WO2016103685A1 - Optical laminate, polarizing plate, and display device - Google Patents

Optical laminate, polarizing plate, and display device Download PDF

Info

Publication number
WO2016103685A1
WO2016103685A1 PCT/JP2015/006400 JP2015006400W WO2016103685A1 WO 2016103685 A1 WO2016103685 A1 WO 2016103685A1 JP 2015006400 W JP2015006400 W JP 2015006400W WO 2016103685 A1 WO2016103685 A1 WO 2016103685A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
functional layer
optical functional
optical laminate
layer
Prior art date
Application number
PCT/JP2015/006400
Other languages
French (fr)
Japanese (ja)
Inventor
直樹 芹澤
隆之 中西
Original Assignee
株式会社トッパンTomoegawaオプティカルフィルム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社トッパンTomoegawaオプティカルフィルム filed Critical 株式会社トッパンTomoegawaオプティカルフィルム
Priority to KR1020237011755A priority Critical patent/KR20230052311A/en
Priority to CN201580069452.8A priority patent/CN107111012B/en
Priority to JP2016565920A priority patent/JP6698552B2/en
Priority to KR1020227018437A priority patent/KR102520205B1/en
Priority to KR1020177019076A priority patent/KR102443498B1/en
Publication of WO2016103685A1 publication Critical patent/WO2016103685A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/021Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures
    • G02B5/0221Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures the surface having an irregular structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/10Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a discontinuous layer, i.e. formed of separate pieces of material
    • B32B3/18Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a discontinuous layer, i.e. formed of separate pieces of material characterised by an internal layer formed of separate pieces of material which are juxtaposed side-by-side
    • B32B3/20Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a discontinuous layer, i.e. formed of separate pieces of material characterised by an internal layer formed of separate pieces of material which are juxtaposed side-by-side of hollow pieces, e.g. tubes; of pieces with channels or cavities
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/30Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by a layer formed with recesses or projections, e.g. hollows, grooves, protuberances, ribs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/16Optical coatings produced by application to, or surface treatment of, optical elements having an anti-static effect, e.g. electrically conducting coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/18Coatings for keeping optical surfaces clean, e.g. hydrophobic or photo-catalytic films
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • G02B5/3041Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/868Arrangements for polarized light emission
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/412Transparent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/42Polarizing, birefringent, filtering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/718Weight, e.g. weight per square meter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays

Definitions

  • the present invention relates to an optical laminate suitable for an antiglare film, and a polarizing plate and a display device using the same.
  • Anti-glare film exhibits anti-glare properties by scattering external light with its surface uneven structure.
  • the uneven structure on the surface of the antiglare film is formed by aggregating particles in the outermost resin layer.
  • Anti-glare films are required to have functions such as glare resistance and high contrast in addition to anti-glare properties.
  • glare resistance Conventionally, by adjusting the particle shape (filler) shape, particle size, refractive index, paint physical properties (viscosity), coating process, etc., the surface uneven structure (external scattering) and internal scattering are optimized to achieve anti-glare properties. Improvement of glare resistance and high contrast has been attempted. However, anti-glare properties, glare resistance, and high contrast are in a trade-off relationship.
  • Antiglare property is enhanced by using a filler with a large particle size, increasing the amount of filler added, and strengthening the filler aggregation.
  • the antiglare property is enhanced by increasing the number of irregularities and the size of the irregularities, but the glare resistance deteriorates due to an increase in the lens effect.
  • the glare resistance is improved due to the increase in internal scattering due to the use of a filler having a large refractive index difference from the resin and the increase in the amount of filler added, but the contrast decreases because the diffused light increases. Further, by reducing the surface roughness, that is, by reducing the uneven average length Sm, the antiglare property is improved, but the antiglare property having a low white quality is noticeable.
  • Contrast improves by reducing internal scattering, but glare resistance deteriorates.
  • the contrast is improved by providing a low reflection layer, it is disadvantageous in terms of cost because of the multilayer structure.
  • the present invention provides an optical laminate capable of suppressing glare while maintaining antiglare properties and contrast when applied to an image display panel, particularly a high-definition image display panel of 200 ppi or more, and the same.
  • An object is to provide a polarizing plate and an image display device used.
  • the present invention relates to an optical laminate in which at least one optical functional layer is laminated on a translucent substrate.
  • a concave / convex shape is formed on at least one surface of the optical functional layer of the optical layered body, and the optical functional layer having the concave / convex shape contains at least a resin component, two types of inorganic fine particles, and resin particles.
  • the laminate has an internal haze X that satisfies the following conditional expressions (1) to (4), and a total haze Y: Y> X (1) Y ⁇ X + 17 (2) Y ⁇ 57 (3) 19 ⁇ X ⁇ 40 (4)
  • the transmitted image definition using an optical comb with a width of 0.5 mm is 10 to 50%, and when the surface unevenness shape of the outermost surface of the optical functional layer is measured by the optical interference method, the unevenness height is 0.4 ⁇ m or more.
  • the area of a certain part is 3.5% or less of the measurement area.
  • FIG. 1 is a graph plotting the relationship between the amount of resin particles (organic filler) added in Table 1 and the internal haze of the obtained optical laminate.
  • FIG. 2 is a graph plotting the addition amount of resin particles and the addition amount of colloidal silica in Examples 1 to 12 and Comparative Examples 1 to 17 shown in Table 2.
  • FIG. 3 is a diagram illustrating the uneven shape on the surface of the optical functional layer of the optical laminate according to the second embodiment.
  • FIG. 4 is a view showing the uneven shape of the optical functional layer surface of the optical layered body according to Comparative Example 6.
  • FIG. 5 is a graph showing the distribution of the area ratio of the uneven height on the surface of the optical functional layer according to Example 2 and Comparative Example 6.
  • FIG. 1 is a graph plotting the relationship between the amount of resin particles (organic filler) added in Table 1 and the internal haze of the obtained optical laminate.
  • FIG. 2 is a graph plotting the addition amount of resin particles and the addition amount of colloidal silica in Examples 1 to
  • FIG. 6 is an enlarged view in a broken-line frame shown in FIG.
  • FIG. 7 is a cross-sectional STEM photograph of the optical functional layer of the optical layered body according to Example 2.
  • FIG. 8 is a cross-sectional STEM photograph of the optical functional layer of the optical laminate according to Comparative Example 6.
  • FIG. 9 is a cross-sectional view illustrating a schematic configuration of the optical layered body according to the embodiment.
  • FIG. 10 is a cross-sectional view illustrating a schematic configuration of the polarizing plate according to the embodiment.
  • FIG. 11 is a cross-sectional view illustrating a schematic configuration of the display device according to the embodiment.
  • FIG. 9 is a cross-sectional view showing a schematic configuration of the optical laminate according to the embodiment.
  • the optical laminate 100 according to the embodiment includes a translucent substrate 1 and at least one optical functional layer 2 laminated on the translucent substrate 1. Fine irregularities are formed on the surface of the optical functional layer 2.
  • the optical function layer 2 exhibits anti-glare properties by irregularly reflecting the diplomacy by the unevenness.
  • polyethylene terephthalate PET
  • triacetyl cellulose TAC
  • polyethylene naphthalate PEN
  • polymethyl methacrylate PMMA
  • PC polycarbonate
  • PI polyimide
  • PE polypropylene
  • resin films such as (PP), polyvinyl alcohol (PVA), polyvinyl chloride (PVC), cycloolefin copolymer (COC), norbornene resin, polyethersulfone, cellophane, and aromatic polyamide can be suitably used.
  • the total light transmittance (JIS K7105) of the translucent substrate is preferably 80% or more, and more preferably 90% or more.
  • the thickness of the translucent substrate is preferably 1 to 700 ⁇ m and more preferably 25 to 250 ⁇ m in consideration of the productivity and handling properties of the optical laminate.
  • the translucent substrate is preferably subjected to a surface modification treatment in order to improve adhesion with the optical functional layer.
  • a surface modification treatment include alkali treatment, corona treatment, plasma treatment, sputtering treatment, application of a surfactant and a silane coupling agent, Si deposition, and the like.
  • the optical functional layer contains a base resin, resin particles (organic filler), and two types of inorganic fine particles.
  • the optical functional layer is formed by applying a base resin that is cured by irradiation with ionizing radiation or ultraviolet rays, a resin composition in which resin particles and two kinds of inorganic fine particles are mixed, to a translucent substrate, and curing the coating film. Formed by.
  • the base resin a resin that can be cured by irradiation with ionizing radiation or ultraviolet rays can be used.
  • Resin materials that are cured by irradiation with ionizing radiation include radical polymerizable functional groups such as acryloyl group, methacryloyl group, acryloyloxy group, and methacryloyloxy group, and cationic polymerizable functional groups such as epoxy group, vinyl ether group, and oxetane group.
  • radical polymerizable functional groups such as acryloyl group, methacryloyl group, acryloyloxy group, and methacryloyloxy group
  • cationic polymerizable functional groups such as epoxy group, vinyl ether group, and oxetane group.
  • Monomers, oligomers and prepolymers can be used alone or in admixture.
  • Examples of the monomer include methyl acrylate, methyl methacrylate, methoxypolyethylene methacrylate, cyclohexyl methacrylate, phenoxyethyl methacrylate, ethylene glycol dimethacrylate, dipentaerythritol hexaacrylate, trimethylolpropane trimethacrylate, pentaerythritol triacrylate and the like.
  • polyester acrylate polyurethane acrylate, polyfunctional urethane acrylate, epoxy acrylate, polyether acrylate, acrylate compounds such as alkit acrylate, melamine acrylate, silicone acrylate, unsaturated polyester, tetramethylene glycol diglycidyl ether, Epoxy compounds such as propylene glycol diglycidyl ether, neopentyl glycol diglycidyl ether, bisphenol A diglycidyl ether and various alicyclic epoxies, 3-ethyl-3-hydroxymethyloxetane, 1,4-bis ⁇ [((3- Oxeta such as ethyl-3-oxetanyl) methoxy] methyl ⁇ benzene, di [1-ethyl (3-oxetanyl)] methyl ether
  • the compounds can be exemplified.
  • Photopolymerization initiators include radical polymerization initiators such as acetophenone, benzophenone, thioxanthone, benzoin, and benzoin methyl ether, and cationic polymerization starts such as aromatic diazonium salts, aromatic sulfonium salts, aromatic iodonium salts, and metallocene compounds.
  • the agents can be used alone or in combination.
  • Resin particles added to the optical functional layer aggregate in the base resin to form a fine concavo-convex structure on the surface of the optical functional layer.
  • resin particles those made of a light-transmitting resin material such as acrylic resin, polystyrene resin, styrene-acrylic copolymer, polyethylene resin, epoxy resin, silicone resin, polyvinylidene fluoride, and polyvinyl fluoride resin can be used.
  • the refractive index of the resin particle material is preferably 1.40 to 1.75.
  • the refractive index n f of the resin particles and the refractive index nz of the base resin preferably satisfy the following condition ( ⁇ ), and more preferably satisfy the following condition ( ⁇ ).
  • refractive index n z of a resin material as a base material is not satisfied conditions (alpha), increasing the amount of resin particles to obtain the desired internal haze Necessary, and image sharpness deteriorates.
  • the average particle size of the resin particles is preferably 0.3 to 10.0 ⁇ m, and more preferably 1.0 to 7.0 ⁇ m.
  • the average particle diameter of the resin particles is less than 0.3 ⁇ m, the antiglare property is lowered.
  • the average particle diameter of the resin particles exceeds 10.0 ⁇ m, the area ratio of the uneven height on the surface of the optical functional layer cannot be controlled, and the glare resistance is deteriorated.
  • the first inorganic fine particles and the second inorganic fine particles are added as two types of inorganic fine particles to the base resin of the optical functional layer.
  • colloidal silica, alumina, and zinc oxide can be used alone or in combination.
  • the first inorganic fine particles By adding the first inorganic fine particles, excessive aggregation of the resin particles can be suppressed, and the uneven structure formed on the surface of the optical functional layer can be made uniform, that is, locally increasing unevenness can be suppressed.
  • the glare resistance By adding the first inorganic fine particles, the glare resistance can be improved while maintaining the antiglare property and the high contrast.
  • the first inorganic fine particles are preferably inorganic nanoparticles having an average particle size of 10 to 100 nm.
  • the average particle size is more preferably about 20 nm.
  • alumina or zinc oxide is used as the first inorganic fine particles, the average particle size is about 40 nm. More preferably.
  • the amount of the first inorganic fine particles added is preferably 0.05 to 10%, more preferably 0.1 to 5.0% with respect to the total weight of the resin composition for forming an optical functional layer. . If the addition amount of the first inorganic fine particles is out of this range, the area ratio of the uneven height on the surface of the optical functional layer cannot be controlled, and the glare resistance deteriorates.
  • the second inorganic fine particles are preferably inorganic nanoparticles having an average particle diameter of 10 to 200 nm.
  • the addition amount of the second inorganic fine particles is preferably 0.1 to 5.0%.
  • swellable clay can be used as the second inorganic fine particles.
  • the swellable clay is not particularly limited as long as it has a cation exchange capacity and swells by taking in a solvent between the layers of the swellable clay, even if it is a natural product, it is a synthetic product (including substitution products and derivatives). May be. Moreover, the mixture of a natural product and a synthetic product may be sufficient.
  • swellable clay examples include mica, synthetic mica, vermiculite, montmorillonite, iron montmorillonite, beidellite, saponite, hectorite, stevensite, nontronite, magadiite, isallite, kanemite, layered titanic acid, smectite, and synthetic smectite. Etc. These swellable clays may be used alone or in combination.
  • the layered organic clay refers to an organic onium ion introduced between the layers of the swellable clay.
  • the organic onium ion is not limited as long as it can be organicized using the cation exchange property of the swellable clay.
  • synthetic smectite layered organic clay mineral
  • Synthetic smectite functions as a thickener that increases the viscosity of the optical functional layer forming resin composition. Addition of the synthetic smectite as a thickener suppresses the sedimentation of the resin particles and the first inorganic fine particles, and contributes to the formation of an uneven structure on the surface of the optical functional layer.
  • the first inorganic fine particles and the second inorganic fine particles form aggregates in the optical functional layer.
  • This agglomerate suppresses the aggregation of resin particles, and the unevenness height of the uneven shape on the surface of the optical functional layer is leveled, so that the scattering of light on the surface of the optical functional layer is made uniform and the glare resistance is improved. it can.
  • a leveling agent may be added to the resin composition for forming the optical functional layer.
  • the leveling agent has a function of being oriented on the surface of the coating film in the drying process, uniforming the surface tension of the coating film, and reducing surface defects of the coating film.
  • an organic solvent may be appropriately added to the resin composition for forming the optical functional layer.
  • the organic solvent include alcohols, esters, ketones, ethers, and aromatic hydrocarbons.
  • the film thickness of the optical functional layer is preferably 1.0 to 12.0 ⁇ m, and more preferably 3.0 to 10.0 ⁇ m.
  • the film thickness of the optical functional layer is less than 1 ⁇ m, curing failure due to oxygen inhibition occurs, and the scratch resistance of the optical functional layer tends to be lowered.
  • the film thickness of the optical functional layer exceeds 12.0 ⁇ m, curling due to curing shrinkage of the base resin layer becomes strong, which is not preferable.
  • the film thickness of the optical functional layer is preferably 110 to 300%, more preferably 120 to 250% of the average particle diameter of the resin particles.
  • the film thickness of the optical functional layer is less than 110% of the average particle diameter of the resin particles, the antiglare property with low whiteness and outstanding quality is obtained.
  • the film thickness of the optical functional layer exceeds 300% of the average particle diameter of the resin particles, the antiglare property is insufficient, which is not preferable.
  • the internal haze X and the total haze Y satisfy the following conditions (1) to (4) at the same time.
  • the internal haze X satisfies the following conditional expression (4) ′.
  • conditional expression (4) ′ When the internal haze X satisfies the conditional expression (4) ′, both the glare resistance and the contrast can be further improved. 25 ⁇ X ⁇ 35 (4) ′
  • the transmitted image definition of the optical laminate according to this embodiment is preferably 10 to 50%, more preferably 15 to 45%, as measured using a 0.5 mm wide optical comb. .
  • the transmitted image definition is less than 10%, the glare resistance is deteriorated.
  • the transmitted image clarity exceeds 50%, the antiglare property deteriorates.
  • the area of the portion where the uneven height is 0.4 ⁇ m or more is 3.5% or less.
  • the area of the concavo-convex height of 0.4 ⁇ m or more exceeds 3.5%, a large portion of locally concavo-convex parts is distributed, so that 200 ppi or higher image display
  • the glare resistance is deteriorated.
  • FIG. 10 is a cross-sectional view showing a schematic configuration of the polarizing plate according to the embodiment.
  • the polarizing plate 110 includes the optical laminate 100 and the polarizing film 11.
  • the optical laminated body 100 is as shown in FIG. 9, and a polarizing film (polarizing substrate) 11 is provided on the surface of the translucent substrate 1 on which the optical functional layer 2 is not provided.
  • the polarizing film 11 is obtained by laminating a transparent substrate 3, a polarizing layer 4, and a transparent substrate 5 in this order.
  • the materials for the transparent substrates 3 and 5 and the polarizing layer 4 are not particularly limited, and those usually used for polarizing films can be used as appropriate.
  • FIG. 11 is a cross-sectional view illustrating a schematic configuration of the display device according to the embodiment.
  • the display device 120 is obtained by laminating the optical laminate 100, the polarizing film 11, the liquid crystal cell 13, the polarizing film (polarizing substrate) 12, and the backlight unit 14 in this order.
  • the polarizing film 12 is obtained by laminating a transparent substrate 6, a polarizing layer 7, and a transparent substrate 8 in this order.
  • the materials of the transparent substrates 6 and 8 and the polarizing layer 7 are not particularly limited, and those usually used for a polarizing film can be appropriately used.
  • the liquid crystal cell 13 includes a liquid crystal panel in which liquid crystal molecules are sealed between a pair of transparent substrates having transparent electrodes, and a color filter, and changes the orientation of the liquid crystal molecules according to the voltage applied between the transparent electrodes. By controlling the light transmittance, the light transmittance of each pixel is controlled to form an image.
  • the backlight unit 14 includes a light source and a light diffusing plate (both not shown), and is an illumination device that uniformly diffuses light emitted from the light source and emits it from the emission surface.
  • the display device 120 illustrated in FIG. 11 may further include a diffusion film, a prism sheet, a brightness enhancement film, a retardation film for compensating for a retardation of a liquid crystal cell or a polarizing plate, and a touch sensor.
  • the optical layered body according to the present embodiment further includes at least one layer of a refractive index adjusting layer such as a low refractive index layer, an antistatic layer, and an antifouling layer in addition to the optical functional layer for suppressing glare. Also good.
  • a refractive index adjusting layer such as a low refractive index layer, an antistatic layer, and an antifouling layer in addition to the optical functional layer for suppressing glare. Also good.
  • the low refractive index layer is a functional layer that is provided on the optical functional layer that suppresses glare and reduces the reflectance by reducing the refractive index of the surface.
  • the low refractive index layer is formed by applying a coating solution containing an ionizing radiation curable material such as polyester acrylate monomer, epoxy acrylate monomer, urethane acrylate monomer, polyol acrylate monomer and a polymerization initiator, and polymerizing the coating film. It can be formed by curing.
  • the low refractive particles include LiF, MgF, 3NaF.AlF or AlF (all with a refractive index of 1.4), or Na 3 AlF 6 (cryolite, with a refractive index of 1.33).
  • Low refractive index fine particles made of a low refractive material such as the above may be dispersed.
  • particles having voids inside the particles can be suitably used.
  • the voids can be made to have a refractive index of air ( ⁇ 1), so that they can be low refractive index particles having a very low refractive index.
  • the refractive index can be lowered by using low refractive index silica particles having voids inside.
  • the antistatic layer is coated with a coating liquid containing an ionizing radiation curable material such as a polyester acrylate monomer, an epoxy acrylate monomer, a urethane acrylate monomer, a polyol acrylate monomer, a polymerization initiator, and an antistatic agent. It can be formed by curing by polymerization.
  • an antistatic agent include antimony-doped tin oxide (ATO), metal oxide fine particles such as tin-doped indium oxide (ITO), polymer-type conductive compositions, and quaternary ammonium salts. Can be used.
  • the antistatic layer may be provided on the outermost surface of the optical layered body, or may be provided between the optical functional layer that suppresses glare and the translucent substrate.
  • the antifouling layer is provided on the outermost surface of the optical laminate and enhances the antifouling property by imparting water repellency and / or oil repellency to the optical laminate.
  • the antifouling layer can be formed by dry coating or wet coating silicon oxide, fluorine-containing silane compound, fluoroalkylsilazane, fluoroalkylsilane, fluorine-containing silicon-based compound, perfluoropolyether group-containing silane coupling agent, etc. .
  • antistatic layer and antifouling layer In addition to the low refractive index layer, antistatic layer and antifouling layer described above, or in addition to the low refractive index layer, antistatic layer and antifouling layer, at least an infrared absorbing layer, an ultraviolet absorbing layer, a color correction layer, etc.
  • One layer may be provided.
  • a 40 ⁇ m thick triacetyl cellulose film was used as the translucent substrate.
  • An optical functional layer was formed by applying the following coating solution for forming an optical functional layer on a translucent substrate, drying (volatilizing the solvent), and curing the coating film by polymerization.
  • Base resin UV / EB curable resin
  • Light acrylate PE-3A penentaerythritol triacrylate, manufactured by Kyoeisha Chemical Co., Ltd.
  • Resin filler ⁇ Examples 1 to 10, Comparative Examples 1 to 17> Cross-linked styrene monodisperse particles SX350H (manufactured by Soken Chemical Co., Ltd.) Average particle size 3.5 ⁇ m, refractive index 1.595 ⁇ Example 11> Styrene monodisperse filler SSX302ABE (manufactured by Sekisui Plastics Co., Ltd.) Average particle size 2.0 ⁇ m, refractive index 1.595 ⁇ Example 12> Cross-linked styrene monodisperse particles SX500H (manufactured by Soken Chemical Co., Ltd.) Average particle size 5.0 ⁇ m, refractive index 1.595 Colloidal silica:
  • the addition amount of the resin particles (organic filler), the first inorganic fine particles (colloidal silica) and the second inorganic fine particles (synthetic smectite) to the coating solution for forming the optical functional layer is the same as in the following examples and comparative examples. It will be described later in the description. Moreover, the addition amount of each component is the ratio (mass%) which occupies for the total solid content mass of the coating liquid for optical function layer formation.
  • the total solid content of the coating solution for forming an optical functional layer refers to a component excluding the solvent.
  • the blending ratio (mass%) of the resin particles, the first inorganic fine particles, and the second inorganic fine particles in the total solid content of the coating liquid for forming the optical functional layer, and the cured film of the coating liquid for forming the optical functional layer The content ratio (% by mass) of the resin particles, the first inorganic fine particles, and the second inorganic fine particles in the optical functional layer is the same.
  • the method for measuring the surface roughness, transmitted image definition, haze value, and film thickness of the optical laminate is as follows.
  • the transmitted image definition was measured according to JIS K7105 using an image clarity measuring device (ICM-1T, manufactured by Suga Test Instruments Co., Ltd.) with an optical comb width of 0.5 mm.
  • the haze value was measured using a haze meter (NDH2000, manufactured by Nippon Denshoku Industries Co., Ltd.) according to JIS K7105.
  • the haze value of the optical laminated film was defined as the total haze.
  • the value obtained by subtracting the haze value of the transparent sheet with adhesive from the haze value measured by pasting the transparent sheet with adhesive on the surface provided with the fine uneven shape of the optical laminated film was defined as the internal haze.
  • a polyethylene terephthalate film (thickness 38 ⁇ m) coated with an acrylic adhesive material (thickness 10 ⁇ m) was used as the transparent sheet with an adhesive material.
  • the film thickness of the optical functional layer was measured using a linear gauge (D-10HS, manufactured by Ozaki Manufacturing Co., Ltd.).
  • Table 1 shows the amount of resin particles and two types of inorganic fine particles added, and the internal haze value of the obtained optical laminate.
  • FIG. 1 is a graph plotting the relationship between the amount of resin particles (organic filler) added in Table 1 and the internal haze of the obtained optical laminate.
  • the straight line shown in FIG. 1 is a regression line obtained from the plot.
  • the glare resistance is determined by bonding the optical layered body of each example and each comparative example to the screen surface of a liquid crystal monitor (iPad3 (3rd generation) Apple Inc., 264 ppi) through a transparent adhesive layer.
  • the monitor was put in a green display state, and the presence or absence of glare when the liquid crystal monitor was viewed from a place 50 cm vertically away from the center of the screen surface in a dark room was evaluated by visual judgment of 100 arbitrary persons.
  • the evaluation results were “ ⁇ ” when the number of people who did not feel glare was 70 or more, “ ⁇ ” when the number was 30 or more and less than 70, and “X” when the number was less than 30.
  • Anti-glare property is 50 cm vertically from the center of the black acrylic plate after the optical laminates of the examples and comparative examples are bonded to a black acrylic plate (Sumipex 960, manufactured by Sumitomo Chemical Co., Ltd.) via a transparent adhesive layer.
  • a black acrylic plate Silicon 960, manufactured by Sumitomo Chemical Co., Ltd.
  • the presence / absence of reflection of his / her image (face) on a black acrylic plate when viewed from a distant place under the condition of illuminance of 250 lx was evaluated by visual judgment of arbitrary 100 people.
  • the evaluation result was “ ⁇ ” when the number of people who did not feel the reflection was 70 or more, “ ⁇ ” when the number was 30 or more and less than 70, and “X” when the number was less than 30.
  • the brightness ratio is obtained by bonding the optical layered body of each example and each comparative example and the translucent substrate to the screen surface of a liquid crystal monitor (iPad3 (3rd generation) Apple Inc., 264 ppi) through a transparent adhesive layer. After that, the liquid crystal monitor was set to a white display state, and the luminance was measured with a spectroradiometer (SU-UL1R manufactured by Topcon Co., Ltd.) from a location 70 cm away from the center of the screen surface in a dark room. When the luminance of the translucent substrate is 100%, the case of 93% or more is “ ⁇ ”, and the case of less than 93% is “x”.
  • the total haze (Y) and internal haze (X) of the optical laminates according to Examples 1 to 12 satisfy all the conditional expressions (1) to (4) described above, and the internal haze (X) is 19 to 40%. It was in the range. Further, the transmitted image definition was more preferably in the range of 15 to 45%. Therefore, the optical laminates according to Examples 1 to 12 were good in all of the glare resistance, antiglare property and luminance ratio.
  • the internal haze exceeded 40% due to the increase in the amount of resin particles added, and the luminance ratio was insufficient in all cases.
  • the total haze exceeded 57%, the surface unevenness was large, and the glare resistance was insufficient.
  • the glare resistance deteriorated even when the transmitted image definition was less than 10%.
  • optical laminates according to Comparative Examples 3, 6 and 9 in which colloidal silica is not added as the first inorganic fine particles, although both the haze value and the transmitted image definition satisfy the above-described preferable ranges.
  • the glare resistance deteriorated. This is because, in the uneven structure formed on the surface of the optical functional layer of the optical laminate according to Comparative Examples 3, 6, and 9, the area of the adjacent uneven height of 0.4 ⁇ m or more exceeds 3.5%. It depends on. Details of this point will be described later.
  • FIG. 2 is a graph plotting the amount of resin particles added and the amount of colloidal silica added in Examples 1 to 12 and Comparative Examples 1 to 17 shown in Table 2.
  • Examples 1 to 12 are plotted with black circles, and Comparative Examples 1 to 17 are plotted with crosses.
  • the plots of the addition amount of resin particles and the addition amount of colloidal silica in Examples 1 to 12 are regions below the straight line shown in FIG. 2 (except on the horizontal axis).
  • the addition amount of the resin particles is within a range of 7 to 15%, even when used as an antiglare film for a high-definition image display device of 200 ppi or more, the antiglare and antiglare properties It was confirmed that excellent performance can be obtained with all the contrast. That is, when the resin particle content in the optical functional layer forming resin composition is A (%) and the colloidal silica content is B (%), the following conditional expressions (5) and (6) are satisfied.
  • conditional expression (5) is a straight line that passes through both the addition amount of the resin particles and the plot of the addition amount of colloidal silica in Examples 4 and 10.
  • conditional expression (6) is a necessary condition for setting the internal haze value within the range of 19 to 40% in the configuration of the present embodiment as described with reference to FIG. 0 ⁇ B ⁇ 0.375A-2.44 (5) 7.0 ⁇ A ⁇ 15.0 (6)
  • Table 3 shows the measured values of the surface roughness of the optical laminates according to Examples 2 to 4 and Comparative Example 6.
  • FIG. 3 is a view showing the uneven shape on the surface of the optical functional layer of the optical laminate according to Example 2
  • FIG. 4 is a view showing the uneven shape on the surface of the optical functional layer of the optical laminate according to Comparative Example 6. is there.
  • 3 and 4 show an optical function using a non-contact surface / layer cross-sectional shape measurement system (measuring device: Bartscan R3300FL-Lite-AC, analysis software: VertScan4, manufactured by Ryoka System Co., Ltd.) using an optical interference method.
  • the uneven shape of the layer surface is measured, and the measurement result is output as a three-dimensional image.
  • Table 4 shows the measurement conditions of the measurement system.
  • the arithmetic average roughness Ra, the maximum height Rz, the average length RSm of the contour curve element, the average inclination angle measured according to ASEM95, measured according to JIS B0601: 2001 are compared with those in Examples 2 to 4. There is no particularly significant difference from Example 6.
  • the concavo-convex shape of the optical functional layer surface of the optical laminates according to Examples 2 to 4 and Comparative Example 6 is measured by the optical interference method, the distribution of the concavo-convex shape is different. Compared with the concavo-convex shape on the surface of the optical functional layer according to Comparative Example 6 shown in FIG. 4, the concavo-convex shape on the surface of the optical functional layer according to Example 2 shown in FIG. In FIG. 4, there are fewer dark spots).
  • FIG. 5 is a graph showing the distribution of the area ratio of the uneven height on the surface of the optical function layer according to Examples 2 and 3 and Comparative Example 6, and FIG. 6 is an enlarged view within the broken line frame shown in FIG. is there.
  • the uneven height refers to the level difference between the concave and convex portions in the direction orthogonal to the measurement surface, based on the average level (height 0) of all the uneven heights on the measurement surface.
  • the area ratio of the uneven height refers to the ratio of a region having a predetermined uneven height or more to the measurement area.
  • Example 2 the anti-glare property was improved by forming the concavo-convex shape on the surface of the optical functional layer so that the area ratio of the region having the concavo-convex height of 0.4 ⁇ m or more was 3.5% or less. It is thought that. On the contrary, in Comparative Example 6, the area ratio of the region having the unevenness height of 0.4 ⁇ m or more exceeds 3.5%, and many portions with relatively large unevenness heights as shown in FIG. 4 are formed. Therefore, although the measured value of the general surface roughness is not so different from that of Example 2, it is considered that the glare resistance is deteriorated.
  • FIG. 7 is a cross-sectional STEM photograph of the optical functional layer of the optical laminate according to Example 2
  • FIG. 8 is a cross-sectional STEM photograph of the optical functional layer of the optical laminate according to Comparative Example 6.
  • optical laminates according to Examples 1 to 12 are used as an antiglare film for a high-definition image display device of 200 ppi or more, they have a glare resistance, an antiglare resistance and a contrast. It was confirmed that excellent performance can be exhibited in all.
  • optical laminate according to the present invention can be used as an antiglare film for use in a high-definition (for example, 200 ppi or more) image display device.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Laminated Bodies (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)
  • Surface Treatment Of Optical Elements (AREA)

Abstract

Provided is an optical laminate capable of suppressing glare and maintaining contrast and anti-glare properties even when applied to a high-definition image display panel. The optical laminate has at least one optically functional layer laminated onto a light-transmissive base. An optically functional layer has at least one irregularly profiled surface. An optically functional layer with an irregularly profiled surface contains at least a resin component, two types of inorganic fine particles, and resin particles. The optical laminate has an internal haze X and a total haze Y that satisfy the following conditional expressions (1) - (4): Y > X ∙∙∙ (1) Y ≤ X + 17 ∙∙∙ (2) Y ≤ 57 ∙∙∙ (3) 19 ≤ X ≤ 40 ∙∙∙ (4) The optical laminate has transmitted image clarity of 10 - 50 % when using an optical comb with a width of 0.5 mm. When measuring the surface roughness of the outermost surface of the optically functional layer using optical interferometry, the area having a roughness height of 0.4 µm or more occupies 3.5 % or less of the measured area.

Description

光学積層体、偏光板及び表示装置Optical laminate, polarizing plate and display device
 本発明は、防眩性フィルムに好適な光学積層体、並びに、これを用いた偏光板及び表示装置に関するものである。 The present invention relates to an optical laminate suitable for an antiglare film, and a polarizing plate and a display device using the same.
 防眩性フィルムは、その表面の凹凸構造で外光を散乱させることによって防眩性を発揮する。防眩性フィルムの表面の凹凸構造は、最表面の樹脂層内で粒子を凝集させることにより形成される。 Anti-glare film exhibits anti-glare properties by scattering external light with its surface uneven structure. The uneven structure on the surface of the antiglare film is formed by aggregating particles in the outermost resin layer.
 防眩性フィルムには、防眩性以外に耐ギラツキ性、高コントラストなどの機能が求められる。従来、粒子(フィラー)の形状、粒径、屈折率、塗料物性(粘度)、塗工プロセスなどの調整により、表面の凹凸構造(外部散乱)と内部散乱との最適化を図り、防眩性、耐ギラツキ性、高コントラストの改善が図られてきた。ただし、防眩性、耐ギラツキ性及び高コントラストは、トレードオフの関係にある。 Anti-glare films are required to have functions such as glare resistance and high contrast in addition to anti-glare properties. Conventionally, by adjusting the particle shape (filler) shape, particle size, refractive index, paint physical properties (viscosity), coating process, etc., the surface uneven structure (external scattering) and internal scattering are optimized to achieve anti-glare properties. Improvement of glare resistance and high contrast has been attempted. However, anti-glare properties, glare resistance, and high contrast are in a trade-off relationship.
 防眩性は、粒径の大きいフィラーの使用、フィラー添加量の増量、フィラーの凝集を強めることにより高くなる。この場合、凹凸数が増え、また、凹凸サイズが大きくなることで防眩性は高まるが、レンズ効果の増加により耐ギラツキ性が悪化する。 Antiglare property is enhanced by using a filler with a large particle size, increasing the amount of filler added, and strengthening the filler aggregation. In this case, the antiglare property is enhanced by increasing the number of irregularities and the size of the irregularities, but the glare resistance deteriorates due to an increase in the lens effect.
 耐ギラツキ性は、樹脂との屈折率差の大きいフィラーの使用やフィラー添加量の増量による内部散乱の増加により良化するが、拡散光が増加するため、コントラストは低下する。また、表面凹凸の微細化、すなわち、凹凸平均長さSmを小さくすることによっても耐ギラツキ性は良化するが、白味の際立った品位の低い防眩性となってしまう。 The glare resistance is improved due to the increase in internal scattering due to the use of a filler having a large refractive index difference from the resin and the increase in the amount of filler added, but the contrast decreases because the diffused light increases. Further, by reducing the surface roughness, that is, by reducing the uneven average length Sm, the antiglare property is improved, but the antiglare property having a low white quality is noticeable.
 コントラストは、内部散乱を低下させることで良化するが、耐ギラツキ性は悪化する。また、低反射層を設けることでもコントラストは良化するが、多層構成となるためコスト面で不利になる。 Contrast improves by reducing internal scattering, but glare resistance deteriorates. In addition, although the contrast is improved by providing a low reflection layer, it is disadvantageous in terms of cost because of the multilayer structure.
特開平10-20103号公報Japanese Patent Laid-Open No. 10-20103
 近年の液晶パネルの高精細化により、既存の防眩性フィルムで防眩性とコントラストとを従来通りに維持した場合、ギラツキが発生してしまう。その一方で、耐ギラツキ性を向上させるためには、防眩性やコントラストを犠牲にする必要がある。 Due to the recent high definition of liquid crystal panels, glare will occur if the existing antiglare film maintains the antiglare and contrast as usual. On the other hand, in order to improve the glare resistance, it is necessary to sacrifice the antiglare property and contrast.
 それ故に、本発明は、画像表示パネル、特に、200ppi以上の高精細な画像表示パネルに適用した場合に、防眩性及びコントラストを維持しつつ、ギラツキを抑制できる光学積層体、並びに、これを用いた偏光板及び画像表示装置を提供することを目的とする。 Therefore, the present invention provides an optical laminate capable of suppressing glare while maintaining antiglare properties and contrast when applied to an image display panel, particularly a high-definition image display panel of 200 ppi or more, and the same. An object is to provide a polarizing plate and an image display device used.
 本発明は、透光性基体上に光学機能層が少なくとも1層以上積層されてなる光学積層体に関するものである。当該光学積層体の光学機能層の少なくとも一方の面に凹凸形状が形成されており、凹凸形状を有する光学機能層が少なくとも樹脂成分と、2種類の無機微粒子と、樹脂粒子とを含有し、光学積層体が以下の条件式(1)~(4)を満足する内部ヘイズXと、全ヘイズYとを有し、
  Y>X ・・・(1)
  Y≦X+17 ・・・(2)
  Y≦57 ・・・(3)
  19≦X≦40 ・・・(4)
 0.5mm幅の光学くしを用いた透過像鮮明度が10~50%であり、光学機能層の最表面の表面凹凸形状を光干渉方式で計測した場合、凹凸高さが0.4μm以上である部分の面積が測定面積の3.5%以下である。
The present invention relates to an optical laminate in which at least one optical functional layer is laminated on a translucent substrate. A concave / convex shape is formed on at least one surface of the optical functional layer of the optical layered body, and the optical functional layer having the concave / convex shape contains at least a resin component, two types of inorganic fine particles, and resin particles. The laminate has an internal haze X that satisfies the following conditional expressions (1) to (4), and a total haze Y:
Y> X (1)
Y ≦ X + 17 (2)
Y ≦ 57 (3)
19 ≦ X ≦ 40 (4)
The transmitted image definition using an optical comb with a width of 0.5 mm is 10 to 50%, and when the surface unevenness shape of the outermost surface of the optical functional layer is measured by the optical interference method, the unevenness height is 0.4 μm or more. The area of a certain part is 3.5% or less of the measurement area.
 本発明によれば、200ppi以上の高精細な画像表示パネルに適用した場合でも、防眩性及びコントラストを維持しつつ、ギラツキを抑制できる光学積層体、並びに、これを用いた偏光板及び画像表示装置を提供できる。 ADVANTAGE OF THE INVENTION According to this invention, even when applied to a high-definition image display panel of 200 ppi or more, an optical laminate that can suppress glare while maintaining antiglare properties and contrast, and a polarizing plate and an image display using the same Equipment can be provided.
図1は、表1に記載の樹脂粒子(有機フィラー)の添加量と、得られた光学積層体の内部ヘイズとの関係をプロットしたグラフである。FIG. 1 is a graph plotting the relationship between the amount of resin particles (organic filler) added in Table 1 and the internal haze of the obtained optical laminate. 図2は、表2に示した実施例1~12及び比較例1~17における樹脂粒子の添加量と、コロイダルシリカの添加量とをプロットしたグラフである。FIG. 2 is a graph plotting the addition amount of resin particles and the addition amount of colloidal silica in Examples 1 to 12 and Comparative Examples 1 to 17 shown in Table 2. 図3は、実施例2に係る光学積層体の光学機能層表面の凹凸形状を示す図である。FIG. 3 is a diagram illustrating the uneven shape on the surface of the optical functional layer of the optical laminate according to the second embodiment. 図4は、比較例6に係る光学積層体の光学機能層表面の凹凸形状を示す図である。FIG. 4 is a view showing the uneven shape of the optical functional layer surface of the optical layered body according to Comparative Example 6. 図5は、実施例2及び比較例6に係る光学機能層表面における凹凸高さの面積比率の分布を示すグラフである。FIG. 5 is a graph showing the distribution of the area ratio of the uneven height on the surface of the optical functional layer according to Example 2 and Comparative Example 6. 図6は、図5に示す破線の枠内の拡大図である。FIG. 6 is an enlarged view in a broken-line frame shown in FIG. 図7は、実施例2に係る光学積層体の光学機能層の断面STEM写真である。FIG. 7 is a cross-sectional STEM photograph of the optical functional layer of the optical layered body according to Example 2. 図8は、比較例6に係る光学積層体の光学機能層の断面STEM写真である。FIG. 8 is a cross-sectional STEM photograph of the optical functional layer of the optical laminate according to Comparative Example 6. 図9は、実施形態に係る光学積層体の概略構成を示す断面図である。FIG. 9 is a cross-sectional view illustrating a schematic configuration of the optical layered body according to the embodiment. 図10は、実施形態に係る偏光板の概略構成を示す断面図である。FIG. 10 is a cross-sectional view illustrating a schematic configuration of the polarizing plate according to the embodiment. 図11は、実施形態に係る表示装置の概略構成を示す断面図である。FIG. 11 is a cross-sectional view illustrating a schematic configuration of the display device according to the embodiment.
 図9は、実施形態に係る光学積層体の概略構成を示す断面図である。実施形態に係る光学積層体100は、透光性基体1と、透光性基体1に積層された少なくとも1層の光学機能層2とを備える。光学機能層2の表面には、微細な凹凸が形成されている。この凹凸が外交を乱反射させることによって、光学機能層2が防眩性を発揮する。 FIG. 9 is a cross-sectional view showing a schematic configuration of the optical laminate according to the embodiment. The optical laminate 100 according to the embodiment includes a translucent substrate 1 and at least one optical functional layer 2 laminated on the translucent substrate 1. Fine irregularities are formed on the surface of the optical functional layer 2. The optical function layer 2 exhibits anti-glare properties by irregularly reflecting the diplomacy by the unevenness.
 透光性基体としては、ポリエチレンテレフタレート(PET)、トリアセチルセルロース(TAC)、ポリエチレンナフタレート(PEN)、ポリメチルメタクリレート(PMMA)、ポリカーボネート(PC)、ポリイミド(PI)、ポリエチレン(PE)、ポリプロピレン(PP)、ポリビニルアルコール(PVA)、ポリ塩化ビニル(PVC)、シクロオレフィンコポリマー(COC)、含ノルボルネン樹脂、ポリエーテルスルホン、セロファン、芳香族ポリアミド等の各種樹脂フィルムを好適に使用することができる。 As the translucent substrate, polyethylene terephthalate (PET), triacetyl cellulose (TAC), polyethylene naphthalate (PEN), polymethyl methacrylate (PMMA), polycarbonate (PC), polyimide (PI), polyethylene (PE), polypropylene Various resin films such as (PP), polyvinyl alcohol (PVA), polyvinyl chloride (PVC), cycloolefin copolymer (COC), norbornene resin, polyethersulfone, cellophane, and aromatic polyamide can be suitably used. .
 透光性基体の全光線透過率(JIS K7105)は、80%以上であることが好ましく、90%以上であることがより好ましい。また、透光性基体の厚みは、光学積層体の生産性やハンドリング性を考慮すると、1~700μmであることが好ましく、25~250μmであることがより好ましい。 The total light transmittance (JIS K7105) of the translucent substrate is preferably 80% or more, and more preferably 90% or more. The thickness of the translucent substrate is preferably 1 to 700 μm and more preferably 25 to 250 μm in consideration of the productivity and handling properties of the optical laminate.
 透光性基体には、光学機能層との密着性を向上させるために、表面改質処理を施すことが好ましい。表面改質処理としては、アルカリ処理、コロナ処理、プラズマ処理、スパッタ処理、界面活性剤やシランカップリング剤等の塗布、Si蒸着等を例示できる。 The translucent substrate is preferably subjected to a surface modification treatment in order to improve adhesion with the optical functional layer. Examples of the surface modification treatment include alkali treatment, corona treatment, plasma treatment, sputtering treatment, application of a surfactant and a silane coupling agent, Si deposition, and the like.
 光学機能層は、基材樹脂と、樹脂粒子(有機フィラー)と、2種類の無機微粒子とを含有する。光学機能層は、電離放射線または紫外線の照射により硬化する基材樹脂と、樹脂粒子と、2種類の無機微粒子とを混合した樹脂組成物を透光性基体に塗布し、塗膜を硬化させることによって形成する。 The optical functional layer contains a base resin, resin particles (organic filler), and two types of inorganic fine particles. The optical functional layer is formed by applying a base resin that is cured by irradiation with ionizing radiation or ultraviolet rays, a resin composition in which resin particles and two kinds of inorganic fine particles are mixed, to a translucent substrate, and curing the coating film. Formed by.
 以下、光学機能層の形成に用いる樹脂組成物の構成成分について説明する。 Hereinafter, the constituent components of the resin composition used for forming the optical functional layer will be described.
 基材樹脂としては、電離放射線または紫外線の照射により硬化する樹脂を使用できる。 As the base resin, a resin that can be cured by irradiation with ionizing radiation or ultraviolet rays can be used.
 電離放射線の照射により硬化する樹脂材料としては、アクリロイル基、メタクリロイル基、アクリロイルオキシ基、メタクリロイルオキシ基等のラジカル重合性官能基や、エポキシ基、ビニルエーテル基、オキセタン基等のカチオン重合性官能基を有するモノマー、オリゴマー、プレポリマーを単独でまたは混合して使用できる。モノマーとしては、アクリル酸メチル、メチルメタクリレート、メトキシポリエチレンメタクリレート、シクロヘキシルメタクリレート、フェノキシエチルメタクリレート、エチレングリコールジメタクリレート、ジペンタエリスリトールヘキサアクリレート、トリメチロールプロパントリメタクリレート、ペンタエリスリトールトリアクリレート等を例示できる。オリゴマー、プレポリマーとしては、ポリエステルアクリレート、ポリウレタンアクリレート、多官能ウレタンアクリレート、エポキシアクリレート、ポリエーテルアクリレート、アルキットアクリレート、メラミンアクリレート、シリコーンアクリレート等のアクリレート化合物、不飽和ポリエステル、テトラメチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、ビスフェノールAジグリシジルエーテルや各種脂環式エポキシ等のエポキシ系化合物、3-エチル-3-ヒドロキシメチルオキセタン、1,4-ビス{[(3-エチル-3-オキセタニル)メトキシ]メチル}ベンゼン、ジ[1-エチル(3-オキセタニル)]メチルエーテル等のオキセタン化合物を例示できる。 Resin materials that are cured by irradiation with ionizing radiation include radical polymerizable functional groups such as acryloyl group, methacryloyl group, acryloyloxy group, and methacryloyloxy group, and cationic polymerizable functional groups such as epoxy group, vinyl ether group, and oxetane group. Monomers, oligomers and prepolymers can be used alone or in admixture. Examples of the monomer include methyl acrylate, methyl methacrylate, methoxypolyethylene methacrylate, cyclohexyl methacrylate, phenoxyethyl methacrylate, ethylene glycol dimethacrylate, dipentaerythritol hexaacrylate, trimethylolpropane trimethacrylate, pentaerythritol triacrylate and the like. As oligomers and prepolymers, polyester acrylate, polyurethane acrylate, polyfunctional urethane acrylate, epoxy acrylate, polyether acrylate, acrylate compounds such as alkit acrylate, melamine acrylate, silicone acrylate, unsaturated polyester, tetramethylene glycol diglycidyl ether, Epoxy compounds such as propylene glycol diglycidyl ether, neopentyl glycol diglycidyl ether, bisphenol A diglycidyl ether and various alicyclic epoxies, 3-ethyl-3-hydroxymethyloxetane, 1,4-bis {[((3- Oxeta such as ethyl-3-oxetanyl) methoxy] methyl} benzene, di [1-ethyl (3-oxetanyl)] methyl ether The compounds can be exemplified.
 上述した樹脂材料は、光重合開始剤の添加を条件として、紫外線の照射により硬化させることができる。光重合開始剤としては、アセトフェノン系、ベンゾフェノン系、チオキサントン系、ベンゾイン、ベンゾインメチルエーテル等のラジカル重合開始剤、芳香族ジアゾニウム塩、芳香族スルホニウム塩、芳香族ヨードニウム塩、メタロセン化合物等のカチオン重合開始剤を単独でまたは混合して使用できる。 The above-described resin material can be cured by irradiation with ultraviolet rays under the condition that a photopolymerization initiator is added. Photopolymerization initiators include radical polymerization initiators such as acetophenone, benzophenone, thioxanthone, benzoin, and benzoin methyl ether, and cationic polymerization starts such as aromatic diazonium salts, aromatic sulfonium salts, aromatic iodonium salts, and metallocene compounds. The agents can be used alone or in combination.
 光学機能層に添加する樹脂粒子(有機フィラー)は、基材樹脂中で凝集して、光学機能層の表面に微細な凹凸構造を形成する。樹脂粒子としては、アクリル樹脂、ポリスチレン樹脂、スチレン-アクリル共重合体、ポリエチレン樹脂、エポキシ樹脂、シリコーン樹脂、ポリフッ化ビニリデン、ポリフッ化エチレン系樹脂等の透光性樹脂材料からなるものを使用できる。樹脂粒子の材料の屈折率は、1.40~1.75であることが好ましい。 Resin particles (organic filler) added to the optical functional layer aggregate in the base resin to form a fine concavo-convex structure on the surface of the optical functional layer. As the resin particles, those made of a light-transmitting resin material such as acrylic resin, polystyrene resin, styrene-acrylic copolymer, polyethylene resin, epoxy resin, silicone resin, polyvinylidene fluoride, and polyvinyl fluoride resin can be used. The refractive index of the resin particle material is preferably 1.40 to 1.75.
 また、樹脂粒子の屈折率をn及び基材樹脂の屈折率nは、以下の条件(α)を満足することが好ましく、以下の条件(β)を満足することがより好ましい。
  |n-n|≧0.025 ・・・(α)
  |n-n|≧0.035 ・・・(β)
Further, the refractive index n f of the resin particles and the refractive index nz of the base resin preferably satisfy the following condition (α), and more preferably satisfy the following condition (β).
| N z −n f | ≧ 0.025 (α)
| N z −n f | ≧ 0.035 (β)
 基材となる樹脂材料の屈折率nと、樹脂粒子の屈折率をnとが、条件(α)を満足しない場合、所望の内部ヘイズを得るためには樹脂粒子の添加量を多くする必要があり、画像鮮明性が悪化する。 And refractive index n z of a resin material as a base material, the refractive index of the resin particles and n f, is not satisfied conditions (alpha), increasing the amount of resin particles to obtain the desired internal haze Necessary, and image sharpness deteriorates.
 樹脂粒子の平均粒径は、0.3~10.0μmであることが好ましく、1.0~7.0μmであることがより好ましい。樹脂粒子の平均粒径が0.3μm未満の場合、防眩性が低下する。一方、樹脂粒子の平均粒径が10.0μmを超えると、光学機能層表面の凹凸高さの面積比を制御できず、耐ギラツキ性が悪化する。 The average particle size of the resin particles is preferably 0.3 to 10.0 μm, and more preferably 1.0 to 7.0 μm. When the average particle diameter of the resin particles is less than 0.3 μm, the antiglare property is lowered. On the other hand, when the average particle diameter of the resin particles exceeds 10.0 μm, the area ratio of the uneven height on the surface of the optical functional layer cannot be controlled, and the glare resistance is deteriorated.
 光学機能層の基材樹脂には、2種類の無機微粒子として、第1の無機微粒子及び第2の無機微粒子を添加する。 The first inorganic fine particles and the second inorganic fine particles are added as two types of inorganic fine particles to the base resin of the optical functional layer.
 第1の無機微粒子としては、コロイダルシリカ、アルミナ、酸化亜鉛を単独でまたは混合して使用できる。第1の無機微粒子を添加することにより、樹脂粒子の過剰な凝集が抑制され、光学機能層の表面に形成される凹凸構造を均一化、すなわち、局所的に凹凸が大きくなることを抑制できる。第1の無機微粒子の添加により、防眩性及び高コントラストを維持したまま、耐ギラツキ性を向上できる。 As the first inorganic fine particles, colloidal silica, alumina, and zinc oxide can be used alone or in combination. By adding the first inorganic fine particles, excessive aggregation of the resin particles can be suppressed, and the uneven structure formed on the surface of the optical functional layer can be made uniform, that is, locally increasing unevenness can be suppressed. By adding the first inorganic fine particles, the glare resistance can be improved while maintaining the antiglare property and the high contrast.
 第1の無機微粒子は、平均粒径が10~100nmの無機ナノ粒子であることが好ましい。第1の無機微粒子としてコロイダルシリカを使用する場合は、平均粒径が20nm程度であることがより好ましく、第1の無機微粒子としてアルミナまたは酸化亜鉛を使用する場合は、平均粒径が40nm程度であることがより好ましい。第1の無機微粒子の添加量は、光学機能層形成用樹脂組成物の全重量に対して0.05~10%であることが好ましく、0.1~5.0%であることがより好ましい。第1の無機微粒子の添加量がこの範囲を外れると、光学機能層表面の凹凸高さの面積比を制御できず、耐ギラツキ性が悪化する。 The first inorganic fine particles are preferably inorganic nanoparticles having an average particle size of 10 to 100 nm. When colloidal silica is used as the first inorganic fine particles, the average particle size is more preferably about 20 nm. When alumina or zinc oxide is used as the first inorganic fine particles, the average particle size is about 40 nm. More preferably. The amount of the first inorganic fine particles added is preferably 0.05 to 10%, more preferably 0.1 to 5.0% with respect to the total weight of the resin composition for forming an optical functional layer. . If the addition amount of the first inorganic fine particles is out of this range, the area ratio of the uneven height on the surface of the optical functional layer cannot be controlled, and the glare resistance deteriorates.
 第2の無機微粒子は、平均粒径が10~200nmの無機ナノ粒子であることが好ましい。第2の無機微粒子の添加量は、0.1~5.0%であることが好ましい。第2の無機微粒子としては、膨潤性粘土を用いることができる。膨潤性粘土は、陽イオン交換能を有し、該膨潤性粘土の層間に溶媒を取り込んで膨潤するものであればよく、天然物であっても合成物(置換体、誘導体を含む)であってもよい。また、天然物と合成物との混合物であってもよい。膨潤性粘土としては、例えば、雲母、合成雲母、バーミキュライト、モンモリロナイト、鉄モンモリロナイト、バイデライト、サポナイト、ヘクトライト、スチーブンサイト、ノントロナイト、マガディアイト、アイラライト、カネマイト、層状チタン酸、スメクタイト、合成スメクタイト等を挙げることができる。これらの膨潤性粘土は、1種を使用してもよいし、複数を混合して使用してもよい。 The second inorganic fine particles are preferably inorganic nanoparticles having an average particle diameter of 10 to 200 nm. The addition amount of the second inorganic fine particles is preferably 0.1 to 5.0%. As the second inorganic fine particles, swellable clay can be used. The swellable clay is not particularly limited as long as it has a cation exchange capacity and swells by taking in a solvent between the layers of the swellable clay, even if it is a natural product, it is a synthetic product (including substitution products and derivatives). May be. Moreover, the mixture of a natural product and a synthetic product may be sufficient. Examples of the swellable clay include mica, synthetic mica, vermiculite, montmorillonite, iron montmorillonite, beidellite, saponite, hectorite, stevensite, nontronite, magadiite, isallite, kanemite, layered titanic acid, smectite, and synthetic smectite. Etc. These swellable clays may be used alone or in combination.
 第2の無機微粒子としては、層状有機粘土がより好ましい。本発明において、層状有機粘土とは、膨潤性粘土の層間に有機オニウムイオンを導入したものをいう。有機オニウムイオンは、膨潤性粘土の陽イオン交換性を利用して有機化することができるものであれば制限されない。第2の無機微粒子として、例えば、合成スメクタイト(層状有機粘土鉱物)を使用できる。合成スメクタイトは、光学機能層形成用樹脂組成物の粘性を増加させる増粘剤として機能する。増粘剤としての合成スメクタイトの添加は、樹脂粒子及び第1の無機微粒子の沈降を抑制して、光学機能層の表面の凹凸構造形成に寄与する。 As the second inorganic fine particles, layered organic clay is more preferable. In the present invention, the layered organic clay refers to an organic onium ion introduced between the layers of the swellable clay. The organic onium ion is not limited as long as it can be organicized using the cation exchange property of the swellable clay. As the second inorganic fine particle, for example, synthetic smectite (layered organic clay mineral) can be used. Synthetic smectite functions as a thickener that increases the viscosity of the optical functional layer forming resin composition. Addition of the synthetic smectite as a thickener suppresses the sedimentation of the resin particles and the first inorganic fine particles, and contributes to the formation of an uneven structure on the surface of the optical functional layer.
 また、第1の無機微粒子と第2の無機微粒子とを併用した場合、光学機能層中で第1の無機微粒子と第2の無機微粒子が凝集体を形成する。この凝集体が樹脂粒子の凝集を抑制し、光学機能層表面の凹凸形状の凹凸高さが平準化されることで、光学機能層表面での光の散乱が均一化され、耐ギラツキ性を向上できる。 Further, when the first inorganic fine particles and the second inorganic fine particles are used in combination, the first inorganic fine particles and the second inorganic fine particles form aggregates in the optical functional layer. This agglomerate suppresses the aggregation of resin particles, and the unevenness height of the uneven shape on the surface of the optical functional layer is leveled, so that the scattering of light on the surface of the optical functional layer is made uniform and the glare resistance is improved. it can.
 また、光学機能層形成用の樹脂組成物には、レベリング剤を添加しても良い。レベリング剤は、乾燥過程の塗膜の表面に配向して、塗膜の表面張力を均一化し、塗膜の表面欠陥を低減させる機能を有する。 Further, a leveling agent may be added to the resin composition for forming the optical functional layer. The leveling agent has a function of being oriented on the surface of the coating film in the drying process, uniforming the surface tension of the coating film, and reducing surface defects of the coating film.
 更に、光学機能層形成用の樹脂組成物には、適宜有機溶剤を添加しても良い。有機溶剤としては、アルコール系、エステル系、ケトン系、エーテル系、芳香族炭化水素等を例示できる。 Furthermore, an organic solvent may be appropriately added to the resin composition for forming the optical functional layer. Examples of the organic solvent include alcohols, esters, ketones, ethers, and aromatic hydrocarbons.
 光学機能層の膜厚は、1.0~12.0μmであることが好ましく、3.0~10.0μmであることが更に好ましい。光学機能層の膜厚が1μm未満の場合、酸素阻害による硬化不良を生じ、光学機能層の耐擦傷性が低下しやすくなる。一方、光学機能層の膜厚が12.0μmを超えると、基材樹脂層の硬化収縮によるカールが強くなるため好ましくない。 The film thickness of the optical functional layer is preferably 1.0 to 12.0 μm, and more preferably 3.0 to 10.0 μm. When the film thickness of the optical functional layer is less than 1 μm, curing failure due to oxygen inhibition occurs, and the scratch resistance of the optical functional layer tends to be lowered. On the other hand, when the film thickness of the optical functional layer exceeds 12.0 μm, curling due to curing shrinkage of the base resin layer becomes strong, which is not preferable.
 また、光学機能層の膜厚は、樹脂粒子の平均粒径の110~300%であることが好ましく、120~250%であることがより好ましい。光学機能層の膜厚が樹脂粒子の平均粒径の110%未満の場合、白味の際立った品位の低い防眩性となってしまう。一方、光学機能層の膜厚が樹脂粒子の平均粒径の300%を超えると、防眩性が不足するため好ましくない。 Further, the film thickness of the optical functional layer is preferably 110 to 300%, more preferably 120 to 250% of the average particle diameter of the resin particles. When the film thickness of the optical functional layer is less than 110% of the average particle diameter of the resin particles, the antiglare property with low whiteness and outstanding quality is obtained. On the other hand, when the film thickness of the optical functional layer exceeds 300% of the average particle diameter of the resin particles, the antiglare property is insufficient, which is not preferable.
 また、本実施形態に係る光学積層体は、内部ヘイズX及び全ヘイズYは、以下の条件(1)~(4)を同時に満足する。
  Y>X ・・・(1)
  Y≦X+17 ・・・(2)
  Y≦57 ・・・(3)
  19≦X≦40 ・・・(4)
In the optical laminate according to this embodiment, the internal haze X and the total haze Y satisfy the following conditions (1) to (4) at the same time.
Y> X (1)
Y ≦ X + 17 (2)
Y ≦ 57 (3)
19 ≦ X ≦ 40 (4)
 内部ヘイズXが条件式(4)を満足せず、19%未満の場合、耐ギラツキ性が不足する。一方、内部ヘイズXが条件式(4)を満足せず、40%を超える場合、コントラストが悪化する。 When the internal haze X does not satisfy the conditional expression (4) and is less than 19%, the glare resistance is insufficient. On the other hand, when the internal haze X does not satisfy the conditional expression (4) and exceeds 40%, the contrast deteriorates.
 内部ヘイズXが以下の条件式(4)’を満足することがより好ましい。内部ヘイズXが条件式(4)’を満足する場合、耐ギラツキ性とコントラストとの両方をより向上させることができる。
  25≦X≦35 ・・・(4)’
It is more preferable that the internal haze X satisfies the following conditional expression (4) ′. When the internal haze X satisfies the conditional expression (4) ′, both the glare resistance and the contrast can be further improved.
25 ≦ X ≦ 35 (4) ′
 また、全ヘイズYが条件式(3)を満足せず、57%を超える場合、光学機能層表面の凹凸が大きく、耐ギラツキ性が不足する。 Further, when the total haze Y does not satisfy the conditional expression (3) and exceeds 57%, the surface of the optical functional layer has large irregularities and the glare resistance is insufficient.
 本実施形態に係る光学積層体の透過像鮮明度は、0.5mm幅の光学くしを用いて測定した測定値が10~50%であることが好ましく、15~45%であることがより好ましい。透過像鮮明度が10%未満の場合、耐ギラツキ性が悪化する。一方、透過像鮮明度が50%を超えると、防眩性が悪化する。 The transmitted image definition of the optical laminate according to this embodiment is preferably 10 to 50%, more preferably 15 to 45%, as measured using a 0.5 mm wide optical comb. . When the transmitted image definition is less than 10%, the glare resistance is deteriorated. On the other hand, when the transmitted image clarity exceeds 50%, the antiglare property deteriorates.
 本実施形態に係る光学機能層表面の凹凸形状を光干渉方式で計測した場合、凹凸高さが0.4μm以上である部分の面積が3.5%以下である。光学機能層表面の凹凸構造のうち、凹凸高さが0.4μm以上である部分の面積が3.5%を超えると、局所的に凹凸が大きい部分が多く分布するため、200ppi以上の画像表示装置の防眩性フィルムとして光学積層体を用いた場合に耐ギラツキ性が悪化する。 When the uneven shape on the surface of the optical functional layer according to the present embodiment is measured by the optical interference method, the area of the portion where the uneven height is 0.4 μm or more is 3.5% or less. Of the concavo-convex structure on the surface of the optical functional layer, when the area of the concavo-convex height of 0.4 μm or more exceeds 3.5%, a large portion of locally concavo-convex parts is distributed, so that 200 ppi or higher image display When an optical laminate is used as the antiglare film of the device, the glare resistance is deteriorated.
 従来、過剰なフィラー凝集を抑制するために、塗料粘度を調整する手法や、塗工時の塗料固形分濃度を高くする手法や、揮発速度の速い溶剤を使用して乾燥時の対流を抑制する手法が採用されてきたが、これらの手法を採用した場合、塗工ムラなどの面状故障が発生しやすくなるという問題がある。これに対して、上記の実施形態で説明したように、2種類の無機微粒子を添加する方法であれば、塗料物性や乾燥速度に影響を与えないため、塗工適性を維持したまま耐ギラツキ性の向上が可能となる。 Conventionally, in order to suppress excessive filler agglomeration, the method of adjusting the viscosity of paint, the method of increasing the concentration of paint solids during coating, and the use of a solvent with a high volatilization rate to suppress convection during drying Although methods have been adopted, there is a problem that surface failures such as coating unevenness tend to occur when these methods are adopted. On the other hand, as described in the above embodiment, since the method of adding two kinds of inorganic fine particles does not affect the physical properties of the paint and the drying speed, the glare resistance is maintained while maintaining the coating suitability. Can be improved.
 図10は、実施形態に係る偏光板の概略構成を示す断面図である。偏光板110は、光学積層体100と、偏光フィルム11とを備える。光学積層体100は、図9に示したものであり、透光性基体1の光学機能層2が設けられていない側の面に、偏光フィルム(偏光基体)11が設けられている。偏光フィルム11は、透明基材3と偏光層4と透明基材5とをこの順に積層したものである。透明基材3及び5、偏光層4の材質は特に限定されるものではなく、通常、偏光フィルムに使用されるものを適宜用いることができる。 FIG. 10 is a cross-sectional view showing a schematic configuration of the polarizing plate according to the embodiment. The polarizing plate 110 includes the optical laminate 100 and the polarizing film 11. The optical laminated body 100 is as shown in FIG. 9, and a polarizing film (polarizing substrate) 11 is provided on the surface of the translucent substrate 1 on which the optical functional layer 2 is not provided. The polarizing film 11 is obtained by laminating a transparent substrate 3, a polarizing layer 4, and a transparent substrate 5 in this order. The materials for the transparent substrates 3 and 5 and the polarizing layer 4 are not particularly limited, and those usually used for polarizing films can be used as appropriate.
 図11は、実施形態に係る表示装置の概略構成を示す断面図である。表示装置120は、光学積層体100と、偏光フィルム11と、液晶セル13と、偏光フィルム(偏光基体)12と、バックライトユニット14とをこの順に積層したものである。偏光フィルム12は、透明基材6と偏光層7と透明基材8とをこの順に積層したものである。透明基材6及び8、偏光層7の材質は特に限定されるものではなく、通常、偏光フィルムに使用されるものを適宜用いることができる。液晶セル13は、透明電極を有する一対の透明基材の間に液晶分子が封入された液晶パネルと、カラーフィルタとを備え、透明電極間に印可された電圧に応じて液晶分子の配向を変化させることにより、各画素の光の透過率を制御して像を形成する装置である。バックライトユニット14は、光源と光拡散板と(いずれも図示せず)を備え、光源から出射された光を均一に拡散させて出射面から出射する照明装置である。 FIG. 11 is a cross-sectional view illustrating a schematic configuration of the display device according to the embodiment. The display device 120 is obtained by laminating the optical laminate 100, the polarizing film 11, the liquid crystal cell 13, the polarizing film (polarizing substrate) 12, and the backlight unit 14 in this order. The polarizing film 12 is obtained by laminating a transparent substrate 6, a polarizing layer 7, and a transparent substrate 8 in this order. The materials of the transparent substrates 6 and 8 and the polarizing layer 7 are not particularly limited, and those usually used for a polarizing film can be appropriately used. The liquid crystal cell 13 includes a liquid crystal panel in which liquid crystal molecules are sealed between a pair of transparent substrates having transparent electrodes, and a color filter, and changes the orientation of the liquid crystal molecules according to the voltage applied between the transparent electrodes. By controlling the light transmittance, the light transmittance of each pixel is controlled to form an image. The backlight unit 14 includes a light source and a light diffusing plate (both not shown), and is an illumination device that uniformly diffuses light emitted from the light source and emits it from the emission surface.
 尚、図11に示した表示装置120は、拡散フィルム、プリズムシート、輝度向上フィルムや、液晶セルや偏光板の位相差を補償するための位相差フィルム、タッチセンサを更に備えていても良い。 Note that the display device 120 illustrated in FIG. 11 may further include a diffusion film, a prism sheet, a brightness enhancement film, a retardation film for compensating for a retardation of a liquid crystal cell or a polarizing plate, and a touch sensor.
 本実施形態に係る光学積層体は、ギラツキを抑制する光学機能層に加えて、更に、低屈折率層等の屈折率調整層、帯電防止層、防汚層の少なくとも1層を有していても良い。 The optical layered body according to the present embodiment further includes at least one layer of a refractive index adjusting layer such as a low refractive index layer, an antistatic layer, and an antifouling layer in addition to the optical functional layer for suppressing glare. Also good.
 低屈折率層は、ギラツキを抑制する光学機能層の上に設けられ、表面の屈折率を低下させることにより反射率を低減するための機能層である。低屈折率層は、ポリエステルアクリレート系モノマー、エポキシアクリレート系モノマー、ウレタンアクリレート系モノマー、ポリオールアクリレート系モノマー等の電離放射線硬化性材料と重合開始剤とを含む塗液を塗布し、塗膜を重合により硬化させて形成できる。低屈折率層には、低屈折粒子としては、LiF、MgF、3NaF・AlFまたはAlF(いずれも、屈折率1.4)、または、NaAlF(氷晶石、屈折率1.33)等の低屈折材料からなる低屈折率微粒子を分散させても良い。また、低屈折率微粒子としては、粒子内部に空隙を有する粒子を好適に用いることができる。粒子内部に空隙を有する粒子にあっては、空隙の部分を空気の屈折率(≒1)とすることができるため、非常に低い屈折率を備える低屈折率粒子とすることができる。具体的には、内部に空隙を有する低屈折率シリカ粒子を使用することで、屈折率を下げることができる。 The low refractive index layer is a functional layer that is provided on the optical functional layer that suppresses glare and reduces the reflectance by reducing the refractive index of the surface. The low refractive index layer is formed by applying a coating solution containing an ionizing radiation curable material such as polyester acrylate monomer, epoxy acrylate monomer, urethane acrylate monomer, polyol acrylate monomer and a polymerization initiator, and polymerizing the coating film. It can be formed by curing. For the low refractive index layer, the low refractive particles include LiF, MgF, 3NaF.AlF or AlF (all with a refractive index of 1.4), or Na 3 AlF 6 (cryolite, with a refractive index of 1.33). Low refractive index fine particles made of a low refractive material such as the above may be dispersed. As the low refractive index fine particles, particles having voids inside the particles can be suitably used. In the case of particles having voids inside the particles, the voids can be made to have a refractive index of air (≈1), so that they can be low refractive index particles having a very low refractive index. Specifically, the refractive index can be lowered by using low refractive index silica particles having voids inside.
 帯電防止層は、ポリエステルアクリレート系モノマー、エポキシアクリレート系モノマー、ウレタンアクリレート系モノマー、ポリオールアクリレート系モノマー等の電離放射線硬化性材料と、重合開始剤と、耐電防止剤とを含む塗液を塗布し、重合により硬化させることによって形成できる。帯電防止剤としては、例えば、アンチモンをドープした酸化錫(ATO)、スズをドープした酸化インジウム(ITO)等の金属酸化物系微粒子、高分子型導電性組成物や、4級アンモニウム塩等を使用できる。帯電防止層は、光学積層体の最表面に設けられても良いし、ギラツキを抑制する光学機能層と透光性基体との間に設けられても良い。 The antistatic layer is coated with a coating liquid containing an ionizing radiation curable material such as a polyester acrylate monomer, an epoxy acrylate monomer, a urethane acrylate monomer, a polyol acrylate monomer, a polymerization initiator, and an antistatic agent. It can be formed by curing by polymerization. Examples of the antistatic agent include antimony-doped tin oxide (ATO), metal oxide fine particles such as tin-doped indium oxide (ITO), polymer-type conductive compositions, and quaternary ammonium salts. Can be used. The antistatic layer may be provided on the outermost surface of the optical layered body, or may be provided between the optical functional layer that suppresses glare and the translucent substrate.
 防汚層は、光学積層体の最表面に設けられ、光学積層体に撥水性及び/または撥油性を付与することにより、防汚性を高めるものである。防汚層は、珪素酸化物、フッ素含有シラン化合物、フルオロアルキルシラザン、フルオロアルキルシラン、フッ素含有珪素系化合物、パーフルオロポリエーテル基含有シランカップリング剤等をドライコーティングまたはウェットコーティングすることにより形成できる。 The antifouling layer is provided on the outermost surface of the optical laminate and enhances the antifouling property by imparting water repellency and / or oil repellency to the optical laminate. The antifouling layer can be formed by dry coating or wet coating silicon oxide, fluorine-containing silane compound, fluoroalkylsilazane, fluoroalkylsilane, fluorine-containing silicon-based compound, perfluoropolyether group-containing silane coupling agent, etc. .
 上述した低屈折率層、帯電防止層、防汚層の他に、または、低屈折率層、帯電防止層、防汚層に加えて、赤外線吸収層、紫外線吸収層、色補正層等の少なくとも1層を設けても良い。 In addition to the low refractive index layer, antistatic layer and antifouling layer described above, or in addition to the low refractive index layer, antistatic layer and antifouling layer, at least an infrared absorbing layer, an ultraviolet absorbing layer, a color correction layer, etc. One layer may be provided.
 以下、実施形態に係る光学積層体を具体的に実施した実施例を説明する。 Hereinafter, examples in which the optical layered body according to the embodiment is specifically implemented will be described.
 (光学積層体の製造方法)
 透光性基体として、厚み40μmのトリアセチルセルロースフィルムを使用した。透光性基体上に、以下の光学機能層形成用塗工液を塗布し、乾燥(溶媒を揮発)させた後、塗膜を重合により硬化させることによって、光学機能層を形成した。
(Method for producing optical laminate)
A 40 μm thick triacetyl cellulose film was used as the translucent substrate. An optical functional layer was formed by applying the following coating solution for forming an optical functional layer on a translucent substrate, drying (volatilizing the solvent), and curing the coating film by polymerization.
[光学機能層形成用塗工液]
・基材樹脂:UV/EB硬化性樹脂 ライトアクリレートPE-3A(ペンタエリスリトールトリアクリレート、共栄社化学株式会社製)、屈折率1.52
・樹脂フィラー:
 <実施例1~10、比較例1~17>
 架橋スチレン単分散粒子 SX350H(綜研化学株式会社製) 平均粒径3.5μm、屈折率1.595
 <実施例11>
 スチレン単分散フィラー SSX302ABE(積水化成品工業株式会社製) 平均粒径2.0μm、屈折率1.595
 <実施例12>
 架橋スチレン単分散粒子 SX500H(綜研化学株式会社製) 平均粒径5.0μm、屈折率1.595
・コロイダルシリカ:オルガノシリカゾル MEK-ST(日産化学工業株式会社製)
・合成スメクタイト:ルーセンタイト SAN(コープケミカル株式会社製)
・フッ素系レベリング剤:メガファック F-471(DIC株式会社製) 0.1%
・溶剤:トルエン
[Coating liquid for forming optical functional layer]
Base resin: UV / EB curable resin Light acrylate PE-3A (pentaerythritol triacrylate, manufactured by Kyoeisha Chemical Co., Ltd.), refractive index 1.52
・ Resin filler:
<Examples 1 to 10, Comparative Examples 1 to 17>
Cross-linked styrene monodisperse particles SX350H (manufactured by Soken Chemical Co., Ltd.) Average particle size 3.5 μm, refractive index 1.595
<Example 11>
Styrene monodisperse filler SSX302ABE (manufactured by Sekisui Plastics Co., Ltd.) Average particle size 2.0 μm, refractive index 1.595
<Example 12>
Cross-linked styrene monodisperse particles SX500H (manufactured by Soken Chemical Co., Ltd.) Average particle size 5.0 μm, refractive index 1.595
Colloidal silica: Organosilica sol MEK-ST (manufactured by Nissan Chemical Industries, Ltd.)
・ Synthetic smectite: Lucentite SAN (Coop Chemical Co., Ltd.)
・ Fluorine-based leveling agent: MegaFuck F-471 (manufactured by DIC Corporation) 0.1%
・ Solvent: Toluene
 尚、樹脂粒子(有機フィラー)、第1の無機微粒子(コロイダルシリカ)及び第2の無機微粒子(合成スメクタイト)の光学機能層形成用塗工液への添加量は以下の実施例及び比較例の説明で後述する。また、各成分の添加量は、光学機能層形成用塗工液の全固形分質量に占める割合(質量%)である。ここで、光学機能層形成用塗工液の全固形分とは、溶剤を除く成分を指す。したがって、光学機能層形成用塗工液の全固形分中の樹脂粒子、第1の無機微粒子、第2の無機微粒子の配合割合(質量%)と、光学機能層形成用塗工液の硬化膜である光学機能層中の樹脂粒子、第1の無機微粒子、第2の無機微粒子の含有割合(質量%)とは等しい。 The addition amount of the resin particles (organic filler), the first inorganic fine particles (colloidal silica) and the second inorganic fine particles (synthetic smectite) to the coating solution for forming the optical functional layer is the same as in the following examples and comparative examples. It will be described later in the description. Moreover, the addition amount of each component is the ratio (mass%) which occupies for the total solid content mass of the coating liquid for optical function layer formation. Here, the total solid content of the coating solution for forming an optical functional layer refers to a component excluding the solvent. Therefore, the blending ratio (mass%) of the resin particles, the first inorganic fine particles, and the second inorganic fine particles in the total solid content of the coating liquid for forming the optical functional layer, and the cured film of the coating liquid for forming the optical functional layer The content ratio (% by mass) of the resin particles, the first inorganic fine particles, and the second inorganic fine particles in the optical functional layer is the same.
 光学積層体の表面粗さ、透過像鮮明度、ヘイズ値及び膜厚の測定方法は以下の通りである。 The method for measuring the surface roughness, transmitted image definition, haze value, and film thickness of the optical laminate is as follows.
[表面粗さ]
 算術平均粗さRa及び最大高さRz、輪郭曲線要素の平均長さRSmは、JIS B0601:2001に従い、表面粗さ測定器(サーフコーダSE1700α、株式会社小阪研究所製)を用いて測定した。平均傾斜角度は、ASEM95に従い、上記の表面粗さ測定器を用いて測定した平均傾斜を求め、次式に従って平均傾斜角度を算出した。
  平均傾斜角度=arctan(平均傾斜)
[Surface roughness]
The arithmetic average roughness Ra, the maximum height Rz, and the average length RSm of the contour curve elements were measured according to JIS B0601: 2001 using a surface roughness measuring instrument (Surfcoder SE1700α, manufactured by Kosaka Laboratory Ltd.). The average inclination angle was determined according to ASEM95 using the surface roughness measuring instrument as described above, and the average inclination angle was calculated according to the following equation.
Average inclination angle = arctan (average inclination)
 [透過像鮮明度]
 透過像鮮明度は、JIS K7105に従い、写像性測定器(ICM-1T、スガ試験器株式会社製)を用いて、光学くし幅0.5mmで測定した。
[Transparent image clarity]
The transmitted image definition was measured according to JIS K7105 using an image clarity measuring device (ICM-1T, manufactured by Suga Test Instruments Co., Ltd.) with an optical comb width of 0.5 mm.
 [ヘイズ値]
 ヘイズ値は、JIS K7105に従い、ヘイズメーター(NDH2000、日本電色工業株式会社製)を用いて測定した。ここで、光学積層フィルムのヘイズ値を全ヘイズとした。また、光学積層フィルムの微細凹凸形状が設けられた表面に粘着剤付き透明性シートを貼り合わせて測定したヘイズ値から、粘着剤付き透明性シートのヘイズ値を引いた値を、内部ヘイズとした。尚、粘着材付き透明性シートとして、ポリエチレンテレフタレートフィルム(厚さ38μm)に、アクリル系粘着材(厚さ10μm)を塗布したものを用いた。
[Haze value]
The haze value was measured using a haze meter (NDH2000, manufactured by Nippon Denshoku Industries Co., Ltd.) according to JIS K7105. Here, the haze value of the optical laminated film was defined as the total haze. In addition, the value obtained by subtracting the haze value of the transparent sheet with adhesive from the haze value measured by pasting the transparent sheet with adhesive on the surface provided with the fine uneven shape of the optical laminated film was defined as the internal haze. . In addition, as the transparent sheet with an adhesive material, a polyethylene terephthalate film (thickness 38 μm) coated with an acrylic adhesive material (thickness 10 μm) was used.
 [膜厚]
 光学機能層の膜厚は、リニアゲージ(D-10HS、株式会社尾崎製作所製)を用いて測定した。
[Film thickness]
The film thickness of the optical functional layer was measured using a linear gauge (D-10HS, manufactured by Ozaki Manufacturing Co., Ltd.).
 (樹脂粒子と内部ヘイズとの関係)
 まず、耐ギラツキ性及びコントラストの両方を良好とする内部ヘイズ(19~40%)を得るために必要な樹脂粒子(有機フィラー)の添加量を調べた。樹脂粒子及び2種類の無機微粒子を表1に記載の添加量で添加した樹脂塗工液を調整し、上述した作製方法にしたがって光学積層体を作製した。作製した光学積層体の内部ヘイズを求めた。
(Relationship between resin particles and internal haze)
First, the amount of resin particles (organic filler) added to obtain an internal haze (19 to 40%) that improves both glare resistance and contrast was examined. A resin coating solution in which resin particles and two kinds of inorganic fine particles were added in the addition amounts shown in Table 1 was prepared, and an optical laminate was produced according to the production method described above. The internal haze of the produced optical laminate was determined.
 表1に、樹脂粒子及び2種類の無機微粒子の添加量と、得られた光学積層体の内部ヘイズの値を示す。 Table 1 shows the amount of resin particles and two types of inorganic fine particles added, and the internal haze value of the obtained optical laminate.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 図1は、表1に記載の樹脂粒子(有機フィラー)の添加量と、得られた光学積層体の内部ヘイズとの関係をプロットしたグラフである。図1に示す直線は、プロットから得られる回帰直線である。 FIG. 1 is a graph plotting the relationship between the amount of resin particles (organic filler) added in Table 1 and the internal haze of the obtained optical laminate. The straight line shown in FIG. 1 is a regression line obtained from the plot.
 図1に示す回帰直線から、基材樹脂と樹脂粒子との屈折率差が0.075である場合、内部ヘイズの値を19~40%とするためには、樹脂粒子の添加量を7~15%とすれば良いことが分かる。 From the regression line shown in FIG. 1, when the difference in refractive index between the base resin and the resin particles is 0.075, in order to make the internal haze value 19 to 40%, the addition amount of the resin particles is 7 to It can be seen that 15% is sufficient.
 (実施例1~12、比較例1~17)
 次に、樹脂粒子及び2種類の無機微粒子を表2に記載の添加量で添加した光学機能層形成用塗工液を用いて、実施例1~12及び比較例1~17に係る光学積層体を作製した。
(Examples 1 to 12, Comparative Examples 1 to 17)
Next, optical laminates according to Examples 1 to 12 and Comparative Examples 1 to 17 were used by using a coating liquid for forming an optical functional layer in which resin particles and two types of inorganic fine particles were added in the addition amounts shown in Table 2. Was made.
 作製した実施例1~12及び比較例1~17に係る光学積層体のそれぞれについて、上述した試験方法により、ヘイズ値、透過像鮮明度及び膜厚を測定した。 For each of the produced optical laminates according to Examples 1 to 12 and Comparative Examples 1 to 17, the haze value, transmitted image definition, and film thickness were measured by the test methods described above.
(耐ギラツキ性の評価方法と評価基準)
 耐ギラツキ性は、各実施例及び各比較例の光学積層体を透明な粘着層を介して液晶モニター(iPad3(第3世代) アップルインコーポレイテッド製、264ppi)の画面表面に貼り合わせた後、液晶モニターを緑色表示状態にし、暗室下で画面表面の中心から垂直に50cm離れた場所より液晶モニターを見た場合のギラツキの有無を任意の100人の目視判定により評価した。評価結果は、ギラツキを感じなかった人が70人以上の場合を「○」、30人以上70人未満の場合を「△」、30人未満の場合を「×」とした。
(Evaluation method and evaluation criteria for glare resistance)
The glare resistance is determined by bonding the optical layered body of each example and each comparative example to the screen surface of a liquid crystal monitor (iPad3 (3rd generation) Apple Inc., 264 ppi) through a transparent adhesive layer. The monitor was put in a green display state, and the presence or absence of glare when the liquid crystal monitor was viewed from a place 50 cm vertically away from the center of the screen surface in a dark room was evaluated by visual judgment of 100 arbitrary persons. The evaluation results were “◯” when the number of people who did not feel glare was 70 or more, “Δ” when the number was 30 or more and less than 70, and “X” when the number was less than 30.
(防眩性の評価方法と評価基準)
 防眩性は各実施例及び各比較例の光学積層体を透明な粘着層を介して黒色アクリル板(スミペックス960 住友化学株式会社製)に貼り合せた後、黒アクリル板の中心から垂直に50cm離れた場所より照度250lxの条件下で見た場合の自分の像(顔)の黒アクリル板への写り込みの有無を任意の100人の目視判定により評価した。評価結果は、写り込みを感じなかった人が70人以上の場合を「○」、30人以上70人未満の場合を「△」、30人未満の場合を「×」とした。
(Anti-glare evaluation method and evaluation criteria)
Anti-glare property is 50 cm vertically from the center of the black acrylic plate after the optical laminates of the examples and comparative examples are bonded to a black acrylic plate (Sumipex 960, manufactured by Sumitomo Chemical Co., Ltd.) via a transparent adhesive layer. The presence / absence of reflection of his / her image (face) on a black acrylic plate when viewed from a distant place under the condition of illuminance of 250 lx was evaluated by visual judgment of arbitrary 100 people. The evaluation result was “◯” when the number of people who did not feel the reflection was 70 or more, “△” when the number was 30 or more and less than 70, and “X” when the number was less than 30.
(輝度比の評価方法と評価基準)
 輝度比は、各実施例及び各比較例の光学積層体と透光性基体を透明な粘着層を介して液晶モニター(iPad3(第3世代) アップルインコーポレイテッド製、264ppi)の画面表面に貼り合わせた後、液晶モニターを白色表示状態にし、暗室下で画面表面の中心から垂直に70cm離れた場所より分光放射計(SU-UL1R 株式会社トプコン製)にて輝度を測定した。透光性基体の輝度を100%として、93%以上の場合を「○」、93%未満の場合を「×」とした。
(Brightness ratio evaluation method and evaluation criteria)
The brightness ratio is obtained by bonding the optical layered body of each example and each comparative example and the translucent substrate to the screen surface of a liquid crystal monitor (iPad3 (3rd generation) Apple Inc., 264 ppi) through a transparent adhesive layer. After that, the liquid crystal monitor was set to a white display state, and the luminance was measured with a spectroradiometer (SU-UL1R manufactured by Topcon Co., Ltd.) from a location 70 cm away from the center of the screen surface in a dark room. When the luminance of the translucent substrate is 100%, the case of 93% or more is “◯”, and the case of less than 93% is “x”.
 表2に、樹脂粒子及び2種類の無機微粒子の添加量と、得られた光学積層体の全ヘイズ、内部ヘイズ、透過像鮮明度及び膜厚の測定値と、耐ギラツキ性、防眩性及び輝度比の評価結果とを示す。 In Table 2, the addition amount of resin particles and two kinds of inorganic fine particles, the total haze, internal haze, transmitted image definition and film thickness of the obtained optical laminate, glare resistance, antiglare and The evaluation result of luminance ratio is shown.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 実施例1~12に係る光学積層体の全ヘイズ(Y)及び内部ヘイズ(X)は、上述した条件式(1)~(4)を全て満足し、内部ヘイズ(X)が19~40%の範囲内であった。また、透過像鮮明度は、より好ましい15~45%の範囲内であった。そのため、実施例1~12に係る光学積層体は、耐ギラツキ性、防眩性及び輝度比のいずれも良好であった。 The total haze (Y) and internal haze (X) of the optical laminates according to Examples 1 to 12 satisfy all the conditional expressions (1) to (4) described above, and the internal haze (X) is 19 to 40%. It was in the range. Further, the transmitted image definition was more preferably in the range of 15 to 45%. Therefore, the optical laminates according to Examples 1 to 12 were good in all of the glare resistance, antiglare property and luminance ratio.
 これに対して、比較例1及び2に係る光学積層体では、内部ヘイズが19%未満となったため、耐ギラツキ性が不十分であった。また、比較例2に係る光学積層体では、透過像鮮明度が50%を超えたため、防眩性も不十分であった。 On the other hand, in the optical laminates according to Comparative Examples 1 and 2, the internal haze was less than 19%, and thus the glare resistance was insufficient. Moreover, in the optical laminated body which concerns on the comparative example 2, since the transmitted image clarity exceeded 50%, anti-glare property was also inadequate.
 比較例4、5、7、8及び比較例10~12に係る光学積層体では、いずれも透過像鮮明度が50%を超えたことにより、防眩性が不十分であった。 In the optical laminates according to Comparative Examples 4, 5, 7, and 8 and Comparative Examples 10 to 12, the antiglare property was insufficient because the transmitted image clarity exceeded 50%.
 比較例13~17に係る光学積層体では、樹脂粒子の添加量の増加により内部ヘイズが40%を超え、いずれも輝度比が不十分であった。これに加え、比較例13~16に係る光学積層体では、全ヘイズが57%を越えており、表面凹凸が大きく、耐ギラツキ性が不十分であった。更に、比較例13~15に係る光学積層体では、透過像鮮明度が10%未満となったことによっても、耐ギラツキ性が悪化した。 In the optical laminates according to Comparative Examples 13 to 17, the internal haze exceeded 40% due to the increase in the amount of resin particles added, and the luminance ratio was insufficient in all cases. In addition, in the optical laminates according to Comparative Examples 13 to 16, the total haze exceeded 57%, the surface unevenness was large, and the glare resistance was insufficient. Further, in the optical laminates according to Comparative Examples 13 to 15, the glare resistance deteriorated even when the transmitted image definition was less than 10%.
 第1の無機微粒子としてコロイダルシリカを添加していない比較例3、6及び9に係る光学積層体は、ヘイズ値及び透過像鮮明度のいずれも上述した好ましい範囲を満足しているにもかかわらず、高精細な画像表示装置(264ppi)と組み合わせた場合に耐ギラツキ性が悪化した。これは、比較例3、6及び9に係る光学積層体の光学機能層表面に形成された凹凸構造のうち、隣接する凹凸高さが0.4μm以上の部分の面積が3.5%を超えていることによる。この点の詳細については後述する。 The optical laminates according to Comparative Examples 3, 6 and 9 in which colloidal silica is not added as the first inorganic fine particles, although both the haze value and the transmitted image definition satisfy the above-described preferable ranges. When combined with a high-definition image display device (264 ppi), the glare resistance deteriorated. This is because, in the uneven structure formed on the surface of the optical functional layer of the optical laminate according to Comparative Examples 3, 6, and 9, the area of the adjacent uneven height of 0.4 μm or more exceeds 3.5%. It depends on. Details of this point will be described later.
 図2は、表2に示した実施例1~12及び比較例1~17における樹脂粒子の添加量と、コロイダルシリカの添加量とをプロットしたグラフである。図2では、実施例1~12を黒丸でプロットし、比較例1~17を×印でプロットしている。 FIG. 2 is a graph plotting the amount of resin particles added and the amount of colloidal silica added in Examples 1 to 12 and Comparative Examples 1 to 17 shown in Table 2. In FIG. 2, Examples 1 to 12 are plotted with black circles, and Comparative Examples 1 to 17 are plotted with crosses.
 図2に示すように、実施例1~12における樹脂粒子の添加量及びコロイダルシリカの添加量のプロットが、図2の実線で示す直線以下の領域(ただし、横軸上を除く)であって、かつ、樹脂粒子の添加量が7~15%である領域内にある場合に、200ppi以上の高精細な画像表示装置の防眩性フィルムとして用いた場合でも、耐ギラツキ性と防眩性とコントラストとの全てにおいて優れた性能を得られることが確認された。つまり、光学機能層形成用樹脂組成物中の樹脂粒子の含有量をA(%)とし、コロイダルシリカの含有量をB(%)としたとき、以下の条件式(5)及び(6)を同時に満足した場合に、耐ギラツキ性と防眩性とコントラストとの全てに優れることがわかった。以下の条件式(5)は、実施例4及び10における樹脂粒子の添加量及びコロイダルシリカの添加量のプロットの両方を通過する直線である。また、以下の条件式(6)は、図1で説明したように、本実施例の構成において、内部ヘイズの値を19~40%の範囲内とするために必要な条件である。
  0<B≦0.375A-2.44 ・・・(5)
  7.0≦A≦15.0 ・・・(6)
As shown in FIG. 2, the plots of the addition amount of resin particles and the addition amount of colloidal silica in Examples 1 to 12 are regions below the straight line shown in FIG. 2 (except on the horizontal axis). In addition, when the addition amount of the resin particles is within a range of 7 to 15%, even when used as an antiglare film for a high-definition image display device of 200 ppi or more, the antiglare and antiglare properties It was confirmed that excellent performance can be obtained with all the contrast. That is, when the resin particle content in the optical functional layer forming resin composition is A (%) and the colloidal silica content is B (%), the following conditional expressions (5) and (6) are satisfied. When satisfied at the same time, it was found to be excellent in all of glare resistance, antiglare property and contrast. The following conditional expression (5) is a straight line that passes through both the addition amount of the resin particles and the plot of the addition amount of colloidal silica in Examples 4 and 10. Further, the following conditional expression (6) is a necessary condition for setting the internal haze value within the range of 19 to 40% in the configuration of the present embodiment as described with reference to FIG.
0 <B ≦ 0.375A-2.44 (5)
7.0 ≦ A ≦ 15.0 (6)
 表2の結果から分かるように、条件式(5)及び(6)を同時に満たさない場合、耐ギラツキ性、防眩性、コントラストのいずれかが悪化するため、200ppi以上の高精細な画像表示装置の防眩性フィルムとしての用途には適さなかった。 As can be seen from the results in Table 2, when the conditional expressions (5) and (6) are not satisfied at the same time, any one of glare resistance, antiglare property, and contrast deteriorates, and thus a high-definition image display device of 200 ppi or more It was not suitable for use as an antiglare film.
 (光学機能層表面の凹凸形状)
 ここで、光学機能層表面の凹凸形状について説明する。
(Uneven shape on the surface of the optical functional layer)
Here, the uneven shape on the surface of the optical functional layer will be described.
 表3に、実施例2~4及び比較例6に係る光学積層体の表面粗さの測定値を示す。 Table 3 shows the measured values of the surface roughness of the optical laminates according to Examples 2 to 4 and Comparative Example 6.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 図3は、実施例2に係る光学積層体の光学機能層表面の凹凸形状を示す図であり、図4は、比較例6に係る光学積層体の光学機能層表面の凹凸形状を示す図である。 FIG. 3 is a view showing the uneven shape on the surface of the optical functional layer of the optical laminate according to Example 2, and FIG. 4 is a view showing the uneven shape on the surface of the optical functional layer of the optical laminate according to Comparative Example 6. is there.
 図3及び図4は、非接触表面・層断面形状計測システム(測定装置:バートスキャンR3300FL-Lite-AC、解析ソフトウェア:VertScan4、株式会社菱化システム製)を用いて、光干渉方式により光学機能層表面の凹凸形状を測定し、測定結果を3次元画像として出力したものである。表4に、当該計測システムの測定条件を示す。 3 and 4 show an optical function using a non-contact surface / layer cross-sectional shape measurement system (measuring device: Bartscan R3300FL-Lite-AC, analysis software: VertScan4, manufactured by Ryoka System Co., Ltd.) using an optical interference method. The uneven shape of the layer surface is measured, and the measurement result is output as a three-dimensional image. Table 4 shows the measurement conditions of the measurement system.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表3に示すように、JIS B0601:2001に従って測定した算術平均粗さRa、最大高さRz及び輪郭曲線要素の平均長さRSm、ASEM95に従って測定した平均傾斜角度は、実施例2~4と比較例6との間で特別顕著な差異が認められない。しかしながら、実施例2~4及び比較例6に係る光学積層体の光学機能層表面凹凸形状を光干渉方式で計測すると、凹凸形状の分布には差異がある。図3に示す実施例2に係る光学機能層表面の凹凸形状には、図4に示す比較例6に係る光学機能層表面の凹凸形状と比べて、局所的に凹凸の大きな部分(図3及び図4において色の濃い箇所)が少なくなっている。 As shown in Table 3, the arithmetic average roughness Ra, the maximum height Rz, the average length RSm of the contour curve element, the average inclination angle measured according to ASEM95, measured according to JIS B0601: 2001, are compared with those in Examples 2 to 4. There is no particularly significant difference from Example 6. However, when the concavo-convex shape of the optical functional layer surface of the optical laminates according to Examples 2 to 4 and Comparative Example 6 is measured by the optical interference method, the distribution of the concavo-convex shape is different. Compared with the concavo-convex shape on the surface of the optical functional layer according to Comparative Example 6 shown in FIG. 4, the concavo-convex shape on the surface of the optical functional layer according to Example 2 shown in FIG. In FIG. 4, there are fewer dark spots).
 図5は、実施例2、3及び比較例6に係る光学機能層表面における凹凸高さの面積比率の分布を示すグラフであり、図6は、図5に示す破線の枠内の拡大図である。 FIG. 5 is a graph showing the distribution of the area ratio of the uneven height on the surface of the optical function layer according to Examples 2 and 3 and Comparative Example 6, and FIG. 6 is an enlarged view within the broken line frame shown in FIG. is there.
 図5及び図6に示すグラフは、上述した非接触表面・層断面形状計測システムの負荷曲線解析機能を使用して作成したものである。ここで、凹凸高さとは、測定面の全ての凹凸高さの平均レベル(高さ0)を基準とした、測定面に対して直交する方向の凹部及び凸部のレベル差をいう。また、凹凸高さの面積比率とは、測定面積に対して、所定の凹凸高さ以上の領域が占める比率をいう。 The graphs shown in FIG. 5 and FIG. 6 are created using the load curve analysis function of the non-contact surface / layer cross-sectional shape measurement system described above. Here, the uneven height refers to the level difference between the concave and convex portions in the direction orthogonal to the measurement surface, based on the average level (height 0) of all the uneven heights on the measurement surface. Further, the area ratio of the uneven height refers to the ratio of a region having a predetermined uneven height or more to the measurement area.
 図5及び図6から分かるように、光学機能層形成用塗液に第1の無機微粒子としてコロイダルシリカを添加した実施例2及び3では、コロイダルシリカを添加していない比較例6と比べて、相対的に凹凸高さが小さくなっている。また、実施例2と比較例6とを比較すると、実施例2に係る光学機能層の凹凸形状においては、どの凹凸高さの面積比率に着目しても、比較例6における面積比率よりも小さかった。また、実施例2と比較例6とを比べると、凹凸高さが0.4μm以上である領域の面積比率において特に差が認められた。すなわち、実施例2では、凹凸高さが0.4μm以上である領域の面積比率が3.5%以下となるように光学機能層表面の凹凸形状を形成したことによって、耐ギラツキ性が向上していると考えられる。逆に、比較例6では、凹凸高さが0.4μm以上である領域の面積比率が3.5%を超え、図4に示したような、凹凸高さが相対的に大きい部分が多く形成されるために、一般的な表面粗さの測定値が実施例2とさほど変わらないにもかかわらず、耐ギラツキ性が悪化していると考えられる。 As can be seen from FIGS. 5 and 6, in Examples 2 and 3 in which colloidal silica was added as the first inorganic fine particles to the coating solution for forming an optical functional layer, compared to Comparative Example 6 in which no colloidal silica was added, The uneven height is relatively small. In addition, when Example 2 and Comparative Example 6 are compared, in the uneven shape of the optical functional layer according to Example 2, any uneven surface area ratio is smaller than the area ratio in Comparative Example 6. It was. Further, when Example 2 and Comparative Example 6 were compared, a difference was particularly recognized in the area ratio of the region where the unevenness height was 0.4 μm or more. That is, in Example 2, the anti-glare property was improved by forming the concavo-convex shape on the surface of the optical functional layer so that the area ratio of the region having the concavo-convex height of 0.4 μm or more was 3.5% or less. It is thought that. On the contrary, in Comparative Example 6, the area ratio of the region having the unevenness height of 0.4 μm or more exceeds 3.5%, and many portions with relatively large unevenness heights as shown in FIG. 4 are formed. Therefore, although the measured value of the general surface roughness is not so different from that of Example 2, it is considered that the glare resistance is deteriorated.
 図7は、実施例2に係る光学積層体の光学機能層の断面STEM写真であり、図8は、比較例6に係る光学積層体の光学機能層の断面STEM写真である。 FIG. 7 is a cross-sectional STEM photograph of the optical functional layer of the optical laminate according to Example 2, and FIG. 8 is a cross-sectional STEM photograph of the optical functional layer of the optical laminate according to Comparative Example 6.
 図7に示す断面STEM写真から、実施例2に係る光学機能層中では、コロイダルシリカと合成スメクタイトとが凝集体を形成していることが確認できる。これに対して、図8に示すように、比較例6に係る光学機能層中には、コロイダルシリカが含まれないので、図7に示すような凝集体は形成されていない。実施例2に係る光学積層体中に形成されるコロイダルシリカと合成スメクタイトとの凝集体が、比較例6に係る光学機能層に存在する合成スメクタイトの凝集体より大きいため、樹脂粒子の凝集を抑制する効果が高い。 From the cross-sectional STEM photograph shown in FIG. 7, it can be confirmed that colloidal silica and synthetic smectite form aggregates in the optical functional layer according to Example 2. On the other hand, as shown in FIG. 8, since the optical functional layer according to Comparative Example 6 does not contain colloidal silica, aggregates as shown in FIG. 7 are not formed. Since the aggregate of colloidal silica and synthetic smectite formed in the optical laminate according to Example 2 is larger than the aggregate of synthetic smectite present in the optical functional layer according to Comparative Example 6, the aggregation of resin particles is suppressed. High effect.
 以上説明したように、実施例1~12に係る光学積層体は、200ppi以上の高精細な画像表示装置の防眩性フィルムとして用いた場合でも、耐ギラツキ性と防眩性耐とコントラストとの全てにおいて優れた性能を発揮できることが確認された。 As described above, even when the optical laminates according to Examples 1 to 12 are used as an antiglare film for a high-definition image display device of 200 ppi or more, they have a glare resistance, an antiglare resistance and a contrast. It was confirmed that excellent performance can be exhibited in all.
 本発明に係る光学積層体は、高精細(例えば、200ppi以上)な画像表示装置に用いる防眩フィルムとして利用できる。 The optical laminate according to the present invention can be used as an antiglare film for use in a high-definition (for example, 200 ppi or more) image display device.
1 透光性基体
2 光学機能層
3、5、6、8 透明基材
4、7 偏光層
11、12 偏光板
13 液晶セル
14 バックライトユニット
100 光学積層体
110 偏光板
120 表示装置
DESCRIPTION OF SYMBOLS 1 Translucent base | substrate 2 Optical functional layer 3, 5, 6, 8 Transparent base material 4, 7 Polarizing layer 11, 12 Polarizing plate 13 Liquid crystal cell 14 Backlight unit 100 Optical laminated body 110 Polarizing plate 120 Display apparatus

Claims (8)

  1.  透光性基体上に光学機能層が少なくとも1層以上積層されてなる光学積層体であって、
     前記光学機能層の少なくとも一方の面に凹凸形状が形成されており、
     前記凹凸形状を有する光学機能層が少なくとも樹脂成分と、2種類の無機微粒子と、樹脂粒子とを含有し、
     前記光学積層体が以下の条件式(1)~(4)を満足する内部ヘイズXと、全ヘイズYとを有し、
      Y>X ・・・(1)
      Y≦X+17 ・・・(2)
      Y≦57 ・・・(3)
      19≦X≦40 ・・・(4)
     0.5mm幅の光学くしを用いた透過像鮮明度が10~50%であり、
     前記光学機能層の最表面の表面凹凸形状を光干渉方式で計測した場合、凹凸高さが0.4μm以上である部分の面積が測定面積の3.5%以下であることを特徴とする、光学積層体。
    An optical laminate in which at least one optical functional layer is laminated on a translucent substrate,
    An uneven shape is formed on at least one surface of the optical functional layer,
    The optical functional layer having the concavo-convex shape contains at least a resin component, two types of inorganic fine particles, and resin particles,
    The optical laminate has an internal haze X that satisfies the following conditional expressions (1) to (4), and a total haze Y:
    Y> X (1)
    Y ≦ X + 17 (2)
    Y ≦ 57 (3)
    19 ≦ X ≦ 40 (4)
    Transmission image definition using an optical comb with a width of 0.5 mm is 10 to 50%,
    When the surface unevenness shape of the outermost surface of the optical functional layer is measured by a light interference method, the area of the portion where the unevenness height is 0.4 μm or more is 3.5% or less of the measurement area, Optical laminate.
  2.  前記光学機能層が含有する2種類の無機微粒子が、無機ナノ粒子と膨潤性粘土とであることを特徴とする、請求項1に記載の光学積層体。 The optical laminate according to claim 1, wherein the two types of inorganic fine particles contained in the optical functional layer are inorganic nanoparticles and swellable clay.
  3.  前記光学機能層中の前記樹脂粒子の含有割合A(%)と、前記無機ナノ粒子の含有割合B(%)とが、以下の条件式(5)及び(6)を満足することを特徴とする、請求項2に記載の光学積層体。
      0<B≦0.375A-2.44 ・・・(5)
      7.0≦A≦15.0 ・・・(6)
    The content ratio A (%) of the resin particles in the optical functional layer and the content ratio B (%) of the inorganic nanoparticles satisfy the following conditional expressions (5) and (6): The optical laminate according to claim 2.
    0 <B ≦ 0.375A-2.44 (5)
    7.0 ≦ A ≦ 15.0 (6)
  4.  前記光学機能層が、放射線硬化型樹脂組成物を主成分とする1層以上の光学機能層からなることを特徴とする、請求項1に記載の光学積層体。 2. The optical laminate according to claim 1, wherein the optical functional layer is composed of one or more optical functional layers mainly composed of a radiation curable resin composition.
  5.  前記光学機能層が含有する2種類の無機微粒子が凝集体を形成していることを特徴とする、請求項1に記載の光学積層体。 The optical laminate according to claim 1, wherein the two types of inorganic fine particles contained in the optical functional layer form an aggregate.
  6.  屈折率調整層、帯電防止層、防汚層のうちの少なくとも1層を更に備える、請求項1に記載の光学積層体。 The optical laminate according to claim 1, further comprising at least one of a refractive index adjusting layer, an antistatic layer, and an antifouling layer.
  7.  請求項1に記載の光学積層体を構成する前記透光性基体上に、偏光基体が積層されてなることを特徴とする、偏光板。 A polarizing plate, wherein a polarizing substrate is laminated on the translucent substrate constituting the optical layered body according to claim 1.
  8.  請求項1に記載の光学積層体を備えることを特徴とする、表示装置。 A display device comprising the optical laminate according to claim 1.
PCT/JP2015/006400 2014-12-26 2015-12-22 Optical laminate, polarizing plate, and display device WO2016103685A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020237011755A KR20230052311A (en) 2014-12-26 2015-12-22 Optical laminate, polarizing plate, and display device
CN201580069452.8A CN107111012B (en) 2014-12-26 2015-12-22 Optical laminate, polarizing plate, and display device
JP2016565920A JP6698552B2 (en) 2014-12-26 2015-12-22 Optical laminate, polarizing plate and display device
KR1020227018437A KR102520205B1 (en) 2014-12-26 2015-12-22 Optical laminate, polarizing plate, and display device
KR1020177019076A KR102443498B1 (en) 2014-12-26 2015-12-22 Optical laminate, polarizing plate, and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014265672 2014-12-26
JP2014-265672 2014-12-26

Publications (1)

Publication Number Publication Date
WO2016103685A1 true WO2016103685A1 (en) 2016-06-30

Family

ID=56149746

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/006400 WO2016103685A1 (en) 2014-12-26 2015-12-22 Optical laminate, polarizing plate, and display device

Country Status (5)

Country Link
JP (1) JP6698552B2 (en)
KR (3) KR102443498B1 (en)
CN (1) CN107111012B (en)
TW (1) TWI650234B (en)
WO (1) WO2016103685A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019090905A (en) * 2017-11-14 2019-06-13 株式会社トッパンTomoegawaオプティカルフィルム Optical laminate, polarizing plate, and display device
JP2019105694A (en) * 2017-12-11 2019-06-27 株式会社ダイセル Antiglare film, and method for producing the same and application
JP2020194177A (en) * 2017-08-04 2020-12-03 株式会社ダイセル Antiglare film
JP2020194175A (en) * 2017-08-04 2020-12-03 株式会社ダイセル Antiglare film
JP7046380B2 (en) 2016-12-16 2022-04-04 エルジー・ケム・リミテッド Composition for forming an optical film, an optical film and a polarizing plate containing the same.

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6201025B1 (en) * 2016-10-14 2017-09-20 住友化学株式会社 Polarizer, polarizing plate and image display device
KR102098503B1 (en) * 2017-11-22 2020-04-07 김영수 Detachable display having polarizing film
CN108663732B (en) * 2018-05-10 2021-09-14 明基材料有限公司 Low-haze anti-dazzle film and polarizing plate
US20220137266A1 (en) * 2019-03-01 2022-05-05 Dai Nippon Printing Co., Ltd. Resin layer, optical film, and image display device
WO2021107572A1 (en) * 2019-11-26 2021-06-03 주식회사 엘지화학 Anti-glare film, polarizing plate, and display apparatus

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007045142A (en) * 2005-02-22 2007-02-22 Fujifilm Corp Anti-glare and anti-reflection film, its manufacturing process, polarizing plate using the film and liquid crystal display device using the polarizing plate
JP2009150998A (en) * 2007-12-19 2009-07-09 Sumitomo Chemical Co Ltd Antiglare film, antiglare polarizing plate and image display device
JP2009156939A (en) * 2007-12-25 2009-07-16 Sumitomo Chemical Co Ltd Antiglare film, antiglare polarizing plate and image display device
JP2009204728A (en) * 2008-02-26 2009-09-10 Nof Corp Antiglare laminate and display equipped with the same
WO2011135854A1 (en) * 2010-04-30 2011-11-03 株式会社巴川製紙所 Optical multilayered product, polarizer, and display device
WO2011135853A1 (en) * 2010-04-27 2011-11-03 株式会社巴川製紙所 Optical laminate, polarising plate and display device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1020103A (en) 1996-07-05 1998-01-23 Dainippon Printing Co Ltd Antidazzle film
WO2006090879A1 (en) * 2005-02-22 2006-08-31 Fujifilm Corporation Film, manufacturing method thereof, polarization plate using the film, and liquid crystal, and display device using the polarizing plate
US8431219B2 (en) * 2007-01-22 2013-04-30 Dai Nippon Printing Co., Ltd. Optical layered body including an antiglare layer containing organic particles and nonspherical silica particles
JP2009048092A (en) * 2007-08-22 2009-03-05 Tomoegawa Paper Co Ltd Optical laminate
JP2011013238A (en) * 2009-06-01 2011-01-20 Tomoegawa Paper Co Ltd Antiglare film and display using the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007045142A (en) * 2005-02-22 2007-02-22 Fujifilm Corp Anti-glare and anti-reflection film, its manufacturing process, polarizing plate using the film and liquid crystal display device using the polarizing plate
JP2009150998A (en) * 2007-12-19 2009-07-09 Sumitomo Chemical Co Ltd Antiglare film, antiglare polarizing plate and image display device
JP2009156939A (en) * 2007-12-25 2009-07-16 Sumitomo Chemical Co Ltd Antiglare film, antiglare polarizing plate and image display device
JP2009204728A (en) * 2008-02-26 2009-09-10 Nof Corp Antiglare laminate and display equipped with the same
WO2011135853A1 (en) * 2010-04-27 2011-11-03 株式会社巴川製紙所 Optical laminate, polarising plate and display device
WO2011135854A1 (en) * 2010-04-30 2011-11-03 株式会社巴川製紙所 Optical multilayered product, polarizer, and display device

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7046380B2 (en) 2016-12-16 2022-04-04 エルジー・ケム・リミテッド Composition for forming an optical film, an optical film and a polarizing plate containing the same.
US11485876B2 (en) 2016-12-16 2022-11-01 Lg Chem, Ltd. Optical film having organic and inorganic particles of different sizes, and polarizing plate comprising same
JP7499102B2 (en) 2017-08-04 2024-06-13 株式会社ダイセル Anti-glare film
JP2020194176A (en) * 2017-08-04 2020-12-03 株式会社ダイセル Antiglare film
JP2020194175A (en) * 2017-08-04 2020-12-03 株式会社ダイセル Antiglare film
JP2020197728A (en) * 2017-08-04 2020-12-10 株式会社ダイセル Antiglare film
JP2020194177A (en) * 2017-08-04 2020-12-03 株式会社ダイセル Antiglare film
US11313995B2 (en) 2017-08-04 2022-04-26 Daicel Corporation Anti-glare film
JP7500322B2 (en) 2017-08-04 2024-06-17 株式会社ダイセル Anti-glare film
JP7499103B2 (en) 2017-08-04 2024-06-13 株式会社ダイセル Anti-glare film
US11733431B2 (en) 2017-08-04 2023-08-22 Daicel Corporation Anti-glare film
JP7499101B2 (en) 2017-08-04 2024-06-13 株式会社ダイセル Anti-glare film
JP2019090905A (en) * 2017-11-14 2019-06-13 株式会社トッパンTomoegawaオプティカルフィルム Optical laminate, polarizing plate, and display device
JP7121479B2 (en) 2017-11-14 2022-08-18 株式会社トッパンTomoegawaオプティカルフィルム Optical laminate, polarizing plate and display device
US11772365B2 (en) 2017-12-11 2023-10-03 Daicel Corporation Anti-glare film, method for producing same, and use of same
JP2019105694A (en) * 2017-12-11 2019-06-27 株式会社ダイセル Antiglare film, and method for producing the same and application

Also Published As

Publication number Publication date
CN107111012A (en) 2017-08-29
TW201630743A (en) 2016-09-01
KR102443498B1 (en) 2022-09-15
KR20170100555A (en) 2017-09-04
KR20220083841A (en) 2022-06-20
TWI650234B (en) 2019-02-11
JP6698552B2 (en) 2020-05-27
KR102520205B1 (en) 2023-04-12
CN107111012B (en) 2020-07-28
KR20230052311A (en) 2023-04-19
JPWO2016103685A1 (en) 2017-10-05

Similar Documents

Publication Publication Date Title
JP6221018B1 (en) Optical laminate, polarizing plate and display device
JP6698552B2 (en) Optical laminate, polarizing plate and display device
JP6221017B1 (en) Optical laminate, polarizing plate and display device
KR101471692B1 (en) Hard-coated antiglare film, polarizing plate and image display including the same, and method for producing the same
JP6674371B2 (en) Optical laminate, polarizing plate and display device
KR102194639B1 (en) Optical laminate, polarizer and display device
JP7343273B2 (en) Anti-glare film, method for producing anti-glare film, optical member and image display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15872256

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016565920

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177019076

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 15872256

Country of ref document: EP

Kind code of ref document: A1