WO2021095745A1 - Anti-glare film, method for designing anti-glare film, method for producing anti-glare film, optical member, and image display device - Google Patents

Anti-glare film, method for designing anti-glare film, method for producing anti-glare film, optical member, and image display device Download PDF

Info

Publication number
WO2021095745A1
WO2021095745A1 PCT/JP2020/041988 JP2020041988W WO2021095745A1 WO 2021095745 A1 WO2021095745 A1 WO 2021095745A1 JP 2020041988 W JP2020041988 W JP 2020041988W WO 2021095745 A1 WO2021095745 A1 WO 2021095745A1
Authority
WO
WIPO (PCT)
Prior art keywords
antiglare
film
antiglare layer
haze
filler
Prior art date
Application number
PCT/JP2020/041988
Other languages
French (fr)
Japanese (ja)
Inventor
寛也 遠藤
尚樹 橋本
豪彦 安藤
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to CN202080078118.XA priority Critical patent/CN114651196A/en
Priority to KR1020227016186A priority patent/KR20220098353A/en
Publication of WO2021095745A1 publication Critical patent/WO2021095745A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/0236Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element
    • G02B5/0242Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element by means of dispersed particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0268Diffusing elements; Afocal elements characterized by the fabrication or manufacturing method
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133504Diffusing, scattering, diffracting elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements

Definitions

  • the present invention relates to an antiglare film, a method for designing an antiglare film, a method for manufacturing an antiglare film, an optical member, and an image display device.
  • image display devices such as a cathode ray tube display device (CRT), a liquid crystal display device (LCD), a plasma display panel (PDP), and an electroluminescence display (ELD) are provided with fluorescent lamps and sunlight on the surface of the image display device.
  • CTR cathode ray tube display device
  • LCD liquid crystal display device
  • PDP plasma display panel
  • ELD electroluminescence display
  • Anti-glare treatment is applied to prevent contrast deterioration due to reflection of external light and reflection of images, and in particular, as the screen size of image display devices increases, anti-glare films are used.
  • the number of image display devices installed is increasing.
  • Patent Documents 1 and 2 There are many documents describing antiglare films, for example, Patent Documents 1 and 2.
  • the haze value needs to be within an appropriate range from the viewpoint of antiglare and display characteristics.
  • the haze value of the antiglare film may change significantly, and as a result, the antiglare property or display characteristics may deteriorate.
  • an object of the present invention is to provide an antiglare film whose haze value is hard to change, a method for designing an antiglare film, a method for manufacturing an antiglare film, an optical member, and an image display device.
  • the first antiglare film of the present invention is An antiglare film in which an antiglare layer (B) is laminated on a light transmissive base material (A).
  • the antiglare layer (B) contains a resin for forming an antiglare layer (B1) and at least one kind of haze adjusting filler (B2).
  • the haze adjusting filler (B2) is a filler composed of a copolymer of Pst (polystyrene) and PMMA (polymethyl methacrylate).
  • the peak area ratio of PMMA peak / Pst peak according to the Raman spectroscopic spectrum of the haze adjusting filler (B2) alone is 0.51 or more, and the peak area is calculated with the minimum point between the adjacent peaks as a boundary. It is the peak area,
  • the total haze value of the antiglare film is in the range of 5 to 45%.
  • the second antiglare film of the present invention is used.
  • the antiglare layer (B) contains a resin for forming an antiglare layer (B1) and at least one kind of haze adjusting filler (B2).
  • the haze adjusting filler (B2) is a filler composed of a copolymer of Pst (polystyrene) and PMMA (polymethyl methacrylate), and does not contain a filler having a refractive index of more than 1.535.
  • the total haze value of the antiglare film is in the range of 5 to 45%.
  • antiglare film of the present invention refers to both the first antiglare film of the present invention and the second antiglare film of the present invention unless otherwise specified. including.
  • the method for designing the antiglare film of the present invention is A method for designing an antiglare film in which an antiglare layer (B) is laminated on a light transmissive base material (A).
  • the antiglare layer (B) contains a resin for forming an antiglare layer (B1) and at least one kind of haze adjusting filler (B2).
  • the haze adjusting filler (B2) is a filler composed of a copolymer of Pst (polystyrene) and PMMA (polymethyl methacrylate).
  • the peak area ratio of PMMA peak / Pst peak according to the Raman spectroscopic spectrum of the haze adjusting filler (B2) alone is 0.51 or more, and the peak area borders a minimum point between adjacent peaks. It is the peak area calculated as.
  • the total haze value of the antiglare film is in the range of 5 to 45%.
  • the method for producing the first antiglare film of the present invention is The step of designing the antiglare film according to the method for designing the antiglare film of the present invention is included.
  • the antiglare film is the antiglare film of the present invention.
  • the method for producing the second antiglare film of the present invention is The step of forming the antiglare layer (B) for forming the antiglare layer (B) on the light transmissive base material (A) is included.
  • the antiglare layer (B) forming step is a coating step of applying a coating liquid on the light transmissive base material (A) and drying the coated coating liquid to form a coating film.
  • Including the coating film forming step The method for producing an antiglare film of the present invention, wherein the coating liquid contains the antiglare layer forming resin (B1) forming material and the haze adjusting filler (B2).
  • the term "method for producing the antiglare film of the present invention” refers to the method for producing the first antiglare film of the present invention and the second prevention of the present invention unless otherwise specified. Includes both with a method of making a dazzling film.
  • the optical member of the present invention is an optical member including the antiglare film of the present invention.
  • the image display device of the present invention is an image display device including the antiglare film of the present invention or the optical member of the present invention.
  • an antiglare film whose haze value is hard to change, a method for designing an antiglare film, a method for manufacturing an antiglare film, an optical member, and an image display device.
  • FIG. 1 is a cross-sectional view showing an example of the antiglare film of the present invention.
  • the refractive index of the haze adjusting filler (B2) is smaller than the refractive index of the antiglare layer forming resin (B1), and the antiglare layer forming resin is formed.
  • the difference in refractive index between (B1) and the haze adjusting filler (B2) may be more than 0.001 and less than 0.15 in absolute value.
  • the haze adjusting filler (B2) may be particles.
  • the method for producing an antiglare film of the present invention may include, for example, a step of forming the antiglare layer (B) and a curing step of curing the coating film.
  • the optical member of the present invention may be, for example, a polarizing plate.
  • FIG. 1 shows an example of the configuration of the antiglare film of the present invention.
  • the antiglare layer (B) 12 is laminated on one surface of the light transmissive base material (A) 11.
  • the antiglare layer (B) 12 contains particles (haze adjusting filler (B2)) 12b and a thixotropy-imparting agent 12c in the resin layer 12a.
  • the resin layer 12a is formed of the antiglare layer forming resin (B1).
  • the particles 12b correspond to the haze adjusting filler (B2) in the antiglare film of the present invention.
  • the haze adjusting filler (B2) is a filler composed of a copolymer of Pst (polystyrene) and PMMA (polymethyl methacrylate).
  • the haze adjusting filler (B2) is only one type of particles 12b.
  • the present invention is not limited to this, and the haze adjusting filler (B2) may be of one type or a plurality of types. That is, in the present invention, as the haze adjusting filler (B2), only one type of filler composed of a copolymer of polystyrene and PMMA may be used, or a plurality of types may be used.
  • the haze adjusting filler (B2) may be, for example, particles, but may be other than particles.
  • the thixotropy-imparting agent 12c is optional in the antiglare film of the present invention, and may or may not be contained. Further, the antiglare film of the present invention may or may not contain a filler other than the haze adjusting filler (B2). Examples of the other filler include the thixotropy-imparting agent 12c shown in FIG. Further, examples of the other filler include particles other than the haze adjusting filler (B2).
  • the antiglare film of the present invention may or may not contain layers other than the light transmissive base material (A) and the antiglare layer (B).
  • the other layer may be one layer or two or more layers, and the position thereof is not particularly limited.
  • the light-transmitting base material (A) may be laminated on the light-transmitting base material (A) via the other layer.
  • the other layer may be laminated on the surface of the antiglare layer (B) opposite to the light transmissive base material (A).
  • the other layer is not particularly limited, and may be, for example, a low refractive index layer, an antireflection layer, a high refractive index layer, a hard coat layer, an adhesive layer, or the like.
  • the antiglare film of the present invention has a total haze value in the range of 5 to 45%. If the total haze value is too small, the anti-glare property will decrease. If the total haze value is too large, the display characteristics are likely to be deteriorated, such as the image becoming unclear and the contrast in a dark place being lowered.
  • the total haze value may be, for example, 7% or more, 10% or more, 12% or more, or 15% or more, for example, 40% or less, 35% or less, 32% or less, 30% or less, 27% or less, or. It may be 25% or less.
  • the "total haze value" is the haze value (cloudiness) of the entire antiglare film according to JIS K 7136 (2000 version).
  • irregularities are formed on the surface of the antiglare layer (B) (the surface opposite to the light transmissive base material (A)).
  • the uneven shape for example, the haze value (cloudiness) of the antiglare film, the display characteristics, and the like can be controlled.
  • the uneven shape of the surface of the antiglare layer (B) (for example, surface roughness, average height of unevenness, average distance between convex portions, etc.) is not particularly limited, and is, for example, according to a general antiglare film. Alternatively, it can be set as appropriate with reference to it.
  • each of the light transmissive base material (A), the antiglare layer (B), and the other layers will be described with further examples.
  • the antiglare layer (B) is an antiglare hard coat layer
  • the present invention is not limited thereto.
  • the light-transmitting base material (A) is not particularly limited, and examples thereof include a transparent plastic film base material.
  • the transparent plastic film base material is not particularly limited, but is preferably one having excellent visible light transmittance (preferably 90% or more) and excellent transparency (preferably one having a haze value of 1% or less).
  • the transparent plastic film base material described in JP-A-2008-90263 can be mentioned.
  • the transparent plastic film base material one having less birefringence optically is preferably used.
  • the antiglare film of the present invention can also be used as a protective film for a polarizing plate, and in this case, as the transparent plastic film base material, triacetyl cellulose (TAC), polycarbonate, acrylic polymer, etc.
  • TAC triacetyl cellulose
  • a film formed of a polyolefin or the like having a cyclic or norbornene structure is preferable.
  • the transparent plastic film base material may be the polarizer itself.
  • the polarizing plate can be made thinner.
  • the transparent plastic film base material is a polarizer
  • the antiglare layer (B) serves as a protective layer.
  • the antiglare film also functions as a cover plate when mounted on the surface of a liquid crystal cell, for example.
  • the thickness of the light transmissive base material (A) is not particularly limited, but in consideration of workability such as strength and handleability and thin layer property, for example, 10 to 500 ⁇ m and 20 to 300 ⁇ m. , Or in the range of 30-200 ⁇ m.
  • the refractive index of the light transmissive substrate (A) is not particularly limited. The refractive index is, for example, in the range of 1.30 to 1.80 or 1.40 to 1.70.
  • the "refractive index" refers to a refractive index having a wavelength of 550 nm unless otherwise specified.
  • the method for measuring the refractive index is not particularly limited, but in the case of the refractive index of a fine substance such as particles, for example, the Becke method can be used for measurement.
  • the Becke method is the refractive index of a standard refracting solution when the contour of the sample disappears or becomes blurred when the measurement sample is dispersed in a standard refracting solution on a slide glass and observed under a microscope. It is a measurement method to be performed.
  • the method for measuring the refractive index of a measurement object whose refractive index cannot be measured by the Becke method is not particularly limited, but for example, It can be measured using a general refractometer (equipment for measuring the refractive index).
  • the refractometer is also not particularly limited, and examples thereof include an Abbe refractometer. Examples of the Abbe refractometer include a multi-wavelength Abbe refractometer DR-M2 / 1550 (trade name) manufactured by Atago Co., Ltd.
  • the resin contained in the light transmissive base material (A) may contain an acrylic resin.
  • the light transmissive base material (A) may be an acrylic film.
  • the antiglare layer (B) contains, as described above, the antiglare layer forming resin (B1) and at least one kind of haze adjusting filler (B2).
  • a coating liquid containing the antiglare layer forming resin (B1), the haze adjusting filler (B2) and a solvent is applied to the light-transmitting base material. It is formed by coating on at least one surface of (A) to form a coating film, and then removing the solvent from the coating film.
  • the antiglare layer forming resin (B1) (hereinafter, may be simply referred to as “resin (B1)” or “resin”) is not particularly limited, and for example, only one type of resin may be used. Two or more kinds of resins may be used together.
  • the resin (B1) may contain, for example, an acrylate resin (also referred to as an acrylic resin), or may contain, for example, a urethane acrylate resin.
  • the resin (B1) may be, for example, a copolymer of a curable urethane acrylate resin and a polyfunctional acrylate.
  • the resin (B1) is not limited to the acrylate resin and the like, and examples thereof include thermosetting resins and ionizing radiation curable resins that are cured by ultraviolet rays or light.
  • thermosetting resins examples thereof include thermosetting resins and ionizing radiation curable resins that are cured by ultraviolet rays or light.
  • a commercially available thermosetting resin, an ultraviolet curable resin, or the like can also be used.
  • thermosetting resin or the ultraviolet curable resin for example, a curable compound having at least one of an acrylate group and a methacrylate group that is cured by heat, light (ultraviolet rays, etc.) or an electron beam can be used.
  • Silicone resin, polyester resin, polyether resin, epoxy resin, urethane resin, alkyd resin, spiroacetal resin, polybutadiene resin, polythiol polyene resin, oligomers such as methacrylate and prepolymers of polyfunctional compounds such as polyhydric alcohol Can be mentioned. These may be used alone or in combination of two or more.
  • a reactive diluent having at least one group of an acrylate group and a methacrylate group can also be used.
  • the reactive diluent for example, the reactive diluent described in JP-A-2008-88309 can be used, and includes, for example, monofunctional acrylate, monofunctional methacrylate, polyfunctional acrylate, polyfunctional methacrylate and the like.
  • the reactive diluent trifunctional or higher functional acrylates and trifunctional or higher functional methacrylates are preferable. This is because the hardness of the antiglare layer (B) can be made excellent.
  • the reactive diluent include butanediol glycerin ether diacrylate, isocyanuric acid acrylate, and isocyanuric acid methacrylate. These may be used alone or in combination of two or more.
  • the refractive index of the resin (B1) is not particularly limited, but may be, for example, 1.48 or more, 1.49 or more, 1.50 or more, or 1.51 or more, and for example, 1.60 or less, 1.59 or less. , 1.58 or less, or 1.57 or less.
  • the haze adjusting filler (B2) is, for example, a filler composed of a copolymer of Pst (polystyrene) and PMMA (polymethyl methacrylate) as described above.
  • the haze adjusting filler (B2) is not particularly limited except that it is a filler composed of a copolymer of polystyrene and PMMA.
  • one type may be used alone. Two or more types may be used together.
  • the haze adjusting filler (B2) may be, for example, particles.
  • the polystyrene content in the haze adjusting filler (B2) is not particularly limited, but at least one of the following conditions (a) and (b) is satisfied.
  • the following condition (a) is the condition of the first antiglare film of the present invention
  • the following condition (b) is the condition of the second antiglare film of the present invention.
  • the apex of PMMA peak (maximum) for example expressed in 1724 cm -1
  • a peak of polystyrene expressed for example 1600 cm -1.
  • polystyrene has a higher refractive index than PMMA
  • the higher (larger) the polystyrene content in the haze adjusting filler (B2) the higher the refractive index of the haze adjusting filler (B2) alone tends to be. ..
  • the peak area ratio of PMMA peak / Pst peak according to the Raman spectroscopic spectrum of the haze adjusting filler (B2) alone is 0.51 or more. However, the peak area is a peak area calculated with the minimum point between adjacent peaks as a boundary.
  • the refractive index of the haze adjusting filler (B2) alone is 1.535 or less.
  • the haze value of the antiglare film tends to change.
  • the cause of this is unknown, but it is considered that polystyrene in the filler is decomposed by light irradiation (UV irradiation), humidification heat, etc., which changes the refractive index of the filler and the haze value of the antiglare film.
  • the antiglare film of the present invention is excellent in light resistance, heat resistance, humidification heat resistance, etc. by selecting an appropriate filler as the haze adjusting filler (B2), and the haze value is hard to change. It becomes a film.
  • the haze adjusting filler (B2) makes the surface of the antiglare layer (B) to be formed uneven to impart antiglare properties, and also controls the haze value of the antiglare layer (B). Main function.
  • the haze value of the antiglare layer (B) can be designed, for example, by controlling the difference in refractive index between the haze adjusting filler (B2) and the antiglare layer forming resin (B1).
  • the haze adjusting filler (B2) is not particularly limited except that it is a filler composed of a copolymer of polystyrene and PMMA.
  • the refractive index of the haze adjusting filler (B2) may be, for example, 1.535 or less, for example, 1.525 or less, 1.515 or less, 1.505 or less, or 1.495 or less. Further, the refractive index of the haze adjusting filler (B2) may be, for example, 1.42 or more, 1.43 or more, 1.44 or more, or 1.45 or more.
  • the refractive index of the haze adjusting filler (B2) may be smaller than the refractive index of the antiglare layer forming resin (B1), or may be the same as the refractive index of the antiglare layer forming resin (B1). It may be larger than the refractive index of the antiglare layer forming resin (B1).
  • the difference in refractive index between the antiglare layer forming resin (B1) and the haze adjusting filler (B2) is not particularly limited, but as described above, for example, the absolute value is more than 0.001 and less than 0.15. There may be.
  • the difference in refractive index between the antiglare layer forming resin (B1) and the haze adjusting filler (B2) is preferably as large as possible from the viewpoint of increasing internal scattering in order to improve glare. Further, the difference in refractive index between the antiglare layer forming resin (B1) and the haze adjusting filler (B2) is preferably as small as possible from the viewpoint of suppressing internal scattering in order to obtain high transparency.
  • the absolute value of the difference in refractive index between the antiglare layer forming resin (B1) and the haze adjusting filler (B2) may be, for example, 0.002 or more, 0.003 or more, 0.004 or more, or 0.005 or more. It may be, for example, 0.14 or less, 0.13 or less, 0.12 or less, or 0.11 or less.
  • the weight average particle size of the haze adjusting filler (B2) is not particularly limited, but may be, for example, 1.0 ⁇ m or more, 2.0 ⁇ m or more, 3.0 ⁇ m or more, or 4.0 ⁇ m or more, for example, 7.0 ⁇ m or less. , 8.0 ⁇ m or less, 9.0 ⁇ m or less, or 10.0 ⁇ m or less.
  • the weight average particle size of the particles can be measured by, for example, the Coulter counting method. For example, using a particle size distribution measuring device (trade name: Coulter Multisizer, manufactured by Beckman Coulter) using the pore electric resistance method, an electrolytic solution corresponding to the volume of the particles when the particles pass through the pores.
  • the haze adjusting filler (B2) is a particle
  • its shape is not particularly limited, and may be, for example, a bead-shaped substantially spherical shape or an irregular shape such as powder. , Approximately spherical particles are preferable, and substantially spherical particles having an aspect ratio of 1.5 or less are preferable, and spherical particles are most preferable.
  • the content of the haze adjusting filler (B2) in the antiglare layer (B) is not particularly limited, but is, for example, 1% by mass or more and 3% by mass with respect to the total mass of the antiglare layer forming resin (B1). % Or more, 5% by mass or more, or 7% by mass or more, for example, 20% by mass or less, 18% by mass or less, 16% by mass or less, or 14% by mass or less. Further, the antiglare layer (B) may or may not contain particles other than the haze adjusting filler (B2), as will be described later. For example, in the method for producing an antiglare film of the present invention, the surface shape of the antiglare layer (B) may be adjusted by adjusting the content of the haze adjusting filler (B2) and the other particles. ..
  • the antiglare layer (B) may or may not contain other components other than the antiglare layer forming resin (B1) and the haze adjusting filler (B2).
  • the other component include fillers other than the haze adjusting filler (B2).
  • the other filler is not particularly limited, and examples thereof include particles other than the haze adjusting filler (B2), a thixotropic agent, and inorganic nanoparticles.
  • the antiglare layer (B) contains the thixotropy-imparting agent, it is possible to easily control the aggregated state of particles such as the haze adjusting filler (B2).
  • the thixotropy-imparting agent may be at least one selected from the group consisting of, for example, organic clay, oxidized polyolefin and modified urea. Further, the thixotropy-imparting agent may be, for example, a thickener.
  • the organic clay is preferably a layered clay that has been organically treated in order to improve the affinity with the resin.
  • the organic clay may be prepared in-house or a commercially available product may be used. Examples of the commercially available products include Lucentite SAN, Lucentite STN, Lucentite SEN, Lucentite SPN, Somasif ME-100, Somasif MAE, Somasif MTE, Somasif MEE, and Somasif MPE (trade names, all of which are Corp Chemical Co., Ltd.).
  • the above-mentioned polyolefin oxide may be prepared in-house or a commercially available product may be used.
  • the commercially available product include Disparon 4200-20 (trade name, manufactured by Kusumoto Kasei Co., Ltd.), Fronon SA300 (trade name, manufactured by Kyoeisha Chemical Co., Ltd.) and the like.
  • the modified urea is a reaction product of an isocyanate monomer or an adduct thereof and an organic amine.
  • the modified urea may be prepared in-house or a commercially available product may be used. Examples of the commercially available product include BYK410 (manufactured by Big Chemie) and the like.
  • the thixotropy-imparting agent may be used alone or in combination of two or more.
  • the ratio of the thixotropy-imparting agent in the antiglare layer (B) is preferably in the range of 0.2 to 5 parts by weight, more preferably in the range of 0.4 to 4 parts by weight, based on 100 parts by weight of the resin. is there.
  • the thixotropy-imparting agent is contained in the range of 0.2 to 5 parts by weight with respect to 100 parts by weight (mass) of the resin of the antiglare layer (B). Good.
  • the method for producing the antiglare film of the present invention is not particularly limited and may be produced by any method, but it is preferably produced by the method for producing the antiglare film of the present invention.
  • the method for producing the antiglare film can be carried out as follows, for example.
  • the antiglare layer (B) is formed on the light transmissive base material (A) (antiglare layer (B) forming step). As a result, a laminate of the light-transmitting base material (A) and the antiglare layer (B) is produced.
  • the antiglare layer (B) forming step includes a coating step of applying a coating liquid on the light transmissive base material (A) and a drying coating of the coated coating liquid. It includes a coating film forming step of forming a film. Further, for example, as described above, the antiglare layer (B) forming step may further include a curing step of curing the coating film. The curing can be performed, for example, after the drying, but is not limited thereto.
  • the curing can be performed by, for example, heating, light irradiation, or the like.
  • the light is not particularly limited, but may be, for example, ultraviolet rays or the like.
  • the light source for light irradiation is not particularly limited, but may be, for example, a high-pressure mercury lamp or the like.
  • the coating liquid contains a resin and a solvent as described above.
  • the coating liquid is, for example, an antiglare layer forming material (coating liquid) containing the antiglare layer forming resin (B1), the haze adjusting filler (B2), the thixotropy-imparting agent, and the solvent. May be good.
  • the coating liquid preferably exhibits thixotropic properties, and the Ti value defined by the following formula is preferably in the range of 1.3 to 3.5, more preferably 1.4 to 3. It is in the range of 2, and more preferably in the range of 1.5 to 3.
  • Ti value ⁇ 1 / ⁇ 2
  • ⁇ 1 is a viscosity measured under the condition of a shear rate of 20 (1 / s) using a HAAKE Leostress RS6000
  • ⁇ 2 is a viscosity measured using a HAAKE Leostress RS6000 with a shear rate of 200 (1 / s). It is the viscosity measured under the conditions of.
  • the Ti value is 1.3 or more, problems such as appearance defects and deterioration of antiglare and white blur characteristics are unlikely to occur. Further, when the Ti value is 3.5 or less, problems such as the particles not agglomerating and becoming dispersed are unlikely to occur.
  • the coating liquid may or may not contain a thixotropy-imparting agent, but it is preferable to contain the thixotropy-imparting agent because it tends to exhibit thixotropy. Further, as described above, when the coating liquid contains the thixotropy-imparting agent, an effect of preventing the sedimentation of the particles (thixotropy effect) can be obtained. Further, the surface shape of the antiglare film can be freely controlled in a wider range by the shear aggregation of the thixotropy-imparting agent itself.
  • the solvent is not particularly limited, and various solvents can be used, and one type may be used alone or two or more types may be used in combination.
  • the optimum solvent type and solvent ratio may be appropriately selected in order to obtain the antiglare film of the present invention according to the composition of the resin, the types and contents of the particles and the thixotropy-imparting agent.
  • the solvent is not particularly limited, and is, for example, alcohols such as methanol, ethanol, isopropyl alcohol (IPA), butanol, t-butyl alcohol (TBA), 2-methoxyethanol; acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclopenta.
  • Ketones such as non; esters such as methyl acetate, ethyl acetate and butyl acetate; ethers such as diisopropyl ether and propylene glycol monomethyl ether; glycols such as ethylene glycol and propylene glycol; cellosolves such as ethyl cellosolve and butyl cellosolve; Aliphatic hydrocarbons such as hexane, heptane and octane; aromatic hydrocarbons such as benzene, toluene and xylene can be mentioned.
  • the solvent may contain a hydrocarbon solvent and a ketone solvent.
  • the hydrocarbon solvent may be, for example, an aromatic hydrocarbon.
  • the aromatic hydrocarbon may be at least one selected from the group consisting of, for example, toluene, o-xylene, m-xylene, p-xylene, ethylbenzene, and benzene.
  • the ketone solvent may be, for example, at least one selected from the group consisting of cyclopentanone and acetone, methyl ethyl ketone, methyl isobutyl ketone, diethyl ketone, cyclohexanone, isophorone, and acetophenone.
  • the solvent preferably contains, for example, the hydrocarbon solvent (eg toluene) in order to dissolve the thixotropy-imparting agent (eg, thickener).
  • the solvent may be, for example, a solvent in which the hydrocarbon solvent and the ketone solvent are mixed at a mass ratio of 90:10 to 10:90.
  • the mass ratio of the hydrocarbon solvent to the ketone solvent may be, for example, 80:20 to 20:80, 70:30 to 30:70, or 40:60 to 60:40.
  • the hydrocarbon solvent may be toluene and the ketone solvent may be methyl ethyl ketone.
  • the solvent may contain, for example, toluene and further contain at least one selected from the group consisting of ethyl acetate, butyl acetate, IPA, methyl isobutyl ketone, methyl ethyl ketone, methanol, ethanol, and TBA. Good.
  • a good solvent for the acrylic film can be preferably used.
  • a solvent containing a hydrocarbon solvent and a ketone solvent may be used.
  • the hydrocarbon solvent may be, for example, an aromatic hydrocarbon.
  • the aromatic hydrocarbon may be at least one selected from the group consisting of, for example, toluene, o-xylene, m-xylene, p-xylene, ethylbenzene, and benzene.
  • the ketone solvent may be, for example, at least one selected from the group consisting of cyclopentanone, acetone, methyl ethyl ketone, methyl isobutyl ketone, diethyl ketone, cyclohexanone, isophorone, and acetophenone.
  • the solvent may be, for example, a solvent in which the hydrocarbon solvent and the ketone solvent are mixed at a mass ratio of 90:10 to 10:90.
  • the mass ratio of the hydrocarbon solvent to the ketone solvent may be, for example, 80:20 to 20:80, 70:30 to 30:70, or 40:60 to 60:40.
  • the hydrocarbon solvent may be toluene and the ketone solvent may be methyl ethyl ketone.
  • TAC triacetyl cellulose
  • A light-transmitting base material
  • A intermediate layer
  • TAC triacetyl cellulose
  • a good solvent for TAC can be preferably used.
  • the solvent include ethyl acetate, methyl ethyl ketone, cyclopentanone and the like.
  • the thixotropy to the antiglare layer forming material can be satisfactorily exhibited when the thixotropy-imparting agent is contained.
  • organic clay toluene and xylene can be preferably used alone or in combination.
  • oxide polyolefin methyl ethyl ketone, ethyl acetate, and propylene glycol monomethyl ether are preferably used alone. It can be used or used in combination.
  • modified urea is used, butyl acetate and methyl isobutyl ketone can be preferably used alone or in combination.
  • leveling agents can be added to the antiglare layer forming material.
  • a fluorine-based or silicone-based leveling agent can be used for the purpose of preventing uneven coating (uniformizing the coated surface).
  • an antireflection layer low refractive index layer
  • a layer containing an interlayer filler is placed on the antiglare layer (B).
  • the leveling agent can be appropriately selected depending on the case where it is formed in.
  • the thixotropy-imparting agent by incorporating the thixotropy-imparting agent, the thixotropy can be exhibited in the coating liquid, so that uneven coating is less likely to occur.
  • the options of the leveling agent can be expanded.
  • the blending amount of the leveling agent is, for example, 5 parts by weight or less, preferably 0.01 to 5 parts by weight, based on 100 parts by weight of the resin.
  • Pigments, fillers, dispersants, plasticizers, ultraviolet absorbers, surfactants, antifouling agents, antioxidants, etc. are added to the antiglare layer forming material as needed, as long as the performance is not impaired. May be done.
  • One type of these additives may be used alone, or two or more types may be used in combination.
  • antiglare layer forming material for example, a conventionally known photopolymerization initiator as described in JP-A-2008-88309 can be used.
  • Examples of the method of applying the coating liquid onto the light transmissive substrate (A) to form a coating film include a fanten coating method, a die coating method, a spin coating method, a spray coating method, and a gravure coating method. , Roll coating method, bar coating method and other coating methods can be used.
  • the coating film is dried and cured to form an antiglare layer (B).
  • the drying may be, for example, natural drying, air drying by blowing wind, heat drying, or a method in which these are combined.
  • the drying temperature of the coating liquid for forming the antiglare layer (B) may be, for example, in the range of 30 to 200 ° C.
  • the drying temperature may be, for example, 40 ° C. or higher, 50 ° C. or higher, 60 ° C. or higher, 70 ° C. or higher, 80 ° C. or higher, 90 ° C. or higher, or 100 ° C. or higher, 190 ° C. or lower, 180 ° C. or lower, 170. It may be °C or less, 160 °C or less, 150 °C or less, 140 °C or less, 135 °C or less, 130 °C or less, 120 °C or less, or 110 °C or less.
  • the drying time is not particularly limited, but may be, for example, 30 seconds or more, 40 seconds or more, 50 seconds or more, or 60 seconds or more, 150 seconds or less, 130 seconds or less, 110 seconds or less, or 90 seconds or less. You may.
  • the means for curing the coating film is not particularly limited, but ultraviolet curing is preferable.
  • the irradiation amount of the energy radiation source is preferably 50 to 500 mJ / cm 2 as the integrated exposure amount at the ultraviolet wavelength of 365 nm.
  • the irradiation amount is 50 mJ / cm 2 or more, curing tends to proceed sufficiently, and the hardness of the antiglare layer (B) formed tends to increase. Further, if it is 500 mJ / cm 2 or less, coloring of the formed antiglare layer (B) can be prevented.
  • a laminate of the light transmissive base material (A) and the antiglare layer (B) can be produced.
  • This laminate may be used as it is as the antiglare film of the present invention, or for example, the other layer may be formed on the antiglare layer (B) to obtain the antiglare film of the present invention.
  • the method for forming the other layer is not particularly limited, and is, for example, the same as or similar to the method for forming a general low refractive index layer, antireflection layer, high refractive index layer, hard coat layer, adhesive layer, or the like. Can be done with.
  • the optical member of the present invention is not particularly limited, but may be, for example, a polarizing plate.
  • the polarizing plate is also not particularly limited, but may include, for example, the antiglare film and the polarizer of the present invention, and may further contain other components. Each component of the polarizing plate may be bonded by, for example, an adhesive or an adhesive.
  • the image display device of the present invention is not particularly limited, and any image display device may be used, and examples thereof include a liquid crystal display device and an organic EL display device.
  • the image display device of the present invention is, for example, an image display device having the antiglare film of the present invention on the surface on the viewing side, and the image display device may have a black matrix pattern.
  • the light transmissive base material (A) side can be attached to an optical member used in an LCD via an adhesive or an adhesive.
  • the surface of the light transmissive base material (A) may be subjected to various surface treatments as described above.
  • the surface shape of the antiglare film can be freely controlled in a wide range. Therefore, the optical properties that can be obtained by laminating the antiglare film with other optical members using an adhesive, an adhesive, or the like cover a wide range corresponding to the surface shape of the antiglare film. ..
  • the optical member examples include a polarizer or a polarizing plate.
  • the polarizing plate generally has a transparent protective film on one side or both sides of the polarizing element.
  • the transparent protective films on the front and back sides may be made of the same material or different materials.
  • Polarizing plates are usually arranged on both sides of the liquid crystal cell. Further, the polarizing plates are arranged so that the absorption axes of the two polarizing plates are substantially orthogonal to each other.
  • the configuration of the polarizing plate on which the antiglare film is laminated is not particularly limited, but for example, the transparent protective film, the polarizer and the transparent protective film are laminated in this order on the antiglare film. Alternatively, the polarizing element and the transparent protective film may be laminated in this order on the antiglare film.
  • the configuration of the image display device of the present invention is not particularly limited, and may be, for example, the same configuration as a general image display device.
  • it can be manufactured by appropriately assembling optical members such as a liquid crystal cell and a polarizing plate, and if necessary, each component such as a lighting system (backlight or the like) and incorporating a drive circuit.
  • the use of the image display device of the present invention is not particularly limited, and it can be used for any purpose.
  • Applications include, for example, OA devices such as personal computer monitors, laptop computers, and copiers, mobile phones, clocks, digital cameras, mobile information terminals (PDAs), portable devices such as portable game machines, video cameras, televisions, and microwave ovens.
  • Home electrical equipment such as, back monitor, car navigation system monitor, in-vehicle equipment such as car audio, exhibition equipment such as information monitor for commercial stores, security equipment such as monitoring monitor, nursing care monitor, medical monitor Nursing care / medical equipment, etc.
  • the haze adjusting filler (B2) used in the examples and the haze adjusting filler used in the comparative examples are measured for refractive index and Raman spectroscopy by the following methods. The spectrum was measured by the method.
  • the refractive index at a wavelength of 550 nm was measured by the Becke method described above.
  • the standard refracting liquid Cargill standard refracting liquid manufactured by Moritex Co., Ltd. was used.
  • the refractive index at a wavelength of 550 nm was measured using the above-mentioned multi-wavelength Abbe refractometer DR-M2 / 1550 (trade name) manufactured by Atago Co., Ltd.
  • Example 1 As the resin contained in the antiglare layer forming material, 50 parts by weight of an ultraviolet curable urethane acrylate resin (manufactured by Nippon Synthetic Chemical Industry Co., Ltd., trade name "UV1700TL”, solid content 80%) and pentaeristol triacrylate are used. A mixture of 50 parts by weight of a polyfunctional acrylate (manufactured by Osaka Organic Chemical Industry Co., Ltd., trade name "Viscoat # 300", 100% solid content) as a main component was prepared.
  • This resin is a material for forming the antiglare layer forming resin (B1), and as described later, it can be cured by light irradiation to form the antiglare layer forming resin (B1).
  • Crosslinked polymethyl methacrylate particles manufactured by Sekisui Kasei Kogyo Co., Ltd., trade name "Techpolymer”, weight average particle size: 3 ⁇ m, refractive index: 1.525 per 100 parts by weight of resin solid content of the resin.
  • silicone particles manufactured by Momentive Performance Materials Japan (same as above), trade name "Tospearl 130", weight average grain shape: 3 ⁇ m, refractive index: 1.42) is 1.5 parts by weight
  • As the thixotropy-imparting agent 1.5 parts by weight of synthetic smectite (manufactured by Corp Chemical Co., Ltd., trade name "Lucentite SAN"), which is an organic clay, and a photopolymerization initiator (manufactured by BASF, trade name "OMNIRAD907”) are used.
  • the crosslinked polymethyl methacrylate particles "techpolymer” are particles composed of a copolymer of Pst (polystyrene) and PMMA (polymethyl methacrylate), and correspond to a haze adjusting filler (B2).
  • the organic clay was diluted with toluene so that the solid content was 6%.
  • This mixture is diluted with a mixed solvent of toluene / ethyl acetate / cyclopentanone (CPN) (weight ratio 35/41/24) so that the solid content concentration becomes 55% by weight, and an ultrasonic disperser is used.
  • CPN toluene / ethyl acetate / cyclopentanone
  • an antiglare layer (B) forming step of forming the antiglare layer (B) on the light transmissive base material (A) was performed. That is, first, the antiglare layer forming material (coating liquid) corresponds to a triacetyl cellulose base material (thickness 60 ⁇ m, FUJIFILM Corporation, trade name TG60UL, light transmissive base material (A)). Painted on top.
  • an ultraviolet ray having a wavelength of 365 nm is irradiated with a high-pressure mercury lamp so that the integrated light intensity is 300 mJ / cm 2, and the resin in the antiglare layer forming material (coating liquid) is cured, and further, at 80 ° C.
  • the mixture was heated for 60 seconds and dried to form an antiglare layer (B) in which a haze adjusting filler (B2) was dispersed in an antiglare layer forming resin (B1) having a thickness of 8 ⁇ m.
  • B1 antiglare layer forming resin having a thickness of 8 ⁇ m
  • the antiglare layer (B) is laminated on the light transmissive base material (A), and the antiglare layer (B) is formed of the antiglare layer forming resin (B1). It contained a haze adjusting filler (B2).
  • Example 2 Antiglare layer forming material in the same manner as in Example 1 except that the blending amounts of the "techpolymer” (filler for haze adjustment (B2)), the “Tospearl 130", and the “Lucentite SAN” were changed. (Coating liquid) was prepared. Specifically, it is as follows. As the resin contained in the antiglare layer forming material, 50 parts by weight of an ultraviolet curable urethane acrylate resin (manufactured by Nippon Synthetic Chemical Industry Co., Ltd., trade name "UV1700TL”, solid content 80%) and pentaeristol triacrylate are used.
  • an ultraviolet curable urethane acrylate resin manufactured by Nippon Synthetic Chemical Industry Co., Ltd., trade name "UV1700TL", solid content 80%
  • pentaeristol triacrylate pentaeristol triacrylate
  • a mixture of 50 parts by weight of a polyfunctional acrylate (manufactured by Osaka Organic Chemical Industry Co., Ltd., trade name "Viscoat # 300", 100% solid content) as a main component was prepared.
  • Crosslinked polymethyl methacrylate particles (manufactured by Sekisui Kasei Kogyo Co., Ltd., trade name "Techpolymer”, weight average particle size: 3 ⁇ m, refractive index: 1.525 per 100 parts by weight of resin solid content of the resin.
  • silicone particles manufactured by Momentive Performance Materials Japan (same as above), trade name "Tospearl 130", weight average grain shape: 3 ⁇ m, refractive index: 1.42) is 1.4 parts by weight
  • As the thixotropy-imparting agent 1.5 parts by weight of synthetic smectite (manufactured by Corp Chemical Co., Ltd., trade name "Lucentite SAN"), which is an organic clay, and a photopolymerization initiator (manufactured by BASF, trade name "OMNIRAD907”) are used.
  • a leveling agent manufactured by Kyoeisha Chemical Co., Ltd., trade name "LE303", solid content 40%
  • the organic clay was diluted with toluene so that the solid content was 6%.
  • This mixture is diluted with a mixed solvent of toluene / ethyl acetate / cyclopentanone (CPN) (weight ratio 35/41/24) so that the solid content concentration becomes 52% by weight, and an ultrasonic disperser is used.
  • CPN ethyl acetate / cyclopentanone
  • Example 2 the same as in Example 1 except that the antiglare layer forming material (coating liquid) prepared in this example was used instead of the antiglare layer forming material (coating liquid) prepared in Example 1.
  • the antiglare layer (B) forming step was carried out to produce the antiglare film of this example.
  • the antiglare layer (B) is laminated on the light transmissive base material (A), and the antiglare layer (B) is formed of the antiglare layer forming resin (B1). It contained a haze adjusting filler (B2).
  • Example 3 The antiglare layer forming material (coating liquid) was used in the same manner as in Example 1 except that the blending amount of the "techpolymer” (filler for haze adjustment (B2)) was changed from 3 parts by weight to 4 parts by weight. Prepared. Specifically, it is as follows. As the resin contained in the antiglare layer forming material, 50 parts by weight of an ultraviolet curable urethane acrylate resin (manufactured by Nippon Synthetic Chemical Industry Co., Ltd., trade name "UV1700TL", solid content 80%) and pentaeristol triacrylate are used.
  • an ultraviolet curable urethane acrylate resin manufactured by Nippon Synthetic Chemical Industry Co., Ltd., trade name "UV1700TL", solid content 80%
  • pentaeristol triacrylate pentaeristol triacrylate
  • a mixture of 50 parts by weight of a polyfunctional acrylate (manufactured by Osaka Organic Chemical Industry Co., Ltd., trade name "Viscoat # 300", 100% solid content) as a main component was prepared.
  • Crosslinked polymethyl methacrylate particles (manufactured by Sekisui Kasei Kogyo Co., Ltd., trade name "Techpolymer”, weight average particle size: 3 ⁇ m, refractive index: 1.525 per 100 parts by weight of resin solid content of the resin.
  • silicone particles manufactured by Momentive Performance Materials Japan (same as above), trade name "Tospearl 130", weight average grain shape: 3 ⁇ m, refractive index: 1.42) is 1.5 parts by weight
  • As the thixotropy-imparting agent 1.5 parts by weight of synthetic smectite (manufactured by Corp Chemical Co., Ltd., trade name "Lucentite SAN"), which is an organic clay, and a photopolymerization initiator (manufactured by BASF, trade name "OMNIRAD907”) are used.
  • a leveling agent manufactured by Kyoeisha Chemical Co., Ltd., trade name "LE303", solid content 40%
  • the organic clay was diluted with toluene so that the solid content was 6%.
  • This mixture is diluted with a mixed solvent of toluene / ethyl acetate / cyclopentanone (CPN) (weight ratio 35/41/24) so that the solid content concentration becomes 52% by weight, and an ultrasonic disperser is used.
  • CPN ethyl acetate / cyclopentanone
  • Example 2 the same as in Example 1 except that the antiglare layer forming material (coating liquid) prepared in this example was used instead of the antiglare layer forming material (coating liquid) prepared in Example 1.
  • the antiglare layer (B) forming step was carried out to produce the antiglare film of this example.
  • the antiglare layer (B) is laminated on the light transmissive base material (A), and the antiglare layer (B) is formed of the antiglare layer forming resin (B1). It contained a haze adjusting filler (B2).
  • Example 4 As the resin contained in the antiglare layer forming material, 50 parts by weight of an ultraviolet curable urethane acrylate resin (manufactured by Nippon Synthetic Chemical Industry Co., Ltd., trade name "UV1700TL”, solid content 80%) and pentaeristol triacrylate are used. A mixture of 50 parts by weight of a polyfunctional acrylate (manufactured by Osaka Organic Chemical Industry Co., Ltd., trade name "Viscoat # 300", 100% solid content) as a main component was prepared.
  • an ultraviolet curable urethane acrylate resin manufactured by Nippon Synthetic Chemical Industry Co., Ltd., trade name "UV1700TL”, solid content 80%
  • pentaeristol triacrylate pentaeristol triacrylate
  • Crosslinked polymethyl methacrylate particles manufactured by Sekisui Kasei Kogyo Co., Ltd., trade name "Techpolymer”, weight average particle size: 3 ⁇ m, refractive index: 1.535 per 100 parts by weight of resin solid content of the resin.
  • Is 4 parts by weight, 1.5 parts by weight of synthetic smectite manufactured by Corp Chemical Co., Ltd., trade name "Lucentite SAN", which is an organic clay as the thixotropy-imparting agent, and a photopolymerization initiator (manufactured by BASF).
  • the name “OMNIRAD907”) was mixed in 3 parts by weight, and the leveling agent (manufactured by Kyoeisha Chemical Co., Ltd., trade name "LE303", solid content 40%) was mixed in 0.15 parts by weight.
  • the organic clay was diluted with toluene so that the solid content was 6%.
  • This mixture is diluted with a mixed solvent of toluene / ethyl acetate / cyclopentanone (CPN) (weight ratio 35/41/24) so that the solid content concentration becomes 52% by weight, and an ultrasonic disperser is used.
  • CPN ethyl acetate / cyclopentanone
  • Anti-glare layer forming material was prepared.
  • the antiglare layer forming material does not contain the silicone particles "Tospearl 130", and the refractive index of the "techpolymer” (haze adjusting filler (B2)) is 1.535. It was different from Examples 1 to 3 in that.
  • Example 2 the same as in Example 1 except that the antiglare layer forming material (coating liquid) prepared in this example was used instead of the antiglare layer forming material (coating liquid) prepared in Example 1.
  • the antiglare layer (B) forming step was carried out to produce the antiglare film of this example.
  • the antiglare layer (B) is laminated on the light transmissive base material (A), and the antiglare layer (B) is formed of the antiglare layer forming resin (B1). It contained a haze adjusting filler (B2).
  • Example 5 As the "techpolymer” (filler for haze adjustment (B2)), a “techpolymer” having a refractive index of 1.515 was used instead of the “techpolymer” having a refractive index of 1.535. A material for forming an antiglare layer (coating liquid) was prepared in the same manner as in Example 4 except that the blending amount of the "techpolymer” was changed to 8 parts by weight.
  • an ultraviolet curable urethane acrylate resin manufactured by Nippon Synthetic Chemical Industry Co., Ltd., trade name "UV1700TL”, solid content 80%
  • a mixture of 50 parts by weight of a polyfunctional acrylate manufactured by Osaka Organic Chemical Industry Co., Ltd., trade name "Viscoat # 300", 100% solid content
  • pentaeristol triacrylate as a main component was prepared.
  • Crosslinked polymethyl methacrylate particles manufactured by Sekisui Kasei Kogyo Co., Ltd., trade name "Techpolymer”, weight average particle size: 3 ⁇ m, refractive index: 1.515
  • Is 8 parts by weight, 1.5 parts by weight of synthetic smectite manufactured by Corp Chemical Co., Ltd., trade name "Lucentite SAN"
  • synthetic smectite manufactured by Corp Chemical Co., Ltd., trade name "Lucentite SAN”
  • BASF photopolymerization initiator
  • the name “OMNIRAD907”) was mixed in 3 parts by weight, and the leveling agent (manufactured by Kyoeisha Chemical Co., Ltd., trade name “LE303", solid content 40%) was mixed in 0.15 parts by weight.
  • the organic clay was diluted with toluene so that the solid content was 6%.
  • This mixture is diluted with a mixed solvent of toluene / ethyl acetate / cyclopentanone (CPN) (weight ratio 35/41/24) so that the solid content concentration becomes 45% by weight, and an ultrasonic disperser is used.
  • CPN ethyl acetate / cyclopentanone
  • Anti-glare layer forming material was prepared.
  • Example 2 the same as in Example 1 except that the antiglare layer forming material (coating liquid) prepared in this example was used instead of the antiglare layer forming material (coating liquid) prepared in Example 1.
  • the antiglare layer (B) forming step was carried out to produce the antiglare film of this example.
  • the antiglare layer (B) is laminated on the light transmissive base material (A), and the antiglare layer (B) is formed of the antiglare layer forming resin (B1). It contained a haze adjusting filler (B2).
  • Example 6 As the "techpolymer” (filler for haze adjustment (B2)), a “techpolymer” having a refractive index of 1.505 was used instead of the “techpolymer” having a refractive index of 1.535. A material for forming an antiglare layer (coating liquid) was prepared in the same manner as in Example 4 except that the blending amount of the "techpolymer” was changed to 8 parts by weight.
  • an ultraviolet curable urethane acrylate resin manufactured by Nippon Synthetic Chemical Industry Co., Ltd., trade name "UV1700TL”, solid content 80%
  • a mixture of 50 parts by weight of a polyfunctional acrylate manufactured by Osaka Organic Chemical Industry Co., Ltd., trade name "Viscoat # 300", 100% solid content
  • pentaeristol triacrylate as a main component was prepared.
  • Crosslinked polymethyl methacrylate particles manufactured by Sekisui Kasei Kogyo Co., Ltd., trade name "Techpolymer”, weight average particle size: 3 ⁇ m, refractive index: 1.505 per 100 parts by weight of resin solid content of the resin.
  • Is 8 parts by weight, 1.5 parts by weight of synthetic smectite manufactured by Corp Chemical Co., Ltd., trade name "Lucentite SAN", which is an organic clay as the thixotropy-imparting agent, and a photopolymerization initiator (manufactured by BASF).
  • the name “OMNIRAD907”) was mixed in 3 parts by weight, and the leveling agent (manufactured by Kyoeisha Chemical Co., Ltd., trade name “LE303", solid content 40%) was mixed in 0.15 parts by weight.
  • the organic clay was diluted with toluene so that the solid content was 6%.
  • This mixture is diluted with a mixed solvent of toluene / ethyl acetate / cyclopentanone (CPN) (weight ratio 35/41/24) so that the solid content concentration becomes 45% by weight, and an ultrasonic disperser is used.
  • CPN ethyl acetate / cyclopentanone
  • Anti-glare layer forming material was prepared.
  • Example 2 the same as in Example 1 except that the antiglare layer forming material (coating liquid) prepared in this example was used instead of the antiglare layer forming material (coating liquid) prepared in Example 1.
  • the antiglare layer (B) forming step was carried out to produce the antiglare film of this example.
  • the antiglare layer (B) is laminated on the light transmissive base material (A), and the antiglare layer (B) is formed of the antiglare layer forming resin (B1). It contained a haze adjusting filler (B2).
  • the antiglare layer is the same as in Example 4 except that the "techpolymer” having a refractive index of 1.555 is used instead of the “techpolymer” having a refractive index of 1.535.
  • a forming material (coating liquid) was prepared.
  • an ultraviolet curable urethane acrylate resin manufactured by Nippon Synthetic Chemical Industry Co., Ltd., trade name "UV1700TL”, solid content 80%
  • a mixture of 50 parts by weight of a polyfunctional acrylate manufactured by Osaka Organic Chemical Industry Co., Ltd., trade name "Viscoat # 300", 100% solid content
  • pentaeristol triacrylate as a main component was prepared.
  • Crosslinked polymethyl methacrylate particles manufactured by Sekisui Kasei Kogyo Co., Ltd., trade name "Techpolymer”, weight average particle size: 3 ⁇ m, refractive index: 1.555 per 100 parts by weight of resin solid content of the resin.
  • Is 4 parts by weight, 1.5 parts by weight of synthetic smectite manufactured by Corp Chemical Co., Ltd., trade name "Lucentite SAN", which is an organic clay as the thixotropy-imparting agent, and a photopolymerization initiator (manufactured by BASF).
  • the name “OMNIRAD907”) was mixed in 3 parts by weight, and the leveling agent (manufactured by Kyoeisha Chemical Co., Ltd., trade name "LE303", solid content 40%) was mixed in 0.15 parts by weight.
  • the organic clay was diluted with toluene so that the solid content was 6%.
  • This mixture is diluted with a mixed solvent of toluene / ethyl acetate / cyclopentanone (CPN) (weight ratio 35/41/24) so that the solid content concentration becomes 50% by weight, and an ultrasonic disperser is used.
  • CPN ethyl acetate / cyclopentanone
  • Anti-glare layer forming material was prepared.
  • Example 1 the protection of Example 1 except that the antiglare layer forming material (coating liquid) prepared in this comparative example was used instead of the antiglare layer forming material (coating liquid) prepared in Example 1.
  • a step similar to the step of forming the glare layer (B) was carried out to produce an antiglare film of this comparative example.
  • Comparative Example 2 A material for forming an antiglare layer (coating liquid) was prepared in the same manner as in Comparative Example 1 except that the blending amount of the "techpolymer" having a refractive index of 1.555 was changed to 5.5 parts by weight.
  • an ultraviolet curable urethane acrylate resin manufactured by Nippon Synthetic Chemical Industry Co., Ltd., trade name "UV1700TL”, solid content 80%
  • a mixture of 50 parts by weight of a polyfunctional acrylate manufactured by Osaka Organic Chemical Industry Co., Ltd., trade name "Viscoat # 300", 100% solid content
  • pentaeristol triacrylate as a main component was prepared.
  • Crosslinked polymethyl methacrylate particles manufactured by Sekisui Kasei Kogyo Co., Ltd., trade name "Techpolymer”, weight average particle size: 3 ⁇ m, refractive index: 1.555 per 100 parts by weight of resin solid content of the resin.
  • Example 1 the protection of Example 1 except that the antiglare layer forming material (coating liquid) prepared in this comparative example was used instead of the antiglare layer forming material (coating liquid) prepared in Example 1.
  • a step similar to the step of forming the glare layer (B) was carried out to produce an antiglare film of this comparative example.
  • Comparative Example 3 A material for forming an antiglare layer (coating liquid) was prepared in the same manner as in Comparative Example 1 except that the blending amount of the "techpolymer" having a refractive index of 1.555 was changed to 7.2 parts by weight.
  • an ultraviolet curable urethane acrylate resin manufactured by Nippon Synthetic Chemical Industry Co., Ltd., trade name "UV1700TL”, solid content 80%
  • a mixture of 50 parts by weight of a polyfunctional acrylate manufactured by Osaka Organic Chemical Industry Co., Ltd., trade name "Viscoat # 300", 100% solid content
  • pentaeristol triacrylate as a main component was prepared.
  • Crosslinked polymethyl methacrylate particles manufactured by Sekisui Kasei Kogyo Co., Ltd., trade name "Techpolymer”, weight average particle size: 3 ⁇ m, refractive index: 1.555 per 100 parts by weight of resin solid content of the resin.
  • silicone particles manufactured by Momentive Performance Materials Japan Co., Ltd., synthetic smectite which is an organic clay as the thixotropy-imparting agent (manufactured by Corp Chemical Co., Ltd., trade name "Lucentite SAN") 2.5 parts by weight, photopolymerization initiator (manufactured by BASF, trade name "OMNIRAD907”) by 5 parts by weight, leveling agent (manufactured by DIC Co., Ltd., trade name "Megafuck F470N", solid content 30%) 0.5 parts by weight was mixed.
  • the organic clay was diluted with ethyl acetate so that the solid content was 4.6%, and this mixture was used so that the solid content concentration was 32% by weight.
  • the antiglare layer forming material (coating liquid) was prepared by diluting with a toluene / ethyl acetate mixed solvent (weight ratio 93/7) using an ultrasonic disperser.
  • Example 1 the protection of Example 1 except that the antiglare layer forming material (coating liquid) prepared in this comparative example was used instead of the antiglare layer forming material (coating liquid) prepared in Example 1.
  • a step similar to the step of forming the glare layer (B) was carried out to produce an antiglare film of this comparative example.
  • the antiglare film of the example containing no particles (filler) having a polystyrene content of more than 30% by volume changes the total haze value even after heating or humidification for 500 hours.
  • the absolute value of the amount was as small as 1.4% at the maximum.
  • the antiglare film of the comparative example containing particles (filler) having a polystyrene content of more than 30% by volume has an absolute value of change in the total haze value of 1 after heating or humidifying for 500 hours. It changed significantly to 5.5% or more.
  • an antiglare film whose haze value is hard to change, a method for producing the antiglare film, an optical member, and an image display device.
  • the antiglare film of the present invention is suitable for use under high temperature or high humidity conditions because the haze value does not easily change even under heating or humidifying conditions, for example.
  • the present invention is not limited to this application and can be used in a wide range of applications.
  • Anti-glare film 11 Light-transmitting base material (A) 12 Anti-glare layer (B) 12a Antiglare layer forming resin (B1) 12b Haze adjustment filler (B2) 12c thixotropy imparting agent

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • Theoretical Computer Science (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Laminated Bodies (AREA)
  • Liquid Crystal (AREA)

Abstract

The present invention provides an anti-glare film wherein the haze value is not susceptible to change. An anti-glare film 10 which is obtained by superposing an anti-glare layer (B) 12 on a light-transmitting base material (A) 11, and which is characterized in that: the anti-glare layer (B) 12 contains a resin (B1) 12a for the anti-glare layer formation and at least one filler (B2) 12b for the haze adjustment; the filler (B2) 12b for the haze adjustment is configured from a copolymer of a polystyrene (Pst) and a polymethyl methacrylate (PMMA); the peak area ratio of the PMMA peak to the Pst peak, namely (PMMA peak)/(Pst peak) is 0.51 or more as determined by the Raman spectroscopy spectrum of the filler (B2) 12b for the haze adjustment by itself; the peak areas are calculated using the minimum point between adjacent peaks as the boundary; and the total haze value of the anti-glare film 10 is within the range of from 5% to 45%.

Description

防眩性フィルム、防眩性フィルムの設計方法、防眩性フィルムの製造方法、光学部材および画像表示装置Anti-glare film, anti-glare film design method, anti-glare film manufacturing method, optical member and image display device
 本発明は、防眩性フィルム、防眩性フィルムの設計方法、防眩性フィルムの製造方法、光学部材および画像表示装置に関する。 The present invention relates to an antiglare film, a method for designing an antiglare film, a method for manufacturing an antiglare film, an optical member, and an image display device.
 陰極管表示装置(CRT)、液晶表示装置(LCD)、プラズマディスプレイパネル(PDP)およびエレクトロルミネッセンスディスプレイ(ELD)等の、様々な画像表示装置には、前記画像表示装置表面における蛍光灯や太陽光等の外光の反射や像の映り込みによるコントラスト低下を防止するための防眩(アンチグレア)処理が施され、特に、画像表示装置の大画面化が進むのに伴い、防眩性のフィルムを装着した画像表示装置が増大している。 Various image display devices such as a cathode ray tube display device (CRT), a liquid crystal display device (LCD), a plasma display panel (PDP), and an electroluminescence display (ELD) are provided with fluorescent lamps and sunlight on the surface of the image display device. Anti-glare treatment is applied to prevent contrast deterioration due to reflection of external light and reflection of images, and in particular, as the screen size of image display devices increases, anti-glare films are used. The number of image display devices installed is increasing.
 防眩性フィルムについて記載された文献は多数あるが、例えば、特許文献1および2等がある。 There are many documents describing antiglare films, for example, Patent Documents 1 and 2.
特開2009-109683号公報JP-A-2009-109683 特開2003-202416号公報Japanese Unexamined Patent Publication No. 2003-202416
 防眩性フィルムにおいては、防眩性および表示特性の観点から、ヘイズ値が適正な範囲内である必要がある。 In the antiglare film, the haze value needs to be within an appropriate range from the viewpoint of antiglare and display characteristics.
 しかし、紫外線、温度、湿度等の影響で、防眩性フィルムのヘイズ値が大きく変化してしまい、その結果、防眩性または表示特性が低下するおそれがある。 However, due to the influence of ultraviolet rays, temperature, humidity, etc., the haze value of the antiglare film may change significantly, and as a result, the antiglare property or display characteristics may deteriorate.
 そこで、本発明は、ヘイズ値が変化し難い防眩性フィルム、防眩性フィルムの設計方法、防眩性フィルムの製造方法、光学部材および画像表示装置の提供を目的とする。 Therefore, an object of the present invention is to provide an antiglare film whose haze value is hard to change, a method for designing an antiglare film, a method for manufacturing an antiglare film, an optical member, and an image display device.
 前記目的を達成するために、本発明の第1の防眩性フィルムは、
 光透過性基材(A)上に防眩層(B)が積層された防眩性フィルムであって、
 前記防眩層(B)が、防眩層形成用樹脂(B1)と、少なくとも一種類のヘイズ調整用フィラー(B2)とを含み、
 前記ヘイズ調整用フィラー(B2)は、Pst(ポリスチレン)とPMMA(ポリメタクリル酸メチル)との共重合体から構成されるフィラーであり、
 前記ヘイズ調整用フィラー(B2)単体のラマン分光スペクトルによるPMMAピーク/Pstピークのピーク面積比が0.51以上であり、前記ピーク面積は、隣接するピークとの間の極小点を境界として算出したピーク面積であり、
 前記防眩性フィルムの全ヘイズ値が5~45%の範囲であることを特徴とする。
In order to achieve the above object, the first antiglare film of the present invention is
An antiglare film in which an antiglare layer (B) is laminated on a light transmissive base material (A).
The antiglare layer (B) contains a resin for forming an antiglare layer (B1) and at least one kind of haze adjusting filler (B2).
The haze adjusting filler (B2) is a filler composed of a copolymer of Pst (polystyrene) and PMMA (polymethyl methacrylate).
The peak area ratio of PMMA peak / Pst peak according to the Raman spectroscopic spectrum of the haze adjusting filler (B2) alone is 0.51 or more, and the peak area is calculated with the minimum point between the adjacent peaks as a boundary. It is the peak area,
The total haze value of the antiglare film is in the range of 5 to 45%.
 前記目的を達成するために、本発明の第2の防眩性フィルムは、
 光透過性基材(A)上に防眩層(B)が積層された防眩性フィルムであって、
 前記防眩層(B)が、防眩層形成用樹脂(B1)と、少なくとも一種類のヘイズ調整用フィラー(B2)とを含み、
 前記ヘイズ調整用フィラー(B2)は、Pst(ポリスチレン)とPMMA(ポリメタクリル酸メチル)との共重合体から構成されるフィラーであり、かつ、屈折率が1.535を超えるフィラーを含まず、
 前記防眩性フィルムの全ヘイズ値が5~45%の範囲であることを特徴とする。
In order to achieve the above object, the second antiglare film of the present invention is used.
An antiglare film in which an antiglare layer (B) is laminated on a light transmissive base material (A).
The antiglare layer (B) contains a resin for forming an antiglare layer (B1) and at least one kind of haze adjusting filler (B2).
The haze adjusting filler (B2) is a filler composed of a copolymer of Pst (polystyrene) and PMMA (polymethyl methacrylate), and does not contain a filler having a refractive index of more than 1.535.
The total haze value of the antiglare film is in the range of 5 to 45%.
 なお、以下において、「本発明の防眩性フィルム」という場合は、特に断らない限り、前記本発明の第1の防眩性フィルムと、前記本発明の第2の防眩性フィルムとの両方を含む。 In the following, the term "antiglare film of the present invention" refers to both the first antiglare film of the present invention and the second antiglare film of the present invention unless otherwise specified. including.
 本発明の防眩性フィルムの設計方法は、
 光透過性基材(A)上に防眩層(B)が積層された防眩性フィルムの設計方法であって、
 前記防眩層(B)が、防眩層形成用樹脂(B1)と、少なくとも一種類のヘイズ調整用フィラー(B2)とを含み、
 前記ヘイズ調整用フィラー(B2)は、Pst(ポリスチレン)とPMMA(ポリメタクリル酸メチル)との共重合体から構成されるフィラーであり、
 前記防眩性フィルムが下記条件(1)及び(2)を満たすように設計することで、前記防眩性フィルムのヘイズ値の変化を抑制することを特徴とする。
 
(1) 前記ヘイズ調整用フィラー(B2)単体のラマン分光スペクトルによるPMMAピーク/Pstピークのピーク面積比が0.51以上であり、前記ピーク面積は、隣接するピークとの間の極小点を境界として算出したピーク面積である。
(2) 前記防眩性フィルムの全ヘイズ値が5~45%の範囲である。
The method for designing the antiglare film of the present invention is
A method for designing an antiglare film in which an antiglare layer (B) is laminated on a light transmissive base material (A).
The antiglare layer (B) contains a resin for forming an antiglare layer (B1) and at least one kind of haze adjusting filler (B2).
The haze adjusting filler (B2) is a filler composed of a copolymer of Pst (polystyrene) and PMMA (polymethyl methacrylate).
By designing the antiglare film so as to satisfy the following conditions (1) and (2), it is characterized in that the change in the haze value of the antiglare film is suppressed.

(1) The peak area ratio of PMMA peak / Pst peak according to the Raman spectroscopic spectrum of the haze adjusting filler (B2) alone is 0.51 or more, and the peak area borders a minimum point between adjacent peaks. It is the peak area calculated as.
(2) The total haze value of the antiglare film is in the range of 5 to 45%.
 本発明の第1の防眩性フィルムの製造方法は、
 本発明の防眩性フィルムの設計方法により前記防眩性フィルムを設計する工程を含み、
 前記防眩性フィルムが本発明の防眩性フィルムであることを特徴とする。
The method for producing the first antiglare film of the present invention is
The step of designing the antiglare film according to the method for designing the antiglare film of the present invention is included.
The antiglare film is the antiglare film of the present invention.
 本発明の第2の防眩性フィルムの製造方法は、
 前記光透過性基材(A)上に、前記防眩層(B)を形成する防眩層(B)形成工程を含み、
 前記防眩層(B)形成工程が、前記光透過性基材(A)上に塗工液を塗工する塗工工程と、塗工した前記塗工液を乾燥させて塗膜を形成する塗膜形成工程とを含み、
 前記塗工液が、前記防眩層形成用樹脂(B1)形成材料と、前記ヘイズ調整用フィラー(B2)とを含むことを特徴とする本発明の防眩性フィルムの製造方法である。
The method for producing the second antiglare film of the present invention is
The step of forming the antiglare layer (B) for forming the antiglare layer (B) on the light transmissive base material (A) is included.
The antiglare layer (B) forming step is a coating step of applying a coating liquid on the light transmissive base material (A) and drying the coated coating liquid to form a coating film. Including the coating film forming step
The method for producing an antiglare film of the present invention, wherein the coating liquid contains the antiglare layer forming resin (B1) forming material and the haze adjusting filler (B2).
 なお、以下において、「本発明の防眩性フィルムの製造方法」という場合は、特に断らない限り、前記本発明の第1の防眩性フィルムの製造方法と、前記本発明の第2の防眩性フィルムの製造方法との両方を含む。 In the following, the term "method for producing the antiglare film of the present invention" refers to the method for producing the first antiglare film of the present invention and the second prevention of the present invention unless otherwise specified. Includes both with a method of making a dazzling film.
 本発明の光学部材は、本発明の防眩性フィルムを含む光学部材である。 The optical member of the present invention is an optical member including the antiglare film of the present invention.
 本発明の画像表示装置は、本発明の防眩性フィルム、または本発明の光学部材を含む画像表示装置である。 The image display device of the present invention is an image display device including the antiglare film of the present invention or the optical member of the present invention.
 本発明によれば、ヘイズ値が変化し難い防眩性フィルム、防眩性フィルムの設計方法、防眩性フィルムの製造方法、光学部材および画像表示装置を提供することができる。 According to the present invention, it is possible to provide an antiglare film whose haze value is hard to change, a method for designing an antiglare film, a method for manufacturing an antiglare film, an optical member, and an image display device.
図1は、本発明の防眩性フィルムの一例を示す断面図である。FIG. 1 is a cross-sectional view showing an example of the antiglare film of the present invention.
 つぎに、本発明について、例を挙げてさらに具体的に説明する。ただし、本発明は、以下の説明により、なんら限定されない。 Next, the present invention will be described in more detail with an example. However, the present invention is not limited by the following description.
 本発明の防眩性フィルムは、例えば、前記ヘイズ調整用フィラー(B2)の屈折率が、前記防眩層形成用樹脂(B1)の屈折率よりも小さく、かつ、前記防眩層形成用樹脂(B1)と、前記ヘイズ調整用フィラー(B2)との屈折率差が、絶対値で0.001を超え0.15未満であってもよい。 In the antiglare film of the present invention, for example, the refractive index of the haze adjusting filler (B2) is smaller than the refractive index of the antiglare layer forming resin (B1), and the antiglare layer forming resin is formed. The difference in refractive index between (B1) and the haze adjusting filler (B2) may be more than 0.001 and less than 0.15 in absolute value.
 本発明の防眩性フィルムは、例えば、前記ヘイズ調整用フィラー(B2)が、粒子であってもよい。 In the antiglare film of the present invention, for example, the haze adjusting filler (B2) may be particles.
 本発明の防眩性フィルムの製造方法は、例えば、前記防眩層(B)形成工程が、さらに、前記塗膜を硬化させる硬化工程を含んでいてもよい。 The method for producing an antiglare film of the present invention may include, for example, a step of forming the antiglare layer (B) and a curing step of curing the coating film.
 本発明の光学部材は、例えば、偏光板であってもよい。 The optical member of the present invention may be, for example, a polarizing plate.
[1.防眩性フィルム] [1. Anti-glare film]
 図1の断面図に、本発明の防眩性フィルムの構成の一例を示す。図示のとおり、この防眩性フィルム10は、光透過性基材(A)11の一方の面に、防眩層(B)12が積層されている。防眩層(B)12は、樹脂層12a中に粒子(ヘイズ調整用フィラー(B2))12bおよびチキソトロピー付与剤12cが含まれている。樹脂層12aは、防眩層形成用樹脂(B1)により形成されている。粒子12bは、本発明の防眩性フィルムにおけるヘイズ調整用フィラー(B2)に該当する。 The cross-sectional view of FIG. 1 shows an example of the configuration of the antiglare film of the present invention. As shown in the figure, in the antiglare film 10, the antiglare layer (B) 12 is laminated on one surface of the light transmissive base material (A) 11. The antiglare layer (B) 12 contains particles (haze adjusting filler (B2)) 12b and a thixotropy-imparting agent 12c in the resin layer 12a. The resin layer 12a is formed of the antiglare layer forming resin (B1). The particles 12b correspond to the haze adjusting filler (B2) in the antiglare film of the present invention.
 ヘイズ調整用フィラー(B2)は、前述のとおり、Pst(ポリスチレン)とPMMA(ポリメタクリル酸メチル)との共重合体から構成されるフィラーである。なお、図1では、ヘイズ調整用フィラー(B2)が、粒子12bの一種類のみである。しかし、本発明はこれに限定されず、ヘイズ調整用フィラー(B2)は、一種類でもよいし、複数種類でもよい。すなわち、本発明では、ヘイズ調整用フィラー(B2)として、ポリスチレンとPMMAとの共重合体から構成されるフィラーを、一種類のみ用いてもよいし、複数種類用いてもよい。また、ヘイズ調整用フィラー(B2)は、例えば、粒子であってもよいが、粒子以外であってもよい。 As described above, the haze adjusting filler (B2) is a filler composed of a copolymer of Pst (polystyrene) and PMMA (polymethyl methacrylate). In FIG. 1, the haze adjusting filler (B2) is only one type of particles 12b. However, the present invention is not limited to this, and the haze adjusting filler (B2) may be of one type or a plurality of types. That is, in the present invention, as the haze adjusting filler (B2), only one type of filler composed of a copolymer of polystyrene and PMMA may be used, or a plurality of types may be used. Further, the haze adjusting filler (B2) may be, for example, particles, but may be other than particles.
 また、チキソトロピー付与剤12cは、本発明の防眩性フィルムにおいては任意であり、含まれていても含まれていなくてもよい。また、本発明の防眩性フィルムは、ヘイズ調整用フィラー(B2)以外の他のフィラーを含んでいてもよく、含んでいなくてもよい。前記他のフィラーとしては、例えば、図1のチキソトロピー付与剤12cが挙げられる。また、前記他のフィラーとしては、例えば、ヘイズ調整用フィラー(B2)以外の他の粒子も挙げられる。 Further, the thixotropy-imparting agent 12c is optional in the antiglare film of the present invention, and may or may not be contained. Further, the antiglare film of the present invention may or may not contain a filler other than the haze adjusting filler (B2). Examples of the other filler include the thixotropy-imparting agent 12c shown in FIG. Further, examples of the other filler include particles other than the haze adjusting filler (B2).
 また、本発明の防眩性フィルムは、光透過性基材(A)および防眩層(B)以外の他の層を含んでいてもよいし、含んでいなくてもよい。本発明の防眩性フィルムが前記他の層を含む場合、前記他の層は、一層でも二層以上でもよいし、その位置も特に限定されない。例えば、光透過性基材(A)上に、前記他の層を介して光透過性基材(A)が積層されていてもよい。また、例えば、防眩層(B)における光透過性基材(A)と反対側の面上に、前記他の層が積層されていてもよい。前記他の層は特に限定されず、例えば、低屈折率層、反射防止層、高屈折率層、ハードコート層、粘着剤層等であってもよい。 Further, the antiglare film of the present invention may or may not contain layers other than the light transmissive base material (A) and the antiglare layer (B). When the antiglare film of the present invention contains the other layer, the other layer may be one layer or two or more layers, and the position thereof is not particularly limited. For example, the light-transmitting base material (A) may be laminated on the light-transmitting base material (A) via the other layer. Further, for example, the other layer may be laminated on the surface of the antiglare layer (B) opposite to the light transmissive base material (A). The other layer is not particularly limited, and may be, for example, a low refractive index layer, an antireflection layer, a high refractive index layer, a hard coat layer, an adhesive layer, or the like.
 本発明の防眩性フィルムは、前述のとおり、全ヘイズ値が、5~45%の範囲である。全ヘイズ値が小さすぎると、防眩性が低下する。全ヘイズ値が大きすぎると、画像が不鮮明になる、暗所でのコントラストが低下する等、表示特性が低下しやすい。前記全ヘイズ値は、例えば、7%以上、10%以上、12%以上、または15%以上でもよく、例えば、40%以下、35%以下、32%以下、30%以下、27%以下、または25%以下でもよい。なお、本発明の防眩性フィルムにおいて、前記「全ヘイズ値」は、JIS K 7136(2000年版)に準じた防眩性フィルム全体のヘイズ値(曇度)である。 As described above, the antiglare film of the present invention has a total haze value in the range of 5 to 45%. If the total haze value is too small, the anti-glare property will decrease. If the total haze value is too large, the display characteristics are likely to be deteriorated, such as the image becoming unclear and the contrast in a dark place being lowered. The total haze value may be, for example, 7% or more, 10% or more, 12% or more, or 15% or more, for example, 40% or less, 35% or less, 32% or less, 30% or less, 27% or less, or. It may be 25% or less. In the antiglare film of the present invention, the "total haze value" is the haze value (cloudiness) of the entire antiglare film according to JIS K 7136 (2000 version).
 また、前記防眩層(B)表面(前記光透過性基材(A)と反対側の面)には、例えば、図1に示すように、凹凸が形成されている。この凹凸形状の制御により、例えば、防眩性フィルムのヘイズ値(曇度)、表示特性等を制御できる。前記防眩層(B)表面の凹凸形状(例えば、表面粗さ、凹凸平均高さ、凸部間平均距離等)は、特に限定されず、例えば、一般的な防眩性フィルムに準じて、またはそれを参考にして、適宜設定可能である。 Further, as shown in FIG. 1, for example, irregularities are formed on the surface of the antiglare layer (B) (the surface opposite to the light transmissive base material (A)). By controlling the uneven shape, for example, the haze value (cloudiness) of the antiglare film, the display characteristics, and the like can be controlled. The uneven shape of the surface of the antiglare layer (B) (for example, surface roughness, average height of unevenness, average distance between convex portions, etc.) is not particularly limited, and is, for example, according to a general antiglare film. Alternatively, it can be set as appropriate with reference to it.
 以下、前記光透過性基材(A)、前記防眩層(B)および前記他の層のそれぞれについて、さらに例を挙げて説明する。なお、以下においては、主に、前記防眩層(B)が防眩性ハードコート層である場合について説明するが、本発明はこれには限定されない。 Hereinafter, each of the light transmissive base material (A), the antiglare layer (B), and the other layers will be described with further examples. In the following, the case where the antiglare layer (B) is an antiglare hard coat layer will be mainly described, but the present invention is not limited thereto.
[1-1.光透過性基材(A)]
 前記光透過性基材(A)は、特に制限されないが、例えば、透明プラスチックフィルム基材等が挙げられる。前記透明プラスチックフィルム基材は、特に制限されないが、可視光の光線透過率に優れ(好ましくは光線透過率90%以上)、透明性に優れるもの(好ましくはヘイズ値1%以下のもの)が好ましく、例えば、特開2008-90263号公報に記載の透明プラスチックフィルム基材が挙げられる。前記透明プラスチックフィルム基材としては、光学的に複屈折の少ないものが好適に用いられる。本発明の防眩性フィルムは、例えば、保護フィルムとして偏光板に使用することもでき、この場合には、前記透明プラスチックフィルム基材としては、トリアセチルセルロース(TAC)、ポリカーボネート、アクリル系ポリマー、環状ないしノルボルネン構造を有するポリオレフィン等から形成されたフィルムが好ましい。また、本発明において、後述するように、前記透明プラスチックフィルム基材は、偏光子自体であってもよい。このような構成であると、TAC等からなる保護層を不要とし偏光板の構造を単純化できるので、偏光板もしくは画像表示装置の製造工程数を減少させ、生産効率の向上が図れる。また、このような構成であれば、偏光板を、より薄層化することができる。なお、前記透明プラスチックフィルム基材が偏光子である場合には、例えば、前記防眩層(B)が、保護層としての役割を果たすことになる。また、このような構成であれば、防眩性フィルムは、例えば、液晶セル表面に装着される場合、カバープレートとしての機能を兼ねることになる。
[1-1. Light-transparent substrate (A)]
The light-transmitting base material (A) is not particularly limited, and examples thereof include a transparent plastic film base material. The transparent plastic film base material is not particularly limited, but is preferably one having excellent visible light transmittance (preferably 90% or more) and excellent transparency (preferably one having a haze value of 1% or less). For example, the transparent plastic film base material described in JP-A-2008-90263 can be mentioned. As the transparent plastic film base material, one having less birefringence optically is preferably used. The antiglare film of the present invention can also be used as a protective film for a polarizing plate, and in this case, as the transparent plastic film base material, triacetyl cellulose (TAC), polycarbonate, acrylic polymer, etc. A film formed of a polyolefin or the like having a cyclic or norbornene structure is preferable. Further, in the present invention, as will be described later, the transparent plastic film base material may be the polarizer itself. With such a configuration, the protective layer made of TAC or the like is unnecessary and the structure of the polarizing plate can be simplified, so that the number of manufacturing steps of the polarizing plate or the image display device can be reduced and the production efficiency can be improved. Further, with such a configuration, the polarizing plate can be made thinner. When the transparent plastic film base material is a polarizer, for example, the antiglare layer (B) serves as a protective layer. Further, with such a configuration, the antiglare film also functions as a cover plate when mounted on the surface of a liquid crystal cell, for example.
 本発明において、前記光透過性基材(A)の厚みは、特に制限されないが、強度、取り扱い性などの作業性および薄層性などの点を考慮すると、例えば、10~500μm、20~300μm、または30~200μmの範囲である。前記光透過性基材(A)の屈折率は、特に制限されない。前記屈折率は、例えば、1.30~1.80または1.40~1.70の範囲である。 In the present invention, the thickness of the light transmissive base material (A) is not particularly limited, but in consideration of workability such as strength and handleability and thin layer property, for example, 10 to 500 μm and 20 to 300 μm. , Or in the range of 30-200 μm. The refractive index of the light transmissive substrate (A) is not particularly limited. The refractive index is, for example, in the range of 1.30 to 1.80 or 1.40 to 1.70.
 なお、本発明において、「屈折率」は、特に断らない限り、波長550nmの屈折率をいう。また、本発明において、屈折率の測定方法は、特に限定されないが、粒子等の微細な物質の屈折率の場合は、例えば、ベッケ法を用いて測定できる。ベッケ法とは、スライドガラス上で標準屈折液に測定試料を分散させ、顕微鏡で観察した際に、試料の輪郭が消えるか、またはぼやけるときの標準屈折液の屈折率をその試料の屈折率とする測定法である。また、ベッケ法で屈折率を測定できない測定対象物(例えば、防眩性フィルム、防眩層、または防眩層を構成する樹脂等)の屈折率の測定方法は、特に限定されないが、例えば、一般的な屈折計(屈折率測定用の機器)を用いて測定できる。前記屈折計も特に限定されないが、例えば、アッベ屈折計等が挙げられる。前記アッベ屈折計としては、例えば、株式会社アタゴ製の多波長アッベ屈折計DR-M2/1550(商品名)が挙げられる。 In the present invention, the "refractive index" refers to a refractive index having a wavelength of 550 nm unless otherwise specified. Further, in the present invention, the method for measuring the refractive index is not particularly limited, but in the case of the refractive index of a fine substance such as particles, for example, the Becke method can be used for measurement. The Becke method is the refractive index of a standard refracting solution when the contour of the sample disappears or becomes blurred when the measurement sample is dispersed in a standard refracting solution on a slide glass and observed under a microscope. It is a measurement method to be performed. The method for measuring the refractive index of a measurement object whose refractive index cannot be measured by the Becke method (for example, an antiglare film, an antiglare layer, or a resin constituting the antiglare layer) is not particularly limited, but for example, It can be measured using a general refractometer (equipment for measuring the refractive index). The refractometer is also not particularly limited, and examples thereof include an Abbe refractometer. Examples of the Abbe refractometer include a multi-wavelength Abbe refractometer DR-M2 / 1550 (trade name) manufactured by Atago Co., Ltd.
 本発明の防眩性フィルムは、例えば、前記光透過性基材(A)に含まれる樹脂が、アクリル樹脂を含んでいてもよい。 In the antiglare film of the present invention, for example, the resin contained in the light transmissive base material (A) may contain an acrylic resin.
 本発明の防眩性フィルムは、例えば、前記光透過性基材(A)が、アクリルフィルムであってもよい。 In the antiglare film of the present invention, for example, the light transmissive base material (A) may be an acrylic film.
[1-2.防眩層(B)]
 本発明の防眩性フィルムにおいて、前記防眩層(B)は、前述のとおり、防眩層形成用樹脂(B1)と、少なくとも一種類のヘイズ調整用フィラー(B2)とを含む。
[1-2. Anti-glare layer (B)]
In the antiglare film of the present invention, the antiglare layer (B) contains, as described above, the antiglare layer forming resin (B1) and at least one kind of haze adjusting filler (B2).
 前記防眩層(B)は、例えば、後述するように、前記防眩層形成用樹脂(B1)、前記ヘイズ調整用フィラー(B2)および溶媒を含む塗工液を、前記光透過性基材(A)の少なくとも一方の面に塗工して塗膜を形成し、次いで、前記塗膜から前記溶媒を除去することで形成される。 As the antiglare layer (B), for example, as will be described later, a coating liquid containing the antiglare layer forming resin (B1), the haze adjusting filler (B2) and a solvent is applied to the light-transmitting base material. It is formed by coating on at least one surface of (A) to form a coating film, and then removing the solvent from the coating film.
[1-2-1.防眩層形成用樹脂(B1)]
 前記防眩層形成用樹脂(B1)(以下、単に「樹脂(B1)」または「樹脂」ということがある。)は、特に限定されず、例えば、1種類の樹脂のみを用いてもよいし、2種類以上の樹脂を併用してもよい。樹脂(B1)は、例えば、アクリレート樹脂(アクリル樹脂ともいう)を含んでいてもよく、また、例えば、ウレタンアクリレート樹脂を含んでいてもよい。樹脂(B1)は、例えば、硬化型ウレタンアクリレート樹脂および多官能アクリレートの共重合物であってもよい。
[1-2-1. Antiglare layer forming resin (B1)]
The antiglare layer forming resin (B1) (hereinafter, may be simply referred to as “resin (B1)” or “resin”) is not particularly limited, and for example, only one type of resin may be used. Two or more kinds of resins may be used together. The resin (B1) may contain, for example, an acrylate resin (also referred to as an acrylic resin), or may contain, for example, a urethane acrylate resin. The resin (B1) may be, for example, a copolymer of a curable urethane acrylate resin and a polyfunctional acrylate.
 樹脂(B1)は、前記アクリレート樹脂等に限定されず、例えば、熱硬化性樹脂、紫外線や光で硬化する電離放射線硬化性樹脂が挙げられる。樹脂(B1)として、市販の熱硬化型樹脂や紫外線硬化型樹脂等を用いることも可能である。 The resin (B1) is not limited to the acrylate resin and the like, and examples thereof include thermosetting resins and ionizing radiation curable resins that are cured by ultraviolet rays or light. As the resin (B1), a commercially available thermosetting resin, an ultraviolet curable resin, or the like can also be used.
 前記熱硬化型樹脂や紫外線硬化型樹脂としては、例えば、熱、光(紫外線等)または電子線等により硬化するアクリレート基およびメタクリレート基の少なくとも一方の基を有する硬化型化合物が使用でき、例えば、シリコーン樹脂、ポリエステル樹脂、ポリエーテル樹脂、エポキシ樹脂、ウレタン樹脂、アルキッド樹脂、スピロアセタール樹脂、ポリブタジエン樹脂、ポリチオールポリエン樹脂、多価アルコール等の多官能化合物のアクリレートやメタクリレート等のオリゴマーまたはプレポリマー等が挙げられる。これらは、一種類を単独で使用してもよいし、二種類以上を併用してもよい。 As the thermosetting resin or the ultraviolet curable resin, for example, a curable compound having at least one of an acrylate group and a methacrylate group that is cured by heat, light (ultraviolet rays, etc.) or an electron beam can be used. Silicone resin, polyester resin, polyether resin, epoxy resin, urethane resin, alkyd resin, spiroacetal resin, polybutadiene resin, polythiol polyene resin, oligomers such as methacrylate and prepolymers of polyfunctional compounds such as polyhydric alcohol Can be mentioned. These may be used alone or in combination of two or more.
 樹脂(B1)として、例えば、アクリレート基およびメタクリレート基の少なくとも一方の基を有する反応性希釈剤を用いることもできる。前記反応性希釈剤は、例えば、特開2008-88309号公報に記載の反応性希釈剤を用いることができ、例えば、単官能アクリレート、単官能メタクリレート、多官能アクリレート、多官能メタクリレート等を含む。前記反応性希釈剤としては、3官能以上のアクリレート、3官能以上のメタクリレートが好ましい。これは、防眩層(B)の硬度を、優れたものにできるからである。前記反応性希釈剤としては、例えば、ブタンジオールグリセリンエーテルジアクリレート、イソシアヌル酸のアクリレート、イソシアヌル酸のメタクリレート等も挙げられる。これらは、一種類を単独で使用してもよいし、二種類以上を併用してもよい。 As the resin (B1), for example, a reactive diluent having at least one group of an acrylate group and a methacrylate group can also be used. As the reactive diluent, for example, the reactive diluent described in JP-A-2008-88309 can be used, and includes, for example, monofunctional acrylate, monofunctional methacrylate, polyfunctional acrylate, polyfunctional methacrylate and the like. As the reactive diluent, trifunctional or higher functional acrylates and trifunctional or higher functional methacrylates are preferable. This is because the hardness of the antiglare layer (B) can be made excellent. Examples of the reactive diluent include butanediol glycerin ether diacrylate, isocyanuric acid acrylate, and isocyanuric acid methacrylate. These may be used alone or in combination of two or more.
 樹脂(B1)の屈折率は、特に限定されないが、例えば、1.48以上、1.49以上、1.50以上、または1.51以上でもよく、例えば、1.60以下、1.59以下、1.58以下、または1.57以下でもよい。 The refractive index of the resin (B1) is not particularly limited, but may be, for example, 1.48 or more, 1.49 or more, 1.50 or more, or 1.51 or more, and for example, 1.60 or less, 1.59 or less. , 1.58 or less, or 1.57 or less.
[1-2-2.ヘイズ調整用フィラー(B2)]
 ヘイズ調整用フィラー(B2)は、例えば、前述のとおり、Pst(ポリスチレン)とPMMA(ポリメタクリル酸メチル)との共重合体から構成されるフィラーである。ヘイズ調整用フィラー(B2)は、ポリスチレンとPMMAとの共重合体から構成されるフィラーであること以外は特に限定されず、例えば、前述のとおり、一種類を単独で使用してもよいし、二種類以上を併用してもよい。また、ヘイズ調整用フィラー(B2)は前述のとおり、例えば、粒子であってもよい。
[1-2-2. Haze adjustment filler (B2)]
The haze adjusting filler (B2) is, for example, a filler composed of a copolymer of Pst (polystyrene) and PMMA (polymethyl methacrylate) as described above. The haze adjusting filler (B2) is not particularly limited except that it is a filler composed of a copolymer of polystyrene and PMMA. For example, as described above, one type may be used alone. Two or more types may be used together. Further, as described above, the haze adjusting filler (B2) may be, for example, particles.
 ヘイズ調整用フィラー(B2)におけるポリスチレン含有率は、特に限定されないが、下記条件(a)および(b)の少なくとも一方を満たすようにする。下記条件(a)は、本発明の第1の防眩性フィルムの条件であり、下記条件(b)は、本発明の第2の防眩性フィルムの条件である。ラマン分光スペクトルにおいて、PMMAピークの頂点(極大)は、例えば1724cm-1に発現し、ポリスチレンのピークは、例えば1600cm-1に発現する。また、PMMAよりもポリスチレンの方が屈折率が大きいので、ヘイズ調整用フィラー(B2)におけるポリスチレン含有率が高い(大きい)ほど、ヘイズ調整用フィラー(B2)単体の屈折率が大きくなる傾向にある。
 
(a) ヘイズ調整用フィラー(B2)単体のラマン分光スペクトルによるPMMAピーク/Pstピークのピーク面積比が0.51以上である。ただし、前記ピーク面積は、隣接するピークとの間の極小点を境界として算出したピーク面積である。
(b) ヘイズ調整用フィラー(B2)単体の屈折率が1.535以下である。
The polystyrene content in the haze adjusting filler (B2) is not particularly limited, but at least one of the following conditions (a) and (b) is satisfied. The following condition (a) is the condition of the first antiglare film of the present invention, and the following condition (b) is the condition of the second antiglare film of the present invention. In the Raman spectrum, the apex of PMMA peak (maximum), for example expressed in 1724 cm -1, a peak of polystyrene, expressed for example 1600 cm -1. Further, since polystyrene has a higher refractive index than PMMA, the higher (larger) the polystyrene content in the haze adjusting filler (B2), the higher the refractive index of the haze adjusting filler (B2) alone tends to be. ..

(A) The peak area ratio of PMMA peak / Pst peak according to the Raman spectroscopic spectrum of the haze adjusting filler (B2) alone is 0.51 or more. However, the peak area is a peak area calculated with the minimum point between adjacent peaks as a boundary.
(B) The refractive index of the haze adjusting filler (B2) alone is 1.535 or less.
 なお、例えば、フィラー(例えば粒子)中のポリスチレン含有率が多すぎると防眩性フィルムのヘイズ値が変化しやすくなる。この原因は不明であるが、光照射(UV照射)、加湿熱等によってフィラー中のポリスチレンが分解され、これによりフィラーの屈折率が変化し、防眩性フィルムのヘイズ値も変化すると考えられる。 For example, if the polystyrene content in the filler (for example, particles) is too high, the haze value of the antiglare film tends to change. The cause of this is unknown, but it is considered that polystyrene in the filler is decomposed by light irradiation (UV irradiation), humidification heat, etc., which changes the refractive index of the filler and the haze value of the antiglare film.
 本発明の防眩性フィルムは、ヘイズ調整用フィラー(B2)として適切なフィラーを選択することで、例えば、耐光性、耐熱性、耐加湿熱性等に優れ、ヘイズ値が変化し難い防眩性フィルムとなる。 The antiglare film of the present invention is excellent in light resistance, heat resistance, humidification heat resistance, etc. by selecting an appropriate filler as the haze adjusting filler (B2), and the haze value is hard to change. It becomes a film.
 ヘイズ調整用フィラー(B2)は、例えば、形成される防眩層(B)表面を凹凸形状にして防眩性を付与し、また、前記防眩層(B)のヘイズ値を制御することを主な機能とする。前記防眩層(B)のヘイズ値は、例えば、ヘイズ調整用フィラー(B2)と防眩層形成用樹脂(B1)との屈折率差を制御することで、設計することができる。ヘイズ調整用フィラー(B2)は、前述のとおり、ポリスチレンとPMMAとの共重合体から構成されるフィラーであること以外は特に限定されない。 The haze adjusting filler (B2), for example, makes the surface of the antiglare layer (B) to be formed uneven to impart antiglare properties, and also controls the haze value of the antiglare layer (B). Main function. The haze value of the antiglare layer (B) can be designed, for example, by controlling the difference in refractive index between the haze adjusting filler (B2) and the antiglare layer forming resin (B1). As described above, the haze adjusting filler (B2) is not particularly limited except that it is a filler composed of a copolymer of polystyrene and PMMA.
 ヘイズ調整用フィラー(B2)の屈折率は、前述のとおり、例えば、1.535以下でもよく、例えば、1.525以下、1.515以下、1.505以下、または1.495以下でもよい。また、ヘイズ調整用フィラー(B2)の屈折率は、例えば、1.42以上、1.43以上、1.44以上、または1.45以上でもよい。 As described above, the refractive index of the haze adjusting filler (B2) may be, for example, 1.535 or less, for example, 1.525 or less, 1.515 or less, 1.505 or less, or 1.495 or less. Further, the refractive index of the haze adjusting filler (B2) may be, for example, 1.42 or more, 1.43 or more, 1.44 or more, or 1.45 or more.
 ヘイズ調整用フィラー(B2)の屈折率は、防眩層形成用樹脂(B1)の屈折率よりも小さくてもよいし、防眩層形成用樹脂(B1)の屈折率と同じでもよいし、防眩層形成用樹脂(B1)の屈折率よりも大きくてもよい。また、防眩層形成用樹脂(B1)とヘイズ調整用フィラー(B2)との屈折率差は、特に限定されないが、例えば、前述のとおり、絶対値で0.001を超え0.15未満であってもよい。防眩層形成用樹脂(B1)とヘイズ調整用フィラー(B2)との屈折率差は、ギラツキ改善のため、内部散乱を大きくするという観点からは、なるべく大きいことが好ましい。また、防眩層形成用樹脂(B1)とヘイズ調整用フィラー(B2)との屈折率差は、高透過性にするため、内部散乱を抑えるという観点からは、なるべく小さいことが好ましい。防眩層形成用樹脂(B1)とヘイズ調整用フィラー(B2)との屈折率差の絶対値は、例えば、0.002以上、0.003以上、0.004以上、または0.005以上でもよく、例えば、0.14以下、0.13以下、0.12以下、または0.11以下でもよい。 The refractive index of the haze adjusting filler (B2) may be smaller than the refractive index of the antiglare layer forming resin (B1), or may be the same as the refractive index of the antiglare layer forming resin (B1). It may be larger than the refractive index of the antiglare layer forming resin (B1). The difference in refractive index between the antiglare layer forming resin (B1) and the haze adjusting filler (B2) is not particularly limited, but as described above, for example, the absolute value is more than 0.001 and less than 0.15. There may be. The difference in refractive index between the antiglare layer forming resin (B1) and the haze adjusting filler (B2) is preferably as large as possible from the viewpoint of increasing internal scattering in order to improve glare. Further, the difference in refractive index between the antiglare layer forming resin (B1) and the haze adjusting filler (B2) is preferably as small as possible from the viewpoint of suppressing internal scattering in order to obtain high transparency. The absolute value of the difference in refractive index between the antiglare layer forming resin (B1) and the haze adjusting filler (B2) may be, for example, 0.002 or more, 0.003 or more, 0.004 or more, or 0.005 or more. It may be, for example, 0.14 or less, 0.13 or less, 0.12 or less, or 0.11 or less.
 ヘイズ調整用フィラー(B2)の重量平均粒子径は、特に限定されないが、例えば、1.0μm以上、2.0μm以上、3.0μm以上、または4.0μm以上でもよく、例えば、7.0μm以下、8.0μm以下、9.0μm以下、または10.0μm以下でもよい。なお、本発明において、粒子の重量平均粒子径は、例えば、コールターカウント法により測定できる。例えば、細孔電気抵抗法を利用した粒度分布測定装置(商品名:コールターマルチサイザー、ベックマン・コールター社製)を用い、粒子が前記細孔を通過する際の粒子の体積に相当する電解液の電気抵抗を測定することにより、前記粒子の数と体積を測定し、重量平均粒子径を算出する。また、ヘイズ調整用フィラー(B2)が粒子である場合、その形状は、特に制限されず、例えば、ビーズ状の略球形であってもよく、粉末等の不定形のものであってもよいが、略球形のものが好ましく、より好ましくは、アスペクト比が1.5以下の略球形の粒子であり、最も好ましくは球形の粒子である。 The weight average particle size of the haze adjusting filler (B2) is not particularly limited, but may be, for example, 1.0 μm or more, 2.0 μm or more, 3.0 μm or more, or 4.0 μm or more, for example, 7.0 μm or less. , 8.0 μm or less, 9.0 μm or less, or 10.0 μm or less. In the present invention, the weight average particle size of the particles can be measured by, for example, the Coulter counting method. For example, using a particle size distribution measuring device (trade name: Coulter Multisizer, manufactured by Beckman Coulter) using the pore electric resistance method, an electrolytic solution corresponding to the volume of the particles when the particles pass through the pores. By measuring the electric resistance, the number and volume of the particles are measured, and the weight average particle diameter is calculated. When the haze adjusting filler (B2) is a particle, its shape is not particularly limited, and may be, for example, a bead-shaped substantially spherical shape or an irregular shape such as powder. , Approximately spherical particles are preferable, and substantially spherical particles having an aspect ratio of 1.5 or less are preferable, and spherical particles are most preferable.
 防眩層(B)におけるヘイズ調整用フィラー(B2)の含有率は、特に限定されないが、例えば、防眩層形成用樹脂(B1)の全質量に対し、例えば、1質量%以上、3質量%以上、5質量%以上、または7質量%以上でもよく、例えば、20質量%以下、18質量%以下、16質量%以下、または14質量%以下でもよい。また、防眩層(B)は、後述するように、ヘイズ調整用フィラー(B2)以外の他の粒子を含んでいてもよいし、含んでいなくてもよい。例えば、本発明の防眩性フィルムの製造方法において、ヘイズ調整用フィラー(B2)および前記他の粒子の含有率を調整することにより、防眩層(B)の表面形状を調整してもよい。 The content of the haze adjusting filler (B2) in the antiglare layer (B) is not particularly limited, but is, for example, 1% by mass or more and 3% by mass with respect to the total mass of the antiglare layer forming resin (B1). % Or more, 5% by mass or more, or 7% by mass or more, for example, 20% by mass or less, 18% by mass or less, 16% by mass or less, or 14% by mass or less. Further, the antiglare layer (B) may or may not contain particles other than the haze adjusting filler (B2), as will be described later. For example, in the method for producing an antiglare film of the present invention, the surface shape of the antiglare layer (B) may be adjusted by adjusting the content of the haze adjusting filler (B2) and the other particles. ..
[1-2-3.防眩層(B)における他の成分]
 防眩層(B)は、防眩層形成用樹脂(B1)およびヘイズ調整用フィラー(B2)以外の他の成分を含んでいてもよいし、含んでいなくてもよい。前記他の成分としては、例えば、ヘイズ調整用フィラー(B2)以外の他のフィラーが挙げられる。前記他のフィラーは、特に限定されないが、例えば、ヘイズ調整用フィラー(B2)以外の粒子、チキソトロピー付与剤(thixotropic agent)、無機ナノ粒子等が挙げられる。例えば、防眩層(B)が前記チキソトロピー付与剤を含むことで、ヘイズ調整用フィラー(B2)等の粒子の凝集状態の制御を容易に行うことができる。
[1-2-3. Other components in the antiglare layer (B)]
The antiglare layer (B) may or may not contain other components other than the antiglare layer forming resin (B1) and the haze adjusting filler (B2). Examples of the other component include fillers other than the haze adjusting filler (B2). The other filler is not particularly limited, and examples thereof include particles other than the haze adjusting filler (B2), a thixotropic agent, and inorganic nanoparticles. For example, when the antiglare layer (B) contains the thixotropy-imparting agent, it is possible to easily control the aggregated state of particles such as the haze adjusting filler (B2).
 本発明の防眩性フィルムにおいて、前記チキソトロピー付与剤は、例えば、有機粘土、酸化ポリオレフィンおよび変性ウレアからなる群から選択される少なくとも一つであってもよい。また、前記チキソトロピー付与剤は、例えば、増粘剤であってもよい。 In the antiglare film of the present invention, the thixotropy-imparting agent may be at least one selected from the group consisting of, for example, organic clay, oxidized polyolefin and modified urea. Further, the thixotropy-imparting agent may be, for example, a thickener.
 前記有機粘土は、前記樹脂との親和性を改善するために、有機化処理した層状粘土であることが好ましい。前記有機粘土は、自家調製してもよいし、市販品を用いてもよい。前記市販品としては、例えば、ルーセンタイトSAN、ルーセンタイトSTN、ルーセンタイトSEN、ルーセンタイトSPN、ソマシフME-100、ソマシフMAE、ソマシフMTE、ソマシフMEE、ソマシフMPE(商品名、いずれもコープケミカル株式会社製);エスベン、エスベンC、エスベンE、エスベンW、エスベンP、エスベンWX、エスベンN-400、エスベンNX、エスベンNX80、エスベンNO12S、エスベンNEZ、エスベンNO12、エスベンNE、エスベンNZ、エスベンNZ70、オルガナイト、オルガナイトD、オルガナイトT(商品名、いずれも株式会社ホージュン製);クニピアF、クニピアG、クニピアG4(商品名、いずれもクニミネ工業株式会社製);チクソゲルVZ、クレイトンHT、クレイトン40(商品名、いずれもロックウッド アディティブズ社製)等が挙げられる。 The organic clay is preferably a layered clay that has been organically treated in order to improve the affinity with the resin. The organic clay may be prepared in-house or a commercially available product may be used. Examples of the commercially available products include Lucentite SAN, Lucentite STN, Lucentite SEN, Lucentite SPN, Somasif ME-100, Somasif MAE, Somasif MTE, Somasif MEE, and Somasif MPE (trade names, all of which are Corp Chemical Co., Ltd.). Made by); Esben, Esben C, Esben E, Esben W, Esben P, Esben WX, Esben N-400, Esben NX, Esben NX80, Esben NO12S, Esben NEZ, Esben NO12, Esben NE, Esben NZ, Esben NZ70, Olga Knight, Organite D, Organite T (trade name, all manufactured by Hojun Co., Ltd.); Kunipia F, Kunipia G, Kunipia G4 (trade name, all manufactured by Kunimine Kogyo Co., Ltd.); Chixogel VZ, Clayton HT, Clayton 40 (Product names, all manufactured by Rockwood Additives) and the like.
 前記酸化ポリオレフィンは、自家調製してもよいし、市販品を用いてもよい。前記市販品としては、例えば、ディスパロン4200-20(商品名、楠本化成株式会社製)、フローノンSA300(商品名、共栄社化学株式会社製)等が挙げられる。 The above-mentioned polyolefin oxide may be prepared in-house or a commercially available product may be used. Examples of the commercially available product include Disparon 4200-20 (trade name, manufactured by Kusumoto Kasei Co., Ltd.), Fronon SA300 (trade name, manufactured by Kyoeisha Chemical Co., Ltd.) and the like.
 前記変性ウレアは、イソシアネート単量体あるいはそのアダクト体と有機アミンとの反応物である。前記変性ウレアは、自家調製してもよいし、市販品を用いてもよい。前記市販品としては、例えば、BYK410(ビッグケミー社製)等が挙げられる。 The modified urea is a reaction product of an isocyanate monomer or an adduct thereof and an organic amine. The modified urea may be prepared in-house or a commercially available product may be used. Examples of the commercially available product include BYK410 (manufactured by Big Chemie) and the like.
 前記チキソトロピー付与剤は、一種類を単独で使用してもよいし、二種類以上を併用してもよい。 The thixotropy-imparting agent may be used alone or in combination of two or more.
 前記防眩層(B)における前記チキソトロピー付与剤の割合は、前記樹脂100重量部に対し、0.2~5重量部の範囲が好ましく、より好ましくは、0.4~4重量部の範囲である。 The ratio of the thixotropy-imparting agent in the antiglare layer (B) is preferably in the range of 0.2 to 5 parts by weight, more preferably in the range of 0.4 to 4 parts by weight, based on 100 parts by weight of the resin. is there.
 本発明の防眩性フィルムにおいて、前記防眩層(B)の前記樹脂100重量(質量)部に対し、例えば、前記チキソトロピー付与剤が0.2~5重量部の範囲で含まれていてもよい。 In the antiglare film of the present invention, for example, even if the thixotropy-imparting agent is contained in the range of 0.2 to 5 parts by weight with respect to 100 parts by weight (mass) of the resin of the antiglare layer (B). Good.
[2.防眩性フィルムの製造方法]
 本発明の防眩性フィルムの製造方法は、特に制限されず、どのような方法で製造されてもよいが、前記本発明の防眩性フィルムの製造方法により製造することが好ましい。
[2. Manufacturing method of antiglare film]
The method for producing the antiglare film of the present invention is not particularly limited and may be produced by any method, but it is preferably produced by the method for producing the antiglare film of the present invention.
 前記防眩性フィルムの製造方法は、例えば、以下のようにして行うことができる。 The method for producing the antiglare film can be carried out as follows, for example.
 まず、前記光透過性基材(A)上に、前記防眩層(B)を形成する(防眩層(B)形成工程)。これにより、前記光透過性基材(A)と前記防眩層(B)との積層体を製造する。前記防眩層(B)形成工程は、前述のとおり、前記光透過性基材(A)上に塗工液を塗工する塗工工程と、塗工した前記塗工液を乾燥させて塗膜を形成する塗膜形成工程とを含む。また、例えば、前述のとおり、前記防眩層(B)形成工程が、さらに、前記塗膜を硬化させる硬化工程を含んでいてもよい。前記硬化は、例えば、前記乾燥の後に行なうことができるが、これに限定されない。前記硬化は、例えば、加熱、光照射等により行うことができる。前記光は、特に限定されないが、例えば、紫外線等であってもよい。前記光照射の光源も特に限定されないが、例えば、高圧水銀ランプ等であってもよい。 First, the antiglare layer (B) is formed on the light transmissive base material (A) (antiglare layer (B) forming step). As a result, a laminate of the light-transmitting base material (A) and the antiglare layer (B) is produced. As described above, the antiglare layer (B) forming step includes a coating step of applying a coating liquid on the light transmissive base material (A) and a drying coating of the coated coating liquid. It includes a coating film forming step of forming a film. Further, for example, as described above, the antiglare layer (B) forming step may further include a curing step of curing the coating film. The curing can be performed, for example, after the drying, but is not limited thereto. The curing can be performed by, for example, heating, light irradiation, or the like. The light is not particularly limited, but may be, for example, ultraviolet rays or the like. The light source for light irradiation is not particularly limited, but may be, for example, a high-pressure mercury lamp or the like.
 前記塗工液は、前述のとおり、樹脂と、溶媒とを含む。前記塗工液は、例えば、前記防眩層形成用樹脂(B1)、前記ヘイズ調整用フィラー(B2)、前記チキソトロピー付与剤および前記溶媒を含む防眩層形成材料(塗工液)であってもよい。 The coating liquid contains a resin and a solvent as described above. The coating liquid is, for example, an antiglare layer forming material (coating liquid) containing the antiglare layer forming resin (B1), the haze adjusting filler (B2), the thixotropy-imparting agent, and the solvent. May be good.
 前記塗工液は、チキソ性を示していることが好ましく、下記式で規定されるTi値が、1.3~3.5の範囲にあることが好ましく、より好ましくは1.4~3.2の範囲であり、さらに好ましくは1.5~3の範囲である。
 
Ti値=β1/β2
 
上記式中、β1はHAAKE社製レオストレスRS6000を用いてずり速度20(1/s)の条件で測定される粘度、β2はHAAKE社製レオストレスRS6000を用いてずり速度200(1/s)の条件で測定される粘度である。
The coating liquid preferably exhibits thixotropic properties, and the Ti value defined by the following formula is preferably in the range of 1.3 to 3.5, more preferably 1.4 to 3. It is in the range of 2, and more preferably in the range of 1.5 to 3.

Ti value = β1 / β2

In the above formula, β1 is a viscosity measured under the condition of a shear rate of 20 (1 / s) using a HAAKE Leostress RS6000, and β2 is a viscosity measured using a HAAKE Leostress RS6000 with a shear rate of 200 (1 / s). It is the viscosity measured under the conditions of.
 Ti値が、1.3以上であれば、外観欠点が生じたり、防眩性、白ボケについての特性が悪化したりする問題が起こりにくい。また、Ti値が、3.5以下であれば、前記粒子が凝集せずに分散状態となる等の問題が起こりにくい。 If the Ti value is 1.3 or more, problems such as appearance defects and deterioration of antiglare and white blur characteristics are unlikely to occur. Further, when the Ti value is 3.5 or less, problems such as the particles not agglomerating and becoming dispersed are unlikely to occur.
 また、前記塗工液は、チキソトロピー付与剤を含んでいても含んでいなくてもよいが、チキソトロピー付与剤を含む方が、チキソ性を示しやすいため好ましい。また、前述のように、前記塗工液が前記チキソトロピー付与剤を含むことで、前記粒子の沈降を防止する効果(チキソトロピー効果)が得られる。さらに、前記チキソトロピー付与剤自体のせん断凝集により、防眩性フィルムの表面形状を、さらに広い範囲で自在に制御することも可能である。 Further, the coating liquid may or may not contain a thixotropy-imparting agent, but it is preferable to contain the thixotropy-imparting agent because it tends to exhibit thixotropy. Further, as described above, when the coating liquid contains the thixotropy-imparting agent, an effect of preventing the sedimentation of the particles (thixotropy effect) can be obtained. Further, the surface shape of the antiglare film can be freely controlled in a wider range by the shear aggregation of the thixotropy-imparting agent itself.
 前記溶媒は、特に制限されず、種々の溶媒を使用可能であり、一種類を単独で使用してもよいし、二種類以上を併用してもよい。前記樹脂の組成、前記粒子および前記チキソトロピー付与剤の種類、含有量等に応じて、本発明の防眩性フィルムを得るために、最適な溶媒種類や溶媒比率を適宜選択してもよい。溶媒としては、特に限定されないが、例えば、メタノール、エタノール、イソプロピルアルコール(IPA)、ブタノール、t-ブチルアルコール(TBA)、2-メトキシエタノール等のアルコール類;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロペンタノン等のケトン類;酢酸メチル、酢酸エチル、酢酸ブチル等のエステル類;ジイソプロピルエーテル、プロピレングリコールモノメチルエーテル等のエーテル類;エチレングリコール、プロピレングリコール等のグリコール類;エチルセロソルブ、ブチルセロソルブ等のセロソルブ類;ヘキサン、ヘプタン、オクタン等の脂肪族炭化水素類;ベンゼン、トルエン、キシレン等の芳香族炭化水素類等が挙げられる。また、例えば、前記溶媒が、炭化水素溶媒と、ケトン溶媒とを含んでいてもよい。前記炭化水素溶媒は、例えば、芳香族炭化水素であってもよい。前記芳香族炭化水素は、例えば、トルエン、o-キシレン、m-キシレン、p-キシレン、エチルベンゼン、およびベンゼンからなる群から選択される少なくとも一つであってもよい。前記ケトン溶媒は、例えば、シクロペンタノン、およびアセトン、メチルエチルケトン、メチルイソブチルケトン、ジエチルケトン、シクロヘキサノン、イソホロン、アセトフェノンからなる群から選択される少なくとも一つであってもよい。前記溶媒は、例えば、チキソトロピー付与剤(例えば増粘剤)を溶解させるために、前記炭化水素溶媒(例えばトルエン)を含むことが好ましい。前記溶媒は、例えば、前記炭化水素溶媒と、前記ケトン溶媒とを、90:10~10:90の質量比で混合した溶媒であってもよい。前記炭化水素溶媒と、前記ケトン溶媒との質量比は、例えば、80:20~20:80、70:30~30:70、または40:60~60:40等であってもよい。この場合において、例えば、前記炭化水素溶媒がトルエンであり、前記ケトン溶媒がメチルエチルケトンであってもよい。また、前記溶媒は、例えば、トルエンを含むとともに、さらに、酢酸エチル、酢酸ブチル、IPA、メチルイソブチルケトン、メチルエチルケトン、メタノール、エタノール、およびTBAからなる群から選択される少なくとも一つを含んでいてもよい。 The solvent is not particularly limited, and various solvents can be used, and one type may be used alone or two or more types may be used in combination. The optimum solvent type and solvent ratio may be appropriately selected in order to obtain the antiglare film of the present invention according to the composition of the resin, the types and contents of the particles and the thixotropy-imparting agent. The solvent is not particularly limited, and is, for example, alcohols such as methanol, ethanol, isopropyl alcohol (IPA), butanol, t-butyl alcohol (TBA), 2-methoxyethanol; acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclopenta. Ketones such as non; esters such as methyl acetate, ethyl acetate and butyl acetate; ethers such as diisopropyl ether and propylene glycol monomethyl ether; glycols such as ethylene glycol and propylene glycol; cellosolves such as ethyl cellosolve and butyl cellosolve; Aliphatic hydrocarbons such as hexane, heptane and octane; aromatic hydrocarbons such as benzene, toluene and xylene can be mentioned. Further, for example, the solvent may contain a hydrocarbon solvent and a ketone solvent. The hydrocarbon solvent may be, for example, an aromatic hydrocarbon. The aromatic hydrocarbon may be at least one selected from the group consisting of, for example, toluene, o-xylene, m-xylene, p-xylene, ethylbenzene, and benzene. The ketone solvent may be, for example, at least one selected from the group consisting of cyclopentanone and acetone, methyl ethyl ketone, methyl isobutyl ketone, diethyl ketone, cyclohexanone, isophorone, and acetophenone. The solvent preferably contains, for example, the hydrocarbon solvent (eg toluene) in order to dissolve the thixotropy-imparting agent (eg, thickener). The solvent may be, for example, a solvent in which the hydrocarbon solvent and the ketone solvent are mixed at a mass ratio of 90:10 to 10:90. The mass ratio of the hydrocarbon solvent to the ketone solvent may be, for example, 80:20 to 20:80, 70:30 to 30:70, or 40:60 to 60:40. In this case, for example, the hydrocarbon solvent may be toluene and the ketone solvent may be methyl ethyl ketone. Further, the solvent may contain, for example, toluene and further contain at least one selected from the group consisting of ethyl acetate, butyl acetate, IPA, methyl isobutyl ketone, methyl ethyl ketone, methanol, ethanol, and TBA. Good.
 光透過性基材(A)として、例えば、アクリルフィルムを採用して中間層(浸透層)を形成する場合は、アクリルフィルム(アクリル樹脂)に対する良溶媒が好適に使用できる。その溶媒としては、例えば、前述のとおり、炭化水素溶媒と、ケトン溶媒とを含む溶媒でもよい。前記炭化水素溶媒は、例えば、芳香族炭化水素であってもよい。前記芳香族炭化水素は、例えば、トルエン、o-キシレン、m-キシレン、p-キシレン、エチルベンゼン、およびベンゼンからなる群から選択される少なくとも一つであってもよい。前記ケトン溶媒は、例えば、シクロペンタノン、アセトン、メチルエチルケトン、メチルイソブチルケトン、ジエチルケトン、シクロヘキサノン、イソホロン、およびアセトフェノンからなる群から選択される少なくとも一つであってもよい。前記溶媒は、例えば、前記炭化水素溶媒と、前記ケトン溶媒とを、90:10~10:90の質量比で混合した溶媒であってもよい。前記炭化水素溶媒と、前記ケトン溶媒との質量比は、例えば、80:20~20:80、70:30~30:70、または40:60~60:40等であってもよい。この場合において、例えば、前記炭化水素溶媒がトルエンであり、前記ケトン溶媒がメチルエチルケトンであってもよい。 For example, when an acrylic film is used as the light-transmitting base material (A) to form an intermediate layer (permeation layer), a good solvent for the acrylic film (acrylic resin) can be preferably used. As the solvent, for example, as described above, a solvent containing a hydrocarbon solvent and a ketone solvent may be used. The hydrocarbon solvent may be, for example, an aromatic hydrocarbon. The aromatic hydrocarbon may be at least one selected from the group consisting of, for example, toluene, o-xylene, m-xylene, p-xylene, ethylbenzene, and benzene. The ketone solvent may be, for example, at least one selected from the group consisting of cyclopentanone, acetone, methyl ethyl ketone, methyl isobutyl ketone, diethyl ketone, cyclohexanone, isophorone, and acetophenone. The solvent may be, for example, a solvent in which the hydrocarbon solvent and the ketone solvent are mixed at a mass ratio of 90:10 to 10:90. The mass ratio of the hydrocarbon solvent to the ketone solvent may be, for example, 80:20 to 20:80, 70:30 to 30:70, or 40:60 to 60:40. In this case, for example, the hydrocarbon solvent may be toluene and the ketone solvent may be methyl ethyl ketone.
 光透過性基材(A)として、例えば、トリアセチルセルロース(TAC)を採用して中間層(浸透層)を形成する場合は、TACに対する良溶媒が好適に使用できる。その溶媒としては、例えば、酢酸エチル、メチルエチルケトン、シクロペンタノンなどを挙げることができる。 When, for example, triacetyl cellulose (TAC) is used as the light-transmitting base material (A) to form an intermediate layer (permeation layer), a good solvent for TAC can be preferably used. Examples of the solvent include ethyl acetate, methyl ethyl ketone, cyclopentanone and the like.
 また、溶媒を適宜選択することによって、チキソトロピー付与剤を含有する場合において防眩層形成材料(塗工液)へのチキソ性を良好に発現させることができる。例えば、有機粘土を用いる場合には、トルエンおよびキシレンを好適に、単独使用または併用することができ、例えば、酸化ポリオレフィンを用いる場合には、メチルエチルケトン、酢酸エチル、プロピレングリコールモノメチルエーテルを好適に、単独使用または併用することができ、例えば、変性ウレアを用いる場合には、酢酸ブチルおよびメチルイソブチルケトンを好適に、単独使用または併用することができる。 Further, by appropriately selecting the solvent, the thixotropy to the antiglare layer forming material (coating liquid) can be satisfactorily exhibited when the thixotropy-imparting agent is contained. For example, when organic clay is used, toluene and xylene can be preferably used alone or in combination. For example, when using an oxide polyolefin, methyl ethyl ketone, ethyl acetate, and propylene glycol monomethyl ether are preferably used alone. It can be used or used in combination. For example, when modified urea is used, butyl acetate and methyl isobutyl ketone can be preferably used alone or in combination.
 前記防眩層形成材料には、各種レベリング剤を添加することができる。前記レベリング剤としては、塗工ムラ防止(塗工面の均一化)を目的に、例えば、フッ素系またはシリコーン系のレベリング剤を用いることができる。本発明では、防眩層(B)表面に防汚性が求められる場合、または、後述のように反射防止層(低屈折率層)や層間充填剤を含む層が防眩層(B)上に形成される場合などに応じて、適宜レベリング剤を選定することができる。本発明では、例えば、前記チキソトロピー付与剤を含ませることで塗工液にチキソ性を発現させることができるため、塗工ムラが発生しにくい。この場合、例えば、前記レベリング剤の選択肢を広げられるという優位点を有している。 Various leveling agents can be added to the antiglare layer forming material. As the leveling agent, for example, a fluorine-based or silicone-based leveling agent can be used for the purpose of preventing uneven coating (uniformizing the coated surface). In the present invention, when the surface of the antiglare layer (B) is required to have antifouling properties, or as described later, an antireflection layer (low refractive index layer) or a layer containing an interlayer filler is placed on the antiglare layer (B). The leveling agent can be appropriately selected depending on the case where it is formed in. In the present invention, for example, by incorporating the thixotropy-imparting agent, the thixotropy can be exhibited in the coating liquid, so that uneven coating is less likely to occur. In this case, for example, it has an advantage that the options of the leveling agent can be expanded.
 前記レベリング剤の配合量は、前記樹脂100重量部に対して、例えば、5重量部以下、好ましくは0.01~5重量部の範囲である。 The blending amount of the leveling agent is, for example, 5 parts by weight or less, preferably 0.01 to 5 parts by weight, based on 100 parts by weight of the resin.
 前記防眩層形成材料には、必要に応じて、性能を損なわない範囲で、顔料、充填剤、分散剤、可塑剤、紫外線吸収剤、界面活性剤、防汚剤、酸化防止剤等が添加されてもよい。これらの添加剤は一種類を単独で使用してもよく、また二種類以上併用してもよい。 Pigments, fillers, dispersants, plasticizers, ultraviolet absorbers, surfactants, antifouling agents, antioxidants, etc. are added to the antiglare layer forming material as needed, as long as the performance is not impaired. May be done. One type of these additives may be used alone, or two or more types may be used in combination.
 前記防眩層形成材料には、例えば、特開2008-88309号公報に記載されるような、従来公知の光重合開始剤を用いることができる。 As the antiglare layer forming material, for example, a conventionally known photopolymerization initiator as described in JP-A-2008-88309 can be used.
 前記塗工液を前記光透過性基材(A)上に塗工して塗膜を形成する方法としては、例えば、ファンテンコート法、ダイコート法、スピンコート法、スプレーコート法、グラビアコート法、ロールコート法、バーコート法等の塗工法を用いることができる。 Examples of the method of applying the coating liquid onto the light transmissive substrate (A) to form a coating film include a fanten coating method, a die coating method, a spin coating method, a spray coating method, and a gravure coating method. , Roll coating method, bar coating method and other coating methods can be used.
 つぎに、前述のとおり、前記塗膜を乾燥および硬化させ、防眩層(B)を形成する。前記乾燥は、例えば、自然乾燥でもよいし、風を吹きつけての風乾であってもよいし、加熱乾燥であってもよいし、これらを組み合わせた方法であってもよい。 Next, as described above, the coating film is dried and cured to form an antiglare layer (B). The drying may be, for example, natural drying, air drying by blowing wind, heat drying, or a method in which these are combined.
 前記防眩層(B)形成用の塗工液の乾燥温度は、例えば、30~200℃の範囲であってもよい。前記乾燥温度は、例えば、40℃以上、50℃以上、60℃以上、70℃以上、80℃以上、90℃以上、または100℃以上であってもよく、190℃以下、180℃以下、170℃以下、160℃以下、150℃以下、140℃以下、135℃以下、130℃以下、120℃以下、または110℃以下であってもよい。乾燥時間は特に限定されないが、例えば、30秒以上、40秒以上、50秒以上、または60秒以上であってもよく、150秒以下、130秒以下、110秒以下、または90秒以下であってもよい。 The drying temperature of the coating liquid for forming the antiglare layer (B) may be, for example, in the range of 30 to 200 ° C. The drying temperature may be, for example, 40 ° C. or higher, 50 ° C. or higher, 60 ° C. or higher, 70 ° C. or higher, 80 ° C. or higher, 90 ° C. or higher, or 100 ° C. or higher, 190 ° C. or lower, 180 ° C. or lower, 170. It may be ℃ or less, 160 ℃ or less, 150 ℃ or less, 140 ℃ or less, 135 ℃ or less, 130 ℃ or less, 120 ℃ or less, or 110 ℃ or less. The drying time is not particularly limited, but may be, for example, 30 seconds or more, 40 seconds or more, 50 seconds or more, or 60 seconds or more, 150 seconds or less, 130 seconds or less, 110 seconds or less, or 90 seconds or less. You may.
 前記塗膜の硬化手段は、特に制限されないが、紫外線硬化が好ましい。エネルギー線源の照射量は、紫外線波長365nmでの積算露光量として、50~500mJ/cmが好ましい。照射量が、50mJ/cm以上であれば、硬化が十分に進行しやすく、形成される防眩層(B)の硬度が高くなりやすい。また、500mJ/cm以下であれば、形成される防眩層(B)の着色を防止することができる。 The means for curing the coating film is not particularly limited, but ultraviolet curing is preferable. The irradiation amount of the energy radiation source is preferably 50 to 500 mJ / cm 2 as the integrated exposure amount at the ultraviolet wavelength of 365 nm. When the irradiation amount is 50 mJ / cm 2 or more, curing tends to proceed sufficiently, and the hardness of the antiglare layer (B) formed tends to increase. Further, if it is 500 mJ / cm 2 or less, coloring of the formed antiglare layer (B) can be prevented.
 以上のようにして、前記光透過性基材(A)と前記防眩層(B)との積層体を製造できる。この積層体を、そのまま本発明の防眩性フィルムとしてもよいし、例えば、前記防眩層(B)上に前記他の層を形成して本発明の防眩性フィルムとしてもよい。前記他の層の形成方法は特に限定されず、例えば、一般的な低屈折率層、反射防止層、高屈折率層、ハードコート層、粘着剤層等の形成方法と同様またはそれに準じた方法で行うことができる。 As described above, a laminate of the light transmissive base material (A) and the antiglare layer (B) can be produced. This laminate may be used as it is as the antiglare film of the present invention, or for example, the other layer may be formed on the antiglare layer (B) to obtain the antiglare film of the present invention. The method for forming the other layer is not particularly limited, and is, for example, the same as or similar to the method for forming a general low refractive index layer, antireflection layer, high refractive index layer, hard coat layer, adhesive layer, or the like. Can be done with.
[3.光学部材および画像表示装置]
 本発明の光学部材は、特に限定されないが、例えば、偏光板であってもよい。前記偏光板も、特に限定されないが、例えば、本発明の防眩性フィルムおよび偏光子を含んでいてもよいし、さらに、他の構成要素を含んでいてもよい。前記偏光板の各構成要素は、例えば、接着剤または粘着剤等により貼り合わせられていてもよい。
[3. Optical member and image display device]
The optical member of the present invention is not particularly limited, but may be, for example, a polarizing plate. The polarizing plate is also not particularly limited, but may include, for example, the antiglare film and the polarizer of the present invention, and may further contain other components. Each component of the polarizing plate may be bonded by, for example, an adhesive or an adhesive.
 本発明の画像表示装置も特に限定されず、どのような画像表示装置でもよいが、例えば、液晶表示装置、有機EL表示装置等が挙げられる。 The image display device of the present invention is not particularly limited, and any image display device may be used, and examples thereof include a liquid crystal display device and an organic EL display device.
 本発明の画像表示装置は、例えば、本発明の防眩性フィルムを視認側表面に有する画像表示装置であって、前記画像表示装置がブラックマトリックスパターンを有していてもよい。 The image display device of the present invention is, for example, an image display device having the antiglare film of the present invention on the surface on the viewing side, and the image display device may have a black matrix pattern.
 本発明の防眩性フィルムは、例えば、前記光透過性基材(A)側を、粘着剤や接着剤を介して、LCDに用いられている光学部材に貼り合せることができる。なお、この貼り合わせにあたり、前記光透過性基材(A)表面に対し、前述のような各種の表面処理を行ってもよい。前述のとおり、本発明の防眩性フィルムの製造方法によれば、防眩性フィルムの表面形状を広い範囲で自在に制御可能である。このため、前記防眩性フィルムを、接着剤や粘着剤などを用いて他の光学部材と積層することによって得ることができる光学特性は、前記防眩性フィルムの表面形状に対応した広い範囲にわたる。 In the antiglare film of the present invention, for example, the light transmissive base material (A) side can be attached to an optical member used in an LCD via an adhesive or an adhesive. At the time of this bonding, the surface of the light transmissive base material (A) may be subjected to various surface treatments as described above. As described above, according to the method for producing an antiglare film of the present invention, the surface shape of the antiglare film can be freely controlled in a wide range. Therefore, the optical properties that can be obtained by laminating the antiglare film with other optical members using an adhesive, an adhesive, or the like cover a wide range corresponding to the surface shape of the antiglare film. ..
 前記光学部材としては、例えば、偏光子または偏光板が挙げられる。偏光板は、偏光子の片側または両側に透明保護フィルムを有するという構成が一般的である。偏光子の両面に透明保護フィルムを設ける場合は、表裏の透明保護フィルムは、同じ材料であってもよいし、異なる材料であってもよい。偏光板は、通常、液晶セルの両側に配置される。また、偏光板は、2枚の偏光板の吸収軸が互いに略直交するように配置される。 Examples of the optical member include a polarizer or a polarizing plate. The polarizing plate generally has a transparent protective film on one side or both sides of the polarizing element. When the transparent protective films are provided on both sides of the polarizer, the transparent protective films on the front and back sides may be made of the same material or different materials. Polarizing plates are usually arranged on both sides of the liquid crystal cell. Further, the polarizing plates are arranged so that the absorption axes of the two polarizing plates are substantially orthogonal to each other.
 前記防眩性フィルムを積層した偏光板の構成は、特に制限されないが、例えば、前記防眩性フィルムの上に、透明保護フィルム、前記偏光子および前記透明保護フィルムを、この順番で積層した構成でもよいし、前記防眩性フィルム上に、前記偏光子、前記透明保護フィルムを、この順番で積層した構成でもよい。 The configuration of the polarizing plate on which the antiglare film is laminated is not particularly limited, but for example, the transparent protective film, the polarizer and the transparent protective film are laminated in this order on the antiglare film. Alternatively, the polarizing element and the transparent protective film may be laminated in this order on the antiglare film.
 本発明の画像表示装置の構成は、特に限定されず、例えば、一般的な画像表示装置と同様の構成であってもよい。例えば、LCDの場合、液晶セル、偏光板等の光学部材、および必要に応じ照明システム(バックライト等)等の各構成部品を適宜に組み立てて駆動回路を組み込むこと等により製造できる。 The configuration of the image display device of the present invention is not particularly limited, and may be, for example, the same configuration as a general image display device. For example, in the case of an LCD, it can be manufactured by appropriately assembling optical members such as a liquid crystal cell and a polarizing plate, and if necessary, each component such as a lighting system (backlight or the like) and incorporating a drive circuit.
 本発明の画像表示装置の用途は、特に限定されず、任意の用途に使用可能である。その用途としては、例えば、パソコンモニター、ノートパソコン、コピー機等のOA機器、携帯電話、時計、デジタルカメラ、携帯情報端末(PDA)、携帯ゲーム機等の携帯機器、ビデオカメラ、テレビ、電子レンジ等の家庭用電気機器、バックモニター、カーナビゲーションシステム用モニター、カーオーディオ等の車載用機器、商業店舗用インフォメーション用モニター等の展示機器、監視用モニター等の警備機器、介護用モニター、医療用モニター等の介護・医療機器等が挙げられる。 The use of the image display device of the present invention is not particularly limited, and it can be used for any purpose. Applications include, for example, OA devices such as personal computer monitors, laptop computers, and copiers, mobile phones, clocks, digital cameras, mobile information terminals (PDAs), portable devices such as portable game machines, video cameras, televisions, and microwave ovens. Home electrical equipment such as, back monitor, car navigation system monitor, in-vehicle equipment such as car audio, exhibition equipment such as information monitor for commercial stores, security equipment such as monitoring monitor, nursing care monitor, medical monitor Nursing care / medical equipment, etc.
 つぎに、本発明の実施例について、比較例と併せて説明する。ただし、本発明は、以下の実施例および比較例により制限されない。 Next, examples of the present invention will be described together with comparative examples. However, the present invention is not limited by the following examples and comparative examples.
 なお、以下の実施例および比較例において、物質の部数は、特に断らない限り、質量部(重量部)である。 In the following Examples and Comparative Examples, the number of copies of the substance is parts by mass (parts by weight) unless otherwise specified.
 以下の実施例および比較例において、実施例で用いたヘイズ調整用フィラー(B2)と、比較例で用いたヘイズ調整用フィラーとについては、下記の方法で、屈折率の測定、および、ラマン分光法によるスペクトル測定をした。 In the following examples and comparative examples, the haze adjusting filler (B2) used in the examples and the haze adjusting filler used in the comparative examples are measured for refractive index and Raman spectroscopy by the following methods. The spectrum was measured by the method.
(フィラーの屈折率の測定)
 前述したベッケ法で、波長550nmの屈折率を測定した。標準屈折液としては、モリテックス社のカーギル標準屈折液を用いた。
(Measurement of refractive index of filler)
The refractive index at a wavelength of 550 nm was measured by the Becke method described above. As the standard refracting liquid, Cargill standard refracting liquid manufactured by Moritex Co., Ltd. was used.
(フィラー以外の屈折率の測定)
 前述した株式会社アタゴ製の多波長アッベ屈折計DR-M2/1550(商品名)を用いて、波長550nmの屈折率を測定した。
(Measurement of refractive index other than filler)
The refractive index at a wavelength of 550 nm was measured using the above-mentioned multi-wavelength Abbe refractometer DR-M2 / 1550 (trade name) manufactured by Atago Co., Ltd.
(ラマン分光法によるスペクトル測定)
 WITec社のalpha300RSA(商品名)を用いてラマン分光法によるスペクトル測定をした。ピークの頂点(極大)が1724cm-1のピークはPMMAのピーク、ピークの頂点(極大)が1600cm-1のピークはポリスチレンのピークと同定した。ピーク面積は、隣接するピークとの間の極小点を境界として算出した。ピーク面積比は、前記ピーク面積に基づいて算出した。
(Spectral measurement by Raman spectroscopy)
The spectrum was measured by Raman spectroscopy using alpha300RSA (trade name) manufactured by WITEC. Peak peak vertex (maximum) of 1724 cm -1 peak PMMA, the apex of the peak (maximum) of the peak of 1600 cm -1 was identified as peaks of polystyrene. The peak area was calculated with the minimum point between adjacent peaks as the boundary. The peak area ratio was calculated based on the peak area.
[実施例1]
 防眩層形成材料に含まれる樹脂として、紫外線硬化型ウレタンアクリレート樹脂(日本合成化学工業(株)製、商品名「UV1700TL」、固形分80%)50重量部、および、ペンタエリストールトリアクリレートを主成分とする多官能アクリレート(大阪有機化学工業(株)製、商品名「ビスコート#300」、固形分100%)50重量部の混合物を準備した。この樹脂は、防眩層形成用樹脂(B1)の形成材料であり、後述するように、光照射により硬化して防眩層形成用樹脂(B1)を形成することができる。前記樹脂の樹脂固形分100重量部あたり、前記粒子として架橋ポリメタクリル酸メチル粒子(積水化成品工業(株)製、商品名「テクポリマー」、重量平均粒径:3μm、屈折率:1.525)を3重量部、シリコーン粒子(モメンティブ・パフォーマンス・マテリアルズ・ジャパン(同)製、商品名「トスパール130」、重量平均粒形:3μm、屈折率:1.42)を1.5重量部、前記チキソトロピー付与剤として有機粘土である合成スメクタイト(コープケミカル(株)製、商品名「ルーセンタイトSAN」)を1.5重量部、光重合開始剤(BASF社製、商品名「OMNIRAD907」)を3重量部、レベリング剤(共栄社化学(株)製、商品名「LE303」、固形分40%)を0.15重量部混合した。前記架橋ポリメタクリル酸メチル粒子「テクポリマー」は、Pst(ポリスチレン)とPMMA(ポリメタクリル酸メチル)との共重合体から構成される粒子であり、ヘイズ調整用フィラー(B2)に該当する。なお、前記有機粘土は、トルエンで固形分が6%になるよう希釈して用いた。この混合物を、固形分濃度が55重量%となるように、トルエン/酢酸エチル/シクロペンタノン(CPN)混合溶媒(重量比35/41/24)で希釈して、超音波分散機を用いて、防眩層形成材料(塗工液)を調製した。
[Example 1]
As the resin contained in the antiglare layer forming material, 50 parts by weight of an ultraviolet curable urethane acrylate resin (manufactured by Nippon Synthetic Chemical Industry Co., Ltd., trade name "UV1700TL", solid content 80%) and pentaeristol triacrylate are used. A mixture of 50 parts by weight of a polyfunctional acrylate (manufactured by Osaka Organic Chemical Industry Co., Ltd., trade name "Viscoat # 300", 100% solid content) as a main component was prepared. This resin is a material for forming the antiglare layer forming resin (B1), and as described later, it can be cured by light irradiation to form the antiglare layer forming resin (B1). Crosslinked polymethyl methacrylate particles (manufactured by Sekisui Kasei Kogyo Co., Ltd., trade name "Techpolymer", weight average particle size: 3 μm, refractive index: 1.525 per 100 parts by weight of resin solid content of the resin. ) Is 3 parts by weight, silicone particles (manufactured by Momentive Performance Materials Japan (same as above), trade name "Tospearl 130", weight average grain shape: 3 μm, refractive index: 1.42) is 1.5 parts by weight, As the thixotropy-imparting agent, 1.5 parts by weight of synthetic smectite (manufactured by Corp Chemical Co., Ltd., trade name "Lucentite SAN"), which is an organic clay, and a photopolymerization initiator (manufactured by BASF, trade name "OMNIRAD907") are used. 0.15 parts by weight of a leveling agent (manufactured by Kyoeisha Chemical Co., Ltd., trade name "LE303", solid content 40%) was mixed in an amount of 3 parts by weight. The crosslinked polymethyl methacrylate particles "techpolymer" are particles composed of a copolymer of Pst (polystyrene) and PMMA (polymethyl methacrylate), and correspond to a haze adjusting filler (B2). The organic clay was diluted with toluene so that the solid content was 6%. This mixture is diluted with a mixed solvent of toluene / ethyl acetate / cyclopentanone (CPN) (weight ratio 35/41/24) so that the solid content concentration becomes 55% by weight, and an ultrasonic disperser is used. , Anti-glare layer forming material (coating liquid) was prepared.
 さらに、この防眩層形成用材料(塗工液)を用いて、光透過性基材(A)上に防眩層(B)を形成する防眩層(B)形成工程を行った。すなわち、まず、前記防眩層形成用材料(塗工液)を、トリアセチルセルロース製基材(厚み60μm、富士フイルム株式会社、商品名TG60UL、光透過性基材(A)に該当する。)上に塗工した。その後、高圧水銀ランプにより、波長365nmの紫外線を、積算光量300mJ/cmとなるように照射して前記防眩層形成用材料(塗工液)中の樹脂を硬化させ、さらに、80℃で60秒間加熱して乾燥させ、厚み8μmの防眩層形成用樹脂(B1)中にヘイズ調整用フィラー(B2)が分散された防眩層(B)を形成した。以上のようにして、本実施例の防眩性フィルムを製造した。本実施例の防眩性フィルムは、光透過性基材(A)上に防眩層(B)が積層され、前記防眩層(B)が、防眩層形成用樹脂(B1)と、ヘイズ調整用フィラー(B2)とを含んでいた。 Further, using this antiglare layer forming material (coating liquid), an antiglare layer (B) forming step of forming the antiglare layer (B) on the light transmissive base material (A) was performed. That is, first, the antiglare layer forming material (coating liquid) corresponds to a triacetyl cellulose base material (thickness 60 μm, FUJIFILM Corporation, trade name TG60UL, light transmissive base material (A)). Painted on top. Then, an ultraviolet ray having a wavelength of 365 nm is irradiated with a high-pressure mercury lamp so that the integrated light intensity is 300 mJ / cm 2, and the resin in the antiglare layer forming material (coating liquid) is cured, and further, at 80 ° C. The mixture was heated for 60 seconds and dried to form an antiglare layer (B) in which a haze adjusting filler (B2) was dispersed in an antiglare layer forming resin (B1) having a thickness of 8 μm. As described above, the antiglare film of this example was produced. In the antiglare film of this embodiment, the antiglare layer (B) is laminated on the light transmissive base material (A), and the antiglare layer (B) is formed of the antiglare layer forming resin (B1). It contained a haze adjusting filler (B2).
[実施例2]
 前記「テクポリマー」(ヘイズ調整用フィラー(B2))、前記「トスパール130」、および、前記「ルーセンタイトSAN」の配合量を変更したこと以外は実施例1と同様にして防眩層形成材料(塗工液)を調製した。具体的には以下のとおりである。防眩層形成材料に含まれる樹脂として、紫外線硬化型ウレタンアクリレート樹脂(日本合成化学工業(株)製、商品名「UV1700TL」、固形分80%)50重量部、および、ペンタエリストールトリアクリレートを主成分とする多官能アクリレート(大阪有機化学工業(株)製、商品名「ビスコート#300」、固形分100%)50重量部の混合物を準備した。前記樹脂の樹脂固形分100重量部あたり、前記粒子として架橋ポリメタクリル酸メチル粒子(積水化成品工業(株)製、商品名「テクポリマー」、重量平均粒径:3μm、屈折率:1.525)を5重量部、シリコーン粒子(モメンティブ・パフォーマンス・マテリアルズ・ジャパン(同)製、商品名「トスパール130」、重量平均粒形:3μm、屈折率:1.42)を1.4重量部、前記チキソトロピー付与剤として有機粘土である合成スメクタイト(コープケミカル(株)製、商品名「ルーセンタイトSAN」)を1.5重量部、光重合開始剤(BASF社製、商品名「OMNIRAD907」)を3重量部、レベリング剤(共栄社化学(株)製、商品名「LE303」、固形分40%)を0.15重量部混合した。なお、前記有機粘土は、トルエンで固形分が6%になるよう希釈して用いた。この混合物を、固形分濃度が52重量%となるように、トルエン/酢酸エチル/シクロペンタノン(CPN)混合溶媒(重量比35/41/24)で希釈して、超音波分散機を用いて、防眩層形成材料(塗工液)を調製した。
[Example 2]
Antiglare layer forming material in the same manner as in Example 1 except that the blending amounts of the "techpolymer" (filler for haze adjustment (B2)), the "Tospearl 130", and the "Lucentite SAN" were changed. (Coating liquid) was prepared. Specifically, it is as follows. As the resin contained in the antiglare layer forming material, 50 parts by weight of an ultraviolet curable urethane acrylate resin (manufactured by Nippon Synthetic Chemical Industry Co., Ltd., trade name "UV1700TL", solid content 80%) and pentaeristol triacrylate are used. A mixture of 50 parts by weight of a polyfunctional acrylate (manufactured by Osaka Organic Chemical Industry Co., Ltd., trade name "Viscoat # 300", 100% solid content) as a main component was prepared. Crosslinked polymethyl methacrylate particles (manufactured by Sekisui Kasei Kogyo Co., Ltd., trade name "Techpolymer", weight average particle size: 3 μm, refractive index: 1.525 per 100 parts by weight of resin solid content of the resin. ) Is 5 parts by weight, silicone particles (manufactured by Momentive Performance Materials Japan (same as above), trade name "Tospearl 130", weight average grain shape: 3 μm, refractive index: 1.42) is 1.4 parts by weight, As the thixotropy-imparting agent, 1.5 parts by weight of synthetic smectite (manufactured by Corp Chemical Co., Ltd., trade name "Lucentite SAN"), which is an organic clay, and a photopolymerization initiator (manufactured by BASF, trade name "OMNIRAD907") are used. 0.15 parts by weight of a leveling agent (manufactured by Kyoeisha Chemical Co., Ltd., trade name "LE303", solid content 40%) was mixed in an amount of 3 parts by weight. The organic clay was diluted with toluene so that the solid content was 6%. This mixture is diluted with a mixed solvent of toluene / ethyl acetate / cyclopentanone (CPN) (weight ratio 35/41/24) so that the solid content concentration becomes 52% by weight, and an ultrasonic disperser is used. , Anti-glare layer forming material (coating liquid) was prepared.
 さらに、実施例1で調製した防眩層形成用材料(塗工液)に代えて本実施例で調製した防眩層形成用材料(塗工液)を用いたこと以外は実施例1と同様にして防眩層(B)形成工程を行い、本実施例の防眩性フィルムを製造した。本実施例の防眩性フィルムは、光透過性基材(A)上に防眩層(B)が積層され、前記防眩層(B)が、防眩層形成用樹脂(B1)と、ヘイズ調整用フィラー(B2)とを含んでいた。 Further, the same as in Example 1 except that the antiglare layer forming material (coating liquid) prepared in this example was used instead of the antiglare layer forming material (coating liquid) prepared in Example 1. The antiglare layer (B) forming step was carried out to produce the antiglare film of this example. In the antiglare film of this embodiment, the antiglare layer (B) is laminated on the light transmissive base material (A), and the antiglare layer (B) is formed of the antiglare layer forming resin (B1). It contained a haze adjusting filler (B2).
[実施例3]
 前記「テクポリマー」(ヘイズ調整用フィラー(B2))の配合量を、3重量部から4重量部に変更したこと以外は実施例1と同様にして防眩層形成材料(塗工液)を調製した。具体的には以下のとおりである。防眩層形成材料に含まれる樹脂として、紫外線硬化型ウレタンアクリレート樹脂(日本合成化学工業(株)製、商品名「UV1700TL」、固形分80%)50重量部、および、ペンタエリストールトリアクリレートを主成分とする多官能アクリレート(大阪有機化学工業(株)製、商品名「ビスコート#300」、固形分100%)50重量部の混合物を準備した。前記樹脂の樹脂固形分100重量部あたり、前記粒子として架橋ポリメタクリル酸メチル粒子(積水化成品工業(株)製、商品名「テクポリマー」、重量平均粒径:3μm、屈折率:1.525)を4重量部、シリコーン粒子(モメンティブ・パフォーマンス・マテリアルズ・ジャパン(同)製、商品名「トスパール130」、重量平均粒形:3μm、屈折率:1.42)を1.5重量部、前記チキソトロピー付与剤として有機粘土である合成スメクタイト(コープケミカル(株)製、商品名「ルーセンタイトSAN」)を1.5重量部、光重合開始剤(BASF社製、商品名「OMNIRAD907」)を3重量部、レベリング剤(共栄社化学(株)製、商品名「LE303」、固形分40%)を0.15重量部混合した。なお、前記有機粘土は、トルエンで固形分が6%になるよう希釈して用いた。この混合物を、固形分濃度が52重量%となるように、トルエン/酢酸エチル/シクロペンタノン(CPN)混合溶媒(重量比35/41/24)で希釈して、超音波分散機を用いて、防眩層形成材料(塗工液)を調製した。
[Example 3]
The antiglare layer forming material (coating liquid) was used in the same manner as in Example 1 except that the blending amount of the "techpolymer" (filler for haze adjustment (B2)) was changed from 3 parts by weight to 4 parts by weight. Prepared. Specifically, it is as follows. As the resin contained in the antiglare layer forming material, 50 parts by weight of an ultraviolet curable urethane acrylate resin (manufactured by Nippon Synthetic Chemical Industry Co., Ltd., trade name "UV1700TL", solid content 80%) and pentaeristol triacrylate are used. A mixture of 50 parts by weight of a polyfunctional acrylate (manufactured by Osaka Organic Chemical Industry Co., Ltd., trade name "Viscoat # 300", 100% solid content) as a main component was prepared. Crosslinked polymethyl methacrylate particles (manufactured by Sekisui Kasei Kogyo Co., Ltd., trade name "Techpolymer", weight average particle size: 3 μm, refractive index: 1.525 per 100 parts by weight of resin solid content of the resin. ) Is 4 parts by weight, silicone particles (manufactured by Momentive Performance Materials Japan (same as above), trade name "Tospearl 130", weight average grain shape: 3 μm, refractive index: 1.42) is 1.5 parts by weight, As the thixotropy-imparting agent, 1.5 parts by weight of synthetic smectite (manufactured by Corp Chemical Co., Ltd., trade name "Lucentite SAN"), which is an organic clay, and a photopolymerization initiator (manufactured by BASF, trade name "OMNIRAD907") are used. 0.15 parts by weight of a leveling agent (manufactured by Kyoeisha Chemical Co., Ltd., trade name "LE303", solid content 40%) was mixed in an amount of 3 parts by weight. The organic clay was diluted with toluene so that the solid content was 6%. This mixture is diluted with a mixed solvent of toluene / ethyl acetate / cyclopentanone (CPN) (weight ratio 35/41/24) so that the solid content concentration becomes 52% by weight, and an ultrasonic disperser is used. , Anti-glare layer forming material (coating liquid) was prepared.
 さらに、実施例1で調製した防眩層形成用材料(塗工液)に代えて本実施例で調製した防眩層形成用材料(塗工液)を用いたこと以外は実施例1と同様にして防眩層(B)形成工程を行い、本実施例の防眩性フィルムを製造した。本実施例の防眩性フィルムは、光透過性基材(A)上に防眩層(B)が積層され、前記防眩層(B)が、防眩層形成用樹脂(B1)と、ヘイズ調整用フィラー(B2)とを含んでいた。 Further, the same as in Example 1 except that the antiglare layer forming material (coating liquid) prepared in this example was used instead of the antiglare layer forming material (coating liquid) prepared in Example 1. The antiglare layer (B) forming step was carried out to produce the antiglare film of this example. In the antiglare film of this embodiment, the antiglare layer (B) is laminated on the light transmissive base material (A), and the antiglare layer (B) is formed of the antiglare layer forming resin (B1). It contained a haze adjusting filler (B2).
[実施例4]
 防眩層形成材料に含まれる樹脂として、紫外線硬化型ウレタンアクリレート樹脂(日本合成化学工業(株)製、商品名「UV1700TL」、固形分80%)50重量部、および、ペンタエリストールトリアクリレートを主成分とする多官能アクリレート(大阪有機化学工業(株)製、商品名「ビスコート#300」、固形分100%)50重量部の混合物を準備した。前記樹脂の樹脂固形分100重量部あたり、前記粒子として架橋ポリメタクリル酸メチル粒子(積水化成品工業(株)製、商品名「テクポリマー」、重量平均粒径:3μm、屈折率:1.535)を4重量部、前記チキソトロピー付与剤として有機粘土である合成スメクタイト(コープケミカル(株)製、商品名「ルーセンタイトSAN」)を1.5重量部、光重合開始剤(BASF社製、商品名「OMNIRAD907」)を3重量部、レベリング剤(共栄社化学(株)製、商品名「LE303」、固形分40%)を0.15重量部混合した。なお、前記有機粘土は、トルエンで固形分が6%になるよう希釈して用いた。この混合物を、固形分濃度が52重量%となるように、トルエン/酢酸エチル/シクロペンタノン(CPN)混合溶媒(重量比35/41/24)で希釈して、超音波分散機を用いて、防眩層形成材料(塗工液)を調製した。なお、この防眩層形成材料(塗工液)は、前記シリコーン粒子「トスパール130を含んでおらず、かつ、前記「テクポリマー」(ヘイズ調整用フィラー(B2))の屈折率が1.535である点で実施例1~3と異なっていた。
[Example 4]
As the resin contained in the antiglare layer forming material, 50 parts by weight of an ultraviolet curable urethane acrylate resin (manufactured by Nippon Synthetic Chemical Industry Co., Ltd., trade name "UV1700TL", solid content 80%) and pentaeristol triacrylate are used. A mixture of 50 parts by weight of a polyfunctional acrylate (manufactured by Osaka Organic Chemical Industry Co., Ltd., trade name "Viscoat # 300", 100% solid content) as a main component was prepared. Crosslinked polymethyl methacrylate particles (manufactured by Sekisui Kasei Kogyo Co., Ltd., trade name "Techpolymer", weight average particle size: 3 μm, refractive index: 1.535 per 100 parts by weight of resin solid content of the resin. ) Is 4 parts by weight, 1.5 parts by weight of synthetic smectite (manufactured by Corp Chemical Co., Ltd., trade name "Lucentite SAN"), which is an organic clay as the thixotropy-imparting agent, and a photopolymerization initiator (manufactured by BASF). The name "OMNIRAD907") was mixed in 3 parts by weight, and the leveling agent (manufactured by Kyoeisha Chemical Co., Ltd., trade name "LE303", solid content 40%) was mixed in 0.15 parts by weight. The organic clay was diluted with toluene so that the solid content was 6%. This mixture is diluted with a mixed solvent of toluene / ethyl acetate / cyclopentanone (CPN) (weight ratio 35/41/24) so that the solid content concentration becomes 52% by weight, and an ultrasonic disperser is used. , Anti-glare layer forming material (coating liquid) was prepared. The antiglare layer forming material (coating liquid) does not contain the silicone particles "Tospearl 130", and the refractive index of the "techpolymer" (haze adjusting filler (B2)) is 1.535. It was different from Examples 1 to 3 in that.
 さらに、実施例1で調製した防眩層形成用材料(塗工液)に代えて本実施例で調製した防眩層形成用材料(塗工液)を用いたこと以外は実施例1と同様にして防眩層(B)形成工程を行い、本実施例の防眩性フィルムを製造した。本実施例の防眩性フィルムは、光透過性基材(A)上に防眩層(B)が積層され、前記防眩層(B)が、防眩層形成用樹脂(B1)と、ヘイズ調整用フィラー(B2)とを含んでいた。 Further, the same as in Example 1 except that the antiglare layer forming material (coating liquid) prepared in this example was used instead of the antiglare layer forming material (coating liquid) prepared in Example 1. The antiglare layer (B) forming step was carried out to produce the antiglare film of this example. In the antiglare film of this embodiment, the antiglare layer (B) is laminated on the light transmissive base material (A), and the antiglare layer (B) is formed of the antiglare layer forming resin (B1). It contained a haze adjusting filler (B2).
[実施例5]
 前記「テクポリマー」(ヘイズ調整用フィラー(B2))として、屈折率が1.535である「テクポリマー」に代えて屈折率が1.515である「テクポリマー」を用いたことと、前記「テクポリマー」の配合量を8重量部に変更したこと以外は実施例4と同様にして防眩層形成用材料(塗工液)を調製した。具体的には、まず、防眩層形成材料に含まれる樹脂として、紫外線硬化型ウレタンアクリレート樹脂(日本合成化学工業(株)製、商品名「UV1700TL」、固形分80%)50重量部、および、ペンタエリストールトリアクリレートを主成分とする多官能アクリレート(大阪有機化学工業(株)製、商品名「ビスコート#300」、固形分100%)50重量部の混合物を準備した。前記樹脂の樹脂固形分100重量部あたり、前記粒子として架橋ポリメタクリル酸メチル粒子(積水化成品工業(株)製、商品名「テクポリマー」、重量平均粒径:3μm、屈折率:1.515)を8重量部、前記チキソトロピー付与剤として有機粘土である合成スメクタイト(コープケミカル(株)製、商品名「ルーセンタイトSAN」)を1.5重量部、光重合開始剤(BASF社製、商品名「OMNIRAD907」)を3重量部、レベリング剤(共栄社化学(株)製、商品名「LE303」、固形分40%)を0.15重量部混合した。なお、前記有機粘土は、トルエンで固形分が6%になるよう希釈して用いた。この混合物を、固形分濃度が45重量%となるように、トルエン/酢酸エチル/シクロペンタノン(CPN)混合溶媒(重量比35/41/24)で希釈して、超音波分散機を用いて、防眩層形成材料(塗工液)を調製した。
[Example 5]
As the "techpolymer" (filler for haze adjustment (B2)), a "techpolymer" having a refractive index of 1.515 was used instead of the "techpolymer" having a refractive index of 1.535. A material for forming an antiglare layer (coating liquid) was prepared in the same manner as in Example 4 except that the blending amount of the "techpolymer" was changed to 8 parts by weight. Specifically, first, as the resin contained in the antiglare layer forming material, 50 parts by weight of an ultraviolet curable urethane acrylate resin (manufactured by Nippon Synthetic Chemical Industry Co., Ltd., trade name "UV1700TL", solid content 80%), and , A mixture of 50 parts by weight of a polyfunctional acrylate (manufactured by Osaka Organic Chemical Industry Co., Ltd., trade name "Viscoat # 300", 100% solid content) containing pentaeristol triacrylate as a main component was prepared. Crosslinked polymethyl methacrylate particles (manufactured by Sekisui Kasei Kogyo Co., Ltd., trade name "Techpolymer", weight average particle size: 3 μm, refractive index: 1.515) per 100 parts by weight of the resin solid content of the resin. ) Is 8 parts by weight, 1.5 parts by weight of synthetic smectite (manufactured by Corp Chemical Co., Ltd., trade name "Lucentite SAN"), which is an organic clay as the thixotropy-imparting agent, and a photopolymerization initiator (manufactured by BASF). The name "OMNIRAD907") was mixed in 3 parts by weight, and the leveling agent (manufactured by Kyoeisha Chemical Co., Ltd., trade name "LE303", solid content 40%) was mixed in 0.15 parts by weight. The organic clay was diluted with toluene so that the solid content was 6%. This mixture is diluted with a mixed solvent of toluene / ethyl acetate / cyclopentanone (CPN) (weight ratio 35/41/24) so that the solid content concentration becomes 45% by weight, and an ultrasonic disperser is used. , Anti-glare layer forming material (coating liquid) was prepared.
 さらに、実施例1で調製した防眩層形成用材料(塗工液)に代えて本実施例で調製した防眩層形成用材料(塗工液)を用いたこと以外は実施例1と同様にして防眩層(B)形成工程を行い、本実施例の防眩性フィルムを製造した。本実施例の防眩性フィルムは、光透過性基材(A)上に防眩層(B)が積層され、前記防眩層(B)が、防眩層形成用樹脂(B1)と、ヘイズ調整用フィラー(B2)とを含んでいた。 Further, the same as in Example 1 except that the antiglare layer forming material (coating liquid) prepared in this example was used instead of the antiglare layer forming material (coating liquid) prepared in Example 1. The antiglare layer (B) forming step was carried out to produce the antiglare film of this example. In the antiglare film of this embodiment, the antiglare layer (B) is laminated on the light transmissive base material (A), and the antiglare layer (B) is formed of the antiglare layer forming resin (B1). It contained a haze adjusting filler (B2).
[実施例6]
 前記「テクポリマー」(ヘイズ調整用フィラー(B2))として、屈折率が1.535である「テクポリマー」に代えて屈折率が1.505である「テクポリマー」を用いたことと、前記「テクポリマー」の配合量を8重量部に変更したこと以外は実施例4と同様にして防眩層形成用材料(塗工液)を調製した。具体的には、まず、防眩層形成材料に含まれる樹脂として、紫外線硬化型ウレタンアクリレート樹脂(日本合成化学工業(株)製、商品名「UV1700TL」、固形分80%)50重量部、および、ペンタエリストールトリアクリレートを主成分とする多官能アクリレート(大阪有機化学工業(株)製、商品名「ビスコート#300」、固形分100%)50重量部の混合物を準備した。前記樹脂の樹脂固形分100重量部あたり、前記粒子として架橋ポリメタクリル酸メチル粒子(積水化成品工業(株)製、商品名「テクポリマー」、重量平均粒径:3μm、屈折率:1.505)を8重量部、前記チキソトロピー付与剤として有機粘土である合成スメクタイト(コープケミカル(株)製、商品名「ルーセンタイトSAN」)を1.5重量部、光重合開始剤(BASF社製、商品名「OMNIRAD907」)を3重量部、レベリング剤(共栄社化学(株)製、商品名「LE303」、固形分40%)を0.15重量部混合した。なお、前記有機粘土は、トルエンで固形分が6%になるよう希釈して用いた。この混合物を、固形分濃度が45重量%となるように、トルエン/酢酸エチル/シクロペンタノン(CPN)混合溶媒(重量比35/41/24)で希釈して、超音波分散機を用いて、防眩層形成材料(塗工液)を調製した。
[Example 6]
As the "techpolymer" (filler for haze adjustment (B2)), a "techpolymer" having a refractive index of 1.505 was used instead of the "techpolymer" having a refractive index of 1.535. A material for forming an antiglare layer (coating liquid) was prepared in the same manner as in Example 4 except that the blending amount of the "techpolymer" was changed to 8 parts by weight. Specifically, first, as the resin contained in the antiglare layer forming material, 50 parts by weight of an ultraviolet curable urethane acrylate resin (manufactured by Nippon Synthetic Chemical Industry Co., Ltd., trade name "UV1700TL", solid content 80%), and , A mixture of 50 parts by weight of a polyfunctional acrylate (manufactured by Osaka Organic Chemical Industry Co., Ltd., trade name "Viscoat # 300", 100% solid content) containing pentaeristol triacrylate as a main component was prepared. Crosslinked polymethyl methacrylate particles (manufactured by Sekisui Kasei Kogyo Co., Ltd., trade name "Techpolymer", weight average particle size: 3 μm, refractive index: 1.505 per 100 parts by weight of resin solid content of the resin. ) Is 8 parts by weight, 1.5 parts by weight of synthetic smectite (manufactured by Corp Chemical Co., Ltd., trade name "Lucentite SAN"), which is an organic clay as the thixotropy-imparting agent, and a photopolymerization initiator (manufactured by BASF). The name "OMNIRAD907") was mixed in 3 parts by weight, and the leveling agent (manufactured by Kyoeisha Chemical Co., Ltd., trade name "LE303", solid content 40%) was mixed in 0.15 parts by weight. The organic clay was diluted with toluene so that the solid content was 6%. This mixture is diluted with a mixed solvent of toluene / ethyl acetate / cyclopentanone (CPN) (weight ratio 35/41/24) so that the solid content concentration becomes 45% by weight, and an ultrasonic disperser is used. , Anti-glare layer forming material (coating liquid) was prepared.
 さらに、実施例1で調製した防眩層形成用材料(塗工液)に代えて本実施例で調製した防眩層形成用材料(塗工液)を用いたこと以外は実施例1と同様にして防眩層(B)形成工程を行い、本実施例の防眩性フィルムを製造した。本実施例の防眩性フィルムは、光透過性基材(A)上に防眩層(B)が積層され、前記防眩層(B)が、防眩層形成用樹脂(B1)と、ヘイズ調整用フィラー(B2)とを含んでいた。 Further, the same as in Example 1 except that the antiglare layer forming material (coating liquid) prepared in this example was used instead of the antiglare layer forming material (coating liquid) prepared in Example 1. The antiglare layer (B) forming step was carried out to produce the antiglare film of this example. In the antiglare film of this embodiment, the antiglare layer (B) is laminated on the light transmissive base material (A), and the antiglare layer (B) is formed of the antiglare layer forming resin (B1). It contained a haze adjusting filler (B2).
[比較例1]
 前記「テクポリマー」として、屈折率が1.535である「テクポリマー」に代えて屈折率が1.555である「テクポリマー」を用いたこと以外は実施例4と同様にして防眩層形成用材料(塗工液)を調製した。具体的には、まず、防眩層形成材料に含まれる樹脂として、紫外線硬化型ウレタンアクリレート樹脂(日本合成化学工業(株)製、商品名「UV1700TL」、固形分80%)50重量部、および、ペンタエリストールトリアクリレートを主成分とする多官能アクリレート(大阪有機化学工業(株)製、商品名「ビスコート#300」、固形分100%)50重量部の混合物を準備した。前記樹脂の樹脂固形分100重量部あたり、前記粒子として架橋ポリメタクリル酸メチル粒子(積水化成品工業(株)製、商品名「テクポリマー」、重量平均粒径:3μm、屈折率:1.555)を4重量部、前記チキソトロピー付与剤として有機粘土である合成スメクタイト(コープケミカル(株)製、商品名「ルーセンタイトSAN」)を1.5重量部、光重合開始剤(BASF社製、商品名「OMNIRAD907」)を3重量部、レベリング剤(共栄社化学(株)製、商品名「LE303」、固形分40%)を0.15重量部混合した。なお、前記有機粘土は、トルエンで固形分が6%になるよう希釈して用いた。この混合物を、固形分濃度が50重量%となるように、トルエン/酢酸エチル/シクロペンタノン(CPN)混合溶媒(重量比35/41/24)で希釈して、超音波分散機を用いて、防眩層形成材料(塗工液)を調製した。
[Comparative Example 1]
As the "techpolymer", the antiglare layer is the same as in Example 4 except that the "techpolymer" having a refractive index of 1.555 is used instead of the "techpolymer" having a refractive index of 1.535. A forming material (coating liquid) was prepared. Specifically, first, as the resin contained in the antiglare layer forming material, 50 parts by weight of an ultraviolet curable urethane acrylate resin (manufactured by Nippon Synthetic Chemical Industry Co., Ltd., trade name "UV1700TL", solid content 80%), and , A mixture of 50 parts by weight of a polyfunctional acrylate (manufactured by Osaka Organic Chemical Industry Co., Ltd., trade name "Viscoat # 300", 100% solid content) containing pentaeristol triacrylate as a main component was prepared. Crosslinked polymethyl methacrylate particles (manufactured by Sekisui Kasei Kogyo Co., Ltd., trade name "Techpolymer", weight average particle size: 3 μm, refractive index: 1.555 per 100 parts by weight of resin solid content of the resin. ) Is 4 parts by weight, 1.5 parts by weight of synthetic smectite (manufactured by Corp Chemical Co., Ltd., trade name "Lucentite SAN"), which is an organic clay as the thixotropy-imparting agent, and a photopolymerization initiator (manufactured by BASF). The name "OMNIRAD907") was mixed in 3 parts by weight, and the leveling agent (manufactured by Kyoeisha Chemical Co., Ltd., trade name "LE303", solid content 40%) was mixed in 0.15 parts by weight. The organic clay was diluted with toluene so that the solid content was 6%. This mixture is diluted with a mixed solvent of toluene / ethyl acetate / cyclopentanone (CPN) (weight ratio 35/41/24) so that the solid content concentration becomes 50% by weight, and an ultrasonic disperser is used. , Anti-glare layer forming material (coating liquid) was prepared.
 さらに、実施例1で調製した防眩層形成用材料(塗工液)に代えて本比較例で調製した防眩層形成用材料(塗工液)を用いたこと以外は実施例1の防眩層(B)形成工程と同様の工程を行い、本比較例の防眩性フィルムを製造した。 Further, the protection of Example 1 except that the antiglare layer forming material (coating liquid) prepared in this comparative example was used instead of the antiglare layer forming material (coating liquid) prepared in Example 1. A step similar to the step of forming the glare layer (B) was carried out to produce an antiglare film of this comparative example.
[比較例2]
 屈折率が1.555である「テクポリマー」の配合量を5.5重量部に変更したこと以外は比較例1と同様にして防眩層形成用材料(塗工液)を調製した。具体的には、まず、防眩層形成材料に含まれる樹脂として、紫外線硬化型ウレタンアクリレート樹脂(日本合成化学工業(株)製、商品名「UV1700TL」、固形分80%)50重量部、および、ペンタエリストールトリアクリレートを主成分とする多官能アクリレート(大阪有機化学工業(株)製、商品名「ビスコート#300」、固形分100%)50重量部の混合物を準備した。前記樹脂の樹脂固形分100重量部あたり、前記粒子として架橋ポリメタクリル酸メチル粒子(積水化成品工業(株)製、商品名「テクポリマー」、重量平均粒径:3μm、屈折率:1.555)を5.5重量部、前記チキソトロピー付与剤として有機粘土である合成スメクタイト(コープケミカル(株)製、商品名「ルーセンタイトSAN」)を1.5重量部、光重合開始剤(BASF社製、商品名「OMNIRAD907」)を3重量部、レベリング剤(共栄社化学(株)製、商品名「LE303」、固形分40%)を0.15重量部混合した。なお、前記有機粘土は、トルエンで固形分が6%になるよう希釈して用いた。この混合物を、固形分濃度が50重量%となるように、トルエン/酢酸エチル/シクロペンタノン(CPN)混合溶媒(重量比35/41/24)で希釈して、超音波分散機を用いて、防眩層形成材料(塗工液)を調製した。
[Comparative Example 2]
A material for forming an antiglare layer (coating liquid) was prepared in the same manner as in Comparative Example 1 except that the blending amount of the "techpolymer" having a refractive index of 1.555 was changed to 5.5 parts by weight. Specifically, first, as the resin contained in the antiglare layer forming material, 50 parts by weight of an ultraviolet curable urethane acrylate resin (manufactured by Nippon Synthetic Chemical Industry Co., Ltd., trade name "UV1700TL", solid content 80%), and , A mixture of 50 parts by weight of a polyfunctional acrylate (manufactured by Osaka Organic Chemical Industry Co., Ltd., trade name "Viscoat # 300", 100% solid content) containing pentaeristol triacrylate as a main component was prepared. Crosslinked polymethyl methacrylate particles (manufactured by Sekisui Kasei Kogyo Co., Ltd., trade name "Techpolymer", weight average particle size: 3 μm, refractive index: 1.555 per 100 parts by weight of resin solid content of the resin. ) Is 5.5 parts by weight, 1.5 parts by weight of synthetic smectite (manufactured by Corp Chemical Co., Ltd., trade name "Lucentite SAN"), which is an organic clay as the thixotropy-imparting agent, and a photopolymerization initiator (manufactured by BASF). , Product name "OMNIRAD907") was mixed in 3 parts by weight, and a leveling agent (manufactured by Kyoeisha Chemical Co., Ltd., product name "LE303", solid content 40%) was mixed in 0.15 parts by weight. The organic clay was diluted with toluene so that the solid content was 6%. This mixture is diluted with a mixed solvent of toluene / ethyl acetate / cyclopentanone (CPN) (weight ratio 35/41/24) so that the solid content concentration becomes 50% by weight, and an ultrasonic disperser is used. , Anti-glare layer forming material (coating liquid) was prepared.
 さらに、実施例1で調製した防眩層形成用材料(塗工液)に代えて本比較例で調製した防眩層形成用材料(塗工液)を用いたこと以外は実施例1の防眩層(B)形成工程と同様の工程を行い、本比較例の防眩性フィルムを製造した。 Further, the protection of Example 1 except that the antiglare layer forming material (coating liquid) prepared in this comparative example was used instead of the antiglare layer forming material (coating liquid) prepared in Example 1. A step similar to the step of forming the glare layer (B) was carried out to produce an antiglare film of this comparative example.
[比較例3]
 屈折率が1.555である「テクポリマー」の配合量を7.2重量部に変更したこと以外は比較例1と同様にして防眩層形成用材料(塗工液)を調製した。具体的には、まず、防眩層形成材料に含まれる樹脂として、紫外線硬化型ウレタンアクリレート樹脂(日本合成化学工業(株)製、商品名「UV1700TL」、固形分80%)50重量部、および、ペンタエリストールトリアクリレートを主成分とする多官能アクリレート(大阪有機化学工業(株)製、商品名「ビスコート#300」、固形分100%)50重量部の混合物を準備した。前記樹脂の樹脂固形分100重量部あたり、前記粒子として架橋ポリメタクリル酸メチル粒子(積水化成品工業(株)製、商品名「テクポリマー」、重量平均粒径:3μm、屈折率:1.555)を7.2重量部、前記チキソトロピー付与剤として有機粘土である合成スメクタイト(コープケミカル(株)製、商品名「ルーセンタイトSAN」)を1.5重量部、光重合開始剤(BASF社製、商品名「OMNIRAD907」)を3重量部、レベリング剤(共栄社化学(株)製、商品名「LE303」、固形分40%)を0.15重量部混合した。なお、前記有機粘土は、トルエンで固形分が6%になるよう希釈して用いた。この混合物を、固形分濃度が50重量%となるように、トルエン/酢酸エチル/シクロペンタノン(CPN)混合溶媒(重量比35/41/24)で希釈して、超音波分散機を用いて、防眩層形成材料(塗工液)を調製した。
[Comparative Example 3]
A material for forming an antiglare layer (coating liquid) was prepared in the same manner as in Comparative Example 1 except that the blending amount of the "techpolymer" having a refractive index of 1.555 was changed to 7.2 parts by weight. Specifically, first, as the resin contained in the antiglare layer forming material, 50 parts by weight of an ultraviolet curable urethane acrylate resin (manufactured by Nippon Synthetic Chemical Industry Co., Ltd., trade name "UV1700TL", solid content 80%), and , A mixture of 50 parts by weight of a polyfunctional acrylate (manufactured by Osaka Organic Chemical Industry Co., Ltd., trade name "Viscoat # 300", 100% solid content) containing pentaeristol triacrylate as a main component was prepared. Crosslinked polymethyl methacrylate particles (manufactured by Sekisui Kasei Kogyo Co., Ltd., trade name "Techpolymer", weight average particle size: 3 μm, refractive index: 1.555 per 100 parts by weight of resin solid content of the resin. ) Is 7.2 parts by weight, 1.5 parts by weight of synthetic smectite (manufactured by Corp Chemical Co., Ltd., trade name "Lucentite SAN"), which is an organic clay as the thixotropy-imparting agent, and a photopolymerization initiator (manufactured by BASF). , Product name "OMNIRAD907") was mixed in 3 parts by weight, and a leveling agent (manufactured by Kyoeisha Chemical Co., Ltd., product name "LE303", solid content 40%) was mixed in 0.15 parts by weight. The organic clay was diluted with toluene so that the solid content was 6%. This mixture is diluted with a mixed solvent of toluene / ethyl acetate / cyclopentanone (CPN) (weight ratio 35/41/24) so that the solid content concentration becomes 50% by weight, and an ultrasonic disperser is used. , Anti-glare layer forming material (coating liquid) was prepared.
[比較例4]
 防眩層形成材料に含まれる樹脂として、紫外線硬化型ウレタンアクリレート樹脂(DIC(株)製、商品名「ルクシディア17-806」、固形分80%)100重量部を準備した。前記樹脂の樹脂固形分100重量部あたり、前記粒子として架橋ポリメタクリル酸メチル粒子(綜研化学(株)製、商品名「SX-350H」、重量平均粒径:3.5μm、屈折率:1.59)を13重量部、シリコーン粒子(モメンティブ・パフォーマンス・マテリアルズ・ジャパン(同)製、前記チキソトロピー付与剤として有機粘土である合成スメクタイト(コープケミカル(株)製、商品名「ルーセンタイトSAN」)を2.5重量部、光重合開始剤(BASF社製、商品名「OMNIRAD907」)を5重量部、レベリング剤(DIC(株)製、商品名「メガファックF470N」、固形分30%)を0.5重量部混合した。なお、前記有機粘土は、酢酸エチルで固形分が4.6%になるよう希釈して用いた。この混合物を、固形分濃度が32重量%となるように、トルエン/酢酸エチル混合溶媒(重量比93/7)で希釈して、超音波分散機を用いて、防眩層形成材料(塗工液)を調製した。
[Comparative Example 4]
As a resin contained in the antiglare layer forming material, 100 parts by weight of an ultraviolet curable urethane acrylate resin (manufactured by DIC Corporation, trade name "Luxidia 17-806", solid content 80%) was prepared. Crosslinked polymethyl methacrylate particles (manufactured by Soken Kagaku Co., Ltd., trade name "SX-350H", weight average particle size: 3.5 μm, refractive index: 1. 59) 13 parts by weight, silicone particles (manufactured by Momentive Performance Materials Japan Co., Ltd., synthetic smectite which is an organic clay as the thixotropy-imparting agent (manufactured by Corp Chemical Co., Ltd., trade name "Lucentite SAN") 2.5 parts by weight, photopolymerization initiator (manufactured by BASF, trade name "OMNIRAD907") by 5 parts by weight, leveling agent (manufactured by DIC Co., Ltd., trade name "Megafuck F470N", solid content 30%) 0.5 parts by weight was mixed. The organic clay was diluted with ethyl acetate so that the solid content was 4.6%, and this mixture was used so that the solid content concentration was 32% by weight. The antiglare layer forming material (coating liquid) was prepared by diluting with a toluene / ethyl acetate mixed solvent (weight ratio 93/7) using an ultrasonic disperser.
 さらに、実施例1で調製した防眩層形成用材料(塗工液)に代えて本比較例で調製した防眩層形成用材料(塗工液)を用いたこと以外は実施例1の防眩層(B)形成工程と同様の工程を行い、本比較例の防眩性フィルムを製造した。 Further, the protection of Example 1 except that the antiglare layer forming material (coating liquid) prepared in this comparative example was used instead of the antiglare layer forming material (coating liquid) prepared in Example 1. A step similar to the step of forming the glare layer (B) was carried out to produce an antiglare film of this comparative example.
[FD(フェード)試験]
 前記各実施例および比較例の防眩性フィルムに対し、紫外線フェードメーターU48HB(スガ試験株式会社の商品名)を用い、下記の試験条件でフェード(FD)試験を行った。この試験結果を、下記表1に示す。なお、下記表1において、「0H」は、フェード試験前の状態を表し、「500H」は、フェード試験後(500時間経過後)の状態を表す。また、下記表1~3において、「ヘイズ値」は防眩性フィルムの全ヘイズ値を表し、「Pst」はポリスチレンを表し、「PMMA」はポリメタクリル酸メチルを表し、Pst/PMMAは、ポリスチレンとポリメタクリル酸との共重合体を表す。
[FD (fade) test]
The antiglare films of each of the Examples and Comparative Examples were subjected to a fade (FD) test under the following test conditions using an ultraviolet fade meter U48HB (trade name of Suga Test Instruments Co., Ltd.). The test results are shown in Table 1 below. In Table 1 below, "0H" represents the state before the fade test, and "500H" represents the state after the fade test (after 500 hours have passed). Further, in Tables 1 to 3 below, "haze value" represents the total haze value of the antiglare film, "Pst" represents polystyrene, "PMMA" represents polymethylmethacrylate, and Pst / PMMA represents polystyrene. Represents a copolymer of and polymethacrylic acid.
(フェード試験条件)
層内温度:40℃
層内湿度:20%RH
ランプ:(波長)300nm~700nm、(照度)500W/m
試験時間:500時間
(Fade test conditions)
In-layer temperature: 40 ° C
Intralayer humidity: 20% RH
Lamp: (wavelength) 300 nm-700 nm, (illuminance) 500 W / m 2
Test time: 500 hours
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
[耐熱試験]
 前記各実施例および比較例の防眩性フィルムを、100℃のオーブン中に500時間静置して耐熱試験を行った。この試験結果を、下記表2に示す。なお、下記表2において、「0H」は、耐熱試験前の状態を表し、「500H」は、耐熱試験後(500時間経過後)の状態を表す。
[Heat resistance test]
The antiglare films of each of the Examples and Comparative Examples were allowed to stand in an oven at 100 ° C. for 500 hours to perform a heat resistance test. The test results are shown in Table 2 below. In Table 2 below, "0H" represents the state before the heat resistance test, and "500H" represents the state after the heat resistance test (after 500 hours have passed).
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
[加湿熱試験]
 前記各実施例および比較例の防眩性フィルムを、60℃95%RHのオーブン中に500時間静置して加湿熱試験を行った。この試験結果を、下記表2に示す。なお、下記表3において、「0H」は、加湿熱試験前の状態を表し、「500H」は、加湿熱試験後(500時間経過後)の状態を表す。
[Humidification heat test]
The antiglare films of each of the Examples and Comparative Examples were allowed to stand in an oven at 60 ° C. and 95% RH for 500 hours for a humidification heat test. The test results are shown in Table 2 below. In Table 3 below, "0H" represents the state before the humidification heat test, and "500H" represents the state after the humidification heat test (after 500 hours have passed).
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 前記表1~3に示したとおり、ポリスチレン含有率が30体積%を超える粒子(フィラー)を含まない実施例の防眩性フィルムは、加熱または加湿を500時間行っても、全ヘイズ値の変化量の絶対値が、最大で1.4%と小さかった。これに対し、ポリスチレン含有率が30体積%を超える粒子(フィラー)を含む比較例の防眩性フィルムは、加熱または加湿を500時間行った後に、全ヘイズ値の変化量の絶対値が、1.5%以上と大きく変化していた。 As shown in Tables 1 to 3, the antiglare film of the example containing no particles (filler) having a polystyrene content of more than 30% by volume changes the total haze value even after heating or humidification for 500 hours. The absolute value of the amount was as small as 1.4% at the maximum. On the other hand, the antiglare film of the comparative example containing particles (filler) having a polystyrene content of more than 30% by volume has an absolute value of change in the total haze value of 1 after heating or humidifying for 500 hours. It changed significantly to 5.5% or more.
 以上、説明したとおり、本発明によれば、ヘイズ値が変化し難い防眩性フィルム、防眩性フィルムの製造方法、光学部材および画像表示装置を提供することができる。本発明の防眩性フィルムは、例えば、加熱または加湿条件下でもヘイズ値が変化し難いことにより、高温または高湿度の条件下での使用に適する。ただし、本発明は、この用途に限定されず、広範な用途に使用可能である。 As described above, according to the present invention, it is possible to provide an antiglare film whose haze value is hard to change, a method for producing the antiglare film, an optical member, and an image display device. The antiglare film of the present invention is suitable for use under high temperature or high humidity conditions because the haze value does not easily change even under heating or humidifying conditions, for example. However, the present invention is not limited to this application and can be used in a wide range of applications.
 この出願は、2019年11月11日に出願された日本出願特願2019-204227を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese application Japanese Patent Application No. 2019-20427 filed on November 11, 2019, and incorporates all of its disclosures herein.
10 防眩性フィルム
11 光透過性基材(A)
12 防眩層(B)
12a 防眩層形成用樹脂(B1)
12b ヘイズ調整用フィラー(B2)
12c チキソトロピー付与剤
10 Anti-glare film 11 Light-transmitting base material (A)
12 Anti-glare layer (B)
12a Antiglare layer forming resin (B1)
12b Haze adjustment filler (B2)
12c thixotropy imparting agent

Claims (12)

  1.  光透過性基材(A)上に防眩層(B)が積層された防眩性フィルムであって、
     前記防眩層(B)が、防眩層形成用樹脂(B1)と、少なくとも一種類のヘイズ調整用フィラー(B2)とを含み、
     前記ヘイズ調整用フィラー(B2)は、Pst(ポリスチレン)とPMMA(ポリメタクリル酸メチル)との共重合体から構成されるフィラーであり、
     前記ヘイズ調整用フィラー(B2)単体のラマン分光スペクトルによるPMMAピーク/Pstピークのピーク面積比が0.51以上であり、前記ピーク面積は、隣接するピークとの間の極小点を境界として算出したピーク面積であり、
     前記防眩性フィルムの全ヘイズ値が5~45%の範囲であることを特徴とする防眩性フィルム。
    An antiglare film in which an antiglare layer (B) is laminated on a light transmissive base material (A).
    The antiglare layer (B) contains a resin for forming an antiglare layer (B1) and at least one kind of haze adjusting filler (B2).
    The haze adjusting filler (B2) is a filler composed of a copolymer of Pst (polystyrene) and PMMA (polymethyl methacrylate).
    The peak area ratio of PMMA peak / Pst peak according to the Raman spectroscopic spectrum of the haze adjusting filler (B2) alone is 0.51 or more, and the peak area is calculated with the minimum point between the adjacent peaks as a boundary. It is the peak area,
    An antiglare film characterized in that the total haze value of the antiglare film is in the range of 5 to 45%.
  2.  光透過性基材(A)上に防眩層(B)が積層された防眩性フィルムであって、
     前記防眩層(B)が、防眩層形成用樹脂(B1)と、少なくとも一種類のヘイズ調整用フィラー(B2)とを含み、
     前記ヘイズ調整用フィラー(B2)は、Pst(ポリスチレン)とPMMA(ポリメタクリル酸メチル)との共重合体から構成されるフィラーであり、かつ、屈折率が1.535を超えるフィラーを含まず、
     前記防眩性フィルムの全ヘイズ値が5~45%の範囲であることを特徴とする防眩性フィルム。
    An antiglare film in which an antiglare layer (B) is laminated on a light transmissive base material (A).
    The antiglare layer (B) contains a resin for forming an antiglare layer (B1) and at least one kind of haze adjusting filler (B2).
    The haze adjusting filler (B2) is a filler composed of a copolymer of Pst (polystyrene) and PMMA (polymethyl methacrylate), and does not contain a filler having a refractive index of more than 1.535.
    An antiglare film characterized in that the total haze value of the antiglare film is in the range of 5 to 45%.
  3.  前記防眩層形成用樹脂(B1)と、前記ヘイズ調整用フィラー(B2)との屈折率差が、絶対値で0.001を超え0.15未満である請求項1または2記載の防眩性フィルム。 The antiglare according to claim 1 or 2, wherein the difference in refractive index between the antiglare layer forming resin (B1) and the haze adjusting filler (B2) exceeds 0.001 and is less than 0.15 in absolute value. Sex film.
  4.  前記ヘイズ調整用フィラー(B2)が、粒子である請求項1から3のいずれか一項に記載の防眩性フィルム。 The antiglare film according to any one of claims 1 to 3, wherein the haze adjusting filler (B2) is a particle.
  5.  光透過性基材(A)上に防眩層(B)が積層された防眩性フィルムの設計方法であって、
     前記防眩層(B)が、防眩層形成用樹脂(B1)と、少なくとも一種類のヘイズ調整用フィラー(B2)とを含み、
     前記ヘイズ調整用フィラー(B2)は、Pst(ポリスチレン)とPMMA(ポリメタクリル酸メチル)との共重合体から構成されるフィラーであり、
     前記防眩性フィルムが下記条件(1)及び(2)を満たすように設計することで、前記防眩性フィルムのヘイズ値の変化を抑制することを特徴とする設計方法。
     
    (1) 前記ヘイズ調整用フィラー(B2)単体のラマン分光スペクトルによるPMMAピーク/Pstピークのピーク面積比が0.51以上であり、前記ピーク面積は、隣接するピークとの間の極小点を境界として算出したピーク面積である。
    (2) 前記防眩性フィルムの全ヘイズ値が5~45%の範囲である。
    A method for designing an antiglare film in which an antiglare layer (B) is laminated on a light transmissive base material (A).
    The antiglare layer (B) contains a resin for forming an antiglare layer (B1) and at least one kind of haze adjusting filler (B2).
    The haze adjusting filler (B2) is a filler composed of a copolymer of Pst (polystyrene) and PMMA (polymethyl methacrylate).
    A design method characterized by suppressing a change in the haze value of the antiglare film by designing the antiglare film so as to satisfy the following conditions (1) and (2).

    (1) The peak area ratio of PMMA peak / Pst peak according to the Raman spectroscopic spectrum of the haze adjusting filler (B2) alone is 0.51 or more, and the peak area borders a minimum point between adjacent peaks. It is the peak area calculated as.
    (2) The total haze value of the antiglare film is in the range of 5 to 45%.
  6.  請求項5記載の設計方法により前記防眩性フィルムを設計する工程を含み、
     前記防眩性フィルムが請求項1から4のいずれか一項に記載の防眩性フィルムであることを特徴とする前記防眩性フィルムの製造方法。
    The step of designing the antiglare film by the design method according to claim 5 is included.
    The method for producing an antiglare film, wherein the antiglare film is the antiglare film according to any one of claims 1 to 4.
  7.  前記光透過性基材(A)上に、前記防眩層(B)を形成する防眩層(B)形成工程を含み、
     前記防眩層(B)形成工程が、前記光透過性基材(A)上に塗工液を塗工する塗工工程と、塗工した前記塗工液を乾燥させて塗膜を形成する塗膜形成工程とを含み、
     前記塗工液が、前記防眩層形成用樹脂(B1)形成材料と、前記ヘイズ調整用フィラー(B2)とを含むことを特徴とする請求項1から4のいずれか一項に記載の防眩性フィルムの製造方法。
    The step of forming the antiglare layer (B) for forming the antiglare layer (B) on the light transmissive base material (A) is included.
    The antiglare layer (B) forming step is a coating step of applying a coating liquid on the light transmissive base material (A) and drying the coated coating liquid to form a coating film. Including the coating film forming step
    The prevention according to any one of claims 1 to 4, wherein the coating liquid contains the antiglare layer forming resin (B1) forming material and the haze adjusting filler (B2). A method for producing a dazzling film.
  8.  前記防眩層(B)形成工程が、さらに、前記塗膜を硬化させる硬化工程を含む請求項7記載の製造方法。 The manufacturing method according to claim 7, wherein the antiglare layer (B) forming step further includes a curing step of curing the coating film.
  9.  さらに、請求項5記載の設計方法により前記防眩性フィルムを設計する工程を含む請求項7または8記載の製造方法。 The manufacturing method according to claim 7 or 8, further comprising the step of designing the antiglare film by the design method according to claim 5.
  10.  請求項1から4のいずれか一項に記載の防眩性フィルムを含む光学部材。 An optical member including the antiglare film according to any one of claims 1 to 4.
  11.  偏光板である請求項10記載の光学部材。 The optical member according to claim 10, which is a polarizing plate.
  12.  請求項1から4のいずれか一項に記載の防眩性フィルム、または請求項10もしくは11記載の光学部材を含む画像表示装置。 An image display device including the antiglare film according to any one of claims 1 to 4 or the optical member according to claim 10 or 11.
PCT/JP2020/041988 2019-11-11 2020-11-10 Anti-glare film, method for designing anti-glare film, method for producing anti-glare film, optical member, and image display device WO2021095745A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080078118.XA CN114651196A (en) 2019-11-11 2020-11-10 Anti-glare film, method for designing anti-glare film, method for producing anti-glare film, optical member, and image display device
KR1020227016186A KR20220098353A (en) 2019-11-11 2020-11-10 Anti-glare film, design method of anti-glare film, manufacturing method of anti-glare film, optical member and image display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-204227 2019-11-11
JP2019204227A JP2021076749A (en) 2019-11-11 2019-11-11 Antiglare film, design method of antiglare film, manufacturing method of antiglare film, optical member and image display device

Publications (1)

Publication Number Publication Date
WO2021095745A1 true WO2021095745A1 (en) 2021-05-20

Family

ID=75898383

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/041988 WO2021095745A1 (en) 2019-11-11 2020-11-10 Anti-glare film, method for designing anti-glare film, method for producing anti-glare film, optical member, and image display device

Country Status (5)

Country Link
JP (1) JP2021076749A (en)
KR (1) KR20220098353A (en)
CN (1) CN114651196A (en)
TW (1) TW202124165A (en)
WO (1) WO2021095745A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120252947A1 (en) * 2009-12-17 2012-10-04 Chang Gyu Im Polycarbonate resin composition for flame retardant film, flame retardant film including the resin composition and method for producing the flame retardant film
WO2013015332A1 (en) * 2011-07-26 2013-01-31 大日本印刷株式会社 Anti-glare film, polarizing plate and image display device
WO2017141903A1 (en) * 2016-02-16 2017-08-24 株式会社トッパンTomoegawaオプティカルフィルム Optical laminate, polarizing plate, and display device
JP2017167560A (en) * 2012-06-28 2017-09-21 日東電工株式会社 Manufacturing method of anti-glare film, anti-glare film, polarizing plate, and image display device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4059710B2 (en) 2001-10-23 2008-03-12 シャープ株式会社 Antiglare film, polarizing element, and display device manufacturing method
JP2009109683A (en) 2007-10-30 2009-05-21 Tsujiden Co Ltd Antiglare and anti-newton film

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120252947A1 (en) * 2009-12-17 2012-10-04 Chang Gyu Im Polycarbonate resin composition for flame retardant film, flame retardant film including the resin composition and method for producing the flame retardant film
WO2013015332A1 (en) * 2011-07-26 2013-01-31 大日本印刷株式会社 Anti-glare film, polarizing plate and image display device
JP2017167560A (en) * 2012-06-28 2017-09-21 日東電工株式会社 Manufacturing method of anti-glare film, anti-glare film, polarizing plate, and image display device
WO2017141903A1 (en) * 2016-02-16 2017-08-24 株式会社トッパンTomoegawaオプティカルフィルム Optical laminate, polarizing plate, and display device

Also Published As

Publication number Publication date
TW202124165A (en) 2021-07-01
KR20220098353A (en) 2022-07-12
JP2021076749A (en) 2021-05-20
CN114651196A (en) 2022-06-21

Similar Documents

Publication Publication Date Title
JP6454371B2 (en) Antiglare film, polarizing plate, image display device and method for producing antiglare film
JP6153723B2 (en) Method for producing antiglare film, antiglare film, polarizing plate and image display device
JP7428468B2 (en) Antireflection film, antireflection film manufacturing method, optical member, and image display device
JP2011081219A (en) Hard-coated antiglare film, and polarizing plate and image display including the same
WO2020204148A1 (en) Light diffusion film, light diffusion film production method, optical member, display panel for image display device, and image display device
JP2013178534A (en) Hard-coated antidazzle film, and polarizing plate using the same, and image display device
WO2021157664A1 (en) Anti-glare hard coating film, method for manufacturing anti-glare hard coating film, optical member, and image display device
JP6261858B2 (en) Image display device, antiglare film and method for producing antiglare film
JP2017167560A (en) Manufacturing method of anti-glare film, anti-glare film, polarizing plate, and image display device
JP6105930B2 (en) Method for producing antiglare film, antiglare film, coating liquid, polarizing plate and image display device
WO2020111176A1 (en) Anti-glare film, method for manufacturing anti-glare film, and optical member and image display device
WO2020209288A1 (en) Anti-glare film, method for manufacturing anti-glare film, optical member, and image display device
WO2021095745A1 (en) Anti-glare film, method for designing anti-glare film, method for producing anti-glare film, optical member, and image display device
JP6666871B2 (en) Method for producing anti-glare film, anti-glare film, coating liquid, polarizing plate and image display device
WO2021095746A1 (en) Antiglare film, antiglare film design method, antiglare film manufacturing method, optical member, and image display device
JP7343273B2 (en) Anti-glare film, method for producing anti-glare film, optical member and image display device
TWI839422B (en) Anti-glare film, method for producing anti-glare film, optical component and image display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20887730

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20227016186

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20887730

Country of ref document: EP

Kind code of ref document: A1