JP6826803B2 - A photocurable resin composition, a cured film and antiglare film formed from the composition, an image display device, and a method for producing the cured film and antiglare film. - Google Patents

A photocurable resin composition, a cured film and antiglare film formed from the composition, an image display device, and a method for producing the cured film and antiglare film. Download PDF

Info

Publication number
JP6826803B2
JP6826803B2 JP2014171481A JP2014171481A JP6826803B2 JP 6826803 B2 JP6826803 B2 JP 6826803B2 JP 2014171481 A JP2014171481 A JP 2014171481A JP 2014171481 A JP2014171481 A JP 2014171481A JP 6826803 B2 JP6826803 B2 JP 6826803B2
Authority
JP
Japan
Prior art keywords
fine particles
resin composition
photocurable resin
film
meth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014171481A
Other languages
Japanese (ja)
Other versions
JP2016045448A (en
Inventor
建児 宮窪
建児 宮窪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugoku Marine Paints Ltd
Original Assignee
Chugoku Marine Paints Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugoku Marine Paints Ltd filed Critical Chugoku Marine Paints Ltd
Priority to JP2014171481A priority Critical patent/JP6826803B2/en
Priority to KR1020150119251A priority patent/KR102246690B1/en
Priority to CN201510528395.7A priority patent/CN105388704A/en
Publication of JP2016045448A publication Critical patent/JP2016045448A/en
Application granted granted Critical
Publication of JP6826803B2 publication Critical patent/JP6826803B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Laminated Bodies (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Liquid Crystal (AREA)

Description

本発明は、光硬化性樹脂組成物、該組成物から形成される硬化被膜および防眩フィルム、画像表示装置、並びに硬化被膜および防眩フィルムの製造方法に関する。 The present invention relates to a photocurable resin composition, a cured film and antiglare film formed from the composition, an image display device, and a method for producing the cured film and antiglare film.

タブレット端末やテレビをはじめとする画像表示装置(以下、単にディスプレイともいう)では、太陽光や蛍光灯等が画面に映り込むことにより、画面の視認性が低くなってしまう。そこで、映り込みを抑制するため、ディスプレイの表面には防眩フィルムが設けられる。 In image display devices (hereinafter, also simply referred to as displays) such as tablet terminals and televisions, the visibility of the screen is lowered due to the reflection of sunlight, fluorescent lamps, and the like on the screen. Therefore, an antiglare film is provided on the surface of the display in order to suppress reflection.

一般に、防眩フィルムは、透明性基材と、防眩性を有する硬化被膜(以下、単に防眩層ともいう)とを積層させて構成されている。防眩層は、例えば、微粒子を含む光硬化性樹脂組成物を透明性基材上に塗布・硬化させて形成されており、微粒子による微小な凹凸を表面に有している。防眩フィルムによれば、防眩層が凹凸により光を散乱もしくは拡散させることで防眩性を示すので、映り込みを抑制することができる。 Generally, the antiglare film is formed by laminating a transparent base material and a cured film having antiglare properties (hereinafter, also simply referred to as an antiglare layer). The antiglare layer is formed by, for example, applying and curing a photocurable resin composition containing fine particles on a transparent base material, and has fine irregularities on the surface due to the fine particles. According to the antiglare film, the antiglare layer exhibits antiglare by scattering or diffusing light due to unevenness, so that reflection can be suppressed.

ところで、近年、ディスプレイにおいては、解像度が向上しており、表示される画像がより高精細となっている。この解像度の向上に伴って、防眩フィルムにおいては、高解像度のディスプレイに貼り合わせたときに、防眩層の表面に輝度ムラが生じ、画面の視認性が低下するといった問題が生じている。輝度ムラは、ディスプレイを点灯した際、背面からの透過光が画面に到達したときに、画面表面に細かい輝度(明るさ)のむらが現れ、観察者が見る角度を変えていくと、その輝度むらの位置が移り変わっていくように見える現象で、特に全面白色表示や全面緑色表示のときに顕著である。この輝度ムラは、透過光が防眩層の凹凸と干渉することによって生じるものと考えられている。このように、防眩フィルムにおいては、防眩層の凹凸により防眩性を得られるが、その凹凸によって輝度ムラが生じてしまうので、優れた防眩性と、輝度ムラの抑制とを両立することは困難となっている。 By the way, in recent years, the resolution of a display has been improved, and the displayed image has become higher definition. Along with this improvement in resolution, the antiglare film has a problem that when it is attached to a high resolution display, the surface of the antiglare layer has uneven brightness and the visibility of the screen is lowered. When the display is turned on, when the transmitted light from the back reaches the screen, fine unevenness of brightness (brightness) appears on the screen surface, and when the observer changes the viewing angle, the uneven brightness becomes uneven. This is a phenomenon in which the position of the light appears to change, especially when the entire white display or the entire green display is displayed. It is considered that this luminance unevenness is caused by the transmitted light interfering with the unevenness of the antiglare layer. As described above, in the antiglare film, antiglare property can be obtained by the unevenness of the antiglare layer, but since the unevenness causes uneven brightness, both excellent antiglare property and suppression of uneven brightness are achieved. That has become difficult.

この問題を解決する方法として、防眩フィルムの防眩層を構成する樹脂の屈折率と、防眩層に含まれる微粒子の屈折率との差を所定の範囲内に調整する方法が開示されている(例えば特許文献1〜3を参照)。 As a method for solving this problem, a method of adjusting the difference between the refractive index of the resin constituting the antiglare layer of the antiglare film and the refractive index of the fine particles contained in the antiglare layer within a predetermined range is disclosed. (See, for example, Patent Documents 1 to 3).

特開平11−326608号公報Japanese Unexamined Patent Publication No. 11-326608 特開2008−262190号公報Japanese Unexamined Patent Publication No. 2008-262190 特開2009−175375号公報JP-A-2009-175375

しかしながら、特許文献1〜3の方法では、優れた防眩性を維持しつつ、輝度ムラを抑制するには限度があり、改善の余地がある。 However, the methods of Patent Documents 1 to 3 have a limit in suppressing brightness unevenness while maintaining excellent antiglare properties, and there is room for improvement.

本発明は、上記課題に鑑みて成されたものであり、防眩性に優れ、かつ輝度ムラの少ない硬化被膜を形成できる光硬化性樹脂組成物、硬化被膜および防眩フィルム、画像表示装置、並びに硬化被膜および防眩フィルムの製造方法を提供することを目的とする。 The present invention has been made in view of the above problems, and is a photocurable resin composition capable of forming a cured film having excellent antiglare properties and less uneven brightness, a cured film and an antiglare film, an image display device, and the like. Another object of the present invention is to provide a method for producing a cured film and an antiglare film.

本発明の第1の態様によれば、
光重合性成分(A)、微粒子(B)および光重合開始剤(C)を含有する光硬化性樹脂組成物であって、
前記光重合性成分(A)が、重量平均分子量が10,000以上である光重合性(メタ)アクリル樹脂(a1)を含み、
前記微粒子(B)が、平均粒子径が1.0μm以上2.8μm以下である有機微粒子及び/又は無機微粒子を含み、
23℃における粘度が1mPa・s以上1000mPa・s以下であることを特徴とする光硬化性樹脂組成物が提供される。
According to the first aspect of the present invention
A photocurable resin composition containing a photopolymerizable component (A), fine particles (B) and a photopolymerization initiator (C).
The photopolymerizable component (A) contains a photopolymerizable (meth) acrylic resin (a1) having a weight average molecular weight of 10,000 or more.
The fine particles (B) contain organic fine particles and / or inorganic fine particles having an average particle diameter of 1.0 μm or more and 2.8 μm or less.
Provided is a photocurable resin composition having a viscosity at 23 ° C. of 1 mPa · s or more and 1000 mPa · s or less.

本発明の第2の態様によれば、
前記微粒子(B)として、アルミナ微粒子を内包するシリコン微粒子を含む、第1の態様の光硬化性樹脂組成物が提供される。
According to the second aspect of the present invention
The photocurable resin composition of the first aspect is provided as the fine particles (B), which comprises silicon fine particles containing alumina fine particles.

本発明の第3の態様によれば、
前記微粒子(B)を、固形分100質量部に対して0.1質量部以上20質量部以下の範囲で含有する、第1の態様又は第2の態様の光硬化性樹脂組成物が提供される。
According to the third aspect of the present invention
Provided is the photocurable resin composition of the first aspect or the second aspect, which contains the fine particles (B) in a range of 0.1 part by mass or more and 20 parts by mass or less with respect to 100 parts by mass of solid content. To.

本発明の第4の態様によれば、
前記光重合性成分(A)が、前記光重合性(メタ)アクリル樹脂(a1)以外の(メタ)アクリレート系モノマー及び/又は(メタ)アクリレート系樹脂(a2)を含有する、第1〜第3の態様のいずれかの光硬化性樹脂組成物が提供される。
According to the fourth aspect of the present invention
The first to first steps, wherein the photopolymerizable component (A) contains a (meth) acrylate-based monomer other than the photopolymerizable (meth) acrylic resin (a1) and / or a (meth) acrylate-based resin (a2). A photocurable resin composition according to any of the three aspects is provided.

本発明の第5の態様によれば、
第1〜第4の態様のいずれかの光硬化性樹脂組成物から形成され、前記微粒子(B)による凹凸を表面に有する硬化被膜が提供される。
According to the fifth aspect of the present invention
Provided is a cured film formed from the photocurable resin composition according to any one of the first to fourth aspects and having irregularities on the surface due to the fine particles (B).

本発明の第6の態様によれば、
表面粗さRaが0.01μm以上0.17μm以下である、第5の態様の硬化被膜が提供される。
According to the sixth aspect of the present invention
A fifth aspect of the cured coating having a surface roughness Ra of 0.01 μm or more and 0.17 μm or less is provided.

本発明の第7の態様によれば、
凹凸の平均間隔Smが30μm以上300μm以下である、第5の態様又は第6の態様の硬化被膜が提供される。
According to the seventh aspect of the present invention
Provided is a cured film according to a fifth or sixth aspect, wherein the average spacing Sm of the unevenness is 30 μm or more and 300 μm or less.

本発明の第8の態様によれば、
JIS K5600−4−7に準拠して測定される60°鏡面光沢度が120%以下である、第5〜第7の態様のいずれかの硬化被膜が提供される。
According to the eighth aspect of the present invention.
Provided is a cured coating according to any of the fifth to seventh aspects, wherein the 60 ° mirror surface gloss measured according to JIS K5600-4-7 is 120% or less.

本発明の第9の態様によれば、
透明性基材と、第5〜第8の態様のいずれかの硬化被膜と、を備える防眩フィルムが提供される。
According to the ninth aspect of the present invention.
An antiglare film comprising a transparent substrate and a cured coating according to any of the fifth to eighth aspects is provided.

本発明の第10の態様によれば、
JIS K7136に準拠して測定される濁度が40%以下である、第9の態様の防眩フィルムが提供される。
According to the tenth aspect of the present invention.
A ninth aspect of the antiglare film is provided, wherein the turbidity measured according to JIS K7136 is 40% or less.

本発明の第11の態様によれば、
JIS K7374に準拠して、スリット幅が0.125mm、0.25mm、0.5mm、1.0mmおよび2.0mmの光学櫛を用いて測定される像鮮明度の合計値が350%以上である、第9の態様又は第10の態様の防眩フィルムが提供される。
According to the eleventh aspect of the present invention
According to JIS K7374, the total value of image sharpness measured using optical combs with slit widths of 0.125 mm, 0.25 mm, 0.5 mm, 1.0 mm and 2.0 mm is 350% or more. , A ninth aspect or a tenth aspect of the antiglare film is provided.

本発明の第12の態様によれば、
第9〜第11の態様のいずれかの防眩フィルムを備える、画像表示装置が提供される。
According to the twelfth aspect of the present invention
An image display device comprising the antiglare film of any of the ninth to eleventh aspects is provided.

本発明の第13の態様によれば、
第1〜第4の態様のいずれかの光硬化性樹脂組成物を光照射により硬化させる硬化工程を有する、硬化被膜の製造方法が提供される。
According to the thirteenth aspect of the present invention.
Provided is a method for producing a cured film, which comprises a curing step of curing the photocurable resin composition according to any one of the first to fourth aspects by light irradiation.

本発明の第14の態様によれば、
第1〜第4の態様のいずれかの光硬化性樹脂組成物を透明性基材の少なくとも一方の主面に塗布する塗布工程と、
前記塗布工程の後、光照射により前記光硬化性樹脂組成物を硬化させて硬化被膜を形成する硬化工程と、を有する、防眩フィルムの製造方法が提供される。
According to the fourteenth aspect of the present invention.
A coating step of applying the photocurable resin composition according to any one of the first to fourth aspects to at least one main surface of the transparent substrate, and
Provided is a method for producing an antiglare film, which comprises a curing step of curing the photocurable resin composition by light irradiation to form a cured film after the coating step.

本発明によれば、防眩性に優れ、かつ輝度ムラの少ない防眩フィルムを形成できる光硬化性樹脂組成物、硬化被膜およびフィルム並びに画像表示装置が得られる。 According to the present invention, a photocurable resin composition, a cured film and a film, and an image display device capable of forming an antiglare film having excellent antiglare properties and less uneven brightness can be obtained.

本発明の一実施形態に係る防眩フィルムの断面の一部を示す概略図である。It is the schematic which shows a part of the cross section of the antiglare film which concerns on one Embodiment of this invention. 従来の防眩フィルムの断面の一部を示す概略図である。It is the schematic which shows a part of the cross section of the conventional antiglare film.

上記課題を解決するために本発明者が検討を行ったところ、従来の防眩フィルムで輝度ムラが生じる原因は、主に、以下の2つの点であることが分かった。 As a result of studies by the present inventor in order to solve the above problems, it has been found that the causes of brightness unevenness in the conventional antiglare film are mainly the following two points.

1つは、防眩層の凹凸が面内に緻密に形成されていないことである。図2に示すように、防眩層110においては、微粒子(B)が厚さ方向の所定の位置に存在することで表面に凸部111が形成されるが、従来では、微粒子(B)が防眩層110中に沈降して凸部が部分的に形成されない箇所112が生じることがある。そのため、凸部111が防眩層110の面内に疎らに分布することとなり、防眩層110における凹凸の平均間隔Smが大きい。
もう1つは、凹凸による表面粗さが大きいことである。図2に示すように、防眩層110においては、表面の凸部111の高さにより表面粗さRaが決まるが、従来では、微粒子(B)が凝集して形成された粗大な2次粒子によって凸部の高さが過度に大きい箇所113が生じることがある。これにより、防眩層110の表面粗さRaが大きい。
One is that the unevenness of the antiglare layer is not densely formed in the plane. As shown in FIG. 2, in the antiglare layer 110, the convex portion 111 is formed on the surface by the presence of the fine particles (B) at a predetermined position in the thickness direction, but conventionally, the fine particles (B) are formed. There may be a portion 112 in the antiglare layer 110 that is settled and the convex portion is not partially formed. Therefore, the convex portions 111 are sparsely distributed in the plane of the antiglare layer 110, and the average interval Sm of the unevenness in the antiglare layer 110 is large.
The other is that the surface roughness due to unevenness is large. As shown in FIG. 2, in the antiglare layer 110, the surface roughness Ra is determined by the height of the convex portion 111 on the surface, but conventionally, coarse secondary particles formed by agglomeration of fine particles (B). This may result in a portion 113 in which the height of the convex portion is excessively large. As a result, the surface roughness Ra of the antiglare layer 110 is large.

このように、防眩層110における凹凸の平均間隔Smや表面粗さRaが大きくなると、ディスプレイからの透過光が凹凸で干渉しやすいためか、輝度ムラが生じやすくなる。このことから、防眩層110において、優れた防眩性を維持しつつ、輝度ムラを低減するには、凹凸の平均間隔Smおよび凹凸による表面粗さRaが小さくなるように構成するとよいことが分かる。 As described above, when the average interval Sm of the unevenness and the surface roughness Ra of the antiglare layer 110 are increased, the transmitted light from the display is likely to interfere with the unevenness, and the brightness unevenness is likely to occur. From this, in order to reduce the brightness unevenness while maintaining the excellent antiglare property in the antiglare layer 110, it is preferable to configure the antiglare layer 110 so that the average interval Sm of the unevenness and the surface roughness Ra due to the unevenness are reduced. I understand.

そこで、本発明者は、凹凸の平均間隔Smおよび凹凸による表面粗さRaを小さくするため、防眩層を形成する光硬化性樹脂組成物において、微粒子の沈降および凝集を抑制する方法について検討を行った。具体的には、所望の凹凸を形成でき、所定の防眩性を得られるような平均粒子径が1.0〜2.8μmである微粒子の沈降および凝集を抑制する方法について検討を行った。 Therefore, the present inventor has studied a method for suppressing sedimentation and aggregation of fine particles in a photocurable resin composition forming an antiglare layer in order to reduce the average spacing Sm of irregularities and the surface roughness Ra due to irregularities. went. Specifically, a method for suppressing sedimentation and aggregation of fine particles having an average particle diameter of 1.0 to 2.8 μm so as to be able to form desired irregularities and obtain a predetermined antiglare property was investigated.

まず、本発明者は、光硬化性樹脂組成物の粘度を高く設定して検討を行った。これは、一般に粘度が高いと、光硬化性樹脂組成物に分散している微粒子の沈降や凝集が生じにくくなるからである。検討の結果、23℃における粘度を1mPa・s以上1000mPa・s以下の範囲としたときに、微粒子の沈降や凝集を抑制できるが、光硬化性樹脂組成物に含まれる光重合性(メタ)アクリル樹脂の分子量が低いと、沈降や凝集を十分に抑制できないことが分かった。つまり、微粒子の沈降および凝集を抑制するには、粘度の調整だけでは不十分であり、光重合性(メタ)アクリル樹脂の分子量を大きくする必要があることが分かった。 First, the present inventor set a high viscosity of the photocurable resin composition and conducted a study. This is because, in general, when the viscosity is high, the fine particles dispersed in the photocurable resin composition are less likely to settle or aggregate. As a result of the examination, when the viscosity at 23 ° C. is in the range of 1 mPa · s or more and 1000 mPa · s or less, sedimentation and aggregation of fine particles can be suppressed, but photopolymerizable (meth) acrylic contained in the photocurable resin composition. It was found that if the molecular weight of the resin is low, sedimentation and aggregation cannot be sufficiently suppressed. That is, it was found that the adjustment of the viscosity alone is not sufficient to suppress the sedimentation and aggregation of the fine particles, and it is necessary to increase the molecular weight of the photopolymerizable (meth) acrylic resin.

光重合性(メタ)アクリル樹脂の分子量について、さらに検討を行ったところ、重量平均分子量が10,000未満であると、粘度を上記範囲内としても微粒子の沈降や凝集を十分に抑制できないが、重量平均分子量が10,000以上であれば、良好に抑制できることが分かった。 Further studies on the molecular weight of the photopolymerizable (meth) acrylic resin revealed that if the weight average molecular weight is less than 10,000, precipitation and aggregation of fine particles cannot be sufficiently suppressed even if the viscosity is within the above range. It was found that when the weight average molecular weight is 10,000 or more, it can be suppressed well.

この要因としては、本発明者は以下のように推測している。一般に、分子量が低いほど樹脂成分の分子鎖が短く、分子量が高いほど分子鎖が長くなることが知られている。高分子量で分子鎖の長い樹脂成分によれば、低分子量で分子鎖の短い樹脂成分と比較してサイズが大きいので、所定の平均粒子径の微粒子を捕捉しやすい。そのため、高分子量の樹脂成分を含む光硬化性樹脂組成物においては、微粒子は、捕捉されて沈降が抑制されているので、浮遊しやすい。また、微粒子は、捕捉されて微粒子同士の凝集が抑制されているので、微細に分散することができる。したがって、それから形成される防眩層においては、微粒子の沈降および凝集が抑制されて、凹凸の平均間隔Smおよび凹凸による表面粗さRaが小さく構成されることになる。すなわち、上記構成によれば、防眩性に優れ、かつ輝度ムラの少ない硬化被膜を形成できる。 The present inventor speculates that this factor is as follows. In general, it is known that the lower the molecular weight, the shorter the molecular chain of the resin component, and the higher the molecular weight, the longer the molecular chain. According to the resin component having a high molecular weight and a long molecular chain, the size is larger than that of the resin component having a low molecular weight and a short molecular chain, so that it is easy to capture fine particles having a predetermined average particle size. Therefore, in the photocurable resin composition containing a high molecular weight resin component, the fine particles are trapped and the sedimentation is suppressed, so that the fine particles tend to float. Further, since the fine particles are captured and the aggregation of the fine particles is suppressed, the fine particles can be finely dispersed. Therefore, in the antiglare layer formed from the antiglare layer, sedimentation and aggregation of fine particles are suppressed, and the average spacing Sm of the unevenness and the surface roughness Ra due to the unevenness are reduced. That is, according to the above configuration, it is possible to form a cured film having excellent antiglare properties and less uneven brightness.

本発明は、上述の知見に基づいて成されたものである。 The present invention has been made based on the above findings.

以下、本発明の一実施形態について、以下の順序で説明する。
1.光硬化性樹脂組成物
1−1.光重合性成分(A)
1−2.微粒子(B)
1−3.光重合開始剤(C)
1−4.粘度
1−5.その他の添加剤
1−6.調製方法
2.防眩フィルム
3.防眩フィルムの製造方法
4.本実施形態に係る効果
Hereinafter, one embodiment of the present invention will be described in the following order.
1. 1. Photocurable resin composition 1-1. Photopolymerizable component (A)
1-2. Fine particles (B)
1-3. Photopolymerization initiator (C)
1-4. Viscosity 1-5. Other additives 1-6. Preparation method 2. Anti-glare film 3. Manufacturing method of anti-glare film 4. Effect of this embodiment

<1.光硬化性樹脂組成物>
本実施形態に係る光硬化性樹脂組成物は、光重合性成分(A)と微粒子(B)と光重合開始剤(C)とを混合して得られ、23℃における粘度が1mPa・s以上1000mPa・s以下である。
<1. Photocurable resin composition>
The photocurable resin composition according to the present embodiment is obtained by mixing a photopolymerizable component (A), fine particles (B), and a photopolymerization initiator (C), and has a viscosity at 23 ° C. of 1 mPa · s or more. It is 1000 mPa · s or less.

<1−1.光重合性成分(A)>
光重合性成分(A)は、重量平均分子量が10,000以上である光重合性(メタ)アクリル樹脂(a1)(以下、単に、「(メタ)アクリル樹脂(a1)ともいう」)を含んでいる。なお、本明細書において、(メタ)アクリルとは、アクリルおよびそれに対応するメタクリルのうち少なくともいずれかを示す。
<1-1. Photopolymerizable component (A)>
The photopolymerizable component (A) contains a photopolymerizable (meth) acrylic resin (a1) having a weight average molecular weight of 10,000 or more (hereinafter, also simply referred to as “(meth) acrylic resin (a1)”). I'm out. In addition, in this specification, (meth) acrylic means at least one of acrylic and corresponding methacrylic.

(メタ)アクリル樹脂(a1)は、主骨格に(メタ)アクリルモノマーの重合体を、側鎖に光重合性官能基を有する樹脂成分である。光重合性官能基としては、例えば(メタ)アクリロイル基、ビニル基、アリル基などが挙げられる。その中でも、反応性が高く、光照射による硬化速度が速いことから、(メタ)アクリロイル基が好ましい。 The (meth) acrylic resin (a1) is a resin component having a polymer of a (meth) acrylic monomer in the main skeleton and a photopolymerizable functional group in the side chain. Examples of the photopolymerizable functional group include (meth) acryloyl group, vinyl group, allyl group and the like. Among them, the (meth) acryloyl group is preferable because of its high reactivity and high curing rate by light irradiation.

(メタ)アクリル樹脂(a1)の重量平均分子量は10,000以上、好ましくは15,000以上である。上述したように、重量平均分子量が10,000未満となると、光硬化性樹脂組成物における微粒子(B)の沈降や凝集を十分に抑制できないため、防眩層における凹凸の平均間隔Smおよび凹凸による表面粗さRaが大きくなり、輝度ムラが生じやすくなる。硬化被膜において、凹凸の平均間隔Smおよび凹凸による表面粗さRaを小さくしつつ、凝集物やハジキ等の欠点の発生を防止して外観を良好にする観点からは、重量平均分子量は大きいことが好ましく、15,000以上であるとよい。なお、重量平均分子量の上限値は、特に限定されないが、好ましくは200,000以下、より好ましくは100,000以下、さらに好ましくは60,000以下である。このような重量平均分子量とすることにより、硬化被膜において、可とう性や柔軟性などを損なうことなく、所望の高い硬度を得ることができる。なお、本実施形態において、重量平均分子量は、ポリスチレンを標準として、ゲルパーミエーションクロマトグラフィー(GPC)の測定結果から算出されるものである。 The weight average molecular weight of the (meth) acrylic resin (a1) is 10,000 or more, preferably 15,000 or more. As described above, when the weight average molecular weight is less than 10,000, the precipitation and aggregation of the fine particles (B) in the photocurable resin composition cannot be sufficiently suppressed, so that the average spacing Sm of the unevenness in the antiglare layer and the unevenness are used. The surface roughness Ra becomes large, and uneven brightness is likely to occur. In the cured film, the weight average molecular weight may be large from the viewpoint of preventing the occurrence of defects such as agglomerates and repellents and improving the appearance while reducing the average spacing Sm of the unevenness and the surface roughness Ra due to the unevenness. It is preferably 15,000 or more. The upper limit of the weight average molecular weight is not particularly limited, but is preferably 200,000 or less, more preferably 100,000 or less, and further preferably 60,000 or less. By setting such a weight average molecular weight, it is possible to obtain a desired high hardness in the cured film without impairing flexibility and flexibility. In this embodiment, the weight average molecular weight is calculated from the measurement result of gel permeation chromatography (GPC) using polystyrene as a standard.

光重合性成分(A)は、上記(メタ)アクリル樹脂(a1)以外の成分として、(メタ)アクリレート系モノマー及び/又は(メタ)アクリレート系樹脂(a2)を含有することが好ましい。このような(メタ)アクリレート系モノマー及び/又は(メタ)アクリレート系樹脂(a2)を含有させることによって、硬化被膜の硬度および耐擦傷性を向上させることができる。 The photopolymerizable component (A) preferably contains a (meth) acrylate-based monomer and / or a (meth) acrylate-based resin (a2) as a component other than the (meth) acrylic resin (a1). By containing such a (meth) acrylate-based monomer and / or (meth) acrylate-based resin (a2), the hardness and scratch resistance of the cured film can be improved.

(メタ)アクリレート系モノマーとしては、例えば、重合性官能基をモノマー中に2個以上有するものを用いることができる。具体的には、1,4−ブタンジオールジ(メタ)アクリレート、1,6−ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート等の2官能モノマー:トリメチロールプロパントリ(メタ)アクリレート、トリス(2−(メタ)アクリロイルオキシエチル)イソシアヌレート、トリス(2−(メタ)アクリロイルオキシプロピル)イソシアヌレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート等の多官能モノマーが挙げられる。これらの中でも、硬化被膜の硬度を向上させる観点からは、モノマー中に重合性官能基を4個以上有する多官能モノマーが特に好ましい。これらの(メタ)アクリレート系モノマーは、1種単独で、あるいは2種以上組み合わせて用いることができる。
また、(メタ)アクリレート系樹脂としては、例えば、ウレタン(メタ)アクリレート、ポリエステル(メタ)アクリレート、ポリエーテル(メタ)アクリレート、エポキシ(メタ)アクリレート等の光硬化性(メタ)アクリレート系モノマーを重合して得られる樹脂が挙げられる。これらの(メタ)アクリレート系樹脂は、1種を単独で、あるいは2種以上を組み合わせて用いることができる。
As the (meth) acrylate-based monomer, for example, one having two or more polymerizable functional groups in the monomer can be used. Specifically, 1,4-butanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, neopentyl glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, triethylene glycol di ( Bifunctional monomers such as meta) acrylate and tetraethylene glycol di (meth) acrylate: trimethylpropantri (meth) acrylate, tris (2- (meth) acryloyloxyethyl) isocyanurate, tris (2- (meth) acryloyloxy) Many such as propyl) isocyanurate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol tetra (meth) acrylate, dipentaerythritol penta (meth) acrylate, dipentaerythritol hexa (meth) acrylate, etc. Examples include functional monomers. Among these, a polyfunctional monomer having four or more polymerizable functional groups in the monomer is particularly preferable from the viewpoint of improving the hardness of the cured film. These (meth) acrylate-based monomers can be used alone or in combination of two or more.
Further, as the (meth) acrylate-based resin, for example, a photocurable (meth) acrylate-based monomer such as urethane (meth) acrylate, polyester (meth) acrylate, polyether (meth) acrylate, and epoxy (meth) acrylate is polymerized. The resin obtained by the above can be mentioned. These (meth) acrylate-based resins may be used alone or in combination of two or more.

(メタ)アクリレート系モノマー及び/又は(メタ)アクリレート系樹脂(a2)の配合量は、硬化被膜の硬度を過度に向上させない観点から、光硬化性樹脂組成物の固形分100質量部に対して0質量部以上40質量部以下が好ましく、0質量部以上20質量部以下がより好ましい。なお、本実施形態において、固形分とは、光硬化性樹脂組成物から有機溶剤などの揮発成分を除いたものであり、硬化させたときに硬化被膜として残存する成分を示す。 The blending amount of the (meth) acrylate-based monomer and / or the (meth) acrylate-based resin (a2) is based on 100 parts by mass of the solid content of the photocurable resin composition from the viewpoint of not excessively improving the hardness of the cured film. It is preferably 0 parts by mass or more and 40 parts by mass or less, and more preferably 0 parts by mass or more and 20 parts by mass or less. In the present embodiment, the solid content is a photocurable resin composition obtained by removing volatile components such as an organic solvent, and indicates a component that remains as a cured film when cured.

<1−2.微粒子(B)>
微粒子(B)は、光硬化性樹脂組成物を硬化させたときに、硬化被膜(防眩層)の表面に凹凸を形成するものである。微粒子(B)としては、平均粒子径が1.0μm以上2.8μm以下であるものを用いることができる。微粒子(B)の平均粒子径が1.0μm未満であると、光硬化性樹脂組成物を硬化させたときに、防眩層における凸部の高さが小さく、その表面粗さRaが過度に小さくなる。そのため、凹凸により映り込みを十分に抑制できず、高い防眩性を得られなくなる。一方、平均粒子径が2.8μmを超えると、防眩層の凸部の高さが大きく、表面粗さRaが過度に大きくなる。そのため、防眩層において輝度ムラが生じて視認性が低下してしまう。なお、本実施形態において、平均粒子径はメディアン径(D50)を示す。
<1-2. Fine particles (B)>
The fine particles (B) form irregularities on the surface of the cured film (antiglare layer) when the photocurable resin composition is cured. As the fine particles (B), those having an average particle diameter of 1.0 μm or more and 2.8 μm or less can be used. When the average particle size of the fine particles (B) is less than 1.0 μm, the height of the convex portion in the antiglare layer is small when the photocurable resin composition is cured, and the surface roughness Ra thereof is excessive. It becomes smaller. Therefore, the reflection cannot be sufficiently suppressed due to the unevenness, and high anti-glare property cannot be obtained. On the other hand, when the average particle size exceeds 2.8 μm, the height of the convex portion of the antiglare layer is large, and the surface roughness Ra becomes excessively large. Therefore, the brightness unevenness occurs in the antiglare layer and the visibility is lowered. In this embodiment, the average particle size indicates the median diameter (D50).

微粒子(B)としては、従来公知の微粒子を用いることができる。例えば、有機微粒子として、アクリル微粒子、ポリスチレン微粒子、ポリエチレンワックス微粒子、ポリプロピレンワックス微粒子、PTFE微粒子、ウレタン微粒子、シリコン微粒子などを用いることができる。また例えば、無機微粒子として、二酸化ケイ素微粒子、酸化アルミニウム微粒子、酸化ジルコニウム微粒子、酸化亜鉛微粒子、酸化チタン微粒子などの金属酸化物微粒子を用いることができる。これらは1種を単独で用いてもよく、2種以上を併用してもよい。微粒子(B)としては、輝度ムラをより抑制する観点からは、有機微粒子であるシリコン微粒子を用いることが好ましい。輝度ムラを抑制すると共に映り込みを抑制して防眩性を向上させる観点からは、アルミナ微粒子を内包するシリコン微粒子がより好ましい。アルミナ微粒子を内包するシリコン微粒子は、シリコン微粒子と比較して光の拡散性に優れ、防眩性をより向上させることができる。 As the fine particles (B), conventionally known fine particles can be used. For example, as the organic fine particles, acrylic fine particles, polystyrene fine particles, polyethylene wax fine particles, polypropylene wax fine particles, PTFE fine particles, urethane fine particles, silicon fine particles and the like can be used. Further, for example, as the inorganic fine particles, metal oxide fine particles such as silicon dioxide fine particles, aluminum oxide fine particles, zirconium oxide fine particles, zinc oxide fine particles, and titanium oxide fine particles can be used. One of these may be used alone, or two or more thereof may be used in combination. As the fine particles (B), it is preferable to use silicon fine particles, which are organic fine particles, from the viewpoint of further suppressing uneven brightness. From the viewpoint of suppressing uneven brightness and suppressing glare to improve antiglare, silicon fine particles containing alumina fine particles are more preferable. The silicon fine particles containing the alumina fine particles are superior in light diffusivity as compared with the silicon fine particles, and can further improve the antiglare property.

微粒子(B)の配合量は、硬化被膜に求められる防眩性、耐擦傷性および透明性(濁度)などの諸特性に応じて適宜変更することができる。光硬化性樹脂組成物を、画像表示装置の画面に貼り合わせる防眩フィルムに適用する場合、諸特性をバランスよく必要とすることから、微粒子(B)の配合量は、光硬化性樹脂組成物の固形分100質量部に対して0.1質量部以上20質量部以下が好ましく、4質量部以上10質量部以下がより好ましい。微粒子(B)の配合量が上記範囲よりも少ないと、諸特性をバランスよく得られないおそれがあり、上記範囲よりも多いと、硬化被膜の濁度が高くなり、透明性が損なわれるおそれがある。 The blending amount of the fine particles (B) can be appropriately changed according to various properties such as antiglare, scratch resistance and transparency (turbidity) required for the cured film. When the photocurable resin composition is applied to an antiglare film to be attached to the screen of an image display device, various characteristics are required in a well-balanced manner. Therefore, the blending amount of the fine particles (B) is the photocurable resin composition. It is preferably 0.1 part by mass or more and 20 parts by mass or less, and more preferably 4 parts by mass or more and 10 parts by mass or less with respect to 100 parts by mass of the solid content. If the blending amount of the fine particles (B) is less than the above range, various characteristics may not be obtained in a well-balanced manner, and if it is more than the above range, the turbidity of the cured film may increase and the transparency may be impaired. is there.

<1−3.光重合開始剤(C)>
光重合開始剤(C)は、光照射によりラジカル又はカチオンを発生して、光重合性成分(A)を硬化させるものである。光重合開始剤(C)としては、光重合性成分(A)を硬化できるものであればよい。例えば、ベンゾイン系光重合開始剤、アセトフェノン系光重合開始剤、ベンゾフェノン系光重合開始剤、チオキサントン系光重合開始剤などを用いることができる。
ベンゾイン系光重合開始剤としては、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインイソブチルエーテル等が挙げられる。
アセトフェノン系光重合開始剤としては、ベンジルジメチルケタール(別名、2,2−ジメトキシ−2−フェニルアセトフェノン)、ジエトキシアセトフェノン、4−フェノキシジクロロアセトフェノン、4−t−ブチル−ジクロロアセトフェノン、4−t−ブチル−トリクロロアセトフェノン、2−ヒドロキシ−2−メチル−1−フェニルプロパン−1−オン、1−(4−イソプロピルフェニル)−2−ヒドロキシ−2−メチルプロパン−1−オン、1−(4−ドデシルフェニル)−2−ヒドロキシ−2−メチルプロパン−1−オン、4−(2−ヒドロキシエトキシ)−フェニル(2−ヒドロキシ−2−プロピル)ケトン、1−ヒドロキシシクロヘキシルフェニルケトン、2−メチル−1−[4−(メチルチオ)フェニル]−2−モルホリノプロパン−1−オン等が挙げられる。
ベンゾフェノン系光重合開始剤としては、ベンゾフェノン、ベンゾイル安息香酸、ベンゾイル安息香酸メチル、4−フェニルベンゾフェノン、ヒドロキシベンゾフェノン、アクリル化ベンゾフェノン、4−ベンゾイル−4’−メチルジフェニルサルファイド、3,3’−ジメチル−4−メトキシベンゾフェノン等が挙げられる。
チオキサントン系光重合開始剤としては、チオキサントン、2−クロルチオキサントン、2−メチルチオキサントン、2,4−ジメチルチオキサントン、イソプロピルチオキサントン、2,4−ジクロロチオキサントン、2,4−ジエチルチオキサントン、2,4−ジイソプロピルチオキサントン等が挙げられる。
これらの光重合開始剤は、1種を単独で用いてもよく、2種以上を併用してもよい。
<1-3. Photopolymerization initiator (C)>
The photopolymerization initiator (C) generates radicals or cations by light irradiation to cure the photopolymerizable component (A). The photopolymerization initiator (C) may be any as long as it can cure the photopolymerizable component (A). For example, a benzoin-based photopolymerization initiator, an acetophenone-based photopolymerization initiator, a benzophenone-based photopolymerization initiator, a thioxanthone-based photopolymerization initiator, and the like can be used.
Examples of the benzoin-based photopolymerization initiator include benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, and benzoin isobutyl ether.
Examples of the acetophenone-based photopolymerization initiator include benzyldimethylketal (also known as 2,2-dimethoxy-2-phenylacetophenone), diethoxyacetophenone, 4-phenoxydichloroacetophenone, 4-t-butyl-dichloroacetophenone, and 4-t-. Butyl-trichloroacetophenone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, 1- (4-isopropylphenyl) -2-hydroxy-2-methylpropan-1-one, 1- (4-dodecyl) Phenyl) -2-hydroxy-2-methylpropan-1-one, 4- (2-hydroxyethoxy) -phenyl (2-hydroxy-2-propyl) ketone, 1-hydroxycyclohexylphenylketone, 2-methyl-1- [4- (Methylthio) phenyl] -2-morpholinopropane-1-one and the like can be mentioned.
Examples of the benzophenone-based photopolymerization initiator include benzophenone, benzoyl benzoic acid, methyl benzoyl benzoate, 4-phenylbenzophenone, hydroxybenzophenone, acrylicized benzophenone, 4-benzoyl-4'-methyldiphenyl sulfate, and 3,3'-dimethyl-. Examples thereof include 4-methoxybenzophenone.
Examples of the thioxanthone-based photopolymerization initiator include thioxanthone, 2-chlorothioxanthone, 2-methylthioxanthone, 2,4-dimethylthioxanthone, isopropylthioxanthone, 2,4-dichlorothioxanthone, 2,4-diethylthioxanthone, and 2,4-diisopropyl. Examples thereof include thioxanthone.
One of these photopolymerization initiators may be used alone, or two or more thereof may be used in combination.

光重合開始剤(C)の配合量は、光硬化性樹脂組成物の固形分100質量部に対して、好ましくは0.1質量部以上10質量部以下、より好ましくは3質量部以上6質量部以下である。配合量が上記範囲よりも少ないと、光硬化性樹脂組成物を硬化させるときの速度(硬化速度)が遅くなるおそれがあり、上記範囲よりも多いと、硬化速度が過度に速くなるおそれがある。 The blending amount of the photopolymerization initiator (C) is preferably 0.1 part by mass or more and 10 parts by mass or less, and more preferably 3 parts by mass or more and 6 parts by mass with respect to 100 parts by mass of the solid content of the photocurable resin composition. It is less than a part. If the blending amount is less than the above range, the rate (curing rate) at which the photocurable resin composition is cured may be slow, and if it is more than the above range, the curing rate may be excessively high. ..

<1−4.粘度>
本実施形態に係る光硬化性樹脂組成物の粘度は、23℃において、1mPa・s以上1000mPa・s以下である。好ましくは1〜500mPa・s、より好ましくは3〜60mPa・s、さらに好ましくは3〜40mPa・sである。粘度が1mPa・s未満となると、粘度が過度に低くなるので、光硬化性樹脂組成物において微粒子(B)が沈降もしくは凝集してしまう。一方、粘度が1000mPa・sを超えると、光硬化性樹脂組成物のレベリング性が低くなるので、塗布しにくくなり、均一な膜厚の硬化被膜を形成できなくなる。
<1-4. Viscosity>
The viscosity of the photocurable resin composition according to the present embodiment is 1 mPa · s or more and 1000 mPa · s or less at 23 ° C. It is preferably 1 to 500 mPa · s, more preferably 3 to 60 mPa · s, and even more preferably 3 to 40 mPa · s. If the viscosity is less than 1 mPa · s, the viscosity becomes excessively low, so that the fine particles (B) settle or aggregate in the photocurable resin composition. On the other hand, if the viscosity exceeds 1000 mPa · s, the leveling property of the photocurable resin composition becomes low, so that it becomes difficult to apply and it becomes impossible to form a cured film having a uniform film thickness.

<1−5.その他の添加剤>
本実施形態に係る光硬化性樹脂組成物には、必要に応じて、上述した成分以外のその他の添加剤を含有させてもよい。その他の添加剤として、粘度を所定の範囲に調整する観点から、有機溶剤を含有させてもよい。有機溶剤としては、従来公知のものを用いることができる。例えば、芳香族炭化水素類(例:キシレン、トルエンなど)、ケトン類(例:メチルイソブチルケトン、メチルエチルケトン、シクロヘキサノンなど)、エステル類(例:酢酸エチル、酢酸ブチル、酢酸イソブチルなど)、アルコール類(例:イソプロピルアルコール、ブタノールなど)、グリコールエーテル類(例:プロピレングリコールモノメチルエーテルなど)などの各種有機溶剤が挙げられる。これらの有機溶剤は、1種単独で、あるいは2種以上組み合わせて用いることができる。
<1-5. Other additives>
The photocurable resin composition according to the present embodiment may contain other additives other than the above-mentioned components, if necessary. As another additive, an organic solvent may be contained from the viewpoint of adjusting the viscosity within a predetermined range. As the organic solvent, conventionally known ones can be used. For example, aromatic hydrocarbons (eg xylene, toluene, etc.), ketones (eg, methyl isobutyl ketone, methyl ethyl ketone, cyclohexanone, etc.), esters (eg, ethyl acetate, butyl acetate, isobutyl acetate, etc.), alcohols (eg, ethyl acetate, butyl acetate, isobutyl acetate, etc.) Examples include various organic solvents such as isopropyl alcohol, butanol, etc., and glycol ethers (eg, propylene glycol monomethyl ether, etc.). These organic solvents can be used alone or in combination of two or more.

また、その他の添加剤として、レベリング剤を含有させてもよい。レベリング剤によれば、光硬化性樹脂組成物のハジキを改善して、被塗布面への濡れ性を向上させ、膜厚の均一な硬化被膜を形成することができる。レベリング剤としては、例えば、フッ素系、アクリル系、シリコン系等の各種レベリング剤が挙げられる。中でも、レベリング性を向上させるだけでなく、撥水・撥油性といった防汚機能を付与できることから、フッ素系レベリング剤がより好ましい。これらレベリング剤の配合量は、光硬化性組成物の固形分100質量部に対して、0.1質量部以上1.5質量部以下が好ましく、0.5質量部以上1.0質量部以下がより好ましい。 In addition, a leveling agent may be contained as another additive. According to the leveling agent, it is possible to improve the repelling of the photocurable resin composition, improve the wettability to the surface to be coated, and form a cured film having a uniform film thickness. Examples of the leveling agent include various leveling agents such as fluorine-based, acrylic-based, and silicon-based. Among them, a fluorine-based leveling agent is more preferable because it can not only improve the leveling property but also impart antifouling functions such as water repellency and oil repellency. The blending amount of these leveling agents is preferably 0.1 part by mass or more and 1.5 parts by mass or less, and 0.5 parts by mass or more and 1.0 part by mass or less with respect to 100 parts by mass of the solid content of the photocurable composition. Is more preferable.

また、その他の添加剤として、消泡剤を含有させてもよい。消泡剤によれば、光硬化性樹脂組成物での気泡の発生を抑制し、硬化被膜の外観を良好にすることができる。消泡剤としては、例えば、アクリル系、シリコン系等の各種消泡剤が挙げられる。これら消泡剤の配合量は、光硬化性組成物の固形分100質量部に対して、0.0001質量以上1.0質量部以下が好ましい。 In addition, a defoaming agent may be contained as another additive. According to the defoaming agent, it is possible to suppress the generation of air bubbles in the photocurable resin composition and improve the appearance of the cured film. Examples of the defoaming agent include various defoaming agents such as acrylic type and silicon type. The blending amount of these antifoaming agents is preferably 0.0001 mass or more and 1.0 mass part or less with respect to 100 parts by mass of the solid content of the photocurable composition.

また、その他の添加剤として、重合禁止剤、非反応性希釈剤、艶消し剤、沈降防止剤、分散剤、熱安定剤、紫外線吸収剤などを含有させてもよい。これらの配合量は、本実施形態の効果を損なわない範囲で適宜変更することができる。 Further, as other additives, a polymerization inhibitor, a non-reactive diluent, a matting agent, a precipitation inhibitor, a dispersant, a heat stabilizer, an ultraviolet absorber and the like may be contained. These blending amounts can be appropriately changed as long as the effects of the present embodiment are not impaired.

<1−6.調製方法>
本実施形態に係る光硬化性樹脂組成物は、例えば、以下のようにして調製される。
まず、有機溶剤に光重合性成分(A)、光重合開始剤(C)、および必要に応じてその他の添加剤を溶解させる。続いて、得られた溶解液に微粒子(B)を添加して撹拌することにより、本実施形態の光硬化性樹脂組成物を得る。なお、調製の際には、光硬化性樹脂組成物の粘度が所定の範囲となるように、光重合性成分(A)や微粒子(B)、有機溶剤などの配合量を適宜変更するとよい。
<1-6. Preparation method>
The photocurable resin composition according to the present embodiment is prepared, for example, as follows.
First, the photopolymerizable component (A), the photopolymerization initiator (C), and other additives, if necessary, are dissolved in the organic solvent. Subsequently, the fine particles (B) are added to the obtained solution and stirred to obtain the photocurable resin composition of the present embodiment. At the time of preparation, it is advisable to appropriately change the blending amounts of the photopolymerizable component (A), the fine particles (B), the organic solvent and the like so that the viscosity of the photocurable resin composition is within a predetermined range.

<2.防眩フィルム>
続いて、上述した光硬化性樹脂組成物を用いて形成された防眩フィルム1について、図1を用いて説明する。図1は、本発明の一実施形態に係る防眩フィルム1の断面を示す概略図である。
<2. Anti-glare film>
Subsequently, the antiglare film 1 formed by using the above-mentioned photocurable resin composition will be described with reference to FIG. FIG. 1 is a schematic view showing a cross section of an antiglare film 1 according to an embodiment of the present invention.

図1に示すように、本実施形態に係る防眩フィルム1は、透明性基材20と、硬化被膜(防眩層)10と、を備えて構成されている。 As shown in FIG. 1, the antiglare film 1 according to the present embodiment includes a transparent base material 20 and a cured film (antiglare layer) 10.

透明性基材20としては、透明な材料からなる透明プラスチックフィルムを用いることができる。透明プラスチックフィルムとしては、例えば、トリアセチルセルロースフィルム、ポリエチレンテレフタレート(PET)フィルム、ジアセチルセルロースフィルム、アセテートブチレートセルロースフィルム、ポリエーテルサルホンフィルム、ポリアクリル系樹脂フィルム、ポリウレタン系樹脂フィルム、ポリエステルフィルム、ポリカーボネートフィルム、ポリスルホンフィルム、ポリエーテルフィルム、ポリメチルペンテンフィルム、ポリエーテルケトンフィルム、(メタ)アクリルニトリルフィルムなどが挙げられる。これらの中でも、ポリエチレンテレフタレートフィルムが強度や光学特性等のバランスなどの点で好ましい。 As the transparent base material 20, a transparent plastic film made of a transparent material can be used. Examples of the transparent plastic film include triacetyl cellulose film, polyethylene terephthalate (PET) film, diacetyl cellulose film, acetate butyrate cellulose film, polyether sulfone film, polyacrylic resin film, polyurethane resin film, polyester film, and the like. Examples thereof include a polycarbonate film, a polysulfone film, a polyether film, a polymethylpentene film, a polyether ketone film, and a (meth) acrylic nitrile film. Among these, polyethylene terephthalate film is preferable in terms of balance of strength and optical characteristics.

硬化被膜(防眩層)10は、透明性基材20の一方の主面に設けられている。硬化被膜10は、光硬化性樹脂組成物から形成され、微粒子(B)による凹凸を表面に有している。上述したように、光硬化性樹脂組成物では微粒子(B)の沈降および凝集が抑制されている。そのため、光硬化性樹脂組成物を塗布したとき、その塗膜においては、微粒子(B)が沈降せずに厚さ方向に浮遊するとともに、凝集せずに微細に分散している。この塗膜を硬化して得られる硬化被膜10においては、微粒子(B)の沈降が抑制されて微粒子(B)による凸部11が面内に均一に形成されているため、凹凸の分布が緻密となっている。また、凸部11は、微粒子(B)の凝集が抑制されて凸部11の高さが過度に大きくならないように形成されているため、硬化被膜10における凹凸による表面粗さが小さくなっている。 The cured film (antiglare layer) 10 is provided on one main surface of the transparent base material 20. The cured film 10 is formed of a photocurable resin composition and has irregularities on the surface due to the fine particles (B). As described above, in the photocurable resin composition, sedimentation and aggregation of the fine particles (B) are suppressed. Therefore, when the photocurable resin composition is applied, the fine particles (B) float in the thickness direction without settling and are finely dispersed without agglomeration in the coating film. In the cured coating film 10 obtained by curing this coating film, the precipitation of the fine particles (B) is suppressed and the convex portions 11 due to the fine particles (B) are uniformly formed in the plane, so that the unevenness is densely distributed. It has become. Further, since the convex portion 11 is formed so that the aggregation of the fine particles (B) is suppressed and the height of the convex portion 11 does not become excessively large, the surface roughness due to the unevenness in the cured film 10 is reduced. ..

具体的には、硬化被膜10においては、凹凸が緻密に形成されており、凹凸の平均間隔Smが、好ましくは30μm以上300μm以下、より好ましくは40μm以上200μm以下となる。平均間隔Smは凸部11間の距離の平均を示しており、平均間隔Smが大きくなるほど凸部11の密度が小さくなる。平均間隔Smが300μmを超える場合では、凹凸が疎らとなるため、輝度ムラは抑制されるものの、優れた防眩性を得ることが困難となる。 Specifically, in the cured film 10, the unevenness is densely formed, and the average interval Sm of the unevenness is preferably 30 μm or more and 300 μm or less, and more preferably 40 μm or more and 200 μm or less. The average interval Sm indicates the average of the distances between the convex portions 11, and the larger the average interval Sm, the smaller the density of the convex portions 11. When the average interval Sm exceeds 300 μm, the unevenness becomes sparse, so that uneven brightness is suppressed, but it is difficult to obtain excellent antiglare properties.

また、硬化被膜10においては、凹凸による表面粗さRaが、好ましくは0.01μm以上0.17μm以下、より好ましくは0.05μm以上0.15μm以下となる。表面粗さRaが0.01μm未満となると、優れた防眩性を得られず、0.17μmを超えると、輝度ムラを十分に抑制できないおそれがある。 Further, in the cured film 10, the surface roughness Ra due to the unevenness is preferably 0.01 μm or more and 0.17 μm or less, and more preferably 0.05 μm or more and 0.15 μm or less. If the surface roughness Ra is less than 0.01 μm, excellent antiglare properties cannot be obtained, and if it exceeds 0.17 μm, uneven brightness may not be sufficiently suppressed.

本実施形態に係る防眩フィルム1は、特にタブレット端末の最表面に好ましく用いることができるが、その他、テレビ等のディスプレイにも適用することができる。 The antiglare film 1 according to the present embodiment can be particularly preferably used on the outermost surface of a tablet terminal, but can also be applied to a display such as a television.

なお、硬化被膜10は、透明性基材20の片面だけでなく、両面に形成されてもよい。また、透明性基材20と硬化被膜10との間に他の層(図示略)が形成されてもよい。他の層としては、例えば、偏光層、光拡散層、低反射層、防汚層、帯電防止層、紫外線・近赤外線(NIR)吸収層、ネオンカット層、電磁波シールド層などを挙げることができる。また、硬化被膜10の表面に、防汚層などの被覆層(図示略)が形成されてもよい。 The cured film 10 may be formed not only on one side of the transparent base material 20 but also on both sides. Further, another layer (not shown) may be formed between the transparent base material 20 and the cured film 10. Examples of other layers include a polarizing layer, a light diffusion layer, a low reflection layer, an antifouling layer, an antistatic layer, an ultraviolet / near infrared (NIR) absorption layer, a neon cut layer, and an electromagnetic wave shield layer. .. Further, a coating layer (not shown) such as an antifouling layer may be formed on the surface of the cured coating film 10.

<3.防眩フィルムの製造方法>
続いて、上述した防眩フィルム1の製造方法について説明する。防眩フィルム1は、例えば以下の工程により製造される。
<3. Manufacturing method of anti-glare film>
Subsequently, the method for producing the antiglare film 1 described above will be described. The antiglare film 1 is manufactured, for example, by the following steps.

(準備工程)
まず、透明性基材20として例えば厚さ100μmのPETフィルムを準備する。
(Preparation process)
First, a PET film having a thickness of, for example, 100 μm is prepared as the transparent base material 20.

(塗布工程)
続いて、透明性基材20の一方の主面上に光硬化性樹脂組成物を塗布して塗膜を形成する。このときの塗膜の厚さ(光硬化性樹脂組成物の塗布厚)は、硬化被膜(防眩層)10に要求される特性によって異なるが、例えば硬化被膜10の厚さが少なくとも1μm以上、好ましくは2μm以上となるように調整する。一方、硬化被膜の厚さの上限値は、特に限定されないが、防眩フィルム1の取り扱い性の観点からは、例えば4μm以下、好ましくは3μm以下となるように、塗膜の厚さを調整するとよい。
(Applying process)
Subsequently, the photocurable resin composition is applied onto one main surface of the transparent base material 20 to form a coating film. The thickness of the coating film (coating thickness of the photocurable resin composition) at this time varies depending on the characteristics required for the cured film (antiglare layer) 10, but for example, the thickness of the cured film 10 is at least 1 μm or more. It is preferably adjusted to be 2 μm or more. On the other hand, the upper limit of the thickness of the cured film is not particularly limited, but from the viewpoint of handleability of the antiglare film 1, the thickness of the coating film is adjusted so as to be, for example, 4 μm or less, preferably 3 μm or less. Good.

塗布方法は、光硬化性樹脂組成物の種類や組成、塗布される透明性基材20の種類などに応じて適宜変更することができる。例えば、スプレーコート法、ディップコート法、エアーナイフコート法、カーテンコート法、ローラーコート法、ワイヤーバーコート法、グラビアコート法やエクストルージョンコート法などが挙げられる。この中でも、作業性および生産性の観点からスプレーコート法が好ましい。 The coating method can be appropriately changed depending on the type and composition of the photocurable resin composition, the type of the transparent base material 20 to be coated, and the like. For example, a spray coating method, a dip coating method, an air knife coating method, a curtain coating method, a roller coating method, a wire bar coating method, a gravure coating method, an extrusion coating method and the like can be mentioned. Among these, the spray coating method is preferable from the viewpoint of workability and productivity.

(光照射工程)
続いて、塗膜に対して活性エネルギー線を光照射する。活性エネルギー線としては、遠紫外線、紫外線、近紫外線、赤外線などの光線に加えて、X線、γ線などの電磁波、電子線、プロトン線、中性子線などが挙げられ、その中でも、硬化速度、照射装置の入手のし易さ、価格などの面から、紫外線が好ましい。紫外線で硬化させる方法としては、200〜500nm波長域の光を発する高圧水銀ランプ、メタルハライドランプ、キセノンランプ、ケミカルランプ等を用いて、100〜3000mJ/cmほど照射する方法などが挙げられる。
(Light irradiation process)
Subsequently, the coating film is irradiated with active energy rays. Examples of active energy rays include electromagnetic waves such as X-rays and γ-rays, electron beams, proton beams, neutron rays, etc., in addition to rays such as far ultraviolet rays, ultraviolet rays, near ultraviolet rays, and infrared rays. Ultraviolet rays are preferable in terms of availability and price of the irradiation device. Examples of the method of curing with ultraviolet rays include a method of irradiating about 100 to 3000 mJ / cm 2 using a high-pressure mercury lamp, a metal halide lamp, a xenon lamp, a chemical lamp or the like that emits light in the wavelength range of 200 to 500 nm.

所定時間の光照射により、光硬化性樹脂組成物を硬化させて硬化被膜10を形成する。これにより、本実施形態に係る防眩フィルム1を得る。 The photocurable resin composition is cured by light irradiation for a predetermined time to form a cured film 10. As a result, the antiglare film 1 according to the present embodiment is obtained.

なお、本実施形態においては、塗布工程と光照射工程との間に、光硬化性樹脂組成物を乾燥させる乾燥工程を設けてもよい。乾燥方法としては、例えば、減圧乾燥または加熱乾燥、さらにはこれらの乾燥を組み合わせる方法などが挙げられる。 In this embodiment, a drying step of drying the photocurable resin composition may be provided between the coating step and the light irradiation step. Examples of the drying method include vacuum drying, heat drying, and a method of combining these drying methods.

<4.本実施形態に係る効果>
本実施形態によれば、以下に示す1つ又は複数の効果を奏する。
<4. Effect of this embodiment>
According to this embodiment, one or more of the following effects are exhibited.

本実施形態の光硬化性樹脂組成物によれば、重量平均分子量が10,000以上の(メタ)アクリル樹脂(a1)と、平均粒子径が1.0μm以上2.8μm以下の微粒子(B)と、を用いて、23℃における粘度を1mPa・s以上1000mPa・s以下となるように構成している。これにより、光硬化性樹脂組成物における微粒子(B)の沈降を抑制できるので、それから形成される硬化被膜10において、微粒子(B)による凸部11を緻密に形成して、凹凸の平均間隔Smを小さく、例えば30〜300μmの範囲に構成することができる。それと同時に、微粒子(B)の凝集を抑制できるので、微粒子(B)による凸部11を過度に大きくならないように形成できるので、硬化被膜10の表面粗さRaを小さく、例えば0.01〜0.17μmの範囲に構成することができる。したがって、本実施形態によれば、防眩性に優れ、かつ輝度ムラの少ない硬化被膜10、およびそれを備える防眩フィルム1を形成することができる。 According to the photocurable resin composition of the present embodiment, the (meth) acrylic resin (a1) having a weight average molecular weight of 10,000 or more and the fine particles (B) having an average particle diameter of 1.0 μm or more and 2.8 μm or less. And, are configured so that the viscosity at 23 ° C. is 1 mPa · s or more and 1000 mPa · s or less. As a result, the sedimentation of the fine particles (B) in the photocurable resin composition can be suppressed, so that the convex portions 11 due to the fine particles (B) are densely formed in the cured coating film 10 formed from the fine particles (B), and the average spacing of the irregularities Sm. Can be small, for example, in the range of 30 to 300 μm. At the same time, since the aggregation of the fine particles (B) can be suppressed, the convex portion 11 due to the fine particles (B) can be formed so as not to become excessively large, so that the surface roughness Ra of the cured coating 10 can be reduced, for example, 0.01 to 0. It can be configured in the range of .17 μm. Therefore, according to the present embodiment, it is possible to form a cured film 10 having excellent antiglare properties and less uneven brightness, and an antiglare film 1 including the cured film 10.

また、本実施形態において、微粒子(B)として、アルミナ微粒子を内包するシリコン微粒子を用いるとよい。アルミナ微粒子を内包するシリコン微粒子は、シリコン微粒子等と比較して光の拡散性に優れているので、硬化被膜10の防眩性をより向上させることができる。 Further, in the present embodiment, as the fine particles (B), silicon fine particles containing alumina fine particles may be used. Since the silicon fine particles containing the alumina fine particles are superior in light diffusivity as compared with the silicon fine particles and the like, the antiglare property of the cured film 10 can be further improved.

また、本実施形態において、微粒子(B)を、固形分100質量部に対して0.1〜20質量部の範囲で含有させるとよい。これにより、硬化被膜10の耐擦傷性を得られると共に、微粒子(B)による濁度の増加を抑制して透明性を確保することができる。 Further, in the present embodiment, the fine particles (B) may be contained in the range of 0.1 to 20 parts by mass with respect to 100 parts by mass of the solid content. As a result, the scratch resistance of the cured film 10 can be obtained, and the increase in turbidity due to the fine particles (B) can be suppressed to ensure transparency.

また、本実施形態において、光重合性成分(A)として、(メタ)アクリル樹脂(a1)以外に、(メタ)アクリレート系モノマー及び/又は(メタ)アクリレート系樹脂(a2)を含有させるとよい。これにより、硬化被膜10の硬度を向上でき、耐擦傷性をさらに向上させることができる。 Further, in the present embodiment, the photopolymerizable component (A) may contain a (meth) acrylate-based monomer and / or a (meth) acrylate-based resin (a2) in addition to the (meth) acrylic resin (a1). .. As a result, the hardness of the cured film 10 can be improved, and the scratch resistance can be further improved.

また、本実施形態において、硬化被膜10は防眩性に優れており、好ましくは、防眩性の指標であるJIS K5600−4−7に準拠して測定される60°鏡面光沢度が120%以下となる。 Further, in the present embodiment, the cured coating film 10 is excellent in antiglare property, and preferably, the 60 ° mirror surface glossiness measured in accordance with JIS K5600-4-7, which is an index of antiglare property, is 120%. It becomes as follows.

また、本実施形態において、硬化被膜10を備える防眩フィルム1は透明性に優れており、透明性の指標であるJIS K7136に準拠して測定される濁度が40%以下となる。 Further, in the present embodiment, the antiglare film 1 provided with the cured film 10 is excellent in transparency, and the turbidity measured in accordance with JIS K7136, which is an index of transparency, is 40% or less.

また、本実施形態において、防眩フィルム1は、防眩性に優れ、かつ輝度ムラの少ない硬化被膜10を備えているので、画面への光の映り込みや画面のギラツキを抑制することができる。つまり、防眩フィルム1は、視認性に優れている。具体的には、JIS K7374に準拠して、スリット幅が0.125mm、0.25mm、0.5mm、1.0mmおよび2.0mmの光学櫛を用いて測定される像鮮明度の合計値が350%以上となり、視認性に優れている。 Further, in the present embodiment, since the antiglare film 1 includes a cured film 10 having excellent antiglare properties and less uneven brightness, it is possible to suppress reflection of light on the screen and glare on the screen. .. That is, the antiglare film 1 is excellent in visibility. Specifically, the total value of image sharpness measured using optical combs having slit widths of 0.125 mm, 0.25 mm, 0.5 mm, 1.0 mm and 2.0 mm according to JIS K7374 is It is 350% or more and has excellent visibility.

次に、本発明について実施例に基づきさらに詳細に説明するが、本発明は、これらの実施例に限定されない。 Next, the present invention will be described in more detail based on examples, but the present invention is not limited to these examples.

<実施例1>
〔原料〕
用いた原料は以下のとおりである。
<Example 1>
〔material〕
The raw materials used are as follows.

光重合性成分(A)として、
主骨格がアクリルであり、側鎖に光重合性官能基として(メタ)アクリロイル基を有する、重量平均分子量(Mw)が40,000である光重合性(メタ)アクリル樹脂(a1)(大成ファインケミカル株式会社製「アクリット8KX−078」、固形分40%)を用いた。
As a photopolymerizable component (A)
A photopolymerizable (meth) acrylic resin (a1) (Taisei Fine Chemicals) having an acrylic main skeleton, a (meth) acryloyl group as a photopolymerizable functional group in the side chain, and a weight average molecular weight (Mw) of 40,000. "Acrylo 8KX-078" manufactured by Co., Ltd., solid content 40%) was used.

微粒子(B)として、
平均粒子径が1.9μmのアルミナ微粒子内包型シリコン微粒子(酸化アルミニウム微粒子内包型ポリオルガノシルセスキオキサン微粒子:固形分100%)を用いた。なお、平均粒子径は、レーザー回折式粒子径分布測定装置(島津製作所株式会社製「SALD−2200」)を用いて、下記条件にて測定された。
分散媒 :水
分散剤 :ヘキサメタリン酸ナトリウム
回転スピード :7
超音波分散時間 :10分間
As fine particles (B)
Alumina fine particle-encapsulating silicon fine particles (aluminum oxide fine particle-encapsulating polyorganosylsesquioxane fine particles: 100% solid content) having an average particle diameter of 1.9 μm were used. The average particle size was measured under the following conditions using a laser diffraction type particle size distribution measuring device (“SALD-2200” manufactured by Shimadzu Corporation).
Dispersion medium: Water dispersant: Sodium hexametaphosphate Rotation speed: 7
Ultrasonic dispersion time: 10 minutes

光重合開始剤(C)として、
1−ヒドロキシ−シクロへキシル−フェニル−ケトン(BASF株式会社製「イルガキュアー184D」、固形分100%)と、2,4,6−トリメチルベンゾイル−ジフェニル−フォスフィンオキサイド(BASF株式会社製「イルガキュアーTPO」、固形分100%)と、を用いた。
As a photopolymerization initiator (C)
1-Hydroxy-cyclohexyl-phenyl-ketone (BASF Corporation "Irgacure 184D", 100% solid content) and 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide (BASF Corporation "Irga""CureTPO", solid content 100%) and was used.

その他の添加剤として、
重合禁止剤のハイドロキノン(三井化学株式会社製、固形分100%)と、
シリコン系消泡剤(BYK株式会社製「BYK−066N」、固形分1%)と、
フッ素系レベリング剤(DIC株式会社製「メガファックRS−75」、固形分40%)と、
有機溶剤であるメチルエチルケトンと、を用いた。
As other additives
Hydroquinone, a polymerization inhibitor (manufactured by Mitsui Chemicals, Inc., 100% solid content),
Silicone antifoaming agent ("BYK-066N" manufactured by BYK Co., Ltd., solid content 1%) and
Fluorine-based leveling agent ("Mega Fvck RS-75" manufactured by DIC Corporation, solid content 40%),
Methyl ethyl ketone, which is an organic solvent, was used.

〔光硬化性樹脂組成物の調製〕
下記表1に示すように、上記原料を配合することにより、実施例1の光硬化性樹脂組成物を調製した。
具体的には、メチルエチルケトン29.3質量部に、光重合性成分(A)として、重量平均分子量(Mw)が40,000の光重合性アクリル樹脂(a1)を67.0質量部と、(C)光重合開始剤として、イルガキュアー184Dを0.6質量部、およびイルガキュアーTPOを0.6質量部と、その他の添加剤として、ハイドロキノンを0.02質量部、シリコン系消泡剤を0.02質量部、およびフッ素系レベリング剤を0.7質量部と、を添加し、溶解させた。その後、溶解液に、平均粒子径が1.9μmのアルミナ微粒子内包型シリコン微粒子を1.8質量部、添加して撹拌した。これにより、微粒子(B)が分散した光硬化性樹脂組成物を得た。
[Preparation of photocurable resin composition]
As shown in Table 1 below, the photocurable resin composition of Example 1 was prepared by blending the above raw materials.
Specifically, 67.0 parts by mass of a photopolymerizable acrylic resin (a1) having a weight average molecular weight (Mw) of 40,000 as a photopolymerizable component (A) was added to 29.3 parts by mass of methyl ethyl ketone (A1). C) As a photopolymerization initiator, 0.6 parts by mass of Irgacure 184D, 0.6 parts by mass of Irgacure TPO, and as other additives, 0.02 parts by mass of hydroquinone and a silicon-based defoaming agent. 0.02 parts by mass and 0.7 parts by mass of the fluorine-based leveling agent were added and dissolved. Then, 1.8 parts by mass of alumina fine particle-encapsulating silicon fine particles having an average particle diameter of 1.9 μm was added to the solution and stirred. As a result, a photocurable resin composition in which the fine particles (B) were dispersed was obtained.

調製した光硬化性樹脂組成物について、粘度計(ThermoFisher Scientific株式会社製「HAAKE Viscotester 6 plus」)を用いて、23℃における粘度を測定したところ、16mPa・sであることが確認された。 When the viscosity of the prepared photocurable resin composition was measured at 23 ° C. using a viscometer (“HAAKE Viscotester 6 plus” manufactured by Thermo Fisher Scientific Co., Ltd.), it was confirmed to be 16 mPa · s.

〔防眩フィルムの作製〕
次に、上記で得られた光硬化性樹脂組成物を用いて防眩フィルムを作製した。
まず、透明性基材として、PETフィルム(東洋紡株式会社製「コスモシャインA4300」、縦200mm×横150mm×厚み100μm)を準備した。続いて、上記で調製した光硬化性樹脂組成物をPETフィルムの一方の主面に塗布し、塗膜を形成した。このとき、得られる硬化被膜の膜厚(ドライ膜厚)が2〜3μmとなるように、塗膜の厚さを調整して塗布した。続いて、高圧水銀ランプを用いて、塗膜に対して紫外線を照射した(照射量:300〜400mJ/cm)。照射により塗膜を硬化させ、膜厚2.0μmの硬化被膜を形成して、本実施例の防眩フィルムを作製した。
[Making anti-glare film]
Next, an antiglare film was prepared using the photocurable resin composition obtained above.
First, as a transparent base material, a PET film (“Cosmo Shine A4300” manufactured by Toyobo Co., Ltd., length 200 mm × width 150 mm × thickness 100 μm) was prepared. Subsequently, the photocurable resin composition prepared above was applied to one main surface of the PET film to form a coating film. At this time, the thickness of the coating film was adjusted and applied so that the film thickness (dry film thickness) of the obtained cured film was 2 to 3 μm. Subsequently, the coating film was irradiated with ultraviolet rays using a high-pressure mercury lamp (irradiation amount: 300 to 400 mJ / cm 2 ). The coating film was cured by irradiation to form a cured film having a film thickness of 2.0 μm, and the antiglare film of this example was produced.

得られた防眩フィルムについて、硬化被膜における凹凸の平均間隔Smと凹凸による表面粗さRaとを測定したところ、平均間隔Smが49.6μmであり、表面粗さRaが0.11μmであることが確認された。なお、平均間隔Smおよび表面粗さRaは、超小型表面粗さ測定機E−35B(東京精密株式会社製)を用いて測定した。 Regarding the obtained antiglare film, when the average interval Sm of the unevenness in the cured film and the surface roughness Ra due to the unevenness were measured, the average interval Sm was 49.6 μm and the surface roughness Ra was 0.11 μm. Was confirmed. The average interval Sm and the surface roughness Ra were measured using an ultra-compact surface roughness measuring machine E-35B (manufactured by Tokyo Seimitsu Co., Ltd.).

〔評価方法〕
次に、得られた防眩フィルムに対して、以下のような評価を行った。
〔Evaluation methods〕
Next, the obtained antiglare film was evaluated as follows.

(防眩性)
JIS K5600−4−7に準拠して60°鏡面光沢度を測定し、防眩フィルムの防眩性を評価した。本実施例では、60°鏡面光沢度が120%以下であれば、防眩性に優れていると評価した。
(Anti-glare)
The 60 ° mirror surface gloss was measured according to JIS K5600-4-7, and the antiglare property of the antiglare film was evaluated. In this example, when the 60 ° mirror surface glossiness was 120% or less, it was evaluated that the antiglare property was excellent.

(輝度ムラ)
防眩フィルムに映し出される画像のギラツキを目視にて判断することにより、輝度ムラの程度を評価した。具体的には、画像表示装置として「iPad(登録商標)」を使用し、アプリケーションソフトウェア「Free Light」にて、ディスプレイ表示を緑色に設定した上で、防眩フィルムを硬化被膜面が表側となるようにディスプレイ上に乗せて軽く押し当てたときの、画像のギラツキを目視にて判断した。本実施例では、ギラツキの程度を以下のレベルで分類し、レベルが3以上であれば、輝度ムラが少ないものと評価した。
5:ギラツキがまったくない
4:ギラツキがほとんどない
3:ギラツキがややあるが、許容範囲である
2:ギラツキが多い
1:ギラツキがかなり多い
(Brightness unevenness)
The degree of luminance unevenness was evaluated by visually judging the glare of the image projected on the antiglare film. Specifically, "iPad (registered trademark)" is used as an image display device, the display display is set to green by the application software "Free Light", and the antiglare film is cured with the coated surface facing the front side. The glare of the image when it was placed on the display and lightly pressed was visually judged. In this example, the degree of glare was classified into the following levels, and when the level was 3 or more, it was evaluated that the brightness unevenness was small.
5: No glare at all 4: Almost no glare 3: Some glare but acceptable 2: Lots of glare 1: Lots of glare

(濁度)
JIS K7136に準拠して防眩フィルムの濁度(ヘイズ:HZ)を測定し、評価した。本実施例では、濁度が40%以下であれば、画像の視認性に優れており、20%以下であれば、特に優れているものと評価した。なお、濁度は、ヘイズメーター(日本電色工業株式会社製のNDH2000)を用いて測定した。
(Turbidity)
The turbidity (haze: HZ) of the antiglare film was measured and evaluated according to JIS K7136. In this example, when the turbidity was 40% or less, the visibility of the image was excellent, and when it was 20% or less, it was evaluated to be particularly excellent. The turbidity was measured using a haze meter (NDH2000 manufactured by Nippon Denshoku Industries Co., Ltd.).

(全光線透過率)
JIS K7361に準拠して防眩フィルムの全光線透過率(TT)を測定し、評価した。本実施例では、全光線透過率が85%以上であれば、透過率が高いものと評価した。なお、全光線透過率は、ヘイズメーター(日本電色工業株式会社製のNDH2000)を用いて測定した。
(Total light transmittance)
The total light transmittance (TT) of the antiglare film was measured and evaluated according to JIS K7361. In this example, if the total light transmittance is 85% or more, it is evaluated that the transmittance is high. The total light transmittance was measured using a haze meter (NDH2000 manufactured by Nippon Denshoku Industries Co., Ltd.).

(像鮮明度)
像鮮明度とは、防眩フィルム越しに観察できる画像がどれだけ鮮明に見えるかを数値評価したものであり、JIS K7374に準拠して測定される。本実施例では、JIS K7374に準拠して、スリット幅の異なる5種類の光学櫛(スリット幅:0.125mm、0.25mm、0.5mm、1mmおよび2mm)を用いて測定される像鮮明度の合計値により評価しており、その合計値が350%以上であれば、画像が鮮明に見えるものと評価した。なお、像鮮明度は、スガ試験機株式会社製のICM−1Tを用いて測定した。
(Image sharpness)
The image sharpness is a numerical evaluation of how clear an image that can be observed through an antiglare film looks, and is measured in accordance with JIS K7374. In this embodiment, image sharpness measured using five types of optical combs (slit widths: 0.125 mm, 0.25 mm, 0.5 mm, 1 mm and 2 mm) having different slit widths in accordance with JIS K7374. It was evaluated by the total value of, and if the total value was 350% or more, it was evaluated that the image was clearly visible. The image sharpness was measured using ICM-1T manufactured by Suga Test Instruments Co., Ltd.

(硬度)
JIS K 5600に準拠して荷重750gで鉛筆硬度試験を行い、防眩フィルムの鉛筆硬度を測定し、評価した。本実施例では、鉛筆硬度がH以上であれば、十分な硬度を有しており、耐擦傷性に優れているものと評価した。
(hardness)
A pencil hardness test was performed under a load of 750 g in accordance with JIS K 5600, and the pencil hardness of the antiglare film was measured and evaluated. In this example, when the pencil hardness was H or more, it was evaluated that it had sufficient hardness and was excellent in scratch resistance.

(外観)
防眩フィルムを、硬化被膜を上に向けた状態から45°傾けて、透明性基材越しに硬化被膜を目視により観察し、硬化被膜の表面における微粒子の凝集物の有無、ハジキの有無および表面の均一性を評価した。本実施例では、凝集物やハジキが無く、表面が均一であるものを外観が良好であると評価した。
(appearance)
The antiglare film is tilted 45 ° from the state where the cured film is facing upward, and the cured film is visually observed through the transparent substrate, and the presence or absence of fine particle agglomerates on the surface of the cured film, the presence or absence of cissing, and the surface The uniformity of was evaluated. In this example, those having no agglomerates or repellents and having a uniform surface were evaluated as having a good appearance.

<実施例2>
実施例2では、光重合性(メタ)アクリル樹脂(a1)として、重量平均分子量が10,000であるものを用いた以外は、実施例1と同様に光硬化性樹脂組成物を調製し、防眩フィルムを作製した。
<Example 2>
In Example 2, a photocurable resin composition was prepared in the same manner as in Example 1 except that a photopolymerizable (meth) acrylic resin (a1) having a weight average molecular weight of 10,000 was used. An antiglare film was produced.

<実施例3>
実施例3では、光重合性(メタ)アクリル樹脂(a1)として、重量平均分子量が20,000であるものを用いた以外は、実施例1と同様に光硬化性樹脂組成物を調製し、防眩フィルムを作製した。
<Example 3>
In Example 3, a photocurable resin composition was prepared in the same manner as in Example 1 except that a photopolymerizable (meth) acrylic resin (a1) having a weight average molecular weight of 20,000 was used. An antiglare film was produced.

<実施例4>
実施例4では、光重合性(メタ)アクリル樹脂(a1)として、重量平均分子量が80,000であるものを用いた以外は、実施例1と同様に光硬化性樹脂組成物を調製し、防眩フィルムを作製した。
<Example 4>
In Example 4, a photocurable resin composition was prepared in the same manner as in Example 1 except that a photopolymerizable (meth) acrylic resin (a1) having a weight average molecular weight of 80,000 was used. An antiglare film was produced.

参考例1
参考例1では、微粒子(B)として、平均粒子径が2.0μmのシリコン微粒子を用いた以外は、実施例1と同様に光硬化性樹脂組成物を調製し、防眩フィルムを作製した。
< Reference example 1 >
In Reference Example 1 , a photocurable resin composition was prepared in the same manner as in Example 1 except that silicon fine particles having an average particle diameter of 2.0 μm were used as the fine particles (B) to prepare an antiglare film.

<実施例
実施例では、光重合性成分(A)として、光重合性(メタ)アクリル樹脂(a1)と共に(メタ)アクリレート系モノマー(a2)を用いて、配合量を適宜変更した以外は、実施例1と同様に光硬化性樹脂組成物を調製した。本実施例では、(メタ)アクリレート系モノマー(a2)として、ジペンタエリスリトールペンタアクリレートとジペンタエリスリトールヘキサアクリレートの混合物(固形分100%)を用いた。
<Example 5 >
In Example 5 , the (meth) acrylate-based monomer (a2) was used together with the photopolymerizable (meth) acrylic resin (a1) as the photopolymerizable component (A), except that the blending amount was appropriately changed. A photocurable resin composition was prepared in the same manner as in 1. In this example, a mixture of dipentaerythritol pentaacrylate and dipentaerythritol hexaacrylate (solid content 100%) was used as the (meth) acrylate-based monomer (a2).

参考例2
参考例2では、微粒子(B)として、平均粒子径1.2μmのアクリル微粒子を用いた以外は、実施例と同様に光硬化性樹脂組成物を調製し、防眩フィルムを作製した。
< Reference example 2 >
In Reference Example 2 , a photocurable resin composition was prepared in the same manner as in Example 5 except that acrylic fine particles having an average particle diameter of 1.2 μm were used as the fine particles (B) to prepare an antiglare film.

参考例3
参考例3では、微粒子(B)として、平均粒子径2.3μmのアクリル微粒子を用いた以外は、実施例と同様に光硬化性樹脂組成物を調製し、防眩フィルムを作製した。
< Reference example 3 >
In Reference Example 3 , a photocurable resin composition was prepared in the same manner as in Example 5 except that acrylic fine particles having an average particle diameter of 2.3 μm were used as the fine particles (B) to prepare an antiglare film.

参考例4
参考例4では、微粒子(B)として、平均粒子径2.1μmの疎水性シリカ微粒子を用いた以外は、実施例と同様に光硬化性樹脂組成物を調製し、防眩フィルムを作製した。
< Reference example 4 >
In Reference Example 4 , a photocurable resin composition was prepared in the same manner as in Example 5 except that hydrophobic silica fine particles having an average particle diameter of 2.1 μm were used as the fine particles (B) to prepare an antiglare film. ..

<比較例1>
比較例1では、下記表2に示すように、光重合性成分(A)として、光重合性(メタ)アクリル樹脂(a1)を用いずに、重量平均分子量が900のウレタンアクリレート樹脂(固形分40%)を用いて、配合量を適宜変更した以外は、実施例1と同様に光硬化性樹脂組成物を調製し、防眩フィルムを作製した。
<Comparative example 1>
In Comparative Example 1, as shown in Table 2 below, a urethane acrylate resin (solid content) having a weight average molecular weight of 900 without using a photopolymerizable (meth) acrylic resin (a1) as the photopolymerizable component (A). 40%) was used to prepare a photocurable resin composition in the same manner as in Example 1 except that the blending amount was appropriately changed to prepare an antiglare film.

<比較例2>
比較例2では、微粒子(B)として、平均粒子径が3.0μmのアルミナ微粒子内包型シリコン微粒子を用いた以外は、実施例と同様に光硬化性樹脂組成物を調製し、防眩フィルムを作製した。
<Comparative example 2>
In Comparative Example 2, a photocurable resin composition was prepared in the same manner as in Example 5 except that alumina fine particle-encapsulating silicon fine particles having an average particle diameter of 3.0 μm were used as the fine particles (B), and an antiglare film was prepared. Was produced.

<比較例3>
比較例3では、微粒子(B)として、平均粒子径が3.0μmのアクリル微粒子を用いた以外は、実施例と同様に光硬化性樹脂組成物を調製し、防眩フィルムを作製した。
<Comparative example 3>
In Comparative Example 3, a photocurable resin composition was prepared in the same manner as in Example 5 except that acrylic fine particles having an average particle diameter of 3.0 μm were used as the fine particles (B) to prepare an antiglare film.

<比較例4>
比較例4では、微粒子(B)として、平均粒子径が0.7μmのアクリル微粒子を用いた以外は、実施例と同様に光硬化性樹脂組成物を調製し、防眩フィルムを作製した。
<Comparative example 4>
In Comparative Example 4, a photocurable resin composition was prepared in the same manner as in Example 5 except that acrylic fine particles having an average particle diameter of 0.7 μm were used as the fine particles (B) to prepare an antiglare film.

<比較例5>
比較例5では、微粒子(B)として、平均粒子径が0.8μmのアクリル微粒子を用いた以外は、実施例と同様に光硬化性樹脂組成物を調製し、防眩フィルムを作製した。
<Comparative example 5>
In Comparative Example 5, a photocurable resin composition was prepared in the same manner as in Example 5 except that acrylic fine particles having an average particle diameter of 0.8 μm were used as the fine particles (B) to prepare an antiglare film.

表1に示すように、実施例1〜5、参考例1〜4の防眩フィルムでは、いずれも凹凸の平均間隔Smが30〜300μmであり、表面平均粗さRaが0.01〜0.17μmであることが確認された。実施例1〜5、参考例1〜4は、60°鏡面光沢度が120%以下であり、防眩性に優れていることが確認された。また、ギラツキの程度のレベルが3以上であり、輝度ムラが少なかった。また、濁度、全光線透過率、像鮮明度および硬度についても優れていることが確認された。 As shown in Table 1, in the antiglare films of Examples 1 to 5 and Reference Examples 1 to 4 , the average spacing Sm of the unevenness is 30 to 300 μm, and the surface average roughness Ra is 0.01 to 0. It was confirmed to be 17 μm. It was confirmed that Examples 1 to 5 and Reference Examples 1 to 4 had a 60 ° mirror surface gloss of 120% or less and were excellent in antiglare property. In addition, the level of glare was 3 or more, and the brightness unevenness was small. It was also confirmed that the turbidity, total light transmittance, image sharpness and hardness were also excellent.

実施例1,3〜5および参考例1〜4と実施例2とを比較したとき、実施例1,3〜5および参考例1〜4では、重量平均分子量が15,000以上の光重合性アクリル樹脂(a1)を用いたため、重量平均分子量が10,000の光重合性アクリル樹脂(a1)を用いた実施例2よりも、硬化被膜の外観を良好にできることが確認された。 When Examples 1, 3 to 5 and Reference Examples 1 to 4 are compared with Example 2, in Examples 1 , 3 to 5 and Reference Examples 1 to 4 , photopolymerizability having a weight average molecular weight of 15,000 or more is achieved . Since the acrylic resin (a1) was used, it was confirmed that the appearance of the cured film could be improved as compared with Example 2 using the photopolymerizable acrylic resin (a1) having a weight average molecular weight of 10,000.

実施例1と参考例1とを比較したとき、微粒子(B)として、アルミナ微粒子内包型シリコン微粒子を用いた実施例1では、シリコン微粒子を用いた参考例1よりも60°鏡面光沢度を低減でき、防眩性により優れていることが確認された。これは、アルミナ微粒子内包型シリコン微粒子が、シリコン微粒子よりも光の拡散性に優れているため、と推測される。 When Example 1 and Reference Example 1 are compared, in Example 1 in which alumina fine particles-encapsulating silicon fine particles are used as the fine particles (B), the mirror glossiness is reduced by 60 ° as compared with Reference Example 1 in which silicon fine particles are used. It was confirmed that it was possible and was superior in anti-glare property. It is presumed that this is because the alumina fine particle-encapsulating silicon fine particles are superior in light diffusivity to the silicon fine particles.

実施例1〜4および参考例1実施例5および参考例2〜4とを比較したとき、実施例5および参考例2〜4では、アクリレート系モノマー(a2)を用いたため、実施例1〜4および参考例1よりも硬化被膜の硬度を高くできることが確認された。
When compared with Examples 1-4 and Reference Example 1 and Example 5 and Reference Examples 2-4, Example 5 and Reference Example 2-4, since using the acrylate monomer (a2), Examples 1 It was confirmed that the hardness of the cured film could be made higher than that of 4 and Reference Example 1 .

表2に示すように、比較例1では、凹凸の平均間隔Smが354.3μmと大きく、微粒子(B)による凸部が緻密に形成されていないことが確認された。その結果、60°鏡面光沢度が141%と高く、防眩性に劣ることが確認された。これは、重量平均分子量が低いウレタンアクリレート樹脂を用いたため、防眩層において微粒子(B)が沈降したことによるものと推測される。 As shown in Table 2, in Comparative Example 1, it was confirmed that the average spacing Sm of the unevenness was as large as 354.3 μm, and the convex portions due to the fine particles (B) were not densely formed. As a result, it was confirmed that the 60 ° mirror surface glossiness was as high as 141% and the antiglare property was inferior. It is presumed that this is because the fine particles (B) settled in the antiglare layer because the urethane acrylate resin having a low weight average molecular weight was used.

比較例2,3では、微粒子(B)として、平均粒子径が2.8μmよりも大きいものを用いたため、表面粗さRaが0.17μmよりも大きいことが確認された。その結果、輝度ムラが多くなり、また像鮮明度が低くなることが確認された。 In Comparative Examples 2 and 3, since the fine particles (B) having an average particle diameter larger than 2.8 μm were used, it was confirmed that the surface roughness Ra was larger than 0.17 μm. As a result, it was confirmed that the brightness unevenness increased and the image sharpness decreased.

比較例4,5では、微粒子(B)として、平均粒子径が1.0μmよりも小さいものを用いており、平均間隔Smが300μmよりも大きいことが確認された。その結果、輝度ムラは少ないものの、凹凸が緻密に形成されていないためか、60°鏡面光沢度が120%よりも高く、十分な防眩性を得られないことが確認された。 In Comparative Examples 4 and 5, fine particles (B) having an average particle diameter smaller than 1.0 μm were used, and it was confirmed that the average interval Sm was larger than 300 μm. As a result, it was confirmed that although the brightness unevenness was small, the 60 ° mirror surface glossiness was higher than 120%, and sufficient antiglare property could not be obtained, probably because the unevenness was not formed precisely.

1 防眩フィルム
10 硬化被膜(防眩層)
11 凸部
20 透明性基材
1 Anti-glare film 10 Cured film (anti-glare layer)
11 Convex part 20 Transparent base material

Claims (14)

光重合性成分(A)、微粒子(B)および光重合開始剤(C)を含有する光硬化性樹脂組成物であって、
前記光重合性成分(A)は、重量平均分子量が10,000以上である光重合性(メタ)アクリル樹脂(a1)のみを含み、
前記微粒子(B)は、平均粒子径が1.0μm以上2.8μm以下の酸化アルミニウム微粒子内包型ポリオルガノシルセスキオキサン微粒子であり、
23℃における粘度が13mPa・s以上1000mPa・s以下であることを特徴とする光硬化性樹脂組成物。
A photocurable resin composition containing a photopolymerizable component (A), fine particles (B) and a photopolymerization initiator (C).
The photopolymerizable component (A) contains only a photopolymerizable (meth) acrylic resin (a1) having a weight average molecular weight of 10,000 or more.
The fine particles (B) are polyorganosylsesquioxane fine particles containing aluminum oxide fine particles having an average particle diameter of 1.0 μm or more and 2.8 μm or less.
A photocurable resin composition having a viscosity at 23 ° C. of 13 mPa · s or more and 1000 mPa · s or less.
光重合性成分(A)、微粒子(B)および光重合開始剤(C)を含有する光硬化性樹脂組成物であって、
前記光重合性成分(A)が、重量平均分子量が10,000以上である光重合性(メタ)アクリル樹脂(a1)と、前記光重合性(メタ)アクリル樹脂(a1)以外の光重合性の(メタ)アクリレート系モノマー及び/または(メタ)アクリレート系樹脂(a2)のみからなり、前記(メタ)アクリレート系モノマー及び/又は(メタ)アクリレート系樹脂(a2)を前記光硬化性樹脂組成物の固形分100質量部に対して40質量部以下の量で含有し、
前記微粒子(B)は、平均粒子径が1.0μm以上2.8μm以下の酸化アルミニウム微粒子内包型ポリオルガノシルセスキオキサン微粒子であり、
23℃における粘度が13mPa・s以上1000mPa・s以下であることを特徴とする光硬化性樹脂組成物。
A photocurable resin composition containing a photopolymerizable component (A), fine particles (B) and a photopolymerization initiator (C).
The photopolymerizable component (A) is photopolymerizable other than the photopolymerizable (meth) acrylic resin (a1) having a weight average molecular weight of 10,000 or more and the photopolymerizable (meth) acrylic resin (a1). The photocurable resin composition comprises only the (meth) acrylate-based monomer and / or the (meth) acrylate-based resin (a2), and the (meth) acrylate-based monomer and / or the (meth) acrylate-based resin (a2). In an amount of 40 parts by mass or less with respect to 100 parts by mass of the solid content of
The fine particles (B) are polyorganosylsesquioxane fine particles containing aluminum oxide fine particles having an average particle diameter of 1.0 μm or more and 2.8 μm or less.
A photocurable resin composition having a viscosity at 23 ° C. of 13 mPa · s or more and 1000 mPa · s or less.
前記微粒子(B)を、前記光硬化性樹脂組成物の固形分100質量部に対して0.1質量部以上20質量部以下の範囲で含有することを特徴とする請求項1又は2に記載の光硬化性樹脂組成物。 The first or second claim, wherein the fine particles (B) are contained in a range of 0.1 parts by mass or more and 20 parts by mass or less with respect to 100 parts by mass of the solid content of the photocurable resin composition. Photocurable resin composition. 防眩フィルム形成用である、請求項1〜3のいずれかに記載の光硬化性樹脂組成物。 The photocurable resin composition according to any one of claims 1 to 3, which is used for forming an antiglare film. 請求項1〜4のいずれかに記載の光硬化性樹脂組成物から形成され、前記微粒子(B)による凹凸を表面に有することを特徴とする硬化被膜。 A cured film formed from the photocurable resin composition according to any one of claims 1 to 4, characterized by having irregularities due to the fine particles (B) on the surface. 表面粗さRaが0.01μm以上0.17μm以下であることを特徴とする請求項5に記載の硬化被膜。 The cured coating according to claim 5, wherein the surface roughness Ra is 0.01 μm or more and 0.17 μm or less. 凹凸の平均間隔Smが30μm以上300μm以下であることを特徴とする請求項5又は6に記載の硬化被膜。 The cured coating according to claim 5 or 6, wherein the average spacing Sm of the unevenness is 30 μm or more and 300 μm or less. JIS K5600−4−7に準拠して測定される60°鏡面光沢度が120%以下であることを特徴とする請求項5〜7のいずれかに記載の硬化被膜。 The cured coating according to any one of claims 5 to 7, wherein the 60 ° mirror surface gloss measured in accordance with JIS K5600-4-7 is 120% or less. 透明性基材と、前記透明性基材上に設けられる請求項5〜8のいずれかに記載の硬化被膜と、を備えることを特徴とする防眩フィルム。 An antiglare film comprising a transparent base material and the cured film according to any one of claims 5 to 8 provided on the transparent base material. JIS K7136に準拠して測定される濁度が40%以下であることを特徴とする請求項9に記載の防眩フィルム。 The antiglare film according to claim 9, wherein the turbidity measured in accordance with JIS K7136 is 40% or less. JIS K7374に準拠して、スリット幅が0.125mm、0.25mm、0.5mm、1.0mmおよび2.0mmの光学櫛を用いて測定される像鮮明度の合計値が350%以上であることを特徴とする請求項9又は10に記載の防眩フィルム。 According to JIS K7374, the total value of image sharpness measured using optical combs with slit widths of 0.125 mm, 0.25 mm, 0.5 mm, 1.0 mm and 2.0 mm is 350% or more. The antiglare film according to claim 9 or 10. 請求項9〜11のいずれかに記載の防眩フィルムを備えることを特徴とする画像表示装置。 An image display device comprising the antiglare film according to any one of claims 9 to 11. 請求項1〜4のいずれかに記載の光硬化性樹脂組成物を光照射により硬化させる硬化工程を有することを特徴とする硬化被膜の製造方法。 A method for producing a cured film, which comprises a curing step of curing the photocurable resin composition according to any one of claims 1 to 4 by light irradiation. 請求項1〜4のいずれかに記載の光硬化性樹脂組成物を透明性基材の少なくとも一方の主面に塗布する塗布工程と、
前記塗布工程の後、光照射により前記光硬化性樹脂組成物を硬化させて硬化被膜を形成する硬化工程と、を有することを特徴とする防眩フィルムの製造方法。
A coating step of applying the photocurable resin composition according to any one of claims 1 to 4 to at least one main surface of a transparent substrate.
A method for producing an antiglare film, which comprises, after the coating step, a curing step of curing the photocurable resin composition by light irradiation to form a cured film.
JP2014171481A 2014-08-26 2014-08-26 A photocurable resin composition, a cured film and antiglare film formed from the composition, an image display device, and a method for producing the cured film and antiglare film. Active JP6826803B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014171481A JP6826803B2 (en) 2014-08-26 2014-08-26 A photocurable resin composition, a cured film and antiglare film formed from the composition, an image display device, and a method for producing the cured film and antiglare film.
KR1020150119251A KR102246690B1 (en) 2014-08-26 2015-08-25 Photocurable resin composition, cured coating film formed from the composition, anti-glare film formed from the composition, method of producing cured coating film, and method of producing anti-glare film
CN201510528395.7A CN105388704A (en) 2014-08-26 2015-08-25 Photocurable resin composition, cured coating film, anti-glare film, method for manufacturing the same, and image display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014171481A JP6826803B2 (en) 2014-08-26 2014-08-26 A photocurable resin composition, a cured film and antiglare film formed from the composition, an image display device, and a method for producing the cured film and antiglare film.

Publications (2)

Publication Number Publication Date
JP2016045448A JP2016045448A (en) 2016-04-04
JP6826803B2 true JP6826803B2 (en) 2021-02-10

Family

ID=55421127

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014171481A Active JP6826803B2 (en) 2014-08-26 2014-08-26 A photocurable resin composition, a cured film and antiglare film formed from the composition, an image display device, and a method for producing the cured film and antiglare film.

Country Status (3)

Country Link
JP (1) JP6826803B2 (en)
KR (1) KR102246690B1 (en)
CN (1) CN105388704A (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI778960B (en) * 2016-04-28 2022-10-01 日商琳得科股份有限公司 Film for forming protective film, composite sheet for forming protective film, and method of manufacturing semiconductor chip having protective film
CN108886023B (en) * 2016-04-28 2023-09-08 琳得科株式会社 Film for forming protective film and composite sheet for forming protective film
TWI764944B (en) 2016-10-07 2022-05-21 日商日塗汽車塗料股份有限公司 Optical laminated member and method of manufacturing the optical laminated member
KR102554277B1 (en) * 2016-11-21 2023-07-11 동우 화인켐 주식회사 Self emission type photosensitive resin composition, color filter manufactured using thereof and image display device having the same
KR101988548B1 (en) 2016-12-12 2019-06-12 주식회사 엘지화학 Optical film and display device comprising the same
CN109804277B (en) * 2016-12-12 2022-01-11 株式会社Lg化学 Optical film and image display device including the same
JP6393384B1 (en) 2017-10-06 2018-09-19 日本ペイント・オートモーティブコーティングス株式会社 Method for forming antiglare hard coat layer
TWI679474B (en) * 2018-10-23 2019-12-11 友達光電股份有限公司 Anti-light leakage film assembly and display device using thereof
CN110119004B (en) * 2019-06-03 2022-05-31 明基材料有限公司 Anti-dazzle film and polarizing plate with same
CN112442292A (en) * 2019-08-28 2021-03-05 荒川化学工业株式会社 Active energy ray-curable antiglare hard coating agent, cured film, and laminated film
JP7345727B2 (en) * 2019-09-27 2023-09-19 株式会社ニデック Resin composition for hard coat and its use
US20230341590A1 (en) * 2020-07-20 2023-10-26 Lg Chem, Ltd. Anti-glare film, polarizing plate and display apparatus
KR102544889B1 (en) * 2021-01-28 2023-06-27 에스엠에스주식회사 Hard coating composition having high scratch-resistant, anti-glare and anti-pollution properties and backcover member coated thereby
JP7433282B2 (en) * 2021-12-17 2024-02-19 ソマール株式会社 distance measuring device
CN114395150B (en) * 2021-12-29 2024-04-09 江苏皇冠新材料科技有限公司 PET film and preparation method thereof, PET protective film and preparation method thereof
JP2024053740A (en) 2022-10-04 2024-04-16 Dic株式会社 Active energy ray-curable composition, cured product and film
JP2024071913A (en) 2022-11-15 2024-05-27 Dic株式会社 Active energy ray-curable composition, cured material, and film

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11326608A (en) 1998-05-08 1999-11-26 Dainippon Printing Co Ltd Antiglare film, polarizing film and transmission type display device
JP4082965B2 (en) * 2002-08-28 2008-04-30 リンテック株式会社 Anti-glare hard coat film
JP4228845B2 (en) * 2003-09-03 2009-02-25 セイコーエプソン株式会社 Microlens manufacturing method, microlens, optical film, projection screen, and projector system
JP2006154770A (en) * 2004-10-28 2006-06-15 Fuji Photo Film Co Ltd Anti-glare anti-reflection film, polarizing plate, and image display device
US20060092495A1 (en) * 2004-10-28 2006-05-04 Fuji Photo Film Co., Ltd. Anti-glare anti-reflection film, polarizing plate, and image display device
EP1853318B1 (en) * 2005-02-14 2016-05-18 Australian Nuclear Science And Technology Organisation Layered nanoparticles
JP5220286B2 (en) * 2006-06-15 2013-06-26 日東電工株式会社 Anti-glare hard coat film, polarizing plate and image display device using the same
US8163393B2 (en) 2007-03-19 2012-04-24 Dai Nippon Printing Co., Ltd. Anti-dazzling optical laminate
JP2009175375A (en) 2008-01-24 2009-08-06 Nippon Shokubai Co Ltd Antiglare laminate
JP2010020268A (en) * 2008-06-09 2010-01-28 Sony Corp Optical film and its production method, anti-glare film, polarizer with optical layer, and display
JP5407545B2 (en) * 2009-05-19 2014-02-05 ソニー株式会社 Anti-glare film, method for producing the same, and display device
JP2012053178A (en) * 2010-08-31 2012-03-15 Lintec Corp Antiglare and antistatic hard-coat film and polarizing plate
JP2012063430A (en) * 2010-09-14 2012-03-29 Nippon Zeon Co Ltd Polymerizable composition for light reflection plate, and light reflection plate
KR101828115B1 (en) * 2010-10-04 2018-02-09 다이니폰 인사츠 가부시키가이샤 Anti-glare film, method for manufacturing anti-glare film, polarizing plate, and image display device
JP2012201780A (en) * 2011-03-25 2012-10-22 Nikko Rika Kk Method for producing aluminum oxide fine particle-including type polyorganosilsesquioxane particle and cosmetic compounded with the particle
WO2013008680A1 (en) * 2011-07-13 2013-01-17 株式会社ダイセル Curable epoxy resin composition
TWI483970B (en) * 2011-08-11 2015-05-11 Nippon Soda Co Organic-inorganic complex and a composition for forming the same
JP6107184B2 (en) * 2013-02-04 2017-04-05 大日本印刷株式会社 Anti-glare film, polarizing plate, liquid crystal panel and image display device

Also Published As

Publication number Publication date
KR20160024803A (en) 2016-03-07
KR102246690B1 (en) 2021-04-30
JP2016045448A (en) 2016-04-04
CN105388704A (en) 2016-03-09

Similar Documents

Publication Publication Date Title
JP6826803B2 (en) A photocurable resin composition, a cured film and antiglare film formed from the composition, an image display device, and a method for producing the cured film and antiglare film.
JP5653378B2 (en) Anti-glare hard coat film
JP4848072B2 (en) Anti-glare hard coat film
KR102118904B1 (en) Anti-relrection composition and optical film using thereof
JP6603652B2 (en) Anti-glare hard coat film
WO2009151068A1 (en) Optical film and manufacturing method therefor, anti-glare film, polarizing element with optical layer, and display device
JP2010256851A (en) Antiglare hard coat film
KR102643827B1 (en) hard coated film
JP2010060743A (en) Antiglare film, antireflection film, polarizing plate, and image display device
JP2007058204A (en) Anti-glare hard coat film and display device using the same
JP2014525056A (en) Anti-glare film exhibiting high contrast ratio and method for producing the same
US20210388211A1 (en) Anti-glare film and polarizer with the same
JP2021038386A (en) Active energy ray-curable antiglare hard coat agent, cured film, and laminate film
JP2013257359A (en) Antidazzle hard coat film
JP2008299007A (en) Antiglare hard coat film, polarizing plate using the same and display apparatus
JP2022079218A (en) Anti-glare anti-reflection sheet and anti-glare sheet for laminating anti-reflection layer
CN111344608B (en) Visibility-improving film for display panel and display device including the same
WO2017002779A1 (en) Hard coat film
JP2013045031A (en) Antiglare hard coat film
JP2013195606A (en) Antiglare hard coat film
JP7506814B2 (en) Anti-glare film and its manufacturing method
JP2011045879A (en) Method for manufacturing coating film and antireflection film
JP2012220768A (en) Antireflection film
JP2014071395A (en) Anti-glare hard coat film
JP2015210308A (en) Antireflection film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170628

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180403

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181204

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190402

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190917

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191217

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20191217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20191217

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20200110

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20200114

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20200313

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20200317

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20200428

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20200818

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20200902

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201102

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20201208

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20210112

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20210112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210118

R150 Certificate of patent or registration of utility model

Ref document number: 6826803

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250