WO2023223785A1 - Optical laminate and image display device including same - Google Patents

Optical laminate and image display device including same Download PDF

Info

Publication number
WO2023223785A1
WO2023223785A1 PCT/JP2023/016352 JP2023016352W WO2023223785A1 WO 2023223785 A1 WO2023223785 A1 WO 2023223785A1 JP 2023016352 W JP2023016352 W JP 2023016352W WO 2023223785 A1 WO2023223785 A1 WO 2023223785A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical laminate
meth
acrylate
optical
functional layer
Prior art date
Application number
PCT/JP2023/016352
Other languages
French (fr)
Japanese (ja)
Inventor
怜士 金田
拓也 木▲崎▼
匠 齋藤
Original Assignee
凸版印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 凸版印刷株式会社 filed Critical 凸版印刷株式会社
Publication of WO2023223785A1 publication Critical patent/WO2023223785A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/111Anti-reflection coatings using layers comprising organic materials
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/18Coatings for keeping optical surfaces clean, e.g. hydrophobic or photo-catalytic films
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/86Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays

Definitions

  • the present invention relates to an optical laminate and an image display device using the same.
  • the AG (anti-glare) film is equipped with an anti-glare layer having fine irregularities on its surface, and the fine irregularities diffuse reflected light, thereby suppressing the reflection of external light. Furthermore, an AGLR film is known in which a low refractive index layer (LR) is laminated on an anti-glare layer and further uses optical interference to suppress reflected light, and is used in various displays.
  • LR low refractive index layer
  • the anti-glare properties of AG films and AGLR films are mainly determined by the uneven shape of the surface of the anti-glare layer.
  • a suitable uneven shape on the surface of an anti-glare layer has often been expressed using a surface roughness parameter defined in ISO 25178 or a line roughness parameter defined in JIS B 0601 (for example, Patent Document (See 1 to 3).
  • AG films and AGLR films for use in displays with touch panels are required to have good finger slippage during operation in addition to anti-glare properties.
  • Patent No. 5360616 Patent No. 5382034 Patent No. 6135131
  • the slipperiness required for optical laminates for use in displays with touch panels differs depending on the shape of the irregularities on the outermost surface. Therefore, as a method for expressing the slipperiness of an optical laminate, it is possible to employ the above-mentioned roughness parameter and design an optical laminate having good slipperiness based on the roughness parameter.
  • the conventional roughness parameters described above cannot represent all random uneven shapes and complex uneven shapes.
  • the arithmetic mean height Sa specified in ISO 25178 is an index commonly used when evaluating surface roughness, but even if the Sa value is the same, the uneven shape and slipperiness are large. It may be different. Therefore, conventional roughness parameters are not suitable for expressing slipperiness.
  • An object of the present invention is to provide an optical laminate with excellent optical properties and slipperiness, and an image display device using the same.
  • the optical laminate according to the present invention is characterized in that it has an uneven shape on its outermost surface and satisfies the following conditions (1) to (3) at the same time.
  • the three-dimensional data of the height of the unevenness measured by the optical interference method or the contact method is converted into first image data whose pixel value is the height of the unevenness, and the first image data is subjected to fast Fourier transformation. Convert it to a second image by , and calculate the spatial frequency f of the X coordinate of the power spectrum of the image that passes through the origin and within a range of ⁇ 20 pixels on the positive X axis and Y axis direction.
  • A average value of power spectrum intensity in the range of 0 ⁇ f ⁇ 100cycle/mm
  • B average value of power spectrum intensity in the range of 100cycle/mm ⁇ f ⁇ 200cycle/mm
  • C Average value of power spectrum intensity in the range of 200 cycles/mm ⁇ f ⁇ 300 cycles/mm.
  • An image display device includes the optical laminate described above.
  • an optical laminate having excellent optical properties, appearance, and slipperiness, and an image display device using the same.
  • FIG. 1 is a cross-sectional view schematically showing an example of an optical laminate according to an embodiment.
  • FIG. 2 is a cross-sectional view schematically showing another example of the optical laminate according to the embodiment.
  • FIG. 3 is a diagram showing a method for evaluating anti-glare properties.
  • FIG. 4 is a diagram showing an example of evaluation of anti-glare properties.
  • FIG. 1 is a cross-sectional view schematically showing an example of an optical laminate according to an embodiment.
  • the optical laminate 11 includes a transparent support 2 and an anti-glare layer 3 (AG layer) laminated on one side of the transparent support 2.
  • the optical laminate 11 is an optical film that suppresses reflection of external light by scattering incident light with fine irregularities on the outermost surface (also referred to as "AG film").
  • the transparent support 2 is a film that serves as the base of the optical laminate 11, and is made of a material that has excellent visible light transmittance.
  • Materials for forming the transparent support 2 include polyolefins such as polyethylene and polypropylene, polyesters such as polyethylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate, polyacrylates such as polymethyl methacrylate, polyamides such as nylon 6 and nylon 66, polyimides, Transparent resins such as polyarylate, polycarbonate, triacetyl cellulose, polyacrylate, polyvinyl alcohol, polyvinyl chloride, cycloolefin copolymer, norbornene-containing resin, polyether sulfone, polysulfone, and inorganic glass can be used.
  • the thickness of the transparent support 2 is not particularly limited, but is preferably 10 to 200 ⁇ m.
  • the surface of the transparent support 2 may be subjected to surface modification treatment in order to improve adhesion to other layers to be laminated.
  • surface modification treatment include alkali treatment, corona treatment, plasma treatment, sputtering treatment, application of a surfactant or silane coupling agent, Si vapor deposition, and the like.
  • the anti-glare layer 3 is a functional layer that forms fine irregularities on the outermost surface of the optical laminate 11.
  • the anti-glare layer 3 is formed by applying a coating solution containing an active energy ray-curable compound and organic fine particles and/or inorganic fine particles (filler) to the transparent support 2 and curing the coating film. .
  • active energy ray-curable compound for example, monofunctional, bifunctional, or trifunctional or more functional (meth)acrylate monomers can be used.
  • (meth)acrylate is a generic term for both acrylate and methacrylate
  • (meth)acryloyl is a generic term for both acryloyl and methacryloyl.
  • Examples of monofunctional (meth)acrylate compounds include 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 2-hydroxybutyl (meth)acrylate, n-butyl (meth)acrylate, and isobutyl (meth)acrylate.
  • difunctional (meth)acrylates include ethylene glycol di(meth)acrylate, diethylene glycol di(meth)acrylate, butanediol di(meth)acrylate, hexanediol di(meth)acrylate, and nonanediol di(meth)acrylate.
  • ethoxylated hexanediol di(meth)acrylate, propoxylated hexanediol di(meth)acrylate diethylene glycol di(meth)acrylate, polyethylene glycol di(meth)acrylate, tripropylene glycol di(meth)acrylate, polypropylene glycol di(meth)acrylate, ) acrylate, neopentyl glycol di(meth)acrylate, ethoxylated neopentyl glycol di(meth)acrylate, tripropylene glycol di(meth)acrylate, di(meth)acrylate such as neopentyl glycol hydroxypivalate di(meth)acrylate Examples include acrylate.
  • trifunctional or higher functional (meth)acrylates examples include trimethylolpropane tri(meth)acrylate, ethoxylated trimethylolpropane tri(meth)acrylate, propoxylated trimethylolpropane tri(meth)acrylate, and tris-2-hydroxyethyl isocyanate.
  • Trifunctional tri(meth)acrylates such as nurate tri(meth)acrylate, glycerin tri(meth)acrylate, pentaerythritol tri(meth)acrylate, dipentaerythritol tri(meth)acrylate, and ditrimethylolpropane tri(meth)acrylate (meth)acrylate compounds, pentaerythritol tetra(meth)acrylate, ditrimethylolpropane tetra(meth)acrylate, dipentaerythritol tetra(meth)acrylate, dipentaerythritol penta(meth)acrylate, ditrimethylolpropane penta(meth)acrylate Acrylate, dipentaerythritol hexa(meth)acrylate, ditrimethylolpropane hexa(meth)acrylate, and other polyfunctional (meth)acrylate compounds with three or more functionalities, or some of these (me
  • urethane (meth)acrylate can also be used as a polyfunctional monomer.
  • examples of urethane (meth)acrylate include those obtained by reacting a (meth)acrylate monomer having a hydroxyl group with a product obtained by reacting a polyester polyol with an isocyanate monomer or a prepolymer. .
  • urethane (meth)acrylates examples include pentaerythritol triacrylate hexamethylene diisocyanate urethane prepolymer, dipentaerythritol pentaacrylate hexamethylene diisocyanate urethane prepolymer, pentaerythritol triacrylate toluene diisocyanate urethane prepolymer, dipentaerythritol pentaacrylate toluene diisocyanate Examples include urethane prepolymer, pentaerythritol triacrylate isophorone diisocyanate urethane prepolymer, dipentaerythritol pentaacrylate isophorone diisocyanate urethane prepolymer.
  • the above-mentioned polyfunctional monomers may be used alone or in combination of two or more. Further, the above-mentioned polyfunctional monomer may be a monomer in the coating liquid, or may be a partially polymerized oligomer.
  • the organic fine particles are a material that mainly forms fine irregularities on the surface of the anti-glare layer 3 and provides a function of diffusing external light.
  • Organic fine particles are made of translucent resin materials such as acrylic resin, polystyrene resin, styrene-(meth)acrylate copolymer, polyethylene resin, epoxy resin, silicone resin, polyvinylidene fluoride, and polyethylene fluoride resin. Resin particles can be used. In order to adjust the refractive index and the dispersion of the resin particles, two or more types of resin particles having different materials (refractive indexes) may be mixed and used.
  • the inorganic fine particles added to the composition for forming an anti-glare layer are preferably nanoparticles with an average particle size of 10 to 200 nm.
  • the inorganic fine particles are a material mainly for adjusting sedimentation and aggregation of the organic fine particles in the anti-glare layer 3.
  • silica fine particles silica fine particles, metal oxide fine particles, various mineral fine particles, etc.
  • silica fine particles for example, colloidal silica, silica fine particles surface-modified with a reactive functional group such as a (meth)acryloyl group, etc.
  • metal oxide fine particles for example, alumina, zinc oxide, tin oxide, antimony oxide, indium oxide, titania, zirconia, etc. can be used.
  • mineral fine particles examples include mica, synthetic mica, vermiculite, montmorillonite, iron-montmorillonite, bentonite, beidellite, saponite, hectorite, stevensite, nontronite, magadiite, islarite, kanemite, layered titanate, smectite, and synthetic. Smectite etc. can be used.
  • the mineral fine particles may be either natural products or synthetic products (including substituted products and derivatives), and a mixture of both may be used.
  • layered organic clay is more preferred. Layered organic clay refers to a swellable clay in which organic onium ions are introduced between the layers.
  • the organic onium ion is not limited as long as it can be organicized using the cation exchange properties of the swelling clay.
  • the above-mentioned synthetic smectite can be suitably used.
  • Synthetic smectite has the function of increasing the viscosity of the composition for forming an anti-glare layer, suppressing sedimentation of resin particles and inorganic fine particles, and adjusting the uneven shape of the surface of the optical functional layer.
  • a polymerization initiator may be added to cure the composition for forming an anti-glare layer by irradiating ultraviolet rays.
  • a polymerization initiator that generates radicals upon irradiation with ultraviolet light can be used.
  • radical polymerization initiators such as acetophenone, benzophenone, thioxanthone, benzoin, benzoin methyl ether, and acylphosphine oxide can be used.
  • a polymerization initiator for example, diphenyl(2,4,6-trimethylbenzoyl)phosphine oxide, bis(2,4,6-trimethylbenzoyl)phenylphosphine oxide, 2,2-diethoxyacetophenone, 1-hydroxycyclohexylphenyl ketone , 2,2-dimethoxy-phenylacetophenone, dibenzoyl, benzoin, benzoin methyl ether, benzoin ethyl ether, p-chlorobenzophenone, p-methoxybenzophenone, Michler's ketone, acetophenone, 2-chlorothioxanthone, and the like.
  • diphenyl(2,4,6-trimethylbenzoyl)phosphine oxide bis(2,4,6-trimethylbenzoyl)phenylphosphine oxide
  • 2,2-diethoxyacetophenone 1-hydroxycyclohexylphenyl ketone
  • an antifouling agent a leveling agent, an oil repellent, a water repellent, and a fingerprint-preventing agent to the composition for forming an anti-glare layer as a component that improves slipperiness (slippery improver).
  • fluorine-containing compounds and silicone compounds can be suitably used.
  • the slipperiness can be further improved.
  • various additives such as antistatic agents, antifoaming agents, antioxidants, ultraviolet absorbers, infrared absorbers, colorants, light stabilizers, polymerization inhibitors, photosensitizers, etc. may be added as necessary. It's okay.
  • a solvent may be added to the composition for forming an anti-glare layer, if necessary.
  • solvents include alcohols such as methanol, ethanol, 1-propanol, 2-propanol, butanol, isopropyl alcohol, and isobutanol, ketones such as acetone, methyl ethyl ketone, cyclohexanone, and methyl isobutyl ketone, and ketone alcohols such as diacetone alcohol.
  • aromatic hydrocarbons such as benzene, toluene, xylene, glycols such as ethylene glycol, propylene glycol, hexylene glycol, ethyl cellosolve, butyl cellosolve, ethyl carbitol, butyl carbitol, diethyl cellosolve, diethyl carbitol, propylene glycol Glycol ethers such as monomethyl ether, esters such as methyl lactate, ethyl lactate, methyl acetate, ethyl acetate, butyl acetate, amyl acetate, ethers such as dimethyl ether and diethyl ether, N-methylpyrrolidone, dimethylformamide, etc. , one type or a mixture of two or more types can be used.
  • glycols such as ethylene glycol, propylene glycol, hexylene glycol, ethyl cellosolve, butyl cell
  • FIG. 2 is a cross-sectional view schematically showing another example of the optical film according to the embodiment.
  • the optical laminate 12 includes a transparent support 2, an anti-glare layer 3 laminated on one side of the transparent support 2, and a low refractive index layer 4 (AR layer) laminated on the surface of the anti-glare layer 3. .
  • the optical laminate 12 is an optical film that suppresses reflection and reflection of external light by utilizing scattering of incident light and optical interference due to minute irregularities on the outermost surface (also referred to as "AGLR film"). .
  • the low refractive index layer 4 is a functional layer that has a refractive index lower than that of the anti-glare layer 3 below, and suppresses reflection by optical interference.
  • the low refractive index layer 4 can be formed by applying a composition containing an active energy ray-curable compound to the surface of the anti-glare layer 3 and curing the coating film.
  • the low refractive index layer 4 may contain low refractive index fine particles to adjust the refractive index.
  • low refractive index fine particles examples include fine particles such as LiF, MgF, 3NaF ⁇ AlF, or AlF (all have a refractive index of 1.4), or Na 3 AlF 6 (cryolite, a refractive index of 1.33), Silica fine particles having voids inside can be preferably used. Silica fine particles having voids inside can have the refractive index of air (approximately 1) in the void portion, and are therefore free to lower the refractive index of the low refractive index layer 4. Specifically, porous silica particles and shell-structured silica particles can be used.
  • the low refractive index fine particles are not necessarily necessary, and if the refractive index of the active energy ray-curable compound after curing is lower than the refractive index of the anti-glare layer 3, the low refractive index fine particles may be omitted.
  • the active energy ray-curable compound the polymerizable compounds described in the anti-glare layer can be used. Further, the above-mentioned polymerization initiator and solvent may be appropriately added to the composition for forming a low refractive index layer.
  • the composition for forming the low refractive index layer contains an antifouling agent, a leveling agent, and a repellent as a component that improves slipperiness (slippery improver). It is preferable to add an oil agent, a water repellent, and an anti-fingerprint agent.
  • an oil agent e.g., a water repellent, and an anti-fingerprint agent.
  • fluorine-containing compounds and silicone compounds can be suitably used.
  • various additives such as antistatic agents, antifoaming agents, antioxidants, ultraviolet absorbers, infrared absorbers, colorants, light stabilizers, polymerization inhibitors, photosensitizers, etc. may be added as necessary. It's okay.
  • a hard coat layer, a high refractive index layer, a medium refractive index layer, an antistatic layer, an electromagnetic wave blocking layer, an infrared absorbing layer, an ultraviolet absorbing layer, a color correction layer, etc. are provided between the transparent support 2 and the anti-glare layer 3.
  • One or more functional layers may be stacked.
  • the coating method of the anti-glare layer forming composition and the low refractive index layer forming composition described above is not particularly limited, and examples thereof include a spin coater, a roll coater, a reverse roll coater, a gravure coater, a microgravure coater, a knife coater, Coating can be performed using a bar coater, wire bar coater, die coater, dip coater, spray coater, applicator, etc.
  • the uneven shape on the outermost surface of the optical functional laminate according to this embodiment satisfies the following conditions (1) to (3) at the same time.
  • A, B, and C are images obtained by fast Fourier transform (hereinafter referred to as "FFT") of the image data generated from the measurement data of the height of unevenness on the surface of the optical laminate. This is a value derived from the spatial frequency f calculated from a predetermined range.
  • FFT fast Fourier transform
  • A is the average value of the power spectrum intensity in the range of 0 ⁇ f ⁇ 100cycle/mm
  • B is the average value of the power spectrum intensity in the range of 100cycle/mm ⁇ f ⁇ 200cycle/mm
  • C is the average value of the power spectrum intensity in the range of 200cycle/mm. /mm ⁇ f ⁇ 300cycle/mm.
  • three-dimensional data of the height of the unevenness on the outermost surface of the optical laminate is obtained by measurement.
  • the three-dimensional data of the height of the unevenness includes the position within the measurement plane and the height of the unevenness.
  • the three-dimensional data of the height of the irregularities on the outermost surface can be measured by an optical interference method or a contact method.
  • the acquired three-dimensional data is converted into an image (first image) whose pixel value is the height of the unevenness.
  • FFT is performed on the first image to obtain an image after FFT processing (second image).
  • the X coordinate of the power spectrum in a predetermined range in the second image after FFT processing is converted into a spatial frequency f.
  • the average value of the antilog of the power spectrum intensity in the range of 0 ⁇ f ⁇ 100cycle/mm, the range of 100cycle/mm ⁇ f ⁇ 200cycle/mm, and the range of 200cycle/mm ⁇ f ⁇ 300cycle/mm are calculated and set as the values of A, B, and C above.
  • slipperiness in order to develop slipperiness, it is common to include a component that improves slippage, such as a fluorine compound or a silicone compound, in the outermost layer.
  • a component that improves slippage such as a fluorine compound or a silicone compound
  • the inventors of the present invention have investigated and found that the slipperiness is affected not only by the material of the outermost surface and the components contained therein, but also by the shape of the surface irregularities.
  • uneven shapes that can improve slipperiness it was found that the power spectrum intensity around a spatial frequency of 50 cycles/mm is greatly related to slipperiness; It was found that the higher the strength (that is, the higher the unevenness height), the better the slipperiness.
  • the slipperiness can be expressed by the magnitude of the friction coefficient.
  • the coefficient of friction is proportional to the contact area when the materials are the same, and the larger the contact area, the higher the coefficient of friction.
  • the dynamic friction coefficient of the outermost surface of the optical laminates 11 and 12 is preferably 0.3 or less. If the coefficient of dynamic friction of the outermost surface is 0.3 or less, when performing a sliding operation such as flicking or swiping on the image display device, the finger can be slid smoothly and the usability is good. .
  • the optical laminates 11 and 12 according to the present embodiment have excellent slip properties because the uneven shape of the outermost surface satisfies the conditions (1) to (3) above.
  • the slipperiness can be further improved by adding a component that improves the slipperiness to the functional layer, which is the outermost layer.
  • the values of A to C are controlled by adjusting the particle size and amount of the filler added to the anti-glare layer 3, the amount of additive, the thickness of the anti-glare layer 3, and the agglomeration state of the filler in the film forming process. be able to.
  • the optical laminates 11 and 12 according to this embodiment can be used to configure an image display device by being laminated to the outermost surface of an image display panel such as a liquid crystal panel or an organic EL panel.
  • a touch panel may be provided between the optical laminates 11 and 12 and the image display panel.
  • the optical laminates 11 and 12 according to this embodiment have excellent slip properties and are therefore suitable as optical films provided on the outermost surface of an image display device.
  • Example 1 The following hard coat (HC) compositions were prepared.
  • HC composition 1 for forming anti-glare layer
  • organic fine particles manufactured by Techpolymer, SSX-2035
  • PETA photopolymerization initiator
  • HC composition 2 for forming a low refractive index layer
  • PETA Vinyl-Coupled A
  • a photopolymerization initiator for UV curing Add 3.0 parts by mass of a photoinitiator and 2.0 parts by mass of a fluorine-based antifouling agent (manufactured by Shin-Etsu Chemical Co., Ltd., KY-1203) to isopropyl alcohol so that the total solid concentration is 3.5% by mass.
  • the mixture was stirred in a paint shaker for 50 minutes to obtain HC Composition 2.
  • HC composition 1 was applied to one side of the transparent support using a bar coater, and a dryer was used. It was dried at 100°C for 1 minute.
  • the coating film is irradiated with ultraviolet rays in a nitrogen atmosphere (oxygen concentration 500 ppm or less) so that the cumulative exposure amount is 200 mJ/ cm2 , and the coating film is cured to form an anti-glare layer. did.
  • the coating amount of HC composition 1 was adjusted so that the film thickness after curing was 5 ⁇ m.
  • HC composition 2 was applied onto the anti-glare layer using a bar coater, and dried in a dryer at 100° C. for 1 minute.
  • the coating film was irradiated in a nitrogen atmosphere (oxygen concentration of 500 ppm or less) with a cumulative exposure dose of 200 mJ/cm 2 to harden the coating film and form a low refractive index layer.
  • Example 2 An optical laminate was produced in the same manner as in Example 1, except that the low refractive index layer was not formed.
  • Example 3 An optical laminate was produced in the same manner as in Example 1, except that in HC Composition 1, the time for dispersing organic particles using a paint shaker and the stirring time for the coating liquid were both 70 minutes.
  • Example 4 An optical laminate was produced in the same manner as in Example 1, except that the dispersion time of organic fine particles using a paint shaker in HC Composition 1 was changed to 70 minutes.
  • Example 5 The organic fine particles in HC composition 1 were changed to 4.0 parts by mass of organic fine particles (manufactured by Techpolymer, SSX-103) with an average particle size of 3.0 ⁇ m, and the amount of PETA was changed to 93.0 parts by mass.
  • An optical laminate was produced in the same manner as in Example 1 except for the following.
  • Example 6 An optical laminate was produced in the same manner as in Example 5, except that the low refractive index layer was not formed.
  • Example 7 An optical laminate was produced in the same manner as in Example 1, except that the coating amount of HC Composition 1 was changed so that the film thickness after curing was 6.0 ⁇ m.
  • Example 8 An optical laminate was produced in the same manner as in Example 7, except that the low refractive index layer was not formed.
  • Example 3 An optical laminate was produced in the same manner as in Example 1, except that the organic fine particles in HC Composition 1 were changed to organic fine particles (manufactured by Techpolymer, SSX-105) with an average particle size of 5.0 ⁇ m.
  • Example 4 An optical laminate was produced in the same manner as in Example 1, except that the organic fine particles in HC Composition 1 were changed to organic fine particles (manufactured by Techpolymer, SSX-102) with an average particle size of 2.5 ⁇ m.
  • Example 5 The optical composition was prepared in the same manner as in Example 1, except that the amount of PETA in HC Composition 1 was 90.0 parts by mass, and the amount of organic fine particles (manufactured by Techpolymer, SSX-2035) was 7.0 parts by mass. A laminate was produced.
  • Comparative example 8 An optical laminate was produced in the same manner as Comparative Example 7 except that the low refractive index layer was not formed.
  • Comparative Example 10 An optical laminate was produced in the same manner as Comparative Example 9 except that the low refractive index layer was not formed.
  • optical laminates according to each Example and each Comparative Example were evaluated as follows.
  • ⁇ Evaluation 1 Surface unevenness shape> (Acquisition of 3D data) Using Vertscan (manufactured by Ryoka System Co., Ltd., R3300H Lite), three-dimensional data of the uneven shape of the outermost surface of the optical laminate was measured by an optical interference method. The measurement conditions are as follows. The height of the unevenness was based on the lowest position within the measurement range.
  • ⁇ Camera model Sony HR-50 1/3 ⁇ Objective lens magnification: 5XTI ⁇ Lens barrel: 1X ⁇ Zoom lens: 1X ⁇ Light source: 530white ⁇ Wavelength filter: 520nm
  • ⁇ Measurement device Piezo ⁇ Measurement mode: Phase ⁇ Scan speed: 4 ⁇ m/sec ⁇ Scan range: 10 ⁇ m to -10 ⁇ m ⁇ Number of effective pixels: 0% ⁇ Measurement range: 940.8 ⁇ m x 705.6 ⁇ m, 640pixel x 480pixel ⁇ XY direction resolution: 1 pixel 1.47 ⁇ m
  • FFT analysis FFT analysis was performed using free software "ImageJ 1.53h" under Windows (registered trademark) 10 environment. The steps are as follows. 1. The three-dimensional data was converted to TIFF image data in which the height is the pixel value. 2. FFT was performed with reference to the original three-dimensional data values (height measurements). The image size after FFT processing was 1024 pixels x 1024 pixels. 3. The image after the FFT processing was processed to restore the power spectrum intensity to the actual measured value. 4. In the processed image, a range of ⁇ 20 pixels on the positive X axis passing through the origin was specified, and the power spectrum intensity was output. 5. The X coordinate of the output power spectrum was converted into a spatial frequency f based on the pixel size of the original three-dimensional data. 6. From the calculated spatial frequency, the average value (A ⁇ C value) was calculated.
  • optical properties The optical properties of the optical laminate were evaluated according to the following criteria based on the evaluation of haze, antiglare, and reflectance shown below. ⁇ : There is one or more evaluations ⁇ for haze, anti-glare property, reflectance, and the remaining evaluations are ⁇ : All evaluations for haze, anti-glare property, reflectance are ⁇ : Haze, anti-glare property, reflectance There is one or more ⁇ rating in
  • Haze The haze was measured using a haze meter (NDH7000, manufactured by Nippon Denshoku Kogyo Co., Ltd.) in accordance with the haze test method of JIS K 7136, a method for testing optical properties of plastics.
  • the evaluation criteria for optical properties are as follows. ⁇ : Haze is 6% or more and less than 8% ⁇ : Haze is 4% or more and less than 6%, or 8% or more and less than 10% ⁇ : Haze is less than 4% or 10% or more
  • FIG. 3 is a diagram showing a method for evaluating anti-glare properties
  • FIG. 4 is a diagram showing an example of evaluating anti-glare properties.
  • the obtained optical laminate was bonded to a blackboard using an optical adhesive so that the functional side faced the surface.
  • three-wavelength fluorescent lamps and optical laminates were installed so that the light hits the functional surfaces perpendicularly. Observe the surface of the optical laminate from the direction in which the line connecting the viewpoint and the image of the three-wavelength fluorescent lamp reflected on the functional surface is 70° to the perpendicular drawn from the three-wavelength fluorescent lamp to the functional surface, and observe the following. Anti-glare properties were evaluated according to standards.
  • The outline of the three-wavelength fluorescent lamp can be seen, but the edges are blurry and unclear.
  • the spectral reflectance of the functional layer surface of the obtained optical laminate at an incident angle of 5° was measured using an automatic spectrophotometer (U-4100, manufactured by Hitachi, Ltd.), and evaluated according to the following criteria. During the measurement, a matte black paint was applied to the back surface of the TAC film (the surface on which no functional layer was formed) to prevent reflection.
  • Reflectance is less than 0.5%
  • Reflectance is 0.5% or more and less than 1%
  • Reflectance is 1% or more
  • the dynamic friction coefficient of the functional layer surface of the obtained optical laminate was measured in accordance with JIS K 7125.
  • the measuring device and measurement conditions are as follows.
  • ⁇ Evaluation device Static friction measuring device TL201Tt (manufactured by Trinity Lab Co., Ltd.)
  • ⁇ Measuring element option Tactile contact with fingerprint pattern (with fingerprint pattern proposed by Takashi Maeno Laboratory, graduate School of System Design and Management, Keio University, Misune Nomura Laboratory, graduate School of Science and Engineering, Yamagata University)
  • ⁇ Analysis software Tribo analysis software ⁇ Vertical load: 20g ⁇ Sliding speed: 10mm/sec ⁇ Traveling distance: 30mm
  • Data collection speed 1msec
  • the obtained optical laminate was attached to a blackboard using an adhesive so that the functional side faced the surface.
  • This sample was fixed on the stage of the evaluation device, and the coefficient of friction between the tactile contact with a fingerprint pattern and the functional surface was measured and analyzed according to the above conditions.
  • Coefficient of friction in sliding state (travel distance 10 mm to 2
  • the average value of the coefficient of friction (between 0 mm) was calculated, and the obtained value was used as the coefficient of dynamic friction ⁇ k, and evaluated according to the following criteria.
  • Table 1 shows the evaluation results.
  • the optical laminates according to Examples 1 to 8 satisfied conditions (1) to (3) in A to C, and were excellent in both optical properties and slip properties.
  • the present invention can be used as an optical film provided on the outermost surface of an image display device.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Nonlinear Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Human Computer Interaction (AREA)
  • Mathematical Physics (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Laminated Bodies (AREA)

Abstract

Provided are: an optical laminate having excellent optical characteristics and sliding properties; and an image display device using the optical laminate. The optical laminate has an uneven shape on the outermost surface thereof, and is characterized by simultaneously satisfying conditions (1) to (3). Condition (1): 20,000 ≤ A ≤ 300,000. Condition (2): 300 ≤ B ≤ 800. Condition (3): 10 ≤ C ≤ 180. When an image based on three-dimensional data of the height of the unevenness measured with an optical interference method or a contact method is subjected to a frequency analysis by fast Fourier transformation to calculate the spatial frequency f, A is the average value of the power spectrum intensity for the range of 0 < f ≤ 100 cycles/mm, B is the average value of the power spectrum intensity for the range of 100 cycles/mm < f ≤ 200 cycles/mm, and C is the average value of the power spectrum intensity for the range of 200 cycles/mm < f ≤ 300 cycles/mm.

Description

光学積層体及びこれを用いた画像表示装置Optical laminate and image display device using the same
 本発明は、光学積層体及びこれを用いた画像表示装置に関する。 The present invention relates to an optical laminate and an image display device using the same.
 AG(アンチグレア)フィルムは、表面に微細な凹凸形状を有する防眩層を備え、この微細な凹凸が反射光を拡散することにより、外光の映り込みを抑制する。また、防眩層上に低屈折率層(LR)を積層し、更に光学干渉を利用して反射光を抑制するAGLRフィルムも知られており、様々なディスプレイに利用されている。 The AG (anti-glare) film is equipped with an anti-glare layer having fine irregularities on its surface, and the fine irregularities diffuse reflected light, thereby suppressing the reflection of external light. Furthermore, an AGLR film is known in which a low refractive index layer (LR) is laminated on an anti-glare layer and further uses optical interference to suppress reflected light, and is used in various displays.
 AGフィルム及びAGLRフィルムの防眩性は、主に防眩層表面の凹凸形状によって定まる。従来、防眩層表面の好適な凹凸形状は、ISO 25178に規定される面粗さパラメータや、JIS B 0601に規定される線粗さパラメータを用いて表されることが多い(例えば、特許文献1~3参照)。 The anti-glare properties of AG films and AGLR films are mainly determined by the uneven shape of the surface of the anti-glare layer. Conventionally, a suitable uneven shape on the surface of an anti-glare layer has often been expressed using a surface roughness parameter defined in ISO 25178 or a line roughness parameter defined in JIS B 0601 (for example, Patent Document (See 1 to 3).
 また、タッチパネル付きディスプレイ用途のAGフィルム及びAGLRフィルムには、防眩性に加え、操作時に指の滑り性が良好であることが求められる。 Furthermore, AG films and AGLR films for use in displays with touch panels are required to have good finger slippage during operation in addition to anti-glare properties.
特許第5360616号公報Patent No. 5360616 特許第5382034号公報Patent No. 5382034 特許第6135131号公報Patent No. 6135131
 タッチパネル付きディスプレイ用途の光学積層体に求められる滑り性は、最表面の凹凸形状によって異なる。そこで、光学積層体の滑り性を表す手法として、上述した粗さパラメータを採用し、粗さパラメータに基づいて良好な滑り性を有する光学積層体を設計することが考えられる。 The slipperiness required for optical laminates for use in displays with touch panels differs depending on the shape of the irregularities on the outermost surface. Therefore, as a method for expressing the slipperiness of an optical laminate, it is possible to employ the above-mentioned roughness parameter and design an optical laminate having good slipperiness based on the roughness parameter.
 しかしながら、上述した従来の粗さパラメータでは、ランダムな凹凸形状や複雑な凹凸形状の全てを表すことができない。例えば、ISO 25178に規定される算術平均高さSaは、面粗さを評価する際に一般的に使用される指標であるが、Sa値が同じであっても、凹凸形状及び滑り性が大きく異なる場合がある。したがって、従来の粗さパラメータは滑り性を表現するのに適していない。 However, the conventional roughness parameters described above cannot represent all random uneven shapes and complex uneven shapes. For example, the arithmetic mean height Sa specified in ISO 25178 is an index commonly used when evaluating surface roughness, but even if the Sa value is the same, the uneven shape and slipperiness are large. It may be different. Therefore, conventional roughness parameters are not suitable for expressing slipperiness.
 本発明は、光学特性及び滑り性に優れた光学積層体及びこれを用いた画像表示装置を提供することを目的とする。 An object of the present invention is to provide an optical laminate with excellent optical properties and slipperiness, and an image display device using the same.
 本発明に係る光学積層体は、最表面に凹凸形状を有し、以下の条件(1)~(3)を同時に満足することを特徴とするものである。
  20,000≦A≦300,000 (1)
  300≦B≦800 (2)
  10≦C≦180 (3)
ここで、凹凸形状を光学干渉方式または接触方式で計測した凹凸高さの3次元データを、凹凸高さを画素値とする第1の画像データに変換し、第1の画像データを高速フーリエ変
換により第2の画像に変換し、第2の画像のうち、原点を通り、かつ、正のX軸上及びY軸方向の±20Pixelの範囲の画像のパワースペクトラムのX座標の空間周波数fを算出した場合において、
A:0<f≦100cycle/mmの範囲のパワースペクトラム強度の平均値、
B:100cycle/mm<f≦200cycle/mmの範囲のパワースペクトラム強度の平均値、
C:200cycle/mm<f≦300cycle/mmの範囲のパワースペクトラム強度の平均値
である。
The optical laminate according to the present invention is characterized in that it has an uneven shape on its outermost surface and satisfies the following conditions (1) to (3) at the same time.
20,000≦A≦300,000 (1)
300≦B≦800 (2)
10≦C≦180 (3)
Here, the three-dimensional data of the height of the unevenness measured by the optical interference method or the contact method is converted into first image data whose pixel value is the height of the unevenness, and the first image data is subjected to fast Fourier transformation. Convert it to a second image by , and calculate the spatial frequency f of the X coordinate of the power spectrum of the image that passes through the origin and within a range of ±20 pixels on the positive X axis and Y axis direction. In the case that
A: average value of power spectrum intensity in the range of 0<f≦100cycle/mm,
B: average value of power spectrum intensity in the range of 100cycle/mm<f≦200cycle/mm,
C: Average value of power spectrum intensity in the range of 200 cycles/mm<f≦300 cycles/mm.
 本発明に係る画像表示装置は、上記の光学積層体を備える。 An image display device according to the present invention includes the optical laminate described above.
 本発明によれば、光学特性及び外観及び滑り性に優れた光学積層体及びこれを用いた画像表示装置を提供できる。 According to the present invention, it is possible to provide an optical laminate having excellent optical properties, appearance, and slipperiness, and an image display device using the same.
図1は、実施形態に係る光学積層体の一例を模式的に示す断面図である。FIG. 1 is a cross-sectional view schematically showing an example of an optical laminate according to an embodiment. 図2は、実施形態に係る光学積層体の他の一例を模式的に示す断面図である。FIG. 2 is a cross-sectional view schematically showing another example of the optical laminate according to the embodiment. 図3は、防眩性の評価方法を示す図である。FIG. 3 is a diagram showing a method for evaluating anti-glare properties. 図4は、防眩性の評価例を示す図である。FIG. 4 is a diagram showing an example of evaluation of anti-glare properties.
 図1は、実施形態に係る光学積層体の一例を模式的に示す断面図である。 FIG. 1 is a cross-sectional view schematically showing an example of an optical laminate according to an embodiment.
 光学積層体11は、透明支持体2と、透明支持体2の一方面に積層された防眩層3(AG層)とを備える。光学積層体11は、最表面の微細な凹凸で入射光を散乱させて外光の映り込みを抑制する光学フィルムである(「AGフィルム」とも称される)。 The optical laminate 11 includes a transparent support 2 and an anti-glare layer 3 (AG layer) laminated on one side of the transparent support 2. The optical laminate 11 is an optical film that suppresses reflection of external light by scattering incident light with fine irregularities on the outermost surface (also referred to as "AG film").
 透明支持体2は、光学積層体11の基体となるフィルムであり、可視光線の透過性に優れた材料により形成される。透明支持体2の形成材料としては、ポリエチレン、ポリプロピレン等のポリオレフィン、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等のポリエステル、ポリメチルメタクリレート等のポリアクリレート、ナイロン6、ナイロン66等のポリアミド、ポリイミド、ポリアリレート、ポリカーボネート、トリアセチルセルロース、ポリアクリレート、ポリビニルアルコール、ポリ塩化ビニル、シクロオレフィンコポリマー、含ノルボルネン樹脂、ポリエーテルサルフォン、ポリサルフォン等の透明樹脂や無機ガラスを利用できる。透明支持体2の厚みは、特に限定されないが、10~200μmとすることが好ましい。 The transparent support 2 is a film that serves as the base of the optical laminate 11, and is made of a material that has excellent visible light transmittance. Materials for forming the transparent support 2 include polyolefins such as polyethylene and polypropylene, polyesters such as polyethylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate, polyacrylates such as polymethyl methacrylate, polyamides such as nylon 6 and nylon 66, polyimides, Transparent resins such as polyarylate, polycarbonate, triacetyl cellulose, polyacrylate, polyvinyl alcohol, polyvinyl chloride, cycloolefin copolymer, norbornene-containing resin, polyether sulfone, polysulfone, and inorganic glass can be used. The thickness of the transparent support 2 is not particularly limited, but is preferably 10 to 200 μm.
 透明支持体2の表面には、積層する他の層との密着性を向上させるために、表面改質処理を施しても良い。表面改質処理としては、アルカリ処理、コロナ処理、プラズマ処理、スパッタ処理、界面活性剤やシランカップリング剤等の塗布、Si蒸着等を例示できる。 The surface of the transparent support 2 may be subjected to surface modification treatment in order to improve adhesion to other layers to be laminated. Examples of the surface modification treatment include alkali treatment, corona treatment, plasma treatment, sputtering treatment, application of a surfactant or silane coupling agent, Si vapor deposition, and the like.
 防眩層3は、光学積層体11の最表面の微細な凹凸形状を形成する機能層である。 The anti-glare layer 3 is a functional layer that forms fine irregularities on the outermost surface of the optical laminate 11.
 防眩層3は、活性エネルギー線硬化型化合物と、有機微粒子及び/または無機微粒子(フィラー)とを含有する塗工液を透明支持体2に塗布し、塗膜を硬化させることによって形成される。 The anti-glare layer 3 is formed by applying a coating solution containing an active energy ray-curable compound and organic fine particles and/or inorganic fine particles (filler) to the transparent support 2 and curing the coating film. .
 活性エネルギー線硬化型化合物としては、例えば、単官能、2官能または3官能以上の
(メタ)アクリレートモノマーを使用できる。尚、本明細書において、「(メタ)アクリレート」は、アクリレートとメタクリレートの両方の総称であり、「(メタ)アクリロイル」は、アクリロイルとメタクリロイルの両方の総称である。
As the active energy ray-curable compound, for example, monofunctional, bifunctional, or trifunctional or more functional (meth)acrylate monomers can be used. In this specification, "(meth)acrylate" is a generic term for both acrylate and methacrylate, and "(meth)acryloyl" is a generic term for both acryloyl and methacryloyl.
 単官能の(メタ)アクリレート化合物の例としては、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、グリシジル(メタ)アクリレート、アクリロイルモルフォリン、N-ビニルピロリドン、テトラヒドロフルフリールアクリレート、シクロヘキシル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、イソデシル(メタ)アクリレート、ラウリル(メタ)アクリレート、トリデシル(メタ)アクリレート、セチル(メタ)アクリレート、ステアリル(メタ)アクリレート、ベンジル(メタ)アクリレート、2-エトキシエチル(メタ)アクリレート、3-メトキシブチル(メタ)アクリレート、エチルカルビトール(メタ)アクリレート、リン酸(メタ)アクリレート、エチレンオキサイド変性リン酸(メタ)アクリレート、フェノキシ(メタ)アクリレート、エチレンオキサイド変性フェノキシ(メタ)アクリレート、プロピレンオキサイド変性フェノキシ(メタ)アクリレート、ノニルフェノール(メタ)アクリレート、エチレンオキサイド変性ノニルフェノール(メタ)アクリレート、プロピレンオキサイド変性ノニルフェノール(メタ)アクリレート、メトキシジエチレングリコール(メタ)アクリレート、メトキシポリチレングリコール(メタ)アクリレート、メトキシプロピレングリコール(メタ)アクリレート、2-(メタ)アクリロイルオキシエチル-2-ヒドロキシプロピルフタレート、2-ヒドロキシ-3-フェノキシプロピル(メタ)アクリレート、2-(メタ)アクリロイルオキシエチルハイドロゲンフタレート、2-(メタ)アクリロイルオキシプロピルハイドロゲンフタレート、2-(メタ)アクリロイルオキシプロピルヘキサヒドロハイドロゲンフタレート、2-(メタ)アクリロイルオキシプロピルテトラヒドロハイドロゲンフタレート、ジメチルアミノエチル(メタ)アクリレート、トリフルオロエチル(メタ)アクリレート、テトラフルオロプロピル(メタ)アクリレート、ヘキサフルオロプロピル(メタ)アクリレート、オクタフルオロプロピル(メタ)アクリレート、2-アダマンタン、アダマンタンジオールから誘導される1価のモノ(メタ)アクリレートを有するアダマンチルアクリレート等のアダマンタン誘導体モノ(メタ)アクリレート等が挙げられる。 Examples of monofunctional (meth)acrylate compounds include 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 2-hydroxybutyl (meth)acrylate, n-butyl (meth)acrylate, and isobutyl (meth)acrylate. meth)acrylate, t-butyl(meth)acrylate, glycidyl(meth)acrylate, acryloylmorpholine, N-vinylpyrrolidone, tetrahydrofurfuryl acrylate, cyclohexyl(meth)acrylate, 2-ethylhexyl(meth)acrylate, isobornyl(meth)acrylate, ) acrylate, isodecyl (meth)acrylate, lauryl (meth)acrylate, tridecyl (meth)acrylate, cetyl (meth)acrylate, stearyl (meth)acrylate, benzyl (meth)acrylate, 2-ethoxyethyl (meth)acrylate, 3- Methoxybutyl (meth)acrylate, ethyl carbitol (meth)acrylate, phosphoric acid (meth)acrylate, ethylene oxide modified phosphoric acid (meth)acrylate, phenoxy (meth)acrylate, ethylene oxide modified phenoxy (meth)acrylate, propylene oxide modified Phenoxy (meth)acrylate, nonylphenol (meth)acrylate, ethylene oxide-modified nonylphenol (meth)acrylate, propylene oxide-modified nonylphenol (meth)acrylate, methoxydiethylene glycol (meth)acrylate, methoxypolyethylene glycol (meth)acrylate, methoxypropylene glycol ( meth)acrylate, 2-(meth)acryloyloxyethyl-2-hydroxypropyl phthalate, 2-hydroxy-3-phenoxypropyl(meth)acrylate, 2-(meth)acryloyloxyethyl hydrogen phthalate, 2-(meth)acryloyloxy Propyl hydrogen phthalate, 2-(meth)acryloyloxypropyl hexahydrohydrogen phthalate, 2-(meth)acryloyloxypropyl tetrahydrohydrogen phthalate, dimethylaminoethyl (meth)acrylate, trifluoroethyl (meth)acrylate, tetrafluoropropyl (meth) ) acrylate, hexafluoropropyl (meth)acrylate, octafluoropropyl (meth)acrylate, 2-adamantane, adamantane derivative mono(meth)acrylate such as adamantyl acrylate having a monovalent mono(meth)acrylate derived from adamantane diol etc.
 2官能の(メタ)アクリレートの例としては、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、ブタンジオールジ(メタ)アクリレート、ヘキサンジオールジ(メタ)アクリレート、ノナンジオールジ(メタ)アクリレート、エトキシ化ヘキサンジオールジ(メタ)アクリレート、プロポキシ化ヘキサンジオールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ネオペンチルグリコ-ルジ(メタ)アクリレート、エトキシ化ネオペンチルグリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ヒドロキシピバリン酸ネオペンチルグリコールジ(メタ)アクリレート等のジ(メタ)アクリレート等が挙げられる。 Examples of difunctional (meth)acrylates include ethylene glycol di(meth)acrylate, diethylene glycol di(meth)acrylate, butanediol di(meth)acrylate, hexanediol di(meth)acrylate, and nonanediol di(meth)acrylate. , ethoxylated hexanediol di(meth)acrylate, propoxylated hexanediol di(meth)acrylate, diethylene glycol di(meth)acrylate, polyethylene glycol di(meth)acrylate, tripropylene glycol di(meth)acrylate, polypropylene glycol di(meth)acrylate, ) acrylate, neopentyl glycol di(meth)acrylate, ethoxylated neopentyl glycol di(meth)acrylate, tripropylene glycol di(meth)acrylate, di(meth)acrylate such as neopentyl glycol hydroxypivalate di(meth)acrylate Examples include acrylate.
 3官能以上の(メタ)アクリレートの例としては、トリメチロールプロパントリ(メタ)アクリレート、エトキシ化トリメチロールプロパントリ(メタ)アクリレート、プロポキシ化トリメチロールプロパントリ(メタ)アクリレート、トリス2-ヒドロキシエチルイソシアヌレートトリ(メタ)アクリレート、グリセリントリ(メタ)アクリレート等のトリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールトリ(メタ)アクリレート、ジトリメチロールプロパントリ(メタ)アクリレート等の3官能の(メタ)アクリレート化合物や、ペンタエリスリトールテトラ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジトリメチロールプロパンペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジトリメチロールプロパンヘキサ(メタ)アクリレート等の3官能以上の多官能(メタ)アクリレート化合物や、これら(メタ)アクリレートの一部をアルキル基やε-カプロラクトンで置換した多官能(メタ)アクリレート化合物等が挙げられる。 Examples of trifunctional or higher functional (meth)acrylates include trimethylolpropane tri(meth)acrylate, ethoxylated trimethylolpropane tri(meth)acrylate, propoxylated trimethylolpropane tri(meth)acrylate, and tris-2-hydroxyethyl isocyanate. Trifunctional tri(meth)acrylates such as nurate tri(meth)acrylate, glycerin tri(meth)acrylate, pentaerythritol tri(meth)acrylate, dipentaerythritol tri(meth)acrylate, and ditrimethylolpropane tri(meth)acrylate (meth)acrylate compounds, pentaerythritol tetra(meth)acrylate, ditrimethylolpropane tetra(meth)acrylate, dipentaerythritol tetra(meth)acrylate, dipentaerythritol penta(meth)acrylate, ditrimethylolpropane penta(meth)acrylate Acrylate, dipentaerythritol hexa(meth)acrylate, ditrimethylolpropane hexa(meth)acrylate, and other polyfunctional (meth)acrylate compounds with three or more functionalities, or some of these (meth)acrylates with an alkyl group or ε-caprolactone. Examples include substituted polyfunctional (meth)acrylate compounds.
 また、多官能モノマーとして、ウレタン(メタ)アクリレートも使用できる。ウレタン(メタ)アクリレートとしては、例えば、ポリエステルポリオールにイソシアネートモノマー、もしくはプレポリマーを反応させて得られた生成物に水酸基を有する(メタ)アクリレートモノマーを反応させることによって得られるものを挙げることができる。 Additionally, urethane (meth)acrylate can also be used as a polyfunctional monomer. Examples of urethane (meth)acrylate include those obtained by reacting a (meth)acrylate monomer having a hydroxyl group with a product obtained by reacting a polyester polyol with an isocyanate monomer or a prepolymer. .
 ウレタン(メタ)アクリレートの例としては、ペンタエリスリトールトリアクリレートヘキサメチレンジイソシアネートウレタンプレポリマー、ジペンタエリスリトールペンタアクリレートヘキサメチレンジイソシアネートウレタンプレポリマー、ペンタエリスリトールトリアクリレートトルエンジイソシアネートウレタンプレポリマー、ジペンタエリスリトールペンタアクリレートトルエンジイソシアネートウレタンプレポリマー、ペンタエリスリトールトリアクリレートイソホロンジイソシアネートウレタンプレポリマー、ジペンタエリスリトールペンタアクリレートイソホロンジイソシアネートウレタンプレポリマー等が挙げられる。 Examples of urethane (meth)acrylates include pentaerythritol triacrylate hexamethylene diisocyanate urethane prepolymer, dipentaerythritol pentaacrylate hexamethylene diisocyanate urethane prepolymer, pentaerythritol triacrylate toluene diisocyanate urethane prepolymer, dipentaerythritol pentaacrylate toluene diisocyanate Examples include urethane prepolymer, pentaerythritol triacrylate isophorone diisocyanate urethane prepolymer, dipentaerythritol pentaacrylate isophorone diisocyanate urethane prepolymer.
 上述した多官能モノマーは1種を用いても良いし、2種以上を組み合わせて用いても良い。また、上述した多官能モノマーは、塗工液中でモノマーであっても良いし、一部が重合したオリゴマーであっても良い。 The above-mentioned polyfunctional monomers may be used alone or in combination of two or more. Further, the above-mentioned polyfunctional monomer may be a monomer in the coating liquid, or may be a partially polymerized oligomer.
 有機微粒子は、主として防眩層3の表面に微細な凹凸を形成し、外光を拡散させる機能を付与する材料である。有機微粒子としては、アクリル樹脂、ポリスチレン樹脂、スチレン-(メタ)アクリル酸エステル共重合体、ポリエチレン樹脂、エポキシ樹脂、シリコーン樹脂、ポリフッ化ビニリデン、ポリフッ化エチレン系樹脂等の透光性樹脂材料からなる樹脂粒子を使用できる。屈折率や樹脂粒子の分散を調整するために、材質(屈折率)の異なる2種類以上の樹脂粒子を混合して使用しても良い。 The organic fine particles are a material that mainly forms fine irregularities on the surface of the anti-glare layer 3 and provides a function of diffusing external light. Organic fine particles are made of translucent resin materials such as acrylic resin, polystyrene resin, styrene-(meth)acrylate copolymer, polyethylene resin, epoxy resin, silicone resin, polyvinylidene fluoride, and polyethylene fluoride resin. Resin particles can be used. In order to adjust the refractive index and the dispersion of the resin particles, two or more types of resin particles having different materials (refractive indexes) may be mixed and used.
 防眩層形成用組成物に添加する無機微粒子は、平均粒径が10~200nmのナノ粒子であることが好ましい。 The inorganic fine particles added to the composition for forming an anti-glare layer are preferably nanoparticles with an average particle size of 10 to 200 nm.
 無機微粒子は、主として防眩層3中の有機微粒子の沈降や凝集を調整するための材料である。無機微粒子としては、シリカ微粒子や、金属酸化物微粒子、各種の鉱物微粒子等を使用することができる。シリカ微粒子としては、例えば、コロイダルシリカや(メタ)アクリロイル基等の反応性官能基で表面修飾されたシリカ微粒子等を使用することができる。金属酸化物微粒子としては、例えば、アルミナや酸化亜鉛、酸化スズ、酸化アンチモン、酸化インジウム、チタニア、ジルコニア等を使用することができる。鉱物微粒子としては、例えば、雲母、合成雲母、バーミキュライト、モンモリロナイト、鉄モンモリロナイト、ベントナイト、バイデライト、サポナイト、ヘクトライト、スチーブンサイト、ノントロナイト、マガディアイト、アイラライト、カネマイト、層状チタン酸、スメクタイト、合成スメクタイト等を使用することができる。鉱物微粒子は、天然物及び合成物(置換体、誘導体を含む)のいずれであっても良く、両者の混合物を使用しても良い。鉱物微粒子の中でも、層状有機粘土がより好ましい。層状有機粘土とは、膨潤性粘土の層間に有機オニウムイオンを導入したものをいう。有機オニウムイオンは、膨潤性粘土の陽イオン交換性を利用して有機化することができるものであれば制限されない。鉱物微粒子として、層状有機粘土鉱物を用いる場合、上述した合成スメクタイトを好適に使用できる。合成スメクタイトは、防眩層形成用組成物の粘性を増加させ、樹脂粒子及び無機微粒子の沈降を抑制して、光学機能層の表面の凹凸形状を調整する機能を有する。 The inorganic fine particles are a material mainly for adjusting sedimentation and aggregation of the organic fine particles in the anti-glare layer 3. As the inorganic fine particles, silica fine particles, metal oxide fine particles, various mineral fine particles, etc. can be used. As the silica fine particles, for example, colloidal silica, silica fine particles surface-modified with a reactive functional group such as a (meth)acryloyl group, etc. can be used. As the metal oxide fine particles, for example, alumina, zinc oxide, tin oxide, antimony oxide, indium oxide, titania, zirconia, etc. can be used. Examples of mineral fine particles include mica, synthetic mica, vermiculite, montmorillonite, iron-montmorillonite, bentonite, beidellite, saponite, hectorite, stevensite, nontronite, magadiite, islarite, kanemite, layered titanate, smectite, and synthetic. Smectite etc. can be used. The mineral fine particles may be either natural products or synthetic products (including substituted products and derivatives), and a mixture of both may be used. Among the mineral fine particles, layered organic clay is more preferred. Layered organic clay refers to a swellable clay in which organic onium ions are introduced between the layers. The organic onium ion is not limited as long as it can be organicized using the cation exchange properties of the swelling clay. When using a layered organic clay mineral as the mineral fine particles, the above-mentioned synthetic smectite can be suitably used. Synthetic smectite has the function of increasing the viscosity of the composition for forming an anti-glare layer, suppressing sedimentation of resin particles and inorganic fine particles, and adjusting the uneven shape of the surface of the optical functional layer.
 防眩層形成用組成物を紫外線照射により硬化させるため、重合開始剤を添加しても良い。重合開始剤としては、紫外線照射によりラジカルを発生する重合開始剤を使用することができる。重合開始剤としては、アセトフェノン系、ベンゾフェノン系、チオキサントン系、ベンゾイン、ベンゾインメチルエーテル、アシルフォスフィンオキシド等のラジカル重合開始剤に使用することができる。重合開始剤として、例えば、ジフェニル(2,4,6-トリメチルベンゾイル)ホスフィンオキシド、ビス(2,4,6-トリメチルベンゾイル)フェニルホスフィンオキシド、2,2-ジエトキシアセトフェノン、1-ヒドロキシシクロヘキシルフェニルケトン、2,2-ジメトキシ-フェニルアセトフェノン、ジベンゾイル、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、p-クロロベンゾフェノン、p-メトキシベンゾフェノン、ミヒラーケトン、アセトフェノン、2-クロロチオキサントン等を使用できる。これらのうち1種類を単独で使用しても良いし、2種類以上を組み合わせて使用しても良い。 A polymerization initiator may be added to cure the composition for forming an anti-glare layer by irradiating ultraviolet rays. As the polymerization initiator, a polymerization initiator that generates radicals upon irradiation with ultraviolet light can be used. As the polymerization initiator, radical polymerization initiators such as acetophenone, benzophenone, thioxanthone, benzoin, benzoin methyl ether, and acylphosphine oxide can be used. As a polymerization initiator, for example, diphenyl(2,4,6-trimethylbenzoyl)phosphine oxide, bis(2,4,6-trimethylbenzoyl)phenylphosphine oxide, 2,2-diethoxyacetophenone, 1-hydroxycyclohexylphenyl ketone , 2,2-dimethoxy-phenylacetophenone, dibenzoyl, benzoin, benzoin methyl ether, benzoin ethyl ether, p-chlorobenzophenone, p-methoxybenzophenone, Michler's ketone, acetophenone, 2-chlorothioxanthone, and the like. One type of these may be used alone, or two or more types may be used in combination.
 また、防眩層形成用組成物には、滑り性を向上する成分(滑り性向上剤)として、防汚剤、レベリング剤、撥油剤、撥水剤、指紋付着防止剤を添加することが好ましい。これらの添加剤として、含フッ素化合物やシリコーン化合物を好適に使用することができる。最表層となる防眩層3に滑り性を発現する化合物を添加することによって、滑り性を一層向上させることができる。その他、帯電防止剤、消泡剤、酸化防止剤、紫外線吸収剤、赤外線吸収剤、色材、光安定剤、重合禁止剤、光増感剤等の各種添加剤等を必要に応じて添加しても良い。 In addition, it is preferable to add an antifouling agent, a leveling agent, an oil repellent, a water repellent, and a fingerprint-preventing agent to the composition for forming an anti-glare layer as a component that improves slipperiness (slippery improver). . As these additives, fluorine-containing compounds and silicone compounds can be suitably used. By adding a compound that exhibits slipperiness to the antiglare layer 3, which is the outermost layer, the slipperiness can be further improved. In addition, various additives such as antistatic agents, antifoaming agents, antioxidants, ultraviolet absorbers, infrared absorbers, colorants, light stabilizers, polymerization inhibitors, photosensitizers, etc. may be added as necessary. It's okay.
 更に、防眩層形成用組成物には、必要に応じて、溶剤を添加しても良い。溶剤としては、メタノール、エタノール、1-プロパノール、2-プロパノール、ブタノール、イソプロピルアルコール、イソブタノール等のアルコール類、アセトン、メチルエチルケトン、シクロヘキサノン、メチルイソブチルケトン等のケトン類、ジアセトンアルコール等のケトンアルコール類、ベンゼン、トルエン、キシレン等の芳香族炭化水素類、エチレングリコール、プロピレングリコール、ヘキシレングリコール等のグリコール類、エチルセロソルブ、ブチルセロソルブ、エチルカルビトール、ブチルカルビトール、ジエチルセロソルブ、ジエチルカルビトール、プロピレングリコールモノメチルエーテル等のグリコールエーテル類、乳酸メチル、乳酸エチル、酢酸メチル、酢酸エチル、酢酸ブチル、酢酸アミル等のエステル類、ジメチルエーテル、ジエチルエーテル等のエーテル類、N-メチルピロリドン、ジメチルフォルムアミド等のうち、1種類または2種類以上を混合して使用できる。 Furthermore, a solvent may be added to the composition for forming an anti-glare layer, if necessary. Examples of solvents include alcohols such as methanol, ethanol, 1-propanol, 2-propanol, butanol, isopropyl alcohol, and isobutanol, ketones such as acetone, methyl ethyl ketone, cyclohexanone, and methyl isobutyl ketone, and ketone alcohols such as diacetone alcohol. , aromatic hydrocarbons such as benzene, toluene, xylene, glycols such as ethylene glycol, propylene glycol, hexylene glycol, ethyl cellosolve, butyl cellosolve, ethyl carbitol, butyl carbitol, diethyl cellosolve, diethyl carbitol, propylene glycol Glycol ethers such as monomethyl ether, esters such as methyl lactate, ethyl lactate, methyl acetate, ethyl acetate, butyl acetate, amyl acetate, ethers such as dimethyl ether and diethyl ether, N-methylpyrrolidone, dimethylformamide, etc. , one type or a mixture of two or more types can be used.
 図2は、実施形態に係る光学フィルムの他の一例を模式的に示す断面図である。 FIG. 2 is a cross-sectional view schematically showing another example of the optical film according to the embodiment.
 光学積層体12は、透明支持体2と、透明支持体2の一方面に積層された防眩層3と、防眩層3の表面に積層された低屈折率層4(AR層)を備える。光学積層体12は、最表面の微細な凹凸による入射光の散乱と光学干渉とを利用して、外光の映り込み及び反射を抑制する光学フィルムである(「AGLRフィルム」とも称される)。 The optical laminate 12 includes a transparent support 2, an anti-glare layer 3 laminated on one side of the transparent support 2, and a low refractive index layer 4 (AR layer) laminated on the surface of the anti-glare layer 3. . The optical laminate 12 is an optical film that suppresses reflection and reflection of external light by utilizing scattering of incident light and optical interference due to minute irregularities on the outermost surface (also referred to as "AGLR film"). .
 低屈折率層4は、下層の防眩層3の屈折率よりも低い屈折率を有し、光学干渉により反射を抑制する機能層である。 The low refractive index layer 4 is a functional layer that has a refractive index lower than that of the anti-glare layer 3 below, and suppresses reflection by optical interference.
 低屈折率層4は、活性エネルギー線硬化型化合物を含有する組成物を防眩層3の表面に塗布し、塗膜を硬化させることにより形成することができる。低屈折率層4は、屈折率調整のために、低屈折率微粒子を含有しても良い。 The low refractive index layer 4 can be formed by applying a composition containing an active energy ray-curable compound to the surface of the anti-glare layer 3 and curing the coating film. The low refractive index layer 4 may contain low refractive index fine particles to adjust the refractive index.
 低屈折率微粒子としては、例えば、LiF、MgF、3NaF・AlFまたはAlF(いずれも、屈折率1.4)、もしくはNaAlF(氷晶石、屈折率1.33)等の微粒子や、内部に空隙を有するシリカ微粒子を好適に使用することができる。内部に空隙を有するシリカ微粒子は、空隙の部分を空気の屈折率(約1)とすることができるので、低屈折率層4の低屈折率化に遊離である。具体的には、多孔質シリカ粒子、シェル(殻)構造のシリカ粒子を用いることができる。尚、低屈折率微粒子は必ずしも必要ではなく、活性エネルギー線硬化型化合物の硬化後の屈折率が防眩層3の屈折率よりも低い場合は、低屈折率微粒子を省略しても良い。 Examples of low refractive index fine particles include fine particles such as LiF, MgF, 3NaF・AlF, or AlF (all have a refractive index of 1.4), or Na 3 AlF 6 (cryolite, a refractive index of 1.33), Silica fine particles having voids inside can be preferably used. Silica fine particles having voids inside can have the refractive index of air (approximately 1) in the void portion, and are therefore free to lower the refractive index of the low refractive index layer 4. Specifically, porous silica particles and shell-structured silica particles can be used. Note that the low refractive index fine particles are not necessarily necessary, and if the refractive index of the active energy ray-curable compound after curing is lower than the refractive index of the anti-glare layer 3, the low refractive index fine particles may be omitted.
 活性エネルギー線硬化型化合物としては、防眩層で説明した重合性化合物を使用することができる。また、低屈折率層形成用組成物には、上述した重合開始剤や溶剤を適宜添加しても良い。 As the active energy ray-curable compound, the polymerizable compounds described in the anti-glare layer can be used. Further, the above-mentioned polymerization initiator and solvent may be appropriately added to the composition for forming a low refractive index layer.
 低屈折率層4は、最表層となる機能層であるため、低屈折率層形成用組成物には、滑り性を向上する成分(滑り性向上剤)として、防汚剤、レベリング剤、撥油剤、撥水剤、指紋付着防止剤を添加することが好ましい。これらの添加剤として、含フッ素化合物やシリコーン化合物を好適に使用することができる。その他、帯電防止剤、消泡剤、酸化防止剤、紫外線吸収剤、赤外線吸収剤、色材、光安定剤、重合禁止剤、光増感剤等の各種添加剤等を必要に応じて添加しても良い。 Since the low refractive index layer 4 is a functional layer that is the outermost layer, the composition for forming the low refractive index layer contains an antifouling agent, a leveling agent, and a repellent as a component that improves slipperiness (slippery improver). It is preferable to add an oil agent, a water repellent, and an anti-fingerprint agent. As these additives, fluorine-containing compounds and silicone compounds can be suitably used. In addition, various additives such as antistatic agents, antifoaming agents, antioxidants, ultraviolet absorbers, infrared absorbers, colorants, light stabilizers, polymerization inhibitors, photosensitizers, etc. may be added as necessary. It's okay.
 透明支持体2と防眩層3との間に、ハードコート層、高屈折率層、中屈折率層、帯電防止層、電磁波遮断層、赤外線吸収層、紫外線吸収層、色補正層等の他の機能層が1層以上積層されても良い。 A hard coat layer, a high refractive index layer, a medium refractive index layer, an antistatic layer, an electromagnetic wave blocking layer, an infrared absorbing layer, an ultraviolet absorbing layer, a color correction layer, etc. are provided between the transparent support 2 and the anti-glare layer 3. One or more functional layers may be stacked.
 上記の防眩層形成用組成物及び低屈折率層形成用組成物の塗工方法は特に限定されず、例えば、スピンコーター、ロールコーター、リバースロールコーター、グラビアコーター、マイクログラビアコーター、ナイフコーター、バーコーター、ワイヤーバーコーター、ダイコーター、ディップコーター、スプレーコーター、アプリケーター等を用いて塗工することができる。 The coating method of the anti-glare layer forming composition and the low refractive index layer forming composition described above is not particularly limited, and examples thereof include a spin coater, a roll coater, a reverse roll coater, a gravure coater, a microgravure coater, a knife coater, Coating can be performed using a bar coater, wire bar coater, die coater, dip coater, spray coater, applicator, etc.
 ここで、本実施形態に係る光学積層体の表面凹凸形状の詳細を説明する。 Here, details of the surface unevenness shape of the optical laminate according to this embodiment will be explained.
 本実施形態に係る光学機能積層体の最表面の凹凸形状は、以下の条件(1)~(3)を同時に満足する。
  20,000≦A≦300,000 (1)
  300≦B≦800 (2)
  10≦C≦180 (3)
ここで、A、B及びCは、光学積層体表面の凹凸高さの測定データから生成した画像データを高速フーリエ変換(以下、「FFT」という)し、変換後の画像(パワースペクトラム画像)の所定範囲から算出した空間周波数fから導き出される値である。Aは、0<f≦100cycle/mmの範囲のパワースペクトラム強度の平均値であり、Bは、100cycle/mm<f≦200cycle/mmの範囲のパワースペクトラム強度の平均値であり、Cは、200cycle/mm<f≦300cycle/mmの範囲のパワースペクトラム強度の平均値である。
The uneven shape on the outermost surface of the optical functional laminate according to this embodiment satisfies the following conditions (1) to (3) at the same time.
20,000≦A≦300,000 (1)
300≦B≦800 (2)
10≦C≦180 (3)
Here, A, B, and C are images obtained by fast Fourier transform (hereinafter referred to as "FFT") of the image data generated from the measurement data of the height of unevenness on the surface of the optical laminate. This is a value derived from the spatial frequency f calculated from a predetermined range. A is the average value of the power spectrum intensity in the range of 0<f≦100cycle/mm, B is the average value of the power spectrum intensity in the range of 100cycle/mm<f≦200cycle/mm, and C is the average value of the power spectrum intensity in the range of 200cycle/mm. /mm<f≦300cycle/mm.
 上記A、B及びCの値の算出方法は、以下の通りである。 The method for calculating the values of A, B, and C above is as follows.
 まず、光学積層体の最表面の凹凸高さの3次元データを計測により取得する。凹凸高さの3次元データは、計測面内の位置と凹凸の高さとを含む。最表面の凹凸高さの3次元データは、光学干渉方式または接触方式により計測することができる。取得した3次元データは、凹凸高さを画素値とする画像(第1の画像)に変換する。次に、第1の画像に対してFFTを行って、FFT処理後の画像(第2の画像)を得る。次に、FFT処理後の第2の画像内の所定範囲のパワースペクトラムのX座標を空間周波数fに変換する。得られた空間周波数から、0<f≦100cycle/mmの範囲、100cycle/mm<f≦200cycle/mmの範囲、200cycle/mm<f≦300cycle/mmの範囲におけるパワースペクトラム強度の真数の平均値を算出し、上記A、B及びCの値とする。 First, three-dimensional data of the height of the unevenness on the outermost surface of the optical laminate is obtained by measurement. The three-dimensional data of the height of the unevenness includes the position within the measurement plane and the height of the unevenness. The three-dimensional data of the height of the irregularities on the outermost surface can be measured by an optical interference method or a contact method. The acquired three-dimensional data is converted into an image (first image) whose pixel value is the height of the unevenness. Next, FFT is performed on the first image to obtain an image after FFT processing (second image). Next, the X coordinate of the power spectrum in a predetermined range in the second image after FFT processing is converted into a spatial frequency f. From the obtained spatial frequency, the average value of the antilog of the power spectrum intensity in the range of 0<f≦100cycle/mm, the range of 100cycle/mm<f≦200cycle/mm, and the range of 200cycle/mm<f≦300cycle/mm are calculated and set as the values of A, B, and C above.
 従来、滑り性を発現させるためには、最表面層にフッ素化合物やシリコーン化合物等の滑り性を向上する成分を含有させることが一般的であるが、滑り性を発現する成分の添加のみでは、滑り性の向上に限界があった。本願発明者らが検討したところ、滑り性には、最表面の材質や含有成分だけでなく、表面凹凸形状も影響していることがわかった。また、本願発明者らが滑り性を向上ができる凹凸形状を検討したところ、空間周波数50cycle/mm付近のパワースペクトラム強度が、滑り性に大きく関係しており、空間周波数50cycle/mm付近のパワースペクトラム強度が高いほど(すなわち、凹凸高さが高いほど)、滑り性が向上することが分かった。 Conventionally, in order to develop slipperiness, it is common to include a component that improves slippage, such as a fluorine compound or a silicone compound, in the outermost layer. There was a limit to the improvement in slipperiness. The inventors of the present invention have investigated and found that the slipperiness is affected not only by the material of the outermost surface and the components contained therein, but also by the shape of the surface irregularities. In addition, when the inventors of the present application investigated uneven shapes that can improve slipperiness, it was found that the power spectrum intensity around a spatial frequency of 50 cycles/mm is greatly related to slipperiness; It was found that the higher the strength (that is, the higher the unevenness height), the better the slipperiness.
 滑り性は摩擦係数の大きさによって表すことができる。摩擦係数は、材料が同じである場合、接触面積に比例し、接触面積が大きいほど摩擦係数が大きくなる。ここで、摩擦係数μ=摩擦力F/荷重(垂直荷重)N=接触面積×せん断応力/荷重Nの関係が成り立つ。尚、せん断応力は材質に依存し、荷重は試験条件に依存する。したがって、光学積層体表面に指を置いたときの指紋の稜線と表面の凸部との接触面積と、滑り状態での指のせん断変形による接触面積の変化が滑り性に影響していると考えられる。上記条件(1)~(3)を満たす凹凸形状は、指を接触させて静止した状態と滑り状態とにおいて、指と表面の凸部との接触面積を減少させることができ、この結果、滑り性が向上していると考えられる。 The slipperiness can be expressed by the magnitude of the friction coefficient. The coefficient of friction is proportional to the contact area when the materials are the same, and the larger the contact area, the higher the coefficient of friction. Here, the relationship of friction coefficient μ=frictional force F/load (vertical load) N=contact area×shear stress/load N holds true. Note that the shear stress depends on the material, and the load depends on the test conditions. Therefore, it is thought that the contact area between the ridgeline of the fingerprint and the convex part of the surface when a finger is placed on the surface of the optical laminate, and the change in the contact area due to shear deformation of the finger in a sliding state affect the slipperiness. It will be done. An uneven shape that satisfies the above conditions (1) to (3) can reduce the contact area between the finger and the convex part of the surface in a state where the finger is in contact and is stationary and a state where the finger is sliding, and as a result, it is possible to reduce the contact area between the finger and the convex part of the surface, resulting in slippage. It is thought that the quality has improved.
 光学積層体11及び12の最表面の動摩擦係数は0.3以下であることが好ましい。最表面の動摩擦係数が0.3以下であれば、画像表示装置に対してフリックやスワイプ等の摺動操作を行ったときに、滑らかに指をスライドさせることができ、使用感が良好である。 The dynamic friction coefficient of the outermost surface of the optical laminates 11 and 12 is preferably 0.3 or less. If the coefficient of dynamic friction of the outermost surface is 0.3 or less, when performing a sliding operation such as flicking or swiping on the image display device, the finger can be slid smoothly and the usability is good. .
 本実施形態に係る光学積層体11及び12は、最表面の凹凸形状が上記条件(1)~(3)を満足することにより、優れた滑り性を有する。また、最表層となる機能層に滑り性を向上させる成分を添加することにより、滑り性を更に向上させることができる。 The optical laminates 11 and 12 according to the present embodiment have excellent slip properties because the uneven shape of the outermost surface satisfies the conditions (1) to (3) above. In addition, the slipperiness can be further improved by adding a component that improves the slipperiness to the functional layer, which is the outermost layer.
 尚、A~Cの値は、防眩層3に添加するフィラーの粒径や添加量、添加剤の量、防眩層3の膜厚、成膜プロセスにおけるフィラーの凝集状態の調整により制御することができる。 The values of A to C are controlled by adjusting the particle size and amount of the filler added to the anti-glare layer 3, the amount of additive, the thickness of the anti-glare layer 3, and the agglomeration state of the filler in the film forming process. be able to.
 本実施形態に係る光学積層体11及び12は、液晶パネルや有機ELパネル等の画像表示パネルの最表面に貼合して画像表示装置を構成するのに利用することができる。光学積層体11及び12と画像表示パネルとの間にタッチパネルが設けられても良い。本実施形態に係る光学積層体11及び12は、滑り性に優れるため、画像表示装置の最表面に設ける光学フィルムとして好適である。 The optical laminates 11 and 12 according to this embodiment can be used to configure an image display device by being laminated to the outermost surface of an image display panel such as a liquid crystal panel or an organic EL panel. A touch panel may be provided between the optical laminates 11 and 12 and the image display panel. The optical laminates 11 and 12 according to this embodiment have excellent slip properties and are therefore suitable as optical films provided on the outermost surface of an image display device.
 以下、本発明を具体的に実施した実施例を説明する。 Examples in which the present invention was specifically implemented will be described below.
(実施例1)
 以下のハードコート(HC)組成物を調製した。
(Example 1)
The following hard coat (HC) compositions were prepared.
(HC組成物1:防眩層形成用)
 ペイントシェイカーを用い、平均粒径3.5μmの有機微粒子(テクポリマー製、SSX-2035)をトルエンに40分間分散させた後、有機微粒子5.0質量部、下記式で表されるペンタエリスリトールとアクリル酸の縮合物(大阪有機化学工業製、ビスコート#300、以下、「PETA」という)92.0質量部、光重合開始剤(IGM Resins B.V.製、Omnirad 184)の3.0質量部の割合でトルエンに混合した。組成物中の全固形分濃度は、50質量%に調整した。混合物をペイントシェイカーにて50分間攪拌し、HC組成物1とした。
(HC composition 1: for forming anti-glare layer)
Using a paint shaker, organic fine particles (manufactured by Techpolymer, SSX-2035) with an average particle size of 3.5 μm were dispersed in toluene for 40 minutes, and then 5.0 parts by mass of organic fine particles, pentaerythritol expressed by the following formula, and 92.0 parts by mass of a condensate of acrylic acid (manufactured by Osaka Organic Chemical Industry Co., Ltd., Viscoat #300, hereinafter referred to as "PETA"), 3.0 parts by mass of a photopolymerization initiator (manufactured by IGM Resins B.V., Omnirad 184) 1 part toluene. The total solid content concentration in the composition was adjusted to 50% by mass. The mixture was stirred in a paint shaker for 50 minutes to obtain HC composition 1.
(HC組成物2:低屈折率層形成用)
 PETA(大阪有機化学工業製、ビスコート#300、)45.0質量部、平均粒径75nmのイソプロピルアルコール分散中空シリカ微粒子を固形分で50.0質量部、UV硬化させるための光重合開始剤の光開始剤を3.0質量部、フッ素系防汚剤(信越化学工業製、KY-1203)2.0質量部を添加し、全固形分濃度が3.5質量%となるようイソプロピルアルコールに混合し、混合物をペイントシェイカーにて50分間攪拌し、HC組成物2とした。
(HC composition 2: for forming a low refractive index layer)
45.0 parts by mass of PETA (Viscoat #300, manufactured by Osaka Organic Chemical Industry Co., Ltd.), 50.0 parts by mass of hollow silica particles dispersed in isopropyl alcohol with an average particle size of 75 nm, and a photopolymerization initiator for UV curing. Add 3.0 parts by mass of a photoinitiator and 2.0 parts by mass of a fluorine-based antifouling agent (manufactured by Shin-Etsu Chemical Co., Ltd., KY-1203) to isopropyl alcohol so that the total solid concentration is 3.5% by mass. The mixture was stirred in a paint shaker for 50 minutes to obtain HC Composition 2.
 次に、厚さ60μmのトリアセチルセルロース(TAC)フィルム(富士フィルム製、TJ40)を透明支持体とし、透明支持体の一方面に、HC組成物1をバーコーターを用いて塗布し、乾燥機で100℃で1分間乾燥させた。高圧水銀UV装置を用い、窒素雰囲気下(酸素濃度500ppm以下)にて、積算露光量が200mJ/cmとなるように塗膜に紫外線を照射し、塗膜を硬化させて防眩層を形成した。尚、HC組成物1の塗工量は、硬化後の膜厚が5μmとなるように調節した。 Next, using a triacetyl cellulose (TAC) film (manufactured by Fuji Film, TJ40) with a thickness of 60 μm as a transparent support, HC composition 1 was applied to one side of the transparent support using a bar coater, and a dryer was used. It was dried at 100°C for 1 minute. Using a high-pressure mercury UV device, the coating film is irradiated with ultraviolet rays in a nitrogen atmosphere (oxygen concentration 500 ppm or less) so that the cumulative exposure amount is 200 mJ/ cm2 , and the coating film is cured to form an anti-glare layer. did. The coating amount of HC composition 1 was adjusted so that the film thickness after curing was 5 μm.
 次に、防眩層上に、HC組成物2をバーコーターを用いて塗布し、乾燥機で100℃で1分間乾燥させた。高圧水銀UV装置を用い、窒素雰囲気下(酸素濃度500ppm以下)、積算露光量が200mJ/cmとなるように塗膜西凱旋を照射し、塗膜を硬化させて低屈折率層を形成した。尚、HC組成物2の塗工量は、硬化後の光学膜厚nd(nd=屈折率n×膜厚d(nm))が、550/4nmとなるように調節した。 Next, HC composition 2 was applied onto the anti-glare layer using a bar coater, and dried in a dryer at 100° C. for 1 minute. Using a high-pressure mercury UV device, the coating film was irradiated in a nitrogen atmosphere (oxygen concentration of 500 ppm or less) with a cumulative exposure dose of 200 mJ/cm 2 to harden the coating film and form a low refractive index layer. . The coating amount of HC composition 2 was adjusted so that the optical film thickness nd (nd = refractive index n x film thickness d (nm)) after curing was 550/4 nm.
(実施例2)
 低屈折率層を形成しなかったことを除き、実施例1と同様に光学積層体を作製した。
(Example 2)
An optical laminate was produced in the same manner as in Example 1, except that the low refractive index layer was not formed.
(実施例3)
 HC組成物1におけるペイントシェイカーによる有機微粒子の分散時間及び塗液の攪拌時間をいずれも70分間としたことを除き、実施例1と同様に光学積層体を作製した。
(Example 3)
An optical laminate was produced in the same manner as in Example 1, except that in HC Composition 1, the time for dispersing organic particles using a paint shaker and the stirring time for the coating liquid were both 70 minutes.
(実施例4)
 HC組成物1におけるペイントシェイカーによる有機微粒子の分散時間を70分間としたことを除き、実施例1と同様に光学積層体を作製した。
(Example 4)
An optical laminate was produced in the same manner as in Example 1, except that the dispersion time of organic fine particles using a paint shaker in HC Composition 1 was changed to 70 minutes.
(実施例5)
 HC組成物1における有機微粒子を平均粒径3.0μmの有機微粒子(テクポリマー製、SSX-103)4.0質量部に変更し、PETAの配合量を93.0質量部に変更したことを除き、実施例1と同様に光学積層体を作製した。
(Example 5)
The organic fine particles in HC composition 1 were changed to 4.0 parts by mass of organic fine particles (manufactured by Techpolymer, SSX-103) with an average particle size of 3.0 μm, and the amount of PETA was changed to 93.0 parts by mass. An optical laminate was produced in the same manner as in Example 1 except for the following.
(実施例6)
 低屈折率層を形成しなかったことを除き、実施例5と同様に光学積層体を作製した。
(Example 6)
An optical laminate was produced in the same manner as in Example 5, except that the low refractive index layer was not formed.
(実施例7)
 HC組成物1の塗工量を、硬化後の膜厚が6.0μmとなるように変更したことを除き、実施例1と同様に光学積層体を作製した。
(Example 7)
An optical laminate was produced in the same manner as in Example 1, except that the coating amount of HC Composition 1 was changed so that the film thickness after curing was 6.0 μm.
(実施例8)
 低屈折率層を形成しなかったことを除き、実施例7と同様に光学積層体を作製した。
(Example 8)
An optical laminate was produced in the same manner as in Example 7, except that the low refractive index layer was not formed.
(比較例1)
 HC組成物1の塗工量を、硬化後の膜厚が4.5μmとなるように変更したことを除き、実施例1と同様に光学積層体を作製した。
(Comparative example 1)
An optical laminate was produced in the same manner as in Example 1, except that the coating amount of HC Composition 1 was changed so that the film thickness after curing was 4.5 μm.
(比較例2)
 HC組成物1の塗工量を、硬化後の膜厚が8.0μmとなるように変更したことを除き、実施例1と同様に光学積層体を作製した。
(Comparative example 2)
An optical laminate was produced in the same manner as in Example 1, except that the coating amount of HC Composition 1 was changed so that the film thickness after curing was 8.0 μm.
(比較例3)
 HC組成物1における有機微粒子を平均粒径5.0μmの有機微粒子(テクポリマー製、SSX-105)に変更したことを除き、実施例1と同様に光学積層体を作製した。
(Comparative example 3)
An optical laminate was produced in the same manner as in Example 1, except that the organic fine particles in HC Composition 1 were changed to organic fine particles (manufactured by Techpolymer, SSX-105) with an average particle size of 5.0 μm.
(比較例4)
 HC組成物1における有機微粒子を平均粒径2.5μmの有機微粒子(テクポリマー製、SSX-102)に変更したことを除き、実施例1と同様に光学積層体を作製した。
(Comparative example 4)
An optical laminate was produced in the same manner as in Example 1, except that the organic fine particles in HC Composition 1 were changed to organic fine particles (manufactured by Techpolymer, SSX-102) with an average particle size of 2.5 μm.
(比較例5)
 HC組成物1におけるPETAの配合量を90.0質量部とし、有機微粒子(テクポリマー製、SSX-2035)の配合量を7.0質量部としたことを除き、実施例1と同様に光学積層体を作製した。
(Comparative example 5)
The optical composition was prepared in the same manner as in Example 1, except that the amount of PETA in HC Composition 1 was 90.0 parts by mass, and the amount of organic fine particles (manufactured by Techpolymer, SSX-2035) was 7.0 parts by mass. A laminate was produced.
(比較例6)
 HC組成物1におけるPETAの配合量を94.0質量部とし、有機微粒子の配合量を3.0質量部としたことを除き、実施例1と同様に光学積層体を作製した。
(Comparative example 6)
An optical laminate was produced in the same manner as in Example 1, except that the amount of PETA in HC Composition 1 was 94.0 parts by mass, and the amount of organic fine particles was 3.0 parts by mass.
(比較例7)
 HC組成物1におけるペイントシェイカーによる有機微粒子の分散時間を20分間に変
更したことを除き、実施例1と同様に光学積層体を作製した。
(Comparative example 7)
An optical laminate was produced in the same manner as in Example 1, except that the time for dispersing organic particles using a paint shaker in HC Composition 1 was changed to 20 minutes.
(比較例8)
 低屈折率層を形成しなかったことを除き、比較例7と同様に光学積層体を作製した。
(Comparative example 8)
An optical laminate was produced in the same manner as Comparative Example 7 except that the low refractive index layer was not formed.
(比較例9)
 HC組成物1におけるペイントシェイカーによる有機微粒子の分散時間及び塗液の攪拌時間を80分間に変更したことを除き、実施例1と同様に光学積層体を作製した。
(Comparative Example 9)
An optical laminate was produced in the same manner as in Example 1, except that in HC Composition 1, the time for dispersing organic particles using a paint shaker and the stirring time for the coating liquid were changed to 80 minutes.
(比較例10)
 低屈折率層を形成しなかったことを除き、比較例9と同様に光学積層体を作製した。
(Comparative Example 10)
An optical laminate was produced in the same manner as Comparative Example 9 except that the low refractive index layer was not formed.
 各実施例及び各比較例に係る光学積層体を以下の通り評価した。 The optical laminates according to each Example and each Comparative Example were evaluated as follows.
<評価1:表面凹凸形状>
(3次元データの取得)
 Vertscan(菱化システム社製、R3300H Lite)を用いて、光学積層体の最表面の凹凸形状の3次元データを光学干渉方式にて測定した。測定条件は次の通りである。凹凸高さは、測定範囲内で最も低い位置を基準とした。
・カメラ機種:Sony HR-50 1/3
・対物レンズ倍率:5XTI
・鏡筒:1X
・ズームレンズ:1X
・光源:530white
・波長フィルタ:520nm
・測定デバイス:ピエゾ
・測定モード:Phase
・スキャンスピード:4μm/sec
・スキャンレンジ:10μm~-10μm
・有効ピクセル数:0%
・測定範囲:940.8μm×705.6μm、640pixel×480pixel
・XY方向分解能:1pixel 1.47μm
<Evaluation 1: Surface unevenness shape>
(Acquisition of 3D data)
Using Vertscan (manufactured by Ryoka System Co., Ltd., R3300H Lite), three-dimensional data of the uneven shape of the outermost surface of the optical laminate was measured by an optical interference method. The measurement conditions are as follows. The height of the unevenness was based on the lowest position within the measurement range.
・Camera model: Sony HR-50 1/3
・Objective lens magnification: 5XTI
・Lens barrel: 1X
・Zoom lens: 1X
・Light source: 530white
・Wavelength filter: 520nm
・Measurement device: Piezo ・Measurement mode: Phase
・Scan speed: 4μm/sec
・Scan range: 10μm to -10μm
・Number of effective pixels: 0%
・Measurement range: 940.8μm x 705.6μm, 640pixel x 480pixel
・XY direction resolution: 1 pixel 1.47 μm
(FFT解析)
 フリーソフト「ImageJ 1.53h」をWindows(登録商標)10環境下で使用してFFT解析を実施した。手順は次の通りである。
1.3次元データを、高さを画素値とするTIFF画像データに変換した。
2.元の3次元データ値(高さの測定値)を参照してFFTを実施した。FFT処理後の画像サイズは1024pixel×1024pixelとした。
3.FFT処理後の画像に対して、パワースペクトラム強度を実測値に復元する処理を行った。
4.処理後の画像における、原点を通り正のX軸上±20Pixelの範囲を指定し、パワースペクトラム強度を出力した。
5.出力したパワースペクトラムのX座標を、元の3次元データの画素サイズを元に空間周波数fに変換した。
6.算出した空間周波数から、0<f≦100cycle/mm、100cycle/mm<f≦200cycle/mm、200cycle/mm<f≦300cycle/mmの各範囲内のパワースペクトラム強度の真数での平均値(A~Cの値)を算出した。
(FFT analysis)
FFT analysis was performed using free software "ImageJ 1.53h" under Windows (registered trademark) 10 environment. The steps are as follows.
1. The three-dimensional data was converted to TIFF image data in which the height is the pixel value.
2. FFT was performed with reference to the original three-dimensional data values (height measurements). The image size after FFT processing was 1024 pixels x 1024 pixels.
3. The image after the FFT processing was processed to restore the power spectrum intensity to the actual measured value.
4. In the processed image, a range of ±20 pixels on the positive X axis passing through the origin was specified, and the power spectrum intensity was output.
5. The X coordinate of the output power spectrum was converted into a spatial frequency f based on the pixel size of the original three-dimensional data.
6. From the calculated spatial frequency, the average value (A ~C value) was calculated.
<評価2.光学特性>
 光学積層体の光学特性は、以下に示すヘイズ・防眩性・反射率の評価に基づき、下記基準によって評価した。
◎:ヘイズ・防眩性・反射率に評価◎が1つ以上あり、残りの評価が〇
〇:ヘイズ・防眩性・反射率の全ての評価が〇
×:ヘイズ・防眩性・反射率に評価×が1つ以上ある
<Evaluation 2. Optical properties>
The optical properties of the optical laminate were evaluated according to the following criteria based on the evaluation of haze, antiglare, and reflectance shown below.
◎: There is one or more evaluations ◎ for haze, anti-glare property, reflectance, and the remaining evaluations are 〇〇: All evaluations for haze, anti-glare property, reflectance are 〇×: Haze, anti-glare property, reflectance There is one or more × rating in
(ヘイズ)
 ヘイズは、プラスチックの光学的特性試験方法JIS K 7136のヘイズ試験方法に準拠し、ヘイズメーター(NDH7000、日本電色工業株式会社製)を用いて測定した。光学特性の評価基準は次の通りである。
◎:ヘイズが6%以上8%未満
〇:ヘイズが4%以上6%未満、または、8%以上10%未満
×:ヘイズが4%未満または10%以上
(Haze)
The haze was measured using a haze meter (NDH7000, manufactured by Nippon Denshoku Kogyo Co., Ltd.) in accordance with the haze test method of JIS K 7136, a method for testing optical properties of plastics. The evaluation criteria for optical properties are as follows.
◎: Haze is 6% or more and less than 8% 〇: Haze is 4% or more and less than 6%, or 8% or more and less than 10% ×: Haze is less than 4% or 10% or more
(防眩性)
 図3は、防眩性の評価方法を示す図であり、図4は、防眩性の評価例を示す図である。
(Anti-glare)
FIG. 3 is a diagram showing a method for evaluating anti-glare properties, and FIG. 4 is a diagram showing an example of evaluating anti-glare properties.
 得られた光学積層体を機能面が表面となるように黒板に光学粘着剤を用いて貼合した。また、機能面に対して垂直に光が当たるように三波長蛍光灯と光学積層体を設置した。視点と機能面に写った三波長蛍光灯の像とを結んだ線が、三波長蛍光灯から機能面に下ろした垂線に対して70°となる方向から光学積層体の表面を観察し、下記基準によって防眩性を評価した。
〇:三波長蛍光灯の概形はわかるが、縁がぼやけてはっきりしない
×:三波長蛍光灯の概形がわからないほどぼやけている、あるいは、縁がはっきり見える
The obtained optical laminate was bonded to a blackboard using an optical adhesive so that the functional side faced the surface. In addition, three-wavelength fluorescent lamps and optical laminates were installed so that the light hits the functional surfaces perpendicularly. Observe the surface of the optical laminate from the direction in which the line connecting the viewpoint and the image of the three-wavelength fluorescent lamp reflected on the functional surface is 70° to the perpendicular drawn from the three-wavelength fluorescent lamp to the functional surface, and observe the following. Anti-glare properties were evaluated according to standards.
〇: The outline of the three-wavelength fluorescent lamp can be seen, but the edges are blurry and unclear.
(反射率)
 得られた光学積層体の機能層表面の入射角5°における分光反射率を、自動分光光度計(U-4100、日立製作所製)を用いて測定し、下記基準によって評価した。測定の際には、TACフィルムの裏面(機能層が形成されていない面)につや消し黒色塗料を塗布し、反射防止の処置を施した。
◎:反射率が0.5%未満
〇:反射率が0.5%以上1%未満
×:反射率が1%以上
(reflectance)
The spectral reflectance of the functional layer surface of the obtained optical laminate at an incident angle of 5° was measured using an automatic spectrophotometer (U-4100, manufactured by Hitachi, Ltd.), and evaluated according to the following criteria. During the measurement, a matte black paint was applied to the back surface of the TAC film (the surface on which no functional layer was formed) to prevent reflection.
◎: Reflectance is less than 0.5% 〇: Reflectance is 0.5% or more and less than 1% ×: Reflectance is 1% or more
<評価3.滑り性>
 得られた光学積層体の機能層表面の動摩擦係数を、JIS K 7125に準拠して測定した。測定装置及び測定条件は、以下の通りである。
・評価装置:静動摩擦測定器TL201Tt(株式会社トリニティーラボ製)
・測定子オプション:指紋パターン付触覚接触子(慶應義塾大学大学院システムデザイン・マネジメント研究科前野隆司研究室・山形大学大学院理工学研究科の野村未宗研究室提案指紋パターン付)
・解析ソフト:トライボ解析ソフト
・垂直荷重:20g
・摺動速度:10mm/sec
・移動距離:30mm
・データ収集速度:1msec
<Rating 3. Slip property>
The dynamic friction coefficient of the functional layer surface of the obtained optical laminate was measured in accordance with JIS K 7125. The measuring device and measurement conditions are as follows.
・Evaluation device: Static friction measuring device TL201Tt (manufactured by Trinity Lab Co., Ltd.)
・Measuring element option: Tactile contact with fingerprint pattern (with fingerprint pattern proposed by Takashi Maeno Laboratory, Graduate School of System Design and Management, Keio University, Misune Nomura Laboratory, Graduate School of Science and Engineering, Yamagata University)
・Analysis software: Tribo analysis software ・Vertical load: 20g
・Sliding speed: 10mm/sec
・Traveling distance: 30mm
・Data collection speed: 1msec
 得られた光学積層体を機能面が表面になるように黒板に粘着剤を用いて貼合した。このサンプルを評価装置のステージに固定し、上記条件に従って指紋パターン付触覚接触子と機能面間の摩擦係数の測定・解析を行った。摺動状態の摩擦係数(移動距離10mm~2
0mm間)の摩擦係数の平均値を算出し、得られた数値を動摩擦係数μkとして、下記基準によって評価した。
〇:μk≦0.3
×:0.3<μk
The obtained optical laminate was attached to a blackboard using an adhesive so that the functional side faced the surface. This sample was fixed on the stage of the evaluation device, and the coefficient of friction between the tactile contact with a fingerprint pattern and the functional surface was measured and analyzed according to the above conditions. Coefficient of friction in sliding state (travel distance 10 mm to 2
The average value of the coefficient of friction (between 0 mm) was calculated, and the obtained value was used as the coefficient of dynamic friction μk, and evaluated according to the following criteria.
〇:μk≦0.3
×: 0.3<μk
 表1に評価結果を示す。 Table 1 shows the evaluation results.
 表1に示すように、実施例1~8に係る光学積層体は、A~Cが条件(1)~(3)を満たしており、光学特性及び滑り性の両方に優れていた。 As shown in Table 1, the optical laminates according to Examples 1 to 8 satisfied conditions (1) to (3) in A to C, and were excellent in both optical properties and slip properties.
 一方、比較例1~10に係る光学積層体は、A~Cのうち1つ以上が上記条件を満たしておらず、光学特性及び滑り性の一方または両方の評価が低かった。 On the other hand, in the optical laminates according to Comparative Examples 1 to 10, one or more of A to C did not satisfy the above conditions, and the evaluation of one or both of optical properties and slipperiness was low.
 以上より、上述したA~Cが条件(1)~(3)を同時に満足することによって、光学特性及び滑り性に優れた光学積層体を実現できることが確認された。 From the above, it was confirmed that by simultaneously satisfying conditions (1) to (3) for A to C described above, it is possible to realize an optical laminate with excellent optical properties and slipperiness.
 本発明は、画像表示装置の最表面に設けられる光学フィルムとして利用できる。 The present invention can be used as an optical film provided on the outermost surface of an image display device.
1 光学積層体
2 透明支持体
3 防眩層
4 低屈折率層
1 Optical laminate 2 Transparent support 3 Anti-glare layer 4 Low refractive index layer

Claims (7)

  1.  最表面に凹凸形状を有する光学積層体であって、
     以下の条件(1)~(3)を同時に満足することを特徴とする、光学積層体。
      20,000≦A≦300,000 (1)
      300≦B≦800 (2)
      10≦C≦180 (3)
    ここで、凹凸形状を光学干渉方式または接触方式で計測した凹凸高さの3次元データを、凹凸高さを画素値とする第1の画像データに変換し、第1の画像データを高速フーリエ変換により第2の画像に変換し、第2の画像のうち、原点を通り、かつ、正のX軸上及びY軸方向の±20Pixelの範囲の画像のパワースペクトラムのX座標の空間周波数fを算出した場合において、
    A:0<f≦100cycle/mmの範囲のパワースペクトラム強度の平均値、
    B:100cycle/mm<f≦200cycle/mmの範囲のパワースペクトラム強度の平均値、
    C:200cycle/mm<f≦300cycle/mmの範囲のパワースペクトラム強度の平均値
    である。
    An optical laminate having an uneven shape on the outermost surface,
    An optical laminate characterized by simultaneously satisfying the following conditions (1) to (3).
    20,000≦A≦300,000 (1)
    300≦B≦800 (2)
    10≦C≦180 (3)
    Here, the three-dimensional data of the height of the unevenness measured by the optical interference method or the contact method is converted into first image data whose pixel value is the height of the unevenness, and the first image data is subjected to fast Fourier transformation. Convert it to a second image by , and calculate the spatial frequency f of the X coordinate of the power spectrum of the image that passes through the origin and within a range of ±20 pixels on the positive X axis and Y axis direction. In the case that
    A: average value of power spectrum intensity in the range of 0<f≦100cycle/mm,
    B: average value of power spectrum intensity in the range of 100cycle/mm<f≦200cycle/mm,
    C: Average value of power spectrum intensity in the range of 200 cycles/mm<f≦300 cycles/mm.
  2.  前記光学積層体の最表面の動摩擦係数が0.3以下であることを特徴とする、請求項1に記載の光学積層体。 The optical laminate according to claim 1, wherein the outermost surface of the optical laminate has a coefficient of dynamic friction of 0.3 or less.
  3.  前記光学積層体は、透明支持体と、前記透明支持体の少なくとも片方の面に積層された第1の機能層とを有し、最表面の凹凸形状が前記第1の機能層により形成されていることを特徴とする、請求項1に記載の光学積層体。 The optical laminate includes a transparent support and a first functional layer laminated on at least one surface of the transparent support, and the uneven shape of the outermost surface is formed by the first functional layer. The optical laminate according to claim 1, characterized in that:
  4.  前記第1の機能層上に、前記第1の機能層の屈折率よりも低い屈折率を有する第2の機能層を備えていることを特徴とする請求項2に記載の光学積層体。 The optical laminate according to claim 2, further comprising a second functional layer having a refractive index lower than the refractive index of the first functional layer on the first functional layer.
  5.  前記第1の機能層が含フッ素化合物またはシリコーン化合物を含有することを特徴とする、請求項2に記載の光学積層体。 The optical laminate according to claim 2, wherein the first functional layer contains a fluorine-containing compound or a silicone compound.
  6.  前記第2の機能層が含フッ素化合物またはシリコーン化合物を含有することを特徴とする、請求項3に記載の光学積層体。 The optical laminate according to claim 3, wherein the second functional layer contains a fluorine-containing compound or a silicone compound.
  7.  請求項1~6のいずれか一項に記載の光学積層体を備える、画像表示装置。 An image display device comprising the optical laminate according to any one of claims 1 to 6.
PCT/JP2023/016352 2022-05-20 2023-04-25 Optical laminate and image display device including same WO2023223785A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-082924 2022-05-20
JP2022082924A JP2023170856A (en) 2022-05-20 2022-05-20 Optical laminate and image display device using the same

Publications (1)

Publication Number Publication Date
WO2023223785A1 true WO2023223785A1 (en) 2023-11-23

Family

ID=88835037

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/016352 WO2023223785A1 (en) 2022-05-20 2023-04-25 Optical laminate and image display device including same

Country Status (2)

Country Link
JP (1) JP2023170856A (en)
WO (1) WO2023223785A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011017829A (en) * 2009-07-08 2011-01-27 Sumitomo Chemical Co Ltd Anti-glare film and method for manufacturing the same
JP2011186386A (en) * 2010-03-11 2011-09-22 Sumitomo Chemical Co Ltd Antiglare film and antiglare polarizing plate
JP2013189007A (en) * 2012-02-13 2013-09-26 Central Glass Co Ltd Fingerprint resistance transparent substrate
JP2014126598A (en) * 2012-12-25 2014-07-07 Sumitomo Chemical Co Ltd Anti-glare film and anti-glare polarizing plate
JP2014232159A (en) * 2013-05-28 2014-12-11 住友化学株式会社 Antiglare film, mold for producing antiglare film, and method for producing the same
JP2015537250A (en) * 2012-11-21 2015-12-24 スリーエム イノベイティブ プロパティズ カンパニー Light diffusing film and method for producing the same
JP2016122140A (en) * 2014-12-25 2016-07-07 日油株式会社 Anti-glare anti-reflection film and image display device using the same
JP2016133722A (en) * 2015-01-21 2016-07-25 日油株式会社 Ant-glare film and image display device having the same
JP2017021681A (en) * 2015-07-14 2017-01-26 日油株式会社 Resin composition for forming finger sliding layer, finger sliding film, and image display device using the same
JP2019203931A (en) * 2018-05-21 2019-11-28 株式会社ダイセル Anti-glare film, and manufacturing method and application of the same

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011017829A (en) * 2009-07-08 2011-01-27 Sumitomo Chemical Co Ltd Anti-glare film and method for manufacturing the same
JP2011186386A (en) * 2010-03-11 2011-09-22 Sumitomo Chemical Co Ltd Antiglare film and antiglare polarizing plate
JP2013189007A (en) * 2012-02-13 2013-09-26 Central Glass Co Ltd Fingerprint resistance transparent substrate
JP2015537250A (en) * 2012-11-21 2015-12-24 スリーエム イノベイティブ プロパティズ カンパニー Light diffusing film and method for producing the same
JP2014126598A (en) * 2012-12-25 2014-07-07 Sumitomo Chemical Co Ltd Anti-glare film and anti-glare polarizing plate
JP2014232159A (en) * 2013-05-28 2014-12-11 住友化学株式会社 Antiglare film, mold for producing antiglare film, and method for producing the same
JP2016122140A (en) * 2014-12-25 2016-07-07 日油株式会社 Anti-glare anti-reflection film and image display device using the same
JP2016133722A (en) * 2015-01-21 2016-07-25 日油株式会社 Ant-glare film and image display device having the same
JP2017021681A (en) * 2015-07-14 2017-01-26 日油株式会社 Resin composition for forming finger sliding layer, finger sliding film, and image display device using the same
JP2019203931A (en) * 2018-05-21 2019-11-28 株式会社ダイセル Anti-glare film, and manufacturing method and application of the same

Also Published As

Publication number Publication date
JP2023170856A (en) 2023-12-01

Similar Documents

Publication Publication Date Title
JP5933353B2 (en) Antireflection film, method for producing the same, polarizing plate, and image display device
CN108603954B (en) Optical laminate, polarizing plate, and display device
CN107111012B (en) Optical laminate, polarizing plate, and display device
US20110194055A1 (en) Optical sheet
WO2014017396A1 (en) Photosensitive resin composition and antireflection film
KR101999080B1 (en) Optical laminate, polarizing plate and display device
JP6674371B2 (en) Optical laminate, polarizing plate and display device
JP7121479B2 (en) Optical laminate, polarizing plate and display device
WO2023223785A1 (en) Optical laminate and image display device including same
CN109313289B (en) Optical laminate, polarizing plate, and display device
WO2023224104A1 (en) Optical laminate and image display device using same
WO2023090300A1 (en) Optical laminate and display device using same
WO2022239860A1 (en) In-vehicle reflection control film
TWI854367B (en) Optical laminate and display device using the same
JP2004126220A (en) Antireflective transparent substrate and image display device
JP2024073066A (en) On-vehicle antireflection film and display device using the same
JP2023170231A (en) Optical film and image display device
JP2023170233A (en) Optical film and image display device
JP2024072451A (en) Optical Film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23807396

Country of ref document: EP

Kind code of ref document: A1