low reflection layer (C), good antireflection properties, and the like.
  • the addition amount of the solid particles is not particularly limited, but for example, 5 parts by weight or more, 10 parts by weight or more, 15 parts by weight or more, 20 parts by weight or more with respect to 100 parts by weight of the resin in the coating liquid for forming the low reflection layer. It may be more than or equal to 25 parts by weight, or more than or equal to 25 parts by weight, and may be less than or equal to 150 parts by weight, less than or equal to 120 parts by weight, less than or equal to 100 parts by weight, or less than or equal to 80 parts by weight.
  • the amount of the solid particles added is not too small, and from the viewpoint of preventing clouding of the coating film due to scattering, the amount of the solid particles added is not too large. It is preferable.
  • the diluent solvent is not particularly limited, various solvents can be used, and one kind may be used alone, or two or more kinds may be used in combination.
  • the diluent solvent include alcohols such as methanol, ethanol, isopropyl alcohol, butanol, TBA (tertiary butyl alcohol), and 2-methoxyethanol; acetone, methyl ethyl ketone, MIBK (methyl isobutyl ketone), cyclopentanone, and the like. Ketones; methyl acetate, ethyl acetate, butyl acetate, PMA (propylene glycol monomethyl ether acetate), etc.
  • esters diisopropyl ether, propylene glycol monomethyl ether, etc. ethers; ethylene glycol, propylene glycol, etc. glycols; ethyl cellosolve, Examples thereof include cellosolves such as butyl cellosolve; aliphatic hydrocarbons such as hexane, heptane, and octane; aromatic hydrocarbons such as benzene, toluene, xylene, and the like.
  • the polarity of the diluent solvent may be adjusted by mixing a plurality of solvents at an arbitrary ratio.
  • the diluting solvent may be, for example, a mixed solvent containing MIBK (methyl isobutyl ketone) and PMA (propylene glycol monomethyl ether acetate).
  • the mixing ratio in this case is not particularly limited, but when the weight of MIBK is 100% by weight, the weight of PMA is, for example, 20% by weight or more, 50% by weight or more, 100% by weight or more, 150% by weight or more, or It may be 200% by weight or more, 400% by weight or less, 350% by weight or less, 300% by weight or less, or 250% by weight or less.
  • the diluent solvent may be, for example, a mixed solvent containing TBA (tertiary butyl alcohol) in addition to MIBK and PMA.
  • the mixing ratio in this case is not particularly limited, but when the weight of MIBK is 100% by weight, the weight of PMA is, for example, 10% by weight or more, 30% by weight or more, 50% by weight or more, 80% by weight or more, or It may be 100 wt% or more, 200 wt% or less, 180 wt% or less, 150 wt% or less, 130 wt% or less, or 110 wt% or less.
  • the weight of TBA may be, for example, 10% by weight or more, 30% by weight or more, 50% by weight or more, 80% by weight or more, or 100% by weight or more. , 200 wt% or less, 180 wt% or less, 150 wt% or less, 130 wt% or less, or 110 wt% or less.
  • the amount of the diluting solvent added is not particularly limited, but, for example, the weight of the solid content relative to the weight of the entire coating liquid for forming a low reflection layer is, for example, 0.1% by weight or more, 0.3% by weight or more, 0.1% by weight or more. 5% by weight or more, 1.0% by weight or more, or 1.5% by weight or more, 20% by weight or less, 15% by weight or less, 10% by weight or less, 5% by weight or less, or 3% by weight % Or less. From the viewpoint of ensuring coatability (wetness, leveling), it is preferable that the content of the solid content is not too high, and from the viewpoint of preventing appearance defects due to drying such as air drying unevenness and whitening, the content of the solid content. Is preferably not too low.
  • the coating method is not particularly limited, and for example, a known coating method such as a fan-ten coating method, a die coating method, a spin coating method, a spray coating method, a gravure coating method, a roll coating method, and a bar coating method may be appropriately used. it can.
  • the coating amount of the coating liquid for forming the low reflection layer is not particularly limited, but the thickness of the low reflection layer (C) to be formed is, for example, 0.1 ⁇ m or more, 0.3 ⁇ m or more, 0.5 ⁇ m or more, The thickness may be 1.0 ⁇ m or more, or 2.0 ⁇ m or more, and may be 50 ⁇ m or less, 40 ⁇ m or less, 30 ⁇ m or less, 20 ⁇ m or less, or 10 ⁇ m or less.
  • the drying temperature is not particularly limited, but may be in the range of 30 to 200 ° C., for example.
  • the drying temperature may be, for example, 40 ° C or higher, 50 ° C or higher, 60 ° C or higher, 70 ° C or higher, 80 ° C or higher, 90 ° C or higher, or 100 ° C or higher, and 190 ° C or lower, 180 ° C or lower, 170. C. or lower, 160.degree. C. or lower, 150.degree. C. or lower, 140.degree. C. or lower, 135.degree. C. or lower, 130.degree. C. or lower, 120.degree. C.
  • the drying time is not particularly limited, but may be, for example, 30 seconds or more, 40 seconds or more, 50 seconds or more, or 60 seconds or more, and is 150 seconds or less, 130 seconds or less, 110 seconds or less, or 90 seconds or less. May be.
  • the coating film may be cured (curing step).
  • the curing can be performed, for example, by heating, light irradiation or the like.
  • the light is not particularly limited, but may be, for example, ultraviolet light.
  • the light source for the light irradiation is not particularly limited, but may be, for example, a high pressure mercury lamp or the like.
  • the irradiation amount of the energy ray source in the ultraviolet curing is preferably 50 to 500 mJ / cm 2 as an integrated exposure amount at an ultraviolet wavelength of 365 nm. When the irradiation amount is 50 mJ / cm 2 or more, curing is likely to proceed sufficiently and the low reflection layer (C) to be formed tends to have high hardness. Further, when it is 500 mJ / cm 2 or less, coloring of the low reflection layer (C) formed can be prevented.
  • the antireflection of the present invention in which the antiglare layer (B) and the low reflection layer (C) are laminated in the order on at least one surface of the light transmissive substrate (A).
  • a film can be produced.
  • the antireflection film of the present invention may include a layer other than the light transmissive substrate (A), the antiglare layer (B) and the low reflection layer (C). ..
  • the process of producing the antireflection film of the present invention it is preferable to perform a surface treatment on at least one of the light transmissive substrate (A) and the antiglare layer (B).
  • a surface treatment on at least one of the light transmissive substrate (A) and the antiglare layer (B).
  • the adhesion with the antiglare layer (B) or the polarizer or the polarizing plate is further improved.
  • the adhesion with the low reflection layer (C) is further improved.
  • the optical member of the present invention is not particularly limited, but may be, for example, a polarizing plate.
  • the polarizing plate is also not particularly limited, but may include, for example, the antiglare film and the polarizer of the present invention, and may further include other constituent elements.
  • the respective constituent elements of the polarizing plate may be attached to each other with, for example, an adhesive or a pressure-sensitive adhesive.
  • the image display device of the present invention is not particularly limited, and any image display device may be used, and examples thereof include a liquid crystal display device and an organic EL display device.
  • the image display device of the present invention is, for example, an image display device having the antiglare film of the present invention on the viewing side surface, and the image display device may have a black matrix pattern.
  • the light transmissive substrate (A) side can be attached to an optical member used in an LCD via an adhesive or an adhesive.
  • the above-mentioned various surface treatments may be performed on the surface of the light transmissive substrate (A).
  • the surface shape of the antiglare film can be freely controlled in a wide range. Therefore, the optical properties that can be obtained by laminating the antiglare film with another optical member using an adhesive, a pressure sensitive adhesive, etc., cover a wide range corresponding to the surface shape of the antiglare film. ..
  • the examples of the optical member include a polarizer and a polarizing plate.
  • the polarizing plate generally has a structure having a transparent protective film on one side or both sides of the polarizer.
  • the transparent protective films on the front and back may be made of the same material or different materials.
  • Polarizing plates are usually arranged on both sides of the liquid crystal cell. Further, the polarizing plates are arranged so that the absorption axes of the two polarizing plates are substantially orthogonal to each other.
  • the configuration of the polarizing plate laminated with the antiglare film is not particularly limited, for example, a configuration in which a transparent protective film, the polarizer and the transparent protective film are laminated in this order on the antiglare film.
  • the polarizer and the transparent protective film may be laminated in this order on the antiglare film.
  • the image display device of the present invention has the same configuration as a conventional image display device except that the antiglare film is arranged in a specific direction.
  • the antiglare film is arranged in a specific direction.
  • it can be manufactured by appropriately assembling a liquid crystal cell, optical members such as a polarizing plate, and each component such as an illumination system (backlight or the like) and a drive circuit as necessary.
  • the image display device of the present invention is used for any appropriate purpose. Its applications are, for example, OA devices such as personal computer monitors, laptop computers, copiers, mobile phones, watches, digital cameras, personal digital assistants (PDAs), portable game devices such as portable game machines, video cameras, televisions, microwave ovens, etc. Household electric appliances, back monitors, car navigation system monitors, car audio and other in-vehicle equipment, commercial store information monitors and other exhibition equipment, surveillance monitors and other security equipment, nursing monitors, medical monitors, etc. Nursing care and medical equipment.
  • OA devices such as personal computer monitors, laptop computers, copiers, mobile phones, watches, digital cameras, personal digital assistants (PDAs), portable game devices such as portable game machines, video cameras, televisions, microwave ovens, etc. Household electric appliances, back monitors, car navigation system monitors, car audio and other in-vehicle equipment, commercial store information monitors and other exhibition equipment, surveillance monitors and other security equipment, nursing monitors, medical monitors, etc. Nursing care and medical equipment
  • the number of parts of a substance is part by weight (part by weight) unless otherwise specified.
  • Coating liquid 1 Antiglare layer forming material
  • a resin contained in the antiglare layer 40 parts by weight of a urethane acrylate prepolymer (manufactured by Shin-Nakamura Chemical Co., Ltd., trade name “UA-53H-80BK”, solid content 80%) and pentaerythritol triacrylate as main components 60 parts by weight of a polyfunctional acrylate (trade name "Viscoat # 300" manufactured by Osaka Organic Chemical Industry Co., Ltd., solid content 100%) was prepared.
  • a synthetic smectite (trade name “Lucentite SAN” manufactured by Coop Chemical Co., Ltd.), which is an organic clay as a thixotropy-imparting agent, per 100 parts by weight of the resin solid content of the resin, and a photopolymerization initiator (BASF) 5 parts by weight of trade name "Irgacure 907" manufactured by the same company and 0.15 parts by weight of a leveling agent (trade name "LE-303” manufactured by Kyoeisha Chemical Co., Ltd., solid content 40%) were mixed.
  • the organic clay was diluted with toluene so that the solid content was 6% by weight.
  • This mixture was diluted with a toluene / methyl ethyl ketone (MEK) mixed solvent (weight ratio 70/30) so that the solid content concentration was 40% by weight, and an antiglare layer forming material ( A coating liquid 1) was prepared.
  • MEK methyl ethyl ketone
  • Coating liquid 2 Low reflective layer forming material
  • a polyfunctional acrylate containing pentaerythritol triacrylate as a main component manufactured by Osaka Organic Chemical Industry Co., Ltd., trade name "Biscoat # 300", solid content 100%
  • organosilica sol particle size: 10 to 15 nm
  • hollow silica particles weight average particle size: 75 nm
  • resin solid content of the resin photopolymerization initiator (manufactured by BASF, trade name: 10 parts by weight of Irgacure 907 "and" Irgacure 2959 ") and 10 parts by weight of a radical-reactive group-containing fluorine-based antifouling additive.
  • This mixture was diluted with a methyl isobutyl ketone / propylene glycol monomethyl ether acetate mixed solvent (weight ratio 25/75) so that the solid content concentration was 1.5% by weight, and the mixture was diluted with an ultrasonic disperser to reduce the concentration.
  • a reflective layer forming material (Coating liquid 2) was prepared.
  • Coating liquid 3 Antiglare layer forming material
  • the coating liquid 1 was diluted with a toluene / methyl ethyl ketone (MEK) mixed solvent (weight ratio 70/30) so that the solid content concentration was 42% by weight to prepare an antiglare layer forming material (coating liquid 3). ..
  • MEK methyl ethyl ketone
  • Coating liquid 4 Antiglare layer forming material
  • inorganic particles Sekisui Plastics Co., Ltd., product name "Techpolymer SSX-103DXE” weight average particle diameter 3.0 ⁇ m
  • MEK methyl ethyl ketone
  • Coating liquid 5 antiglare layer forming material
  • the coating liquid 1 was diluted with a toluene / methyl ethyl ketone (MEK) mixed solvent (weight ratio 70/30) so that the solid content concentration was 38% by weight to prepare an antiglare layer forming material (coating liquid 3). ..
  • MEK methyl ethyl ketone
  • Coating liquid 6 antiglare layer forming material
  • inorganic particles Sekisui Plastics Co., Ltd., product name “Techpolymer SSX-103DXE”
  • MEK methyl ethyl ketone
  • Coating liquid 7 antiglare layer forming material
  • inorganic particles Sekisui Plastics Co., Ltd., product name “Techpolymer SSX-103DXE”
  • MEK methyl ethyl ketone
  • the antiglare film was manufactured as follows.
  • a transparent plastic film base material (acrylic film, manufactured by Toyo Kohan Co., Ltd., trade name “HX-40UC”, thickness: 40 ⁇ m, refractive index: 1.50) was prepared. ..
  • the antiglare layer forming material (coating liquid 1) was applied using a wire bar to form a coating film (coating step). Then, the coating film was dried by heating at 100 ° C. for 1 minute (drying step). Then, the high pressure mercury lamp was used to irradiate ultraviolet rays having an integrated light intensity of 300 mJ / cm 2 to cure the coating film to form an antiglare layer (B) having a thickness of 6.5 ⁇ m.
  • the antiglare layer (B) in the antiglare film of this example is an antiglare hard coat layer. The same applies to all the following examples and comparative examples.
  • the low reflection layer forming material (coating liquid 2) was applied onto the antiglare layer (B) using a spin coater to form a coating film (coating step). Then, the coating film was dried by heating at 90 ° C. for 1 minute (drying step). Then, ultraviolet rays having an integrated light intensity of 300 mJ / cm 2 were irradiated with a high pressure mercury lamp to cure the coating film to form a low reflection layer (C) having a thickness of 100 nm to obtain an antiglare film of this example. It was
  • Example 2 An antiglare film was produced in the same manner as in Example 1 except that the coating liquid 3 was used instead of the coating liquid 1 as the antiglare layer forming material.
  • Example 3 An antiglare film was produced in the same manner as in Example 1 except that the coating liquid 4 was used in place of the coating liquid 1 as the antiglare layer forming material.
  • Example 4 An antiglare film was produced in the same manner as in Example 1 except that the coating liquid 5 was used instead of the coating liquid 1 as the material for forming the antiglare layer.
  • Example 5 An antiglare film was produced in the same manner as in Example 1 except that the thickness (film thickness) of the antiglare layer (B) was formed to 8.5 ⁇ m.
  • Example 6 Example 1 except that the coating liquid 6 was used in place of the coating liquid 1 as the material for forming the antiglare layer, and the thickness (film thickness) of the antiglare layer (B) was formed to 5.0 ⁇ m. An antiglare film was manufactured in the same manner.
  • Example 7 An antiglare film was produced in the same manner as in Example 1 except that the low reflection layer (C) was not formed on the antiglare layer (B).
  • Example 1 An antiglare film was produced in the same manner as in Example 1 except that the coating liquid 6 was used instead of the coating liquid 1 as the material for forming the antiglare layer.
  • Example 1 Example 1 except that the coating liquid 6 was used in place of the coating liquid 1 as the material for forming the antiglare layer, and the thickness (film thickness) of the antiglare layer (B) was formed to 8.5 ⁇ m. An antiglare film was manufactured in the same manner.
  • Example 3 An antiglare film was produced in the same manner as in Example 1 except that the coating liquid 7 was used instead of the coating liquid 1 as the material for forming the antiglare layer.
  • the outermost surface (antiglare layer (B) surface or low surface) on the antiglare layer (B) side was prepared by the following method.
  • the average inclination angle ⁇ a (°) of the unevenness of the reflection layer (C) surface), the ten-point average height Rz ( ⁇ m), the arithmetic average surface roughness Ra ( ⁇ m), and the average unevenness distance Sm (mm) are measured or Calculated.
  • the average inter-concave distance Sm (mm), the ten-point average height Rz ( ⁇ m), and the arithmetic average surface roughness Ra ( ⁇ m) of the outermost surface of the antiglare film were measured.
  • a glass plate manufactured by MATSUNAMI, MICRO SLIDE GLASS, product number S, thickness 1 is provided on the surface of the light transmissive substrate (A) of the antiglare film opposite to the antiglare layer (B). (3 mm, 45 ⁇ 50 mm) was attached with an adhesive to prepare a sample.
  • the uneven shape of (C) surface) was measured in a fixed direction.
  • the average unevenness distance Sm (mm) on the outermost surface, the ten-point average height Rz, and the arithmetic average surface roughness Ra were calculated. Further, the average inclination angle ⁇ a (°) was calculated from the surface roughness curve obtained based on the measured value (calculated value). The high-precision fine shape measuring instrument automatically calculates each measured value.
  • the anti-glare films of Examples 1 to 7 satisfying ⁇ a ⁇ 0.24 and Rz ⁇ 0.20 had suppressed white smear.
  • the white smear was insufficiently suppressed.
  • all of the anti-glare films of Examples 1 to 7 were able to prevent the image of the outline of the fluorescent lamp from being reflected under the conditions of the white smear determination method. There was no level.
  • an antiglare film in which generation of white haze is suppressed a method for producing an antiglare film, an optical member, and an image display device.
  • the application of the present invention is not particularly limited and can be used in a wide range of applications, for example, it can be applied to any image display device.
  • Anti-glare film 11 Light-transmissive substrate (A) 12 Antiglare layer (B) 12a Resin layer 12b Particles 12c Thixotropic agent 13 Low reflection layer (C) (other layer)

Abstract

Provided is an antiglare film in which generation of white mist is suppressed. An antiglare film according to the present invention is an antiglare film (10) in which an antiglare layer (B) (12) is laminated on a light transmitting substrate (A) (11), wherein the antiglare film (10) is characterized in that recesses and protrusions are formed on the outermost surface on the antiglare layer (B) (12) side in the antiglare film (10), and the recesses and protrusions satisfy the following numerical equations (1) and (2). (1): θa ≤ 0.24, (2): Rz ≤ 0.20. In the numerical equation (1), θa is the average inclination angle [º] of the recesses and protrusions, and in the numerical equation (2), Rz is the ten-point average height [μm] of the recesses and protrusions.

Description

防眩性フィルム、防眩性フィルムの製造方法、光学部材および画像表示装置Antiglare film, method for producing antiglare film, optical member, and image display device
 本発明は、防眩性フィルム、防眩性フィルムの製造方法、光学部材および画像表示装置に関する。 The present invention relates to an antiglare film, a method for manufacturing an antiglare film, an optical member, and an image display device.
 陰極管表示装置(CRT)、液晶表示装置(LCD)、プラズマディスプレイパネル(PDP)およびエレクトロルミネッセンスディスプレイ(ELD)等の、様々な画像表示装置には、前記画像表示装置表面における蛍光灯や太陽光等の外光の反射や像の映り込みによるコントラスト低下を防止するための防眩(アンチグレア)処理が施され、特に、画像表示装置の大画面化が進むのに伴い、防眩性のフィルムを装着した画像表示装置が増大している。 Various image display devices such as a cathode ray tube display device (CRT), a liquid crystal display device (LCD), a plasma display panel (PDP) and an electroluminescence display (ELD) include fluorescent lamps and sunlight on the surface of the image display device. Is subjected to anti-glare treatment to prevent a reduction in contrast due to reflection of external light or reflection of an image. Especially, as the screen of an image display device becomes larger, an anti-glare film is formed. The number of attached image display devices is increasing.
 防眩性フィルムについて記載された文献は多数あるが、例えば、特許文献1および2等がある。 There are many documents that describe the antiglare film, for example, Patent Documents 1 and 2.
特開2009-109683号公報JP, 2009-109683, A 特開2003-202416号公報JP-A-2003-202416
 防眩性フィルムにおいては、光源が映り込んだ際などに、白黒の波打った形状をした色差(以下「白モヤ」という。)が生じることがある。防眩性フィルムを用いたディスプレイ(画像表示装置)等において、白モヤの発生が著しいと、外観の品位が低下するおそれがある。 In the anti-glare film, when the light source is reflected, a color difference with a wavy black and white shape (hereinafter referred to as “white haze”) may occur. In a display (image display device) or the like using an antiglare film, if the appearance of white smear is remarkable, the appearance quality may be deteriorated.
 そこで、本発明は、白モヤの発生が抑制された防眩性フィルム、防眩性フィルムの製造方法、光学部材および画像表示装置の提供を目的とする。 Therefore, an object of the present invention is to provide an antiglare film in which generation of white haze is suppressed, a method for producing an antiglare film, an optical member, and an image display device.
 前記目的を達成するために、本発明の第1の防眩性フィルムは、
 光透過性基材(A)上に防眩層(B)が積層された防眩性フィルムであって、
 前記防眩性フィルムにおける前記防眩層(B)側の最表面に凹凸が形成され、
 前記凹凸が、下記数式(1)および(2)を満たすことを特徴とする。
 
θa≦0.24              (1)
Rz≦0.20              (2)
 
 前記数式(1)において、θaは、前記凹凸の平均傾斜角[°]であり、
 前記数式(2)において、Rzは、前記凹凸の十点平均高さ[μm]である。
In order to achieve the above object, the first antiglare film of the present invention,
An antiglare film having an antiglare layer (B) laminated on a light transmissive substrate (A),
Unevenness is formed on the outermost surface of the antiglare film on the antiglare layer (B) side,
It is characterized in that the unevenness satisfies the following mathematical formulas (1) and (2).

θa ≦ 0.24 (1)
Rz ≦ 0.20 (2)

In the formula (1), θa is the average inclination angle [°] of the unevenness,
In the formula (2), Rz is the ten-point average height [μm] of the irregularities.
 前記目的を達成するために、本発明の第2の防眩性フィルムは、
 光透過性基材(A)上に防眩層(B)および他の層が前記順序で積層された防眩性フィルムであって、
 前記他の層の最表面に凹凸が形成され、
 前記凹凸が、下記数式(1)および(2)を満たすことを特徴とする。なお、以下において、本発明の第1および第2の防眩性フィルムを、まとめて「本発明の防眩性フィルム」ということがある。
 
θa≦0.24              (1)
Rz≦0.20              (2)
 
 前記数式(1)において、θaは、前記凹凸の平均傾斜角[°]であり、
 前記数式(2)において、Rzは、前記凹凸の十点平均高さ[μm]である。
In order to achieve the above object, the second antiglare film of the present invention comprises
An antiglare film in which an antiglare layer (B) and other layers are laminated on the light transmissive substrate (A) in the above order,
Unevenness is formed on the outermost surface of the other layer,
It is characterized in that the unevenness satisfies the following mathematical formulas (1) and (2). In the following, the first and second antiglare films of the present invention may be collectively referred to as the “antiglare film of the present invention”.

θa ≦ 0.24 (1)
Rz ≦ 0.20 (2)

In the formula (1), θa is the average inclination angle [°] of the unevenness,
In the formula (2), Rz is the ten-point average height [μm] of the irregularities.
 本発明の防眩性フィルムの製造方法は、
 前記光透過性基材(A)上に、前記防眩層(B)を形成する防眩層(B)形成工程と、
 前記防眩性フィルムにおける前記防眩層(B)側の最表面に、前記数式(1)および(2)を満たすように前記凹凸を形成する凹凸形成工程とを含み、
 前記防眩層(B)形成工程が、前記光透過性基材(A)上に塗工液を塗工する塗工工程と、塗工した前記塗工液を乾燥させて塗膜を形成する塗膜形成工程とを含み、
 前記塗工液が、樹脂と、溶媒とを含むことを特徴とする。
The method for producing the antiglare film of the present invention,
An antiglare layer (B) forming step of forming the antiglare layer (B) on the light transmissive substrate (A);
An unevenness forming step of forming the unevenness on the outermost surface of the antiglare film on the antiglare layer (B) side so as to satisfy the mathematical formulas (1) and (2),
In the step of forming the antiglare layer (B), a coating step of applying a coating solution on the light-transmitting substrate (A) and a step of drying the applied coating solution to form a coating film. Including a coating film forming step,
It is characterized in that the coating liquid contains a resin and a solvent.
 本発明の光学部材は、本発明の防眩性フィルムを含む光学部材である。 The optical member of the present invention is an optical member including the antiglare film of the present invention.
 本発明の画像表示装置は、本発明の防眩性フィルム、または本発明の光学部材を含む画像表示装置である。 The image display device of the present invention is an image display device including the antiglare film of the present invention or the optical member of the present invention.
 本発明によれば、白モヤの発生が抑制された防眩性フィルム、防眩性フィルムの製造方法、光学部材および画像表示装置を提供することができる。 According to the present invention, it is possible to provide an antiglare film in which occurrence of white smear is suppressed, a method for producing an antiglare film, an optical member, and an image display device.
図1は、本発明の防眩性フィルムの構成の一例を示す断面図である。FIG. 1 is a sectional view showing an example of the constitution of the antiglare film of the present invention. 図2は、本発明の防眩性フィルムの構成の別の一例を示す断面図である。FIG. 2 is a cross-sectional view showing another example of the structure of the antiglare film of the present invention. 図3は、本発明の防眩性フィルムの構成のさらに別の一例を示す断面図である。FIG. 3 is a sectional view showing still another example of the constitution of the antiglare film of the present invention. 図4は、本発明の防眩性フィルムの構成のさらに別の一例を示す断面図である。FIG. 4 is a sectional view showing still another example of the structure of the antiglare film of the present invention.
 つぎに、本発明について、例を挙げてさらに具体的に説明する。ただし、本発明は、以下の説明により、なんら限定されない。 Next, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the following description.
 本発明の防眩性フィルムは、例えば、さらに、下記数式(3)を満たしていてもよい。
 
Ra≦0.050             (3)
 
 前記数式(3)において、Raは、前記凹凸の算術平均表面粗さ[μm]である。
The antiglare film of the present invention may further satisfy, for example, the following mathematical formula (3).

Ra ≦ 0.050 (3)

In the mathematical expression (3), Ra is the arithmetic average surface roughness [μm] of the irregularities.
 本発明の防眩性フィルムは、例えば、前記防眩層(B)における前記光透過性基材(A)と反対側の面上に、さらに、他の層が積層されていてもよい。前記他の層は、例えば、低反射層であってもよい。 In the antiglare film of the present invention, for example, another layer may be further laminated on the surface of the antiglare layer (B) opposite to the light transmissive substrate (A). The other layer may be, for example, a low reflection layer.
 本発明の防眩性フィルムは、例えば、前記防眩層(B)が、バインダー樹脂および凝集性フィラーを含んでいてもよい。前記凝集性フィラーは、例えば、有機粘土であってもよい。 In the antiglare film of the present invention, for example, the antiglare layer (B) may contain a binder resin and a cohesive filler. The cohesive filler may be, for example, an organic clay.
 本発明の防眩性フィルムは、例えば、前記防眩層(B)が粒子を含まなくてもよい。 In the antiglare film of the present invention, for example, the antiglare layer (B) may not include particles.
 本発明の防眩性フィルムの製造方法は、例えば、前記防眩層(B)形成工程が、さらに、前記塗膜を硬化させる硬化工程を含んでいてもよい。 In the method for producing an antiglare film of the present invention, for example, the antiglare layer (B) forming step may further include a curing step of curing the coating film.
 本発明の防眩性フィルムの製造方法は、例えば、前記溶媒が、トルエンおよびメチルエチルケトンを含んでいてもよい。 In the method for producing an antiglare film of the present invention, for example, the solvent may contain toluene and methyl ethyl ketone.
 本発明の防眩性フィルムの製造方法は、例えば、前記防眩性フィルムが、前記他の層を含む防眩性フィルムであり、前記凹凸形成工程が、前記防眩層(B)上に前記他の層を形成する他の層形成工程を含んでいてもよい。 In the method for producing an antiglare film of the present invention, for example, the antiglare film is an antiglare film including the other layer, and the unevenness forming step is performed on the antiglare layer (B). Another layer forming step of forming another layer may be included.
 本発明の光学部材は、例えば、偏光板であってもよい。 The optical member of the present invention may be, for example, a polarizing plate.
[1.防眩性フィルム]
 本発明の第1の防眩性フィルムは、前述のとおり、光透過性基材(A)上に防眩層(B)が積層された防眩性フィルムであって、前記防眩性フィルムにおける前記防眩層(B)側の最表面に凹凸が形成され、前記凹凸が、下記数式(1)および(2)を満たすことを特徴とする。
 
θa≦0.24              (1)
Rz≦0.20              (2)
 
 前記数式(1)において、θaは、前記凹凸の平均傾斜角[°]であり、
 前記数式(2)において、Rzは、前記凹凸の十点平均高さ[μm]である。
[1. Anti-glare film]
As described above, the first antiglare film of the present invention is the antiglare film in which the antiglare layer (B) is laminated on the light transmissive substrate (A), and The outermost surface on the antiglare layer (B) side is formed with irregularities, and the irregularities satisfy the following mathematical formulas (1) and (2).

θa ≦ 0.24 (1)
Rz ≦ 0.20 (2)

In the formula (1), θa is the average inclination angle [°] of the unevenness,
In the formula (2), Rz is the ten-point average height [μm] of the irregularities.
 本発明の第2の防眩性フィルムは、前述のとおり、光透過性基材(A)上に防眩層(B)および他の層が前記順序で積層された防眩性フィルムであって、前記他の層の最表面に凹凸が形成され、前記凹凸が、下記数式(1)および(2)を満たすことを特徴とする。
 
θa≦0.24              (1)
Rz≦0.20              (2)
 
 前記数式(1)において、θaは、前記凹凸の平均傾斜角[°]であり、
 前記数式(2)において、Rzは、前記凹凸の十点平均高さ[μm]である。
As described above, the second antiglare film of the present invention is an antiglare film in which the antiglare layer (B) and the other layers are laminated in the above order on the light transmissive substrate (A). The unevenness is formed on the outermost surface of the other layer, and the unevenness satisfies the following mathematical formulas (1) and (2).

θa ≦ 0.24 (1)
Rz ≦ 0.20 (2)

In the formula (1), θa is the average inclination angle [°] of the unevenness,
In the formula (2), Rz is the ten-point average height [μm] of the irregularities.
 図1の断面図に、本発明の防眩性フィルムの構成の一例を示す。図示のとおり、この防眩性フィルム10は、光透過性基材(A)11の一方の面に、防眩層(B)12が積層されている。防眩層(B)12は、樹脂層12a中に粒子12bおよびチキソトロピー付与剤12cが含まれている。防眩層(B)12における光透過性基材(A)11と反対側の面上には、さらに、前記他の層として、低反射層(C)13が積層されている。防眩性フィルム10における防眩層(B)12側の最表面(低反射層(C)13の、光透過性基材(A)11と反対側の表面)には、凹凸が形成されている。前記凹凸の平均傾斜角θaは、前述のとおり0.24°以下であり、前記凹凸の十点平均高さ(十点平均粗さ、または十点平均表面粗さともいう)Rzは、前述のとおり0.20μm以下である。ただし、本発明の防眩性フィルムは、これに限定されない、例えば、粒子12b、チキソトロピー付与剤12cおよび他の層(低反射層(C))13は、それぞれ、あっても無くてもよい。 The cross-sectional view of FIG. 1 shows an example of the structure of the antiglare film of the present invention. As shown in the figure, the antiglare film 10 has an antiglare layer (B) 12 laminated on one surface of a light transmissive substrate (A) 11. The antiglare layer (B) 12 includes particles 12b and a thixotropy imparting agent 12c in the resin layer 12a. On the surface of the antiglare layer (B) 12 opposite to the light transmissive substrate (A) 11, a low reflection layer (C) 13 is further laminated as the other layer. Unevenness is formed on the outermost surface of the antiglare film 10 on the antiglare layer (B) 12 side (the surface of the low reflection layer (C) 13 opposite to the light transmissive substrate (A) 11). There is. The average inclination angle θa of the irregularities is 0.24 ° or less as described above, and the ten-point average height (also referred to as ten-point average roughness or ten-point average surface roughness) Rz of the irregularities is as described above. As described above, it is 0.20 μm or less. However, the antiglare film of the present invention is not limited to this, and for example, the particles 12b, the thixotropy imparting agent 12c, and the other layer (low reflection layer (C)) 13 may or may not be present.
 図2の断面図に、本発明の防眩性フィルムの構成の別の一例を示す。図示のとおり、この防眩性フィルム10の構成は、他の層(低反射層(C))13が無いこと以外は、図1の防眩性フィルム10と同様である。また、図2の防眩性フィルム10において、防眩層(B)12側の最表面(防眩層(B)12の、光透過性基材(A)11と反対側の表面)には、凹凸が形成されている。前記凹凸の平均傾斜角θaは、0.24°以下であり、前記凹凸の十点平均高さRzは、0.20μm以下である。 The sectional view of FIG. 2 shows another example of the structure of the antiglare film of the present invention. As shown in the figure, the structure of the antiglare film 10 is the same as that of the antiglare film 10 of FIG. 1 except that the other layer (low reflection layer (C)) 13 is not provided. Further, in the antiglare film 10 of FIG. 2, the outermost surface on the antiglare layer (B) 12 side (the surface of the antiglare layer (B) 12 opposite to the light transmissive substrate (A) 11) is , Unevenness is formed. The average inclination angle θa of the irregularities is 0.24 ° or less, and the ten-point average height Rz of the irregularities is 0.20 μm or less.
 図3の断面図に、本発明の防眩性フィルムの構成のさらに別の一例を示す。図示のとおり、この防眩性フィルム10の構成は、防眩層(B)12が粒子12bを含まないこと以外は、図1と同様である。また、図4の断面図に、本発明の防眩性フィルムの構成のさらに別の一例を示す。図示のとおり、この防眩性フィルム10の構成は、防眩層(B)12が粒子12bを含まないこと以外は、図2と同様である。 The sectional view of FIG. 3 shows still another example of the structure of the antiglare film of the present invention. As shown, the structure of the antiglare film 10 is the same as that of FIG. 1 except that the antiglare layer (B) 12 does not contain the particles 12b. Further, the sectional view of FIG. 4 shows still another example of the configuration of the antiglare film of the present invention. As shown, the structure of the antiglare film 10 is the same as that of FIG. 2 except that the antiglare layer (B) 12 does not contain the particles 12b.
 なお、本発明の防眩性フィルムにおいて、「防眩層(B)側の最表面」は、前記防眩層(B)側の最も外側の表面である。具体的には、「防眩層(B)側の最表面」は、前記他の層が存在しない場合(例えば図2および4)は、前記防眩層(B)における前記透光性基材(A)と反対側の表面である。また、「防眩層(B)側の最表面」は、前記他の層が存在する場合(例えば図1および3)は、前記他の層(図1および3では低反射層(C)13)における前記透光性基材(A)と反対側の最も外側の表面である。 In the antiglare film of the present invention, the "outermost surface on the antiglare layer (B) side" is the outermost surface on the antiglare layer (B) side. Specifically, the "outermost surface on the antiglare layer (B) side" is the translucent substrate in the antiglare layer (B) when the other layer is not present (for example, FIGS. 2 and 4). This is the surface on the side opposite to (A). Further, the “outermost surface on the antiglare layer (B) side” means that when the other layer is present (for example, FIGS. 1 and 3), the other layer (the low reflection layer (C) 13 in FIGS. 1 and 3). 2) is the outermost surface on the side opposite to the translucent substrate (A).
 本発明の防眩性フィルムは、前記θaおよびRzが小さくて前記最表面の凹凸がなだらかであっても防眩性に優れており、かつ、前述のとおり白モヤの発生を抑制できる。特に、一般的な防眩性フィルムでは、防眩層上に低反射層を設けた場合、白モヤの発生がより著しくなるおそれがある。しかし、本発明の防眩性フィルムによれば、例えば、防眩層(B)上に低反射層(C)を設けた場合であっても、白モヤの発生を抑制できる。 The antiglare film of the present invention has excellent antiglare properties even if the θa and Rz are small and the unevenness of the outermost surface is gentle, and the occurrence of white smear can be suppressed as described above. Particularly, in a general antiglare film, when a low reflection layer is provided on the antiglare layer, the occurrence of white smear may be more remarkable. However, according to the antiglare film of the present invention, even if the low reflection layer (C) is provided on the antiglare layer (B), generation of white smear can be suppressed.
 また、図1および3では、前記他の層が低反射層(C)13であるが、本発明の防眩性フィルムにおいて、前記他の層は、低反射層のみには限定されない。前記他の層は、例えば、低屈折率層、低反射層、導電層、防汚層、高硬度層、高屈折率層、UV吸収層等であってもよい。前記他の層は、一層でも複数の層でもよく、複数の場合は、一種類でも複数種類でもよい。例えば、前記他の層は、厚みおよび屈折率を厳密に制御した光学薄膜若しくは前記光学薄膜を二層以上積層したものであってもよい。 Further, in FIGS. 1 and 3, the other layer is the low reflection layer (C) 13, but in the antiglare film of the present invention, the other layer is not limited to the low reflection layer. The other layer may be, for example, a low refractive index layer, a low reflective layer, a conductive layer, an antifouling layer, a high hardness layer, a high refractive index layer, a UV absorbing layer, or the like. The other layer may be a single layer or a plurality of layers. In the case of a plurality of layers, one type or a plurality of types may be used. For example, the other layer may be an optical thin film whose thickness and refractive index are strictly controlled, or a laminate of two or more optical thin films.
 本発明の防眩性フィルムは、前述のとおり、前記防眩層(B)側の最表面の凹凸形状において、平均傾斜角θa(°)が0.24以下である。前記平均傾斜角θaは、例えば、0.23°以下、0.20°以下、または0.19°以下であってもよい。前記平均傾斜角θaの下限値は特に限定されないが、例えば、0°以上または0°を超える数値であり、0.10°以上、0.11°以上、0.13°以上、または0.15°以上であってもよい。前記平均傾斜角θaは、例えば、0°を超え0.23°以下、0.10°以上0.23°以下、0.11°以上0.23°以下、0.13°以上0.23°以下、0.15°以上0.23°以下、0°を超え0.20°以下、0.10°以上0.20°以下、0.11°以上0.20°以下、0.13°以上0.20°以下、0.15°以上0.20°以下、0°を超え0.19°以下、0.10°以上0.19°以下、0.11°以上0.19°以下、0.13°以上0.19°以下、または0.15°以上0.19°以下であってもよい。ここで、前記平均傾斜角θaは、下記数式(3)で定義される値である。前記平均傾斜角θaは、例えば、後述の実施例に記載の方法により測定することができる。
 
 平均傾斜角θa=tan-1Δa   (3)
As described above, in the antiglare film of the present invention, the average inclination angle θa (°) is 0.24 or less in the uneven shape of the outermost surface on the antiglare layer (B) side. The average tilt angle θa may be, for example, 0.23 ° or less, 0.20 ° or less, or 0.19 ° or less. The lower limit of the average inclination angle θa is not particularly limited, but is, for example, a value of 0 ° or more or a value exceeding 0 °, 0.10 ° or more, 0.11 ° or more, 0.13 ° or more, or 0.15. It may be more than °. The average inclination angle θa is, for example, more than 0 ° and 0.23 ° or less, 0.10 ° or more and 0.23 ° or less, 0.11 ° or more and 0.23 ° or less, 0.13 ° or more and 0.23 °. Below, 0.15 ° to 0.23 °, above 0 ° to 0.20 °, 0.10 ° to 0.20 °, 0.11 ° to 0.20 °, 0.13 ° or more 0.20 ° or less, 0.15 ° or more and 0.20 ° or less, more than 0 ° and 0.19 ° or less, 0.10 ° or more and 0.19 ° or less, 0.11 ° or more and 0.19 ° or less, 0 It may be 0.13 ° or more and 0.19 ° or less, or 0.15 ° or more and 0.19 ° or less. Here, the average tilt angle θa is a value defined by the following mathematical expression (3). The average inclination angle θa can be measured, for example, by the method described in Examples below.

Average tilt angle θa = tan −1 Δa (3)
 前記数式(3)において、Δaは、下記数式(4)に示すように、JIS B 0601(1994年度版)に規定される粗さ曲線の基準長さLにおいて、隣り合う山の頂点と谷の最下点との差(高さh)の合計(h1+h2+h3・・・+hn)を前記基準長さLで割った値である。前記粗さ曲線は、断面曲線から、所定の波長より長い表面うねり成分を位相差補償形高域フィルタで除去した曲線である。また、前記断面曲線とは、対象面に直角な平面で対象面を切断したときに、その切り口に現れる輪郭である。
 
 Δa=(h1+h2+h3・・・+hn)/L   (4)
In the mathematical expression (3), Δa is, as shown in the following mathematical expression (4), the sum of the peaks and valleys of the adjacent peaks in the reference length L of the roughness curve defined in JIS B 0601 (1994 version). It is a value obtained by dividing the total (h1 + h2 + h3 ... + hn) of the difference (height h) from the lowest point by the reference length L. The roughness curve is a curve obtained by removing a surface waviness component longer than a predetermined wavelength from a cross-section curve by a phase difference compensation type high-pass filter. Further, the cross-sectional curve is a contour that appears at the cut when the target surface is cut by a plane perpendicular to the target surface.

Δa = (h1 + h2 + h3 ... + hn) / L (4)
 また、本発明の防眩性フィルムは、前述のとおり、前記防眩層(B)側の最表面の凹凸形状において、前記凹凸の十点平均高さRzが、0.20μm以下である。前記十点平均高さRzは、例えば、0.19μm以下、または0.18μm以下であってもよい。前記十点平均高さRzの下限値は特に限定されないが、例えば、0μm以上または0μmを超える数値であり、0.10μm以上、0.12μm以上、0.13μm以上、または0.17μm以上であってもよい。前記十点平均高さRzは、例えば、0μmを超え0.20μm以下、0.10μm以上0.20μm以下、0.12μm以上0.20μm以下、0.13μm以上0.20μm以下、0.17μm以上0.20μm以下、0μmを超え0.19μm以下、0.10μm以上0.19μm以下、0.12μm以上0.19μm以下、0.13μm以上0.19μm以下、0.17μm以上0.19μm以下、0μmを超え0.18μm以下、0.10μm以上0.18μm以下、0.12μm以上0.18μm以下、0.13μm以上0.18μm以下、または0.17μm以上0.18μm以下であってもよい。前記十点平均高さRzは、例えば、後述の実施例に記載の方法により測定することができる。 Further, in the antiglare film of the present invention, as described above, in the irregular shape of the outermost surface on the antiglare layer (B) side, the ten-point average height Rz of the irregularities is 0.20 μm or less. The ten-point average height Rz may be, for example, 0.19 μm or less, or 0.18 μm or less. The lower limit of the ten-point average height Rz is not particularly limited, but is, for example, a value of 0 μm or more or a value exceeding 0 μm, 0.10 μm or more, 0.12 μm or more, 0.13 μm or more, or 0.17 μm or more. May be. The ten-point average height Rz is, for example, more than 0 μm and 0.20 μm or less, 0.10 μm or more and 0.20 μm or less, 0.12 μm or more and 0.20 μm or less, 0.13 μm or more and 0.20 μm or less, 0.17 μm or more. 0.20 μm or less, 0 μm or more and 0.19 μm or less, 0.10 μm or more and 0.19 μm or less, 0.12 μm or more and 0.19 μm or less, 0.13 μm or more and 0.19 μm or less, 0.17 μm or more and 0.19 μm or less, 0 μm 0.18 μm or more, 0.10 μm or more and 0.18 μm or less, 0.12 μm or more and 0.18 μm or less, 0.13 μm or more and 0.18 μm or less, or 0.17 μm or more and 0.18 μm or less. The ten-point average height Rz can be measured, for example, by the method described in Examples below.
 前記防眩層(B)側の最表面の凹凸形状において、算術平均表面粗さ(算術平均高さともいう)Raは、特に限定されないが、例えば、前述のとおり、0.050μm以下であってもよい。前記算術平均表面粗さRaは、例えば、0.048μm以下、0.045μm以下、または0.043μm以下であってもよい。前記算術平均表面粗さRaの下限値は特に限定されないが、例えば、0μm以上または0μmを超える数値であり、0.010μm以上、0.020μm以上、0.030μm以上、または0.035μm以上であってもよい。前記算術平均表面粗さRaは、例えば、0μmを超え0.050μm以下、0.010μm以上0.050μm以下、0.020μm以上0.050μm以下、0.030μm以上0.050μm以下、0.035μm以上0.050μm以下、0μmを超え0.048μm以下、0.010μm以上0.048μm以下、0.020μm以上0.048μm以下、0.030μm以上0.048μm以下、0.035μm以上0.048μm以下、0μmを超え0.045μm以下、0.010μm以上0.045μm以下、0.020μm以上0.045μm以下、0.030μm以上0.045μm以下、0.035μm以上0.045μm以下、0μmを超え0.043μm以下、0.010μm以上0.043μm以下、0.020μm以上0.043μm以下、0.030μm以上0.043μm以下、または0.035μm以上0.043μm以下であってもよい。防眩性ハードコートフィルムの表面における外光や像の映り込みを防ぐためには、ある程度の表面の荒れがあること、すなわち、Raがある程度大きいことが好ましい。前記Raが上記範囲にあると、例えば、画像表示装置等に使用したときに、斜め方向から見た場合の反射光の散乱が抑えられ、白ボケが改善されるとともに、明所でのコントラストも向上させることができる。なお、本発明において、前記「算術平均表面粗さRa」は、JIS B 0601(1994年版)に規定される算術平均表面粗さRaとする。 In the uneven shape of the outermost surface on the antiglare layer (B) side, the arithmetic average surface roughness (also referred to as arithmetic average height) Ra is not particularly limited, but is, for example, 0.050 μm or less as described above. Good. The arithmetic average surface roughness Ra may be, for example, 0.048 μm or less, 0.045 μm or less, or 0.043 μm or less. The lower limit of the arithmetic average surface roughness Ra is not particularly limited, but is, for example, a value of 0 μm or more or a value exceeding 0 μm, and is 0.010 μm or more, 0.020 μm or more, 0.030 μm or more, or 0.035 μm or more. May be. The arithmetic average surface roughness Ra is, for example, more than 0 μm and 0.050 μm or less, 0.010 μm or more and 0.050 μm or less, 0.020 μm or more and 0.050 μm or less, 0.030 μm or more and 0.050 μm or less, 0.035 μm or more. 0.050 μm or less, 0 μm or more and 0.048 μm or less, 0.010 μm or more and 0.048 μm or less, 0.020 μm or more and 0.048 μm or less, 0.030 μm or more and 0.048 μm or less, 0.035 μm or more and 0.048 μm or less, 0 μm 0.045 μm or less, 0.010 μm or more and 0.045 μm or less, 0.020 μm or more and 0.045 μm or less, 0.030 μm or more and 0.045 μm or less, 0.035 μm or more and 0.045 μm or less, or 0 μm or more and 0.043 μm or less , 0.010 μm or more and 0.043 μm or less, 0.020 μm or more and 0.043 μm or less, 0.030 μm or more and 0.043 μm or less, or 0.035 μm or more and 0.043 μm or less. In order to prevent external light and an image from being reflected on the surface of the antiglare hard coat film, it is preferable that the surface has some roughness, that is, Ra is large to some extent. When Ra is in the above range, for example, when used in an image display device or the like, scattering of reflected light when viewed from an oblique direction is suppressed, white blur is improved, and contrast in a bright place is also improved. Can be improved. In the present invention, the “arithmetic mean surface roughness Ra” is the arithmetic mean surface roughness Ra specified in JIS B 0601 (1994 version).
 前記防眩層(B)側の最表面の凹凸形状において、表面の平均凹凸間距離Sm(mm)は、特に限定されないが、例えば、0.025~0.275の範囲であってもよい。これにより、例えば、防眩性に優れ、かつ白ボケが防止できる防眩性ハードコートフィルムとなる。本発明において、前記防眩層(B)表面の平均凹凸間距離Sm(mm)は、JIS B0601(1994年版)にしたがって測定した表面の平均凹凸間距離Sm(mm)とする。前記Smは、例えば、0.050mm以上、0.075mm以上、0.100mm以上、または0.125mm以上であってもよく、0.250mm以下、0.225mm以下、0.200mm以下、または0.175mm以下であってもよい。前記Smは、例えば、0.050mm以上0.250mm以下、0.050mm以上0.225mm以下、0.050mm以上0.200mm以下、0.050mm以上0.175mm以下、0.075mm以上0.250mm以下、0.075mm以上0.225mm以下、0.075mm以上0.200mm以下、0.075mm以上0.175mm以下、0.100mm以上0.250mm以下、0.100mm以上0.225mm以下、0.100mm以上0.200mm以下、0.100mm以上0.175mm以下、0.125mm以上0.250mm以下、0.125mm以上0.225mm以下、0.125mm以上0.200mm以下、または0.125mm以上0.175mm以下であってもよい。 In the uneven shape of the outermost surface on the side of the antiglare layer (B), the average distance between the uneven surfaces Sm (mm) is not particularly limited, but may be in the range of 0.025 to 0.275, for example. Thereby, for example, an antiglare hard coat film having excellent antiglare properties and capable of preventing white blur is obtained. In the present invention, the average unevenness distance Sm (mm) on the surface of the antiglare layer (B) is the average unevenness distance Sm (mm) on the surface measured according to JIS B0601 (1994 version). The Sm may be, for example, 0.050 mm or more, 0.075 mm or more, 0.100 mm or more, or 0.125 mm or more, and 0.250 mm or less, 0.225 mm or less, 0.200 mm or less, or 0. It may be 175 mm or less. The Sm is, for example, 0.050 mm to 0.250 mm, 0.050 mm to 0.225 mm, 0.050 mm to 0.200 mm, 0.050 mm to 0.175 mm, 0.075 mm to 0.250 mm. , 0.075 mm or more and 0.225 mm or less, 0.075 mm or more and 0.200 mm or less, 0.075 mm or more and 0.175 mm or less, 0.100 mm or more and 0.250 mm or less, 0.100 mm or more and 0.225 mm or less, 0.100 mm or more 0.200 mm or less, 0.100 mm or more and 0.175 mm or less, 0.125 mm or more and 0.250 mm or less, 0.125 mm or more and 0.225 mm or less, 0.125 mm or more and 0.200 mm or less, or 0.125 mm or more and 0.175 mm or less May be
 本発明の防眩性フィルムにおいて、へイズ値は、特に限定されないが、例えば、0~10%の範囲内であってもよい。前記ヘイズ値とは、JIS K 7136(2000年版)に準じた防眩性フィルム全体のヘイズ値(曇度)である。前記ヘイズ値は、0~5%の範囲がより好ましく、さらに好ましくは、0~3%の範囲である。ヘイズ値を上記範囲とするためには、前記粒子と前記樹脂との屈折率差が0.001~0.02の範囲となるように、前記粒子と前記樹脂とを選択することが好ましい。ヘイズ値が前記範囲であることにより、鮮明な画像が得られ、また、暗所でのコントラストを向上させることができる。 In the antiglare film of the present invention, the haze value is not particularly limited, but may be in the range of 0 to 10%, for example. The haze value is the haze value (cloudiness) of the entire antiglare film according to JIS K 7136 (2000 version). The haze value is more preferably in the range of 0 to 5%, further preferably in the range of 0 to 3%. In order to set the haze value in the above range, it is preferable to select the particles and the resin so that the difference in refractive index between the particles and the resin is in the range of 0.001 to 0.02. When the haze value is within the above range, a clear image can be obtained and the contrast in a dark place can be improved.
 以下、前記光透過性基材(A)、前記防眩層(B)および前記他の層のそれぞれについて、さらに例を挙げて説明する。なお、以下においては、主に、前記防眩層(B)が防眩性ハードコート層である場合、および、前記他の層が低反射層(C)である場合について説明するが、本発明はこれには限定されない。 Hereinafter, each of the light transmissive substrate (A), the antiglare layer (B) and the other layer will be described with further examples. In the following, a case where the antiglare layer (B) is an antiglare hard coat layer and a case where the other layer is a low reflection layer (C) are mainly described. Is not limited to this.
 前記光透過性基材(A)は、特に制限されないが、例えば、透明プラスチックフィルム基材等があげられる。前記透明プラスチックフィルム基材は、特に制限されないが、可視光の光線透過率に優れ(好ましくは光線透過率90%以上)、透明性に優れるもの(好ましくはヘイズ値1%以下のもの)が好ましく、例えば、特開2008-90263号公報に記載の透明プラスチックフィルム基材があげられる。前記透明プラスチックフィルム基材としては、光学的に複屈折の少ないものが好適に用いられる。本発明の防眩性フィルムは、例えば、保護フィルムとして偏光板に使用することもでき、この場合には、前記透明プラスチックフィルム基材としては、トリアセチルセルロース(TAC)、ポリカーボネート、アクリル系ポリマー、環状ないしノルボルネン構造を有するポリオレフィン等から形成されたフィルムが好ましい。また、本発明において、後述するように、前記透明プラスチックフィルム基材は、偏光子自体であってもよい。このような構成であると、TAC等からなる保護層を不要とし偏光板の構造を単純化できるので、偏光板若しくは画像表示装置の製造工程数を減少させ、生産効率の向上が図れる。また、このような構成であれば、偏光板を、より薄層化することができる。なお、前記透明プラスチックフィルム基材が偏光子である場合には、前記防眩層(B)および前記低反射層(C)が、保護層としての役割を果たすことになる。また、このような構成であれば、防眩性フィルムは、例えば、液晶セル表面に装着される場合、カバープレートとしての機能を兼ねることになる。 The light transmissive substrate (A) is not particularly limited, but examples thereof include a transparent plastic film substrate. The transparent plastic film substrate is not particularly limited, but preferably has a visible light transmittance (preferably a light transmittance of 90% or more) and excellent transparency (preferably a haze value of 1% or less). For example, the transparent plastic film substrate described in JP-A-2008-90263 can be used. As the transparent plastic film substrate, one having an optically small birefringence is preferably used. The antiglare film of the present invention can be used, for example, in a polarizing plate as a protective film, and in this case, the transparent plastic film substrate includes triacetyl cellulose (TAC), polycarbonate, acrylic polymer, A film formed of a polyolefin or the like having a cyclic or norbornene structure is preferable. Further, in the present invention, as will be described later, the transparent plastic film substrate may be the polarizer itself. With such a configuration, a protective layer made of TAC or the like is not required and the structure of the polarizing plate can be simplified, so that the number of manufacturing steps of the polarizing plate or the image display device can be reduced and the production efficiency can be improved. Further, with such a configuration, the polarizing plate can be made thinner. When the transparent plastic film substrate is a polarizer, the antiglare layer (B) and the low reflection layer (C) serve as protective layers. Further, with such a configuration, the antiglare film also has a function as a cover plate when it is mounted on the surface of the liquid crystal cell, for example.
 本発明において、前記光透過性基材(A)の厚みは、特に制限されないが、強度、取り扱い性などの作業性および薄層性などの点を考慮すると、例えば、10~500μm、20~300μm、または30~200μmの範囲である。前記光透過性基材(A)の屈折率は、特に制限されない。前記屈折率は、例えば、1.30~1.80または1.40~1.70の範囲である。 In the present invention, the thickness of the light-transmissive substrate (A) is not particularly limited, but in consideration of workability such as strength and handleability and thin layer property, for example, 10 to 500 μm, 20 to 300 μm. Or in the range of 30 to 200 μm. The refractive index of the light transmissive substrate (A) is not particularly limited. The refractive index is, for example, in the range of 1.30 to 1.80 or 1.40 to 1.70.
 本発明の防眩性フィルムは、例えば、前記光透過性基材(A)に含まれる前記樹脂が、アクリル樹脂を含んでいてもよい。 In the antiglare film of the present invention, for example, the resin contained in the light transmissive substrate (A) may contain an acrylic resin.
 本発明の防眩性フィルムは、例えば、前記光透過性基材(A)が、アクリルフィルムであってもよい。 In the antiglare film of the present invention, for example, the light transmissive substrate (A) may be an acrylic film.
 本発明の防眩性フィルムは、例えば、前記防眩層(B)が、樹脂およびフィラーを含んでいてもよい。前記フィラーが、粒子およびチキソトロピー付与剤(thixotropic agent)の少なくとも一方を含んでいてもよい。 In the antiglare film of the present invention, for example, the antiglare layer (B) may contain a resin and a filler. The filler may include at least one of particles and a thixotropic agent.
 例えば、前記防眩層(B)が、粒子を含まずチキソトロピー付与剤を含むことにより、前記θaおよびRzが小さくて前記最表面の凹凸がなだらかである本発明の防眩性フィルムとすることができる。また、前記防眩層(B)が、チキソトロピー付与剤および粒子径が小さい粒子を含むことによっても、同様に、前記θaおよびRzが小さくて前記最表面の凹凸がなだらかである本発明の防眩性フィルムとすることができる。 For example, when the antiglare layer (B) does not contain particles and contains a thixotropy-imparting agent, the antiglare film of the present invention in which the θa and Rz are small and the unevenness of the outermost surface is gentle can be obtained. it can. Further, even when the antiglare layer (B) contains a thixotropy-imparting agent and particles having a small particle size, similarly, the θa and Rz are small and the unevenness of the outermost surface is gentle. It can be a film.
 本発明の防眩性フィルムは、例えば、前記防眩層(B)に含まれる前記樹脂が、アクリレート樹脂(アクリル樹脂ともいう)を含んでいてもよい。 In the antiglare film of the present invention, for example, the resin contained in the antiglare layer (B) may contain an acrylate resin (also referred to as an acrylic resin).
 本発明の防眩性フィルムは、例えば、前記防眩層(B)に含まれる前記樹脂が、ウレタンアクリレート樹脂を含んでいてもよい。 In the antiglare film of the present invention, for example, the resin contained in the antiglare layer (B) may contain a urethane acrylate resin.
 本発明の防眩性フィルムは、例えば、前記防眩層(B)に含まれる前記樹脂が、硬化型ウレタンアクリレート樹脂および多官能アクリレートの共重合物であってもよい。 In the antiglare film of the present invention, for example, the resin contained in the antiglare layer (B) may be a copolymer of a curable urethane acrylate resin and a polyfunctional acrylate.
 本発明の防眩性フィルムは、例えば、前記防眩層(B)が、樹脂およびフィラーを含む防眩層形成材料を用いて形成されており、前記防眩層(B)が、前記フィラーが凝集することによって、前記防眩層(B)の表面に凸状部を形成する凝集部を有していてもよい。また、前記凸状部を形成する凝集部において、前記フィラーが、前記防眩層(B)の面方向における一方向に複数集まった状態で存在していてもよい。本発明の画像表示装置は、例えば、前記フィラーが複数集まった一方向と、ブラックマトリックスパターンの長辺方向とが一致するように、前記本発明の防眩性フィルムが配置されていてもよい。 In the antiglare film of the present invention, for example, the antiglare layer (B) is formed using an antiglare layer forming material containing a resin and a filler, and the antiglare layer (B) contains the filler. The antiglare layer (B) may have an aggregating portion that forms a convex portion by aggregating. In addition, in the aggregating portion forming the convex portion, a plurality of the fillers may be present in a state gathered in one direction in the surface direction of the antiglare layer (B). In the image display device of the present invention, for example, the antiglare film of the present invention may be arranged such that one direction in which a plurality of the fillers are gathered and the long side direction of the black matrix pattern match.
 本発明の防眩性フィルムにおいて、前記チキソトロピー付与剤は、例えば、有機粘土、酸化ポリオレフィンおよび変性ウレアからなる群から選択される少なくとも一つであってもよい。また、前記チキソトロピー付与剤は、例えば、増粘剤であってもよい。 In the antiglare film of the present invention, the thixotropy-imparting agent may be, for example, at least one selected from the group consisting of organic clay, oxidized polyolefin, and modified urea. Further, the thixotropy imparting agent may be, for example, a thickener.
 本発明の防眩性フィルムにおいて、前記防眩層(B)の前記樹脂100重量(質量)部に対し、例えば、前記チキソトロピー付与剤が0.2~5重量部の範囲で含まれていてもよい。 In the antiglare film of the present invention, for example, the thixotropy-imparting agent may be contained in the range of 0.2 to 5 parts by weight with respect to 100 parts by weight (mass) of the resin in the antiglare layer (B). Good.
 本発明の防眩性フィルムにおいて、前記防眩層(B)の前記樹脂100重量部に対し、前記粒子は、例えば、0.2~12重量部または0.5~12重量部の範囲で含まれていてもよい。 In the antiglare film of the present invention, the particles are contained in an amount of, for example, 0.2 to 12 parts by weight or 0.5 to 12 parts by weight with respect to 100 parts by weight of the resin in the antiglare layer (B). It may be.
 本発明の防眩性フィルムの製造方法において、さらに、前記防眩層形成材料中における前記樹脂100重量部に対する前記粒子の重量部数を調整することにより、前記防眩性フィルムの表面形状を調整してもよい。 In the method for producing an antiglare film of the present invention, the surface shape of the antiglare film is further adjusted by adjusting the number of parts by weight of the particles with respect to 100 parts by weight of the resin in the material for forming an antiglare layer. May be.
 粒子を凝集させた凝集部を有することで、例えば、防眩性フィルムの凹凸形状がなだらかである本発明の防眩性フィルムとすることができる。また、例えば、前記凝集部を有することで、前記防眩層(B)表面の平均凹凸間距離Sm(mm)が大きくなる。このような表面形状を有する防眩性フィルムは、蛍光灯等の映り込みを、効果的に防止することが可能である。ただし、本発明の防眩性フィルムは、これに限定されない。 By having an agglomerated portion obtained by aggregating particles, for example, the antiglare film of the present invention in which the uneven shape of the antiglare film is gentle can be obtained. Further, for example, by having the agglomerated portion, the average inter-concave distance Sm (mm) on the surface of the antiglare layer (B) becomes large. The antiglare film having such a surface shape can effectively prevent the reflection of a fluorescent lamp or the like. However, the antiglare film of the present invention is not limited to this.
 前記防眩層(B)は、例えば、後述するように、前記樹脂、前記フィラーおよび溶媒を含む塗工液を、前記光透過性基材(A)の少なくとも一方の面に塗工して塗膜を形成し、次いで、前記塗膜から前記溶媒を除去することで形成される。前記樹脂は、例えば、熱硬化性樹脂、紫外線や光で硬化する電離放射線硬化性樹脂があげられる。前記樹脂として、市販の熱硬化型樹脂や紫外線硬化型樹脂等を用いることも可能である。 The antiglare layer (B) is applied, for example, by coating a coating liquid containing the resin, the filler and a solvent on at least one surface of the light transmissive substrate (A) as described below. It is formed by forming a film and then removing the solvent from the coating film. Examples of the resin include a thermosetting resin and an ionizing radiation curable resin that is cured by ultraviolet rays or light. As the resin, it is also possible to use a commercially available thermosetting resin, ultraviolet curable resin, or the like.
 前記熱硬化型樹脂や紫外線硬化型樹脂としては、例えば、熱、光(紫外線等)または電子線等により硬化するアクリレート基およびメタクリレート基の少なくとも一方の基を有する硬化型化合物が使用でき、例えば、シリコーン樹脂、ポリエステル樹脂、ポリエーテル樹脂、エポキシ樹脂、ウレタン樹脂、アルキッド樹脂、スピロアセタール樹脂、ポリブタジエン樹脂、ポリチオールポリエン樹脂、多価アルコール等の多官能化合物のアクリレートやメタクリレート等のオリゴマーまたはプレポリマー等があげられる。これらは、1種類を単独で用いてもよく、2種類以上を併用してもよい。 As the thermosetting resin or the ultraviolet curable resin, for example, a curable compound having at least one group of an acrylate group and a methacrylate group that is cured by heat, light (such as ultraviolet rays) or an electron beam can be used. Silicone resins, polyester resins, polyether resins, epoxy resins, urethane resins, alkyd resins, spiro acetal resins, polybutadiene resins, polythiol polyene resins, oligomers or prepolymers of polyfunctional compounds such as polyhydric alcohols such as acrylate and methacrylate. can give. These may be used alone or in combination of two or more.
 前記樹脂には、例えば、アクリレート基およびメタクリレート基の少なくとも一方の基を有する反応性希釈剤を用いることもできる。前記反応性希釈剤は、例えば、特開2008-88309号公報に記載の反応性希釈剤を用いることができ、例えば、単官能アクリレート、単官能メタクリレート、多官能アクリレート、多官能メタクリレート等を含む。前記反応性希釈剤としては、3官能以上のアクリレート、3官能以上のメタクリレートが好ましい。これは、防眩層(B)の硬度を、優れたものにできるからである。前記反応性希釈剤としては、例えば、ブタンジオールグリセリンエーテルジアクリレート、イソシアヌル酸のアクリレート、イソシアヌル酸のメタクリレート等もあげられる。これらは、1種類を単独で用いてもよく、2種類以上を併用してもよい。 For the resin, for example, a reactive diluent having at least one of an acrylate group and a methacrylate group can be used. As the reactive diluent, for example, the reactive diluent described in JP-A-2008-88309 can be used, and examples thereof include monofunctional acrylate, monofunctional methacrylate, polyfunctional acrylate, and polyfunctional methacrylate. As the reactive diluent, trifunctional or higher functional acrylate and trifunctional or higher functional methacrylate are preferable. This is because the hardness of the antiglare layer (B) can be made excellent. Examples of the reactive diluent also include butanediol glycerin ether diacrylate, acrylate of isocyanuric acid, and methacrylate of isocyanuric acid. These may be used alone or in combination of two or more.
 前記防眩層(B)を形成するための粒子は、形成される防眩層(B)表面を凹凸形状にして防眩性を付与し、また、前記防眩層(B)のヘイズ値を制御することを主な機能とする。前記防眩層(B)のヘイズ値は、前記粒子と前記樹脂との屈折率差を制御することで、設計することができる。前記粒子としては、例えば、無機粒子と有機粒子とがある。前記無機粒子は、特に制限されず、例えば、酸化ケイ素粒子、酸化チタン粒子、酸化アルミニウム粒子、酸化亜鉛粒子、酸化錫粒子、炭酸カルシウム粒子、硫酸バリウム粒子、タルク粒子、カオリン粒子、硫酸カルシウム粒子等があげられる。また、前記有機粒子は、特に制限されず、例えば、ポリメチルメタクリレート樹脂粉末(PMMA粒子)、シリコーン樹脂粉末、ポリスチレン樹脂粉末、ポリカーボネート樹脂粉末、アクリルスチレン樹脂粉末、ベンゾグアナミン樹脂粉末、メラミン樹脂粉末、ポリオレフィン樹脂粉末、ポリエステル樹脂粉末、ポリアミド樹脂粉末、ポリイミド樹脂粉末、ポリフッ化エチレン樹脂粉末等があげられる。これらの無機粒子および有機粒子は、一種類を単独で使用してもよいし、二種類以上を併用してもよい。 The particles for forming the antiglare layer (B) impart unevenness to the surface of the formed antiglare layer (B) to impart antiglare properties, and the haze value of the antiglare layer (B) is The main function is to control. The haze value of the antiglare layer (B) can be designed by controlling the refractive index difference between the particles and the resin. Examples of the particles include inorganic particles and organic particles. The inorganic particles are not particularly limited, for example, silicon oxide particles, titanium oxide particles, aluminum oxide particles, zinc oxide particles, tin oxide particles, calcium carbonate particles, barium sulfate particles, talc particles, kaolin particles, calcium sulfate particles, etc. Can be given. The organic particles are not particularly limited and include, for example, polymethylmethacrylate resin powder (PMMA particles), silicone resin powder, polystyrene resin powder, polycarbonate resin powder, acrylic styrene resin powder, benzoguanamine resin powder, melamine resin powder, polyolefin. Examples thereof include resin powder, polyester resin powder, polyamide resin powder, polyimide resin powder, polyfluorinated ethylene resin powder and the like. These inorganic particles and organic particles may be used alone or in combination of two or more.
 前記粒子の粒子径(D)(重量平均粒子径)は、特に限定されないが、例えば、2~10μmの範囲内である。前記粒子の重量平均粒子径を、前記範囲とすることで、例えば、より防眩性に優れ、かつ映り込みが抑制された防眩性フィルムとすることができる。斜め方向からの映り込み抑制の観点からは、前記粒子の重量平均粒子径が小さすぎないことが好ましい。正面方向からの映り込み抑制の観点からは、前記粒子の重量平均粒子径が大きすぎないことが好ましい。前記粒子の重量平均粒子径は、例えば、2.2μm以上、2.3μm以上、2.5μm以上、または3.0μm以上であってもよく、9.0μm以下、8.0μm以下、7.0μm以下、または6.0μm以下であってもよい。前記粒子の重量平均粒子径は、例えば、2.2μm以上9.0μm以下、2.2μm以上8.0μm以下、2.2μm以上7.0μm以下、2.2μm以上6.0μm以下、2.3μm以上9.0μm以下、2.3μm以上8.0μm以下、2.3μm以上7.0μm以下、2.3μm以上6.0μm以下、2.5μm以上9.0μm以下、2.5μm以上8.0μm以下、2.5μm以上7.0μm以下、2.5μm以上6.0μm以下、3.0μm以上9.0μm以下、3.0μm以上8.0μm以下、3.0μm以上7.0μm以下、または3.0μm以上6.0μm以下であってもよい。なお、前記粒子の重量平均粒子径は、例えば、コールターカウント法により測定できる。例えば、細孔電気抵抗法を利用した粒度分布測定装置(商品名:コールターマルチサイザー、ベックマン・コールター社製)を用い、粒子が前記細孔を通過する際の粒子の体積に相当する電解液の電気抵抗を測定することにより、前記粒子の数と体積を測定し、重量平均粒子径を算出する。 The particle diameter (D) (weight average particle diameter) of the particles is not particularly limited, but is, for example, in the range of 2 to 10 μm. By setting the weight average particle diameter of the particles in the above range, for example, an antiglare film having more excellent antiglare properties and suppressed glare can be obtained. From the viewpoint of suppressing reflection from an oblique direction, it is preferable that the weight average particle diameter of the particles is not too small. From the viewpoint of suppressing reflection from the front direction, it is preferable that the weight average particle diameter of the particles is not too large. The weight average particle diameter of the particles may be, for example, 2.2 μm or more, 2.3 μm or more, 2.5 μm or more, or 3.0 μm or more, and is 9.0 μm or less, 8.0 μm or less, 7.0 μm. Or less, or 6.0 μm or less. The weight average particle diameter of the particles is, for example, 2.2 μm or more and 9.0 μm or less, 2.2 μm or more and 8.0 μm or less, 2.2 μm or more and 7.0 μm or less, 2.2 μm or more and 6.0 μm or less, 2.3 μm. Or more and 9.0 μm or less, 2.3 μm or more and 8.0 μm or less, 2.3 μm or more and 7.0 μm or less, 2.3 μm or more and 6.0 μm or less, 2.5 μm or more and 9.0 μm or less, 2.5 μm or more and 8.0 μm or less , 2.5 μm or more and 7.0 μm or less, 2.5 μm or more and 6.0 μm or less, 3.0 μm or more and 9.0 μm or less, 3.0 μm or more and 8.0 μm or less, 3.0 μm or more and 7.0 μm or less, or 3.0 μm It may be 6.0 μm or less. The weight average particle diameter of the particles can be measured, for example, by the Coulter counting method. For example, by using a particle size distribution measuring device (trade name: Coulter Multisizer, manufactured by Beckman Coulter, Inc.) using a pore electrical resistance method, an electrolyte solution corresponding to the volume of the particles when the particles pass through the pores is used. By measuring the electric resistance, the number and volume of the particles are measured, and the weight average particle diameter is calculated.
 前記粒子の形状は、特に制限されず、例えば、ビーズ状の略球形であってもよく、粉末等の不定形のものであってもよいが、略球形のものが好ましく、より好ましくは、アスペクト比が1.5以下の略球形の粒子であり、最も好ましくは球形の粒子である。 The shape of the particles is not particularly limited, and may be, for example, a bead-like substantially spherical shape, or an irregular shape such as powder, but a substantially spherical shape is preferable, and an aspect is more preferable. The particles are substantially spherical particles having a ratio of 1.5 or less, and most preferably spherical particles.
 前記防眩層(B)における前記粒子の割合は、前記樹脂100重量部に対し、例えば、0.1重量部以上、0.2重量部以上、0.3重量部以上、または0.5重量部以上であってもよく、10重量部以下、8重量部以下、7重量部以下、または6重量部以下であってもよい。前記粒子の割合は、前記樹脂100重量部に対し、例えば、0.1重量部以上10重量部以下、0.1重量部以上8重量部以下、0.1重量部以上7重量部以下、0.1重量部以上6重量部以下、0.2重量部以上10重量部以下、0.2重量部以上8重量部以下、0.2重量部以上7重量部以下、0.2重量部以上6重量部以下、0.3重量部以上10重量部以下、0.3重量部以上8重量部以下、0.3重量部以上7重量部以下、0.3重量部以上6重量部以下、0.5重量部以上10重量部以下、0.5重量部以上8重量部以下、0.5重量部以上7重量部以下、または0.5重量部以上6重量部以下であってもよい。前記粒子の割合を前記範囲とすることで、例えば、前記凝集部を好適に形成することができ、例えば、より防眩性に優れ、かつ映り込みが抑制された防眩性フィルムとすることができる。 The proportion of the particles in the antiglare layer (B) is, for example, 0.1 parts by weight or more, 0.2 parts by weight or more, 0.3 parts by weight or more, or 0.5 parts by weight with respect to 100 parts by weight of the resin. The amount may be not less than 10 parts by weight, not more than 10 parts by weight, not more than 8 parts by weight, not more than 7 parts by weight, or not more than 6 parts by weight. The ratio of the particles is, for example, 0.1 parts by weight or more and 10 parts by weight or less, 0.1 parts by weight or more and 8 parts by weight or less, 0.1 parts by weight or more and 7 parts by weight or less, and 0 parts by weight to 100 parts by weight of the resin. 1 part by weight or more and 6 parts by weight or less, 0.2 parts by weight or more and 10 parts by weight or less, 0.2 parts by weight or more and 8 parts by weight or less, 0.2 parts by weight or more and 7 parts by weight or less, 0.2 parts by weight or more 6 Parts by weight or less, 0.3 parts by weight or more and 10 parts by weight or less, 0.3 parts by weight or more and 8 parts by weight or less, 0.3 parts by weight or more and 7 parts by weight or less, 0.3 parts by weight or more and 6 parts by weight or less, 0. It may be 5 parts by weight or more and 10 parts by weight or less, 0.5 parts by weight or more and 8 parts by weight or less, 0.5 parts by weight or more and 7 parts by weight or less, or 0.5 parts by weight or more and 6 parts by weight or less. By setting the proportion of the particles in the above range, for example, the agglomerated portion can be preferably formed, and, for example, an antiglare film having more excellent antiglare properties and suppressed glare can be obtained. it can.
 前記防眩層(B)において、前記フィラーが、粒子およびチキソトロピー付与剤であってもよい。前記チキソトロピー付与剤は、単独で含んでいてもよいし、前記粒子に加え、さらに、前記チキソトロピー付与剤を含んでいてもよい。前記チキソトロピー付与剤を含むことで、前記粒子の凝集状態の制御を容易に行うことができる。前記チキソトロピー付与剤としては、例えば、有機粘土、酸化ポリオレフィン、変性ウレア等があげられる。 In the antiglare layer (B), the filler may be particles and a thixotropy imparting agent. The thixotropy-imparting agent may be contained alone, or in addition to the particles, the thixotropy-imparting agent may be further contained. By including the thixotropy-imparting agent, it is possible to easily control the aggregation state of the particles. Examples of the thixotropy imparting agent include organic clay, polyolefin oxide, and modified urea.
 前記有機粘土は、前記樹脂との親和性を改善するために、有機化処理した層状粘土であることが好ましい。前記有機粘土は、自家調製してもよいし、市販品を用いてもよい。前記市販品としては、例えば、ルーセンタイトSAN、ルーセンタイトSTN、ルーセンタイトSEN、ルーセンタイトSPN、ソマシフME-100、ソマシフMAE、ソマシフMTE、ソマシフMEE、ソマシフMPE(商品名、いずれもコープケミカル株式会社製);エスベン、エスベンC、エスベンE、エスベンW、エスベンP、エスベンWX、エスベンN-400、エスベンNX、エスベンNX80、エスベンNO12S、エスベンNEZ、エスベンNO12、エスベンNE、エスベンNZ、エスベンNZ70、オルガナイト、オルガナイトD、オルガナイトT(商品名、いずれも株式会社ホージュン製);クニピアF、クニピアG、クニピアG4(商品名、いずれもクニミネ工業株式会社製);チクソゲルVZ、クレイトンHT、クレイトン40(商品名、いずれもロックウッド アディティブズ社製)等があげられる。 The organic clay is preferably an organically treated layered clay in order to improve the affinity with the resin. The organoclay may be prepared in-house or a commercially available product may be used. Examples of the commercially available products include Lucentite SAN, Lucentite STN, Lucentite SEN, Lucentite SPN, Someriff ME-100, Someriff MAE, Someriff MTE, Someriff MEE, Someriff MPE (trade names, all are Corp Chemical Co., Ltd. Manufactured); Sven, Sven C, Sven E, Sven W, Sven P, Sven WX, Sven N-400, Sven NX, Sven NX80, Sven NO12S, Sven NEZ, Sven NO12, Sven NE, Sven NZ, Sven NZ70, Olga Knight, Organite D, Organite T (trade name, all manufactured by Hojun Co., Ltd.); Kunipia F, Kunipia G, Kunipia G4 (trade name, all manufactured by Kunimine Industry Co., Ltd.); Thixogel VZ, Clayton HT, Clayton 40 (Product name, all made by Rockwood Additives).
 前記酸化ポリオレフィンは、自家調製してもよいし、市販品を用いてもよい。前記市販品としては、例えば、ディスパロン4200-20(商品名、楠本化成株式会社製)、フローノンSA300(商品名、共栄社化学株式会社製)等があげられる。 The above-mentioned oxidized polyolefin may be prepared in-house or a commercially available product may be used. Examples of the commercially available products include Disparlon 4200-20 (trade name, manufactured by Kusumoto Kasei Co., Ltd.), Flownon SA300 (trade name, manufactured by Kyoeisha Chemical Co., Ltd.), and the like.
 前記変性ウレアは、イソシアネート単量体あるいはそのアダクト体と有機アミンとの反応物である。前記変性ウレアは、自家調製してもよいし、市販品を用いてもよい。前記市販品としては、例えば、BYK410(ビッグケミー社製)等があげられる。 The modified urea is a reaction product of an isocyanate monomer or its adduct and an organic amine. The modified urea may be prepared in-house or a commercially available product may be used. Examples of the commercially available product include BYK410 (manufactured by Big Chemie).
 前記チキソトロピー付与剤は、一種類を単独で使用してもよいし、二種類以上を併用してもよい。 The thixotropy-imparting agents may be used alone or in combination of two or more.
 前記防眩層(B)における前記チキソトロピー付与剤の割合は、前記樹脂100重量部に対し、0.2~5重量部の範囲が好ましく、より好ましくは、0.4~4重量部の範囲である。 The proportion of the thixotropy imparting agent in the antiglare layer (B) is preferably 0.2 to 5 parts by weight, more preferably 0.4 to 4 parts by weight, based on 100 parts by weight of the resin. is there.
 前記防眩層(B)の最大厚み(d’)は、特に制限されないが、3~12μmの範囲内にあることが好ましい。前記防眩層(B)の最大厚み(d’)を、前記範囲とすることで、例えば、防眩性フィルムにおけるカールの発生を防ぐことができ、搬送性不良等の生産性の低下の問題を回避できる。また、前記厚み(d)が前記範囲にある場合、前記粒子の重量平均粒子径(D)は、前述のように、2~10μmの範囲内にあることが好ましい。前記防眩層(B)の最大厚み(d’)と、前記粒子の重量平均粒子径(D)とが、前述の組み合わせであることで、防眩性に優れる防眩性フィルムとすることができる。前記防眩層(B)の最大厚み(d’)は、より好ましくは、3~8μmの範囲内である。 The maximum thickness (d ') of the antiglare layer (B) is not particularly limited, but is preferably in the range of 3 to 12 μm. By setting the maximum thickness (d ′) of the antiglare layer (B) within the above range, for example, it is possible to prevent the occurrence of curl in the antiglare film and reduce the productivity such as poor transportability. Can be avoided. When the thickness (d) is in the above range, the weight average particle diameter (D) of the particles is preferably in the range of 2 to 10 μm as described above. When the maximum thickness (d ′) of the antiglare layer (B) and the weight average particle diameter (D) of the particles are in the above combination, an antiglare film having excellent antiglare properties can be obtained. it can. The maximum thickness (d ') of the antiglare layer (B) is more preferably within the range of 3 to 8 μm.
 前記防眩層(B)の厚み(d’)と前記粒子の重量平均粒子径(D)との比D/dは、例えば、1以下、0.9以下、0.8以下、0.7以下、または0.6以下であってもよく、0.1以上、0.2以上、0.3以上、または0.4以上であってもよい。前記D/dは、例えば、0.1以上1以下、0.2以上1以下、0.3以上1以下、0.4以上1以下、0.1以上0.9以下、0.2以上0.9以下、0.3以上0.9以下、0.4以上0.9以下、0.1以上0.8以下、0.2以上0.8以下、0.3以上0.8以下、0.4以上0.8以下、0.1以上0.7以下、0.2以上0.7以下、0.3以上0.7以下、0.4以上0.7以下、0.1以上0.6以下、0.2以上0.6以下、0.3以上0.6以下、または0.4以上0.6以下であってもよい。このような関係にあることにより、より防眩性に優れ、かつ映り込みが抑制された防眩性フィルムとすることができる。 The ratio D / d of the thickness (d ′) of the antiglare layer (B) and the weight average particle diameter (D) of the particles is, for example, 1 or less, 0.9 or less, 0.8 or less, 0.7. It may be less than or equal to or less than or equal to 0.6, and may be greater than or equal to 0.1, greater than or equal to 0.2, greater than or equal to 0.3, or greater than or equal to 0.4. The D / d is, for example, 0.1 or more and 1 or less, 0.2 or more and 1 or less, 0.3 or more and 1 or less, 0.4 or more and 1 or less, 0.1 or more and 0.9 or less, and 0.2 or more and 0. 0.9 or less, 0.3 or more and 0.9 or less, 0.4 or more and 0.9 or less, 0.1 or more and 0.8 or less, 0.2 or more and 0.8 or less, 0.3 or more and 0.8 or less, 0 0.4 to 0.8, 0.1 to 0.7, 0.2 to 0.7, 0.3 to 0.7, 0.4 to 0.7, 0.1 to 0. It may be 6 or less, 0.2 or more and 0.6 or less, 0.3 or more and 0.6 or less, or 0.4 or more and 0.6 or less. By having such a relationship, it is possible to obtain an antiglare film which is more excellent in the antiglare property and in which glare is suppressed.
 本発明における防眩性フィルムでは、例えば、前記防眩層(B)は、前記フィラーが凝集することによって、前記防眩層(B)の表面に凸状部を形成する凝集部を有しており、前記凸状部を形成する凝集部において、前記フィラーが、前記防眩層(B)の面方向における一方向に、複数集まった状態で存在してもよい。これにより、例えば、蛍光灯の映り込み等を防止することができる。ただし、本発明の防眩性フィルムは、これに限定されない。 In the antiglare film of the present invention, for example, the antiglare layer (B) has an aggregated portion that forms a convex portion on the surface of the antiglare layer (B) due to aggregation of the filler. However, in the agglomerated portion forming the convex portion, a plurality of the fillers may be present in a state gathered in one direction in the plane direction of the antiglare layer (B). Thereby, for example, the reflection of a fluorescent lamp can be prevented. However, the antiglare film of the present invention is not limited to this.
 また、本発明の防眩性フィルムは、例えば、前記光透過性基材(A)と前記防眩層(B)との間に、前記光透過性基材(A)由来の樹脂と、前記防眩層(B)由来の樹脂とを含む中間層を有していてもよい。この中間層の厚みの制御により、前記防眩層(B)の表面形状を制御することができる。例えば、前記中間層の厚みを大きくすると、前記Rzおよびθaが大きくなりやすく、前記中間層の厚みを小さくすると、前記Rzおよびθaが小さくなりやすい。 Further, the antiglare film of the present invention includes, for example, a resin derived from the light transmissive substrate (A) between the light transmissive substrate (A) and the antiglare layer (B), and It may have an intermediate layer containing a resin derived from the antiglare layer (B). By controlling the thickness of the intermediate layer, the surface shape of the antiglare layer (B) can be controlled. For example, if the thickness of the intermediate layer is increased, the Rz and θa are likely to be increased, and if the thickness of the intermediate layer is reduced, the Rz and θa are easily reduced.
 本発明において、前記中間層(浸透層、相溶層ともいう)が形成されるメカニズムは、特に限定されないが、例えば、本発明者の防眩性フィルムの製造方法における前記乾燥工程で形成される。具体的には、例えば、前記乾燥工程において、前記防眩層(B)形成用の塗工液が前記光透過性基材(A)に浸透し、前記光透過性基材(A)由来の樹脂と、前記防眩層(B)由来の樹脂とを含む前記中間層が形成される。前記中間層に含まれる樹脂は、特に限定されず、例えば、前記光透過性基材(A)に含まれる樹脂と前記防眩層(B)に含まれる樹脂とが単に混合(相溶)されたものでもよい。また、前記中間層に含まれる樹脂は、例えば、前記光透過性基材(A)に含まれる樹脂と前記防眩層(B)に含まれる樹脂との、少なくとも一方が、加熱、光照射等により化学変化していてもよい。 In the present invention, the mechanism by which the intermediate layer (also referred to as a permeation layer or a compatible layer) is formed is not particularly limited, but, for example, it is formed in the drying step in the method for producing an antiglare film of the present inventor. .. Specifically, for example, in the drying step, the coating liquid for forming the antiglare layer (B) penetrates into the light transmissive base material (A), and is derived from the light transmissive base material (A). The intermediate layer containing a resin and a resin derived from the antiglare layer (B) is formed. The resin contained in the intermediate layer is not particularly limited, and for example, the resin contained in the light transmissive substrate (A) and the resin contained in the antiglare layer (B) are simply mixed (compatible). It may be a thing. Further, the resin contained in the intermediate layer is, for example, at least one of the resin contained in the light transmissive substrate (A) and the resin contained in the antiglare layer (B) is heating, light irradiation, or the like. It may be chemically changed by.
 下記数式(5)で定義される前記中間層の厚み比率Rは、特に限定されないが、例えば、0.10~0.80であり、例えば、0.15以上、0.20以上、0.25以上、0.30以上、0.40以上、または0.45以上であってもよく、例えば、0.75以下、0.70以下、0.65以下、0.60以下、0.50以下、0.40以下、0.45以下、または0.30以下であってもよい。前記中間層は、例えば、防眩性ハードコートフィルムの断面を、透過型電子顕微鏡(TEM)で観察することで、確認することができ、厚みを測定することができる。
 
R=[D/(D+D)]   (5)
 
前記数式(5)において、Dは、前記防眩性層(B)の厚み[μm]であり、Dは、前記中間層の厚み[μm]である。
The thickness ratio R of the intermediate layer defined by the following formula (5) is not particularly limited, but is, for example, 0.10 to 0.80, and is, for example, 0.15 or more, 0.20 or more, 0.25. The above may be 0.30 or more, 0.40 or more, or 0.45 or more, and for example, 0.75 or less, 0.70 or less, 0.65 or less, 0.60 or less, 0.50 or less, It may be 0.40 or less, 0.45 or less, or 0.30 or less. The intermediate layer can be confirmed, for example, by observing the cross section of the antiglare hard coat film with a transmission electron microscope (TEM), and the thickness can be measured.

R = [D C / (D C + D B )] (5)

In the formula (5), D B is the thickness [μm] of the antiglare layer (B), and D C is the thickness [μm] of the intermediate layer.
 本発明における防眩性フィルムでは、例えば、前述のように、前記防眩層(B)は、前記フィラーが凝集することによって、前記防眩層(B)の表面に凸状部を形成する凝集部を有しており、前記凸状部を形成する凝集部において、前記フィラーが、前記防眩層(B)の面方向における一方向に、複数集まった状態で存在してもよい。これにより、前記凸状部が、異方性を有するなだらかな形状となる。前記防眩性フィルムは、このような形状の凸状部を有することで、蛍光灯の映り込み等を防止することができる。ただし、本発明の防眩性フィルムは、これに限定されない。 In the antiglare film of the present invention, for example, as described above, the antiglare layer (B) is aggregated to form a convex portion on the surface of the antiglare layer (B) due to the aggregation of the filler. The filler may be present in a state where a plurality of the fillers are gathered in one direction in the plane direction of the antiglare layer (B) in the aggregating portion forming the convex portion. As a result, the convex portion has a gentle shape having anisotropy. Since the antiglare film has the convex portion having such a shape, it is possible to prevent the reflection of a fluorescent lamp and the like. However, the antiglare film of the present invention is not limited to this.
 防眩層(B)の表面形状は、防眩層形成材料に含まれるフィラーの凝集状態を制御することで、任意に設計することができる。前記フィラーの凝集状態は、例えば、前記フィラーの材質(例えば、粒子表面の化学的修飾状態、溶媒や樹脂に対する親和性等)、樹脂(バインダー)または溶媒の種類、組合せ等により制御できる。また、前記チキソトロピー付与剤により、前記粒子の凝集状態を精密にコントロールすることができる。この結果、本発明では、前記防眩性フィルムの表面形状を、広い範囲で制御(調整)することが可能であり、例えば、前記フィラーの凝集状態を前述のようにすることができ、前記凸状部を、なだらかな形状とすることができる。さらに、前述のように、前記防眩層形成材料中における前記樹脂100重量部に対する前記粒子の重量部数を調整することにより、前記防眩性フィルムの表面形状を、より広い範囲で制御(調整)することもできる。 The surface shape of the antiglare layer (B) can be arbitrarily designed by controlling the aggregation state of the filler contained in the material for forming the antiglare layer. The aggregated state of the filler can be controlled by, for example, the material of the filler (for example, the chemically modified state of the particle surface, the affinity for a solvent or a resin, etc.), the type of resin (binder) or solvent, the combination, and the like. Moreover, the aggregation state of the particles can be precisely controlled by the thixotropy imparting agent. As a result, in the present invention, the surface shape of the antiglare film can be controlled (adjusted) in a wide range, and for example, the aggregated state of the filler can be set as described above, and the convex shape can be obtained. The shaped portion can have a gentle shape. Further, as described above, the surface shape of the antiglare film is controlled (adjusted) in a wider range by adjusting the number of parts by weight of the particles with respect to 100 parts by weight of the resin in the antiglare layer forming material. You can also do it.
 なお、本発明の防眩性フィルムは、前記凸状部が、なだらかな形状となり、外観欠点となる防眩層(B)表面の突起状物の発生を防止できるものであってもよいが、これに限定されない。また、本発明の防眩性フィルムは、例えば、防眩層(B)の厚み方向に直接または間接的に重なる位置で、前記粒子が多少存在していてもよい。 The anti-glare film of the present invention may be one in which the convex portion has a gentle shape and can prevent generation of protrusions on the surface of the anti-glare layer (B), which is a defect in appearance. It is not limited to this. In the antiglare film of the present invention, the particles may be present to some extent at a position where the antiglare layer (B) directly or indirectly overlaps in the thickness direction.
 前記他の層は、特に限定されず、例えば、前述のとおり、低屈折率層、低反射層、導電層、防汚層、高硬度層、高屈折率層、UV吸収層等であってもよい。また、前記他の層は、一層でも複数の層でもよく、複数の場合は、一種類でも複数種類でもよい。例えば、前記他の層は、厚みおよび屈折率を厳密に制御した光学薄膜若しくは前記光学薄膜を二層以上積層したものであってもよい。以下、前記他の層が前記低反射層(C)である場合について説明する。 The other layer is not particularly limited and may be, for example, a low refractive index layer, a low reflective layer, a conductive layer, an antifouling layer, a high hardness layer, a high refractive index layer, a UV absorbing layer, etc., as described above. Good. Further, the other layer may be a single layer or a plurality of layers, and in the case of a plurality of layers, one kind or plural kinds may be used. For example, the other layer may be an optical thin film whose thickness and refractive index are strictly controlled, or a laminate of two or more optical thin films. The case where the other layer is the low reflection layer (C) will be described below.
 例えば、画像表示装置に防眩性フィルムを装着した場合、画像の視認性を低下させる要因のひとつに空気と前記防眩層(B)界面での光の反射があげられる。前記低反射層(C)により、その表面反射を低減させることができる。なお、前記防眩層(B)および前記低反射層(C)は、前記光透過性基材(A)の一方の面にのみ形成してもよいが、両面に形成してもよい。また、前記防眩層(B)および前記低反射層(C)は、それぞれ、二層以上が積層された複数層構造であってもよい。 For example, when an antiglare film is attached to an image display device, one of the factors that reduce the visibility of an image is the reflection of light at the interface between the air and the antiglare layer (B). The low reflection layer (C) can reduce the surface reflection. The antiglare layer (B) and the low reflection layer (C) may be formed on only one surface of the light transmissive substrate (A), or may be formed on both surfaces. Further, each of the antiglare layer (B) and the low reflection layer (C) may have a multi-layer structure in which two or more layers are laminated.
 本発明において、前記低反射層(C)は、厚みおよび屈折率を厳密に制御した光学薄膜若しくは前記光学薄膜を二層以上積層したものであってもよい。前記低反射層(C)は、光の干渉効果を利用して入射光と反射光の逆転した位相を互いに打ち消し合わせることで反射防止機能を発現する。反射防止機能を発現させる可視光線の波長領域は、例えば、380~780nmであり、特に視感度が高い波長領域は450~650nmの範囲であり、その中心波長である550nmの反射率を最小にするように前記低反射層(C)を設計してもよい。 In the present invention, the low reflection layer (C) may be an optical thin film whose thickness and refractive index are strictly controlled, or a laminate of two or more layers of the optical thin films. The low reflection layer (C) exerts an antireflection function by canceling mutually reversed phases of incident light and reflected light by utilizing the interference effect of light. The wavelength range of visible light that exhibits an antireflection function is, for example, 380 to 780 nm, and the wavelength range of particularly high visibility is in the range of 450 to 650 nm, and the reflectance at 550 nm, which is the central wavelength, is minimized. The low reflection layer (C) may be designed as follows.
 また、例えば、汚染物の付着防止および付着した汚染物の除去容易性の向上のために、さらに、フッ素基含有のシラン系化合物若しくはフッ素基含有の有機化合物等から形成される汚染防止層を前記低反射層(C)上に積層してもよい。 Further, for example, in order to prevent adhesion of contaminants and improve the ease of removing adhered contaminants, a contamination prevention layer formed of a silane compound containing a fluorine group or an organic compound containing a fluorine group is further added. It may be laminated on the low reflection layer (C).
[2.防眩性フィルムの製造方法]
 本発明の防眩性フィルムの製造方法は、特に制限されず、どのような方法で製造されてもよいが、前記本発明の防眩性フィルムの製造方法により製造することが好ましい。
[2. Manufacturing method of antiglare film]
The method for producing the antiglare film of the present invention is not particularly limited and may be produced by any method, but it is preferably produced by the method for producing the antiglare film of the present invention.
 前記防眩性フィルムの製造方法は、例えば、以下のようにして行うことができる。 The method for producing the antiglare film can be performed, for example, as follows.
 まず、前記光透過性基材(A)上に、前記防眩層(B)を、前記数式(1)および(2)を満たすように形成する(防眩層(B)形成工程)。これにより、前記光透過性基材(A)と前記防眩層(B)との積層体を製造する。前記防眩層(B)形成工程は、前述のとおり、前記光透過性基材(A)上に塗工液を塗工する塗工工程と、塗工した前記塗工液を乾燥させて塗膜を形成する塗膜形成工程とを含む。また、例えば、前述のとおり、前記防眩層(B)形成工程が、さらに、前記塗膜を硬化させる硬化工程を含んでいてもよい。前記硬化は、例えば、前記乾燥の後に行なうことができるが、これに限定されない。前記硬化は、例えば、加熱、光照射等により行うことができる。前記光は、特に限定されないが、例えば、紫外線等であってもよい。前記光照射の光源も特に限定されないが、例えば、高圧水銀ランプ等であってもよい。 First, the antiglare layer (B) is formed on the light transmissive substrate (A) so as to satisfy the mathematical expressions (1) and (2) (antiglare layer (B) forming step). In this way, a laminate of the light transmissive substrate (A) and the antiglare layer (B) is manufactured. As described above, the antiglare layer (B) forming step includes a coating step of applying the coating solution onto the light-transmitting substrate (A), and a step of drying the applied coating solution to apply the coating solution. A coating film forming step of forming a film. Further, for example, as described above, the antiglare layer (B) forming step may further include a curing step of curing the coating film. The curing can be performed, for example, after the drying, but is not limited thereto. The curing can be performed, for example, by heating, light irradiation or the like. The light is not particularly limited, but may be, for example, ultraviolet light. The light source for the light irradiation is not particularly limited, but may be, for example, a high pressure mercury lamp or the like.
 前記塗工液は、前述のとおり、樹脂と、溶媒とを含む。前記塗工液は、例えば、前記樹脂、前記粒子、前記チキソトロピー付与剤および前記溶媒を含む防眩層形成材料(塗工液)であってもよい。 The coating liquid contains a resin and a solvent as described above. The coating liquid may be, for example, an antiglare layer forming material (coating liquid) containing the resin, the particles, the thixotropy imparting agent, and the solvent.
 前記塗工液は、チキソ性を示していることが好ましく、下記式で規定されるTi値が、1.3~3.5の範囲にあることが好ましく、より好ましくは1.4~3.2の範囲であり、さらに好ましくは1.5~3の範囲である。
 
Ti値=β1/β2
 
上記式中、β1はHAAKE社製レオストレスRS6000を用いてずり速度20(1/s)の条件で測定される粘度、β2はHAAKE社製レオストレスRS6000を用いてずり速度200(1/s)の条件で測定される粘度である。
The coating liquid preferably exhibits thixotropy, and the Ti value defined by the following formula is preferably in the range of 1.3 to 3.5, more preferably 1.4 to 3. It is in the range of 2, and more preferably in the range of 1.5 to 3.

Ti value = β1 / β2

In the above formula, β1 is a viscosity measured under the condition of shear rate 20 (1 / s) using HAAKE RheoStress RS6000, and β2 is shear rate 200 (1 / s) using HAAKE Rheostress RS6000. The viscosity is measured under the conditions of.
 Ti値が、1.3以上であれば、外観欠点が生じたり、防眩性、白ボケについての特性が悪化したりする問題が起こりにくい。また、Ti値が、3.5以下であれば、前記粒子が凝集せずに分散状態となる等の問題が起こりにくい。 When the Ti value is 1.3 or more, problems such as appearance defects and deterioration of antiglare properties and white blur characteristics are unlikely to occur. Further, when the Ti value is 3.5 or less, problems such as the particles being in a dispersed state without aggregating are unlikely to occur.
 また、前記塗工液は、チキソトロピー付与剤を含んでいても含んでいなくてもよいが、チキソトロピー付与剤を含む方が、チキソ性を示しやすいため好ましい。また、前述のように、前記塗工液が前記チキソトロピー付与剤を含むことで、前記粒子の沈降を防止する効果(チキソトロピー効果)が得られる。さらに、前記チキソトロピー付与剤自体のせん断凝集により、防眩性フィルムの表面形状を、さらに広い範囲で自在に制御することも可能である。例えば、前記塗工液が粒子を含まずチキソトロピー付与剤を含むことにより、前述のとおり、前記θaおよびRzが小さくて前記最表面の凹凸がなだらかである本発明の防眩性フィルムとすることができる。また、前記塗工液が、チキソトロピー付与剤および粒子径が小さい粒子を含むことによっても、同様に、前記θaおよびRzが小さくて前記最表面の凹凸がなだらかである本発明の防眩性フィルムとすることができる。 The coating liquid may or may not contain a thixotropy-imparting agent, but it is preferable to contain the thixotropy-imparting agent because the thixotropy is easily exhibited. In addition, as described above, the effect of preventing sedimentation of the particles (thixotropic effect) can be obtained because the coating liquid contains the thixotropy imparting agent. Furthermore, the surface shape of the antiglare film can be freely controlled in a wider range by shear aggregation of the thixotropy imparting agent itself. For example, when the coating liquid does not contain particles and contains a thixotropy-imparting agent, as described above, the θa and Rz are small, and thus the antiglare film of the present invention in which the unevenness of the outermost surface is gentle can be obtained. it can. Further, the coating liquid also contains a thixotropy-imparting agent and particles having a small particle size, and similarly, the θa and Rz are small, and the unevenness of the outermost surface is gentle, and the antiglare film of the present invention. can do.
 前記溶媒は、特に制限されず、種々の溶媒を使用可能であり、一種類を単独で使用してもよいし、二種類以上を併用してもよい。前記樹脂の組成、前記粒子および前記チキソトロピー付与剤の種類、含有量等に応じて、本発明の防眩性フィルムを得るために、最適な溶媒種類や溶媒比率が存在する。溶媒としては、特に限定されないが、例えば、メタノール、エタノール、イソプロピルアルコール、ブタノール、2-メトキシエタノール等のアルコール類;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロペンタノン等のケトン類;酢酸メチル、酢酸エチル、酢酸ブチル等のエステル類;ジイソプロピルエーテル、プロピレングリコールモノメチルエーテル等のエーテル類;エチレングリコール、プロピレングリコール等のグリコール類;エチルセロソルブ、ブチルセロソルブ等のセロソルブ類;ヘキサン、ヘプタン、オクタン等の脂肪族炭化水素類;ベンゼン、トルエン、キシレン等の芳香族炭化水素類等があげられる。また、例えば、前記溶媒が、炭化水素溶媒と、ケトン溶媒とを含んでいてもよい。前記炭化水素溶媒は、例えば、芳香族炭化水素であってもよい。前記芳香族炭化水素は、例えば、トルエン、o-キシレン、m-キシレン、p-キシレン、エチルベンゼン、およびベンゼンからなる群から選択される少なくとも一つであってもよい。前記ケトン溶媒は、例えば、シクロペンタノン、およびアセトン、メチルエチルケトン、メチルイソブチルケトン、ジエチルケトン、シクロヘキサノン、イソホロン、アセトフェノンからなる群から選択される少なくとも一つであってもよい。前記溶媒は、例えば、前記炭化水素溶媒と、前記ケトン溶媒とを、90:10~10:90の質量比で混合した溶媒であってもよい。前記炭化水素溶媒と、前記ケトン溶媒との質量比は、例えば、80:20~20:80、70:30~30:70、または40:60~60:40等であってもよい。この場合において、例えば、前記炭化水素溶媒がトルエンであり、前記ケトン溶媒がメチルエチルケトンであってもよい。 The solvent is not particularly limited, various solvents can be used, and one kind may be used alone, or two or more kinds may be used in combination. In order to obtain the antiglare film of the present invention, the optimum solvent type and solvent ratio exist depending on the composition of the resin, the type and content of the particles and the thixotropy imparting agent. The solvent is not particularly limited, but examples thereof include alcohols such as methanol, ethanol, isopropyl alcohol, butanol, and 2-methoxyethanol; ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclopentanone; methyl acetate, ethyl acetate. , Esters such as butyl acetate; ethers such as diisopropyl ether and propylene glycol monomethyl ether; glycols such as ethylene glycol and propylene glycol; cellosolves such as ethyl cellosolve and butyl cellosolve; aliphatic hydrocarbons such as hexane, heptane, octane Examples: aromatic hydrocarbons such as benzene, toluene, xylene and the like. Further, for example, the solvent may include a hydrocarbon solvent and a ketone solvent. The hydrocarbon solvent may be, for example, an aromatic hydrocarbon. The aromatic hydrocarbon may be, for example, at least one selected from the group consisting of toluene, o-xylene, m-xylene, p-xylene, ethylbenzene, and benzene. The ketone solvent may be, for example, cyclopentanone, and at least one selected from the group consisting of acetone, methyl ethyl ketone, methyl isobutyl ketone, diethyl ketone, cyclohexanone, isophorone, and acetophenone. The solvent may be, for example, a solvent in which the hydrocarbon solvent and the ketone solvent are mixed in a mass ratio of 90:10 to 10:90. The mass ratio of the hydrocarbon solvent to the ketone solvent may be, for example, 80:20 to 20:80, 70:30 to 30:70, or 40:60 to 60:40. In this case, for example, the hydrocarbon solvent may be toluene and the ketone solvent may be methyl ethyl ketone.
 透光性基材(A)として、例えば、アクリルフィルムを採用して中間層(浸透層)を形成する場合は、アクリルフィルム(アクリル樹脂)に対する良溶媒が好適に使用できる。その溶媒としては、例えば、前述のとおり、炭化水素溶媒と、ケトン溶媒とを含む溶媒でもよい。前記炭化水素溶媒は、例えば、芳香族炭化水素であってもよい。前記芳香族炭化水素は、例えば、トルエン、o-キシレン、m-キシレン、p-キシレン、エチルベンゼン、およびベンゼンからなる群から選択される少なくとも一つであってもよい。前記ケトン溶媒は、例えば、シクロペンタノン、アセトン、メチルエチルケトン、メチルイソブチルケトン、ジエチルケトン、シクロヘキサノン、イソホロン、およびアセトフェノンからなる群から選択される少なくとも一つであってもよい。前記溶媒は、例えば、前記炭化水素溶媒と、前記ケトン溶媒とを、90:10~10:90の質量比で混合した溶媒であってもよい。前記炭化水素溶媒と、前記ケトン溶媒との質量比は、例えば、80:20~20:80、70:30~30:70、または40:60~60:40等であってもよい。この場合において、例えば、前記炭化水素溶媒がトルエンであり、前記ケトン溶媒がメチルエチルケトンであってもよい。 When, for example, an acrylic film is used as the translucent substrate (A) to form the intermediate layer (penetration layer), a good solvent for the acrylic film (acrylic resin) can be preferably used. The solvent may be, for example, a solvent containing a hydrocarbon solvent and a ketone solvent as described above. The hydrocarbon solvent may be, for example, an aromatic hydrocarbon. The aromatic hydrocarbon may be, for example, at least one selected from the group consisting of toluene, o-xylene, m-xylene, p-xylene, ethylbenzene, and benzene. The ketone solvent may be at least one selected from the group consisting of cyclopentanone, acetone, methyl ethyl ketone, methyl isobutyl ketone, diethyl ketone, cyclohexanone, isophorone, and acetophenone. The solvent may be, for example, a solvent in which the hydrocarbon solvent and the ketone solvent are mixed in a mass ratio of 90:10 to 10:90. The mass ratio of the hydrocarbon solvent to the ketone solvent may be, for example, 80:20 to 20:80, 70:30 to 30:70, or 40:60 to 60:40. In this case, for example, the hydrocarbon solvent may be toluene and the ketone solvent may be methyl ethyl ketone.
 透光性基材(A)として、例えば、トリアセチルセルロース(TAC)を採用して中間層(浸透層)を形成する場合は、TACに対する良溶媒が好適に使用できる。その溶媒としては、例えば、酢酸エチル、メチルエチルケトン、シクロペンタノンなどをあげることができる。 When, for example, triacetyl cellulose (TAC) is used as the translucent base material (A) to form the intermediate layer (permeation layer), a good solvent for TAC can be preferably used. Examples of the solvent include ethyl acetate, methyl ethyl ketone, cyclopentanone and the like.
 また、溶媒を適宜選択することによって、チキソトロピー付与剤を含有する場合において防眩層形成材料(塗工液)へのチキソ性を良好に発現させることができる。例えば、有機粘土を用いる場合には、トルエンおよびキシレンを好適に、単独使用または併用することができ、例えば、酸化ポリオレフィンを用いる場合には、メチルエチルケトン、酢酸エチル、プロピレングリコールモノメチルエーテルを好適に、単独使用または併用することができ、例えば、変性ウレアを用いる場合には、酢酸ブチルおよびメチルイソブチルケトンを好適に、単独使用または併用することができる。 Further, by properly selecting the solvent, the thixotropy of the material for forming the antiglare layer (coating liquid) can be well exhibited when the thixotropy-imparting agent is contained. For example, when an organic clay is used, toluene and xylene can be preferably used alone or in combination. For example, when an oxidized polyolefin is used, methyl ethyl ketone, ethyl acetate, propylene glycol monomethyl ether is preferably used alone. They can be used or used together. For example, when a modified urea is used, butyl acetate and methyl isobutyl ketone are preferably used alone or in combination.
 前記防眩層形成材料には、各種レベリング剤を添加することができる。前記レベリング剤としては、塗工ムラ防止(塗工面の均一化)を目的に、例えば、フッ素系またはシリコーン系のレベリング剤を用いることができる。本発明では、防眩層(B)表面に防汚性が求められる場合、または、後述のように低反射層(低屈折率層)や層間充填剤を含む層が防眩層(B)上に形成される場合などに応じて、適宜レベリング剤を選定することができる。本発明では、例えば、前記チキソトロピー付与剤を含ませることで塗工液にチキソ性を発現させることができるため、塗工ムラが発生しにくい。この場合、例えば、前記レベリング剤の選択肢を広げられるという優位点を有している。 Various leveling agents may be added to the antiglare layer forming material. As the leveling agent, for example, a fluorine-based or silicone-based leveling agent can be used for the purpose of preventing coating unevenness (uniformizing the coated surface). In the present invention, when antifouling property is required on the surface of the antiglare layer (B), or as described later, a low reflection layer (low refractive index layer) or a layer containing an interlayer filler is on the antiglare layer (B). The leveling agent can be appropriately selected according to the case where the leveling agent is formed. In the present invention, for example, by containing the thixotropy-imparting agent, the coating liquid can be made to exhibit thixotropy, and thus coating unevenness is unlikely to occur. In this case, for example, there is an advantage that the choice of the leveling agent can be expanded.
 前記レベリング剤の配合量は、前記樹脂100重量部に対して、例えば、5重量部以下、好ましくは0.01~5重量部の範囲である。 The blending amount of the leveling agent is, for example, 5 parts by weight or less, preferably 0.01 to 5 parts by weight, based on 100 parts by weight of the resin.
 前記防眩層形成材料には、必要に応じて、性能を損なわない範囲で、顔料、充填剤、分散剤、可塑剤、紫外線吸収剤、界面活性剤、防汚剤、酸化防止剤等が添加されてもよい。これらの添加剤は一種類を単独で使用してもよく、また二種類以上併用してもよい。 To the antiglare layer forming material, if necessary, a pigment, a filler, a dispersant, a plasticizer, an ultraviolet absorber, a surfactant, an antifouling agent, an antioxidant, etc. are added within a range that does not impair the performance. May be done. These additives may be used alone or in combination of two or more.
 前記防眩層形成材料には、例えば、特開2008-88309号公報に記載されるような、従来公知の光重合開始剤を用いることができる。 For the material for forming the antiglare layer, for example, a conventionally known photopolymerization initiator as described in JP-A-2008-88309 can be used.
 前記塗工液を前記光透過性基材(A)上に塗工して塗膜を形成する方法としては、例えば、ファンテンコート法、ダイコート法、スピンコート法、スプレーコート法、グラビアコート法、ロールコート法、バーコート法等の塗工法を用いることができる。 Examples of the method for forming the coating film by coating the coating liquid on the light transmissive substrate (A) include, for example, a fan-ten coating method, a die coating method, a spin coating method, a spray coating method, and a gravure coating method. A coating method such as a roll coating method or a bar coating method can be used.
 つぎに、前述のとおり、前記塗膜を乾燥および硬化させ、防眩層(B)を形成する。前記乾燥は、例えば、自然乾燥でもよいし、風を吹きつけての風乾であってもよいし、加熱乾燥であってもよいし、これらを組み合わせた方法であってもよい。 Next, as described above, the coating film is dried and cured to form the antiglare layer (B). The drying may be, for example, natural drying, air drying by blowing air, heat drying, or a combination thereof.
 前記防眩層(B)形成用の塗工液の乾燥温度は、例えば、30~200℃の範囲であってもよい。前記乾燥温度は、例えば、40℃以上、50℃以上、60℃以上、70℃以上、80℃以上、90℃以上、または100℃以上であってもよく、190℃以下、180℃以下、170℃以下、160℃以下、150℃以下、140℃以下、135℃以下、130℃以下、120℃以下、または110℃以下であってもよい。乾燥時間は特に限定されないが、例えば、30秒以上、40秒以上、50秒以上、または60秒以上であってもよく、150秒以下、130秒以下、110秒以下、または90秒以下であってもよい。 The drying temperature of the coating liquid for forming the antiglare layer (B) may be, for example, in the range of 30 to 200 ° C. The drying temperature may be, for example, 40 ° C or higher, 50 ° C or higher, 60 ° C or higher, 70 ° C or higher, 80 ° C or higher, 90 ° C or higher, or 100 ° C or higher, and 190 ° C or lower, 180 ° C or lower, 170. C. or lower, 160.degree. C. or lower, 150.degree. C. or lower, 140.degree. C. or lower, 135.degree. C. or lower, 130.degree. C. or lower, 120.degree. C. or lower, or 110.degree. C. or lower. The drying time is not particularly limited, but may be, for example, 30 seconds or more, 40 seconds or more, 50 seconds or more, or 60 seconds or more, and is 150 seconds or less, 130 seconds or less, 110 seconds or less, or 90 seconds or less. May be.
 前記塗膜の硬化手段は、特に制限されないが、紫外線硬化が好ましい。エネルギー線源の照射量は、紫外線波長365nmでの積算露光量として、50~500mJ/cmが好ましい。照射量が、50mJ/cm以上であれば、硬化が十分に進行しやすく、形成される防眩層(B)の硬度が高くなりやすい。また、500mJ/cm以下であれば、形成される防眩層(B)の着色を防止することができる。 The means for curing the coating film is not particularly limited, but UV curing is preferred. The irradiation amount of the energy ray source is preferably 50 to 500 mJ / cm 2 as an integrated exposure amount at an ultraviolet wavelength of 365 nm. When the irradiation amount is 50 mJ / cm 2 or more, curing is likely to proceed sufficiently and the hardness of the antiglare layer (B) to be formed tends to be high. Further, when it is 500 mJ / cm 2 or less, coloring of the formed antiglare layer (B) can be prevented.
 以上のようにして、前記光透過性基材(A)と前記防眩層(B)との積層体を製造できる。この積層体を、そのまま本発明の防眩性フィルムとしてもよいし、例えば、前記防眩層(B)上に前記他の層を形成して本発明の防眩性フィルムとしてもよい。前記他の層の形成方法は特に限定されず、例えば、一般的な低屈折率層、低反射層等の形成方法と同様またはそれに準じた方法で行うことができる。以下において、前記他の層が前記低反射層(C)である場合の、前記低反射層(C)を形成する工程(低反射層形成工程)について説明する。 As described above, a laminate of the light transmissive substrate (A) and the antiglare layer (B) can be manufactured. This laminate may be used as it is as the antiglare film of the present invention, or for example, the other layer may be formed on the antiglare layer (B) to give the antiglare film of the present invention. The method for forming the other layer is not particularly limited, and for example, it can be performed by a method similar to or similar to the method for forming a general low refractive index layer, low reflection layer, or the like. Hereinafter, the step of forming the low reflection layer (C) (low reflection layer forming step) when the other layer is the low reflection layer (C) will be described.
 まず、前記低反射層(C)を形成するための低反射層形成用塗工液を準備する。前記低反射層形成用塗工液は、例えば、樹脂、フッ素元素含有添加剤、中空粒子、中実粒子および希釈溶媒等を含んでいてもよく、例えば、これらを混合して製造できる。 First, a low-reflection layer forming coating liquid for forming the low-reflection layer (C) is prepared. The low reflection layer forming coating liquid may contain, for example, a resin, a fluorine element-containing additive, hollow particles, solid particles, a diluting solvent, and the like, and can be produced by mixing these.
 前記樹脂は、例えば、熱硬化性樹脂、紫外線や光で硬化する電離放射線硬化性樹脂があげられる。前記樹脂として、市販の熱硬化型樹脂や紫外線硬化型樹脂等を用いることも可能である。 The above-mentioned resin includes, for example, a thermosetting resin and an ionizing radiation curable resin that is cured by ultraviolet rays or light. As the resin, it is also possible to use a commercially available thermosetting resin, ultraviolet curable resin, or the like.
 前記熱硬化型樹脂や紫外線硬化型樹脂としては、例えば、熱、光(紫外線等)または電子線等により硬化するアクリレート基およびメタクリレート基の少なくとも一方の基を有する硬化型化合物が使用でき、例えば、シリコーン樹脂、ポリエステル樹脂、ポリエーテル樹脂、エポキシ樹脂、ウレタン樹脂、アルキッド樹脂、スピロアセタール樹脂、ポリブタジエン樹脂、ポリチオールポリエン樹脂、多価アルコール等の多官能化合物のアクリレートやメタクリレート等のオリゴマーまたはプレポリマー等があげられる。これらは、1種類を単独で用いてもよく、2種類以上を併用してもよい。 As the thermosetting resin or the ultraviolet curable resin, for example, a curable compound having at least one group of an acrylate group and a methacrylate group that is cured by heat, light (such as ultraviolet rays) or an electron beam can be used. Silicone resins, polyester resins, polyether resins, epoxy resins, urethane resins, alkyd resins, spiro acetal resins, polybutadiene resins, polythiol polyene resins, oligomers or prepolymers of polyfunctional compounds such as polyhydric alcohols such as acrylate and methacrylate. can give. These may be used alone or in combination of two or more.
 前記樹脂には、例えば、アクリレート基およびメタクリレート基の少なくとも一方の基を有する反応性希釈剤を用いることもできる。前記反応性希釈剤は、例えば、特開2008-88309号公報に記載の反応性希釈剤を用いることができ、例えば、単官能アクリレート、単官能メタクリレート、多官能アクリレート、多官能メタクリレート等を含む。前記反応性希釈剤としては、3官能以上のアクリレート、3官能以上のメタクリレートが好ましい。これは、前記低反射層(C)の硬度を、優れたものにできるからである。前記反応性希釈剤としては、例えば、ブタンジオールグリセリンエーテルジアクリレート、イソシアヌル酸のアクリレート、イソシアヌル酸のメタクリレート等もあげられる。これらは、1種類を単独で用いてもよく、2種類以上を併用してもよい。前記樹脂は、硬化前の重量平均分子量が、例えば、100以上、300以上、500以上、1,000以上、または2,000以上であってもよく、100,000以下、70,000以下、50,000以下、30,000以下、または10,000以下であってもよい。前記硬化前の重量平均分子量が高ければ、硬度は低下するが、屈曲させた際に割れが起こり難くなる傾向がある。一方、前記硬化前の重量平均分子量が低ければ、分子間架橋密度が向上し、硬度が高くなる傾向がある。 For the resin, for example, a reactive diluent having at least one of an acrylate group and a methacrylate group can be used. As the reactive diluent, for example, the reactive diluent described in JP-A-2008-88309 can be used, and examples thereof include monofunctional acrylate, monofunctional methacrylate, polyfunctional acrylate, and polyfunctional methacrylate. As the reactive diluent, trifunctional or higher functional acrylate and trifunctional or higher functional methacrylate are preferable. This is because the hardness of the low reflection layer (C) can be made excellent. Examples of the reactive diluent also include butanediol glycerin ether diacrylate, acrylate of isocyanuric acid, and methacrylate of isocyanuric acid. These may be used alone or in combination of two or more. The resin may have a weight average molecular weight before curing of, for example, 100 or more, 300 or more, 500 or more, 1,000 or more, or 2,000 or more, 100,000 or less, 70,000 or less, 50 or less. It may be 2,000 or less, 30,000 or less, or 10,000 or less. If the weight average molecular weight before curing is high, the hardness is lowered, but cracks tend not to occur when bent. On the other hand, when the weight average molecular weight before curing is low, the intermolecular crosslink density tends to be improved and the hardness tends to be high.
 前記硬化型樹脂の硬化のために、例えば、硬化剤を添加してもよい。前記硬化剤は、特に限定されず、例えば、公知の重合開始剤(例えば、熱重合開始剤、光重合開始剤等)を適宜用いることができる。前記硬化剤の添加量は特に限定されないが、前記低反射層形成用塗工液中の前記樹脂100重量部に対し、例えば、0.5重量部以上、1.0重量部以上、1.5重量部以上、2.0重量部以上、または2.5重量部以上であってもよく、15重量部以下、13重量部以下、10重量部以下、7重量部以下、または5重量部以下であってもよい。 For curing the curable resin, for example, a curing agent may be added. The curing agent is not particularly limited, and for example, a known polymerization initiator (for example, a thermal polymerization initiator, a photopolymerization initiator, etc.) can be appropriately used. The addition amount of the curing agent is not particularly limited, but is, for example, 0.5 parts by weight or more, 1.0 parts by weight or more, and 1.5 parts by weight with respect to 100 parts by weight of the resin in the coating liquid for forming the low reflection layer. It may be more than 2.0 parts by weight, more than 2.0 parts by weight, or more than 2.5 parts by weight, and not more than 15 parts by weight, 13 parts by weight or less, 10 parts by weight or less, 7 parts by weight or less, or 5 parts by weight or less. It may be.
 前記フッ素元素含有添加剤は、特に限定されないが、例えば、分子中にフッ素を含む有機化合物または無機化合物であってもよい。前記有機化合物は、特に限定されないが、例えば、フッ素含有防汚コーティング剤、フッ素含有アクリル化合物、フッ素およびケイ素含有アクリル化合物等があげられる。前記有機化合物は、具体的には、例えば、信越化学工業株式会社製の商品名「KY-1203」、「KY-100」、DIC株式会社製の商品名「メガファック」等があげられる。前記無機化合物も、特に限定されない。前記フッ素元素含有添加剤の添加量は、特に限定されないが、例えば、前記低反射層形成用塗工液中の固形分全体の重量に対し、前記固形分中のフッ素元素の重量が、例えば、0.05重量%以上、0.1重量%以上、0.15重量%以上、0.20重量%以上、または0.25重量%以上であってもよく、20重量%以下、15重量%以下、10重量%以下、5重量%以下、または3重量%以下であってもよい。また、例えば、前記低反射層形成用塗工液中の前記樹脂100重量部に対し、前記フッ素元素含有添加剤の重量が、例えば、0.05重量%以上、0.1重量%以上、0.15重量%以上、0.20重量%以上、または0.25重量%以上であってもよく、20重量%以下、15重量%以下、10重量%以下、5重量%以下、または3重量%以下であってもよい。前記低反射層(C)の耐擦傷性の観点から、前記フッ素元素含有添加剤の添加量が、多すぎず少なすぎないことが好ましい。 The additive element containing fluorine element is not particularly limited, but may be, for example, an organic compound or an inorganic compound containing fluorine in the molecule. The organic compound is not particularly limited, and examples thereof include a fluorine-containing antifouling coating agent, a fluorine-containing acrylic compound, a fluorine- and silicon-containing acrylic compound, and the like. Specific examples of the organic compound include trade names "KY-1203" and "KY-100" manufactured by Shin-Etsu Chemical Co., Ltd. and trade names "Megafuck" manufactured by DIC Corporation. The inorganic compound is also not particularly limited. The addition amount of the elemental fluorine-containing additive is not particularly limited, for example, the weight of the elemental fluorine in the solid content, relative to the total weight of the solid content in the low reflection layer forming coating liquid, for example, May be 0.05 wt% or more, 0.1 wt% or more, 0.15 wt% or more, 0.20 wt% or more, or 0.25 wt% or more, 20 wt% or less, 15 wt% or less It may be 10% by weight or less, 5% by weight or less, or 3% by weight or less. Further, for example, the weight of the fluorine element-containing additive is, for example, 0.05% by weight or more, 0.1% by weight or more, 0% with respect to 100 parts by weight of the resin in the coating liquid for forming a low reflection layer. 15 wt% or more, 0.20 wt% or more, or 0.25 wt% or more, 20 wt% or less, 15 wt% or less, 10 wt% or less, 5 wt% or less, or 3 wt% It may be the following. From the viewpoint of scratch resistance of the low reflective layer (C), it is preferable that the addition amount of the fluorine element-containing additive is neither too large nor too small.
 前記中空粒子は、特に限定されないが、例えば、シリカ粒子、アクリル粒子、アクリル-スチレン共重合粒子等であってもよい。前記シリカ粒子は、例えば、日揮触媒化成工業株式会社製の商品名「スルーリア5320」、「スルーリア4320」等があげられる。前記中空粒子の重量平均粒子径は、特に限定されないが、例えば、30nm以上、40nm以上、50nm以上、60nm以上、または70nm以上であってもよく、150nm以下、140nm以下、130nm以下、120nm以下、または110nm以下であってもよい。前記中空粒子の形状は、特に制限されず、例えば、ビーズ状の略球形であってもよく、粉末等の不定形のものであってもよいが、略球形のものが好ましく、より好ましくは、アスペクト比が1.5以下の略球形の粒子であり、最も好ましくは球形の粒子である。前記中空粒子を添加することで、例えば、前記低反射層(C)の低屈折率、良好な反射防止特性等を実現できる。前記中空粒子の添加量は特に限定されないが、前記低反射層形成用塗工液中の前記樹脂100重量部に対し、例えば、30重量部以上、50重量部以上、70重量部以上、90重量部以上、または100重量部以上であってもよく、300重量部以下、270重量部以下、250重量部以下、200重量部以下、または180重量部以下であってもよい。低反射層(C)の低屈折率化の観点からは、前記中空粒子の添加量が少なすぎないことが好ましく、低反射層(C)の機械特性確保の観点からは、前記中空粒子の添加量が多すぎないことが好ましい。 The hollow particles are not particularly limited, but may be, for example, silica particles, acrylic particles, acrylic-styrene copolymer particles, or the like. Examples of the silica particles include trade names "Thru rear 5320" and "Thru rear 4320" manufactured by JGC Catalysts & Chemicals Co., Ltd. The weight average particle diameter of the hollow particles is not particularly limited, but may be, for example, 30 nm or more, 40 nm or more, 50 nm or more, 60 nm or more, or 70 nm or more, 150 nm or less, 140 nm or less, 130 nm or less, 120 nm or less, Alternatively, it may be 110 nm or less. The shape of the hollow particles is not particularly limited, and may be, for example, a bead-shaped substantially spherical shape, or an irregular shape such as powder, but a substantially spherical shape is preferable, and more preferably, The particles are substantially spherical particles having an aspect ratio of 1.5 or less, and most preferably spherical particles. By adding the hollow particles, it is possible to realize, for example, a low refractive index of the low reflection layer (C) and good antireflection properties. The amount of the hollow particles to be added is not particularly limited, but is, for example, 30 parts by weight or more, 50 parts by weight or more, 70 parts by weight or more, 90 parts by weight with respect to 100 parts by weight of the resin in the coating liquid for forming the low reflection layer. Or more, or 100 parts by weight or more, 300 parts by weight or less, 270 parts by weight or less, 250 parts by weight or less, 200 parts by weight or less, or 180 parts by weight or less. From the viewpoint of reducing the refractive index of the low reflective layer (C), it is preferable that the amount of the hollow particles added is not too small, and from the viewpoint of ensuring the mechanical properties of the low reflective layer (C), the addition of the hollow particles is preferable. It is preferred that the amount is not too high.
 前記中実粒子は、特に限定されないが、例えば、シリカ粒子、酸化ジルコニウム粒子、チタン含有粒子(例えば、酸化チタン粒子)等であってもよい。前記シリカ粒子は、例えば、日産化学工業株式会社製の商品名「MEK-2140Z-AC」、「MIBK-ST」、「IPA-ST」等があげられる。前記中実粒子の重量平均粒子径は、特に限定されないが、例えば、5nm以上、10nm以上、15nm以上、20nm以上、または25nm以上であってもよく、3300nm以下、250nm以下、200nm以下、150nm以下、または100nm以下であってもよい。前記中実粒子の形状は、特に制限されず、例えば、ビーズ状の略球形であってもよく、粉末等の不定形のものであってもよいが、略球形のものが好ましく、より好ましくは、アスペクト比が1.5以下の略球形の粒子であり、最も好ましくは球形の粒子である。前記中実粒子を添加することで、例えば、前記フッ素元素含有添加剤が、塗工した前記低反射層形成用塗工液の表面に偏在しやすくなり、前記低反射層(C)の耐擦傷性が高くなる。前記低反射層(C)の低屈折率、良好な反射防止特性等を実現できる。前記中実粒子の添加量は特に限定されないが、前記低反射層形成用塗工液中の前記樹脂100重量部に対し、例えば、5重量部以上、10重量部以上、15重量部以上、20重量部以上、または25重量部以上であってもよく、150重量部以下、120重量部以下、重量部以下、100重量部以下、または80重量部以下であってもよい。機械特性確保・屈折率調整の観点からは、前記中実粒子の添加量が少なすぎないことが好ましく、散乱による塗膜の白濁防止の観点からは、前記中実粒子の添加量が多すぎないことが好ましい。 The solid particles are not particularly limited, but may be, for example, silica particles, zirconium oxide particles, titanium-containing particles (for example, titanium oxide particles) and the like. Examples of the silica particles include trade names “MEK-2140Z-AC”, “MIBK-ST”, “IPA-ST” manufactured by Nissan Chemical Industries, Ltd. The weight average particle diameter of the solid particles is not particularly limited, but may be, for example, 5 nm or more, 10 nm or more, 15 nm or more, 20 nm or more, or 25 nm or more, 3300 nm or less, 250 nm or less, 200 nm or less, 150 nm or less. , Or 100 nm or less. The shape of the solid particles is not particularly limited, and may be, for example, a bead-like substantially spherical shape, or an irregular shape such as powder, but a substantially spherical shape is preferable, and more preferable. , Substantially spherical particles having an aspect ratio of 1.5 or less, and most preferably spherical particles. By adding the solid particles, for example, the fluorine element-containing additive is likely to be unevenly distributed on the surface of the coating liquid for forming the low reflection layer, and the low reflection layer (C) is scratch-resistant. Will be more likely. It is possible to realize a low refractive index of the low reflection layer (C), good antireflection properties, and the like. The addition amount of the solid particles is not particularly limited, but for example, 5 parts by weight or more, 10 parts by weight or more, 15 parts by weight or more, 20 parts by weight or more with respect to 100 parts by weight of the resin in the coating liquid for forming the low reflection layer. It may be more than or equal to 25 parts by weight, or more than or equal to 25 parts by weight, and may be less than or equal to 150 parts by weight, less than or equal to 120 parts by weight, less than or equal to 100 parts by weight, or less than or equal to 80 parts by weight. From the viewpoint of ensuring mechanical properties and adjusting the refractive index, it is preferable that the amount of the solid particles added is not too small, and from the viewpoint of preventing clouding of the coating film due to scattering, the amount of the solid particles added is not too large. It is preferable.
 前記希釈溶媒は、特に制限されず、種々の溶媒を使用可能であり、一種類を単独で使用してもよいし、二種類以上を併用してもよい。前記希釈溶媒としては、例えば、メタノール、エタノール、イソプロピルアルコール、ブタノール、TBA(ターシャリーブチルアルコール)、2-メトキシエタノール等のアルコール類;アセトン、メチルエチルケトン、MIBK(メチルイソブチルケトン)、シクロペンタノン等のケトン類;酢酸メチル、酢酸エチル、酢酸ブチル、PMA(プロピレングリコールモノメチルエーテルアセテート)等のエステル類;ジイソプロピルエーテル、プロピレングリコールモノメチルエーテル等のエーテル類;エチレングリコール、プロピレングリコール等のグリコール類;エチルセロソルブ、ブチルセロソルブ等のセロソルブ類;ヘキサン、ヘプタン、オクタン等の脂肪族炭化水素類;ベンゼン、トルエン、キシレン、等の芳香族炭化水素類等があげられる。例えば、複数の溶媒を任意の比率で混合することにより、前記希釈溶媒の極性を調整してもよい。 The diluent solvent is not particularly limited, various solvents can be used, and one kind may be used alone, or two or more kinds may be used in combination. Examples of the diluent solvent include alcohols such as methanol, ethanol, isopropyl alcohol, butanol, TBA (tertiary butyl alcohol), and 2-methoxyethanol; acetone, methyl ethyl ketone, MIBK (methyl isobutyl ketone), cyclopentanone, and the like. Ketones; methyl acetate, ethyl acetate, butyl acetate, PMA (propylene glycol monomethyl ether acetate), etc. esters; diisopropyl ether, propylene glycol monomethyl ether, etc. ethers; ethylene glycol, propylene glycol, etc. glycols; ethyl cellosolve, Examples thereof include cellosolves such as butyl cellosolve; aliphatic hydrocarbons such as hexane, heptane, and octane; aromatic hydrocarbons such as benzene, toluene, xylene, and the like. For example, the polarity of the diluent solvent may be adjusted by mixing a plurality of solvents at an arbitrary ratio.
 前記希釈溶媒は、例えば、MIBK(メチルイソブチルケトン)およびPMA(プロピレングリコールモノメチルエーテルアセテート)を含む混合溶媒でもよい。この場合の混合比率は特に限定されないが、MIBKの重量を100重量%とした場合、PMAの重量が、例えば、20重量%以上、50重量%以上、100重量%以上、150重量%以上、または200重量%以上であってもよく、400重量%以下、350重量%以下、300重量%以下、または250重量%以下であってもよい。 The diluting solvent may be, for example, a mixed solvent containing MIBK (methyl isobutyl ketone) and PMA (propylene glycol monomethyl ether acetate). The mixing ratio in this case is not particularly limited, but when the weight of MIBK is 100% by weight, the weight of PMA is, for example, 20% by weight or more, 50% by weight or more, 100% by weight or more, 150% by weight or more, or It may be 200% by weight or more, 400% by weight or less, 350% by weight or less, 300% by weight or less, or 250% by weight or less.
 前記希釈溶媒は、例えば、MIBKおよびPMAに加え、さらにTBA(ターシャリーブチルアルコール)を含む混合溶媒でもよい。この場合の混合比率は特に限定されないが、MIBKの重量を100重量%とした場合、PMAの重量が、例えば、10重量%以上、30重量%以上、50重量%以上、80重量%以上、または100重量%以上であってもよく、200重量%以下、180重量%以下、150重量%以下、130重量%以下、または110重量%以下であってもよい。また、MIBKの重量を100重量%とした場合、TBAの重量が、例えば、10重量%以上、30重量%以上、50重量%以上、80重量%以上、または100重量%以上であってもよく、200重量%以下、180重量%以下、150重量%以下、130重量%以下、または110重量%以下であってもよい。 The diluent solvent may be, for example, a mixed solvent containing TBA (tertiary butyl alcohol) in addition to MIBK and PMA. The mixing ratio in this case is not particularly limited, but when the weight of MIBK is 100% by weight, the weight of PMA is, for example, 10% by weight or more, 30% by weight or more, 50% by weight or more, 80% by weight or more, or It may be 100 wt% or more, 200 wt% or less, 180 wt% or less, 150 wt% or less, 130 wt% or less, or 110 wt% or less. When the weight of MIBK is 100% by weight, the weight of TBA may be, for example, 10% by weight or more, 30% by weight or more, 50% by weight or more, 80% by weight or more, or 100% by weight or more. , 200 wt% or less, 180 wt% or less, 150 wt% or less, 130 wt% or less, or 110 wt% or less.
 前記希釈溶媒の添加量も特に限定されないが、例えば、低反射層形成用塗工液全体の重量に対する固形分の重量が、例えば、0.1重量%以上、0.3重量%以上、0.5重量%以上、1.0重量%以上、または1.5重量%以上となるようにしてもよく、20重量%以下、15重量%以下、10重量%以下、5重量%以下、または3重量%以下となるようにしてもよい。塗工性確保(ヌレ、レベリング)の観点からは、前記固形分の含有率が高すぎないことが好ましく、風乾ムラ、白化など乾燥起因の外観不良防止の観点からは、前記固形分の含有率が低すぎないことが好ましい。 The amount of the diluting solvent added is not particularly limited, but, for example, the weight of the solid content relative to the weight of the entire coating liquid for forming a low reflection layer is, for example, 0.1% by weight or more, 0.3% by weight or more, 0.1% by weight or more. 5% by weight or more, 1.0% by weight or more, or 1.5% by weight or more, 20% by weight or less, 15% by weight or less, 10% by weight or less, 5% by weight or less, or 3% by weight % Or less. From the viewpoint of ensuring coatability (wetness, leveling), it is preferable that the content of the solid content is not too high, and from the viewpoint of preventing appearance defects due to drying such as air drying unevenness and whitening, the content of the solid content. Is preferably not too low.
 つぎに、前記防眩層(B)上に、前記低反射層形成用塗工液を塗工する(前記塗工工程)。塗工方法は特に限定されず、例えば、ファンテンコート法、ダイコート法、スピンコート法、スプレーコート法、グラビアコート法、ロールコート法、バーコート法等の公知の塗工方法を適宜用いることができる。前記低反射層形成用塗工液の塗工量も特に限定されないが、形成される前記低反射層(C)の厚みが、例えば、0.1μm以上、0.3μm以上、0.5μm以上、1.0μm以上、または2.0μm以上となるようにしてもよく、50μm以下、40μm以下、30μm以下、20μm以下、または10μm以下となるようにしてもよい。 Next, the low reflection layer forming coating liquid is applied onto the antiglare layer (B) (the applying step). The coating method is not particularly limited, and for example, a known coating method such as a fan-ten coating method, a die coating method, a spin coating method, a spray coating method, a gravure coating method, a roll coating method, and a bar coating method may be appropriately used. it can. The coating amount of the coating liquid for forming the low reflection layer is not particularly limited, but the thickness of the low reflection layer (C) to be formed is, for example, 0.1 μm or more, 0.3 μm or more, 0.5 μm or more, The thickness may be 1.0 μm or more, or 2.0 μm or more, and may be 50 μm or less, 40 μm or less, 30 μm or less, 20 μm or less, or 10 μm or less.
 つぎに、塗工した前記低反射層形成用塗工液を乾燥させて塗膜を形成する(前記塗膜形成工程)。乾燥温度は、特に限定されないが、例えば、30~200℃の範囲であってもよい。前記乾燥温度は、例えば、40℃以上、50℃以上、60℃以上、70℃以上、80℃以上、90℃以上、または100℃以上であってもよく、190℃以下、180℃以下、170℃以下、160℃以下、150℃以下、140℃以下、135℃以下、130℃以下、120℃以下、または110℃以下であってもよい。乾燥時間は特に限定されないが、例えば、30秒以上、40秒以上、50秒以上、または60秒以上であってもよく、150秒以下、130秒以下、110秒以下、または90秒以下であってもよい。 Next, the applied coating liquid for forming the low reflection layer is dried to form a coating film (coating film forming step). The drying temperature is not particularly limited, but may be in the range of 30 to 200 ° C., for example. The drying temperature may be, for example, 40 ° C or higher, 50 ° C or higher, 60 ° C or higher, 70 ° C or higher, 80 ° C or higher, 90 ° C or higher, or 100 ° C or higher, and 190 ° C or lower, 180 ° C or lower, 170. C. or lower, 160.degree. C. or lower, 150.degree. C. or lower, 140.degree. C. or lower, 135.degree. C. or lower, 130.degree. C. or lower, 120.degree. C. or lower, or 110.degree. C. or lower. The drying time is not particularly limited, but may be, for example, 30 seconds or more, 40 seconds or more, 50 seconds or more, or 60 seconds or more, and is 150 seconds or less, 130 seconds or less, 110 seconds or less, or 90 seconds or less. May be.
 さらに、前記塗膜を硬化させてもよい(硬化工程)。前記硬化は、例えば、加熱、光照射等により行うことができる。前記光は、特に限定されないが、例えば、紫外線等であってもよい。前記光照射の光源も特に限定されないが、例えば、高圧水銀ランプ等であってもよい。前記紫外線硬化におけるエネルギー線源の照射量は、紫外線波長365nmでの積算露光量として、50~500mJ/cmが好ましい。照射量が、50mJ/cm以上であれば、硬化が十分に進行しやすく、形成される低反射層(C)の硬度が高くなりやすい。また、500mJ/cm以下であれば、形成される低反射層(C)の着色を防止することができる。 Further, the coating film may be cured (curing step). The curing can be performed, for example, by heating, light irradiation or the like. The light is not particularly limited, but may be, for example, ultraviolet light. The light source for the light irradiation is not particularly limited, but may be, for example, a high pressure mercury lamp or the like. The irradiation amount of the energy ray source in the ultraviolet curing is preferably 50 to 500 mJ / cm 2 as an integrated exposure amount at an ultraviolet wavelength of 365 nm. When the irradiation amount is 50 mJ / cm 2 or more, curing is likely to proceed sufficiently and the low reflection layer (C) to be formed tends to have high hardness. Further, when it is 500 mJ / cm 2 or less, coloring of the low reflection layer (C) formed can be prevented.
 以上のようにして、前記光透過性基材(A)の少なくとも一方の面に、前記防眩層(B)および前記低反射層(C)が、前記順序で積層された本発明の反射防止フィルムを製造できる。なお、本発明の反射防止フィルムは、前述のとおり、前記光透過性基材(A)、前記防眩層(B)および前記低反射層(C)以外の他の層を含んでいてもよい。 As described above, the antireflection of the present invention in which the antiglare layer (B) and the low reflection layer (C) are laminated in the order on at least one surface of the light transmissive substrate (A). A film can be produced. As described above, the antireflection film of the present invention may include a layer other than the light transmissive substrate (A), the antiglare layer (B) and the low reflection layer (C). ..
 また、本発明の反射防止フィルムの製造工程において、前記光透過性基材(A)および前記防眩層(B)の少なくとも一方に対し表面処理を行うことが好ましい。前記光透過性基材(A)表面を表面処理すれば、前記防眩層(B)または偏光子若しくは偏光板との密着性がさらに向上する。また、前記防眩層(B)表面を表面処理すれば、前記低反射層(C)との密着性がさらに向上する。 Also, in the process of producing the antireflection film of the present invention, it is preferable to perform a surface treatment on at least one of the light transmissive substrate (A) and the antiglare layer (B). By surface-treating the surface of the light transmissive substrate (A), the adhesion with the antiglare layer (B) or the polarizer or the polarizing plate is further improved. Further, when the surface of the antiglare layer (B) is surface-treated, the adhesion with the low reflection layer (C) is further improved.
[3.光学部材および画像表示装置]
 本発明の光学部材は、特に限定されないが、例えば、偏光板であってもよい。前記偏光板も、特に限定されないが、例えば、本発明の防眩性フィルムおよび偏光子を含んでいてもよいし、さらに、他の構成要素を含んでいてもよい。前記偏光板の各構成要素は、例えば、接着剤または粘着剤等により貼り合わせられていてもよい。
[3. Optical member and image display device]
The optical member of the present invention is not particularly limited, but may be, for example, a polarizing plate. The polarizing plate is also not particularly limited, but may include, for example, the antiglare film and the polarizer of the present invention, and may further include other constituent elements. The respective constituent elements of the polarizing plate may be attached to each other with, for example, an adhesive or a pressure-sensitive adhesive.
 本発明の画像表示装置も特に限定されず、どのような画像表示装置でもよいが、例えば、液晶表示装置、有機EL表示装置等があげられる。 The image display device of the present invention is not particularly limited, and any image display device may be used, and examples thereof include a liquid crystal display device and an organic EL display device.
 本発明の画像表示装置は、例えば、本発明の防眩性フィルムを視認側表面に有する画像表示装置であって、前記画像表示装置がブラックマトリックスパターンを有していてもよい。 The image display device of the present invention is, for example, an image display device having the antiglare film of the present invention on the viewing side surface, and the image display device may have a black matrix pattern.
 本発明の防眩性フィルムは、例えば、前記光透過性基材(A)側を、粘着剤や接着剤を介して、LCDに用いられている光学部材に貼り合せることができる。なお、この貼り合わせにあたり、前記光透過性基材(A)表面に対し、前述のような各種の表面処理を行ってもよい。前述のとおり、本発明の防眩性フィルムの製造方法によれば、防眩性フィルムの表面形状を広い範囲で自在に制御可能である。このため、前記防眩性フィルムを、接着剤や粘着剤などを用いて他の光学部材と積層することによって得ることができる光学特性は、前記防眩性フィルムの表面形状に対応した広い範囲にわたる。 In the antiglare film of the present invention, for example, the light transmissive substrate (A) side can be attached to an optical member used in an LCD via an adhesive or an adhesive. In addition, at the time of this bonding, the above-mentioned various surface treatments may be performed on the surface of the light transmissive substrate (A). As described above, according to the method for producing an antiglare film of the present invention, the surface shape of the antiglare film can be freely controlled in a wide range. Therefore, the optical properties that can be obtained by laminating the antiglare film with another optical member using an adhesive, a pressure sensitive adhesive, etc., cover a wide range corresponding to the surface shape of the antiglare film. ..
 前記光学部材としては、例えば、偏光子または偏光板があげられる。偏光板は、偏光子の片側または両側に透明保護フィルムを有するという構成が一般的である。偏光子の両面に透明保護フィルムを設ける場合は、表裏の透明保護フィルムは、同じ材料であってもよいし、異なる材料であってもよい。偏光板は、通常、液晶セルの両側に配置される。また、偏光板は、2枚の偏光板の吸収軸が互いに略直交するように配置される。 The examples of the optical member include a polarizer and a polarizing plate. The polarizing plate generally has a structure having a transparent protective film on one side or both sides of the polarizer. When the transparent protective films are provided on both sides of the polarizer, the transparent protective films on the front and back may be made of the same material or different materials. Polarizing plates are usually arranged on both sides of the liquid crystal cell. Further, the polarizing plates are arranged so that the absorption axes of the two polarizing plates are substantially orthogonal to each other.
 前記防眩性フィルムを積層した偏光板の構成は、特に制限されないが、例えば、前記防眩性フィルムの上に、透明保護フィルム、前記偏光子および前記透明保護フィルムを、この順番で積層した構成でもよいし、前記防眩性フィルム上に、前記偏光子、前記透明保護フィルムを、この順番で積層した構成でもよい。 The configuration of the polarizing plate laminated with the antiglare film is not particularly limited, for example, a configuration in which a transparent protective film, the polarizer and the transparent protective film are laminated in this order on the antiglare film. Alternatively, the polarizer and the transparent protective film may be laminated in this order on the antiglare film.
 本発明の画像表示装置は、前記防眩性フィルムを特定の方向で配置する以外は、従来の画像表示装置と同様の構成である。例えば、LCDの場合、液晶セル、偏光板等の光学部材、および必要に応じ照明システム(バックライト等)等の各構成部品を適宜に組み立てて駆動回路を組み込むこと等により製造できる。 The image display device of the present invention has the same configuration as a conventional image display device except that the antiglare film is arranged in a specific direction. For example, in the case of an LCD, it can be manufactured by appropriately assembling a liquid crystal cell, optical members such as a polarizing plate, and each component such as an illumination system (backlight or the like) and a drive circuit as necessary.
 本発明の画像表示装置は、任意の適切な用途に使用される。その用途は、例えば、パソコンモニター、ノートパソコン、コピー機等のOA機器、携帯電話、時計、デジタルカメラ、携帯情報端末(PDA)、携帯ゲーム機等の携帯機器、ビデオカメラ、テレビ、電子レンジ等の家庭用電気機器、バックモニター、カーナビゲーションシステム用モニター、カーオーディオ等の車載用機器、商業店舗用インフォメーション用モニター等の展示機器、監視用モニター等の警備機器、介護用モニター、医療用モニター等の介護・医療機器等である。 The image display device of the present invention is used for any appropriate purpose. Its applications are, for example, OA devices such as personal computer monitors, laptop computers, copiers, mobile phones, watches, digital cameras, personal digital assistants (PDAs), portable game devices such as portable game machines, video cameras, televisions, microwave ovens, etc. Household electric appliances, back monitors, car navigation system monitors, car audio and other in-vehicle equipment, commercial store information monitors and other exhibition equipment, surveillance monitors and other security equipment, nursing monitors, medical monitors, etc. Nursing care and medical equipment.
 つぎに、本発明の実施例について、比較例と併せて説明する。ただし、本発明は、以下の実施例および比較例により制限されない。 Next, examples of the present invention will be described together with comparative examples. However, the present invention is not limited by the following examples and comparative examples.
 なお、以下の実施例および比較例において、物質の部数は、特に断らない限り、質量部(重量部)である。 In the following examples and comparative examples, the number of parts of a substance is part by weight (part by weight) unless otherwise specified.
[塗工液1:防眩層形成材料]
 防眩層に含まれる樹脂として、ウレタンアクリレートプレポリマー(新中村化学工業社製、商品名「UA-53H-80BK」、固形分80%)40重量部、および、ペンタエリストールトリアクリレートを主成分とする多官能アクリレート(大阪有機化学工業(株)製、商品名「ビスコート#300」、固形分100%)60重量部を準備した。前記樹脂の樹脂固形分100重量部あたり、チキソトロピー付与剤として有機粘土である合成スメクタイト(コープケミカル(株)製、商品名「ルーセンタイトSAN」)を1.2重量部、光重合開始剤(BASF社製、商品名「イルガキュア907」)を5重量部、レベリング剤(共栄社化学(株)製、商品名「LE-303」、固形分40%)を0.15重量部混合した。なお、前記有機粘土は、トルエンで固形分が6重量%になるよう希釈して用いた。この混合物を、固形分濃度が40重量%となるように、トルエン/メチルエチルケトン(MEK)混合溶媒(重量比70/30)で希釈して、超音波分散機を用いて、防眩層形成材料(塗工液1)を調製した。
[Coating liquid 1: Antiglare layer forming material]
As a resin contained in the antiglare layer, 40 parts by weight of a urethane acrylate prepolymer (manufactured by Shin-Nakamura Chemical Co., Ltd., trade name “UA-53H-80BK”, solid content 80%) and pentaerythritol triacrylate as main components 60 parts by weight of a polyfunctional acrylate (trade name "Viscoat # 300" manufactured by Osaka Organic Chemical Industry Co., Ltd., solid content 100%) was prepared. 1.2 parts by weight of a synthetic smectite (trade name “Lucentite SAN” manufactured by Coop Chemical Co., Ltd.), which is an organic clay as a thixotropy-imparting agent, per 100 parts by weight of the resin solid content of the resin, and a photopolymerization initiator (BASF) 5 parts by weight of trade name "Irgacure 907" manufactured by the same company and 0.15 parts by weight of a leveling agent (trade name "LE-303" manufactured by Kyoeisha Chemical Co., Ltd., solid content 40%) were mixed. The organic clay was diluted with toluene so that the solid content was 6% by weight. This mixture was diluted with a toluene / methyl ethyl ketone (MEK) mixed solvent (weight ratio 70/30) so that the solid content concentration was 40% by weight, and an antiglare layer forming material ( A coating liquid 1) was prepared.
[塗工液2:低反射層形成材料]
 低反射層に含まれる樹脂として、ペンタエリストールトリアクリレートを主成分とする多官能アクリレート(大阪有機化学工業(株)製、商品名「ビスコート#300」、固形分100%)100重量部を準備した。前記樹脂の樹脂固形分100重量部あたり、オルガノシリカゾル(粒子径10~15nm)30重量部、中空シリカ粒子(重量平均粒子径75nm)100重量部、光重合開始剤(BASF社製、商品名「イルガキュア907」および「イルガキュア2959」)を合わせて10重量部、ラジカル反応性基含有フッ素系防汚添加剤を10重量部混合した。この混合物を、固形分濃度が1.5重量%となるように、メチルイソブチルケトン/プロピレングリコールモノメチルエーテルアセテート混合溶媒(重量比25/75)で希釈して、超音波分散機を用いて、低反射層形成材料(塗工液2)を調製した。
[Coating liquid 2: Low reflective layer forming material]
As the resin contained in the low reflection layer, 100 parts by weight of a polyfunctional acrylate containing pentaerythritol triacrylate as a main component (manufactured by Osaka Organic Chemical Industry Co., Ltd., trade name "Biscoat # 300", solid content 100%) was prepared. did. 30 parts by weight of organosilica sol (particle size: 10 to 15 nm), 100 parts by weight of hollow silica particles (weight average particle size: 75 nm), 100 parts by weight of resin solid content of the resin, photopolymerization initiator (manufactured by BASF, trade name: 10 parts by weight of Irgacure 907 "and" Irgacure 2959 ") and 10 parts by weight of a radical-reactive group-containing fluorine-based antifouling additive. This mixture was diluted with a methyl isobutyl ketone / propylene glycol monomethyl ether acetate mixed solvent (weight ratio 25/75) so that the solid content concentration was 1.5% by weight, and the mixture was diluted with an ultrasonic disperser to reduce the concentration. A reflective layer forming material (Coating liquid 2) was prepared.
[塗工液3:防眩層形成材料]
 塗工液1を、固形分濃度が42重量%となるようにトルエン/メチルエチルケトン(MEK)混合溶媒(重量比70/30)で希釈し、防眩層形成材料(塗工液3)を調製した。
[Coating liquid 3: Antiglare layer forming material]
The coating liquid 1 was diluted with a toluene / methyl ethyl ketone (MEK) mixed solvent (weight ratio 70/30) so that the solid content concentration was 42% by weight to prepare an antiglare layer forming material (coating liquid 3). ..
[塗工液4:防眩層形成材料]
 塗工液1に対し、樹脂固形分100重量部あたり無機粒子(積水化成品工業(株)、製品名「テクポリマー SSX-103DXE」重量平均粒子径3.0μm)を0.5重量部混合し、混合物を得た。その混合物の固形分濃度が42重量%となるようにトルエン/メチルエチルケトン(MEK)混合溶媒(重量比70/30)で希釈して防眩層形成材料(塗工液4)を調製した。
[Coating liquid 4: Antiglare layer forming material]
0.5 parts by weight of inorganic particles (Sekisui Plastics Co., Ltd., product name "Techpolymer SSX-103DXE" weight average particle diameter 3.0 μm) per 100 parts by weight of resin solid content were mixed with the coating liquid 1. , A mixture was obtained. The mixture was diluted with a toluene / methyl ethyl ketone (MEK) mixed solvent (weight ratio 70/30) so that the solid content concentration of the mixture was 42% by weight to prepare an antiglare layer forming material (coating liquid 4).
[塗工液5:防眩層形成材料]
 塗工液1を、固形分濃度が38重量%となるようにトルエン/メチルエチルケトン(MEK)混合溶媒(重量比70/30)で希釈し、防眩層形成材料(塗工液3)を調製した。
[Coating liquid 5: antiglare layer forming material]
The coating liquid 1 was diluted with a toluene / methyl ethyl ketone (MEK) mixed solvent (weight ratio 70/30) so that the solid content concentration was 38% by weight to prepare an antiglare layer forming material (coating liquid 3). ..
[塗工液6:防眩層形成材料]
 塗工液1に対し、樹脂固形分100重量部あたり無機粒子(積水化成品工業(株)、製品名「テクポリマー SSX-103DXE」)を0.5重量部混合し、混合物を得た。その混合物の固形分濃度が40重量%となるようにトルエン/メチルエチルケトン(MEK)混合溶媒(重量比70/30)で希釈して防眩層形成材料(塗工液6)を調製した。
[Coating liquid 6: antiglare layer forming material]
0.5 part by weight of inorganic particles (Sekisui Plastics Co., Ltd., product name “Techpolymer SSX-103DXE”) was mixed with 100 parts by weight of the resin solid content to obtain a mixture. The mixture was diluted with a toluene / methyl ethyl ketone (MEK) mixed solvent (weight ratio 70/30) so that the solid content concentration of the mixture was 40% by weight to prepare an antiglare layer forming material (coating liquid 6).
[塗工液7:防眩層形成材料]
 塗工液1に対し、樹脂固形分100重量部あたり無機粒子(積水化成品工業(株)、製品名「テクポリマー SSX-103DXE」)を0.5重量部混合し、混合物を得た。その混合物の固形分濃度が38重量%となるようにトルエン/メチルエチルケトン(MEK)混合溶媒(重量比70/30)で希釈して防眩層形成材料(塗工液6)を調製した。
[Coating liquid 7: antiglare layer forming material]
0.5 part by weight of inorganic particles (Sekisui Plastics Co., Ltd., product name “Techpolymer SSX-103DXE”) was mixed with 100 parts by weight of the resin solid content to obtain a mixture. The mixture was diluted with a toluene / methyl ethyl ketone (MEK) mixed solvent (weight ratio 70/30) so that the solid content concentration of the mixture was 38% by weight to prepare an antiglare layer forming material (coating liquid 6).
[実施例1]
 以下のようにして、防眩性フィルムを製造した。
[Example 1]
The antiglare film was manufactured as follows.
 透光性基材(A)として、透明プラスチックフィルム基材(アクリルフィルム、東洋鋼鈑(株)製、商品名「HX-40UC」、厚さ:40μm、屈折率:1.50)を準備した。前記透明プラスチックフィルム基材の片面に、前記防眩層形成材料(塗工液1)を、ワイヤーバーを用いて塗布して塗膜を形成した(塗工工程)。ついで、100℃で1分間加熱することにより前記塗膜を乾燥させた(乾燥工程)。その後、高圧水銀ランプにて積算光量300mJ/cmの紫外線を照射し、前記塗膜を硬化処理して厚み6.5μmの防眩層(B)を形成した。なお、本実施例の防眩性フィルムにおける前記防眩層(B)は、防眩性ハードコート層である。以下の全ての実施例および比較例においても同様である。 As the translucent base material (A), a transparent plastic film base material (acrylic film, manufactured by Toyo Kohan Co., Ltd., trade name “HX-40UC”, thickness: 40 μm, refractive index: 1.50) was prepared. .. On one surface of the transparent plastic film substrate, the antiglare layer forming material (coating liquid 1) was applied using a wire bar to form a coating film (coating step). Then, the coating film was dried by heating at 100 ° C. for 1 minute (drying step). Then, the high pressure mercury lamp was used to irradiate ultraviolet rays having an integrated light intensity of 300 mJ / cm 2 to cure the coating film to form an antiglare layer (B) having a thickness of 6.5 μm. The antiglare layer (B) in the antiglare film of this example is an antiglare hard coat layer. The same applies to all the following examples and comparative examples.
 さらに、前記防眩層(B)上に、前記低反射層形成材料(塗工液2)を、スピンコーターを用いて塗布して塗膜を形成した(塗工工程)。ついで、90℃で1分間加熱することにより前記塗膜を乾燥させた(乾燥工程)。その後、高圧水銀ランプにて積算光量300mJ/cmの紫外線を照射し、前記塗膜を硬化処理して厚み100nmの低反射層(C)を形成し、本実施例の防眩性フィルムを得た。 Further, the low reflection layer forming material (coating liquid 2) was applied onto the antiglare layer (B) using a spin coater to form a coating film (coating step). Then, the coating film was dried by heating at 90 ° C. for 1 minute (drying step). Then, ultraviolet rays having an integrated light intensity of 300 mJ / cm 2 were irradiated with a high pressure mercury lamp to cure the coating film to form a low reflection layer (C) having a thickness of 100 nm to obtain an antiglare film of this example. It was
[実施例2]
 防眩層形成材料として、塗工液1に代えて塗工液3を用いたこと以外は実施例1と同様にして防眩性フィルムを製造した。
[Example 2]
An antiglare film was produced in the same manner as in Example 1 except that the coating liquid 3 was used instead of the coating liquid 1 as the antiglare layer forming material.
[実施例3]
 防眩層形成材料として、塗工液1に代えて塗工液4を用いたこと以外は実施例1と同様にして防眩性フィルムを製造した。
[Example 3]
An antiglare film was produced in the same manner as in Example 1 except that the coating liquid 4 was used in place of the coating liquid 1 as the antiglare layer forming material.
[実施例4]
 防眩層形成材料として、塗工液1に代えて塗工液5を用いたこと以外は実施例1と同様にして防眩性フィルムを製造した。
[Example 4]
An antiglare film was produced in the same manner as in Example 1 except that the coating liquid 5 was used instead of the coating liquid 1 as the material for forming the antiglare layer.
[実施例5]
 防眩層(B)の厚み(膜厚)を8.5μmに形成したこと以外は実施例1と同様にして防眩性フィルムを製造した。
[Example 5]
An antiglare film was produced in the same manner as in Example 1 except that the thickness (film thickness) of the antiglare layer (B) was formed to 8.5 μm.
[実施例6]
 防眩層形成材料として、塗工液1に代えて塗工液6を用いたことと、防眩層(B)の厚み(膜厚)を5.0μmに形成したこと以外は実施例1と同様にして防眩性フィルムを製造した。
[Example 6]
Example 1 except that the coating liquid 6 was used in place of the coating liquid 1 as the material for forming the antiglare layer, and the thickness (film thickness) of the antiglare layer (B) was formed to 5.0 μm. An antiglare film was manufactured in the same manner.
[実施例7]
 防眩層(B)上に低反射層(C)を形成しなかったこと以外は実施例1と同様にして防眩性フィルムを製造した。
[Example 7]
An antiglare film was produced in the same manner as in Example 1 except that the low reflection layer (C) was not formed on the antiglare layer (B).
[比較例1]
 防眩層形成材料として、塗工液1に代えて塗工液6を用いたこと以外は実施例1と同様にして防眩性フィルムを製造した。
[Comparative Example 1]
An antiglare film was produced in the same manner as in Example 1 except that the coating liquid 6 was used instead of the coating liquid 1 as the material for forming the antiglare layer.
[比較例2]
 防眩層形成材料として、塗工液1に代えて塗工液6を用いたことと、防眩層(B)の厚み(膜厚)を8.5μmに形成したこと以外は実施例1と同様にして防眩性フィルムを製造した。
[Comparative example 2]
Example 1 except that the coating liquid 6 was used in place of the coating liquid 1 as the material for forming the antiglare layer, and the thickness (film thickness) of the antiglare layer (B) was formed to 8.5 μm. An antiglare film was manufactured in the same manner.
[比較例3]
 防眩層形成材料として、塗工液1に代えて塗工液7を用いたこと以外は実施例1と同様にして防眩性フィルムを製造した。
[Comparative Example 3]
An antiglare film was produced in the same manner as in Example 1 except that the coating liquid 7 was used instead of the coating liquid 1 as the material for forming the antiglare layer.
[比較例4]
 防眩層(B)上に低反射層(C)を形成しなかったこと以外は比較例1と同様にして防眩性フィルムを製造した。
[Comparative Example 4]
An antiglare film was produced in the same manner as in Comparative Example 1 except that the low reflection layer (C) was not formed on the antiglare layer (B).
 以上のようにして製造した実施例1~7および比較例1~4の防眩性フィルムについて、下記の方法により、防眩層(B)側の最表面(防眩層(B)表面または低反射層(C)表面)の凹凸の平均傾斜角度θa(°)十点平均高さRz(μm)、算術平均表面粗さRa(μm)、および平均凹凸間距離Sm(mm)を、測定または算出した。 Regarding the antiglare films of Examples 1 to 7 and Comparative Examples 1 to 4 produced as described above, the outermost surface (antiglare layer (B) surface or low surface) on the antiglare layer (B) side was prepared by the following method. The average inclination angle θa (°) of the unevenness of the reflection layer (C) surface), the ten-point average height Rz (μm), the arithmetic average surface roughness Ra (μm), and the average unevenness distance Sm (mm) are measured or Calculated.
[凹凸形状の測定および算出方法]
 JIS B0601(1994年度版)に従って、防眩性フィルム最表面の平均凹凸間距離Sm(mm)および十点平均高さRz(μm)、算術平均表面粗さRa(μm)を測定した。具体的には、まず、防眩性フィルムの光透過性基材(A)における防眩層(B)と反対側の面に、ガラス板(MATSUNAMI社製、MICRO SLIDE GLASS、品番S、厚み1.3mm、45×50mm)を粘着剤で貼り合わせ、試料を作製した。つぎに、先端部(ダイヤモンド)の曲率半径R=2μmの測定針を有する触針式表面粗さ測定器((株)小阪研究所製、高精度微細形状測定器、商品名「サーフコーダET4000」)を用い、走査速度1mm/秒、カットオフ値0.8mm、測定長12mmの条件で、前記試料における防眩層(B)側の最表面(防眩層(B)表面または低反射層(C)表面)の凹凸形状を一定方向に測定した。この測定に基づき、前記最表面の平均凹凸間距離Sm(mm)、十点平均高さRz、および算術平均表面粗さRaを算出した。さらに、その測定値(算出値)に基づいて得られた表面粗さ曲線から平均傾斜角度θa(°)を算出した。なお、前記高精度微細形状測定器は、前記各測定値を自動算出する。
[Measurement and calculation method of uneven shape]
According to JIS B0601 (1994 version), the average inter-concave distance Sm (mm), the ten-point average height Rz (μm), and the arithmetic average surface roughness Ra (μm) of the outermost surface of the antiglare film were measured. Specifically, first, a glass plate (manufactured by MATSUNAMI, MICRO SLIDE GLASS, product number S, thickness 1) is provided on the surface of the light transmissive substrate (A) of the antiglare film opposite to the antiglare layer (B). (3 mm, 45 × 50 mm) was attached with an adhesive to prepare a sample. Next, a stylus type surface roughness measuring instrument having a measuring needle with a radius of curvature R = 2 μm at the tip (diamond) (manufactured by Kosaka Laboratory Ltd., high precision fine shape measuring instrument, trade name “Surfcoder ET4000”) ), The outermost surface (antiglare layer (B) surface or low reflection layer (of the antiglare layer (B) in the sample, under the conditions of a scanning speed of 1 mm / sec, a cutoff value of 0.8 mm, and a measurement length of 12 mm). The uneven shape of (C) surface) was measured in a fixed direction. Based on the measurement, the average unevenness distance Sm (mm) on the outermost surface, the ten-point average height Rz, and the arithmetic average surface roughness Ra were calculated. Further, the average inclination angle θa (°) was calculated from the surface roughness curve obtained based on the measured value (calculated value). The high-precision fine shape measuring instrument automatically calculates each measured value.
 さらに、実施例1~7および比較例1~4の防眩性フィルムについて、下記方法により、白モヤ発生の抑制を判定(評価)した。 Furthermore, with respect to the antiglare films of Examples 1 to 7 and Comparative Examples 1 to 4, suppression of occurrence of white smear was judged (evaluated) by the following method.
[白モヤ判定方法]
(1)防眩性フィルムの光透過性基材(A)における防眩層(B)が形成されていない面に、黒色アクリル板(三菱レイヨン(株)製、厚み2.0mm)を粘着剤で貼り合わせ、裏面の反射をなくしたサンプルを作製した。
(2)一般的にディスプレイを用いるオフィス環境下(約1000Lx)において、前記サンプルを蛍光灯(三波長光源)で照らし、前記サンプルの白モヤを、下記の基準で目視にて判定した。
 
判定基準
 OK:白黒の波打った色差が視認されない、もしくは実用上問題無い程度に色差が薄い。
 NG:白黒の波打った色差が視認されてしまう。
[White haze determination method]
(1) A black acrylic plate (manufactured by Mitsubishi Rayon Co., Ltd., thickness 2.0 mm) is used as an adhesive on the surface of the light transmissive substrate (A) of the antiglare film on which the antiglare layer (B) is not formed. Then, the sample was pasted together to produce a sample without reflection on the back surface.
(2) Generally, in an office environment (about 1000 Lx) using a display, the sample was illuminated with a fluorescent lamp (three-wavelength light source), and white smear of the sample was visually determined according to the following criteria.

Judgment criteria OK: The wavy color difference between black and white is not visible, or the color difference is so small that there is no practical problem.
NG: The wavy color difference between black and white is visible.
 実施例1~7および比較例1~4の防眩性フィルムにおける前記最表面の凹凸形状と、白モヤ判定結果とを、下記表1にまとめて示す。 The uneven shape of the outermost surface of the antiglare films of Examples 1 to 7 and Comparative Examples 1 to 4 and the result of white haze determination are summarized in Table 1 below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 前記表1に示したとおり、θa≦0.24およびRz≦0.20を満たす実施例1~7の防眩性フィルムは、白モヤが抑制されていた。これに対し、θa≦0.24およびRz≦0.20をいずれも満たさない比較例1~4の防眩性フィルムは、白モヤの抑制が不十分であった。なお、防眩性については、実施例1~7の防眩性フィルムのいずれも、前記白モヤ判定方法の条件で蛍光灯の輪郭の像の映り込みを防止できていたことから、実用上問題のないレベルであった。 As shown in Table 1, the anti-glare films of Examples 1 to 7 satisfying θa ≦ 0.24 and Rz ≦ 0.20 had suppressed white smear. On the other hand, in the antiglare films of Comparative Examples 1 to 4, which did not satisfy both θa ≦ 0.24 and Rz ≦ 0.20, the white smear was insufficiently suppressed. As for the anti-glare property, all of the anti-glare films of Examples 1 to 7 were able to prevent the image of the outline of the fluorescent lamp from being reflected under the conditions of the white smear determination method. There was no level.
 以上、説明したとおり、本発明によれば、白モヤの発生が抑制された防眩性フィルム、防眩性フィルムの製造方法、光学部材および画像表示装置を提供することができる。本発明の用途は特に限定されず、広範な用途に使用可能であり、例えば、任意の画像表示装置に適用できる。 As described above, according to the present invention, it is possible to provide an antiglare film in which generation of white haze is suppressed, a method for producing an antiglare film, an optical member, and an image display device. The application of the present invention is not particularly limited and can be used in a wide range of applications, for example, it can be applied to any image display device.
 この出願は、2018年11月14日に出願された日本出願特願2018-213945を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims the priority right based on Japanese Patent Application No. 2018-213945 filed on Nov. 14, 2018, and incorporates all the disclosure thereof.
10 防眩性フィルム
11 光透過性基材(A)
12 防眩層(B)
12a 樹脂層
12b 粒子
12c チキソトロピー付与剤
13 低反射層(C)(他の層)
10 Anti-glare film 11 Light-transmissive substrate (A)
12 Antiglare layer (B)
12a Resin layer 12b Particles 12c Thixotropic agent 13 Low reflection layer (C) (other layer)

Claims (15)

  1.  光透過性基材(A)上に防眩層(B)が積層された防眩性フィルムであって、
     前記防眩性フィルムにおける前記防眩層(B)側の最表面に凹凸が形成され、
     前記凹凸が、下記数式(1)および(2)を満たすことを特徴とする防眩性フィルム。
     
    θa≦0.24              (1)
    Rz≦0.20              (2)
     
     前記数式(1)において、θaは、前記凹凸の平均傾斜角[°]であり、
     前記数式(2)において、Rzは、前記凹凸の十点平均高さ[μm]である。
    An antiglare film having an antiglare layer (B) laminated on a light transmissive substrate (A),
    Unevenness is formed on the outermost surface of the antiglare film on the antiglare layer (B) side,
    The anti-glare film, wherein the irregularities satisfy the following mathematical formulas (1) and (2).

    θa ≦ 0.24 (1)
    Rz ≦ 0.20 (2)

    In the formula (1), θa is the average inclination angle [°] of the unevenness,
    In the formula (2), Rz is the ten-point average height [μm] of the irregularities.
  2.  さらに、下記数式(3)を満たす請求項1記載の防眩性フィルム。
     
    Ra≦0.050             (3)
     
     前記数式(3)において、Raは、前記凹凸の算術平均表面粗さ[μm]である。
    Further, the antiglare film according to claim 1, which satisfies the following mathematical formula (3).

    Ra ≦ 0.050 (3)

    In the mathematical expression (3), Ra is the arithmetic average surface roughness [μm] of the irregularities.
  3.  前記防眩層(B)における前記光透過性基材(A)と反対側の面上に、さらに、他の層が積層されている請求項1または2記載の防眩性フィルム。 The antiglare film according to claim 1 or 2, wherein another layer is further laminated on the surface of the antiglare layer (B) opposite to the light transmissive substrate (A).
  4.  光透過性基材(A)上に防眩層(B)および他の層が前記順序で積層された防眩性フィルムであって、
     前記他の層の最表面に凹凸が形成され、
     前記凹凸が、下記数式(1)および(2)を満たすことを特徴とする防眩性フィルム。
     
    θa≦0.24              (1)
    Rz≦0.20              (2)
     
     前記数式(1)において、θaは、前記凹凸の平均傾斜角[°]であり、
     前記数式(2)において、Rzは、前記凹凸の十点平均高さ[μm]である。
    An antiglare film in which an antiglare layer (B) and other layers are laminated on the light transmissive substrate (A) in the above order,
    Unevenness is formed on the outermost surface of the other layer,
    The anti-glare film, wherein the irregularities satisfy the following mathematical formulas (1) and (2).

    θa ≦ 0.24 (1)
    Rz ≦ 0.20 (2)

    In the formula (1), θa is the average inclination angle [°] of the unevenness,
    In the formula (2), Rz is the ten-point average height [μm] of the irregularities.
  5.  前記他の層が低反射層(C)である請求項3または4記載の防眩性フィルム。 The antiglare film according to claim 3 or 4, wherein the other layer is a low reflection layer (C).
  6.  前記防眩層(B)が、バインダー樹脂および凝集性フィラーを含む請求項1から5のいずれか一項に記載の防眩性フィルム。 The antiglare film according to any one of claims 1 to 5, wherein the antiglare layer (B) contains a binder resin and a cohesive filler.
  7.  前記凝集性フィラーが有機粘土である請求項6記載の防眩性フィルム。 The antiglare film according to claim 6, wherein the cohesive filler is an organic clay.
  8.  前記防眩層(B)が粒子を含まない請求項1から7のいずれか一項に記載の防眩性フィルム。 The antiglare film according to any one of claims 1 to 7, wherein the antiglare layer (B) does not contain particles.
  9.  前記光透過性基材(A)上に、前記防眩層(B)を形成する防眩層(B)形成工程と、
     前記防眩性フィルムにおける前記防眩層(B)側の最表面に、前記数式(1)および(2)を満たすように前記凹凸を形成する凹凸形成工程とを含み、
     前記防眩層(B)形成工程が、前記光透過性基材(A)上に塗工液を塗工する塗工工程と、塗工した前記塗工液を乾燥させて塗膜を形成する塗膜形成工程とを含み、
     前記塗工液が、樹脂と、溶媒とを含むことを特徴とする請求項1から8のいずれか一項に記載の防眩性フィルムの製造方法。
    An antiglare layer (B) forming step of forming the antiglare layer (B) on the light transmissive substrate (A);
    An unevenness forming step of forming the unevenness on the outermost surface of the antiglare film on the antiglare layer (B) side so as to satisfy the mathematical formulas (1) and (2),
    In the antiglare layer (B) forming step, a coating step of applying a coating solution onto the light transmissive base material (A) and drying the applied coating solution to form a coating film. Including a coating film forming step,
    The method for producing an antiglare film according to any one of claims 1 to 8, wherein the coating liquid contains a resin and a solvent.
  10.  前記防眩層(B)形成工程が、さらに、前記塗膜を硬化させる硬化工程を含む請求項9記載の製造方法。 The manufacturing method according to claim 9, wherein the step of forming the antiglare layer (B) further includes a curing step of curing the coating film.
  11.  前記溶媒が、トルエンおよびメチルエチルケトンを含む請求項9または10記載の製造方法。 11. The method according to claim 9 or 10, wherein the solvent contains toluene and methyl ethyl ketone.
  12.  前記防眩性フィルムが、請求項3から5のいずれか一項に記載の防眩性フィルムであり、
     前記凹凸形成工程が、前記防眩層(B)上に前記他の層を形成する他の層形成工程を含む請求項9から11のいずれか一項に記載の製造方法。
    The antiglare film is the antiglare film according to any one of claims 3 to 5,
    The manufacturing method according to any one of claims 9 to 11, wherein the unevenness forming step includes another layer forming step of forming the other layer on the antiglare layer (B).
  13.  請求項1から8のいずれか一項に記載の防眩性フィルムを含む光学部材。 An optical member comprising the antiglare film according to any one of claims 1 to 8.
  14.  偏光板である請求項13記載の光学部材。 The optical member according to claim 13, which is a polarizing plate.
  15.  請求項1から8のいずれか一項に記載の防眩性フィルム、または請求項13もしくは14記載の光学部材を含む画像表示装置。 An image display device comprising the antiglare film according to any one of claims 1 to 8 or the optical member according to claim 13 or 14.
PCT/JP2019/044614 2018-11-14 2019-11-13 Antiglare film, method for manufacturing antiglare film, optical member, and image display device WO2020100958A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980075233.9A CN113039463A (en) 2018-11-14 2019-11-13 Anti-glare film, method for producing anti-glare film, optical member, and image display device
KR1020217017909A KR20210090240A (en) 2018-11-14 2019-11-13 Anti-glare film, manufacturing method of anti-glare film, optical member and image display device
SG11202105022TA SG11202105022TA (en) 2018-11-14 2019-11-13 Anti-glare film, method for producing anti-glare film, optical member, and image display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-213945 2018-11-14
JP2018213945A JP7343273B2 (en) 2018-11-14 2018-11-14 Anti-glare film, method for producing anti-glare film, optical member and image display device

Publications (1)

Publication Number Publication Date
WO2020100958A1 true WO2020100958A1 (en) 2020-05-22

Family

ID=70732039

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/044614 WO2020100958A1 (en) 2018-11-14 2019-11-13 Antiglare film, method for manufacturing antiglare film, optical member, and image display device

Country Status (5)

Country Link
JP (1) JP7343273B2 (en)
KR (1) KR20210090240A (en)
CN (1) CN113039463A (en)
SG (1) SG11202105022TA (en)
WO (1) WO2020100958A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230172692A (en) * 2022-06-16 2023-12-26 삼성에스디아이 주식회사 Antiglare low reflective film, polarizing plate and optical display apparatus

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006091859A (en) * 2004-08-27 2006-04-06 Fuji Photo Film Co Ltd Anti-reflection film, and polarizing plate and image display device using the same
JP2013105160A (en) * 2011-11-16 2013-05-30 Fujifilm Corp Optical film, polarizer, picture display unit, and optical film manufacturing method
JP2013228720A (en) * 2012-03-30 2013-11-07 Fujifilm Corp Antiglare film, method for producing the same, polarizing plate and image display device
WO2015151672A1 (en) * 2014-04-02 2015-10-08 株式会社ダイセル Transparent layered film, process for producing same, and electrode for touch panel
JP2016022661A (en) * 2014-07-18 2016-02-08 大日本印刷株式会社 Optical laminate
JP2016024623A (en) * 2014-07-18 2016-02-08 大日本印刷株式会社 Display device with touch panel, and optical film
JP2016024622A (en) * 2014-07-18 2016-02-08 大日本印刷株式会社 Display device with touch panel, and optical film
WO2016158305A1 (en) * 2015-03-31 2016-10-06 大日本印刷株式会社 Touch-panel-equipped display device and optical film
WO2018175874A1 (en) * 2017-03-23 2018-09-27 The Board Of Trustees Of The Leland Stanford Junior University Broadband, polarization-independent, omnidirectional, metamaterial-based antireflection coating

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4059710B2 (en) 2001-10-23 2008-03-12 シャープ株式会社 Antiglare film, polarizing element, and display device manufacturing method
JP2003154610A (en) 2001-11-20 2003-05-27 Fuji Photo Film Co Ltd Hydrophilic member
JP2009109683A (en) 2007-10-30 2009-05-21 Tsujiden Co Ltd Antiglare and anti-newton film
JP5352316B2 (en) 2009-03-30 2013-11-27 富士フイルム株式会社 Light scattering film, polarizing plate, image display device, and transmissive / semi-transmissive liquid crystal display device
JP5525886B2 (en) 2009-03-30 2014-06-18 富士フイルム株式会社 Anti-glare film manufacturing method, anti-glare film, polarizing plate, image display device, and transmissive / semi-transmissive liquid crystal display device
JP5974709B2 (en) * 2012-07-26 2016-08-23 大日本印刷株式会社 Anti-glare film, polarizing plate and image display device
WO2016204525A1 (en) 2015-06-19 2016-12-22 엘지전자(주) Touch panel and display device
WO2018116998A1 (en) 2016-12-19 2018-06-28 日本製紙株式会社 Hardcoat film

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006091859A (en) * 2004-08-27 2006-04-06 Fuji Photo Film Co Ltd Anti-reflection film, and polarizing plate and image display device using the same
JP2013105160A (en) * 2011-11-16 2013-05-30 Fujifilm Corp Optical film, polarizer, picture display unit, and optical film manufacturing method
JP2013228720A (en) * 2012-03-30 2013-11-07 Fujifilm Corp Antiglare film, method for producing the same, polarizing plate and image display device
WO2015151672A1 (en) * 2014-04-02 2015-10-08 株式会社ダイセル Transparent layered film, process for producing same, and electrode for touch panel
JP2016022661A (en) * 2014-07-18 2016-02-08 大日本印刷株式会社 Optical laminate
JP2016024623A (en) * 2014-07-18 2016-02-08 大日本印刷株式会社 Display device with touch panel, and optical film
JP2016024622A (en) * 2014-07-18 2016-02-08 大日本印刷株式会社 Display device with touch panel, and optical film
WO2016158305A1 (en) * 2015-03-31 2016-10-06 大日本印刷株式会社 Touch-panel-equipped display device and optical film
WO2018175874A1 (en) * 2017-03-23 2018-09-27 The Board Of Trustees Of The Leland Stanford Junior University Broadband, polarization-independent, omnidirectional, metamaterial-based antireflection coating

Also Published As

Publication number Publication date
TW202026674A (en) 2020-07-16
JP7343273B2 (en) 2023-09-12
SG11202105022TA (en) 2021-06-29
JP2020079914A (en) 2020-05-28
CN113039463A (en) 2021-06-25
KR20210090240A (en) 2021-07-19

Similar Documents

Publication Publication Date Title
JP6454371B2 (en) Antiglare film, polarizing plate, image display device and method for producing antiglare film
KR102297565B1 (en) Antireflection film, production method of antireflection film, optical member, and image display device
JP6153723B2 (en) Method for producing antiglare film, antiglare film, polarizing plate and image display device
JP2011081219A (en) Hard-coated antiglare film, and polarizing plate and image display including the same
WO2021157664A1 (en) Anti-glare hard coating film, method for manufacturing anti-glare hard coating film, optical member, and image display device
WO2016103685A1 (en) Optical laminate, polarizing plate, and display device
JP2013178534A (en) Hard-coated antidazzle film, and polarizing plate using the same, and image display device
JP6261858B2 (en) Image display device, antiglare film and method for producing antiglare film
WO2020204148A1 (en) Light diffusion film, light diffusion film production method, optical member, display panel for image display device, and image display device
JP6641323B2 (en) Method for producing antiglare film, antiglare film, polarizing plate, and image display device
US20140002899A1 (en) Method for producing anti-glare film, anti-glare film, coating solution, polarizing plate, and image display
WO2020111176A1 (en) Anti-glare film, method for manufacturing anti-glare film, and optical member and image display device
WO2020100958A1 (en) Antiglare film, method for manufacturing antiglare film, optical member, and image display device
JP6666871B2 (en) Method for producing anti-glare film, anti-glare film, coating liquid, polarizing plate and image display device
TWI834758B (en) Anti-glare film, manufacturing method of anti-glare film, optical component and image display device
WO2021095746A1 (en) Antiglare film, antiglare film design method, antiglare film manufacturing method, optical member, and image display device
WO2021095745A1 (en) Anti-glare film, method for designing anti-glare film, method for producing anti-glare film, optical member, and image display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19885579

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217017909

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19885579

Country of ref document: EP

Kind code of ref document: A1