WO2020209288A1 - Anti-glare film, method for manufacturing anti-glare film, optical member, and image display device - Google Patents

Anti-glare film, method for manufacturing anti-glare film, optical member, and image display device Download PDF

Info

Publication number
WO2020209288A1
WO2020209288A1 PCT/JP2020/015837 JP2020015837W WO2020209288A1 WO 2020209288 A1 WO2020209288 A1 WO 2020209288A1 JP 2020015837 W JP2020015837 W JP 2020015837W WO 2020209288 A1 WO2020209288 A1 WO 2020209288A1
Authority
WO
WIPO (PCT)
Prior art keywords
antiglare
film
layer
antiglare layer
resin
Prior art date
Application number
PCT/JP2020/015837
Other languages
French (fr)
Japanese (ja)
Inventor
慎哉 平岡
尚樹 橋本
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to KR1020217031811A priority Critical patent/KR20210149719A/en
Priority to CN202080027544.0A priority patent/CN113661418B/en
Priority to SG11202111128WA priority patent/SG11202111128WA/en
Publication of WO2020209288A1 publication Critical patent/WO2020209288A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/021Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures
    • G02B5/0226Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures having particles on the surface
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0273Diffusing elements; Afocal elements characterized by the use
    • G02B5/0294Diffusing elements; Afocal elements characterized by the use adapted to provide an additional optical effect, e.g. anti-reflection or filter
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133502Antiglare, refractive index matching layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers

Definitions

  • the present invention relates to an antiglare film, a method for producing an antiglare film, an optical member, and an image display device.
  • image display devices such as a cathode tube display device (CRT), a liquid crystal display device (LCD), a plasma display panel (PDP), and an electroluminescence display (ELD) include fluorescent lamps and sunlight on the surface of the image display device.
  • Anti-glare treatment is applied to prevent contrast deterioration due to reflection of external light and reflection of images, and in particular, as the screen size of image display devices increases, anti-glare films are used. The number of image display devices installed is increasing.
  • Patent Documents 1 and 2 There are many documents describing antiglare films, for example, Patent Documents 1 and 2.
  • the antiglare film needs to suppress reflection due to reflection of external light.
  • PID public information displays
  • a display image display device
  • reflection due to reflection of outside light is more likely to occur than when it is used indoors. If reflection occurs, it may be difficult to see the image.
  • an object of the present invention is to provide an antiglare film in which glare is suppressed, a method for producing the antiglare film, an optical member, and an image display device.
  • the antiglare film of the present invention is used.
  • Unevenness is formed on the outermost surface of the antiglare film on the antiglare layer (B) side.
  • the unevenness satisfies the following mathematical formulas (1) and (2).
  • Ry ⁇ 1.7 (1) ⁇ a ⁇ 0.7 (2)
  • Ry is the maximum height [ ⁇ m] of the convex portion of the unevenness.
  • ⁇ a is the average inclination angle [°] of the unevenness.
  • the method for producing an antiglare film of the present invention is The antiglare layer (B) forming step of forming the antiglare layer (B) on the light transmissive base material (A) so as to satisfy the mathematical formulas (1) and (2) is included.
  • the antiglare layer (B) forming step includes a coating step of applying a coating liquid on the light transmissive base material (A) and drying the coated coating liquid to form a coating film.
  • Including the coating film forming step The method for producing an antiglare film of the present invention, wherein the coating liquid contains a resin and a solvent.
  • the optical member of the present invention is an optical member including the antiglare film of the present invention.
  • the image display device of the present invention is an image display device including the antiglare film of the present invention or the optical member of the present invention.
  • an antiglare film it is possible to provide an antiglare film, an optical member, and an image display device in which glare is suppressed.
  • FIG. 1 is a cross-sectional view showing an example of the antiglare film of the present invention.
  • FIG. 2 is a cross-sectional view showing another example of the antiglare film of the present invention.
  • FIG. 3 is a cross-sectional view showing an example of an antiglare film.
  • the antiglare layer (B) may contain fine particles.
  • irregularities are formed on the surface of the antiglare layer (B) opposite to the light transmissive base material (A), and the weight average particle diameter of the fine particles is increased. It may be larger than the thickness obtained by subtracting the maximum height of the convex portion of the unevenness from the maximum thickness of the antiglare layer (B).
  • the weight average particle diameter of the fine particles may be in the range of 4 to 9 ⁇ m.
  • another layer may be further laminated on the surface of the antiglare layer (B) opposite to the light transmissive base material (A).
  • the antiglare film of the present invention is, for example, an antiglare film in which an antiglare layer (B) and another layer are laminated in the above order on a light transmissive base material (A), and the other layer.
  • An antiglare film may be characterized in that irregularities are formed on the outermost surface of the film, and the irregularities satisfy the following mathematical formulas (1) and (2).
  • Ry ⁇ 1.7 (1) ⁇ a ⁇ 0.7 (2)
  • Ry is the maximum height [ ⁇ m] of the convex portion of the unevenness.
  • ⁇ a is the average inclination angle [°] of the unevenness.
  • the method for producing an antiglare film of the present invention may include, for example, a step of forming the antiglare layer (B) and a curing step of curing the coating film.
  • the coating liquid may contain fine particles.
  • the optical member of the present invention may be, for example, a polarizing plate.
  • the image display device of the present invention may be, for example, a public information display.
  • the antiglare film of the present invention is an antiglare film in which an antiglare layer (B) is laminated on a light transmitting base material (A), and the antiglare film in the antiglare film.
  • An uneven surface is formed on the outermost surface of the layer (B) side, and the unevenness satisfies the following mathematical formulas (1) and (2).
  • Ry ⁇ 1.7 (1) ⁇ a ⁇ 0.7 (2)
  • Ry is the maximum height [ ⁇ m] of the convex portion of the unevenness.
  • ⁇ a is the average inclination angle [°] of the unevenness.
  • FIG. 1 shows an example of the configuration of the antiglare film of the present invention.
  • the antiglare layer (B) 12 is laminated on one surface of the light transmissive base material (A) 11.
  • the antiglare layer (B) 12 contains fine particles 12b and a thixotropy-imparting agent 12c in the resin layer 12a.
  • Unevenness is formed on the outermost surface of the antiglare film 10 on the antiglare layer (B) 12 side (the surface of the antiglare layer (B) 12 on the side opposite to the light transmitting base material (A) 11).
  • the maximum height Ry of the convex portion of the unevenness is 1.7 ⁇ m or more.
  • the average inclination angle ⁇ a (not shown) of the unevenness is 0.7 ° or more.
  • the particle diameter D of the fine particles 12b is larger than the film thickness t obtained by subtracting Ry from the maximum thickness d of the antiglare layer (B).
  • FIG. 1 is an example, and the present invention is not limited thereto.
  • the antiglare film of the present invention may or may not contain fine particles and a thixotropy-imparting agent, respectively.
  • the particle diameter D of the fine particles 12b is larger than the film thickness t of the antiglare layer (B), but the present invention is not limited to this.
  • FIG. 3 shows an example of the configuration of an antiglare film that is not the antiglare film of the present invention.
  • This antiglare film is shown in FIG. 1 except that the maximum height Ry of the unevenness is less than 1.7 ⁇ m and the average projection angle ⁇ a (not shown) of the unevenness is less than 0.7 °. It is the same as the antiglare film.
  • FIG. 2 shows another example of the configuration of the antiglare film of the present invention.
  • another layer 13 is further laminated on the surface of the antiglare layer (B) 12 opposite to the light transmissive base material (A) 11.
  • the other layer 13 is not particularly limited, and may be, for example, a low refractive index layer, an antireflection layer, a high refractive index layer, a hard coat layer, an adhesive layer, or the like.
  • the configuration of the antiglare film 10 of FIG. 2 is the same as that of the antiglare film 10 of FIG. Further, in FIG.
  • the outermost surface of the antiglare film 10 on the antiglare layer (B) 12 side (the surface of the other layer 13 on the side opposite to the light transmissive base material (A) 11) has irregularities. It is formed.
  • the maximum height Ry of the convex portion of the unevenness is 1.7 ⁇ m or more.
  • the average inclination angle ⁇ a (not shown) of the unevenness is 0.7 ° or more.
  • the maximum height of the portion of the antiglare film 10 other than the light transmissive base material (A) 11 (antiglare layer (B) 12 and other layers 13) is represented by d in the figure.
  • unevenness is formed on the surface of the antiglare layer (B) 12 on the side opposite to the light transmissive base material (A) 11 (the other layer 13 side).
  • the film thickness obtained by subtracting the maximum height Ry'of the unevenness of the antiglare layer (B) 12 from the maximum thickness d'of the antiglare layer (B) 12 is represented by t in the figure. As shown, t is equal to d'-Ry'and equal to d-Ry.
  • the particle diameter D of the fine particles 12b is larger than the film thickness t as in the case of FIG. 1, but as described above, the present invention is not limited to this. Further, as in the case of FIG.
  • the antiglare layer (B) 12 may or may not contain fine particles and a thixotropy-imparting agent, respectively.
  • the other layer 13 is one layer in FIG. 2, but may be a plurality of layers. When the other layer 13 does not exist, Ry'is equal to Ry and d'is equal to d, as shown in FIG.
  • each of the light transmissive base material (A), the antiglare layer (B), and the other layers will be described with further examples.
  • the antiglare layer (B) is an antiglare hard coat layer
  • the present invention is not limited thereto.
  • the light transmissive base material (A) is not particularly limited, and examples thereof include a transparent plastic film base material.
  • the transparent plastic film base material is not particularly limited, but is preferably one having excellent visible light transmittance (preferably 90% or more) and excellent transparency (preferably one having a haze value of 1% or less).
  • the transparent plastic film base material described in JP-A-2008-90263 can be mentioned.
  • the transparent plastic film base material one having less birefringence optically is preferably used.
  • the antiglare film of the present invention can also be used as a protective film for a polarizing plate, and in this case, the transparent plastic film base material includes triacetyl cellulose (TAC), polycarbonate, an acrylic polymer, and the like.
  • TAC triacetyl cellulose
  • the transparent plastic film base material may be the polarizer itself.
  • the protective layer made of TAC or the like is not required and the structure of the polarizing plate can be simplified, so that the number of manufacturing steps of the polarizing plate or the image display device can be reduced and the production efficiency can be improved. Further, with such a configuration, the polarizing plate can be further thinned.
  • the transparent plastic film base material is a polarizer
  • the antiglare layer (B) and the antireflection layer (C) serve as protective layers. Further, with such a configuration, the antiglare film also functions as a cover plate when mounted on the surface of a liquid crystal cell, for example.
  • the thickness of the light-transmitting base material (A) is not particularly limited, but in consideration of workability such as strength and handleability and thin layer property, for example, 10 to 500 ⁇ m and 20 to 300 ⁇ m. , Or in the range of 30-200 ⁇ m.
  • the refractive index of the light transmissive substrate (A) is not particularly limited. The refractive index is, for example, in the range of 1.30 to 1.80 or 1.40 to 1.70.
  • the resin contained in the light transmissive base material (A) may contain an acrylic resin.
  • the light transmissive base material (A) may be an acrylic film.
  • the maximum height Ry of the irregularities is 1.7 ⁇ m or more.
  • the maximum height Ry may be, for example, 2.0 ⁇ m or more or 2.3 ⁇ m or more, and may be, for example, 9 ⁇ m or less, 8 ⁇ m or less, 7 ⁇ m or less, or 6 ⁇ m or less.
  • the maximum height Ry may be, for example, 1.7 to 9 ⁇ m, 1.7 to 8 ⁇ m, 2.0 to 7 ⁇ m, or 2.3 to 6 ⁇ m.
  • Ry is preferably large from the viewpoint of suppressing glare, but is preferably not too large from the viewpoint of the haze value described later.
  • the maximum height Ry is a numerical value based on JIS B 0601 (1994 version).
  • the method for measuring Ry is not particularly limited, but for example, it can be measured by the measuring method described in Examples described later.
  • the "outermost surface on the antiglare layer (B) side” is the outermost surface on the antiglare layer (B) side.
  • the “outermost surface on the antiglare layer (B) side” is the light transmissive base material (A) in the antiglare layer (B) when the other layer is not present (for example, FIG. 1). )
  • the opposite side is the opposite side.
  • the "outermost surface on the antiglare layer (B) side” is the most on the side opposite to the light-transmitting base material (A) in the other layer when the other layer is present (for example, FIG. 2).
  • the antiglare film of the present invention has an average inclination angle ⁇ a (°) of 0.7 or more in the uneven shape of the outermost surface on the antiglare layer (B) side.
  • the average inclination angle ⁇ a may be, for example, 0.7 ° or more, 0.8 ° or more, 0.9 ° or more, or 1.0 ° or more, and is 8 ° or less, 7 ° or less, 6 ° or less. , Or 5 ° or less.
  • the average inclination angle ⁇ a is, for example, 0.7 to 8 °, 0.7 to 7 °, 0.7 to 6 °, 0.7 to 5 °, 0.8 to 8 °, 0.8 to 7 °.
  • ⁇ a is preferably large from the viewpoint of suppressing glare, but is preferably not too large from the viewpoint of the haze value described later.
  • ⁇ a is the peak and valley of the adjacent peaks in the reference length L of the roughness curve defined in JIS B 0601 (1994 version) as shown in the following formula (4). It is a value obtained by dividing the total (h1 + h2 + h3 ... + Hn) of the difference (height h) from the lowest point by the reference length L.
  • the antiglare film of the present invention may have, for example, a haze value of 4% or more, 6% or more, 10% or more, or 15% or more, for example, 50% or less, 40% or less, It may be 35% or less, or less than 30%.
  • the haze value may be, for example, 4-50%, 6-40%, 10-40%, further 15-40%, or 15-35%.
  • the haze value is the haze value (cloudiness) of the entire antiglare film according to JIS K 7136 (2000 version). Generally, in an antiglare film, when the haze value is large, it is easy to suppress reflection.
  • the haze value becomes, for example, 50% or less, 40% or less, 35% or less, or less than 30%. Even if it is small, the reflection can be suppressed.
  • the difference in refractive index between the resin and the fine particles which will be described later, should be as small as possible (for example, in the range of 0.001 to 0.02). , The fine particles and the resin may be selected.
  • the antiglare layer (B) may contain a resin and a filler.
  • the filler may contain at least one of the microparticles and the thixotropic agent.
  • the resin contained in the antiglare layer (B) may contain an acrylate resin (also referred to as an acrylic resin).
  • the resin contained in the antiglare layer (B) may contain a urethane acrylate resin.
  • the resin contained in the antiglare layer (B) may be a copolymer of a curable urethane acrylate resin and a polyfunctional acrylate.
  • the antiglare layer (B) is formed by using an antiglare layer forming material containing a resin and a filler, and the antiglare layer (B) is formed by the filler. It may have an agglomerated portion that forms a convex portion on the surface of the antiglare layer (B) by aggregating. Further, in the agglomerated portion forming the convex portion, a plurality of the fillers may be present in a state of being gathered in one direction in the surface direction of the antiglare layer (B). In the image display device of the present invention, for example, the antiglare film of the present invention may be arranged so that one direction in which a plurality of the fillers are gathered coincides with the long side direction of the black matrix pattern. ..
  • the thixotropy-imparting agent may be at least one selected from the group consisting of, for example, organic clay, oxidized polyolefin and modified urea. Further, the thixotropy-imparting agent may be, for example, a thickener.
  • the thixotropy-imparting agent is contained in the range of 0.2 to 5 parts by weight with respect to 100 parts by weight (mass) of the resin of the antiglare layer (B). Good.
  • the fine particles are contained in the range of, for example, 0.2 to 12 parts by weight or 0.5 to 12 parts by weight with respect to 100 parts by weight of the resin of the antiglare layer (B). It may be.
  • the surface shape of the antiglare film is further adjusted by adjusting the number of parts by weight of the fine particles with respect to 100 parts by weight of the resin in the antiglare layer forming material. You may.
  • the antiglare layer (B) is coated, for example, by applying a coating liquid containing the resin, the filler and a solvent to at least one surface of the light transmissive substrate (A), as will be described later. It is formed by forming a film and then removing the solvent from the coating.
  • the resin include thermosetting resins and ionizing radiation curable resins that are cured by ultraviolet rays or light.
  • a commercially available thermosetting resin, an ultraviolet curable resin, or the like can also be used.
  • thermosetting resin or the ultraviolet curable resin for example, a curable compound having at least one group of an acrylate group and a methacrylate group that is cured by heat, light (ultraviolet rays, etc.) or an electron beam can be used.
  • Silicone resin, polyester resin, polyether resin, epoxy resin, urethane resin, alkyd resin, spiroacetal resin, polybutadiene resin, polythiol polyene resin, oligomers such as methacrylate and prepolymers of polyfunctional compounds such as polyhydric alcohol can give.
  • One of these may be used alone, or two or more thereof may be used in combination.
  • a reactive diluent having at least one group of an acrylate group and a methacrylate group can be used.
  • the reactive diluent for example, the reactive diluent described in JP-A-2008-88309 can be used, and includes, for example, monofunctional acrylate, monofunctional methacrylate, polyfunctional acrylate, polyfunctional methacrylate and the like.
  • the reactive diluent trifunctional or higher functional acrylates and trifunctional or higher functional methacrylates are preferable. This is because the hardness of the antiglare layer (B) can be made excellent.
  • Examples of the reactive diluent include butanediol glycerin ether diacrylate, isocyanuric acid acrylate, and isocyanuric acid methacrylate. One of these may be used alone, or two or more thereof may be used in combination.
  • the fine particles for forming the antiglare layer (B) impart antiglare property by forming the surface of the antiglare layer (B) to be formed into an uneven shape, and also set the haze value of the antiglare layer (B). Its main function is to control.
  • the haze value of the antiglare layer (B) can be designed by controlling the difference in refractive index between the fine particles and the resin.
  • the fine particles include inorganic fine particles and organic fine particles.
  • the inorganic fine particles are not particularly limited, and for example, silicon oxide particles, titanium oxide particles, aluminum oxide particles, zinc oxide particles, tin oxide particles, calcium carbonate particles, barium sulfate particles, talc particles, kaolin particles, calcium sulfate particles and the like. Can be given.
  • the organic fine particles are not particularly limited, and for example, polymethylmethacrylate resin powder (PMMA particles), silicone resin powder, polystyrene resin powder, polycarbonate resin powder, acrylic styrene resin powder, benzoguanamine resin powder, melamine resin powder, and polyolefin.
  • PMMA particles polymethylmethacrylate resin powder
  • silicone resin powder silicone resin powder
  • polystyrene resin powder polycarbonate resin powder
  • acrylic styrene resin powder acrylic styrene resin powder
  • benzoguanamine resin powder acrylic styrene resin powder
  • melamine resin powder benzoguanamine resin powder
  • polyolefin examples thereof include resin powder, polyester resin powder, polyamide resin powder, polyimide resin powder, and polyfluorinated ethylene resin powder.
  • One type of these inorganic fine particles and organic fine particles may be used alone, or two or more types may be used in combination.
  • the particle size (D) (weight average particle size) of the fine particles is not particularly limited, but is, for example, in the range of 2 to 10 ⁇ m.
  • the weight average particle diameter of the fine particles may be, for example, 4 ⁇ m or more, and may be, for example, 9 ⁇ m or less, or 8 ⁇ m or less.
  • the weight average particle size of the fine particles may be, for example, 4 to 9 ⁇ m or 4 to 8 ⁇ m.
  • the weight average particle size of the fine particles can be measured by, for example, the Coulter counting method. For example, using a particle size distribution measuring device (trade name: Coulter Multisizer, manufactured by Beckman Coulter) using the pore electrical resistance method, an electrolytic solution corresponding to the volume of the fine particles when the fine particles pass through the pores. By measuring the electric resistance, the number and volume of the fine particles are measured, and the weight average particle diameter is calculated.
  • the shape of the fine particles is not particularly limited, and may be, for example, a bead-shaped substantially spherical shape or an irregular shape such as powder, but a substantially spherical shape is preferable, and an aspect ratio is more preferable. It is a substantially spherical fine particle having a ratio of 1.5 or less, and most preferably a spherical fine particle.
  • the content of the fine particles in the antiglare layer (B) is not particularly limited, but can be appropriately set in consideration of, for example, the surface shape of the antiglare layer (B).
  • the relationship between the content of the fine particles (the number of parts by weight with respect to the resin) and the weight average particle diameter and the surface shape of the antiglare layer (B) will be described later.
  • the filler may be fine particles and a thixotropy-imparting agent.
  • the thixotropy-imparting agent may be contained alone, or may further contain the thixotropy-imparting agent in addition to the fine particles. By including the thixotropy-imparting agent, it is possible to easily control the aggregated state of the fine particles.
  • the thixotropy-imparting agent include organic clay, oxidized polyolefin, modified urea and the like.
  • the organic clay is preferably a layered clay that has been organically treated in order to improve the affinity with the resin.
  • the organic clay may be prepared in-house or a commercially available product may be used. Examples of the commercially available products include Lucentite SAN, Lucentite STN, Lucentite SEN, Lucentite SPN, Somasif ME-100, Somasif MAE, Somasif MTE, Somasif MEE, and Somasif MPE (trade names, all of which are Corp Chemical Co., Ltd.).
  • the above-mentioned polyolefin oxide may be prepared in-house or a commercially available product may be used.
  • the commercially available product include Disparon 4200-20 (trade name, manufactured by Kusumoto Kasei Co., Ltd.), Fronon SA300 (trade name, manufactured by Kyoeisha Chemical Co., Ltd.) and the like.
  • the modified urea is a reaction product of an isocyanate monomer or its adduct and an organic amine.
  • the modified urea may be prepared in-house or a commercially available product may be used. Examples of the commercially available product include BYK410 (manufactured by Big Chemie).
  • the thixotropy-imparting agent may be used alone or in combination of two or more.
  • the ratio of the thixotropy-imparting agent in the antiglare layer (B) is preferably in the range of 0.2 to 5 parts by weight, more preferably in the range of 0.4 to 4 parts by weight, based on 100 parts by weight of the resin. is there.
  • the maximum thickness (d') of the antiglare layer (B) is not particularly limited, but is preferably in the range of 3 to 12 ⁇ m.
  • the maximum thickness (d') of the antiglare layer (B) is set to the above range, for example, it is possible to prevent the occurrence of curls in the antiglare film, and there is a problem of deterioration in productivity such as poor transportability. Can be avoided.
  • the weight average particle diameter (D) of the fine particles is preferably in the range of 4 to 9 ⁇ m as described above.
  • the maximum thickness (d') of the antiglare layer (B) is more preferably in the range of 4 to 8 ⁇ m.
  • the ratio D / d'of the thickness (d') of the antiglare layer (B) to the weight average particle diameter (D) of the fine particles is, for example, 1 or less, less than 1, 0.98 or less, 0.96 or less. , 0.93 or less, or 0.90 or less, and may be 0.5 or more, 0.6 or more, 0.7 or more, or 0.8 or more. With such a relationship, it is possible to obtain an antiglare film having more excellent antiglare properties and suppressed glare. For example, when D / d'is large, Ry and ⁇ a tend to be large.
  • the antiglare layer (B) has an agglomerated portion that forms a convex portion on the surface of the antiglare layer (B) by aggregating the filler.
  • the agglomerated portion forming the convex portion a plurality of the fillers may be present in a state of being gathered in one direction in the plane direction of the antiglare layer (B). Thereby, for example, it is possible to prevent the reflection of the fluorescent lamp and the like.
  • the antiglare film of the present invention is not limited to this.
  • the surface shape of the antiglare layer (B) is, for example, a film thickness t obtained by subtracting the maximum height Ry'of the unevenness of the antiglare layer (B) from the maximum thickness d'of the antiglare layer (B). It can be designed by adjusting the weight average particle diameter D of the fine particles. Specifically, for example, when the weight average particle diameter D of the fine particles is relatively large with respect to the film thickness t of the antiglare layer (B), the Ry and ⁇ a tend to be large.
  • the film thickness t can be adjusted, for example, by the coating thickness of the resin.
  • the surface shape of the antiglare layer (B) can also be designed by adjusting the number of parts by weight of the fine particles with respect to 100 parts by weight of the resin in the antiglare layer forming material. For example, when the number of parts by weight of the fine particles is relatively large with respect to the resin, ⁇ a tends to be large.
  • the antiglare film of the present invention is, for example, a resin derived from the light transmissive base material (A) and the resin between the light transmissive base material (A) and the antiglare layer (B). It may have an intermediate layer containing the resin derived from the antiglare layer (B).
  • the thickness of the intermediate layer By controlling the thickness of the intermediate layer, the surface shape of the antiglare layer (B) can be controlled. For example, when the thickness of the intermediate layer is increased, the Ry and ⁇ a are likely to be increased, and when the thickness of the intermediate layer is decreased, the Ry and ⁇ a are likely to be decreased.
  • the mechanism by which the intermediate layer (also referred to as permeation layer or compatible layer) is formed is not particularly limited, but is formed, for example, in the drying step in the method for producing an antiglare film of the present inventor. .. Specifically, for example, in the drying step, the coating liquid for forming the antiglare layer (B) permeates the light-transmitting base material (A) and is derived from the light-transmitting base material (A).
  • the intermediate layer containing the resin and the resin derived from the antiglare layer (B) is formed.
  • the resin contained in the intermediate layer is not particularly limited, and for example, the resin contained in the light transmissive base material (A) and the resin contained in the antiglare layer (B) are simply mixed (compatible).
  • the resin contained in the intermediate layer for example, at least one of the resin contained in the light transmissive base material (A) and the resin contained in the antiglare layer (B) is heated, irradiated with light, or the like. It may be chemically changed by.
  • the thickness ratio R of the intermediate layer defined by the following formula (5) is not particularly limited, but is, for example, 0.10 to 0.80, for example, 0.15 or more, 0.20 or more, 0.25. It may be 0.30 or more, 0.40 or more, or 0.45 or more, for example, 0.75 or less, 0.70 or less, 0.65 or less, 0.60 or less, 0.50 or less, It may be 0.40 or less, 0.45 or less, or 0.30 or less.
  • the thickness ratio R of the intermediate layer is, for example, 0.15 to 0.75, 0.20 to 0.70, 0.25 to 0.65, 0.30 to 0.60, 0.40 to 0.50. , 0.45 to 0.50, 0.15 to 0.45, 0.15 to 0.40, 0.15 to 0.30, or 0.20 to 0.30.
  • the intermediate layer can be confirmed, for example, by observing the cross section of the antiglare film with a transmission electron microscope (TEM), and the thickness can be measured.
  • R [D C / (D C + D B)] (5)
  • D B is the thickness [[mu] m] of the antiglare layer (B)
  • D C is the thickness of the intermediate layer [[mu] m].
  • the surface shape of the antiglare layer (B) can also be designed by controlling the aggregated state of the filler contained in the antiglare layer forming material.
  • the agglomerated state of the filler can be controlled by, for example, the material of the filler (for example, the chemically modified state of the surface of the fine particles, the affinity for the solvent or the resin, etc.), the type of the resin (binder) or the solvent, the combination, and the like.
  • the thixotropy-imparting agent can precisely control the aggregated state of the fine particles.
  • the convex portion may have a gentle shape to prevent the generation of protrusions on the surface of the antiglare layer (B), which is an appearance defect. Not limited to this. Further, in the antiglare film of the present invention, for example, some of the fine particles may be present at positions where the antiglare layer (B) directly or indirectly overlaps in the thickness direction.
  • the other layer is not particularly limited, and may be, for example, a low refractive index layer, an antireflection layer, a high refractive index layer, a hard coat layer, an adhesive layer, or the like, as described above. Further, the other layer may be one layer or a plurality of layers, and in the case of a plurality of layers, one type or a plurality of types may be used. For example, the other layer may be an optical thin film whose thickness and refractive index are strictly controlled, or two or more layers of the optical thin film.
  • the method for producing the antiglare film of the present invention is not particularly limited and may be produced by any method, but it is preferably produced by the method for producing the antiglare film of the present invention.
  • the method for producing the antiglare film can be carried out as follows, for example.
  • the antiglare layer (B) is formed on the light transmissive base material (A) so as to satisfy the mathematical formulas (1) and (2) (antiglare layer (B) forming step).
  • the antiglare layer (B) forming step includes a coating step of applying a coating liquid on the light transmissive substrate (A) and a drying coating of the coated coating liquid. It includes a coating film forming step of forming a film. Further, for example, as described above, the antiglare layer (B) forming step may further include a curing step of curing the coating film.
  • the curing can be performed, for example, after the drying, but is not limited thereto.
  • the curing can be performed by, for example, heating, light irradiation, or the like.
  • the light is not particularly limited, but may be, for example, ultraviolet rays or the like.
  • the light source for light irradiation is not particularly limited, but may be, for example, a high-pressure mercury lamp or the like.
  • the coating liquid contains a resin and a solvent.
  • the coating liquid may be, for example, an antiglare layer forming material (coating liquid) containing the resin, the particles, the thixotropy-imparting agent, and the solvent.
  • the coating liquid preferably exhibits thixotropic properties, and the Ti value defined by the following formula is preferably in the range of 1.3 to 3.5, more preferably 1.4 to 3. It is in the range of 2, and more preferably in the range of 1.5 to 3.
  • Ti value ⁇ 1 / ⁇ 2
  • ⁇ 1 is a viscosity measured under the condition of a shear rate of 20 (1 / s) using a HAAKE Leostress RS6000
  • ⁇ 2 is a viscosity measured using a HAAKE Leostress RS6000 with a shear rate of 200 (1 / s). It is the viscosity measured under the conditions of.
  • the Ti value is 1.3 or more, problems such as appearance defects and deterioration of antiglare and white blur characteristics are unlikely to occur. Further, when the Ti value is 3.5 or less, problems such as the particles not agglomerating and becoming dispersed are unlikely to occur.
  • the coating liquid may or may not contain a thixotropy-imparting agent, but it is preferable to include the thixotropy-imparting agent because it tends to exhibit thixotropy.
  • the coating liquid contains the thixotropy-imparting agent, an effect of preventing the sedimentation of the particles (thixotropy effect) can be obtained.
  • the surface shape of the antiglare film can be freely controlled in a wider range by the shear aggregation of the thixotropy-imparting agent itself.
  • the solvent is not particularly limited, and various solvents can be used, and one type may be used alone or two or more types may be used in combination. In order to obtain the antiglare film of the present invention, the optimum solvent type and solvent ratio may be appropriately selected according to the composition of the resin, the types and contents of the particles and the thixotropy-imparting agent.
  • the solvent is not particularly limited, but for example, alcohols such as methanol, ethanol, isopropyl alcohol (IPA), butanol, t-butyl alcohol (TBA), 2-methoxyethanol; acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclopenta.
  • Ketones such as non-ketones; esters such as methyl acetate, ethyl acetate, butyl acetate; ethers such as diisopropyl ether and propylene glycol monomethyl ether; glycols such as ethylene glycol and propylene glycol; cellosolves such as ethyl cellosolve and butyl cellosolve; Aliphatic hydrocarbons such as hexane, heptane and octane; aromatic hydrocarbons such as benzene, toluene and xylene can be mentioned.
  • the solvent may contain a hydrocarbon solvent and a ketone solvent.
  • the hydrocarbon solvent may be, for example, an aromatic hydrocarbon.
  • the aromatic hydrocarbon may be at least one selected from the group consisting of, for example, toluene, o-xylene, m-xylene, p-xylene, ethylbenzene, and benzene.
  • the ketone solvent may be, for example, at least one selected from the group consisting of cyclopentanone, acetone, methyl ethyl ketone, methyl isobutyl ketone, diethyl ketone, cyclohexanone, isophorone, and acetophenone.
  • the solvent preferably contains, for example, the hydrocarbon solvent (eg toluene) in order to dissolve the thixotropy-imparting agent (eg, thickener).
  • the solvent may be, for example, a solvent in which the hydrocarbon solvent and the ketone solvent are mixed at a mass ratio of 90:10 to 10:90.
  • the mass ratio of the hydrocarbon solvent to the ketone solvent may be, for example, 80:20 to 20:80, 70:30 to 30:70, or 40:60 to 60:40.
  • the hydrocarbon solvent may be toluene and the ketone solvent may be methyl ethyl ketone.
  • the solvent may contain, for example, toluene and further contain at least one selected from the group consisting of ethyl acetate, butyl acetate, IPA, methyl isobutyl ketone, methyl ethyl ketone, methanol, ethanol, and TBA. Good.
  • a good solvent for the acrylic film can be preferably used.
  • a solvent containing a hydrocarbon solvent and a ketone solvent may be used.
  • the hydrocarbon solvent may be, for example, an aromatic hydrocarbon.
  • the aromatic hydrocarbon may be at least one selected from the group consisting of, for example, toluene, o-xylene, m-xylene, p-xylene, ethylbenzene, and benzene.
  • the ketone solvent may be, for example, at least one selected from the group consisting of cyclopentanone, acetone, methyl ethyl ketone, methyl isobutyl ketone, diethyl ketone, cyclohexanone, isophorone, and acetophenone.
  • the solvent may be, for example, a solvent in which the hydrocarbon solvent and the ketone solvent are mixed at a mass ratio of 90:10 to 10:90.
  • the mass ratio of the hydrocarbon solvent to the ketone solvent may be, for example, 80:20 to 20:80, 70:30 to 30:70, or 40:60 to 60:40.
  • the hydrocarbon solvent may be toluene and the ketone solvent may be methyl ethyl ketone.
  • TAC triacetyl cellulose
  • A light-transmitting base material
  • A intermediate layer
  • TAC triacetyl cellulose
  • a good solvent for TAC can be preferably used.
  • the solvent include ethyl acetate, methyl ethyl ketone, cyclopentanone and the like.
  • the thixotropy to the antiglare layer forming material can be satisfactorily exhibited when the thixotropy-imparting agent is contained.
  • organic clay toluene and xylene can be preferably used alone or in combination.
  • polyolefin oxide when polyolefin oxide is used, methyl ethyl ketone, ethyl acetate, and propylene glycol monomethylmeter are preferably used alone. It can be used or used in combination.
  • modified urea is used, butyl acetate and methyl isobutyl ketone can be preferably used alone or in combination.
  • leveling agents can be added to the antiglare layer forming material.
  • a fluorine-based or silicone-based leveling agent can be used for the purpose of preventing uneven coating (uniformizing the coated surface).
  • an antireflection layer (low refractive index layer) or a layer containing an interlayer filler is placed on the antiglare layer (B).
  • the leveling agent can be appropriately selected depending on the case where it is formed in.
  • thixotropy-imparting agent for example, by incorporating the thixotropy-imparting agent, thixotropy can be exhibited in the coating liquid, so that uneven coating is less likely to occur.
  • thixotropy can be exhibited in the coating liquid, so that uneven coating is less likely to occur.
  • it has an advantage that the options of the leveling agent can be expanded.
  • the blending amount of the leveling agent is, for example, 5 parts by weight or less, preferably 0.01 to 5 parts by weight, based on 100 parts by weight of the resin.
  • Pigments, fillers, dispersants, plasticizers, ultraviolet absorbers, surfactants, antifouling agents, antioxidants and the like are added to the antiglare layer forming material as needed, as long as the performance is not impaired. May be done.
  • One type of these additives may be used alone, or two or more types may be used in combination.
  • antiglare layer forming material for example, a conventionally known photopolymerization initiator as described in JP-A-2008-88309 can be used.
  • Examples of the method of applying the coating liquid onto the light transmissive substrate (A) to form a coating film include a fanten coating method, a die coating method, a spin coating method, a spray coating method, and a gravure coating method. , Roll coating method, bar coating method and other coating methods can be used.
  • the coating film is dried and cured to form an antiglare layer (B).
  • the drying may be, for example, natural drying, air drying by blowing wind, heat drying, or a method in which these are combined.
  • the drying temperature of the coating liquid for forming the antiglare layer (B) may be, for example, in the range of 30 to 200 ° C.
  • the drying temperature may be, for example, 40 ° C. or higher, 50 ° C. or higher, 60 ° C. or higher, 70 ° C. or higher, 80 ° C. or higher, 90 ° C. or higher, or 100 ° C. or higher, 190 ° C. or lower, 180 ° C. or lower, 170. It may be °C or less, 160 °C or less, 150 °C or less, 140 °C or less, 135 °C or less, 130 °C or less, 120 °C or less, or 110 °C or less.
  • the drying time is not particularly limited, but may be, for example, 30 seconds or more, 40 seconds or more, 50 seconds or more, or 60 seconds or more, 150 seconds or less, 130 seconds or less, 110 seconds or less, or 90 seconds or less. You may.
  • the means for curing the coating film is not particularly limited, but ultraviolet curing is preferable.
  • the irradiation amount of the energy radiation source is preferably 50 to 500 mJ / cm 2 as the integrated exposure amount at the ultraviolet wavelength of 365 nm.
  • the irradiation amount is 50 mJ / cm 2 or more, curing tends to proceed sufficiently, and the hardness of the antiglare layer (B) formed tends to increase. Further, if it is 500 mJ / cm 2 or less, coloring of the formed antiglare layer (B) can be prevented.
  • a laminate of the light transmissive base material (A) and the antiglare layer (B) can be produced.
  • This laminated body may be used as it is as the antiglare film of the present invention, or may be, for example, the antiglare film of the present invention formed by forming the other layer on the antiglare layer (B).
  • the method for forming the other layer is not particularly limited, and is, for example, the same as or similar to the method for forming a general low refractive index layer, antireflection layer, high refractive index layer, hard coat layer, adhesive layer, or the like. Can be done with.
  • the optical member of the present invention is not particularly limited, but may be, for example, a polarizing plate.
  • the polarizing plate is also not particularly limited, but may include, for example, the antiglare film and the polarizer of the present invention, and may further contain other components. Each component of the polarizing plate may be bonded by, for example, an adhesive or an adhesive.
  • the image display device of the present invention is not particularly limited, and any image display device may be used, and examples thereof include a liquid crystal display device and an organic EL display device.
  • the image display device of the present invention is, for example, an image display device having the antiglare film of the present invention on the surface on the viewing side, and the image display device may have a black matrix pattern.
  • the light transmitting base material (A) side can be attached to an optical member used in an LCD via an adhesive or an adhesive.
  • the surface of the light transmissive base material (A) may be subjected to various surface treatments as described above.
  • the surface shape of the antiglare film can be freely controlled in a wide range. Therefore, the optical properties that can be obtained by laminating the antiglare film with other optical members using an adhesive, an adhesive, or the like cover a wide range corresponding to the surface shape of the antiglare film. ..
  • the optical member examples include a polarizer or a polarizing plate.
  • the polarizing plate generally has a transparent protective film on one side or both sides of the polarizing element.
  • the transparent protective films on the front and back sides may be made of the same material or different materials.
  • Polarizing plates are usually arranged on both sides of the liquid crystal cell. Further, the polarizing plates are arranged so that the absorption axes of the two polarizing plates are substantially orthogonal to each other.
  • the configuration of the polarizing plate on which the antiglare film is laminated is not particularly limited, but for example, the transparent protective film, the polarizer and the transparent protective film are laminated in this order on the antiglare film. Alternatively, the polarizer and the transparent protective film may be laminated in this order on the antiglare film.
  • the image display device of the present invention has the same configuration as the conventional image display device except that the antiglare film is arranged in a specific direction.
  • the antiglare film is arranged in a specific direction.
  • it can be manufactured by appropriately assembling optical members such as a liquid crystal cell and a polarizing plate, and if necessary, each component such as a lighting system (backlight or the like) and incorporating a drive circuit.
  • the image display device of the present invention can be suitably used as, for example, an outdoor public information display.
  • the image display device of the present invention is not limited to this application, and can be used for any other application.
  • Applications include, for example, OA devices such as personal computer monitors, laptop computers, and copy machines, mobile phones, watches, digital cameras, mobile information terminals (PDAs), portable devices such as portable game machines, video cameras, televisions, and microwave ovens.
  • Home electrical equipment such as, back monitor, car navigation system monitor, in-vehicle equipment such as car audio, exhibition equipment such as information monitor for commercial stores, security equipment such as monitoring monitor, nursing monitor, medical monitor Nursing care / medical equipment, etc.
  • the number of copies of the substance is parts by mass (parts by weight) unless otherwise specified.
  • the degree of decompression of each vent in the first extruder and the second extruder was ⁇ 0.095 MPa.
  • a pipe having a diameter of 38 mm and a length of 2 m was used for the connection between the first extruder and the second extruder.
  • a constant flow pressure valve was used as the internal pressure control mechanism for connecting the resin discharge port of the first extruder and the raw material supply port of the second extruder.
  • resin pressure gauges were provided at the outlet of the first extruder, the central portion of the connecting component between the first extruder and the second extruder, and the outlet of the second extruder. This resin pressure gauge can be used for adjusting the pressure in the component connecting the resin discharge port of the first extruder and the raw material supply port of the second extruder, or for determining the extrusion fluctuation.
  • the imidized polymethyl methacrylate resin was produced as follows. First, a polymethyl methacrylate resin (Mw: 105,000) as a raw material resin and a monomethylamine as an imidizing agent were put into the first extruder to produce an imide resin intermediate 1. At this time, the maximum temperature of the extruder was 280 ° C., the screw rotation speed was 55 rpm, the amount of the raw material resin supplied was 150 kg / hour, and the amount of monomethylamine added was 2.0 parts with respect to 100 parts of the raw material resin. Further, the pressure of the monomethylamine press-fitting portion of the first extruder was adjusted to 8 MPa by a constant flow pressure valve installed immediately before the raw material supply port of the second extruder.
  • Mw polymethyl methacrylate resin
  • a monomethylamine as an imidizing agent
  • the imide resin intermediate 1 was transferred into the second extruder, and the remaining imidization reaction reagent and by-products were devolatile at the rear vent and the vacuum vent. Then, a mixed solution of dimethyl carbonate and triethylamine was added as an esterifying agent to prepare an imide resin intermediate 2.
  • the barrel temperature of the second extruder was 260 ° C.
  • the screw rotation speed was 55 rpm
  • the amount of dimethyl carbonate added was 3.2 parts with respect to 100 parts of the raw material resin
  • the amount of triethylamine added with respect to 100 parts of the raw material resin 0.8 copies.
  • esterifying agent was removed by venting, extruded from the strand die, cooled in a water tank, and then pelletized with a pelletizer to obtain the desired imidized polymethyl methacrylate resin.
  • the imidization ratio of this imidized polymethyl methacrylate resin was 3.7%, and the acid value was 0.29 mmol / g.
  • the film was stretched in an atmosphere of 150 ° C. in a direction orthogonal to the transport direction of the film to obtain a base film A ((meth) acrylic resin film) having a thickness of 40 ⁇ m.
  • the light transmittance of the obtained base film A at a wavelength of 380 nm was 8.5%
  • the in-plane retardation Re was 0.4 nm
  • the thickness direction retardation Rth was 0.78 nm.
  • the moisture permeability of the obtained base material film A was 61g / m 2 ⁇ 24hr.
  • the transmittance spectrum was measured in the wavelength range of 200 nm to 800 nm using a spectrophotometer (device name: U-4100) manufactured by Hitachi High-Tech Co., Ltd., and the transmittance in the wavelength of 380 nm was read. ..
  • the phase difference value was measured at a wavelength of 590 nm and 23 ° C. using the product name “KOBRA21-ADH” manufactured by Oji Measuring Instruments Co., Ltd.
  • the water permeability was measured by a method according to JIS K 0208 under the conditions of a temperature of 40 ° C. and a relative humidity of 92%.
  • Pentaerythritol triacrylate (manufactured by Osaka Organic Chemical Industry Co., Ltd., trade name: Viscoat # 300, concentration 80%) 60 parts, 15-functional urethane acrylic oligomer (manufactured by Shin-Nakamura Chemical Co., Ltd., trade name: NK oligo UA-53H, Weight average molecular weight: 2300, concentration 100%) 40 parts, 4-hydroxybutyl acrylate (manufactured by Osaka Organic Chemical Industry Co., Ltd., trade name: 4-HBA, concentration 100%) 20 parts, leveling agent (manufactured by DIC, trade name: GRANDIC PC-4100) 1 part, photopolymerization initiator (BASF Japan, trade name: Irgacure 907), 5 parts, cross-linked acrylic styrene copolymer resin fine particles (Sekisui Kasei Co., Ltd., trade name: SSX1055QXE
  • Coating liquid 2 The fine particles of the crosslinked acrylic styrene copolymer resin of the coating liquid 1 are coated in the same manner as the coating liquid 1 except that the fine particles of the crosslinked acrylic styrene copolymer resin having a weight average particle diameter of 3.0 ⁇ m are changed to 6 parts.
  • Work solution 2 composition for forming an antiglare layer was prepared.
  • Coating liquid 3 The fine particles of the crosslinked acrylic styrene copolymer resin of the coating liquid 1 are coated in the same manner as the coating liquid 1 except that the fine particles of the crosslinked acrylic styrene copolymer resin having a weight average particle diameter of 8.0 ⁇ m are changed to 20 parts.
  • Work solution 3 composition for forming an antiglare layer was prepared.
  • ⁇ Measurement method> [Surface shape measurement] A glass plate (thickness 1.3 mm) manufactured by Matsunami Glass Industry Co., Ltd. is attached to the surface of the antiglare film where the antiglare layer is not formed with an adhesive, and a high-precision fine shape measuring instrument (trade name; surf) is attached. The surface shape of the antiglare layer (B) was measured under the condition of a cutoff value of 0.8 mm using a coder ET4000 (manufactured by Kosaka Laboratory Co., Ltd.), and the maximum height and the average inclination angle were calculated.
  • a coder ET4000 manufactured by Kosaka Laboratory Co., Ltd.
  • the average values obtained by measuring the maximum height and the average inclination angle at arbitrary 10 points were defined as the maximum height Ry and the average inclination angle ⁇ a, respectively.
  • the high-precision fine shape measuring instrument automatically calculates the maximum height Ry and the average inclination angle ⁇ a.
  • the method for measuring and calculating the maximum height Ry and the average inclination angle ⁇ a is based on JIS B 0601 (1994 edition).
  • is inferior in anti-glare property, but it is possible to prevent reflection without any problem.
  • The anti-glare property is inferior to that of ⁇ , but the outline of the fluorescent lamp is slightly blurred.
  • X The outline of the fluorescent lamp is not blurred and is reflected clearly.
  • the maximum thickness of the antiglare layer (B) is measured at the same 10 points as the measurement point of the maximum height Ry by the high-precision fine shape measuring instrument (trade name; surf coder ET4000, manufactured by Kosaka Laboratory Co., Ltd.). did.
  • the average value of the measured values of the maximum thickness at the 10 points was defined as the maximum thickness d of the antiglare layer (B).
  • the value obtained by subtracting the maximum height Ry from the maximum thickness d was defined as the film thickness t of the antiglare layer (B).
  • the high-precision fine shape measuring instrument automatically calculates the maximum thickness d and the film thickness t. Further, in the present embodiment and the comparative example, since the maximum thickness d is substantially equal to the weight average particle diameter of the fine particles, the value obtained by subtracting the maximum height Ry from the weight average particle diameter is approximately defined as the film thickness t. can do.
  • the haze value is measured according to the haze (cloudiness) of JIS K 7136 (2000 version), using a haze meter (manufactured by Murakami Color Technology Research Institute Co., Ltd., product name "HM-150") to prevent glare.
  • the sex film was set alone and measured.
  • Example 1 The coating liquid 1 was applied (coated) on one surface of the base material (light-transmitting base material (A)) of Production Example 1 to form a coating layer (coating layer). Then, the coating layer was heated at 90 ° C. for 1 minute and dried to form a coating film. Then, the coating film was cured by irradiating the coating film with ultraviolet rays having an integrated light intensity of 300 mJ / cm 2 with a high-pressure mercury lamp to form an antiglare layer (B), thereby obtaining a target antiglare film.
  • the maximum height Ry value of the antiglare layer (B) was 4.6 ⁇ m. Further, in this embodiment, the antiglare layer (B) is an antiglare hard coat layer. The same applies to each of the following Examples and Comparative Examples.
  • Example 2 By changing the thickness of the coating film, an antiglare film was obtained in the same manner as in Example 1 except that the maximum height Ry value of the antiglare layer (B) was set to 2.6 ⁇ m.
  • Example 3 By changing the thickness of the coating film, an antiglare film was obtained in the same manner as in Example 1 except that the maximum height Ry value of the antiglare layer (B) was set to 1.8 ⁇ m.
  • Example 1 By changing the thickness of the coating film, an antiglare film was obtained in the same manner as in Example 1 except that the maximum height Ry value of the antiglare layer (B) was set to 1.1 ⁇ m.
  • Example 3 An antiglare film was obtained in the same manner as in Example 1 except that the coating liquid 1 was changed to the coating liquid 2 and the maximum height Ry value of the antiglare layer (B) was 1.5 ⁇ m.
  • Example 4 An antiglare film was obtained in the same manner as in Example 1 except that the coating liquid 1 was changed to the coating liquid 3 and the maximum height Ry value of the antiglare layer (B) was set to 6.9 ⁇ m.
  • Example 5 An antiglare film was obtained in the same manner as in Example 1 except that the coating liquid 1 was changed to the coating liquid 3 and the maximum height Ry value of the antiglare layer (B) was 4.5 ⁇ m.
  • Example 6 An antiglare film was obtained in the same manner as in Example 1 except that the coating liquid 1 was changed to the coating liquid 3 and the maximum height Ry value of the antiglare layer (B) was 2.6 ⁇ m.
  • Example 7 By changing the thickness of the coating film, an antiglare film was obtained in the same manner as in Example 4 except that the maximum height Ry value of the antiglare layer (B) was set to 1.8 ⁇ m.
  • the film thickness t thickness obtained by subtracting the maximum height of the convex portion of the unevenness from the maximum thickness of the antiglare layer (B)) and the maximum convex portion of the uneven portion on the outermost surface in Examples 1 to 7 and Comparative Examples 1 to 7 Table 1 below summarizes the height Ry, the average inclination angle ⁇ a of the unevenness on the outermost surface, the haze value, the reflection test result, and the oblique reflection test result.
  • the present invention it is possible to provide an antiglare film, an optical member, and an image display device in which glare is suppressed.
  • the antiglare film of the present invention for example, strong external light can be scattered and reflection can be suppressed, so that reflection can be suppressed even outdoors. Therefore, the present invention can be suitably used for an image display device such as an outdoor public information display.
  • the present invention is not limited to this application and can be used in a wide range of applications.
  • Anti-glare film 11 Light-transmitting base material (A) 12 Anti-glare layer (B) 12a Resin layer 12b Particles 12c Thixotropy-imparting agent 13 Other layers Ry Maximum height of uneven protrusions on the outermost surface d Maximum thickness other than the light transmissive substrate (A) D Particle diameter of fine particles Ry'Anti-glare layer (B) ) Maximum height of the uneven convex portion d'Maximum thickness of the antiglare layer (B) t Film thickness of the antiglare layer (B) (d'-Ry')

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Liquid Crystal (AREA)
  • Laminated Bodies (AREA)
  • Polarising Elements (AREA)

Abstract

The present invention provides an anti-glare film in which reflection is suppressed. Provided is an anti-glare film 10 in which an anti-glare layer (B) 12 is stacked on a light transmissive substrate (A) 11, the anti-glare film 10 being characterized in that recesses and projections are formed on the outermost surface on the anti-glare layer (B) 12 side of the anti-glare film 10, and the recesses and projections satisfy numerical expressions (1) and (2). (1): Ry ≥ 1.7 (2): θa ≥ 0.7 In numerical expression (1), Ry is the maximum height [µm] of the projections of the recesses and projections, and in numerical expression (2), θa is the average inclination angle [°] of the recesses and projections.

Description

防眩性フィルム、防眩性フィルムの製造方法、光学部材および画像表示装置Anti-glare film, manufacturing method of anti-glare film, optical member and image display device
 本発明は、防眩性フィルム、防眩性フィルムの製造方法、光学部材および画像表示装置に関する。 The present invention relates to an antiglare film, a method for producing an antiglare film, an optical member, and an image display device.
 陰極管表示装置(CRT)、液晶表示装置(LCD)、プラズマディスプレイパネル(PDP)およびエレクトロルミネッセンスディスプレイ(ELD)等の、様々な画像表示装置には、前記画像表示装置表面における蛍光灯や太陽光等の外光の反射や像の映り込みによるコントラスト低下を防止するための防眩(アンチグレア)処理が施され、特に、画像表示装置の大画面化が進むのに伴い、防眩性のフィルムを装着した画像表示装置が増大している。 Various image display devices such as a cathode tube display device (CRT), a liquid crystal display device (LCD), a plasma display panel (PDP), and an electroluminescence display (ELD) include fluorescent lamps and sunlight on the surface of the image display device. Anti-glare treatment is applied to prevent contrast deterioration due to reflection of external light and reflection of images, and in particular, as the screen size of image display devices increases, anti-glare films are used. The number of image display devices installed is increasing.
 防眩性フィルムについて記載された文献は多数あるが、例えば、特許文献1および2等がある。 There are many documents describing antiglare films, for example, Patent Documents 1 and 2.
特開2009-109683号公報JP-A-2009-109683 特開2003-202416号公報Japanese Unexamined Patent Publication No. 2003-202416
 防眩性フィルムは、視認性の観点から、外光の反射による映り込みが抑制されている必要がある。 From the viewpoint of visibility, the antiglare film needs to suppress reflection due to reflection of external light.
 例えば、近年、パブリックインフォメーションディスプレイ(PID)の需要が増えてきている。PIDは、屋外で使用される場合も多い。屋外でディスプレイ(画像表示装置)を使用した場合、屋内での使用よりも、外光の反射による映り込みが起こりやすい。映り込みが起こった場合、映像が視認しづらくなるおそれがある。 For example, in recent years, the demand for public information displays (PIDs) has been increasing. PID is often used outdoors. When a display (image display device) is used outdoors, reflection due to reflection of outside light is more likely to occur than when it is used indoors. If reflection occurs, it may be difficult to see the image.
 そこで、本発明は、映り込みが抑制された防眩性フィルム、防眩性フィルムの製造方法、光学部材および画像表示装置の提供を目的とする。 Therefore, an object of the present invention is to provide an antiglare film in which glare is suppressed, a method for producing the antiglare film, an optical member, and an image display device.
 前記目的を達成するために、本発明の防眩性フィルムは、
 光透過性基材(A)上に防眩層(B)が積層された防眩性フィルムであって、
 前記防眩性フィルムにおける前記防眩層(B)側の最表面に凹凸が形成され、
 前記凹凸が、下記数式(1)および(2)を満たすことを特徴とする。
 
Ry≧1.7               (1)
θa≧0.7               (2)
 
 前記数式(1)において、Ryは、前記凹凸の凸部の最大高さ[μm]であり、
 前記数式(2)において、θaは、前記凹凸の平均傾斜角[°]である。
In order to achieve the above object, the antiglare film of the present invention is used.
An antiglare film in which an antiglare layer (B) is laminated on a light transmissive base material (A).
Unevenness is formed on the outermost surface of the antiglare film on the antiglare layer (B) side.
The unevenness satisfies the following mathematical formulas (1) and (2).

Ry ≧ 1.7 (1)
θa ≧ 0.7 (2)

In the mathematical formula (1), Ry is the maximum height [μm] of the convex portion of the unevenness.
In the mathematical formula (2), θa is the average inclination angle [°] of the unevenness.
 本発明の防眩性フィルムの製造方法は、
 前記光透過性基材(A)上に、前記防眩層(B)を、前記数式(1)および(2)を満たすように形成する防眩層(B)形成工程を含み、
 前記防眩層(B)形成工程が、前記光透過性基材(A)上に塗工液を塗工する塗工工程と、塗工した前記塗工液を乾燥させて塗膜を形成する塗膜形成工程とを含み、
 前記塗工液が、樹脂と、溶媒とを含むことを特徴とする本発明の防眩性フィルムの製造方法である。
The method for producing an antiglare film of the present invention is
The antiglare layer (B) forming step of forming the antiglare layer (B) on the light transmissive base material (A) so as to satisfy the mathematical formulas (1) and (2) is included.
The antiglare layer (B) forming step includes a coating step of applying a coating liquid on the light transmissive base material (A) and drying the coated coating liquid to form a coating film. Including the coating film forming step
The method for producing an antiglare film of the present invention, wherein the coating liquid contains a resin and a solvent.
 本発明の光学部材は、本発明の防眩性フィルムを含む光学部材である。 The optical member of the present invention is an optical member including the antiglare film of the present invention.
 本発明の画像表示装置は、本発明の防眩性フィルム、または本発明の光学部材を含む画像表示装置である。 The image display device of the present invention is an image display device including the antiglare film of the present invention or the optical member of the present invention.
 本発明によれば、映り込みが抑制された防眩性フィルム、光学部材および画像表示装置を提供することができる。 According to the present invention, it is possible to provide an antiglare film, an optical member, and an image display device in which glare is suppressed.
図1は、本発明の防眩性フィルムの一例を示す断面図である。FIG. 1 is a cross-sectional view showing an example of the antiglare film of the present invention. 図2は、本発明の防眩性フィルムの別の一例を示す断面図である。FIG. 2 is a cross-sectional view showing another example of the antiglare film of the present invention. 図3は、防眩性フィルムの一例を示す断面図である。FIG. 3 is a cross-sectional view showing an example of an antiglare film.
 つぎに、本発明について、例を挙げてさらに具体的に説明する。ただし、本発明は、以下の説明により、なんら限定されない。 Next, the present invention will be described in more detail with an example. However, the present invention is not limited by the following description.
 本発明の防眩性フィルムは、例えば、前記防眩層(B)が微粒子を含んでいてもよい。 In the antiglare film of the present invention, for example, the antiglare layer (B) may contain fine particles.
 本発明の防眩性フィルムは、例えば、前記防眩層(B)における、前記光透過性基材(A)と反対側の面上に凹凸が形成され、前記微粒子の重量平均粒子径が、前記防眩層(B)の最大厚みから前記凹凸の凸部の最大高さを差し引いた厚みよりも大きくてもよい。 In the antiglare film of the present invention, for example, irregularities are formed on the surface of the antiglare layer (B) opposite to the light transmissive base material (A), and the weight average particle diameter of the fine particles is increased. It may be larger than the thickness obtained by subtracting the maximum height of the convex portion of the unevenness from the maximum thickness of the antiglare layer (B).
 本発明の防眩性フィルムは、例えば、前記微粒子の重量平均粒子径が、4~9μmの範囲であってもよい。 In the antiglare film of the present invention, for example, the weight average particle diameter of the fine particles may be in the range of 4 to 9 μm.
 本発明の防眩性フィルムは、例えば、前記防眩層(B)における前記光透過性基材(A)と反対側の面上に、さらに、他の層が積層されていてもよい。 In the antiglare film of the present invention, for example, another layer may be further laminated on the surface of the antiglare layer (B) opposite to the light transmissive base material (A).
 本発明の防眩性フィルムは、例えば、光透過性基材(A)上に防眩層(B)および他の層が前記順序で積層された防眩性フィルムであって、前記他の層の最表面に凹凸が形成され、前記凹凸が、下記数式(1)および(2)を満たすことを特徴とする防眩性フィルムであってもよい。
 
Ry≧1.7               (1)
θa≧0.7               (2)
 
 前記数式(1)において、Ryは、前記凹凸の凸部の最大高さ[μm]であり、
 前記数式(2)において、θaは、前記凹凸の平均傾斜角[°]である。
The antiglare film of the present invention is, for example, an antiglare film in which an antiglare layer (B) and another layer are laminated in the above order on a light transmissive base material (A), and the other layer. An antiglare film may be characterized in that irregularities are formed on the outermost surface of the film, and the irregularities satisfy the following mathematical formulas (1) and (2).

Ry ≧ 1.7 (1)
θa ≧ 0.7 (2)

In the mathematical formula (1), Ry is the maximum height [μm] of the convex portion of the unevenness.
In the mathematical formula (2), θa is the average inclination angle [°] of the unevenness.
 本発明の防眩性フィルムの製造方法は、例えば、前記防眩層(B)形成工程が、さらに、前記塗膜を硬化させる硬化工程を含んでいてもよい。 The method for producing an antiglare film of the present invention may include, for example, a step of forming the antiglare layer (B) and a curing step of curing the coating film.
 本発明の防眩性フィルムの製造方法は、例えば、前記塗工液が、微粒子を含んでいてもよい。 In the method for producing an antiglare film of the present invention, for example, the coating liquid may contain fine particles.
 本発明の光学部材は、例えば、偏光板であってもよい。 The optical member of the present invention may be, for example, a polarizing plate.
 本発明の画像表示装置は、例えば、パブリックインフォメーションディスプレイであってもよい。 The image display device of the present invention may be, for example, a public information display.
[1.防眩性フィルム]
 本発明の防眩性フィルムは、前述のとおり、光透過性基材(A)上に防眩層(B)が積層された防眩性フィルムであって、前記防眩性フィルムにおける前記防眩層(B)側の最表面に凹凸が形成され、前記凹凸が、下記数式(1)および(2)を満たすことを特徴とする。
 
Ry≧1.7               (1)
θa≧0.7               (2)
 
 前記数式(1)において、Ryは、前記凹凸の凸部の最大高さ[μm]であり、
 前記数式(2)において、θaは、前記凹凸の平均傾斜角[°]である。
[1. Anti-glare film]
As described above, the antiglare film of the present invention is an antiglare film in which an antiglare layer (B) is laminated on a light transmitting base material (A), and the antiglare film in the antiglare film. An uneven surface is formed on the outermost surface of the layer (B) side, and the unevenness satisfies the following mathematical formulas (1) and (2).

Ry ≧ 1.7 (1)
θa ≧ 0.7 (2)

In the mathematical formula (1), Ry is the maximum height [μm] of the convex portion of the unevenness.
In the mathematical formula (2), θa is the average inclination angle [°] of the unevenness.
 図1の断面図に、本発明の防眩性フィルムの構成の一例を示す。図示のとおり、この防眩性フィルム10は、光透過性基材(A)11の一方の面に、防眩層(B)12が積層されている。防眩層(B)12は、樹脂層12a中に微粒子12bおよびチキソトロピー付与剤12cが含まれている。防眩性フィルム10における防眩層(B)12側の最表面(防眩層(B)12の、光透過性基材(A)11と反対側の表面)には、凹凸が形成されている。前記凹凸の凸部の最大高さRyは、1.7μm以上である。前記凹凸の平均傾斜角θa(図示せず)は、0.7°以上である。また、微粒子12bの粒子径Dは、防眩層(B)の最大厚みdからRyを差し引いた膜厚tよりも大きい。ただし、図1は例示であって、本発明はこれに限定されない。例えば、本発明の防眩性フィルムは、微粒子およびチキソトロピー付与剤を、それぞれ、含んでいてもよいし、含んでいなくてもよい。また、図1では、微粒子12bの粒子径Dが防眩層(B)の膜厚tよりも大きいが、本発明は、これに限定されない。 The cross-sectional view of FIG. 1 shows an example of the configuration of the antiglare film of the present invention. As shown in the figure, in the antiglare film 10, the antiglare layer (B) 12 is laminated on one surface of the light transmissive base material (A) 11. The antiglare layer (B) 12 contains fine particles 12b and a thixotropy-imparting agent 12c in the resin layer 12a. Unevenness is formed on the outermost surface of the antiglare film 10 on the antiglare layer (B) 12 side (the surface of the antiglare layer (B) 12 on the side opposite to the light transmitting base material (A) 11). There is. The maximum height Ry of the convex portion of the unevenness is 1.7 μm or more. The average inclination angle θa (not shown) of the unevenness is 0.7 ° or more. Further, the particle diameter D of the fine particles 12b is larger than the film thickness t obtained by subtracting Ry from the maximum thickness d of the antiglare layer (B). However, FIG. 1 is an example, and the present invention is not limited thereto. For example, the antiglare film of the present invention may or may not contain fine particles and a thixotropy-imparting agent, respectively. Further, in FIG. 1, the particle diameter D of the fine particles 12b is larger than the film thickness t of the antiglare layer (B), but the present invention is not limited to this.
 図3の断面図に、本発明の防眩性フィルムではない防眩性フィルムの構成の一例を示す。この防眩性フィルムは、凹凸の最大高さRyが1.7μm未満であることと、凹凸の平均系射角θa(図示せず)が0.7°未満であること以外は、図1の防眩性フィルムと同様である。 The cross-sectional view of FIG. 3 shows an example of the configuration of an antiglare film that is not the antiglare film of the present invention. This antiglare film is shown in FIG. 1 except that the maximum height Ry of the unevenness is less than 1.7 μm and the average projection angle θa (not shown) of the unevenness is less than 0.7 °. It is the same as the antiglare film.
 また、図2の断面図に、本発明の防眩性フィルムの構成の別の一例を示す。図示のとおり、この防眩性フィルム10は、防眩層(B)12における光透過性基材(A)11と反対側の面上に、さらに、他の層13が積層されている。他の層13は特に限定されず、例えば、低屈折率層、反射防止層、高屈折率層、ハードコート層、粘着剤層等であってもよい。これ以外は、図2の防眩性フィルム10の構成は、図1の防眩性フィルム10と同様である。また、図2において、防眩性フィルム10における防眩層(B)12側の最表面(他の層13の、光透過性基材(A)11と反対側の表面)には、凹凸が形成されている。前記凹凸の凸部の最大高さRyは、1.7μm以上である。前記凹凸の平均傾斜角θa(図示せず)は、0.7°以上である。防眩性フィルム10における、光透過性基材(A)11以外の部分(防眩層(B)12および他の層13)の最大高さは、図においてdで表している。また、防眩層(B)12における、光透過性基材(A)11と反対側(他の層13側)の面上には、凹凸が形成されている。防眩層(B)12の最大厚みd’から防眩層(B)12の前記凹凸の最大高さRy’を差し引いた膜厚は、図においてtで表している。図示のとおり、tは、d’-Ry’に等しいとともに、d-Ryに等しい。微粒子12bの粒子径Dは、図1の場合と同様に、膜厚tよりも大きいが、前述のとおり、本発明はこれに限定されない。また、図1の場合と同様に、防眩層(B)12は、微粒子およびチキソトロピー付与剤を、それぞれ、含んでいてもよいし、含んでいなくてもよい。また、他の層13は、図2では一層であるが、複数の層でもよい。なお、他の層13が存在しない場合は、図1に示したとおり、Ry’はRyに等しく、d’はdに等しい。 Further, the cross-sectional view of FIG. 2 shows another example of the configuration of the antiglare film of the present invention. As shown in the figure, in the antiglare film 10, another layer 13 is further laminated on the surface of the antiglare layer (B) 12 opposite to the light transmissive base material (A) 11. The other layer 13 is not particularly limited, and may be, for example, a low refractive index layer, an antireflection layer, a high refractive index layer, a hard coat layer, an adhesive layer, or the like. Other than this, the configuration of the antiglare film 10 of FIG. 2 is the same as that of the antiglare film 10 of FIG. Further, in FIG. 2, the outermost surface of the antiglare film 10 on the antiglare layer (B) 12 side (the surface of the other layer 13 on the side opposite to the light transmissive base material (A) 11) has irregularities. It is formed. The maximum height Ry of the convex portion of the unevenness is 1.7 μm or more. The average inclination angle θa (not shown) of the unevenness is 0.7 ° or more. The maximum height of the portion of the antiglare film 10 other than the light transmissive base material (A) 11 (antiglare layer (B) 12 and other layers 13) is represented by d in the figure. Further, unevenness is formed on the surface of the antiglare layer (B) 12 on the side opposite to the light transmissive base material (A) 11 (the other layer 13 side). The film thickness obtained by subtracting the maximum height Ry'of the unevenness of the antiglare layer (B) 12 from the maximum thickness d'of the antiglare layer (B) 12 is represented by t in the figure. As shown, t is equal to d'-Ry'and equal to d-Ry. The particle diameter D of the fine particles 12b is larger than the film thickness t as in the case of FIG. 1, but as described above, the present invention is not limited to this. Further, as in the case of FIG. 1, the antiglare layer (B) 12 may or may not contain fine particles and a thixotropy-imparting agent, respectively. The other layer 13 is one layer in FIG. 2, but may be a plurality of layers. When the other layer 13 does not exist, Ry'is equal to Ry and d'is equal to d, as shown in FIG.
 以下、前記光透過性基材(A)、前記防眩層(B)および前記他の層のそれぞれについて、さらに例を挙げて説明する。なお、以下においては、主に、前記防眩層(B)が防眩性ハードコート層である場合について説明するが、本発明はこれには限定されない。 Hereinafter, each of the light transmissive base material (A), the antiglare layer (B), and the other layers will be described with further examples. In the following, the case where the antiglare layer (B) is an antiglare hard coat layer will be mainly described, but the present invention is not limited thereto.
 前記光透過性基材(A)は、特に制限されないが、例えば、透明プラスチックフィルム基材等があげられる。前記透明プラスチックフィルム基材は、特に制限されないが、可視光の光線透過率に優れ(好ましくは光線透過率90%以上)、透明性に優れるもの(好ましくはヘイズ値1%以下のもの)が好ましく、例えば、特開2008-90263号公報に記載の透明プラスチックフィルム基材があげられる。前記透明プラスチックフィルム基材としては、光学的に複屈折の少ないものが好適に用いられる。本発明の防眩性フィルムは、例えば、保護フィルムとして偏光板に使用することもでき、この場合には、前記透明プラスチックフィルム基材としては、トリアセチルセルロース(TAC)、ポリカーボネート、アクリル系ポリマー、環状ないしノルボルネン構造を有するポリオレフィン等から形成されたフィルムが好ましい。また、本発明において、後述するように、前記透明プラスチックフィルム基材は、偏光子自体であってもよい。このような構成であると、TAC等からなる保護層を不要とし偏光板の構造を単純化できるので、偏光板もしくは画像表示装置の製造工程数を減少させ、生産効率の向上が図れる。また、このような構成であれば、偏光板を、より薄層化することができる。なお、前記透明プラスチックフィルム基材が偏光子である場合には、前記防眩層(B)および前記反射防止層(C)が、保護層としての役割を果たすことになる。また、このような構成であれば、防眩性フィルムは、例えば、液晶セル表面に装着される場合、カバープレートとしての機能を兼ねることになる。 The light transmissive base material (A) is not particularly limited, and examples thereof include a transparent plastic film base material. The transparent plastic film base material is not particularly limited, but is preferably one having excellent visible light transmittance (preferably 90% or more) and excellent transparency (preferably one having a haze value of 1% or less). For example, the transparent plastic film base material described in JP-A-2008-90263 can be mentioned. As the transparent plastic film base material, one having less birefringence optically is preferably used. The antiglare film of the present invention can also be used as a protective film for a polarizing plate, and in this case, the transparent plastic film base material includes triacetyl cellulose (TAC), polycarbonate, an acrylic polymer, and the like. A film formed of a polyolefin having a cyclic or norbornene structure is preferable. Further, in the present invention, as will be described later, the transparent plastic film base material may be the polarizer itself. With such a configuration, the protective layer made of TAC or the like is not required and the structure of the polarizing plate can be simplified, so that the number of manufacturing steps of the polarizing plate or the image display device can be reduced and the production efficiency can be improved. Further, with such a configuration, the polarizing plate can be further thinned. When the transparent plastic film base material is a polarizer, the antiglare layer (B) and the antireflection layer (C) serve as protective layers. Further, with such a configuration, the antiglare film also functions as a cover plate when mounted on the surface of a liquid crystal cell, for example.
 本発明において、前記光透過性基材(A)の厚みは、特に制限されないが、強度、取り扱い性などの作業性および薄層性などの点を考慮すると、例えば、10~500μm、20~300μm、または30~200μmの範囲である。前記光透過性基材(A)の屈折率は、特に制限されない。前記屈折率は、例えば、1.30~1.80または1.40~1.70の範囲である。 In the present invention, the thickness of the light-transmitting base material (A) is not particularly limited, but in consideration of workability such as strength and handleability and thin layer property, for example, 10 to 500 μm and 20 to 300 μm. , Or in the range of 30-200 μm. The refractive index of the light transmissive substrate (A) is not particularly limited. The refractive index is, for example, in the range of 1.30 to 1.80 or 1.40 to 1.70.
 本発明の防眩性フィルムは、例えば、前記光透過性基材(A)に含まれる樹脂が、アクリル樹脂を含んでいてもよい。 In the antiglare film of the present invention, for example, the resin contained in the light transmissive base material (A) may contain an acrylic resin.
 本発明の防眩性フィルムは、例えば、前記光透過性基材(A)が、アクリルフィルムであってもよい。 In the antiglare film of the present invention, for example, the light transmissive base material (A) may be an acrylic film.
 また、本発明の防眩性フィルムは、前述のとおり、前記防眩層(B)側の最表面に凹凸が形成され、前記凹凸の最大高さRyが、1.7μm以上である。前記最大高さRyは、例えば、2.0μm以上または2.3μm以上であってもよく、例えば、9μm以下、8μm以下、7μm以下、または6μm以下であってもよい。前記最大高さRyは、例えば、1.7~9μm、1.7~8μm、2.0~7μm、または2.3~6μmであってもよい。Ryは、映り込み抑制の観点からは、大きいことが好ましいが、後述するヘイズ値の観点からは、大きすぎないことが好ましい。本発明において、前記最大高さRyは、JIS B 0601(1994年版)に基づく数値とする。Ryの測定方法は、特に限定されないが、例えば、後述する実施例に記載の測定方法により測定することができる。 Further, in the antiglare film of the present invention, as described above, irregularities are formed on the outermost surface on the antiglare layer (B) side, and the maximum height Ry of the irregularities is 1.7 μm or more. The maximum height Ry may be, for example, 2.0 μm or more or 2.3 μm or more, and may be, for example, 9 μm or less, 8 μm or less, 7 μm or less, or 6 μm or less. The maximum height Ry may be, for example, 1.7 to 9 μm, 1.7 to 8 μm, 2.0 to 7 μm, or 2.3 to 6 μm. Ry is preferably large from the viewpoint of suppressing glare, but is preferably not too large from the viewpoint of the haze value described later. In the present invention, the maximum height Ry is a numerical value based on JIS B 0601 (1994 version). The method for measuring Ry is not particularly limited, but for example, it can be measured by the measuring method described in Examples described later.
 なお、本発明の防眩性フィルムにおいて、「防眩層(B)側の最表面」は、前記防眩層(B)側の最も外側の表面である。具体的には、「防眩層(B)側の最表面」は、前記他の層が存在しない場合(例えば図1)は、前記防眩層(B)における前記光透過性基材(A)と反対側の表面である。また、「防眩層(B)側の最表面」は、前記他の層が存在する場合(例えば図2)は、前記他の層における前記光透過性基材(A)と反対側の最も外側の表面である。 In the antiglare film of the present invention, the "outermost surface on the antiglare layer (B) side" is the outermost surface on the antiglare layer (B) side. Specifically, the "outermost surface on the antiglare layer (B) side" is the light transmissive base material (A) in the antiglare layer (B) when the other layer is not present (for example, FIG. 1). ) And the opposite side. Further, the "outermost surface on the antiglare layer (B) side" is the most on the side opposite to the light-transmitting base material (A) in the other layer when the other layer is present (for example, FIG. 2). The outer surface.
 また、本発明の防眩性フィルムは、前述のとおり、前記防眩層(B)側の最表面の凹凸形状において、平均傾斜角θa(°)が0.7以上である。前記平均傾斜角θaは、例えば、0.7°以上、0.8°以上、0.9°以上、または1.0°以上であってもよく、8°以下、7°以下、6°以下、または5°以下であってもよい。前記平均傾斜角θaは、例えば、0.7~8°、0.7~7°、0.7~6°、0.7~5°、0.8~8°、0.8~7°、0.8~6°、0.8~5°、0.9~8°、0.9~7°、0.9~6°、0.9~5°、1.0~8°、1.0~7°、1.0~6°、または1.0~5°であってもよい。θaは、映り込み抑制の観点からは、大きいことが好ましいが、後述するヘイズ値の観点からは、大きすぎないことが好ましい。ここで、前記平均傾斜角θaは、下記数式(3)で定義される値である。前記平均傾斜角θaは、例えば、後述の実施例に記載の方法により測定することができる。
 
 平均傾斜角θa=tan-1Δa   (3)
Further, as described above, the antiglare film of the present invention has an average inclination angle θa (°) of 0.7 or more in the uneven shape of the outermost surface on the antiglare layer (B) side. The average inclination angle θa may be, for example, 0.7 ° or more, 0.8 ° or more, 0.9 ° or more, or 1.0 ° or more, and is 8 ° or less, 7 ° or less, 6 ° or less. , Or 5 ° or less. The average inclination angle θa is, for example, 0.7 to 8 °, 0.7 to 7 °, 0.7 to 6 °, 0.7 to 5 °, 0.8 to 8 °, 0.8 to 7 °. , 0.8 to 6 °, 0.8 to 5 °, 0.9 to 8 °, 0.9 to 7 °, 0.9 to 6 °, 0.9 to 5 °, 1.0 to 8 °, It may be 1.0 to 7 °, 1.0 to 6 °, or 1.0 to 5 °. θa is preferably large from the viewpoint of suppressing glare, but is preferably not too large from the viewpoint of the haze value described later. Here, the average inclination angle θa is a value defined by the following mathematical formula (3). The average inclination angle θa can be measured, for example, by the method described in Examples described later.

Average inclination angle θa = tan -1 Δa (3)
 前記数式(3)において、Δaは、下記数式(4)に示すように、JIS B 0601(1994年度版)に規定される粗さ曲線の基準長さLにおいて、隣り合う山の頂点と谷の最下点との差(高さh)の合計(h1+h2+h3・・・+hn)を前記基準長さLで割った値である。前記粗さ曲線は、断面曲線から、所定の波長より長い表面うねり成分を位相差補償形高域フィルタで除去した曲線である。また、前記断面曲線とは、対象面に直角な平面で対象面を切断したときに、その切り口に現れる輪郭である。
 
 Δa=(h1+h2+h3・・・+hn)/L   (4)
In the above formula (3), Δa is the peak and valley of the adjacent peaks in the reference length L of the roughness curve defined in JIS B 0601 (1994 version) as shown in the following formula (4). It is a value obtained by dividing the total (h1 + h2 + h3 ... + Hn) of the difference (height h) from the lowest point by the reference length L. The roughness curve is a curve obtained by removing a surface waviness component longer than a predetermined wavelength from a cross-sectional curve with a phase difference compensation type high frequency filter. Further, the cross-sectional curve is a contour that appears at the cut end when the target surface is cut on a plane perpendicular to the target surface.

Δa = (h1 + h2 + h3 ... + hn) / L (4)
 本発明の防眩性フィルムは、例えば、へイズ値が、例えば、4%以上、6%以上、10%以上、または15%以上であってもよく、例えば、50%以下、40%以下、35%以下、または30%未満であってもよい。前記ヘイズ値は、例えば、4~50%、6~40%、10~40%、さらに15~40%、または15~35%であってもよい。前記ヘイズ値とは、JIS K 7136(2000年版)に準じた防眩性フィルム全体のヘイズ値(曇度)である。一般に、防眩性フィルムにおいて、前記ヘイズ値が大きいと、映り込みを抑制しやすい。しかし、前記ヘイズ値が大きすぎると、画像が不鮮明になる、暗所でのコントラストが低下する等、表示特性が低下しやすい。しかし、本発明によれば、Ryおよびθaが前記数式(1)および(2)を満たすことにより、前記ヘイズ値が、例えば、50%以下、40%以下、35%以下、または30%未満と小さくても、映り込みを抑制できるのである。なお、前記ヘイズ値をなるべく小さくするためには、Ryおよびθaの調整以外に、後述する樹脂と微粒子との屈折率差がなるべく小さく(例えば0.001~0.02の範囲に)なるように、前記微粒子と前記樹脂とを選択すればよい。 The antiglare film of the present invention may have, for example, a haze value of 4% or more, 6% or more, 10% or more, or 15% or more, for example, 50% or less, 40% or less, It may be 35% or less, or less than 30%. The haze value may be, for example, 4-50%, 6-40%, 10-40%, further 15-40%, or 15-35%. The haze value is the haze value (cloudiness) of the entire antiglare film according to JIS K 7136 (2000 version). Generally, in an antiglare film, when the haze value is large, it is easy to suppress reflection. However, if the haze value is too large, the display characteristics tend to be deteriorated, such as the image becoming unclear and the contrast in a dark place being lowered. However, according to the present invention, when Ry and θa satisfy the formulas (1) and (2), the haze value becomes, for example, 50% or less, 40% or less, 35% or less, or less than 30%. Even if it is small, the reflection can be suppressed. In order to reduce the haze value as much as possible, in addition to adjusting Ry and θa, the difference in refractive index between the resin and the fine particles, which will be described later, should be as small as possible (for example, in the range of 0.001 to 0.02). , The fine particles and the resin may be selected.
 本発明の防眩性フィルムは、例えば、前記防眩層(B)が、樹脂およびフィラーを含んでいてもよい。前記フィラーが、微粒子およびチキソトロピー付与剤(thixotropic agent)の少なくとも一方を含んでいてもよい。 In the antiglare film of the present invention, for example, the antiglare layer (B) may contain a resin and a filler. The filler may contain at least one of the microparticles and the thixotropic agent.
 本発明の防眩性フィルムは、例えば、前記防眩層(B)に含まれる前記樹脂が、アクリレート樹脂(アクリル樹脂ともいう)を含んでいてもよい。 In the antiglare film of the present invention, for example, the resin contained in the antiglare layer (B) may contain an acrylate resin (also referred to as an acrylic resin).
 本発明の防眩性フィルムは、例えば、前記防眩層(B)に含まれる前記樹脂が、ウレタンアクリレート樹脂を含んでいてもよい。 In the antiglare film of the present invention, for example, the resin contained in the antiglare layer (B) may contain a urethane acrylate resin.
 本発明の防眩性フィルムは、例えば、前記防眩層(B)に含まれる前記樹脂が、硬化型ウレタンアクリレート樹脂および多官能アクリレートの共重合物であってもよい。 In the antiglare film of the present invention, for example, the resin contained in the antiglare layer (B) may be a copolymer of a curable urethane acrylate resin and a polyfunctional acrylate.
 本発明の防眩性フィルムは、例えば、前記防眩層(B)が、樹脂およびフィラーを含む防眩層形成材料を用いて形成されており、前記防眩層(B)が、前記フィラーが凝集することによって、前記防眩層(B)の表面に凸状部を形成する凝集部を有していてもよい。また、前記凸状部を形成する凝集部において、前記フィラーが、前記防眩層(B)の面方向における一方向に複数集まった状態で存在していてもよい。本発明の画像表示装置は、例えば、前記フィラーが複数集まった一方向と、前記ブラックマトリックスパターンの長辺方向とが一致するように、前記本発明の防眩性フィルムが配置されていてもよい。 In the antiglare film of the present invention, for example, the antiglare layer (B) is formed by using an antiglare layer forming material containing a resin and a filler, and the antiglare layer (B) is formed by the filler. It may have an agglomerated portion that forms a convex portion on the surface of the antiglare layer (B) by aggregating. Further, in the agglomerated portion forming the convex portion, a plurality of the fillers may be present in a state of being gathered in one direction in the surface direction of the antiglare layer (B). In the image display device of the present invention, for example, the antiglare film of the present invention may be arranged so that one direction in which a plurality of the fillers are gathered coincides with the long side direction of the black matrix pattern. ..
 本発明の防眩性フィルムにおいて、前記チキソトロピー付与剤は、例えば、有機粘土、酸化ポリオレフィンおよび変性ウレアからなる群から選択される少なくとも一つであってもよい。また、前記チキソトロピー付与剤は、例えば、増粘剤であってもよい。 In the antiglare film of the present invention, the thixotropy-imparting agent may be at least one selected from the group consisting of, for example, organic clay, oxidized polyolefin and modified urea. Further, the thixotropy-imparting agent may be, for example, a thickener.
 本発明の防眩性フィルムにおいて、前記防眩層(B)の前記樹脂100重量(質量)部に対し、例えば、前記チキソトロピー付与剤が0.2~5重量部の範囲で含まれていてもよい。 In the antiglare film of the present invention, for example, even if the thixotropy-imparting agent is contained in the range of 0.2 to 5 parts by weight with respect to 100 parts by weight (mass) of the resin of the antiglare layer (B). Good.
 本発明の防眩性フィルムにおいて、前記防眩層(B)の前記樹脂100重量部に対し、前記微粒子は、例えば、0.2~12重量部または0.5~12重量部の範囲で含まれていてもよい。 In the antiglare film of the present invention, the fine particles are contained in the range of, for example, 0.2 to 12 parts by weight or 0.5 to 12 parts by weight with respect to 100 parts by weight of the resin of the antiglare layer (B). It may be.
 本発明の防眩性フィルムの製造方法において、さらに、前記防眩層形成材料中における前記樹脂100重量部に対する前記微粒子の重量部数を調整することにより、前記防眩性フィルムの表面形状を調整してもよい。 In the method for producing an antiglare film of the present invention, the surface shape of the antiglare film is further adjusted by adjusting the number of parts by weight of the fine particles with respect to 100 parts by weight of the resin in the antiglare layer forming material. You may.
 前記防眩層(B)は、例えば、後述するように、前記樹脂、前記フィラーおよび溶媒を含む塗工液を、前記光透過性基材(A)の少なくとも一方の面に塗工して塗膜を形成し、次いで、前記塗膜から前記溶媒を除去することで形成される。前記樹脂は、例えば、熱硬化性樹脂、紫外線や光で硬化する電離放射線硬化性樹脂があげられる。前記樹脂として、市販の熱硬化型樹脂や紫外線硬化型樹脂等を用いることも可能である。 The antiglare layer (B) is coated, for example, by applying a coating liquid containing the resin, the filler and a solvent to at least one surface of the light transmissive substrate (A), as will be described later. It is formed by forming a film and then removing the solvent from the coating. Examples of the resin include thermosetting resins and ionizing radiation curable resins that are cured by ultraviolet rays or light. As the resin, a commercially available thermosetting resin, an ultraviolet curable resin, or the like can also be used.
 前記熱硬化型樹脂や紫外線硬化型樹脂としては、例えば、熱、光(紫外線等)または電子線等により硬化するアクリレート基およびメタクリレート基の少なくとも一方の基を有する硬化型化合物が使用でき、例えば、シリコーン樹脂、ポリエステル樹脂、ポリエーテル樹脂、エポキシ樹脂、ウレタン樹脂、アルキッド樹脂、スピロアセタール樹脂、ポリブタジエン樹脂、ポリチオールポリエン樹脂、多価アルコール等の多官能化合物のアクリレートやメタクリレート等のオリゴマーまたはプレポリマー等があげられる。これらは、1種類を単独で用いてもよく、2種類以上を併用してもよい。 As the thermosetting resin or the ultraviolet curable resin, for example, a curable compound having at least one group of an acrylate group and a methacrylate group that is cured by heat, light (ultraviolet rays, etc.) or an electron beam can be used. Silicone resin, polyester resin, polyether resin, epoxy resin, urethane resin, alkyd resin, spiroacetal resin, polybutadiene resin, polythiol polyene resin, oligomers such as methacrylate and prepolymers of polyfunctional compounds such as polyhydric alcohol can give. One of these may be used alone, or two or more thereof may be used in combination.
 前記樹脂には、例えば、アクリレート基およびメタクリレート基の少なくとも一方の基を有する反応性希釈剤を用いることもできる。前記反応性希釈剤は、例えば、特開2008-88309号公報に記載の反応性希釈剤を用いることができ、例えば、単官能アクリレート、単官能メタクリレート、多官能アクリレート、多官能メタクリレート等を含む。前記反応性希釈剤としては、3官能以上のアクリレート、3官能以上のメタクリレートが好ましい。これは、防眩層(B)の硬度を、優れたものにできるからである。前記反応性希釈剤としては、例えば、ブタンジオールグリセリンエーテルジアクリレート、イソシアヌル酸のアクリレート、イソシアヌル酸のメタクリレート等もあげられる。これらは、1種類を単独で用いてもよく、2種類以上を併用してもよい。 For the resin, for example, a reactive diluent having at least one group of an acrylate group and a methacrylate group can be used. As the reactive diluent, for example, the reactive diluent described in JP-A-2008-88309 can be used, and includes, for example, monofunctional acrylate, monofunctional methacrylate, polyfunctional acrylate, polyfunctional methacrylate and the like. As the reactive diluent, trifunctional or higher functional acrylates and trifunctional or higher functional methacrylates are preferable. This is because the hardness of the antiglare layer (B) can be made excellent. Examples of the reactive diluent include butanediol glycerin ether diacrylate, isocyanuric acid acrylate, and isocyanuric acid methacrylate. One of these may be used alone, or two or more thereof may be used in combination.
 前記防眩層(B)を形成するための微粒子は、形成される防眩層(B)表面を凹凸形状にして防眩性を付与し、また、前記防眩層(B)のヘイズ値を制御することを主な機能とする。前記防眩層(B)のヘイズ値は、前記微粒子と前記樹脂との屈折率差を制御することで、設計することができる。前記微粒子としては、例えば、無機微粒子と有機微粒子とがある。前記無機微粒子は、特に制限されず、例えば、酸化ケイ素粒子、酸化チタン粒子、酸化アルミニウム粒子、酸化亜鉛粒子、酸化錫粒子、炭酸カルシウム粒子、硫酸バリウム粒子、タルク粒子、カオリン粒子、硫酸カルシウム粒子等があげられる。また、前記有機微粒子は、特に制限されず、例えば、ポリメチルメタクリレート樹脂粉末(PMMA粒子)、シリコーン樹脂粉末、ポリスチレン樹脂粉末、ポリカーボネート樹脂粉末、アクリルスチレン樹脂粉末、ベンゾグアナミン樹脂粉末、メラミン樹脂粉末、ポリオレフィン樹脂粉末、ポリエステル樹脂粉末、ポリアミド樹脂粉末、ポリイミド樹脂粉末、ポリフッ化エチレン樹脂粉末等があげられる。これらの無機微粒子および有機微粒子は、一種類を単独で使用してもよいし、二種類以上を併用してもよい。 The fine particles for forming the antiglare layer (B) impart antiglare property by forming the surface of the antiglare layer (B) to be formed into an uneven shape, and also set the haze value of the antiglare layer (B). Its main function is to control. The haze value of the antiglare layer (B) can be designed by controlling the difference in refractive index between the fine particles and the resin. Examples of the fine particles include inorganic fine particles and organic fine particles. The inorganic fine particles are not particularly limited, and for example, silicon oxide particles, titanium oxide particles, aluminum oxide particles, zinc oxide particles, tin oxide particles, calcium carbonate particles, barium sulfate particles, talc particles, kaolin particles, calcium sulfate particles and the like. Can be given. The organic fine particles are not particularly limited, and for example, polymethylmethacrylate resin powder (PMMA particles), silicone resin powder, polystyrene resin powder, polycarbonate resin powder, acrylic styrene resin powder, benzoguanamine resin powder, melamine resin powder, and polyolefin. Examples thereof include resin powder, polyester resin powder, polyamide resin powder, polyimide resin powder, and polyfluorinated ethylene resin powder. One type of these inorganic fine particles and organic fine particles may be used alone, or two or more types may be used in combination.
 前記微粒子の粒子径(D)(重量平均粒子径)は、特に限定されないが、例えば、2~10μmの範囲内である。前記微粒子の重量平均粒子径を、前記範囲とすることで、例えば、より防眩性に優れ、かつ映り込みが抑制された防眩性フィルムとすることができる。斜め方向からの映り込み抑制の観点からは、前記微粒子の重量平均粒子径が小さすぎないことが好ましい。正面方向からの映り込み抑制の観点からは、前記微粒子の重量平均粒子径が大きすぎないことが好ましい。前記微粒子の重量平均粒子径は、例えば、4μm以上であってもよく、例えば、9μm以下、または8μm以下であってもよい。前記微粒子の重量平均粒子径は、例えば、4~9μm、または4~8μmであってもよい。なお、前記微粒子の重量平均粒子径は、例えば、コールターカウント法により測定できる。例えば、細孔電気抵抗法を利用した粒度分布測定装置(商品名:コールターマルチサイザー、ベックマン・コールター社製)を用い、微粒子が前記細孔を通過する際の微粒子の体積に相当する電解液の電気抵抗を測定することにより、前記微粒子の数と体積を測定し、重量平均粒子径を算出する。 The particle size (D) (weight average particle size) of the fine particles is not particularly limited, but is, for example, in the range of 2 to 10 μm. By setting the weight average particle diameter of the fine particles within the above range, for example, an antiglare film having more excellent antiglare properties and suppressed glare can be obtained. From the viewpoint of suppressing reflection from an oblique direction, it is preferable that the weight average particle diameter of the fine particles is not too small. From the viewpoint of suppressing reflection from the front direction, it is preferable that the weight average particle diameter of the fine particles is not too large. The weight average particle diameter of the fine particles may be, for example, 4 μm or more, and may be, for example, 9 μm or less, or 8 μm or less. The weight average particle size of the fine particles may be, for example, 4 to 9 μm or 4 to 8 μm. The weight average particle size of the fine particles can be measured by, for example, the Coulter counting method. For example, using a particle size distribution measuring device (trade name: Coulter Multisizer, manufactured by Beckman Coulter) using the pore electrical resistance method, an electrolytic solution corresponding to the volume of the fine particles when the fine particles pass through the pores. By measuring the electric resistance, the number and volume of the fine particles are measured, and the weight average particle diameter is calculated.
 前記微粒子の形状は、特に制限されず、例えば、ビーズ状の略球形であってもよく、粉末等の不定形のものであってもよいが、略球形のものが好ましく、より好ましくは、アスペクト比が1.5以下の略球形の微粒子であり、最も好ましくは球形の微粒子である。 The shape of the fine particles is not particularly limited, and may be, for example, a bead-shaped substantially spherical shape or an irregular shape such as powder, but a substantially spherical shape is preferable, and an aspect ratio is more preferable. It is a substantially spherical fine particle having a ratio of 1.5 or less, and most preferably a spherical fine particle.
 前記防眩層(B)における前記微粒子の含有率は、特に限定されないが、例えば、前記防眩層(B)の表面形状を考慮して適宜設定することができる。なお、前記微粒子の含有率(前記樹脂に対する重量部数)および重量平均粒子径と、前記防眩層(B)の表面形状との関係については、後述する。 The content of the fine particles in the antiglare layer (B) is not particularly limited, but can be appropriately set in consideration of, for example, the surface shape of the antiglare layer (B). The relationship between the content of the fine particles (the number of parts by weight with respect to the resin) and the weight average particle diameter and the surface shape of the antiglare layer (B) will be described later.
 前記防眩層(B)において、前記フィラーが、微粒子およびチキソトロピー付与剤であってもよい。前記チキソトロピー付与剤は、単独で含んでいてもよいし、前記微粒子に加え、さらに、前記チキソトロピー付与剤を含んでいてもよい。前記チキソトロピー付与剤を含むことで、前記微粒子の凝集状態の制御を容易に行うことができる。前記チキソトロピー付与剤としては、例えば、有機粘土、酸化ポリオレフィン、変性ウレア等があげられる。 In the antiglare layer (B), the filler may be fine particles and a thixotropy-imparting agent. The thixotropy-imparting agent may be contained alone, or may further contain the thixotropy-imparting agent in addition to the fine particles. By including the thixotropy-imparting agent, it is possible to easily control the aggregated state of the fine particles. Examples of the thixotropy-imparting agent include organic clay, oxidized polyolefin, modified urea and the like.
 前記有機粘土は、前記樹脂との親和性を改善するために、有機化処理した層状粘土であることが好ましい。前記有機粘土は、自家調製してもよいし、市販品を用いてもよい。前記市販品としては、例えば、ルーセンタイトSAN、ルーセンタイトSTN、ルーセンタイトSEN、ルーセンタイトSPN、ソマシフME-100、ソマシフMAE、ソマシフMTE、ソマシフMEE、ソマシフMPE(商品名、いずれもコープケミカル株式会社製);エスベン、エスベンC、エスベンE、エスベンW、エスベンP、エスベンWX、エスベンN-400、エスベンNX、エスベンNX80、エスベンNO12S、エスベンNEZ、エスベンNO12、エスベンNE、エスベンNZ、エスベンNZ70、オルガナイト、オルガナイトD、オルガナイトT(商品名、いずれも株式会社ホージュン製);クニピアF、クニピアG、クニピアG4(商品名、いずれもクニミネ工業株式会社製);チクソゲルVZ、クレイトンHT、クレイトン40(商品名、いずれもロックウッド アディティブズ社製)等があげられる。 The organic clay is preferably a layered clay that has been organically treated in order to improve the affinity with the resin. The organic clay may be prepared in-house or a commercially available product may be used. Examples of the commercially available products include Lucentite SAN, Lucentite STN, Lucentite SEN, Lucentite SPN, Somasif ME-100, Somasif MAE, Somasif MTE, Somasif MEE, and Somasif MPE (trade names, all of which are Corp Chemical Co., Ltd.). ); Esben, Esben C, Esben E, Esben W, Esben P, Esben WX, Esben N-400, Esben NX, Esben NX80, Esben NO12S, Esben NEZ, Esben NO12, Esben NE, Esben NZ, Esben NZ70, Olga Knight, Organite D, Organite T (trade name, all manufactured by Hojun Co., Ltd.); Kunipia F, Kunipia G, Kunipia G4 (trade name, all manufactured by Kunimine Industries, Ltd.); Chixogel VZ, Clayton HT, Clayton 40 (Product names, all manufactured by Rockwood Additives), etc.
 前記酸化ポリオレフィンは、自家調製してもよいし、市販品を用いてもよい。前記市販品としては、例えば、ディスパロン4200-20(商品名、楠本化成株式会社製)、フローノンSA300(商品名、共栄社化学株式会社製)等があげられる。 The above-mentioned polyolefin oxide may be prepared in-house or a commercially available product may be used. Examples of the commercially available product include Disparon 4200-20 (trade name, manufactured by Kusumoto Kasei Co., Ltd.), Fronon SA300 (trade name, manufactured by Kyoeisha Chemical Co., Ltd.) and the like.
 前記変性ウレアは、イソシアネート単量体あるいはそのアダクト体と有機アミンとの反応物である。前記変性ウレアは、自家調製してもよいし、市販品を用いてもよい。前記市販品としては、例えば、BYK410(ビッグケミー社製)等があげられる。 The modified urea is a reaction product of an isocyanate monomer or its adduct and an organic amine. The modified urea may be prepared in-house or a commercially available product may be used. Examples of the commercially available product include BYK410 (manufactured by Big Chemie).
 前記チキソトロピー付与剤は、一種類を単独で使用してもよいし、二種類以上を併用してもよい。 The thixotropy-imparting agent may be used alone or in combination of two or more.
 前記防眩層(B)における前記チキソトロピー付与剤の割合は、前記樹脂100重量部に対し、0.2~5重量部の範囲が好ましく、より好ましくは、0.4~4重量部の範囲である。 The ratio of the thixotropy-imparting agent in the antiglare layer (B) is preferably in the range of 0.2 to 5 parts by weight, more preferably in the range of 0.4 to 4 parts by weight, based on 100 parts by weight of the resin. is there.
 前記防眩層(B)の最大厚み(d’)は、特に制限されないが、3~12μmの範囲内にあることが好ましい。前記防眩層(B)の最大厚み(d’)を、前記範囲とすることで、例えば、防眩性フィルムにおけるカールの発生を防ぐことができ、搬送性不良等の生産性の低下の問題を回避できる。また、前記厚み(d)が前記範囲にある場合、前記微粒子の重量平均粒子径(D)は、前述のように、4~9μmの範囲内にあることが好ましい。前記防眩層(B)の最大厚み(d’)と、前記微粒子の重量平均粒子径(D)とが、前述の組み合わせであることで、防眩性に優れる防眩性フィルムとすることができる。前記防眩層(B)の最大厚み(d’)は、より好ましくは、4~8μmの範囲内である。 The maximum thickness (d') of the antiglare layer (B) is not particularly limited, but is preferably in the range of 3 to 12 μm. By setting the maximum thickness (d') of the antiglare layer (B) to the above range, for example, it is possible to prevent the occurrence of curls in the antiglare film, and there is a problem of deterioration in productivity such as poor transportability. Can be avoided. When the thickness (d) is in the range, the weight average particle diameter (D) of the fine particles is preferably in the range of 4 to 9 μm as described above. By combining the maximum thickness (d') of the antiglare layer (B) and the weight average particle diameter (D) of the fine particles as described above, an antiglare film having excellent antiglare properties can be obtained. it can. The maximum thickness (d') of the antiglare layer (B) is more preferably in the range of 4 to 8 μm.
 前記防眩層(B)の厚み(d’)と前記微粒子の重量平均粒子径(D)との比D/d’は、例えば、1以下、1未満、0.98以下、0.96以下、0.93以下、または0.90以下であってもよく、0.5以上、0.6以上、0.7以上、または0.8以上であってもよい。このような関係にあることにより、より防眩性に優れ、かつ映り込みが抑制された防眩性フィルムとすることができる。例えば、D/d’が大きいと、Ryおよびθaが大きくなりやすい傾向がある。 The ratio D / d'of the thickness (d') of the antiglare layer (B) to the weight average particle diameter (D) of the fine particles is, for example, 1 or less, less than 1, 0.98 or less, 0.96 or less. , 0.93 or less, or 0.90 or less, and may be 0.5 or more, 0.6 or more, 0.7 or more, or 0.8 or more. With such a relationship, it is possible to obtain an antiglare film having more excellent antiglare properties and suppressed glare. For example, when D / d'is large, Ry and θa tend to be large.
 本発明における防眩性フィルムでは、例えば、前記防眩層(B)は、前記フィラーが凝集することによって、前記防眩層(B)の表面に凸状部を形成する凝集部を有しており、前記凸状部を形成する凝集部において、前記フィラーが、前記防眩層(B)の面方向における一方向に、複数集まった状態で存在してもよい。これにより、例えば、蛍光灯の映り込み等を防止することができる。ただし、本発明の防眩性フィルムは、これに限定されない。 In the antiglare film of the present invention, for example, the antiglare layer (B) has an agglomerated portion that forms a convex portion on the surface of the antiglare layer (B) by aggregating the filler. In the agglomerated portion forming the convex portion, a plurality of the fillers may be present in a state of being gathered in one direction in the plane direction of the antiglare layer (B). Thereby, for example, it is possible to prevent the reflection of the fluorescent lamp and the like. However, the antiglare film of the present invention is not limited to this.
 前記防眩層(B)の表面形状は、例えば、前記防眩層(B)の最大厚みd’から防眩層(B)の前記凹凸の最大高さRy’を差し引いた膜厚tと、前記微粒子の重量平均粒子径Dとを調整することで設計できる。具体的には、例えば、前記防眩層(B)の膜厚tに対して前記微粒子の重量平均粒子径Dが相対的に大きいと、前記Ryおよびθaが大きくなりやすい。膜厚tは、例えば、前記樹脂の塗工厚みによって調整できる。また、前記防眩層形成材料中における前記樹脂100重量部に対する前記微粒子の重量部数を調整することによっても、前記防眩層(B)の表面形状を設計できる。例えば、前記微粒子の重量部数が前記樹脂に対し相対的に多いと、θaが大きくなりやすい傾向がある。 The surface shape of the antiglare layer (B) is, for example, a film thickness t obtained by subtracting the maximum height Ry'of the unevenness of the antiglare layer (B) from the maximum thickness d'of the antiglare layer (B). It can be designed by adjusting the weight average particle diameter D of the fine particles. Specifically, for example, when the weight average particle diameter D of the fine particles is relatively large with respect to the film thickness t of the antiglare layer (B), the Ry and θa tend to be large. The film thickness t can be adjusted, for example, by the coating thickness of the resin. The surface shape of the antiglare layer (B) can also be designed by adjusting the number of parts by weight of the fine particles with respect to 100 parts by weight of the resin in the antiglare layer forming material. For example, when the number of parts by weight of the fine particles is relatively large with respect to the resin, θa tends to be large.
 また、本発明の防眩性フィルムは、例えば、前記光透過性基材(A)と前記防眩層(B)との間に、前記光透過性基材(A)由来の樹脂と、前記防眩層(B)由来の樹脂とを含む中間層を有していてもよい。この中間層の厚みの制御により、前記防眩層(B)の表面形状を制御することができる。例えば、前記中間層の厚みを大きくすると、前記Ryおよびθaが大きくなりやすく、前記中間層の厚みを小さくすると、前記Ryおよびθaが小さくなりやすい。 Further, the antiglare film of the present invention is, for example, a resin derived from the light transmissive base material (A) and the resin between the light transmissive base material (A) and the antiglare layer (B). It may have an intermediate layer containing the resin derived from the antiglare layer (B). By controlling the thickness of the intermediate layer, the surface shape of the antiglare layer (B) can be controlled. For example, when the thickness of the intermediate layer is increased, the Ry and θa are likely to be increased, and when the thickness of the intermediate layer is decreased, the Ry and θa are likely to be decreased.
 本発明において、前記中間層(浸透層、相溶層ともいう)が形成されるメカニズムは、特に限定されないが、例えば、本発明者の防眩性フィルムの製造方法における前記乾燥工程で形成される。具体的には、例えば、前記乾燥工程において、前記防眩層(B)形成用の塗工液が前記光透過性基材(A)に浸透し、前記光透過性基材(A)由来の樹脂と、前記防眩層(B)由来の樹脂とを含む前記中間層が形成される。前記中間層に含まれる樹脂は、特に限定されず、例えば、前記光透過性基材(A)に含まれる樹脂と前記防眩層(B)に含まれる樹脂とが単に混合(相溶)されたものでもよい。また、前記中間層に含まれる樹脂は、例えば、前記光透過性基材(A)に含まれる樹脂と前記防眩層(B)に含まれる樹脂との、少なくとも一方が、加熱、光照射等により化学変化していてもよい。 In the present invention, the mechanism by which the intermediate layer (also referred to as permeation layer or compatible layer) is formed is not particularly limited, but is formed, for example, in the drying step in the method for producing an antiglare film of the present inventor. .. Specifically, for example, in the drying step, the coating liquid for forming the antiglare layer (B) permeates the light-transmitting base material (A) and is derived from the light-transmitting base material (A). The intermediate layer containing the resin and the resin derived from the antiglare layer (B) is formed. The resin contained in the intermediate layer is not particularly limited, and for example, the resin contained in the light transmissive base material (A) and the resin contained in the antiglare layer (B) are simply mixed (compatible). It may be a plastic one. Further, as the resin contained in the intermediate layer, for example, at least one of the resin contained in the light transmissive base material (A) and the resin contained in the antiglare layer (B) is heated, irradiated with light, or the like. It may be chemically changed by.
 下記数式(5)で定義される前記中間層の厚み比率Rは、特に限定されないが、例えば、0.10~0.80であり、例えば、0.15以上、0.20以上、0.25以上、0.30以上、0.40以上、または0.45以上であってもよく、例えば、0.75以下、0.70以下、0.65以下、0.60以下、0.50以下、0.40以下、0.45以下、または0.30以下であってもよい。前記中間層の厚み比率Rは、例えば、0.15~0.75、0.20~0.70、0.25~0.65、0.30~0.60、0.40~0.50、0.45~0.50、0.15~0.45、0.15~0.40、0.15~0.30、または0.20~0.30であってもよい。前記中間層は、例えば、防眩性フィルムの断面を、透過型電子顕微鏡(TEM)で観察することで、確認することができ、厚みを測定することができる。
 
R=[D/(D+D)]   (5)
 
前記数式(5)において、Dは、前記防眩性層(B)の厚み[μm]であり、Dは、前記中間層の厚み[μm]である。
The thickness ratio R of the intermediate layer defined by the following formula (5) is not particularly limited, but is, for example, 0.10 to 0.80, for example, 0.15 or more, 0.20 or more, 0.25. It may be 0.30 or more, 0.40 or more, or 0.45 or more, for example, 0.75 or less, 0.70 or less, 0.65 or less, 0.60 or less, 0.50 or less, It may be 0.40 or less, 0.45 or less, or 0.30 or less. The thickness ratio R of the intermediate layer is, for example, 0.15 to 0.75, 0.20 to 0.70, 0.25 to 0.65, 0.30 to 0.60, 0.40 to 0.50. , 0.45 to 0.50, 0.15 to 0.45, 0.15 to 0.40, 0.15 to 0.30, or 0.20 to 0.30. The intermediate layer can be confirmed, for example, by observing the cross section of the antiglare film with a transmission electron microscope (TEM), and the thickness can be measured.

R = [D C / (D C + D B)] (5)

In Equation (5), D B is the thickness [[mu] m] of the antiglare layer (B), D C is the thickness of the intermediate layer [[mu] m].
 また、防眩層(B)の表面形状は、防眩層形成材料に含まれるフィラーの凝集状態を制御することによっても設計することができる。前記フィラーの凝集状態は、例えば、前記フィラーの材質(例えば、微粒子表面の化学的修飾状態、溶媒や樹脂に対する親和性等)、樹脂(バインダー)または溶媒の種類、組合せ等により制御できる。また、前記チキソトロピー付与剤により、前記微粒子の凝集状態を精密にコントロールすることができる。 The surface shape of the antiglare layer (B) can also be designed by controlling the aggregated state of the filler contained in the antiglare layer forming material. The agglomerated state of the filler can be controlled by, for example, the material of the filler (for example, the chemically modified state of the surface of the fine particles, the affinity for the solvent or the resin, etc.), the type of the resin (binder) or the solvent, the combination, and the like. In addition, the thixotropy-imparting agent can precisely control the aggregated state of the fine particles.
 なお、本発明の防眩性フィルムは、前記凸状部が、なだらかな形状となり、外観欠点となる防眩層(B)表面の突起状物の発生を防止できるものであってもよいが、これに限定されない。また、本発明の防眩性フィルムは、例えば、防眩層(B)の厚み方向に直接または間接的に重なる位置で、前記微粒子が多少存在していてもよい。 In the antiglare film of the present invention, the convex portion may have a gentle shape to prevent the generation of protrusions on the surface of the antiglare layer (B), which is an appearance defect. Not limited to this. Further, in the antiglare film of the present invention, for example, some of the fine particles may be present at positions where the antiglare layer (B) directly or indirectly overlaps in the thickness direction.
 前記他の層は、特に限定されず、例えば、前述のとおり、低屈折率層、反射防止層、高屈折率層、ハードコート層、粘着剤層等であってもよい。また、前記他の層は、一層でも複数の層でもよく、複数の場合は、一種類でも複数種類でもよい。例えば、前記他の層は、厚みおよび屈折率を厳密に制御した光学薄膜もしくは前記光学薄膜を二層以上積層したものであってもよい。 The other layer is not particularly limited, and may be, for example, a low refractive index layer, an antireflection layer, a high refractive index layer, a hard coat layer, an adhesive layer, or the like, as described above. Further, the other layer may be one layer or a plurality of layers, and in the case of a plurality of layers, one type or a plurality of types may be used. For example, the other layer may be an optical thin film whose thickness and refractive index are strictly controlled, or two or more layers of the optical thin film.
[2.防眩性フィルムの製造方法]
 本発明の防眩性フィルムの製造方法は、特に制限されず、どのような方法で製造されてもよいが、前記本発明の防眩性フィルムの製造方法により製造することが好ましい。
[2. Manufacturing method of antiglare film]
The method for producing the antiglare film of the present invention is not particularly limited and may be produced by any method, but it is preferably produced by the method for producing the antiglare film of the present invention.
 前記防眩性フィルムの製造方法は、例えば、以下のようにして行うことができる。 The method for producing the antiglare film can be carried out as follows, for example.
 まず、前記光透過性基材(A)上に、前記防眩層(B)を、前記数式(1)および(2)を満たすように形成する(防眩層(B)形成工程)。これにより、前記光透過性基材(A)と前記防眩層(B)との積層体を製造する。前記防眩層(B)形成工程は、前述のとおり、前記光透過性基材(A)上に塗工液を塗工する塗工工程と、塗工した前記塗工液を乾燥させて塗膜を形成する塗膜形成工程とを含む。また、例えば、前述のとおり、前記防眩層(B)形成工程が、さらに、前記塗膜を硬化させる硬化工程を含んでいてもよい。前記硬化は、例えば、前記乾燥の後に行なうことができるが、これに限定されない。前記硬化は、例えば、加熱、光照射等により行うことができる。前記光は、特に限定されないが、例えば、紫外線等であってもよい。前記光照射の光源も特に限定されないが、例えば、高圧水銀ランプ等であってもよい。 First, the antiglare layer (B) is formed on the light transmissive base material (A) so as to satisfy the mathematical formulas (1) and (2) (antiglare layer (B) forming step). As a result, a laminate of the light-transmitting base material (A) and the antiglare layer (B) is produced. As described above, the antiglare layer (B) forming step includes a coating step of applying a coating liquid on the light transmissive substrate (A) and a drying coating of the coated coating liquid. It includes a coating film forming step of forming a film. Further, for example, as described above, the antiglare layer (B) forming step may further include a curing step of curing the coating film. The curing can be performed, for example, after the drying, but is not limited thereto. The curing can be performed by, for example, heating, light irradiation, or the like. The light is not particularly limited, but may be, for example, ultraviolet rays or the like. The light source for light irradiation is not particularly limited, but may be, for example, a high-pressure mercury lamp or the like.
 前記塗工液は、前述のとおり、樹脂と、溶媒とを含む。前記塗工液は、例えば、前記樹脂、前記粒子、前記チキソトロピー付与剤および前記溶媒を含む防眩層形成材料(塗工液)であってもよい。 As described above, the coating liquid contains a resin and a solvent. The coating liquid may be, for example, an antiglare layer forming material (coating liquid) containing the resin, the particles, the thixotropy-imparting agent, and the solvent.
 前記塗工液は、チキソ性を示していることが好ましく、下記式で規定されるTi値が、1.3~3.5の範囲にあることが好ましく、より好ましくは1.4~3.2の範囲であり、さらに好ましくは1.5~3の範囲である。
 
Ti値=β1/β2
 
上記式中、β1はHAAKE社製レオストレスRS6000を用いてずり速度20(1/s)の条件で測定される粘度、β2はHAAKE社製レオストレスRS6000を用いてずり速度200(1/s)の条件で測定される粘度である。
The coating liquid preferably exhibits thixotropic properties, and the Ti value defined by the following formula is preferably in the range of 1.3 to 3.5, more preferably 1.4 to 3. It is in the range of 2, and more preferably in the range of 1.5 to 3.

Ti value = β1 / β2

In the above formula, β1 is a viscosity measured under the condition of a shear rate of 20 (1 / s) using a HAAKE Leostress RS6000, and β2 is a viscosity measured using a HAAKE Leostress RS6000 with a shear rate of 200 (1 / s). It is the viscosity measured under the conditions of.
 Ti値が、1.3以上であれば、外観欠点が生じたり、防眩性、白ボケについての特性が悪化したりする問題が起こりにくい。また、Ti値が、3.5以下であれば、前記粒子が凝集せずに分散状態となる等の問題が起こりにくい。 If the Ti value is 1.3 or more, problems such as appearance defects and deterioration of antiglare and white blur characteristics are unlikely to occur. Further, when the Ti value is 3.5 or less, problems such as the particles not agglomerating and becoming dispersed are unlikely to occur.
 また、前記塗工液は、チキソトロピー付与剤を含んでいても含んでいなくてもよいが、チキソトロピー付与剤を含む方が、チキソ性を示しやすいため好ましい。また、前述のように、前記塗工液が前記チキソトロピー付与剤を含むことで、前記粒子の沈降を防止する効果(チキソトロピー効果)が得られる。さらに、前記チキソトロピー付与剤自体のせん断凝集により、防眩性フィルムの表面形状を、さらに広い範囲で自在に制御することも可能である。 Further, the coating liquid may or may not contain a thixotropy-imparting agent, but it is preferable to include the thixotropy-imparting agent because it tends to exhibit thixotropy. Further, as described above, when the coating liquid contains the thixotropy-imparting agent, an effect of preventing the sedimentation of the particles (thixotropy effect) can be obtained. Further, the surface shape of the antiglare film can be freely controlled in a wider range by the shear aggregation of the thixotropy-imparting agent itself.
 前記溶媒は、特に制限されず、種々の溶媒を使用可能であり、一種類を単独で使用してもよいし、二種類以上を併用してもよい。前記樹脂の組成、前記粒子および前記チキソトロピー付与剤の種類、含有量等に応じて、本発明の防眩性フィルムを得るために、最適な溶媒種類や溶媒比率を適宜選択してもよい。溶媒としては、特に限定されないが、例えば、メタノール、エタノール、イソプロピルアルコール(IPA)、ブタノール、t-ブチルアルコール(TBA)、2-メトキシエタノール等のアルコール類;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロペンタノン等のケトン類;酢酸メチル、酢酸エチル、酢酸ブチル等のエステル類;ジイソプロピルエーテル、プロピレングリコールモノメチルエーテル等のエーテル類;エチレングリコール、プロピレングリコール等のグリコール類;エチルセロソルブ、ブチルセロソルブ等のセロソルブ類;ヘキサン、ヘプタン、オクタン等の脂肪族炭化水素類;ベンゼン、トルエン、キシレン等の芳香族炭化水素類等があげられる。また、例えば、前記溶媒が、炭化水素溶媒と、ケトン溶媒とを含んでいてもよい。前記炭化水素溶媒は、例えば、芳香族炭化水素であってもよい。前記芳香族炭化水素は、例えば、トルエン、o-キシレン、m-キシレン、p-キシレン、エチルベンゼン、およびベンゼンからなる群から選択される少なくとも一つであってもよい。前記ケトン溶媒は、例えば、シクロペンタノン、およびアセトン、メチルエチルケトン、メチルイソブチルケトン、ジエチルケトン、シクロヘキサノン、イソホロン、アセトフェノンからなる群から選択される少なくとも一つであってもよい。前記溶媒は、例えば、チキソトロピー付与剤(例えば増粘剤)を溶解させるために、前記炭化水素溶媒(例えばトルエン)を含むことが好ましい。前記溶媒は、例えば、前記炭化水素溶媒と、前記ケトン溶媒とを、90:10~10:90の質量比で混合した溶媒であってもよい。前記炭化水素溶媒と、前記ケトン溶媒との質量比は、例えば、80:20~20:80、70:30~30:70、または40:60~60:40等であってもよい。この場合において、例えば、前記炭化水素溶媒がトルエンであり、前記ケトン溶媒がメチルエチルケトンであってもよい。また、前記溶媒は、例えば、トルエンを含むとともに、さらに、酢酸エチル、酢酸ブチル、IPA、メチルイソブチルケトン、メチルエチルケトン、メタノール、エタノール、およびTBAからなる群から選択される少なくとも一つを含んでいてもよい。 The solvent is not particularly limited, and various solvents can be used, and one type may be used alone or two or more types may be used in combination. In order to obtain the antiglare film of the present invention, the optimum solvent type and solvent ratio may be appropriately selected according to the composition of the resin, the types and contents of the particles and the thixotropy-imparting agent. The solvent is not particularly limited, but for example, alcohols such as methanol, ethanol, isopropyl alcohol (IPA), butanol, t-butyl alcohol (TBA), 2-methoxyethanol; acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclopenta. Ketones such as non-ketones; esters such as methyl acetate, ethyl acetate, butyl acetate; ethers such as diisopropyl ether and propylene glycol monomethyl ether; glycols such as ethylene glycol and propylene glycol; cellosolves such as ethyl cellosolve and butyl cellosolve; Aliphatic hydrocarbons such as hexane, heptane and octane; aromatic hydrocarbons such as benzene, toluene and xylene can be mentioned. Further, for example, the solvent may contain a hydrocarbon solvent and a ketone solvent. The hydrocarbon solvent may be, for example, an aromatic hydrocarbon. The aromatic hydrocarbon may be at least one selected from the group consisting of, for example, toluene, o-xylene, m-xylene, p-xylene, ethylbenzene, and benzene. The ketone solvent may be, for example, at least one selected from the group consisting of cyclopentanone, acetone, methyl ethyl ketone, methyl isobutyl ketone, diethyl ketone, cyclohexanone, isophorone, and acetophenone. The solvent preferably contains, for example, the hydrocarbon solvent (eg toluene) in order to dissolve the thixotropy-imparting agent (eg, thickener). The solvent may be, for example, a solvent in which the hydrocarbon solvent and the ketone solvent are mixed at a mass ratio of 90:10 to 10:90. The mass ratio of the hydrocarbon solvent to the ketone solvent may be, for example, 80:20 to 20:80, 70:30 to 30:70, or 40:60 to 60:40. In this case, for example, the hydrocarbon solvent may be toluene and the ketone solvent may be methyl ethyl ketone. Further, the solvent may contain, for example, toluene and further contain at least one selected from the group consisting of ethyl acetate, butyl acetate, IPA, methyl isobutyl ketone, methyl ethyl ketone, methanol, ethanol, and TBA. Good.
 光透過性基材(A)として、例えば、アクリルフィルムを採用して中間層(浸透層)を形成する場合は、アクリルフィルム(アクリル樹脂)に対する良溶媒が好適に使用できる。その溶媒としては、例えば、前述のとおり、炭化水素溶媒と、ケトン溶媒とを含む溶媒でもよい。前記炭化水素溶媒は、例えば、芳香族炭化水素であってもよい。前記芳香族炭化水素は、例えば、トルエン、o-キシレン、m-キシレン、p-キシレン、エチルベンゼン、およびベンゼンからなる群から選択される少なくとも一つであってもよい。前記ケトン溶媒は、例えば、シクロペンタノン、アセトン、メチルエチルケトン、メチルイソブチルケトン、ジエチルケトン、シクロヘキサノン、イソホロン、およびアセトフェノンからなる群から選択される少なくとも一つであってもよい。前記溶媒は、例えば、前記炭化水素溶媒と、前記ケトン溶媒とを、90:10~10:90の質量比で混合した溶媒であってもよい。前記炭化水素溶媒と、前記ケトン溶媒との質量比は、例えば、80:20~20:80、70:30~30:70、または40:60~60:40等であってもよい。この場合において、例えば、前記炭化水素溶媒がトルエンであり、前記ケトン溶媒がメチルエチルケトンであってもよい。 When, for example, an acrylic film is used as the light-transmitting base material (A) to form an intermediate layer (permeation layer), a good solvent for the acrylic film (acrylic resin) can be preferably used. As the solvent, for example, as described above, a solvent containing a hydrocarbon solvent and a ketone solvent may be used. The hydrocarbon solvent may be, for example, an aromatic hydrocarbon. The aromatic hydrocarbon may be at least one selected from the group consisting of, for example, toluene, o-xylene, m-xylene, p-xylene, ethylbenzene, and benzene. The ketone solvent may be, for example, at least one selected from the group consisting of cyclopentanone, acetone, methyl ethyl ketone, methyl isobutyl ketone, diethyl ketone, cyclohexanone, isophorone, and acetophenone. The solvent may be, for example, a solvent in which the hydrocarbon solvent and the ketone solvent are mixed at a mass ratio of 90:10 to 10:90. The mass ratio of the hydrocarbon solvent to the ketone solvent may be, for example, 80:20 to 20:80, 70:30 to 30:70, or 40:60 to 60:40. In this case, for example, the hydrocarbon solvent may be toluene and the ketone solvent may be methyl ethyl ketone.
 光透過性基材(A)として、例えば、トリアセチルセルロース(TAC)を採用して中間層(浸透層)を形成する場合は、TACに対する良溶媒が好適に使用できる。その溶媒としては、例えば、酢酸エチル、メチルエチルケトン、シクロペンタノンなどをあげることができる。 When, for example, triacetyl cellulose (TAC) is used as the light-transmitting base material (A) to form an intermediate layer (permeation layer), a good solvent for TAC can be preferably used. Examples of the solvent include ethyl acetate, methyl ethyl ketone, cyclopentanone and the like.
 また、溶媒を適宜選択することによって、チキソトロピー付与剤を含有する場合において防眩層形成材料(塗工液)へのチキソ性を良好に発現させることができる。例えば、有機粘土を用いる場合には、トルエンおよびキシレンを好適に、単独使用または併用することができ、例えば、酸化ポリオレフィンを用いる場合には、メチルエチルケトン、酢酸エチル、プロピレングリコールモノメチルメーテルを好適に、単独使用または併用することができ、例えば、変性ウレアを用いる場合には、酢酸ブチルおよびメチルイソブチルケトンを好適に、単独使用または併用することができる。 Further, by appropriately selecting the solvent, the thixotropy to the antiglare layer forming material (coating liquid) can be satisfactorily exhibited when the thixotropy-imparting agent is contained. For example, when organic clay is used, toluene and xylene can be preferably used alone or in combination. For example, when polyolefin oxide is used, methyl ethyl ketone, ethyl acetate, and propylene glycol monomethylmeter are preferably used alone. It can be used or used in combination. For example, when modified urea is used, butyl acetate and methyl isobutyl ketone can be preferably used alone or in combination.
 前記防眩層形成材料には、各種レベリング剤を添加することができる。前記レベリング剤としては、塗工ムラ防止(塗工面の均一化)を目的に、例えば、フッ素系またはシリコーン系のレベリング剤を用いることができる。本発明では、防眩層(B)表面に防汚性が求められる場合、または、後述のように反射防止層(低屈折率層)や層間充填剤を含む層が防眩層(B)上に形成される場合などに応じて、適宜レベリング剤を選定することができる。本発明では、例えば、前記チキソトロピー付与剤を含ませることで塗工液にチキソ性を発現させることができるため、塗工ムラが発生しにくい。この場合、例えば、前記レベリング剤の選択肢を広げられるという優位点を有している。 Various leveling agents can be added to the antiglare layer forming material. As the leveling agent, for example, a fluorine-based or silicone-based leveling agent can be used for the purpose of preventing uneven coating (uniformizing the coated surface). In the present invention, when antifouling property is required on the surface of the antiglare layer (B), or as described later, an antireflection layer (low refractive index layer) or a layer containing an interlayer filler is placed on the antiglare layer (B). The leveling agent can be appropriately selected depending on the case where it is formed in. In the present invention, for example, by incorporating the thixotropy-imparting agent, thixotropy can be exhibited in the coating liquid, so that uneven coating is less likely to occur. In this case, for example, it has an advantage that the options of the leveling agent can be expanded.
 前記レベリング剤の配合量は、前記樹脂100重量部に対して、例えば、5重量部以下、好ましくは0.01~5重量部の範囲である。 The blending amount of the leveling agent is, for example, 5 parts by weight or less, preferably 0.01 to 5 parts by weight, based on 100 parts by weight of the resin.
 前記防眩層形成材料には、必要に応じて、性能を損なわない範囲で、顔料、充填剤、分散剤、可塑剤、紫外線吸収剤、界面活性剤、防汚剤、酸化防止剤等が添加されてもよい。これらの添加剤は一種類を単独で使用してもよく、また二種類以上併用してもよい。 Pigments, fillers, dispersants, plasticizers, ultraviolet absorbers, surfactants, antifouling agents, antioxidants and the like are added to the antiglare layer forming material as needed, as long as the performance is not impaired. May be done. One type of these additives may be used alone, or two or more types may be used in combination.
 前記防眩層形成材料には、例えば、特開2008-88309号公報に記載されるような、従来公知の光重合開始剤を用いることができる。 As the antiglare layer forming material, for example, a conventionally known photopolymerization initiator as described in JP-A-2008-88309 can be used.
 前記塗工液を前記光透過性基材(A)上に塗工して塗膜を形成する方法としては、例えば、ファンテンコート法、ダイコート法、スピンコート法、スプレーコート法、グラビアコート法、ロールコート法、バーコート法等の塗工法を用いることができる。 Examples of the method of applying the coating liquid onto the light transmissive substrate (A) to form a coating film include a fanten coating method, a die coating method, a spin coating method, a spray coating method, and a gravure coating method. , Roll coating method, bar coating method and other coating methods can be used.
 つぎに、前述のとおり、前記塗膜を乾燥および硬化させ、防眩層(B)を形成する。前記乾燥は、例えば、自然乾燥でもよいし、風を吹きつけての風乾であってもよいし、加熱乾燥であってもよいし、これらを組み合わせた方法であってもよい。 Next, as described above, the coating film is dried and cured to form an antiglare layer (B). The drying may be, for example, natural drying, air drying by blowing wind, heat drying, or a method in which these are combined.
 前記防眩層(B)形成用の塗工液の乾燥温度は、例えば、30~200℃の範囲であってもよい。前記乾燥温度は、例えば、40℃以上、50℃以上、60℃以上、70℃以上、80℃以上、90℃以上、または100℃以上であってもよく、190℃以下、180℃以下、170℃以下、160℃以下、150℃以下、140℃以下、135℃以下、130℃以下、120℃以下、または110℃以下であってもよい。乾燥時間は特に限定されないが、例えば、30秒以上、40秒以上、50秒以上、または60秒以上であってもよく、150秒以下、130秒以下、110秒以下、または90秒以下であってもよい。 The drying temperature of the coating liquid for forming the antiglare layer (B) may be, for example, in the range of 30 to 200 ° C. The drying temperature may be, for example, 40 ° C. or higher, 50 ° C. or higher, 60 ° C. or higher, 70 ° C. or higher, 80 ° C. or higher, 90 ° C. or higher, or 100 ° C. or higher, 190 ° C. or lower, 180 ° C. or lower, 170. It may be ℃ or less, 160 ℃ or less, 150 ℃ or less, 140 ℃ or less, 135 ℃ or less, 130 ℃ or less, 120 ℃ or less, or 110 ℃ or less. The drying time is not particularly limited, but may be, for example, 30 seconds or more, 40 seconds or more, 50 seconds or more, or 60 seconds or more, 150 seconds or less, 130 seconds or less, 110 seconds or less, or 90 seconds or less. You may.
 前記塗膜の硬化手段は、特に制限されないが、紫外線硬化が好ましい。エネルギー線源の照射量は、紫外線波長365nmでの積算露光量として、50~500mJ/cmが好ましい。照射量が、50mJ/cm以上であれば、硬化が十分に進行しやすく、形成される防眩層(B)の硬度が高くなりやすい。また、500mJ/cm以下であれば、形成される防眩層(B)の着色を防止することができる。 The means for curing the coating film is not particularly limited, but ultraviolet curing is preferable. The irradiation amount of the energy radiation source is preferably 50 to 500 mJ / cm 2 as the integrated exposure amount at the ultraviolet wavelength of 365 nm. When the irradiation amount is 50 mJ / cm 2 or more, curing tends to proceed sufficiently, and the hardness of the antiglare layer (B) formed tends to increase. Further, if it is 500 mJ / cm 2 or less, coloring of the formed antiglare layer (B) can be prevented.
 以上のようにして、前記光透過性基材(A)と前記防眩層(B)との積層体を製造できる。この積層体を、そのまま本発明の防眩性フィルムとしてもよいし、例えば、前記防眩層(B)上に前記他の層を形成して本発明の防眩性フィルムともよい。前記他の層の形成方法は特に限定されず、例えば、一般的な低屈折率層、反射防止層、高屈折率層、ハードコート層、粘着剤層等の形成方法と同様またはそれに準じた方法で行うことができる。 As described above, a laminate of the light transmissive base material (A) and the antiglare layer (B) can be produced. This laminated body may be used as it is as the antiglare film of the present invention, or may be, for example, the antiglare film of the present invention formed by forming the other layer on the antiglare layer (B). The method for forming the other layer is not particularly limited, and is, for example, the same as or similar to the method for forming a general low refractive index layer, antireflection layer, high refractive index layer, hard coat layer, adhesive layer, or the like. Can be done with.
[3.光学部材および画像表示装置]
 本発明の光学部材は、特に限定されないが、例えば、偏光板であってもよい。前記偏光板も、特に限定されないが、例えば、本発明の防眩性フィルムおよび偏光子を含んでいてもよいし、さらに、他の構成要素を含んでいてもよい。前記偏光板の各構成要素は、例えば、接着剤または粘着剤等により貼り合わせられていてもよい。
[3. Optical member and image display device]
The optical member of the present invention is not particularly limited, but may be, for example, a polarizing plate. The polarizing plate is also not particularly limited, but may include, for example, the antiglare film and the polarizer of the present invention, and may further contain other components. Each component of the polarizing plate may be bonded by, for example, an adhesive or an adhesive.
 本発明の画像表示装置も特に限定されず、どのような画像表示装置でもよいが、例えば、液晶表示装置、有機EL表示装置等があげられる。 The image display device of the present invention is not particularly limited, and any image display device may be used, and examples thereof include a liquid crystal display device and an organic EL display device.
 本発明の画像表示装置は、例えば、本発明の防眩性フィルムを視認側表面に有する画像表示装置であって、前記画像表示装置がブラックマトリックスパターンを有していてもよい。 The image display device of the present invention is, for example, an image display device having the antiglare film of the present invention on the surface on the viewing side, and the image display device may have a black matrix pattern.
 本発明の防眩性フィルムは、例えば、前記光透過性基材(A)側を、粘着剤や接着剤を介して、LCDに用いられている光学部材に貼り合せることができる。なお、この貼り合わせにあたり、前記光透過性基材(A)表面に対し、前述のような各種の表面処理を行ってもよい。前述のとおり、本発明の防眩性フィルムの製造方法によれば、防眩性フィルムの表面形状を広い範囲で自在に制御可能である。このため、前記防眩性フィルムを、接着剤や粘着剤などを用いて他の光学部材と積層することによって得ることができる光学特性は、前記防眩性フィルムの表面形状に対応した広い範囲にわたる。 In the antiglare film of the present invention, for example, the light transmitting base material (A) side can be attached to an optical member used in an LCD via an adhesive or an adhesive. In addition, in this bonding, the surface of the light transmissive base material (A) may be subjected to various surface treatments as described above. As described above, according to the method for producing an antiglare film of the present invention, the surface shape of the antiglare film can be freely controlled in a wide range. Therefore, the optical properties that can be obtained by laminating the antiglare film with other optical members using an adhesive, an adhesive, or the like cover a wide range corresponding to the surface shape of the antiglare film. ..
 前記光学部材としては、例えば、偏光子または偏光板があげられる。偏光板は、偏光子の片側または両側に透明保護フィルムを有するという構成が一般的である。偏光子の両面に透明保護フィルムを設ける場合は、表裏の透明保護フィルムは、同じ材料であってもよいし、異なる材料であってもよい。偏光板は、通常、液晶セルの両側に配置される。また、偏光板は、2枚の偏光板の吸収軸が互いに略直交するように配置される。 Examples of the optical member include a polarizer or a polarizing plate. The polarizing plate generally has a transparent protective film on one side or both sides of the polarizing element. When the transparent protective films are provided on both sides of the polarizer, the transparent protective films on the front and back sides may be made of the same material or different materials. Polarizing plates are usually arranged on both sides of the liquid crystal cell. Further, the polarizing plates are arranged so that the absorption axes of the two polarizing plates are substantially orthogonal to each other.
 前記防眩性フィルムを積層した偏光板の構成は、特に制限されないが、例えば、前記防眩性フィルムの上に、透明保護フィルム、前記偏光子および前記透明保護フィルムを、この順番で積層した構成でもよいし、前記防眩性フィルム上に、前記偏光子、前記透明保護フィルムを、この順番で積層した構成でもよい。 The configuration of the polarizing plate on which the antiglare film is laminated is not particularly limited, but for example, the transparent protective film, the polarizer and the transparent protective film are laminated in this order on the antiglare film. Alternatively, the polarizer and the transparent protective film may be laminated in this order on the antiglare film.
 本発明の画像表示装置は、前記防眩性フィルムを特定の方向で配置する以外は、従来の画像表示装置と同様の構成である。例えば、LCDの場合、液晶セル、偏光板等の光学部材、および必要に応じ照明システム(バックライト等)等の各構成部品を適宜に組み立てて駆動回路を組み込むこと等により製造できる。 The image display device of the present invention has the same configuration as the conventional image display device except that the antiglare film is arranged in a specific direction. For example, in the case of an LCD, it can be manufactured by appropriately assembling optical members such as a liquid crystal cell and a polarizing plate, and if necessary, each component such as a lighting system (backlight or the like) and incorporating a drive circuit.
 本発明の防眩性フィルムによれば、例えば、強い外光を散乱させ、反射を抑制することができるため、屋外でも映り込みを抑制できる。このため、本発明の画像表示装置は、例えば、屋外用のパブリックインフォメーションディスプレイ等として好適に使用できる。ただし、本発明の画像表示装置は、この用途に限定されず、他の任意の用途に使用可能である。その用途としては、例えば、パソコンモニター、ノートパソコン、コピー機等のOA機器、携帯電話、時計、デジタルカメラ、携帯情報端末(PDA)、携帯ゲーム機等の携帯機器、ビデオカメラ、テレビ、電子レンジ等の家庭用電気機器、バックモニター、カーナビゲーションシステム用モニター、カーオーディオ等の車載用機器、商業店舗用インフォメーション用モニター等の展示機器、監視用モニター等の警備機器、介護用モニター、医療用モニター等の介護・医療機器等があげられる。 According to the antiglare film of the present invention, for example, strong external light can be scattered and reflection can be suppressed, so that reflection can be suppressed even outdoors. Therefore, the image display device of the present invention can be suitably used as, for example, an outdoor public information display. However, the image display device of the present invention is not limited to this application, and can be used for any other application. Applications include, for example, OA devices such as personal computer monitors, laptop computers, and copy machines, mobile phones, watches, digital cameras, mobile information terminals (PDAs), portable devices such as portable game machines, video cameras, televisions, and microwave ovens. Home electrical equipment such as, back monitor, car navigation system monitor, in-vehicle equipment such as car audio, exhibition equipment such as information monitor for commercial stores, security equipment such as monitoring monitor, nursing monitor, medical monitor Nursing care / medical equipment, etc.
 つぎに、本発明の実施例について、比較例と併せて説明する。ただし、本発明は、以下の実施例および比較例により制限されない。 Next, examples of the present invention will be described together with comparative examples. However, the present invention is not limited by the following examples and comparative examples.
 なお、以下の実施例および比較例において、物質の部数は、特に断らない限り、質量部(重量部)である。 In the following examples and comparative examples, the number of copies of the substance is parts by mass (parts by weight) unless otherwise specified.
<製造例1>基材フィルムAの作製
 まず、特開2010-284840号公報の製造例1と同様の方法で、押出反応機を2台直列に並べたタンデム型反応押出機を用いてイミド化ポリメタクリル酸メチル樹脂を製造した。タンデム型反応押出機は、第1押出機、第2押出機共に直径75mm、L/D(押出機の長さLと直径Dの比)が74の同方向噛合型二軸押出機を用いた。第1押出機原料供給口への原料樹脂の供給には、定重量フィーダー(クボタ(株)製)を用いた。第1押出機および第2押出機における各ベントの減圧度は-0.095MPaとした。第1押出機と第2押出機との接続には、直径38mm、長さ2mの配管を用いた。第1押出機の樹脂吐出口と第2押出機の原料供給口とを接続する部品内圧力制御機構には、定流圧力弁を用いた。また、第1押出機出口、第1押出機と第2押出機との接続部品中央部、および第2押出機出口には、それぞれ樹脂圧力計を設けた。この樹脂圧力計は、第1押出機の樹脂の吐出口と第2押出機原料供給口とを接続する部品内の圧力調整のために、または押出変動を見極めるために用いることができる。
<Production Example 1> Preparation of Base Film A First, imidization was performed using a tandem type reaction extruder in which two extruders were arranged in series in the same manner as in Production Example 1 of JP2010-284840. A polymethyl methacrylate resin was produced. As the tandem type reaction extruder, both the first extruder and the second extruder used a same-direction meshing twin-screw extruder having a diameter of 75 mm and an L / D (ratio of the length L of the extruder to the diameter D) of 74. .. A constant weight feeder (manufactured by Kubota Co., Ltd.) was used to supply the raw material resin to the raw material supply port of the first extruder. The degree of decompression of each vent in the first extruder and the second extruder was −0.095 MPa. For the connection between the first extruder and the second extruder, a pipe having a diameter of 38 mm and a length of 2 m was used. A constant flow pressure valve was used as the internal pressure control mechanism for connecting the resin discharge port of the first extruder and the raw material supply port of the second extruder. Further, resin pressure gauges were provided at the outlet of the first extruder, the central portion of the connecting component between the first extruder and the second extruder, and the outlet of the second extruder. This resin pressure gauge can be used for adjusting the pressure in the component connecting the resin discharge port of the first extruder and the raw material supply port of the second extruder, or for determining the extrusion fluctuation.
 前記イミド化ポリメタクリル酸メチル樹脂の製造は、以下のようにして行った。まず、第1押出機に、原料樹脂であるポリメタクリル酸メチル樹脂(Mw:10.5万)と、イミド化剤であるモノメチルアミンとを投入し、イミド樹脂中間体1を製造した。このとき、押出機最高温部温度を280℃、スクリュー回転数は55rpm、原料樹脂供給量は150kg/時間、モノメチルアミンの添加量は原料樹脂100部に対して2.0部とした。また、第2押出機原料供給口直前に設置した定流圧力弁により、第1押出機モノメチルアミン圧入部圧力を8MPaになるように調整した。つぎに、イミド樹脂中間体1を第2押出機内に移行させ、リアベントおよび真空ベントで、残存しているイミド化反応試剤及び副生成物を脱揮した。その後、エステル化剤として炭酸ジメチルとトリエチルアミンとの混合溶液を添加しイミド樹脂中間体2を製造した。このとき、第2押出機の各バレル温度を260℃、スクリュー回転数は55rpm、炭酸ジメチルの添加量は原料樹脂100部に対して3.2部、トリエチルアミンの添加量は原料樹脂100部に対して0.8部とした。さらに、ベントでエステル化剤を除去した後、ストランドダイから押し出し、水槽で冷却した後、ペレタイザーでペレット化することで、目的物であるイミド化ポリメタクリル酸メチル樹脂を得た。このイミド化ポリメタクリル酸メチル樹脂のイミド化率は3.7%、酸価は0.29mmol/gであった。 The imidized polymethyl methacrylate resin was produced as follows. First, a polymethyl methacrylate resin (Mw: 105,000) as a raw material resin and a monomethylamine as an imidizing agent were put into the first extruder to produce an imide resin intermediate 1. At this time, the maximum temperature of the extruder was 280 ° C., the screw rotation speed was 55 rpm, the amount of the raw material resin supplied was 150 kg / hour, and the amount of monomethylamine added was 2.0 parts with respect to 100 parts of the raw material resin. Further, the pressure of the monomethylamine press-fitting portion of the first extruder was adjusted to 8 MPa by a constant flow pressure valve installed immediately before the raw material supply port of the second extruder. Next, the imide resin intermediate 1 was transferred into the second extruder, and the remaining imidization reaction reagent and by-products were devolatile at the rear vent and the vacuum vent. Then, a mixed solution of dimethyl carbonate and triethylamine was added as an esterifying agent to prepare an imide resin intermediate 2. At this time, the barrel temperature of the second extruder was 260 ° C., the screw rotation speed was 55 rpm, the amount of dimethyl carbonate added was 3.2 parts with respect to 100 parts of the raw material resin, and the amount of triethylamine added with respect to 100 parts of the raw material resin. 0.8 copies. Further, the esterifying agent was removed by venting, extruded from the strand die, cooled in a water tank, and then pelletized with a pelletizer to obtain the desired imidized polymethyl methacrylate resin. The imidization ratio of this imidized polymethyl methacrylate resin was 3.7%, and the acid value was 0.29 mmol / g.
 つぎに、前記イミド化ポリメタクリル酸メチル樹脂100重量部およびトリアジン系紫外線吸収剤(アデカ社製、商品名:T-712)0.62重量部を、2軸混練機にて220℃にて混合し、樹脂ペレットを作製した。この樹脂ペレットを、100.5kPa、100℃で12時間乾燥させ、単軸の押出機にてダイス温度270℃でTダイから押出してフィルム状に成形した(厚み160μm)。さらに、前記フィルムを、150℃の雰囲気下で前記フィルムの搬送方向に延伸し、厚み80μmとした。つぎに、前記フィルムを、150℃の雰囲気下で前記フィルムの搬送方向と直交する方向に延伸し、厚み40μmの基材フィルムA((メタ)アクリル系樹脂フィルム)を得た。得られた基材フィルムAの波長380nmの光の透過率は8.5%、面内位相差Reは0.4nm、厚み方向位相差Rthは0.78nmであった。また得られた基材フィルムAの透湿度は、61g/m・24hrであった。なお、光透過率は、日立ハイテク(株)社製の分光光度計(装置名称;U-4100)を用いて波長範囲200nm~800nmで透過率スペクトルを測定し、波長380nmにおける透過率を読み取った。また、位相差値は、王子計測機器(株)製 商品名「KOBRA21-ADH」を用いて、波長590nm、23℃で測定した。透湿度は、JIS K 0208に準じた方法により、温度40℃、相対湿度92%の条件で測定した。 Next, 100 parts by weight of the imidized polymethyl methacrylate resin and 0.62 parts by weight of a triazine-based ultraviolet absorber (trade name: T-712 manufactured by ADEKA CORPORATION) are mixed at 220 ° C. with a twin-screw kneader. Then, resin pellets were prepared. The resin pellets were dried at 100.5 kPa at 100 ° C. for 12 hours and extruded from a T-die at a die temperature of 270 ° C. using a single-screw extruder to form a film (thickness 160 μm). Further, the film was stretched in an atmosphere of 150 ° C. in the transport direction of the film to a thickness of 80 μm. Next, the film was stretched in an atmosphere of 150 ° C. in a direction orthogonal to the transport direction of the film to obtain a base film A ((meth) acrylic resin film) having a thickness of 40 μm. The light transmittance of the obtained base film A at a wavelength of 380 nm was 8.5%, the in-plane retardation Re was 0.4 nm, and the thickness direction retardation Rth was 0.78 nm. The moisture permeability of the obtained base material film A was 61g / m 2 · 24hr. For the light transmittance, the transmittance spectrum was measured in the wavelength range of 200 nm to 800 nm using a spectrophotometer (device name: U-4100) manufactured by Hitachi High-Tech Co., Ltd., and the transmittance in the wavelength of 380 nm was read. .. The phase difference value was measured at a wavelength of 590 nm and 23 ° C. using the product name “KOBRA21-ADH” manufactured by Oji Measuring Instruments Co., Ltd. The water permeability was measured by a method according to JIS K 0208 under the conditions of a temperature of 40 ° C. and a relative humidity of 92%.
[塗工液1]
 ペンタエリスリトールトリアクリレート(PETA)(大阪有機化学工業社製、商品名:ビスコート#300、濃度80%)60部、15官能ウレタンアクリルオリゴマー(新中村化学社製、商品名:NK オリゴ UA-53H、重量平均分子量:2300、濃度100%)40部、4-ヒドロキシブチルアクリレート(大阪有機化学工業社製、商品名:4-HBA、濃度100%)20部、レベリング剤(DIC社製、商品名:GRANDIC PC-4100)1部、光重合開始剤(BASFジャパン社製、商品名:イルガキュア907)5部、架橋アクリルスチレン共重合樹脂の微粒子(積水化成品社製、商品名:SSX1055QXE、重量平均粒子径:5.5μm)8部、増粘剤(チキソトロピー付与剤、クニミネ工業社製、商品名:スメクトンSANをトルエンにて濃度を6%に調整したもの)2.5部を混合し、固形分濃度が40%且つ、トルエンとメチルエチルケトンのトータル量が7:3になるように希釈し、塗工液1(防眩層形成用組成物)を調製した。
[Coating liquid 1]
Pentaerythritol triacrylate (PETA) (manufactured by Osaka Organic Chemical Industry Co., Ltd., trade name: Viscoat # 300, concentration 80%) 60 parts, 15-functional urethane acrylic oligomer (manufactured by Shin-Nakamura Chemical Co., Ltd., trade name: NK oligo UA-53H, Weight average molecular weight: 2300, concentration 100%) 40 parts, 4-hydroxybutyl acrylate (manufactured by Osaka Organic Chemical Industry Co., Ltd., trade name: 4-HBA, concentration 100%) 20 parts, leveling agent (manufactured by DIC, trade name: GRANDIC PC-4100) 1 part, photopolymerization initiator (BASF Japan, trade name: Irgacure 907), 5 parts, cross-linked acrylic styrene copolymer resin fine particles (Sekisui Kasei Co., Ltd., trade name: SSX1055QXE, weight average particles) 8 parts of diameter: 5.5 μm) and 2.5 parts of thickener (thixotropy-imparting agent, manufactured by Kunimine Kogyo Co., Ltd., trade name: Smecton SAN adjusted to 6% concentration with toluene) are mixed, and the solid content The coating solution 1 (composition for forming an antiglare layer) was prepared by diluting the mixture so that the concentration was 40% and the total amount of toluene and methyl ethyl ketone was 7: 3.
[塗工液2]
 塗工液1の架橋アクリルスチレン共重合樹脂の微粒子を、重量平均粒子径が3.0μmである架橋アクリルスチレン共重合樹脂の微粒子6部に変更したこと以外は塗工液1と同様にして塗工液2(防眩層形成用組成物)を調製した。
[Coating liquid 2]
The fine particles of the crosslinked acrylic styrene copolymer resin of the coating liquid 1 are coated in the same manner as the coating liquid 1 except that the fine particles of the crosslinked acrylic styrene copolymer resin having a weight average particle diameter of 3.0 μm are changed to 6 parts. Work solution 2 (composition for forming an antiglare layer) was prepared.
[塗工液3]
 塗工液1の架橋アクリルスチレン共重合樹脂の微粒子を、重量平均粒子径が8.0μmである架橋アクリルスチレン共重合樹脂の微粒子20部に変更したこと以外は塗工液1と同様にして塗工液3(防眩層形成用組成物)を調製した。
[Coating liquid 3]
The fine particles of the crosslinked acrylic styrene copolymer resin of the coating liquid 1 are coated in the same manner as the coating liquid 1 except that the fine particles of the crosslinked acrylic styrene copolymer resin having a weight average particle diameter of 8.0 μm are changed to 20 parts. Work solution 3 (composition for forming an antiglare layer) was prepared.
<測定方法>
[表面形状測定]
 防眩性フィルムの防眩層が形成されていない面に、松浪ガラス工業(株)製のガラス板(厚み1.3mm)を粘着剤で貼り合わせ、高精度微細形状測定器(商品名;サーフコーダET4000、(株)小坂研究所製)を用いて、カットオフ値0.8mmの条件で前記防眩層(B)の表面形状を測定し、最大高さおよび平均傾斜角を算出した。さらに、前記最大高さおよび平均傾斜角を任意の10点で測定した平均値を、それぞれ最大高さRyおよび平均傾斜角θaとした。なお、前記高精度微細形状測定器は、前記最大高さRy、および前記平均傾斜角θaを自動算出する。また、前記最大高さRyおよび前記平均傾斜角θaの測定方法および算出方法は、JIS B 0601(1994年版)に基づくものである。
<Measurement method>
[Surface shape measurement]
A glass plate (thickness 1.3 mm) manufactured by Matsunami Glass Industry Co., Ltd. is attached to the surface of the antiglare film where the antiglare layer is not formed with an adhesive, and a high-precision fine shape measuring instrument (trade name; surf) is attached. The surface shape of the antiglare layer (B) was measured under the condition of a cutoff value of 0.8 mm using a coder ET4000 (manufactured by Kosaka Laboratory Co., Ltd.), and the maximum height and the average inclination angle were calculated. Further, the average values obtained by measuring the maximum height and the average inclination angle at arbitrary 10 points were defined as the maximum height Ry and the average inclination angle θa, respectively. The high-precision fine shape measuring instrument automatically calculates the maximum height Ry and the average inclination angle θa. The method for measuring and calculating the maximum height Ry and the average inclination angle θa is based on JIS B 0601 (1994 edition).
[映り込み]
(1)防眩性フィルムの防眩層が形成されていない面に、黒色アクリル板(三菱レイヨン(株)製、厚み2.0mm)を粘着剤で貼り合わせ、裏面の反射をなくしたサンプルを作製した。
(2)一般的にディスプレイを用いるオフィス環境下(約1000Lx)において、前記サンプルを、正面方向の50cm離れた位置から蛍光灯(三波長光源)で照らし、前記サンプルの防眩性を、正面方向の50cm離れた位置から下記の基準で目視にて判定した。
 
判定基準
◎ :防眩性に優れ、写り込む蛍光灯の輪郭の像を残さない。
○ :◎より防眩性は劣るが、問題なく映り込み防止可能である。
△ :○より防眩性は劣るが、蛍光灯の輪郭がややぼやける。
× :蛍光灯の輪郭がぼやけず、はっきりと映り込んでしまう。
[Reflection]
(1) A black acrylic plate (manufactured by Mitsubishi Rayon Co., Ltd., thickness 2.0 mm) is attached to the surface of the antiglare film where the antiglare layer is not formed with an adhesive to eliminate the reflection on the back surface. Made.
(2) In an office environment where a display is generally used (about 1000 Lx), the sample is illuminated with a fluorescent lamp (three-wavelength light source) from a position 50 cm away in the front direction, and the antiglare property of the sample is adjusted in the front direction. It was visually determined from a position 50 cm away from the above according to the following criteria.

Judgment criteria ◎: Excellent anti-glare property, leaving no image of the outline of the reflected fluorescent lamp.
○: ◎ is inferior in anti-glare property, but it is possible to prevent reflection without any problem.
Δ: The anti-glare property is inferior to that of ○, but the outline of the fluorescent lamp is slightly blurred.
X: The outline of the fluorescent lamp is not blurred and is reflected clearly.
[斜め映り込み]
 蛍光灯を、サンプルの正面から30°傾斜した方向の50cm離れた位置から照射したことと、サンプルの正面から30°傾斜した方向の50cm離れた位置から下記の基準で目視にて判定したこと以外は、映り込み試験と同様にして斜め映り込み試験を行った。
 
判定基準
◎ :防眩性に優れ、写り込む蛍光灯の輪郭の像を残さない。
○ :◎より防眩性は劣るが、問題なく映り込み防止可能である。
△ :○より防眩性は劣るが、蛍光灯の輪郭がややぼやける。
× :蛍光灯の輪郭がぼやけず、はっきりと映り込んでしまう。
[Diagonal reflection]
Except that the fluorescent lamp was irradiated from a position 50 cm away from the front of the sample in a direction inclined by 30 °, and visually judged from a position 50 cm away from the front of the sample in a direction inclined by 30 ° according to the following criteria. Performed an oblique reflection test in the same manner as the reflection test.

Judgment criteria ◎: Excellent anti-glare property, leaving no image of the outline of the reflected fluorescent lamp.
○: ◎ is inferior in anti-glare property, but it is possible to prevent reflection without any problem.
Δ: The anti-glare property is inferior to that of ○, but the outline of the fluorescent lamp is slightly blurred.
X: The outline of the fluorescent lamp is not blurred and is reflected clearly.
[膜厚t]
 前記高精度微細形状測定器(商品名;サーフコーダET4000、(株)小坂研究所製)により、前記最大高さRyの測定点と同じ10点で前記防眩層(B)の最大厚みを測定した。前記10点での最大厚みの測定値の平均値を、前記防眩層(B)の最大厚みdとした。前記最大厚みdから前記最大高さRyを差し引いた数値を前記防眩層(B)の膜厚tとした。なお、前記高精度微細形状測定器は、前記最大厚みd、および前記膜厚tを自動算出する。また、本実施例および比較例において、前記最大厚みdは、微粒子の重量平均粒子径とほぼ等しいため、前記重量平均粒子径から前記最大高さRyを差し引いた数値を近似的に膜厚tとすることができる。
[Film thickness t]
The maximum thickness of the antiglare layer (B) is measured at the same 10 points as the measurement point of the maximum height Ry by the high-precision fine shape measuring instrument (trade name; surf coder ET4000, manufactured by Kosaka Laboratory Co., Ltd.). did. The average value of the measured values of the maximum thickness at the 10 points was defined as the maximum thickness d of the antiglare layer (B). The value obtained by subtracting the maximum height Ry from the maximum thickness d was defined as the film thickness t of the antiglare layer (B). The high-precision fine shape measuring instrument automatically calculates the maximum thickness d and the film thickness t. Further, in the present embodiment and the comparative example, since the maximum thickness d is substantially equal to the weight average particle diameter of the fine particles, the value obtained by subtracting the maximum height Ry from the weight average particle diameter is approximately defined as the film thickness t. can do.
[ヘイズ値]
 へイズ値の測定方法は、JIS K 7136(2000年版)のヘイズ(曇度)に準じ、ヘイズメーター((株)村上色彩技術研究所製、商品名「HM-150」)を用い、防眩性フィルムを単体でセットして測定した。
[Haze value]
The haze value is measured according to the haze (cloudiness) of JIS K 7136 (2000 version), using a haze meter (manufactured by Murakami Color Technology Research Institute Co., Ltd., product name "HM-150") to prevent glare. The sex film was set alone and measured.
[実施例1]
 製造例1の基材(光透過性基材(A))の一方の面に塗工液1を塗布(塗工)し、塗布層(塗工層)を形成した。その後、前記塗工層を90℃で1分間加熱して乾燥させ、塗膜を形成した。その後、前記塗膜に、高圧水銀ランプにて積算光量300mJ/cmの紫外線を照射して硬化させ、防眩層(B)を形成することにより、目的とする防眩性フィルムを得た。防眩層(B)の最大高さRy値は、4.6μmであった。また、本実施例において、防眩層(B)は、防眩性ハードコート層である。以下の各実施例および比較例においても同様である。
[Example 1]
The coating liquid 1 was applied (coated) on one surface of the base material (light-transmitting base material (A)) of Production Example 1 to form a coating layer (coating layer). Then, the coating layer was heated at 90 ° C. for 1 minute and dried to form a coating film. Then, the coating film was cured by irradiating the coating film with ultraviolet rays having an integrated light intensity of 300 mJ / cm 2 with a high-pressure mercury lamp to form an antiglare layer (B), thereby obtaining a target antiglare film. The maximum height Ry value of the antiglare layer (B) was 4.6 μm. Further, in this embodiment, the antiglare layer (B) is an antiglare hard coat layer. The same applies to each of the following Examples and Comparative Examples.
[実施例2]
 塗膜の厚みを変更することにより、防眩層(B)の最大高さRy値を2.6μmとしたこと以外は実施例1と同様にして防眩性フィルムを得た。
[Example 2]
By changing the thickness of the coating film, an antiglare film was obtained in the same manner as in Example 1 except that the maximum height Ry value of the antiglare layer (B) was set to 2.6 μm.
[実施例3]
 塗膜の厚みを変更することにより、防眩層(B)の最大高さRy値を1.8μmとしたこと以外は実施例1と同様にして防眩性フィルムを得た。
[Example 3]
By changing the thickness of the coating film, an antiglare film was obtained in the same manner as in Example 1 except that the maximum height Ry value of the antiglare layer (B) was set to 1.8 μm.
[比較例1]
 塗膜の厚みを変更することにより、防眩層(B)の最大高さRy値を1.1μmとしたこと以外は実施例1と同様にして防眩性フィルムを得た。
[Comparative Example 1]
By changing the thickness of the coating film, an antiglare film was obtained in the same manner as in Example 1 except that the maximum height Ry value of the antiglare layer (B) was set to 1.1 μm.
[比較例2]
 実施例2の防眩性フィルムにおける防眩層(A)上に、塗工液1から架橋アクリルスチレン共重合樹脂の微粒子(積水化成品社製、商品名:SSX1055QXE、平均粒径:5.5μm)8部を抜いた塗工液を再度上塗りした。その後、前記上塗りした層を、実施例1と同様の方法により乾燥し硬化させ、防眩層を形成した。この防眩層の最大高さRy値は、0.64μmであった。
[Comparative Example 2]
Fine particles of crosslinked acrylic styrene copolymer resin (manufactured by Sekisui Plastics Co., Ltd., trade name: SSX1055QXE, average particle size: 5.5 μm) from the coating liquid 1 on the antiglare layer (A) of the antiglare film of Example 2. ) The coating liquid from which 8 parts were removed was overcoated again. Then, the overcoated layer was dried and cured by the same method as in Example 1 to form an antiglare layer. The maximum height Ry value of this antiglare layer was 0.64 μm.
[比較例3]
 塗工液1を塗工液2に変更し、防眩層(B)の最大高さRy値を1.5μmとしたこと以外は実施例1と同様にして防眩性フィルムを得た。
[Comparative Example 3]
An antiglare film was obtained in the same manner as in Example 1 except that the coating liquid 1 was changed to the coating liquid 2 and the maximum height Ry value of the antiglare layer (B) was 1.5 μm.
[比較例4]
 塗膜の厚みを変更することにより、防眩層(B)の最大高さRy値を1.1μmとしたこと以外は比較例3と同様にして防眩性フィルムを得た。
[Comparative Example 4]
By changing the thickness of the coating film, an antiglare film was obtained in the same manner as in Comparative Example 3 except that the maximum height Ry value of the antiglare layer (B) was set to 1.1 μm.
[比較例5]
 塗膜の厚みを変更することにより、防眩層(B)の最大高さRy値を2.4μmとしたこと以外は比較例3と同様にして防眩性フィルムを得た。つぎに、この防眩性フィルムにおける防眩層(A)上に、塗工液1から架橋アクリルスチレン共重合樹脂の微粒子(積水化成品社製、商品名:SSX1055QXE、平均粒径:5.5μm)8部を抜いた塗工液を再度上塗りした。その後、前記上塗りした層を、実施例1と同様の方法により乾燥し硬化させ、防眩層を形成した。この防眩層の最大高さRy値は、0.55μmであった。
[Comparative Example 5]
By changing the thickness of the coating film, an antiglare film was obtained in the same manner as in Comparative Example 3 except that the maximum height Ry value of the antiglare layer (B) was set to 2.4 μm. Next, on the antiglare layer (A) of this antiglare film, fine particles of crosslinked acrylic styrene copolymer resin from the coating liquid 1 (manufactured by Sekisui Plastics Co., Ltd., trade name: SSX1055QXE, average particle size: 5.5 μm). ) The coating liquid from which 8 parts were removed was overcoated again. Then, the overcoated layer was dried and cured by the same method as in Example 1 to form an antiglare layer. The maximum height Ry value of this antiglare layer was 0.55 μm.
[実施例4]
 塗工液1を塗工液3に変更し、防眩層(B)の最大高さRy値を6.9μmとしたこと以外は実施例1と同様にして防眩性フィルムを得た。
[Example 4]
An antiglare film was obtained in the same manner as in Example 1 except that the coating liquid 1 was changed to the coating liquid 3 and the maximum height Ry value of the antiglare layer (B) was set to 6.9 μm.
[実施例5]
 塗工液1を塗工液3に変更し、防眩層(B)の最大高さRy値を4.5μmとしたこと以外は実施例1と同様にして防眩性フィルムを得た。
[Example 5]
An antiglare film was obtained in the same manner as in Example 1 except that the coating liquid 1 was changed to the coating liquid 3 and the maximum height Ry value of the antiglare layer (B) was 4.5 μm.
[実施例6]
 塗工液1を塗工液3に変更し、防眩層(B)の最大高さRy値を2.6μmとしたこと以外は実施例1と同様にして防眩性フィルムを得た。
[Example 6]
An antiglare film was obtained in the same manner as in Example 1 except that the coating liquid 1 was changed to the coating liquid 3 and the maximum height Ry value of the antiglare layer (B) was 2.6 μm.
[実施例7]
 塗膜の厚みを変更することにより、防眩層(B)の最大高さRy値を1.8μmとしたこと以外は実施例4と同様にして防眩性フィルムを得た。
[Example 7]
By changing the thickness of the coating film, an antiglare film was obtained in the same manner as in Example 4 except that the maximum height Ry value of the antiglare layer (B) was set to 1.8 μm.
[比較例6]
 塗膜の厚みを変更することにより、防眩層(B)の最大高さRy値を1.2μmとしたこと以外は実施例4と同様にして防眩性フィルムを得た。
[Comparative Example 6]
By changing the thickness of the coating film, an antiglare film was obtained in the same manner as in Example 4 except that the maximum height Ry value of the antiglare layer (B) was set to 1.2 μm.
[比較例7]
 実施例6の防眩性フィルムにおける防眩層(A)上に、塗工液1から架橋アクリルスチレン共重合樹脂の微粒子(積水化成品社製、商品名:SSX1055QXE、平均粒径:5.5μm)8部を抜いた塗工液を再度上塗りした。その後、前記上塗りした層を、実施例1と同様の方法により乾燥し硬化させ、防眩層を形成した。この防眩層の最大高さRy値は、0.77μmであった。
[Comparative Example 7]
Fine particles of crosslinked acrylic styrene copolymer resin (manufactured by Sekisui Plastics Co., Ltd., trade name: SSX1055QXE, average particle size: 5.5 μm) from the coating liquid 1 on the antiglare layer (A) of the antiglare film of Example 6. ) The coating liquid from which 8 parts were removed was overcoated again. Then, the overcoated layer was dried and cured by the same method as in Example 1 to form an antiglare layer. The maximum height Ry value of this antiglare layer was 0.77 μm.
 前記実施例1~7および比較例1~7における膜厚t(防眩層(B)の最大厚みから凹凸の凸部の最大高さを差し引いた厚み)、最表面の凹凸の凸部の最大高さRy、最表面の凹凸の平均傾斜角θa、ヘイズ値、映り込み試験結果および斜め映り込み試験結果を、下記表1にまとめて示す。 The film thickness t (thickness obtained by subtracting the maximum height of the convex portion of the unevenness from the maximum thickness of the antiglare layer (B)) and the maximum convex portion of the uneven portion on the outermost surface in Examples 1 to 7 and Comparative Examples 1 to 7 Table 1 below summarizes the height Ry, the average inclination angle θa of the unevenness on the outermost surface, the haze value, the reflection test result, and the oblique reflection test result.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 前記表1に示したとおり、Ryおよびθaが本発明の要件を満たす実施例1~7は、映り込みが抑制されていた。これに対し、Ryおよびθaが本発明の範囲外である比較例2、5および7は、正面方向および斜め方向の映り込みが顕著であった。また、θaが本発明の要件を満たすがRyが本発明の範囲外である比較例1、3、4および6は、斜め方向の映り込みが顕著であった。 As shown in Table 1 above, in Examples 1 to 7 in which Ry and θa satisfy the requirements of the present invention, reflection was suppressed. On the other hand, in Comparative Examples 2, 5 and 7 in which Ry and θa were outside the scope of the present invention, reflections in the front direction and the oblique direction were remarkable. Further, in Comparative Examples 1, 3, 4 and 6 in which θa satisfies the requirements of the present invention but Ry is outside the scope of the present invention, the reflection in the oblique direction was remarkable.
 以上、説明したとおり、本発明によれば、映り込みが抑制された防眩性フィルム、光学部材および画像表示装置を提供することができる。本発明の防眩性フィルムによれば、例えば、強い外光を散乱させ、反射を抑制することができるため、屋外でも映り込みを抑制できる。このため、本発明は、例えば、屋外用のパブリックインフォメーションディスプレイ等の画像表示装置に好適に使用できる。ただし、本発明は、この用途に限定されず、広範な用途に使用可能である。 As described above, according to the present invention, it is possible to provide an antiglare film, an optical member, and an image display device in which glare is suppressed. According to the antiglare film of the present invention, for example, strong external light can be scattered and reflection can be suppressed, so that reflection can be suppressed even outdoors. Therefore, the present invention can be suitably used for an image display device such as an outdoor public information display. However, the present invention is not limited to this application and can be used in a wide range of applications.
 この出願は、2019年4月10日に出願された日本出願特願2019-075132を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese application Japanese Patent Application No. 2019-075132 filed on April 10, 2019, and incorporates all of its disclosures herein.
10 防眩性フィルム
11 光透過性基材(A)
12 防眩層(B)
12a 樹脂層
12b 粒子
12c チキソトロピー付与剤
13 他の層
Ry 最表面の凹凸の凸部の最大高さ
d 光透過性基材(A)以外の最大厚み
D 微粒子の粒子径
Ry’ 防眩層(B)の凹凸の凸部の最大高さ
d’ 防眩層(B)の最大厚み
t 防眩層(B)の膜厚(d’-Ry’)
10 Anti-glare film 11 Light-transmitting base material (A)
12 Anti-glare layer (B)
12a Resin layer 12b Particles 12c Thixotropy-imparting agent 13 Other layers Ry Maximum height of uneven protrusions on the outermost surface d Maximum thickness other than the light transmissive substrate (A) D Particle diameter of fine particles Ry'Anti-glare layer (B) ) Maximum height of the uneven convex portion d'Maximum thickness of the antiglare layer (B) t Film thickness of the antiglare layer (B) (d'-Ry')

Claims (13)

  1.  光透過性基材(A)上に防眩層(B)が積層された防眩性フィルムであって、
     前記防眩性フィルムにおける前記防眩層(B)側の最表面に凹凸が形成され、
     前記凹凸が、下記数式(1)および(2)を満たすことを特徴とする防眩性フィルム。
     
    Ry≧1.7               (1)
    θa≧0.7               (2)
     
     前記数式(1)において、Ryは、前記凹凸の凸部の最大高さ[μm]であり、
     前記数式(2)において、θaは、前記凹凸の平均傾斜角[°]である。
    An antiglare film in which an antiglare layer (B) is laminated on a light transmissive base material (A).
    Unevenness is formed on the outermost surface of the antiglare film on the antiglare layer (B) side.
    An antiglare film characterized in that the unevenness satisfies the following mathematical formulas (1) and (2).

    Ry ≧ 1.7 (1)
    θa ≧ 0.7 (2)

    In the mathematical formula (1), Ry is the maximum height [μm] of the convex portion of the unevenness.
    In the mathematical formula (2), θa is the average inclination angle [°] of the unevenness.
  2.  前記防眩層(B)が微粒子を含む請求項1記載の防眩性フィルム。 The antiglare film according to claim 1, wherein the antiglare layer (B) contains fine particles.
  3.  前記防眩層(B)における、前記光透過性基材(A)と反対側の面上に凹凸が形成され、
     前記微粒子の重量平均粒子径が、前記防眩層(B)の最大厚みから前記凹凸の凸部の最大高さを差し引いた厚みよりも大きい請求項2記載の防眩性フィルム。
    Concavities and convexities are formed on the surface of the antiglare layer (B) opposite to the light transmissive base material (A).
    The antiglare film according to claim 2, wherein the weight average particle diameter of the fine particles is larger than the thickness obtained by subtracting the maximum height of the convex portion of the unevenness from the maximum thickness of the antiglare layer (B).
  4.  前記微粒子の重量平均粒子径が、4~9μmの範囲である請求項2または3記載の防眩性フィルム。 The antiglare film according to claim 2 or 3, wherein the weight average particle diameter of the fine particles is in the range of 4 to 9 μm.
  5.  前記防眩層(B)における前記光透過性基材(A)と反対側の面上に、さらに、他の層が積層されている請求項1から4のいずれか一項に記載の防眩性フィルム。 The antiglare according to any one of claims 1 to 4, wherein another layer is further laminated on the surface of the antiglare layer (B) opposite to the light transmissive base material (A). Sex film.
  6.  光透過性基材(A)上に防眩層(B)および他の層が前記順序で積層された防眩性フィルムであって、
     前記他の層の最表面に凹凸が形成され、
     前記凹凸が、下記数式(1)および(2)を満たすことを特徴とする防眩性フィルム。
     
    Ry≧1.7               (1)
    θa≧0.7               (2)
     
     前記数式(1)において、Ryは、前記凹凸の凸部の最大高さ[μm]であり、
     前記数式(2)において、θaは、前記凹凸の平均傾斜角[°]である。
    An antiglare film in which an antiglare layer (B) and other layers are laminated in the above order on a light transmissive base material (A).
    Unevenness is formed on the outermost surface of the other layer,
    An antiglare film characterized in that the unevenness satisfies the following mathematical formulas (1) and (2).

    Ry ≧ 1.7 (1)
    θa ≧ 0.7 (2)

    In the mathematical formula (1), Ry is the maximum height [μm] of the convex portion of the unevenness.
    In the mathematical formula (2), θa is the average inclination angle [°] of the unevenness.
  7.  前記光透過性基材(A)上に、前記防眩層(B)を、前記数式(1)および(2)を満たすように形成する防眩層(B)形成工程を含み、
     前記防眩層(B)形成工程が、前記光透過性基材(A)上に塗工液を塗工する塗工工程と、塗工した前記塗工液を乾燥させて塗膜を形成する塗膜形成工程とを含み、
     前記塗工液が、樹脂と、溶媒とを含むことを特徴とする請求項1から6のいずれか一項に記載の防眩性フィルムの製造方法。
    The antiglare layer (B) forming step of forming the antiglare layer (B) on the light transmissive base material (A) so as to satisfy the mathematical formulas (1) and (2) is included.
    The antiglare layer (B) forming step includes a coating step of applying a coating liquid on the light transmissive base material (A) and drying the coated coating liquid to form a coating film. Including the coating film forming step
    The method for producing an antiglare film according to any one of claims 1 to 6, wherein the coating liquid contains a resin and a solvent.
  8.  前記防眩層(B)形成工程が、さらに、前記塗膜を硬化させる硬化工程を含む請求項7記載の製造方法。 The manufacturing method according to claim 7, wherein the antiglare layer (B) forming step further includes a curing step of curing the coating film.
  9.  前記塗工液が、微粒子を含む請求項7または8記載の製造方法。 The production method according to claim 7 or 8, wherein the coating liquid contains fine particles.
  10.  請求項1から6のいずれか一項に記載の防眩性フィルムを含む光学部材。 An optical member including the antiglare film according to any one of claims 1 to 6.
  11.  偏光板である請求項10記載の光学部材。 The optical member according to claim 10, which is a polarizing plate.
  12.  請求項1から6のいずれか一項に記載の防眩性フィルム、または請求項10もしくは11記載の光学部材を含む画像表示装置。 An image display device including the antiglare film according to any one of claims 1 to 6 or the optical member according to claim 10 or 11.
  13.  パブリックインフォメーションディスプレイである請求項12記載の画像表示装置。 The image display device according to claim 12, which is a public information display.
PCT/JP2020/015837 2019-04-10 2020-04-08 Anti-glare film, method for manufacturing anti-glare film, optical member, and image display device WO2020209288A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020217031811A KR20210149719A (en) 2019-04-10 2020-04-08 Anti-glare film, manufacturing method of anti-glare film, optical member and image display device
CN202080027544.0A CN113661418B (en) 2019-04-10 2020-04-08 Antiglare film, process for producing antiglare film, optical member, and image display
SG11202111128WA SG11202111128WA (en) 2019-04-10 2020-04-08 Anti-glare film, method for producing anti-glare film, optical member, and image display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-075132 2019-04-10
JP2019075132A JP7393875B2 (en) 2019-04-10 2019-04-10 Anti-glare film, method for producing anti-glare film, optical member and image display device

Publications (1)

Publication Number Publication Date
WO2020209288A1 true WO2020209288A1 (en) 2020-10-15

Family

ID=72751865

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/015837 WO2020209288A1 (en) 2019-04-10 2020-04-08 Anti-glare film, method for manufacturing anti-glare film, optical member, and image display device

Country Status (6)

Country Link
JP (2) JP7393875B2 (en)
KR (1) KR20210149719A (en)
CN (1) CN113661418B (en)
SG (1) SG11202111128WA (en)
TW (1) TW202040166A (en)
WO (1) WO2020209288A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021124616A (en) * 2020-02-05 2021-08-30 日東電工株式会社 Antiglare hard coat film, manufacturing method of antiglare hard coat film, optical member and image display apparatus

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011084057A (en) * 2009-09-17 2011-04-28 Mitsubishi Rayon Co Ltd Method of producing matte sheet
JP2013105160A (en) * 2011-11-16 2013-05-30 Fujifilm Corp Optical film, polarizer, picture display unit, and optical film manufacturing method
JP2013231877A (en) * 2012-04-27 2013-11-14 Fujifilm Corp Light-diffusible anti-reflection film, manufacturing method of light-diffusible anti-reflection film, polarizing plate, and image display device
WO2015137196A1 (en) * 2014-03-14 2015-09-17 日本電気硝子株式会社 Display cover member and method for manufacturing same
JP2016050950A (en) * 2014-08-28 2016-04-11 大日本印刷株式会社 Management method of antiglare film and roll body
WO2017188186A1 (en) * 2016-04-25 2017-11-02 大日本印刷株式会社 Touch panel, display device, optical sheet, and optical sheet sorting method
WO2018021388A1 (en) * 2016-07-29 2018-02-01 大日本印刷株式会社 Character-blurring evaluation method, optical member, and display device
WO2018116998A1 (en) * 2016-12-19 2018-06-28 日本製紙株式会社 Hardcoat film
WO2018207590A1 (en) * 2017-05-12 2018-11-15 ソニー株式会社 Display device

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4059710B2 (en) 2001-10-23 2008-03-12 シャープ株式会社 Antiglare film, polarizing element, and display device manufacturing method
CN100523875C (en) * 2006-03-28 2009-08-05 日东电工株式会社 Hard-coated antiglare film, method of manufacturing the same, optical device, polarizing plate, and image display
JP2008304638A (en) * 2007-06-06 2008-12-18 Sony Corp Anti-glare film and manufacturing method thereof, polarizer and display device
JP2009109683A (en) 2007-10-30 2009-05-21 Tsujiden Co Ltd Antiglare and anti-newton film
JP2009175725A (en) * 2007-12-28 2009-08-06 Nippon Shokubai Co Ltd Antiglare laminate
JP5525886B2 (en) * 2009-03-30 2014-06-18 富士フイルム株式会社 Anti-glare film manufacturing method, anti-glare film, polarizing plate, image display device, and transmissive / semi-transmissive liquid crystal display device
JP5352316B2 (en) * 2009-03-30 2013-11-27 富士フイルム株式会社 Light scattering film, polarizing plate, image display device, and transmissive / semi-transmissive liquid crystal display device
TWI454753B (en) * 2010-04-19 2014-10-01 Tomoegawa Co Ltd Optical laminate, polarizing plate, display device, and method for making an optical laminate
JP5909454B2 (en) * 2012-03-30 2016-04-26 富士フイルム株式会社 Anti-glare film, method for producing the same, polarizing plate, and image display device
JP2016035574A (en) * 2014-08-01 2016-03-17 日東電工株式会社 Anti-glare film and image display device
JP6488829B2 (en) * 2015-03-31 2019-03-27 大日本印刷株式会社 Display device with touch panel and optical film

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011084057A (en) * 2009-09-17 2011-04-28 Mitsubishi Rayon Co Ltd Method of producing matte sheet
JP2013105160A (en) * 2011-11-16 2013-05-30 Fujifilm Corp Optical film, polarizer, picture display unit, and optical film manufacturing method
JP2013231877A (en) * 2012-04-27 2013-11-14 Fujifilm Corp Light-diffusible anti-reflection film, manufacturing method of light-diffusible anti-reflection film, polarizing plate, and image display device
WO2015137196A1 (en) * 2014-03-14 2015-09-17 日本電気硝子株式会社 Display cover member and method for manufacturing same
JP2016050950A (en) * 2014-08-28 2016-04-11 大日本印刷株式会社 Management method of antiglare film and roll body
WO2017188186A1 (en) * 2016-04-25 2017-11-02 大日本印刷株式会社 Touch panel, display device, optical sheet, and optical sheet sorting method
WO2018021388A1 (en) * 2016-07-29 2018-02-01 大日本印刷株式会社 Character-blurring evaluation method, optical member, and display device
WO2018116998A1 (en) * 2016-12-19 2018-06-28 日本製紙株式会社 Hardcoat film
WO2018207590A1 (en) * 2017-05-12 2018-11-15 ソニー株式会社 Display device

Also Published As

Publication number Publication date
JP2022183161A (en) 2022-12-08
JP7393875B2 (en) 2023-12-07
TW202040166A (en) 2020-11-01
JP2020173340A (en) 2020-10-22
SG11202111128WA (en) 2021-11-29
CN113661418B (en) 2023-12-05
KR20210149719A (en) 2021-12-09
CN113661418A (en) 2021-11-16

Similar Documents

Publication Publication Date Title
JP5914440B2 (en) Hard coat film, method for producing hard coat film, antireflection film, polarizing plate, and image display device
WO2013002353A1 (en) Antiglare film, polarizing plate, image display apparatus and process for manufacturing antiglare film
JP6153723B2 (en) Method for producing antiglare film, antiglare film, polarizing plate and image display device
JP7428468B2 (en) Antireflection film, antireflection film manufacturing method, optical member, and image display device
JP4914858B2 (en) Light scattering film, polarizing plate and liquid crystal display device
WO2021157664A1 (en) Anti-glare hard coating film, method for manufacturing anti-glare hard coating film, optical member, and image display device
JP7535035B2 (en) Light diffusion film, method for producing light diffusion film, optical member, display panel for image display device, and image display device
TWI839422B (en) Anti-glare film, method for producing anti-glare film, optical component and image display device
WO2020209288A1 (en) Anti-glare film, method for manufacturing anti-glare film, optical member, and image display device
KR20160037117A (en) Optical film, polarizing plate equipped with the optical film, liquid crystal display device, and method for producing an optical film
JP6666871B2 (en) Method for producing anti-glare film, anti-glare film, coating liquid, polarizing plate and image display device
JP5136327B2 (en) Antiglare film, method for producing the same, and transmissive liquid crystal display
JP7343273B2 (en) Anti-glare film, method for producing anti-glare film, optical member and image display device
WO2021095745A1 (en) Anti-glare film, method for designing anti-glare film, method for producing anti-glare film, optical member, and image display device
WO2021095746A1 (en) Antiglare film, antiglare film design method, antiglare film manufacturing method, optical member, and image display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20787256

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20787256

Country of ref document: EP

Kind code of ref document: A1