WO2023223799A1 - 光学系、光学機器、および光学系の製造方法 - Google Patents

光学系、光学機器、および光学系の製造方法 Download PDF

Info

Publication number
WO2023223799A1
WO2023223799A1 PCT/JP2023/016565 JP2023016565W WO2023223799A1 WO 2023223799 A1 WO2023223799 A1 WO 2023223799A1 JP 2023016565 W JP2023016565 W JP 2023016565W WO 2023223799 A1 WO2023223799 A1 WO 2023223799A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
lens
optical system
optical axis
focus state
Prior art date
Application number
PCT/JP2023/016565
Other languages
English (en)
French (fr)
Inventor
啓吾 古井田
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Publication of WO2023223799A1 publication Critical patent/WO2023223799A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration

Definitions

  • the present invention relates to an optical system, an optical device, and a method for manufacturing an optical system.
  • the optical system according to the first aspect of the present invention includes a front group having a positive refractive power, a diaphragm, an intermediate group having a positive refractive power, and a negative refractive power, which are arranged in order from the object side along the optical axis.
  • the intermediate group moves along the optical axis, the distance between the front group and the intermediate group changes, and the distance between the intermediate group and the rear group changes. and satisfies the following conditional expression.
  • DSE the distance on the optical axis from the aperture to the lens surface closest to the image plane of the rear group DM: the length on the optical axis of the intermediate group in the infinity focus state fAM: the infinity focus state composite focal length of the front group and the intermediate group in f: focal length of the optical system in the infinity focused state
  • the optical system according to the second aspect of the present invention includes a front group having a positive refractive power, a diaphragm, an intermediate group having a positive refractive power, and a negative refractive power, which are arranged in order from the object side along the optical axis.
  • the intermediate group moves along the optical axis, the distance between the front group and the intermediate group changes, and the distance between the intermediate group and the rear group changes. and satisfies the following conditional expression.
  • fAM composite focal length of the front group and intermediate group in the infinity focus state
  • f focal length of the optical system in the infinity focus state
  • DA optical axis of the front group in the infinity focus state
  • DM Length on the optical axis of the intermediate group in the infinity focus state
  • DR Length on the optical axis of the rear group in the infinity focus state
  • DSR From the aperture to the most of the rear group Distance on the optical axis to the object side lens surface
  • An optical device includes the optical system described above.
  • the first method of manufacturing an optical system according to the present invention includes a front group having a positive refractive power, a diaphragm, an intermediate group having a positive refractive power, and a negative refractive power, which are arranged in order from the object side along the optical axis. and a rear group having a refractive power, the intermediate group moves along the optical axis during focusing, and the distance between the front group and the intermediate group changes, Each lens is arranged within the lens barrel so that the distance between the intermediate group and the rear group changes and the following conditional expression is satisfied.
  • DSE the distance on the optical axis from the aperture to the lens surface closest to the image plane of the rear group DM: the length on the optical axis of the intermediate group in the infinity focus state fAM: the infinity focus state composite focal length of the front group and the intermediate group in f: focal length of the optical system in the infinity focused state
  • the second method of manufacturing an optical system according to the present invention includes a front group having a positive refractive power, a diaphragm, an intermediate group having a positive refractive power, and a negative refractive power, which are arranged in order from the object side along the optical axis. and a rear group having a refractive power, the intermediate group moves along the optical axis during focusing, and the distance between the front group and the intermediate group changes, Each lens is arranged within the lens barrel so that the distance between the intermediate group and the rear group changes and the following conditional expression is satisfied.
  • fAM composite focal length of the front group and intermediate group in the infinity focus state
  • f focal length of the optical system in the infinity focus state
  • DA optical axis of the front group in the infinity focus state
  • DM Length on the optical axis of the intermediate group in the infinity focus state
  • DR Length on the optical axis of the rear group in the infinity focus state
  • DSR From the aperture to the most of the rear group Distance on the optical axis to the object side lens surface
  • FIG. 3 is a diagram showing a lens configuration of an optical system according to a first example.
  • FIGS. 2A and 2B are diagrams of various aberrations of the optical system according to the first example when focusing on infinity and when focusing on short distance, respectively.
  • FIG. 7 is a diagram showing a lens configuration of an optical system according to a second example.
  • FIGS. 4A and 4B are diagrams of various aberrations of the optical system according to the second embodiment when focusing on infinity and when focusing on short distance, respectively. It is a figure which shows the lens structure of the optical system based on 3rd Example.
  • FIGS. 6A and 6B are diagrams of various aberrations of the optical system according to the third embodiment when focusing on infinity and when focusing on short distance, respectively.
  • FIGS. 8A and 8B are diagrams of various aberrations of the optical system according to the fourth example when focusing on infinity and when focusing on short distance, respectively. It is a figure which shows the lens structure of the optical system based on 5th Example. 10(A) and 10(B) are diagrams of various aberrations of the optical system according to the fifth embodiment when focusing on infinity and when focusing on short distance, respectively. It is a figure which shows the lens structure of the optical system based on 6th Example.
  • FIGS. 12(A) and 12(B) are diagrams of various aberrations of the optical system according to the sixth embodiment when focusing on infinity and when focusing on short distance, respectively.
  • FIG. 1 is a diagram showing the configuration of a camera including an optical system according to each embodiment.
  • 3 is a flowchart showing a method for manufacturing an optical system according to each embodiment.
  • this camera 1 includes a main body 2 and a photographic lens 3 attached to the main body 2.
  • the main body 2 includes an image sensor 4, a main body control section (not shown) that controls the operation of the digital camera, and a liquid crystal screen 5.
  • the photographic lens 3 includes an optical system OL consisting of a plurality of lens groups, and a lens position control mechanism (not shown) that controls the position of each lens group.
  • the lens position control mechanism includes a sensor that detects the position of the lens group, a motor that moves the lens group back and forth along the optical axis, a control circuit that drives the motor, and the like.
  • the light from the subject is collected by the optical system OL of the photographic lens 3 and reaches the image plane I of the image sensor 4.
  • the light from the subject that has reached the image plane I is photoelectrically converted by the image sensor 4 and recorded in a memory (not shown) as digital image data.
  • the digital image data recorded in the memory can be displayed on the liquid crystal screen 5 in response to user operations.
  • this camera may be a mirrorless camera or a single-lens reflex camera with a quick return mirror.
  • the optical system OL shown in FIG. 15 schematically shows the optical system provided in the photographing lens 3, and the lens configuration of the optical system OL is not limited to this configuration.
  • the optical system OL (1) as an example of the optical system OL according to the first embodiment includes a front group GA having a positive refractive power and arranged in order from the object side along the optical axis. , a diaphragm (aperture stop) S, an intermediate group GM having positive refractive power, and a rear group GR having negative refractive power.
  • the intermediate group GM moves along the optical axis, the distance between the front group GA and the intermediate group GM changes, and the distance between the intermediate group GM and the rear group GR changes.
  • the optical system OL satisfies the following conditional expressions (1) and (2). 2.60 ⁇ DSE/DM ⁇ 3.50...(1) 0.80 ⁇ fAM/f ⁇ 1.00...(2)
  • DSE Distance on the optical axis from the aperture S to the lens surface closest to the image plane of the rear group GR DM: Length on the optical axis of the intermediate group GM in the infinity focus state
  • fAM Infinity focus state Synthetic focal length of the front group GA and intermediate group GM at f: Focal length of the optical system OL in the infinity focus state
  • the optical system OL according to the first embodiment may be the optical system OL (2) shown in FIG. 3, the optical system OL (3) shown in FIG. 5, or the optical system OL (4) shown in FIG. 7. Further, the optical system OL according to the first embodiment may be the optical system OL (5) shown in FIG. 9, the optical system OL (6) shown in FIG. 11, or the optical system OL (7) shown in FIG. good.
  • Conditional expression (1) expresses the appropriate relationship between the distance on the optical axis from the aperture S to the lens surface closest to the image plane of the rear group GR and the length on the optical axis of the intermediate group GM in the infinity focus state. This stipulates the following. By satisfying conditional expression (1), it is possible to suppress fluctuations in various aberrations such as spherical aberration, curvature of field, and coma during focusing, even though the lens is small.
  • conditional expression (1) If the corresponding value of conditional expression (1) exceeds the upper limit, the distance on the optical axis from the aperture S to the lens surface closest to the image plane of the rear group GR becomes long, so it is difficult to It becomes difficult to suppress variations in various aberrations such as spherical aberration, curvature of field, and comatic aberration during focusing.
  • the upper limit of conditional expression (1) By setting the upper limit of conditional expression (1) to 3.45, 3.40, 3.35, or even 3.30, the effects of this embodiment can be made more reliable.
  • conditional expression (1) When the corresponding value of conditional expression (1) is below the lower limit, the distance on the optical axis from the aperture S to the lens surface closest to the image plane of the rear group GR becomes shorter, and the amount of movement of the intermediate group GM during focusing becomes shorter. As a result, it becomes difficult to suppress fluctuations in various aberrations such as spherical aberration, curvature of field, and comatic aberration during focusing.
  • the lower limit of conditional expression (1) By setting the lower limit of conditional expression (1) to 2.65, 2.68, 2.70, or even 2.73, the effects of this embodiment can be made more reliable.
  • Conditional expression (2) defines an appropriate relationship between the combined focal length of the front group GA and intermediate group GM in the infinity focus state and the focal length of the optical system OL in the infinity focus state. .
  • conditional expression (2) it is possible to satisfactorily correct various aberrations such as spherical aberration, chromatic aberration, and coma aberration, while being small.
  • conditional expression (2) If the corresponding value of conditional expression (2) exceeds the upper limit, it becomes difficult to correct field curvature and astigmatism when downsizing the optical system OL.
  • the upper limit of conditional expression (2) By setting the upper limit of conditional expression (2) to 0.98, and further to 0.96, the effects of this embodiment can be made more reliable.
  • conditional expression (2) If the corresponding value of conditional expression (2) is below the lower limit, the magnification of the rear group GR becomes too large, making it difficult to correct various aberrations such as spherical aberration, chromatic aberration, and coma aberration.
  • the lower limit of conditional expression (2) By setting the lower limit of conditional expression (2) to 0.82, 0.84, or even 0.86, the effects of this embodiment can be made more reliable.
  • the optical system OL (1) as an example of the optical system OL according to the second embodiment includes a front group GA having a positive refractive power and arranged in order from the object side along the optical axis. , a diaphragm (aperture stop) S, an intermediate group GM having positive refractive power, and a rear group GR having negative refractive power.
  • the intermediate group GM moves along the optical axis, the distance between the front group GA and the intermediate group GM changes, and the distance between the intermediate group GM and the rear group GR changes.
  • the optical system OL satisfies the following conditional expressions (2) to (4). 0.80 ⁇ fAM/f ⁇ 1.00...(2) 0.50 ⁇ DA/(DM+DR) ⁇ 1.20...(3) 1.70 ⁇ DSR/DM ⁇ 3.40...(4)
  • fAM Combined focal length of the front group GA and intermediate group GM in the infinity focus state
  • DA Optical axis of the front group GA in the infinity focus state
  • Upper length DM Length of the intermediate group GM on the optical axis in the infinity focus state
  • DR Length of the rear group GR on the optical axis in the infinity focus state
  • DSR From the aperture S to the most of the rear group GR Distance on the optical axis to the object side lens surface
  • the optical system OL according to the second embodiment may be the optical system OL (2) shown in FIG. 3, the optical system OL (3) shown in FIG. 5, or the optical system OL (4) shown in FIG. Further, the optical system OL according to the second embodiment may be the optical system OL (5) shown in FIG. 9, the optical system OL (6) shown in FIG. 11, or the optical system OL (7) shown in FIG. good.
  • Conditional expression (2) defines an appropriate relationship between the combined focal length of the front group GA and intermediate group GM in the infinity focus state and the focal length of the optical system OL in the infinity focus state.
  • Conditional expression (3) is the length of the front group GA on the optical axis in the infinity focus state, the length of the intermediate group GM on the optical axis and the length of the rear group GR on the optical axis in the infinity focus state. It specifies the appropriate relationship with the sum of
  • conditional expression (3) aberrations that are generally difficult to correct (for example, field curvature, distortion aberration, lateral chromatic aberration, etc.) with a lens with a wide angle of view and the F-number in the lens specification can be reduced by satisfying conditional expression (3).
  • a lens with a small aberration can effectively correct aberrations that are generally difficult to correct (for example, spherical aberration, comatic aberration, etc.).
  • conditional expression (3) If the corresponding value of conditional expression (3) exceeds the upper limit, the front group GA becomes too long relative to the intermediate group GM and the rear group GR, making it difficult to correct spherical aberration, coma, etc.
  • the upper limit of conditional expression (3) By setting the upper limit of conditional expression (3) to 1.18, 1.15, or even 1.13, the effects of this embodiment can be made more reliable.
  • conditional expression (3) If the corresponding value of conditional expression (3) is below the lower limit value, the intermediate group GM and rear group GR become too long relative to the front group GA, making it difficult to correct field curvature, distortion, lateral chromatic aberration, etc. become.
  • the lower limit of conditional expression (3) By setting the lower limit of conditional expression (3) to 0.52, and further to 0.55, the effects of this embodiment can be made more reliable.
  • Conditional expression (4) expresses the appropriate relationship between the distance on the optical axis from the aperture S to the lens surface closest to the object side of the rear group GR and the length on the optical axis of the intermediate group GM in the infinity focus state. It stipulates that By satisfying conditional expression (4), it is possible to suppress fluctuations in various aberrations during focusing, even though the lens is small.
  • conditional expression (4) If the corresponding value of conditional expression (4) exceeds the upper limit, the distance on the optical axis from the aperture S to the lens surface closest to the object side of the rear group GR becomes long, so it is difficult to focus while making the optical system OL compact. It becomes difficult to suppress fluctuations in various aberrations during this time.
  • the upper limit of conditional expression (4) By setting the upper limit of conditional expression (4) to 3.35, 3.30, or even 3.25, the effects of this embodiment can be made more reliable.
  • conditional expression (4) When the corresponding value of conditional expression (4) is below the lower limit, the distance on the optical axis from the aperture S to the lens surface closest to the object side of the rear group GR becomes shorter, and the amount of movement of the intermediate group GM during focusing becomes smaller. This makes it difficult to suppress fluctuations in various aberrations during focusing.
  • the lower limit of conditional expression (4) By setting the lower limit of conditional expression (4) to 1.75, 1.80, or even 1.82, the effects of this embodiment can be made more reliable.
  • the optical system OL according to the second embodiment may satisfy the above-mentioned conditional expression (1).
  • conditional expression (1) it is possible to suppress fluctuations in various aberrations during focusing, while maintaining a small size, similar to the first embodiment.
  • the upper limit of conditional expression (1) to 3.45, 3.40, 3.35, or even 3.30, the effects of this embodiment can be made more reliable.
  • the lower limit value of conditional expression (1) to 2.65, 2.68, 2.70, or even 2.73, the effects of this embodiment can be made more reliable.
  • optical system OL it is desirable that the optical system OL according to the first embodiment and the second embodiment satisfy the following conditional expression (5). 0.60 ⁇ fM/f ⁇ 1.30...(5)
  • fM focal length of intermediate group GM in infinity focus state
  • Conditional expression (5) defines an appropriate relationship between the focal length of the intermediate group GM in the infinity focus state and the focal length of the optical system OL in the infinity focus state.
  • conditional expression (5) If the corresponding value of conditional expression (5) exceeds the upper limit, the refractive power of the intermediate group GM becomes too weak, making it difficult to reduce the F number while making the optical system OL smaller.
  • the upper limit of conditional expression (5) By setting the upper limit of conditional expression (5) to 1.25, 1.20, 1.15, and even 1.10, the effects of each embodiment can be made more reliable.
  • conditional expression (5) If the corresponding value of conditional expression (5) is below the lower limit value, the refractive power of the intermediate group GM becomes too strong, making it difficult to correct spherical aberration, coma, etc.
  • the lower limit of conditional expression (5) By setting the lower limit of conditional expression (5) to 0.65 and further to 0.70, the effects of each embodiment can be made more reliable.
  • optical system OL According to the first embodiment and the second embodiment satisfy the following conditional expression (6). 0.60 ⁇ fA/(-fR) ⁇ 1.50...(6)
  • fA Focal length of the front group GA in the infinity focus state
  • fR Focal length of the rear group GR in the infinity focus state
  • Conditional expression (6) defines an appropriate relationship between the focal length of the front group GA in the infinity focus state and the focal length of the rear group GR in the infinity focus state.
  • conditional expression (6) If the corresponding value of conditional expression (6) exceeds the upper limit, the refractive power of the rear group GR becomes too strong relative to the front group GA, making it difficult to correct spherical aberration and coma aberration.
  • the upper limit of conditional expression (6) By setting the upper limit of conditional expression (6) to 1.45, 1.40, 1.35, and even 1.30, the effects of each embodiment can be made more reliable.
  • conditional expression (6) If the corresponding value of conditional expression (6) is below the lower limit, the refractive power of the rear group GR becomes too weak relative to the front group GA, making it difficult to correct field curvature and astigmatism.
  • the lower limit of conditional expression (6) By setting the lower limit of conditional expression (6) to 0.65, 0.70, or even 0.75, the effects of each embodiment can be made more reliable.
  • optical system OL it is desirable that the optical system OL according to the first embodiment and the second embodiment satisfy the following conditional expression (7). 0.60 ⁇ 1-( ⁇ M) 2 ⁇ ( ⁇ R) 2 ⁇ 1.50...(7)
  • ⁇ M Lateral magnification of the middle group GM in the infinity focus state
  • ⁇ R Lateral magnification of the rear group GR in the infinity focus state
  • Conditional expression (7) defines an appropriate relationship between the lateral magnification of the intermediate group GM in the infinity focus state and the lateral magnification of the rear group GR in the infinity focus state.
  • conditional expression (7) falls outside the above range, it becomes difficult to suppress fluctuations in various aberrations during focusing while maintaining appropriate changes in the image plane position during focusing.
  • the upper limit of conditional expression (7) 1.45, 1.40, 1.35, 1.30, and even 1.25, the effects of each embodiment can be made more reliable.
  • the lower limit of conditional expression (7) 0.65, 0.70, 0.75, and even 0.80, the effects of each embodiment can be made more reliable.
  • optical system OL it is desirable that the optical system OL according to the first embodiment and the second embodiment satisfy the following conditional expression (8). 0.70 ⁇ DA/DM ⁇ 2.30...(8)
  • DA Length of the front group GA on the optical axis in the infinity focus state
  • DM Length of the intermediate group GM on the optical axis in the infinity focus state
  • Conditional expression (8) defines an appropriate relationship between the length of the front group GA on the optical axis in the infinity focus state and the length of the intermediate group GM on the optical axis in the infinity focus state. .
  • conditional expression (8) it is possible to satisfactorily correct various aberrations such as spherical aberration, coma aberration, and curvature of field.
  • conditional expression (8) falls outside the above range, it becomes difficult to correct various aberrations such as spherical aberration, coma aberration, and curvature of field.
  • the effects of each embodiment can be made more reliable.
  • the lower limit value of conditional expression (8) 0.75, 0.80, 0.85, 0.90, and further to 0.95, the effects of each embodiment can be made more reliable. can.
  • the lens disposed closest to the image plane side is a negative lens. This makes it possible to satisfactorily correct field curvature and astigmatism.
  • the lens placed second from the object side is a positive lens. Therefore, spherical aberration and comatic aberration can be favorably corrected.
  • the lens arranged third from the image plane side is a positive lens. Therefore, spherical aberration and comatic aberration can be favorably corrected.
  • the intermediate group GM includes a first focusing lens group and a second focusing lens group, which are arranged in order from the object side along the optical axis.
  • first focusing lens group and the second focusing lens group move along the optical axis with different trajectories, and satisfy conditional expression (9) below. 9.00 ⁇
  • fF1 focal length of the first focusing lens group
  • Conditional expression (9) defines an appropriate relationship between the focal length of the first focusing lens group and the focal length of the optical system OL. By satisfying conditional expression (9), it is possible to satisfactorily correct various aberrations such as spherical aberration, coma aberration, and field curvature, and to suppress fluctuations in various aberrations during focusing.
  • conditional expression (9) falls outside the above range, it becomes difficult to correct various aberrations such as spherical aberration, coma aberration, and field curvature, and to suppress fluctuations in various aberrations during focusing. .
  • the effects of each embodiment can be made more reliable.
  • the lower limit value of conditional expression (9) is 9.50, 10.00, 10.50, 11.00, and even 11.50, the effects of each embodiment can be made more reliable. can.
  • the intermediate group GM includes a first focusing lens group arranged in order from the object side along the optical axis, and a second focusing lens group having a positive refractive power.
  • the first focusing lens group and the second focusing lens group move along the optical axis with mutually different trajectories during focusing, and the following conditional expression (10) is satisfied. is desirable. 0.30 ⁇ fF2/f ⁇ 2.00 (10) However, fF2: focal length of the second focusing lens group
  • Conditional expression (10) defines an appropriate relationship between the focal length of the second focusing lens group and the focal length of the optical system OL.
  • conditional expression (10) various aberrations such as spherical aberration, coma aberration, and field curvature can be favorably corrected, and fluctuations in various aberrations during focusing can be suppressed.
  • conditional expression (10) falls outside the above range, it becomes difficult to correct various aberrations such as spherical aberration, coma aberration, and field curvature, and to suppress fluctuations in various aberrations during focusing. .
  • the upper limit of conditional expression (10) to 1.85, 1.75, 1.50, 1.45, and even 1.40, the effects of each embodiment can be made more reliable.
  • the lower limit of conditional expression (10) to 0.40, 0.50, 0.55, 0.60, 0.65, and even 0.70, the effects of each embodiment can be made more reliable. It can be done.
  • optical system OL it is desirable that the optical system OL according to the first embodiment and the second embodiment satisfy the following conditional expression (11). 0.80 ⁇ (-fE)/f ⁇ 16.00 (11)
  • fE Focal length of the lens located closest to the image plane in the rear group GR
  • Conditional expression (11) defines an appropriate relationship between the focal length of the lens disposed closest to the image plane in the rear group GR and the focal length of the optical system OL. By satisfying conditional expression (11), field curvature, lateral chromatic aberration, distortion, etc. can be favorably corrected.
  • conditional expression (11) falls outside the above range, it becomes difficult to correct field curvature, lateral chromatic aberration, distortion, etc.
  • the upper limit of conditional expression (11) 15.50, 15.25, 15.00, and 14.75, the effects of each embodiment can be made more reliable.
  • the lower limit of conditional expression (11) 0.85, 0.90, 0.95, or even 1.00, the effects of each embodiment can be made more reliable.
  • optical system OL it is desirable that the optical system OL according to the first embodiment and the second embodiment satisfy the following conditional expression (12). 1.00 ⁇ (-fR)/f ⁇ 3.90...(12) However, fR: focal length of rear group GR in infinity focus state
  • Conditional expression (12) defines an appropriate relationship between the focal length of the rear group GR in the infinity focus state and the focal length of the optical system OL in the infinity focus state. By satisfying conditional expression (12), field curvature, lateral chromatic aberration, distortion, etc. can be favorably corrected.
  • conditional expression (12) falls outside the above range, it becomes difficult to correct field curvature, lateral chromatic aberration, distortion, etc.
  • the upper limit of conditional expression (12) 3.80, 3.70, 3.60, or even 3.50, the effects of each embodiment can be made more reliable.
  • the lower limit of conditional expression (12) 1.05, 1.10, 1.15, and even 1.18, the effects of each embodiment can be made more reliable.
  • the front group GA having positive refractive power, the diaphragm S, the intermediate group GM having positive refractive power, and the rear group GR having negative refractive power are arranged in order from the object side along the optical axis.
  • the intermediate group GM is configured to move along the optical axis, the distance between the front group GA and the intermediate group GM changes, and the distance between the intermediate group GM and the rear group GR changes.
  • each lens is arranged within the lens barrel so that at least the above conditional expressions (1) and (2) are satisfied (step ST3). According to such a manufacturing method, it is possible to manufacture an optical system that is small, bright, and has good optical performance.
  • the manufacturing method of the optical system OL according to the second embodiment is the same as the manufacturing method described in the first embodiment, so it will be explained with reference to FIG. 16, which is the same as the first embodiment.
  • the front group GA having positive refractive power, the diaphragm S, the intermediate group GM having positive refractive power, and the rear group GR having negative refractive power are arranged in order from the object side along the optical axis.
  • the intermediate group GM is configured to move along the optical axis, the distance between the front group GA and the intermediate group GM changes, and the distance between the intermediate group GM and the rear group GR changes.
  • each lens is arranged within the lens barrel so that at least the above conditional expressions (2) to (4) are satisfied (step ST3). According to such a manufacturing method, it is possible to manufacture an optical system that is small, bright, and has good optical performance.
  • the optical system OL according to an example of each embodiment will be described based on the drawings.
  • 1, 3, 5, 7, 9, 11, and 13 show the configuration and refractive power of the optical system OL ⁇ OL(1) to OL(7) ⁇ according to the first to seventh embodiments. It is a sectional view showing distribution.
  • arrows indicate the direction of movement of each lens group along the optical axis when focusing from infinity to a close object. It shows.
  • each lens group is represented by a combination of a symbol G and a number
  • each lens is represented by a combination of a symbol L and a number.
  • Tables 1 to 7 are shown below, of which Table 1 is a table showing each specification data of the first example, Table 2 is a table of the second example, and Table 3 is a table showing each specification data of the third example.
  • f is the focal length of the entire lens system
  • FNO is the F number
  • is the half angle of view (in degrees (degrees))
  • Y is the image height.
  • TL is the distance on the optical axis from the lens surface closest to the object side to the lens surface closest to the image plane of the optical system when focusing at infinity, plus Bf (back focus), and Bf is the distance when focusing at infinity. Indicates the distance on the optical axis from the lens surface closest to the image plane of the optical system to the image plane at focusing (air equivalent distance).
  • ⁇ M indicates the lateral magnification of the intermediate group in the infinity focus state.
  • ⁇ R indicates the lateral magnification of the rear group in the infinity focused state.
  • fAM indicates the combined focal length of the front group and the intermediate group in the infinity focused state.
  • fM indicates the focal length of the intermediate group in the infinity focus state.
  • fE indicates the focal length of the lens located closest to the image plane in the rear group.
  • the surface number indicates the order of the optical surfaces from the object side along the direction of propagation of the light ray
  • R is the radius of curvature of each optical surface (the surface whose center of curvature is located on the image side).
  • D is the surface spacing that is the distance on the optical axis from each optical surface to the next optical surface (or image surface)
  • nd is the refractive index of the material of the optical member for the d-line
  • ⁇ d is the optical The Abbe number based on the d-line of the material of the member is shown.
  • the radius of curvature " ⁇ " indicates a plane or an aperture
  • (diaphragm S) indicates an aperture diaphragm S, respectively.
  • the description of the refractive index nd 1.00000 of air is omitted.
  • the [Variable Interval Data] table shows the surface spacing at surface number i where the surface spacing is (Di) in the [Lens Specifications] table. Further, the [Variable Interval Data] table shows the surface spacing in the infinity focus state and the surface spacing in the close focus state.
  • f indicates the focal length of the entire lens system
  • indicates the imaging magnification. Further, D0 indicates the distance from the object to the optical surface closest to the object in the optical system.
  • the [Lens group data] table shows the starting surface (the surface closest to the object) and focal length of each lens group.
  • the focal length f, radius of curvature R, surface spacing D, and other lengths are generally expressed in mm unless otherwise specified, but the optical system is proportionally enlarged. Alternatively, even if the optical performance is proportionally reduced, the same optical performance can be obtained, so the present invention is not limited to this.
  • FIG. 1 is a diagram showing a lens configuration of an optical system according to a first embodiment.
  • the optical system OL (1) according to the first embodiment includes a first lens group G1 having positive refractive power and an aperture stop S arranged in order from the object side along the optical axis, and an aperture stop S having positive refractive power. It is composed of a second lens group G2 and a third lens group G3 having negative refractive power.
  • the second lens group G2 moves toward the object along the optical axis, and the distance between adjacent lens groups changes.
  • the aperture stop S is disposed between the first lens group G1 and the second lens group G2. During focusing, the position of the aperture stop S is fixed with respect to the image plane I.
  • the first lens group G1 constitutes a front group GA having positive refractive power as a whole.
  • the second lens group G2 constitutes an intermediate group GM having positive refractive power as a whole.
  • the third lens group G3 constitutes a rear group GR having negative refractive power as a whole.
  • the second lens group G2 corresponds to the focusing lens group GF.
  • the first lens group G1 includes a biconcave negative lens L11, a biconvex positive lens L12, a biconcave negative lens L13, and a biconvex positive lens, which are arranged in order from the object side along the optical axis. and a cemented negative lens to which the lens L14 is cemented.
  • the second lens group G2 includes a cemented negative lens in which a biconcave negative lens L21 and a biconvex positive lens L22 are cemented, which are arranged in order from the object side along the optical axis, and a cemented negative lens with a concave surface facing the object side.
  • the positive meniscus lens L23 has an aspherical lens surface on the image plane side.
  • the third lens group G3 includes a cemented negative lens in which a biconvex positive lens L31 and a biconcave negative lens L32 are cemented, which are arranged in order from the object side along the optical axis, and a cemented negative lens with a concave surface facing the object side. and a negative meniscus lens L33.
  • the negative meniscus lens L33 has an aspherical lens surface on the object side.
  • An image plane I is arranged on the image side of the third lens group G3.
  • An optical filter FL is disposed between the third lens group G3 and the image plane I.
  • Table 1 below lists the values of the specifications of the optical system according to the first example.
  • FIG. 2(A) is a diagram of various aberrations of the optical system according to the first example when focusing at infinity.
  • FIG. 2(B) is a diagram showing various aberrations of the optical system according to the first embodiment when focusing at a short distance.
  • FNO indicates the F number
  • Y indicates the image height.
  • NA indicates the numerical aperture
  • Y indicates the image height.
  • spherical aberration diagrams show the F number or numerical aperture value corresponding to the maximum aperture
  • astigmatism diagrams and distortion aberration diagrams each show the maximum image height
  • coma aberration diagrams show the value of each image height. .
  • the solid line indicates the sagittal image plane
  • the broken line indicates the meridional image plane. Note that in the aberration diagrams of each example shown below, the same symbols as in this example are used, and overlapping explanations will be omitted.
  • the optical system according to the first example has excellent imaging performance with various aberrations well corrected not only when focusing at infinity but also when focusing at close range. I understand that.
  • FIG. 3 is a diagram showing a lens configuration of an optical system according to a second embodiment.
  • the optical system OL (2) according to the second embodiment includes a first lens group G1 having positive refractive power and an aperture stop S arranged in order from the object side along the optical axis, and an aperture stop S having positive refractive power. It is composed of a second lens group G2, a third lens group G3 having positive refractive power, and a fourth lens group G4 having negative refractive power.
  • the second lens group G2 and the third lens group G3 move toward the object along the optical axis with mutually different trajectories (movements), and each adjacent lens Group spacing changes. Note that during focusing, the positions of the first lens group G1 and the fourth lens group G4 are fixed with respect to the image plane I.
  • the aperture stop S is disposed between the first lens group G1 and the second lens group G2. During focusing, the position of the aperture stop S is fixed with respect to the image plane I.
  • the first lens group G1 constitutes a front group GA having positive refractive power as a whole.
  • the second lens group G2 and the third lens group G3 constitute an intermediate group GM having positive refractive power as a whole.
  • the fourth lens group G4 constitutes a rear group GR having negative refractive power as a whole.
  • the second lens group G2 corresponds to the first focusing lens group GF1
  • the third lens group G3 corresponds to the second focusing lens group GF2.
  • the first lens group G1 includes a biconcave negative lens L11, a biconvex positive lens L12, a biconcave negative lens L13, and a biconvex positive lens, which are arranged in order from the object side along the optical axis. and a cemented negative lens to which the lens L14 is cemented.
  • the second lens group G2 includes a cemented negative lens in which a biconcave negative lens L21 and a biconvex positive lens L22 are cemented, which are arranged in order from the object side along the optical axis, and a biconvex positive lens. It consists of L23.
  • the third lens group G3 is composed of a biconvex positive lens L31.
  • the positive lens L31 is a composite lens configured by providing a resin layer on the image plane side surface of a glass lens body.
  • the image plane side surface of the resin layer is an aspherical surface
  • the positive lens L31 is a composite aspherical lens.
  • surface number 14 is the object-side surface of the lens body
  • surface number 15 is the image-side surface of the lens body
  • the object-side surface of the resin layer (the surface where the two bond together).
  • Number 16 indicates the image plane side surface of the resin layer.
  • the fourth lens group G4 includes a biconvex positive lens L41, a biconcave negative lens L42, and a negative meniscus lens L43 with a concave surface facing the object side, which are arranged in order from the object side along the optical axis. It consists of
  • the negative meniscus lens L43 is a composite lens configured by providing a resin layer on the object side surface of a glass lens body. The object side surface of the resin layer is an aspherical surface, and the negative meniscus lens L43 is a composite aspherical lens.
  • surface number 21 is the object-side surface of the resin layer
  • surface number 22 is the image-side surface of the resin layer
  • the object-side surface of the lens body (the surface where the two bond together).
  • Number 23 indicates the image plane side surface of the lens body.
  • An image plane I is arranged on the image side of the fourth lens group G4.
  • An optical filter FL is disposed between the fourth lens group G4 and the image plane I.
  • Table 2 below lists the values of the specifications of the optical system according to the second example.
  • FIG. 4(A) is a diagram of various aberrations of the optical system according to the second example when focusing at infinity.
  • FIG. 4(B) is a diagram showing various aberrations of the optical system according to the second embodiment when focusing at a short distance. From the various aberration diagrams, it can be seen that the optical system according to the second example has excellent imaging performance with various aberrations well corrected not only when focusing at infinity but also when focusing at close range. I understand that.
  • FIG. 5 is a diagram showing a lens configuration of an optical system according to a third embodiment.
  • the optical system OL (3) according to the third embodiment includes a first lens group G1 having positive refractive power and an aperture stop S arranged in order from the object side along the optical axis, and an aperture stop S having positive refractive power. It is composed of a second lens group G2, a third lens group G3 having positive refractive power, and a fourth lens group G4 having negative refractive power.
  • the second lens group G2 and the third lens group G3 move toward the object along the optical axis with mutually different trajectories (movements), and each adjacent lens Group spacing changes. Note that during focusing, the positions of the first lens group G1 and the fourth lens group G4 are fixed with respect to the image plane I.
  • the aperture stop S is disposed between the first lens group G1 and the second lens group G2. During focusing, the position of the aperture stop S is fixed with respect to the image plane I.
  • the first lens group G1 constitutes a front group GA having positive refractive power as a whole.
  • the second lens group G2 and the third lens group G3 constitute an intermediate group GM having positive refractive power as a whole.
  • the fourth lens group G4 constitutes a rear group GR having negative refractive power as a whole.
  • the second lens group G2 corresponds to the first focusing lens group GF1
  • the third lens group G3 corresponds to the second focusing lens group GF2.
  • the first lens group G1 includes a negative meniscus lens L11 with a convex surface facing the object side, which is arranged in order from the object side along the optical axis, a biconvex positive lens L12, a biconvex positive lens L13, and a biconvex positive lens L13. It is composed of a cemented negative lens to which a concave negative lens L14 is cemented.
  • the second lens group G2 is composed of a negative meniscus lens L21 with a concave surface facing the object side and a biconvex positive lens L22, which are arranged in order from the object side along the optical axis.
  • the third lens group G3 is composed of a biconvex positive lens L31.
  • the positive lens L31 has an aspherical lens surface on the image plane side.
  • the fourth lens group G4 includes a cemented negative lens in which a biconvex positive lens L41 and a biconcave negative lens L42 are cemented together, arranged in order from the object side along the optical axis, and a cemented negative lens with a concave surface facing the object side. and a negative meniscus lens L43.
  • the negative meniscus lens L43 has an aspherical lens surface on the object side.
  • An image plane I is arranged on the image side of the fourth lens group G4.
  • An optical filter FL is disposed between the fourth lens group G4 and the image plane I.
  • Table 3 lists the values of the specifications of the optical system according to the third example.
  • FIG. 6(A) is a diagram of various aberrations of the optical system according to the third example when focusing at infinity.
  • FIG. 6(B) is a diagram showing various aberrations of the optical system according to the third embodiment when focusing at a short distance. From the various aberration diagrams, it can be seen that the optical system according to the third example has excellent imaging performance with various aberrations well corrected not only when focusing at infinity but also when focusing at close range. I understand that.
  • FIG. 7 is a diagram showing a lens configuration of an optical system according to a fourth example.
  • the optical system OL (4) according to the fourth embodiment includes a first lens group G1 having a positive refractive power, an aperture stop S, and a negative refractive power arranged in order from the object side along the optical axis. It is composed of a second lens group G2, a third lens group G3 having positive refractive power, and a fourth lens group G4 having negative refractive power.
  • the second lens group G2 and the third lens group G3 move toward the object along the optical axis with mutually different trajectories (movements), and each adjacent lens Group spacing changes. Note that during focusing, the positions of the first lens group G1 and the fourth lens group G4 are fixed with respect to the image plane I.
  • the aperture stop S is disposed between the first lens group G1 and the second lens group G2. During focusing, the position of the aperture stop S is fixed with respect to the image plane I.
  • the first lens group G1 constitutes a front group GA having positive refractive power as a whole.
  • the second lens group G2 and the third lens group G3 constitute an intermediate group GM having positive refractive power as a whole.
  • the fourth lens group G4 constitutes a rear group GR having negative refractive power as a whole.
  • the second lens group G2 corresponds to the first focusing lens group GF1
  • the third lens group G3 corresponds to the second focusing lens group GF2.
  • the first lens group G1 includes a biconcave negative lens L11, a biconvex positive lens L12, a biconvex positive lens L13, and a biconcave negative lens, which are arranged in order from the object side along the optical axis. and a cemented negative lens to which the lens L14 is cemented.
  • the negative lens L11 is a composite lens configured by providing a resin layer on the image plane side surface of a glass lens body.
  • the image plane side surface of the resin layer is an aspherical surface
  • the negative lens L11 is a composite aspherical lens.
  • surface number 1 is the object-side surface of the lens body
  • surface number 2 is the image-side surface of the lens body
  • the object-side surface of the resin layer (the surface where the two join).
  • Number 3 indicates the surface of the resin layer on the image plane side.
  • the second lens group G2 is composed of a negative meniscus lens L21 with a concave surface facing the object side and a biconvex positive lens L22, which are arranged in order from the object side along the optical axis.
  • the third lens group G3 is composed of a biconvex positive lens L31.
  • the positive lens L31 is a composite lens configured by providing a resin layer on the image plane side surface of a glass lens body.
  • the image plane side surface of the resin layer is an aspherical surface
  • the positive lens L31 is a composite aspherical lens.
  • surface number 14 is the object-side surface of the lens body
  • surface number 15 is the image-side surface of the lens body
  • the object-side surface of the resin layer (the surface where the two bond together).
  • Number 16 indicates the image plane side surface of the resin layer.
  • the fourth lens group G4 includes a cemented positive lens in which a biconvex positive lens L41 and a negative meniscus lens L42 with a concave surface facing the object side are cemented, which are arranged in order from the object side along the optical axis, and a biconcave positive lens L42.
  • the negative lens L43 has a negative shape.
  • An image plane I is arranged on the image side of the fourth lens group G4.
  • An optical filter FL is disposed between the fourth lens group G4 and the image plane I.
  • Table 4 lists the values of the specifications of the optical system according to the fourth example.
  • FIG. 8(A) is a diagram of various aberrations of the optical system according to the fourth example when focusing at infinity.
  • FIG. 8(B) is a diagram showing various aberrations of the optical system according to the fourth example when focusing at a short distance. From the various aberration diagrams, it can be seen that the optical system according to the fourth example has excellent imaging performance with various aberrations well corrected not only when focusing at infinity but also when focusing at close range. I understand that.
  • FIG. 9 is a diagram showing a lens configuration of an optical system according to a fifth embodiment.
  • the optical system OL (5) according to the fifth embodiment includes a first lens group G1 having positive refractive power and an aperture stop S arranged in order from the object side along the optical axis, and an aperture stop S having positive refractive power. It is composed of a second lens group G2 and a third lens group G3 having negative refractive power.
  • the second lens group G2 moves toward the object along the optical axis, and the distance between adjacent lens groups changes. Note that during focusing, the positions of the first lens group G1 and the third lens group G3 are fixed with respect to the image plane I.
  • the aperture stop S is disposed between the first lens group G1 and the second lens group G2. During focusing, the position of the aperture stop S is fixed with respect to the image plane I.
  • the first lens group G1 constitutes a front group GA having positive refractive power as a whole.
  • the second lens group G2 constitutes an intermediate group GM having positive refractive power as a whole.
  • the third lens group G3 constitutes a rear group GR having negative refractive power as a whole.
  • the second lens group G2 corresponds to the focusing lens group GF.
  • the first lens group G1 includes a biconcave negative lens L11, a biconvex positive lens L12, a biconvex positive lens L13, and a biconcave negative lens, which are arranged in order from the object side along the optical axis. and a cemented negative lens to which the lens L14 is cemented.
  • the negative lens L11 has an aspherical lens surface on the image plane side.
  • the second lens group G2 includes a negative meniscus lens L21 with a concave surface facing the object side, a biconvex positive lens L22, and a biconvex positive lens L23, which are arranged in order from the object side along the optical axis. It consists of The positive lens L23 has an aspherical lens surface on the image plane side.
  • the third lens group G3 is a cemented positive lens in which a positive meniscus lens L31 with a concave surface facing the object side and a negative meniscus lens L32 with a concave surface facing the object side are cemented, which are arranged in order from the object side along the optical axis. and a biconcave negative lens L33.
  • An image plane I is arranged on the image side of the third lens group G3.
  • An optical filter FL is disposed between the third lens group G3 and the image plane I.
  • Table 5 lists the values of the specifications of the optical system according to the fifth example.
  • FIG. 10(A) is a diagram of various aberrations of the optical system according to the fifth example when focusing at infinity.
  • FIG. 10(B) is a diagram showing various aberrations of the optical system according to the fifth embodiment when focusing at a short distance. From the various aberration diagrams, it can be seen that the optical system according to the fifth example has excellent imaging performance with various aberrations well corrected not only when focusing at infinity but also when focusing at close range. I understand that.
  • FIG. 11 is a diagram showing a lens configuration of an optical system according to a sixth embodiment.
  • the optical system OL (6) according to the sixth embodiment includes a first lens group G1 having a positive refractive power, an aperture stop S, and a negative refractive power arranged in order from the object side along the optical axis. It is composed of a second lens group G2, a third lens group G3 having positive refractive power, and a fourth lens group G4 having negative refractive power.
  • the second lens group G2 and the third lens group G3 move toward the object along the optical axis with mutually different trajectories (movements), and each adjacent lens Group spacing changes. Note that during focusing, the positions of the first lens group G1 and the fourth lens group G4 are fixed with respect to the image plane I.
  • the aperture stop S is disposed between the first lens group G1 and the second lens group G2. During focusing, the position of the aperture stop S is fixed with respect to the image plane I.
  • the first lens group G1 constitutes a front group GA having positive refractive power as a whole.
  • the second lens group G2 and the third lens group G3 constitute an intermediate group GM having positive refractive power as a whole.
  • the fourth lens group G4 constitutes a rear group GR having negative refractive power as a whole.
  • the second lens group G2 corresponds to the first focusing lens group GF1
  • the third lens group G3 corresponds to the second focusing lens group GF2.
  • the first lens group G1 includes a positive meniscus lens L11 with a convex surface facing the object side, a positive meniscus lens L12 with a convex surface facing the object side, and a positive meniscus lens L12 with a convex surface facing the object side, which are arranged in order from the object side along the optical axis. and a negative meniscus lens L13.
  • the second lens group G2 is composed of a negative meniscus lens L21 with a concave surface facing the object side and a biconvex positive lens L22, which are arranged in order from the object side along the optical axis.
  • the positive lens L22 is a composite lens configured by providing a resin layer on the image plane side surface of a glass lens body.
  • the image plane side surface of the resin layer is an aspherical surface
  • the positive lens L22 is a composite aspherical lens.
  • surface number 10 is the object-side surface of the lens body
  • surface number 11 is the image-side surface of the lens body
  • the object-side surface of the resin layer (the surface where the two bond together).
  • Number 12 indicates the surface of the resin layer on the image plane side.
  • the third lens group G3 is composed of a positive meniscus lens L31 with a concave surface facing the object side.
  • the fourth lens group G4 is composed of a biconcave negative lens L41.
  • An image plane I is arranged on the image side of the fourth lens group G4.
  • An optical filter FL is disposed between the fourth lens group G4 and the image plane I.
  • Table 6 lists the values of the specifications of the optical system according to the sixth example.
  • FIG. 12(A) is a diagram of various aberrations of the optical system according to the sixth embodiment when focusing at infinity.
  • FIG. 12(B) is a diagram showing various aberrations of the optical system according to the sixth embodiment when focusing at a short distance. From the various aberration diagrams, it can be seen that the optical system according to the sixth embodiment has excellent imaging performance with various aberrations well corrected not only when focusing at infinity but also when focusing at close range. I understand that.
  • FIG. 13 is a diagram showing a lens configuration of an optical system according to a seventh embodiment.
  • the optical system OL (7) according to the seventh embodiment includes a first lens group G1 having positive refractive power and an aperture stop S arranged in order from the object side along the optical axis, and an aperture stop S having positive refractive power. It is composed of a second lens group G2 and a third lens group G3 having negative refractive power.
  • the second lens group G2 moves toward the object along the optical axis, and the distance between adjacent lens groups changes. Note that during focusing, the positions of the first lens group G1 and the third lens group G3 are fixed with respect to the image plane I.
  • the aperture stop S is disposed between the first lens group G1 and the second lens group G2. During focusing, the position of the aperture stop S is fixed with respect to the image plane I.
  • the first lens group G1 constitutes a front group GA having positive refractive power as a whole.
  • the second lens group G2 constitutes an intermediate group GM having positive refractive power as a whole.
  • the third lens group G3 constitutes a rear group GR having negative refractive power as a whole.
  • the second lens group G2 corresponds to the focusing lens group GF.
  • the first lens group G1 includes a positive meniscus lens L11 with a convex surface facing the object side, a positive meniscus lens L12 with a convex surface facing the object side, and a positive meniscus lens L12 with a convex surface facing the object side, which are arranged in order from the object side along the optical axis. and a cemented negative lens to which a negative meniscus lens L13 is cemented.
  • the positive meniscus lens L11 has an aspheric lens surface on the image plane side.
  • the second lens group G2 includes a negative meniscus lens L21 with a concave surface facing the object side, a positive meniscus lens L22 with a biconvex shape, and a positive meniscus lens L22 with a concave surface facing the object side, which are arranged in order from the object side along the optical axis. It is composed of a lens L23.
  • the positive lens L22 has an aspherical lens surface on the image plane side.
  • the third lens group G3 is composed of a biconcave negative lens L31.
  • An image plane I is arranged on the image side of the third lens group G3.
  • An optical filter FL is disposed between the third lens group G3 and the image plane I.
  • Table 7 lists the values of the specifications of the optical system according to the seventh example.
  • FIG. 14(A) is a diagram showing various aberrations of the optical system according to the seventh embodiment when focusing at infinity.
  • FIG. 14(B) is a diagram showing various aberrations of the optical system according to the seventh embodiment when focusing at a short distance. From the various aberration diagrams, it can be seen that the optical system according to the seventh embodiment has excellent imaging performance with various aberrations well corrected not only when focusing at infinity but also when focusing at close range. I understand that.
  • Conditional expression (1) 2.60 ⁇ DSE/DM ⁇ 3.50
  • Conditional expression (2) 0.80 ⁇ fAM/f ⁇ 1.00
  • Conditional expression (3) 0.50 ⁇ DA/(DM+DR) ⁇ 1.20
  • Conditional expression (4) 1.70 ⁇ DSR/DM ⁇ 3.
  • Conditional expression (5) 0.60 ⁇ fM/f ⁇ 1.30
  • Conditional expression (6) 0.60 ⁇ fA/(-fR) ⁇ 1.50
  • Conditional expression (7) 0.60 ⁇ 1-( ⁇ M) 2 ⁇ ( ⁇ R) 2 ⁇ 1.50
  • Conditional expression (8) 0.70 ⁇ DA/DM ⁇ 2.30
  • Conditional expression (9) 9.00 ⁇
  • Conditional expression (10) 0.30 ⁇ fF2/f ⁇ 2.00
  • Conditional expression (11) 0.80 ⁇ (-fE)/f ⁇ 16.00
  • Conditional expression (12) 1.00 ⁇ (-fR)/f ⁇ 3.90
  • an example of the optical system of this embodiment has a three-group or four-group configuration
  • the present application is not limited to this, and may configure an optical system with other group configurations (for example, five groups, six groups, etc.). You can also do that.
  • a configuration may be adopted in which a lens or lens group is added to the closest to the object side or the closest to the image plane side of the optical system of this embodiment.
  • the lens group refers to a portion having at least one lens separated by an air gap that changes during focusing.
  • Corrects image blur caused by camera shake by moving the lens group or partial lens group so that it has a component perpendicular to the optical axis, or rotating (swinging) it in a plane that includes the optical axis. It can also be used as an anti-vibration lens group.
  • the lens surface may be formed as a spherical surface, a flat surface, or an aspherical surface. It is preferable that the lens surface is spherical or flat because it facilitates lens processing and assembly adjustment and prevents deterioration of optical performance due to errors in processing and assembly adjustment. Further, even if the image plane shifts, there is little deterioration in depiction performance, which is preferable.
  • the aspherical surface can be an aspherical surface made by grinding, a glass molded aspherical surface made by molding glass into an aspherical shape, or a composite aspherical surface made by molding resin into an aspherical shape on the glass surface. Either is fine.
  • the lens surface may be a diffractive surface, and the lens may be a gradient index lens (GRIN lens) or a plastic lens.
  • the aperture diaphragm is preferably placed between the first lens group (front group) and the second lens group (intermediate group), but it is preferable that the aperture diaphragm play its role in the frame of the lens without providing an aperture diaphragm member. You can use it instead.
  • Each lens surface may be coated with an antireflection film that has high transmittance in a wide wavelength range in order to reduce flare and ghosting and achieve optical performance with high contrast.

Abstract

光学系(OL)は、正の屈折力を有する前群(GA)と、絞り(S)と、正の屈折力を有する中間群(GM)と、負の屈折力を有する後群(GR)とからなり、合焦の際、中間群(GM)が光軸に沿って移動し、前群(GA)と中間群(GM)との間隔が変化し、中間群(GM)と後群(GR)との間隔が変化し、以下の条件式を満足する。 2.60<DSE/DM<3.50 0.80<fAM/f<1.00 但し、DSE:絞り(S)から後群(GR)の最も像面側のレンズ面までの光軸上の距離 DM:無限遠合焦状態における中間群(GM)の光軸上の長さ fAM:無限遠合焦状態における前群(GA)と中間群(GM)との合成焦点距離 f:無限遠合焦状態における光学系(OL)の焦点距離

Description

光学系、光学機器、および光学系の製造方法
 本発明は、光学系、光学機器、および光学系の製造方法に関する。
 従来から、写真用カメラ、電子スチルカメラ、ビデオカメラ等に適した光学系が提案されている(例えば、特許文献1を参照)。このような光学系においては、小型にしつつ、明るくて良好な光学性能を得ることが難しい。
特開2019-200339号公報
 第1の本発明に係る光学系は、光軸に沿って物体側から順に並んだ、正の屈折力を有する前群と、絞りと、正の屈折力を有する中間群と、負の屈折力を有する後群とからなり、合焦の際、前記中間群が光軸に沿って移動し、前記前群と前記中間群との間隔が変化し、前記中間群と前記後群との間隔が変化し、以下の条件式を満足する。
 2.60<DSE/DM<3.50
 0.80<fAM/f<1.00
 但し、DSE:前記絞りから前記後群の最も像面側のレンズ面までの光軸上の距離
    DM:無限遠合焦状態における前記中間群の光軸上の長さ
    fAM:無限遠合焦状態における前記前群と前記中間群との合成焦点距離
    f:無限遠合焦状態における前記光学系の焦点距離
 第2の本発明に係る光学系は、光軸に沿って物体側から順に並んだ、正の屈折力を有する前群と、絞りと、正の屈折力を有する中間群と、負の屈折力を有する後群とからなり、合焦の際、前記中間群が光軸に沿って移動し、前記前群と前記中間群との間隔が変化し、前記中間群と前記後群との間隔が変化し、以下の条件式を満足する。
 0.80<fAM/f<1.00
 0.50<DA/(DM+DR)<1.20
 1.70<DSR/DM<3.40
 但し、fAM:無限遠合焦状態における前記前群と前記中間群との合成焦点距離
    f:無限遠合焦状態における前記光学系の焦点距離
    DA:無限遠合焦状態における前記前群の光軸上の長さ
    DM:無限遠合焦状態における前記中間群の光軸上の長さ
    DR:無限遠合焦状態における前記後群の光軸上の長さ
    DSR:前記絞りから前記後群の最も物体側のレンズ面までの光軸上の距離
 本発明に係る光学機器は、上記光学系を備えて構成される。
 第1の本発明に係る光学系の製造方法は、光軸に沿って物体側から順に並んだ、正の屈折力を有する前群と、絞りと、正の屈折力を有する中間群と、負の屈折力を有する後群とからなる光学系の製造方法であって、合焦の際、前記中間群が光軸に沿って移動し、前記前群と前記中間群との間隔が変化し、前記中間群と前記後群との間隔が変化し、以下の条件式を満足するように、レンズ鏡筒内に各レンズを配置する。
 2.60<DSE/DM<3.50
 0.80<fAM/f<1.00
 但し、DSE:前記絞りから前記後群の最も像面側のレンズ面までの光軸上の距離
    DM:無限遠合焦状態における前記中間群の光軸上の長さ
    fAM:無限遠合焦状態における前記前群と前記中間群との合成焦点距離
    f:無限遠合焦状態における前記光学系の焦点距離
 第2の本発明に係る光学系の製造方法は、光軸に沿って物体側から順に並んだ、正の屈折力を有する前群と、絞りと、正の屈折力を有する中間群と、負の屈折力を有する後群とからなる光学系の製造方法であって、合焦の際、前記中間群が光軸に沿って移動し、前記前群と前記中間群との間隔が変化し、前記中間群と前記後群との間隔が変化し、以下の条件式を満足するように、レンズ鏡筒内に各レンズを配置する。
 0.80<fAM/f<1.00
 0.50<DA/(DM+DR)<1.20
 1.70<DSR/DM<3.40
 但し、fAM:無限遠合焦状態における前記前群と前記中間群との合成焦点距離
    f:無限遠合焦状態における前記光学系の焦点距離
    DA:無限遠合焦状態における前記前群の光軸上の長さ
    DM:無限遠合焦状態における前記中間群の光軸上の長さ
    DR:無限遠合焦状態における前記後群の光軸上の長さ
    DSR:前記絞りから前記後群の最も物体側のレンズ面までの光軸上の距離
第1実施例に係る光学系のレンズ構成を示す図である。 図2(A)、図2(B)はそれぞれ、第1実施例に係る光学系の無限遠合焦時、近距離合焦時の諸収差図である。 第2実施例に係る光学系のレンズ構成を示す図である。 図4(A)、図4(B)はそれぞれ、第2実施例に係る光学系の無限遠合焦時、近距離合焦時の諸収差図である。 第3実施例に係る光学系のレンズ構成を示す図である。 図6(A)、図6(B)はそれぞれ、第3実施例に係る光学系の無限遠合焦時、近距離合焦時の諸収差図である。 第4実施例に係る光学系のレンズ構成を示す図である。 図8(A)、図8(B)はそれぞれ、第4実施例に係る光学系の無限遠合焦時、近距離合焦時の諸収差図である。 第5実施例に係る光学系のレンズ構成を示す図である。 図10(A)、図10(B)はそれぞれ、第5実施例に係る光学系の無限遠合焦時、近距離合焦時の諸収差図である。 第6実施例に係る光学系のレンズ構成を示す図である。 図12(A)、図12(B)はそれぞれ、第6実施例に係る光学系の無限遠合焦時、近距離合焦時の諸収差図である。 第7実施例に係る光学系のレンズ構成を示す図である。 図14(A)、図14(B)はそれぞれ、第7実施例に係る光学系の無限遠合焦時、近距離合焦時の諸収差図である。 各実施形態に係る光学系を備えたカメラの構成を示す図である。 各実施形態に係る光学系の製造方法を示すフローチャートである。
 以下、本発明に係る好ましい実施形態について説明する。まず、各実施形態に係る光学系を備えたカメラ(光学機器)を図15に基づいて説明する。このカメラ1は、図15に示すように、本体2と、本体2に装着される撮影レンズ3により構成される。本体2は、撮像素子4と、デジタルカメラの動作を制御する本体制御部(不図示)と、液晶画面5とを備える。撮影レンズ3は、複数のレンズ群からなる光学系OLと、各レンズ群の位置を制御するレンズ位置制御機構(不図示)とを備える。レンズ位置制御機構は、レンズ群の位置を検出するセンサと、レンズ群を光軸に沿って前後に移動させるモータと、モータを駆動する制御回路などにより構成される。
 被写体からの光は、撮影レンズ3の光学系OLにより集光されて、撮像素子4の像面I上に到達する。像面Iに到達した被写体からの光は、撮像素子4により光電変換され、デジタル画像データとして不図示のメモリに記録される。メモリに記録されたデジタル画像データは、ユーザの操作に応じて液晶画面5に表示することが可能である。なお、このカメラは、ミラーレスカメラでも、クイックリターンミラーを有した一眼レフタイプのカメラであっても良い。また、図15に示す光学系OLは、撮影レンズ3に備えられる光学系を模式的に示したものであり、光学系OLのレンズ構成はこの構成に限定されるものではない。
 次に、第1実施形態に係る光学系について説明する。第1実施形態に係る光学系OLの一例としての光学系OL(1)は、図1に示すように、光軸に沿って物体側から順に並んだ、正の屈折力を有する前群GAと、絞り(開口絞り)Sと、正の屈折力を有する中間群GMと、負の屈折力を有する後群GRとから構成される。合焦の際、中間群GMが光軸に沿って移動し、前群GAと中間群GMとの間隔が変化し、中間群GMと後群GRとの間隔が変化する。
 上記構成の下、第1実施形態に係る光学系OLは、以下の条件式(1)および条件式(2)を満足する。
 2.60<DSE/DM<3.50 ・・・(1)
 0.80<fAM/f<1.00 ・・・(2)
 但し、DSE:絞りSから後群GRの最も像面側のレンズ面までの光軸上の距離
    DM:無限遠合焦状態における中間群GMの光軸上の長さ
    fAM:無限遠合焦状態における前群GAと中間群GMとの合成焦点距離
    f:無限遠合焦状態における光学系OLの焦点距離
 第1実施形態によれば、小型でありながら、明るくて良好な光学性能を有する光学系、およびこの光学系を備えた光学機器を得ることが可能になる。第1実施形態に係る光学系OLは、図3に示す光学系OL(2)でも良く、図5に示す光学系OL(3)でも良く、図7に示す光学系OL(4)でも良い。また、第1実施形態に係る光学系OLは、図9に示す光学系OL(5)でも良く、図11に示す光学系OL(6)でも良く、図13に示す光学系OL(7)でも良い。
 条件式(1)は、絞りSから後群GRの最も像面側のレンズ面までの光軸上の距離と、無限遠合焦状態における中間群GMの光軸上の長さとの適切な関係を規定するものである。条件式(1)を満足することで、小型でありながら、合焦の際の球面収差、像面湾曲、コマ収差等の諸収差の変動を抑えることができる。
 条件式(1)の対応値が上限値を上回ると、絞りSから後群GRの最も像面側のレンズ面までの光軸上の距離が長くなるため、光学系OLを小型にしつつ、合焦の際の球面収差、像面湾曲、コマ収差等の諸収差の変動を抑えることが困難になる。条件式(1)の上限値を、3.45、3.40、3.35、さらに3.30に設定することで、本実施形態の効果をより確実なものとすることができる。
 条件式(1)の対応値が下限値を下回ると、絞りSから後群GRの最も像面側のレンズ面までの光軸上の距離が短くなり、合焦際の中間群GMの移動量が制限されるため、合焦の際の球面収差、像面湾曲、コマ収差等の諸収差の変動を抑えることが困難になる。条件式(1)の下限値を、2.65、2.68、2.70、さらに2.73に設定することで、本実施形態の効果をより確実なものとすることができる。
 条件式(2)は、無限遠合焦状態における前群GAと中間群GMとの合成焦点距離と、無限遠合焦状態における光学系OLの焦点距離との適切な関係を規定するものである。条件式(2)を満足することで、小型でありながら、球面収差、色収差、コマ収差等の諸収差を良好に補正することができる。
 条件式(2)の対応値が上限値を上回ると、光学系OLの小型化を図る際に、像面湾曲と非点収差を補正することが困難になる。条件式(2)の上限値を0.98、さらに0.96に設定することで、本実施形態の効果をより確実なものとすることができる。
 条件式(2)の対応値が下限値を下回ると、後群GRの倍率が大きくなりすぎるため、球面収差、色収差、コマ収差等の諸収差を補正することが困難になる。条件式(2)の下限値を、0.82、0.84、さらに0.86に設定することで、本実施形態の効果をより確実なものとすることができる。
 次に、第2実施形態に係る光学系について説明する。第2実施形態に係る光学系OLは、第1実施形態に係る光学系OLと同様の構成であるため、第1実施形態と同一の符号を付して説明する。第2実施形態に係る光学系OLの一例としての光学系OL(1)は、図1に示すように、光軸に沿って物体側から順に並んだ、正の屈折力を有する前群GAと、絞り(開口絞り)Sと、正の屈折力を有する中間群GMと、負の屈折力を有する後群GRとから構成される。合焦の際、中間群GMが光軸に沿って移動し、前群GAと中間群GMとの間隔が変化し、中間群GMと後群GRとの間隔が変化する。
 上記構成の下、第2実施形態に係る光学系OLは、以下の条件式(2)~(4)を満足する。
 0.80<fAM/f<1.00 ・・・(2)
 0.50<DA/(DM+DR)<1.20 ・・・(3)
 1.70<DSR/DM<3.40 ・・・(4)
 但し、fAM:無限遠合焦状態における前群GAと中間群GMとの合成焦点距離
    f:無限遠合焦状態における光学系OLの焦点距離
    DA:無限遠合焦状態における前群GAの光軸上の長さ
    DM:無限遠合焦状態における中間群GMの光軸上の長さ
    DR:無限遠合焦状態における後群GRの光軸上の長さ
    DSR:絞りSから後群GRの最も物体側のレンズ面までの光軸上の距離
 第2実施形態によれば、小型でありながら、明るくて良好な光学性能を有する光学系、およびこの光学系を備えた光学機器を得ることが可能になる。第2実施形態に係る光学系OLは、図3に示す光学系OL(2)でも良く、図5に示す光学系OL(3)でも良く、図7に示す光学系OL(4)でも良い。また、第2実施形態に係る光学系OLは、図9に示す光学系OL(5)でも良く、図11に示す光学系OL(6)でも良く、図13に示す光学系OL(7)でも良い。
 条件式(2)は無限遠合焦状態における前群GAと中間群GMとの合成焦点距離と、無限遠合焦状態における光学系OLの焦点距離との適切な関係を規定するものである。条件式(2)を満足することで、第1実施形態と同様、小型でありながら、球面収差、色収差、コマ収差等の諸収差を良好に補正することができる。条件式(2)の上限値を0.98、さらに0.96に設定することで、本実施形態の効果をより確実なものとすることができる。また、条件式(2)の下限値を、0.82、0.84、さらに0.86に設定することで、本実施形態の効果をより確実なものとすることができる。
 条件式(3)は、無限遠合焦状態における前群GAの光軸上の長さと、無限遠合焦状態における中間群GMの光軸上の長さと後群GRの光軸上の長さの和との適切な関係を規定するものである。条件式(3)を満足することで、レンズ仕様における画角が広いレンズで、一般的に補正が難しくなる収差(例えば、像面湾曲、歪曲収差、倍率色収差等)と、レンズ仕様におけるFナンバーが小さいレンズで、一般的に補正が難しくなる収差(例えば、球面収差、コマ収差等)を良好に補正することができる。
 条件式(3)の対応値が上限値を上回ると、中間群GMと後群GRに対して前群GAが長くなりすぎるため、球面収差、コマ収差等を補正することが困難になる。条件式(3)の上限値を、1.18、1.15、さらに1.13に設定することで、本実施形態の効果をより確実なものとすることができる。
 条件式(3)の対応値が下限値を下回ると、前群GAに対して中間群GMと後群GRが長くなりすぎるため、像面湾曲、歪曲収差、倍率色収差等を補正することが困難になる。条件式(3)の下限値を0.52、さらに0.55に設定することで、本実施形態の効果をより確実なものとすることができる。
 条件式(4)は、絞りSから後群GRの最も物体側のレンズ面までの光軸上の距離と、無限遠合焦状態における中間群GMの光軸上の長さとの適切な関係を規定するものである。条件式(4)を満足することで、小型でありながら、合焦の際の諸収差の変動を抑えることができる。
 条件式(4)の対応値が上限値を上回ると、絞りSから後群GRの最も物体側のレンズ面までの光軸上の距離が長くなるため、光学系OLを小型にしつつ、合焦の際の諸収差の変動を抑えることが困難になる。条件式(4)の上限値を、3.35、3.30、さらに3.25に設定することで、本実施形態の効果をより確実なものとすることができる。
 条件式(4)の対応値が下限値を下回ると、絞りSから後群GRの最も物体側のレンズ面までの光軸上の距離が短くなり、合焦際の中間群GMの移動量が制限されるため、合焦の際の諸収差の変動を抑えることが困難になる。条件式(4)の下限値を、1.75、1.80、さらに1.82に設定することで、本実施形態の効果をより確実なものとすることができる。
 第2実施形態に係る光学系OLは、前述の条件式(1)を満足してもよい。条件式(1)を満足することで、第1実施形態と同様、小型でありながら、合焦の際の諸収差の変動を抑えることができる。条件式(1)の上限値を、3.45、3.40、3.35、さらに3.30に設定することで、本実施形態の効果をより確実なものとすることができる。また、条件式(1)の下限値を、2.65、2.68、2.70、さらに2.73に設定することで、本実施形態の効果をより確実なものとすることができる。
 第1実施形態および第2実施形態に係る光学系OLは、以下の条件式(5)を満足することが望ましい。
 0.60<fM/f<1.30 ・・・(5)
 但し、fM:無限遠合焦状態における中間群GMの焦点距離
 条件式(5)は、無限遠合焦状態における中間群GMの焦点距離と、無限遠合焦状態における光学系OLの焦点距離との適切な関係を規定するものである。条件式(5)を満足することで、Fナンバーが小さくて小型でありながら、球面収差、コマ収差等を良好に補正することができる。
 条件式(5)の対応値が上限値を上回ると、中間群GMの屈折力が弱くなりすぎるため、光学系OLを小型にしつつ、Fナンバーを小さくすることが困難になる。条件式(5)の上限値を、1.25、1.20、1.15、さらに1.10に設定することで、各実施形態の効果をより確実なものとすることができる。
 条件式(5)の対応値が下限値を下回ると、中間群GMの屈折力が強くなりすぎるため、球面収差、コマ収差等を補正することが困難になる。条件式(5)の下限値を0.65、さらに0.70に設定することで、各実施形態の効果をより確実なものとすることができる。
 第1実施形態および第2実施形態に係る光学系OLは、以下の条件式(6)を満足することが望ましい。
 0.60<fA/(-fR)<1.50 ・・・(6)
 但し、fA:無限遠合焦状態における前群GAの焦距離
    fR:無限遠合焦状態における後群GRの焦点距離
 条件式(6)は、無限遠合焦状態における前群GAの焦点距離と、無限遠合焦状態における後群GRの焦点距離との適切な関係を規定するものである。条件式(6)を満足することで、像面湾曲、非点収差、球面収差、コマ収差等を良好に補正することができる。
 条件式(6)の対応値が上限値を上回ると、前群GAに対して後群GRの屈折力が強くなりすぎるため、球面収差とコマ収差を補正することが困難になる。条件式(6)の上限値を、1.45、1.40、1.35、さらに1.30に設定することで、各実施形態の効果をより確実なものとすることができる。
 条件式(6)の対応値が下限値を下回ると、前群GAに対して後群GRの屈折力が弱くなりすぎるため、像面湾曲と非点収差を補正することが困難になる。条件式(6)の下限値を0.65、0.70、さらに0.75に設定することで、各実施形態の効果をより確実なものとすることができる。
 第1実施形態および第2実施形態に係る光学系OLは、以下の条件式(7)を満足することが望ましい。
 0.60<{1-(βM)2}×(βR)2<1.50 ・・・(7)
 但し、βM:無限遠合焦状態における中間群GMの横倍率
    βR:無限遠合焦状態における後群GRの横倍率
 条件式(7)は、無限遠合焦状態における中間群GMの横倍率と、無限遠合焦状態における後群GRの横倍率との適切な関係を規定するものである。条件式(7)を満足することで、合焦の際の像面位置変化を適正に保ちつつ、合焦の際の諸収差の変動を抑えることができる。
 条件式(7)の対応値が上記範囲を外れてしまうと、合焦の際の像面位置変化を適正に保ちつつ、合焦の際の諸収差の変動を抑えることが困難になる。条件式(7)の上限値を、1.45、1.40、1.35、1.30、さらに1.25に設定することで、各実施形態の効果をより確実なものとすることができる。条件式(7)の下限値を0.65、0.70、0.75、さらに0.80に設定することで、各実施形態の効果をより確実なものとすることができる。
 第1実施形態および第2実施形態に係る光学系OLは、以下の条件式(8)を満足することが望ましい。
 0.70<DA/DM<2.30 ・・・(8)
 但し、DA:無限遠合焦状態における前群GAの光軸上の長さ
    DM:無限遠合焦状態における中間群GMの光軸上の長さ
 条件式(8)は、無限遠合焦状態における前群GAの光軸上の長さと、無限遠合焦状態における中間群GMの光軸上の長さとの適切な関係を規定するものである。条件式(8)を満足することで、球面収差、コマ収差、像面湾曲等の諸収差を良好に補正することができる。
 条件式(8)の対応値が上記範囲を外れてしまうと、球面収差、コマ収差、像面湾曲等の諸収差を補正することが困難になる。条件式(8)の上限値を、2.25、2.20、2.15、さらに2.10に設定することで、各実施形態の効果をより確実なものとすることができる。条件式(8)の下限値を、0.75、0.80、0.85、0.90、さらに0.95に設定することで、各実施形態の効果をより確実なものとすることができる。
 第1実施形態および第2実施形態に係る光学系OLにおいて、最も像面側に配置されたレンズが負レンズであることが望ましい。これにより、像面湾曲と非点収差を良好に補正することができる。
 第1実施形態および第2実施形態に係る光学系OLにおいて、最も物体側から2番目に配置されたレンズが正レンズであることが望ましい。これにより、球面収差とコマ収差を良好に補正することができる。
 第1実施形態および第2実施形態に係る光学系OLにおいて、最も像面側から3番目に配置されたレンズが正レンズであることが望ましい。これにより、球面収差とコマ収差を良好に補正することができる。
 第1実施形態および第2実施形態に係る光学系OLにおいて、中間群GMは、光軸に沿って物体側から順に並んだ、第1合焦レンズ群と、第2合焦レンズ群とからなり、合焦の際、第1合焦レンズ群と第2合焦レンズ群とが互いに異なる軌跡で光軸に沿って移動し、以下の条件式(9)を満足することが望ましい。
 9.00<|fF1|/f<90.00 ・・・(9)
 但し、fF1:第1合焦レンズ群の焦点距離
 条件式(9)は、第1合焦レンズ群の焦点距離と、光学系OLの焦点距離との適切な関係を規定するものである。条件式(9)を満足することで、球面収差、コマ収差、像面湾曲等の諸収差を良好に補正し、合焦の際の諸収差の変動を抑えることができる。
 条件式(9)の対応値が上記範囲を外れてしまうと、球面収差、コマ収差、像面湾曲等の諸収差を補正し、合焦の際の諸収差の変動を抑えることが困難になる。条件式(9)の上限値を、88.00、85.00、さらに83.00に設定することで、各実施形態の効果をより確実なものとすることができる。条件式(9)の下限値を、9.50、10.00、10.50、11.00、さらに11.50に設定することで、各実施形態の効果をより確実なものとすることができる。
 第1実施形態および第2実施形態に係る光学系OLにおいて、中間群GMは、光軸に沿って物体側から順に並んだ、第1合焦レンズ群と、正の屈折力を有する第2合焦レンズ群とからなり、合焦の際、第1合焦レンズ群と第2合焦レンズ群とが互いに異なる軌跡で光軸に沿って移動し、以下の条件式(10)を満足することが望ましい。
 0.30<fF2/f<2.00 ・・・(10)
 但し、fF2:第2合焦レンズ群の焦点距離
 条件式(10)は、第2合焦レンズ群の焦点距離と、光学系OLの焦点距離との適切な関係を規定するものである。条件式(10)を満足することで、球面収差、コマ収差、像面湾曲等の諸収差を良好に補正し、合焦の際の諸収差の変動を抑えることができる。
 条件式(10)の対応値が上記範囲を外れてしまうと、球面収差、コマ収差、像面湾曲等の諸収差を補正し、合焦の際の諸収差の変動を抑えることが困難になる。条件式(10)の上限値を、1.85、1.75、1.50、1.45、さらに1.40に設定することで、各実施形態の効果をより確実なものとすることができる。条件式(10)の下限値を、0.40、0.50、0.55、0.60、0.65、さらに0.70に設定することで、各実施形態の効果をより確実なものとすることができる。
 第1実施形態および第2実施形態に係る光学系OLは、以下の条件式(11)を満足することが望ましい。
 0.80<(-fE)/f<16.00 ・・・(11)
 但し、fE:後群GRの最も像面側に配置されたレンズの焦点距離
 条件式(11)は、後群GRの最も像面側に配置されたレンズの焦点距離と、光学系OLの焦点距離との適切な関係を規定するものである。条件式(11)を満足することで、像面湾曲、倍率色収差、歪曲収差等を良好に補正することができる。
 条件式(11)の対応値が上記範囲を外れてしまうと、像面湾曲、倍率色収差、歪曲収差等を補正することが困難になる。条件式(11)の上限値を、15.50、15.25、15.00、14.75に設定することで、各実施形態の効果をより確実なものとすることができる。条件式(11)の下限値を、0.85、0.90、0.95、さらに1.00に設定することで、各実施形態の効果をより確実なものとすることができる。
 第1実施形態および第2実施形態に係る光学系OLは、以下の条件式(12)を満足することが望ましい。
 1.00<(-fR)/f<3.90 ・・・(12)
 但し、fR:無限遠合焦状態における後群GRの焦点距離
 条件式(12)は、無限遠合焦状態における後群GRの焦点距離と、無限遠合焦状態における光学系OLの焦点距離との適切な関係を規定するものである。条件式(12)を満足することで、像面湾曲、倍率色収差、歪曲収差等を良好に補正することができる。
 条件式(12)の対応値が上記範囲を外れてしまうと、像面湾曲、倍率色収差、歪曲収差等を補正することが困難になる。条件式(12)の上限値を、3.80、3.70、3.60、さらに3.50に設定することで、各実施形態の効果をより確実なものとすることができる。条件式(12)の下限値を、1.05、1.10、1.15、さらに1.18に設定することで、各実施形態の効果をより確実なものとすることができる。
 続いて、図16を参照しながら、第1実施形態に係る光学系OLの製造方法について概説する。まず、光軸に沿って物体側から順に、正の屈折力を有する前群GAと、絞りSと、正の屈折力を有する中間群GMと、負の屈折力を有する後群GRとを配置する(ステップST1)。次に、合焦の際、中間群GMが光軸に沿って移動し、前群GAと中間群GMとの間隔が変化し、中間群GMと後群GRとの間隔が変化するように構成する(ステップST2)。そして、少なくとも上記条件式(1)および条件式(2)を満足するように、レンズ鏡筒内に各レンズを配置する(ステップST3)。このような製造方法によれば、小型でありながら、明るくて良好な光学性能を有する光学系を製造することが可能になる。
 続いて、第2実施形態に係る光学系OLの製造方法について概説する。第2実施形態に係る光学系OLの製造方法は、第1実施形態で述べた製造方法と同様であるため、第1実施形態と同じ図16を参照しながら説明する。まず、光軸に沿って物体側から順に、正の屈折力を有する前群GAと、絞りSと、正の屈折力を有する中間群GMと、負の屈折力を有する後群GRとを配置する(ステップST1)。次に、合焦の際、中間群GMが光軸に沿って移動し、前群GAと中間群GMとの間隔が変化し、中間群GMと後群GRとの間隔が変化するように構成する(ステップST2)。そして、少なくとも上記条件式(2)~(4)を満足するように、レンズ鏡筒内に各レンズを配置する(ステップST3)。このような製造方法によれば、小型でありながら、明るくて良好な光学性能を有する光学系を製造することが可能になる。
 以下、各実施形態の実施例に係る光学系OLを図面に基づいて説明する。図1、図3、図5、図7、図9、図11、図13は、第1~第7実施例に係る光学系OL{OL(1)~OL(7)}の構成及び屈折力配分を示す断面図である。第1~第7実施例に係る光学系OL(1)~OL(7)の断面図では、無限遠から近距離物体へ合焦する際の各レンズ群の光軸に沿った移動方向を矢印で示している。
 これらの図1、図3、図5、図7、図9、図11、図13において、各レンズ群を符号Gと数字の組み合わせにより、各レンズを符号Lと数字の組み合わせにより、それぞれ表している。この場合において、符号、数字の種類および数が大きくなって煩雑化するのを防止するため、実施例毎にそれぞれ独立して符号と数字の組み合わせを用いてレンズ群等を表している。このため、実施例間で同一の符号と数字の組み合わせが用いられていても、同一の構成であることを意味するものでは無い。
 以下に表1~表7を示すが、この内、表1は第1実施例、表2は第2実施例、表3は第3実施例における各諸元データを示す表である。各実施例では収差特性の算出対象として、d線(波長λ=587.6nm)、g線(波長λ=435.8nm)を選んでいる。
 [全体諸元]の表において、fはレンズ全系の焦点距離、FNОはFナンバー、ωは半画角(単位は°(度))、Yは像高を示す。TLは無限遠合焦時の光学系の最も物体側のレンズ面から最も像面側のレンズ面までの光軸上の距離にBf(バックフォーカス)を加えた距離を示し、Bfは無限遠合焦時の光学系の最も像面側のレンズ面から像面までの光軸上の距離(空気換算距離)を示す。
 また、[全体諸元]の表において、βMは、無限遠合焦状態における中間群の横倍率を示す。βRは、無限遠合焦状態における後群の横倍率を示す。fAMは、無限遠合焦状態における前群と中間群との合成焦点距離を示す。fMは、無限遠合焦状態における中間群の焦点距離を示す。fEは、後群の最も像面側に配置されたレンズの焦点距離を示す。
 [レンズ諸元]の表において、面番号は光線の進行する方向に沿った物体側からの光学面の順序を示し、Rは各光学面の曲率半径(曲率中心が像側に位置する面を正の値としている)、Dは各光学面から次の光学面(又は像面)までの光軸上の距離である面間隔、ndは光学部材の材料のd線に対する屈折率、νdは光学部材の材料のd線を基準とするアッベ数をそれぞれ示す。曲率半径の「∞」は平面又は開口を、(絞りS)は開口絞りSをそれぞれ示す。空気の屈折率nd=1.00000の記載は省略している。光学面が非球面である場合には面番号に*印を付して、曲率半径Rの欄には近軸曲率半径を示している。
 [非球面データ]の表には、[レンズ諸元]に示した非球面について、その形状を次式(A)で示す。X(y)は非球面の頂点における接平面から高さyにおける非球面上の位置までの光軸方向に沿った距離(サグ量)を、Rは基準球面の曲率半径(近軸曲率半径)を、κは円錐定数を、Aiは第i次の非球面係数を示す。「E-n」は、「×10-n」を示す。例えば、1.234E-05=1.234×10-5である。なお、2次の非球面係数A2は0であり、その記載を省略している。
 X(y)=(y2/R)/{1+(1-κ×y2/R21/2}+A4×y4+A6×y6+A8×y8+A10×y10 …(A)
 [可変間隔データ]の表には、[レンズ諸元]の表において面間隔が(Di)となっている面番号iでの面間隔を示す。また、[可変間隔データ]の表には、無限遠合焦状態での面間隔、および近距離合焦状態での面間隔を示す。[可変間隔データ]の表において、fはレンズ全系の焦点距離を、βは撮影倍率をそれぞれ示す。また、D0は物体から光学系における最も物体側の光学面までの距離を示す。
 [レンズ群データ]の表には、各レンズ群のそれぞれの始面(最も物体側の面)と焦点距離を示す。
 以下、全ての諸元値において、掲載されている焦点距離f、曲率半径R、面間隔D、その他の長さ等は、特記のない場合一般に「mm」が使われるが、光学系は比例拡大又は比例縮小しても同等の光学性能が得られるので、これに限られるものではない。
 ここまでの表の説明は全ての実施例において共通であり、以下での重複する説明は省略する。
 (第1実施例)
 第1実施例について、図1~図2および表1を用いて説明する。図1は、第1実施例に係る光学系のレンズ構成を示す図である。第1実施例に係る光学系OL(1)は、光軸に沿って物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、開口絞りSと、正の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3とから構成される。無限遠物体から近距離物体への合焦の際、第2レンズ群G2が光軸に沿って物体側へ移動し、隣り合う各レンズ群の間隔が変化する。なお、合焦の際、第1レンズ群G1および第3レンズ群G3は、像面Iに対して位置が固定される。各レンズ群記号に付けている符号(+)もしくは(-)は各レンズ群の屈折力を示し、このことは以下の全ての実施例でも同様である。
 開口絞りSは、第1レンズ群G1と第2レンズ群G2との間に配設される。合焦の際、開口絞りSは、像面Iに対して位置が固定される。本実施例では、第1レンズ群G1が、全体として正の屈折力を有する前群GAを構成する。第2レンズ群G2が、全体として正の屈折力を有する中間群GMを構成する。第3レンズ群G3が、全体として負の屈折力を有する後群GRを構成する。また、本実施例では、第2レンズ群G2が合焦レンズ群GFに該当する。
 第1レンズ群G1は、光軸に沿って物体側から順に並んだ、両凹形状の負レンズL11と、両凸形状の正レンズL12と、両凹形状の負レンズL13と両凸形状の正レンズL14とが接合された接合負レンズと、から構成される。
 第2レンズ群G2は、光軸に沿って物体側から順に並んだ、両凹形状の負レンズL21と両凸形状の正レンズL22とが接合された接合負レンズと、物体側に凹面を向けた正メニスカスレンズL23と、物体側に凹面を向けた正メニスカスレンズL24と、から構成される。正メニスカスレンズL23は、像面側のレンズ面が非球面である。
 第3レンズ群G3は、光軸に沿って物体側から順に並んだ、両凸形状の正レンズL31と両凹形状の負レンズL32とが接合された接合負レンズと、物体側に凹面を向けた負メニスカスレンズL33と、から構成される。負メニスカスレンズL33は、物体側のレンズ面が非球面である。第3レンズ群G3の像側に、像面Iが配置される。第3レンズ群G3と像面Iとの間には、光学フィルターFLが配設されている。
 以下の表1に、第1実施例に係る光学系の諸元の値を掲げる。
(表1)
[全体諸元]
  f=36.000             FNO=1.46
  ω=31.58                Y=21.70
 TL=90.455              Bf=12.055
 βM=0.365               βR=1.129
fAM=31.881              fM=35.176
 fE=-103.632
[レンズ諸元]
 面番号    R      D    nd    νd
  1    -684.4027   1.200   1.48749   70.32
  2     30.7344   3.000
  3     72.1530   5.200   1.81600   46.59
  4    -97.7224   2.836
  5    -48.4219   1.000   1.58144   40.98
  6     22.6564   8.200   1.80400   46.60
  7    -88.5075   2.500
  8      ∞     (D8)            (絞りS)
  9    -20.3873   0.800   1.75520   27.57
  10    408.5856   4.400   1.77250   49.62
  11    -40.1434   0.200
  12   -359.9200   4.400   1.77250   49.62
  13*   -40.3978   2.500
  14   -320.2237   7.300   1.77250   49.62
  15    -32.4972   (D15)
  16   1000.0000   8.300   1.80400   46.60
  17    -30.0000   1.200   1.62004   36.40
  18    81.1828   7.900
  19*   -46.2636   1.200   1.48749   70.32
  20   -553.8512   10.500
  21     ∞     1.600   1.51680   64.20
  22     ∞     0.500
[非球面データ]
 第13面
 κ=1.0000,A4=1.10781E-05,A6=2.99496E-09,A8=2.33937E-11,A10=-4.46052E-14
 第19面
 κ=1.0000,A4=-1.04347E-05,A6=1.44032E-08,A8=-6.35354E-11,A10=9.26712E-14
[可変間隔データ]
     無限遠合焦状態  近距離合焦状態
     f=36.000    β=-0.100
  D0     ∞       341.8
  D8    13.764      10.624
  D15    2.500       5.640
[レンズ群データ]
 群   始面   焦点距離
 G1    1    87.279
 G2    9    35.176
 G3    16   -97.362
 図2(A)は、第1実施例に係る光学系の無限遠合焦時の諸収差図である。図2(B)は、第1実施例に係る光学系の近距離合焦時の諸収差図である。無限遠合焦時の各収差図において、FNOはFナンバー、Yは像高をそれぞれ示す。近距離合焦時の各収差図において、NAは開口数、Yは像高をそれぞれ示す。なお、球面収差図では最大口径に対応するFナンバーまたは開口数の値を示し、非点収差図および歪曲収差図では像高の最大値をそれぞれ示し、コマ収差図では各像高の値を示す。dはd線(波長λ=587.6nm)、gはg線(波長λ=435.8nm)をそれぞれ示す。非点収差図において、実線はサジタル像面、破線はメリディオナル像面をそれぞれ示す。なお、以下に示す各実施例の収差図においても、本実施例と同様の符号を用い、重複する説明は省略する。
 各諸収差図より、第1実施例に係る光学系は、無限遠合焦時のみならず近距離合焦時においても、諸収差が良好に補正され、優れた結像性能を有していることがわかる。
(第2実施例)
 第2実施例について、図3~図4および表2を用いて説明する。図3は、第2実施例に係る光学系のレンズ構成を示す図である。第2実施例に係る光学系OL(2)は、光軸に沿って物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、開口絞りSと、正の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、負の屈折力を有する第4レンズ群G4とから構成される。無限遠物体から近距離物体への合焦の際、第2レンズ群G2と第3レンズ群G3とが互いに異なる軌跡(移動量)で光軸に沿って物体側へ移動し、隣り合う各レンズ群の間隔が変化する。なお、合焦の際、第1レンズ群G1および第4レンズ群G4は、像面Iに対して位置が固定される。
 開口絞りSは、第1レンズ群G1と第2レンズ群G2との間に配設される。合焦の際、開口絞りSは、像面Iに対して位置が固定される。本実施例では、第1レンズ群G1が、全体として正の屈折力を有する前群GAを構成する。第2レンズ群G2と第3レンズ群G3とが、全体として正の屈折力を有する中間群GMを構成する。第4レンズ群G4が、全体として負の屈折力を有する後群GRを構成する。また、本実施例では、第2レンズ群G2が第1合焦レンズ群GF1に該当し、第3レンズ群G3が第2合焦レンズ群GF2に該当する。
 第1レンズ群G1は、光軸に沿って物体側から順に並んだ、両凹形状の負レンズL11と、両凸形状の正レンズL12と、両凹形状の負レンズL13と両凸形状の正レンズL14とが接合された接合負レンズと、から構成される。
 第2レンズ群G2は、光軸に沿って物体側から順に並んだ、両凹形状の負レンズL21と両凸形状の正レンズL22とが接合された接合負レンズと、両凸形状の正レンズL23と、から構成される。
 第3レンズ群G3は、両凸形状の正レンズL31から構成される。正レンズL31は、ガラス製レンズ本体の像面側の面に樹脂層が設けられて構成される複合型のレンズである。樹脂層の像面側の面が非球面であり、正レンズL31は複合型の非球面レンズである。後述の[レンズ諸元]において、面番号14がレンズ本体の物体側の面、面番号15がレンズ本体の像面側の面および樹脂層の物体側の面(両者が接合する面)、面番号16が樹脂層の像面側の面を示す。
 第4レンズ群G4は、光軸に沿って物体側から順に並んだ、両凸形状の正レンズL41と、両凹形状の負レンズL42と、物体側に凹面を向けた負メニスカスレンズL43と、から構成される。負メニスカスレンズL43は、ガラス製レンズ本体の物体側の面に樹脂層が設けられて構成される複合型のレンズである。樹脂層の物体側の面が非球面であり、負メニスカスレンズL43は複合型の非球面レンズである。後述の[レンズ諸元]において、面番号21が樹脂層の物体側の面、面番号22が樹脂層の像面側の面およびレンズ本体の物体側の面(両者が接合する面)、面番号23がレンズ本体の像面側の面を示す。第4レンズ群G4の像側に、像面Iが配置される。第4レンズ群G4と像面Iとの間には、光学フィルターFLが配設されている。
 以下の表2に、第2実施例に係る光学系の諸元の値を掲げる。
(表2)
[全体諸元]
  f=36.000             FNO=1.46
  ω=31.93                Y=21.70
 TL=94.455              Bf=12.055
 βM=0.364               βR=1.109
fAM=32.455              fM=38.495
 fE=-82.849
[レンズ諸元]
 面番号    R      D    nd    νd
  1    -241.3564   1.200   1.48749   70.32
  2     28.6776   3.700
  3     67.6343   5.500   1.80400   46.60
  4    -87.5063   4.500
  5    -39.7460   1.000   1.62004   36.40
  6     28.7182   8.800   1.80400   46.60
  7    -51.6012   2.500
  8      ∞     (D8)            (絞りS)
  9    -20.9092   0.800   1.67270   32.19
  10    151.7550   2.500   1.71300   53.96
  11   -390.5795   0.100
  12    160.0000   6.550   1.77250   49.62
  13    -33.2181   (D13)
  14    98.3039   6.650   1.77250   49.62
  15    -68.9149   0.200   1.56093   36.64
  16*   -54.3985   (D16)
  17    100.0000   7.000   1.60311   60.69
  18    -52.7466   0.100
  19   -102.2448   1.200   1.75520   27.57
  20    75.3981   8.600
  21*   -38.9850   0.200   1.56093   36.64
  22    -34.7338   1.100   1.51680   63.88
  23   -500.0000   10.500
  24     ∞     1.600   1.51680   64.20
  25     ∞     0.500
[非球面データ]
 第16面
 κ=1.0000,A4=9.32563E-06,A6=-9.72867E-10,A8=4.82410E-12,A10=1.29999E-15
 第21面
 κ=1.0000,A4=-7.71632E-06,A6=6.32250E-09,A8=-4.09121E-11,A10=7.56697E-14
[可変間隔データ]
     無限遠合焦状態  近距離合焦状態
     f=36.000    β=-0.100
  D0     ∞       340.5
  D8    16.200      10.637
  D13    2.000       4.298
  D16    2.000       5.227
[レンズ群データ]
 群   始面   焦点距離
 G1    1    89.058
 G2    9   481.615
 G3    14    48.005
 G4    17   -88.510
 図4(A)は、第2実施例に係る光学系の無限遠合焦時の諸収差図である。図4(B)は、第2実施例に係る光学系の近距離合焦時の諸収差図である。各諸収差図より、第2実施例に係る光学系は、無限遠合焦時のみならず近距離合焦時においても、諸収差が良好に補正され、優れた結像性能を有していることがわかる。
(第3実施例)
 第3実施例について、図5~図6および表3を用いて説明する。図5は、第3実施例に係る光学系のレンズ構成を示す図である。第3実施例に係る光学系OL(3)は、光軸に沿って物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、開口絞りSと、正の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、負の屈折力を有する第4レンズ群G4とから構成される。無限遠物体から近距離物体への合焦の際、第2レンズ群G2と第3レンズ群G3とが互いに異なる軌跡(移動量)で光軸に沿って物体側へ移動し、隣り合う各レンズ群の間隔が変化する。なお、合焦の際、第1レンズ群G1および第4レンズ群G4は、像面Iに対して位置が固定される。
 開口絞りSは、第1レンズ群G1と第2レンズ群G2との間に配設される。合焦の際、開口絞りSは、像面Iに対して位置が固定される。本実施例では、第1レンズ群G1が、全体として正の屈折力を有する前群GAを構成する。第2レンズ群G2と第3レンズ群G3とが、全体として正の屈折力を有する中間群GMを構成する。第4レンズ群G4が、全体として負の屈折力を有する後群GRを構成する。また、本実施例では、第2レンズ群G2が第1合焦レンズ群GF1に該当し、第3レンズ群G3が第2合焦レンズ群GF2に該当する。
 第1レンズ群G1は、光軸に沿って物体側から順に並んだ、物体側に凸面を向けた負メニスカスレンズL11と、両凸形状の正レンズL12と、両凸形状の正レンズL13と両凹形状の負レンズL14とが接合された接合負レンズと、から構成される。
 第2レンズ群G2は、光軸に沿って物体側から順に並んだ、物体側に凹面を向けた負メニスカスレンズL21と、両凸形状の正レンズL22と、から構成される。
 第3レンズ群G3は、両凸形状の正レンズL31から構成される。正レンズL31は、像面側のレンズ面が非球面である。
 第4レンズ群G4は、光軸に沿って物体側から順に並んだ、両凸形状の正レンズL41と両凹形状の負レンズL42とが接合された接合負レンズと、物体側に凹面を向けた負メニスカスレンズL43と、から構成される。負メニスカスレンズL43は、物体側のレンズ面が非球面である。第4レンズ群G4の像側に、像面Iが配置される。第4レンズ群G4と像面Iとの間には、光学フィルターFLが配設されている。
 以下の表3に、第3実施例に係る光学系の諸元の値を掲げる。
(表3)
[全体諸元]
  f=28.840             FNO=1.46
  ω=36.89                Y=21.70
 TL=99.455              Bf=12.055
 βM=0.322               βR=1.145
fAM=25.181              fM=30.516
 fE=-419.431
[レンズ諸元]
 面番号    R      D    nd    νd
  1    212.1379   1.200   1.48749   70.32
  2     23.3713   20.636
  3     49.7144   5.200   1.80400   46.60
  4    -274.4623   0.200
  5     36.2277   7.800   1.80400   46.60
  6    -36.1361   1.000   1.64769   33.72
  7     24.9178   3.500
  8      ∞     (D8)            (絞りS)
  9    -16.2749   1.000   1.71736   29.57
  10    -58.1572   0.200
  11    182.4646   7.500   1.77250   49.62
  12    -29.4929   (D12)
  13    91.4430   6.700   1.77250   49.62
  14*   -41.8675   (D14)
  15    232.3455   8.300   1.74100   52.77
  16    -32.5776   1.200   1.69895   30.13
  17    56.4353   4.500
  18*   -293.0076   1.200   1.77250   49.62
  19   -3067.6687   10.500
  20     ∞     1.600   1.51680   64.20
  21     ∞     0.500
[非球面データ]
 第14面
 κ=1.0000,A4=1.40329E-05,A6=-5.80050E-09,A8=7.49771E-12,A10=0.00000E+00
 第18面
 κ=1.0000,A4=-2.37073E-06,A6=-9.54689E-09,A8=-3.12635E-11,A10=4.17230E-14
[可変間隔データ]
     無限遠合焦状態  近距離合焦状態
     f=28.840    β=-0.100
  D0     ∞       264.4
  D8    12.764      10.564
  D12    2.000       1.810
  D14    2.500       4.891
[レンズ群データ]
 群   始面   焦点距離
 G1    1    78.172
 G2    9   336.592
 G3    13    38.009
 G4    15   -98.824
 図6(A)は、第3実施例に係る光学系の無限遠合焦時の諸収差図である。図6(B)は、第3実施例に係る光学系の近距離合焦時の諸収差図である。各諸収差図より、第3実施例に係る光学系は、無限遠合焦時のみならず近距離合焦時においても、諸収差が良好に補正され、優れた結像性能を有していることがわかる。
(第4実施例)
 第4実施例について、図7~図8および表4を用いて説明する。図7は、第4実施例に係る光学系のレンズ構成を示す図である。第4実施例に係る光学系OL(4)は、光軸に沿って物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、開口絞りSと、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、負の屈折力を有する第4レンズ群G4とから構成される。無限遠物体から近距離物体への合焦の際、第2レンズ群G2と第3レンズ群G3とが互いに異なる軌跡(移動量)で光軸に沿って物体側へ移動し、隣り合う各レンズ群の間隔が変化する。なお、合焦の際、第1レンズ群G1および第4レンズ群G4は、像面Iに対して位置が固定される。
 開口絞りSは、第1レンズ群G1と第2レンズ群G2との間に配設される。合焦の際、開口絞りSは、像面Iに対して位置が固定される。本実施例では、第1レンズ群G1が、全体として正の屈折力を有する前群GAを構成する。第2レンズ群G2と第3レンズ群G3とが、全体として正の屈折力を有する中間群GMを構成する。第4レンズ群G4が、全体として負の屈折力を有する後群GRを構成する。また、本実施例では、第2レンズ群G2が第1合焦レンズ群GF1に該当し、第3レンズ群G3が第2合焦レンズ群GF2に該当する。
 第1レンズ群G1は、光軸に沿って物体側から順に並んだ、両凹形状の負レンズL11と、両凸形状の正レンズL12と、両凸形状の正レンズL13と両凹形状の負レンズL14とが接合された接合負レンズと、から構成される。負レンズL11は、ガラス製レンズ本体の像面側の面に樹脂層が設けられて構成される複合型のレンズである。樹脂層の像面側の面が非球面であり、負レンズL11は複合型の非球面レンズである。後述の[レンズ諸元]において、面番号1がレンズ本体の物体側の面、面番号2がレンズ本体の像面側の面および樹脂層の物体側の面(両者が接合する面)、面番号3が樹脂層の像面側の面を示す。
 第2レンズ群G2は、光軸に沿って物体側から順に並んだ、物体側に凹面を向けた負メニスカスレンズL21と、両凸形状の正レンズL22と、から構成される。
 第3レンズ群G3は、両凸形状の正レンズL31から構成される。正レンズL31は、ガラス製レンズ本体の像面側の面に樹脂層が設けられて構成される複合型のレンズである。樹脂層の像面側の面が非球面であり、正レンズL31は複合型の非球面レンズである。後述の[レンズ諸元]において、面番号14がレンズ本体の物体側の面、面番号15がレンズ本体の像面側の面および樹脂層の物体側の面(両者が接合する面)、面番号16が樹脂層の像面側の面を示す。
 第4レンズ群G4は、光軸に沿って物体側から順に並んだ、両凸形状の正レンズL41と物体側に凹面を向けた負メニスカスレンズL42とが接合された接合正レンズと、両凹形状の負レンズL43と、から構成される。第4レンズ群G4の像側に、像面Iが配置される。第4レンズ群G4と像面Iとの間には、光学フィルターFLが配設されている。
 以下の表4に、第4実施例に係る光学系の諸元の値を掲げる。
(表4)
[全体諸元]
  f=51.500             FNO=1.46
  ω=23.07                Y=21.70
 TL=96.455              Bf=12.055
 βM=0.477               βR=1.049
fAM=49.080              fM=45.487
 fE=-53.954
[レンズ諸元]
 面番号    R      D    nd    νd
  1    -177.4706   1.200   1.61272   58.54
  2     86.9619   0.200   1.56093   36.64
  3*    102.9016   4.800
  4     53.4789   7.000   1.83481   42.73
  5    -187.8110   0.200
  6     41.5072   9.600   1.77250   49.62
  7    -59.7672   1.000   1.67270   32.19
  8     25.4591   6.000
  9      ∞     (D9)            (絞りS)
  10    -19.6066   0.800   1.67270   32.19
  11   -141.5164   0.200
  12    620.7750   6.300   1.77250   49.62
  13    -31.0101   (D13)
  14    152.3899   7.000   1.77250   49.62
  15    -54.2708   0.200   1.56093   36.64
  16*   -50.4347   (D16)
  17    864.8117   8.500   1.77250   49.62
  18    -32.5318   1.200   1.53172   48.78
  19   -587.8875   5.000
  20    -37.6797   1.200   1.67270   32.19
  21   1000.0000   10.500
  22     ∞     1.600   1.51680   64.20
  23     ∞     0.500
[非球面データ]
 第3面
 κ=1.0000,A4=2.85829E-06,A6=4.78816E-10,A8=9.44053E-13,A10=0.00000E+00
 第16面
 κ=1.0000,A4=4.47165E-06,A6=1.34225E-09,A8=0.00000E+00,A10=0.00000E+00
[可変間隔データ]
     無限遠合焦状態  近距離合焦状態
     f=51.500    β=-0.100
  D0     ∞       488.2
  D9    17.100      11.418
  D13    2.400       2.457
  D16    4.500      10.126
[レンズ群データ]
 群   始面   焦点距離
 G1    1   102.992
 G2    10  -4133.359
 G3    14    50.566
 G4    17   -120.130
 図8(A)は、第4実施例に係る光学系の無限遠合焦時の諸収差図である。図8(B)は、第4実施例に係る光学系の近距離合焦時の諸収差図である。各諸収差図より、第4実施例に係る光学系は、無限遠合焦時のみならず近距離合焦時においても、諸収差が良好に補正され、優れた結像性能を有していることがわかる。
(第5実施例)
 第5実施例について、図9~図10および表5を用いて説明する。図9は、第5実施例に係る光学系のレンズ構成を示す図である。第5実施例に係る光学系OL(5)は、光軸に沿って物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、開口絞りSと、正の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3とから構成される。無限遠物体から近距離物体への合焦の際、第2レンズ群G2が光軸に沿って物体側へ移動し、隣り合う各レンズ群の間隔が変化する。なお、合焦の際、第1レンズ群G1および第3レンズ群G3は、像面Iに対して位置が固定される。
 開口絞りSは、第1レンズ群G1と第2レンズ群G2との間に配設される。合焦の際、開口絞りSは、像面Iに対して位置が固定される。本実施例では、第1レンズ群G1が、全体として正の屈折力を有する前群GAを構成する。第2レンズ群G2が、全体として正の屈折力を有する中間群GMを構成する。第3レンズ群G3が、全体として負の屈折力を有する後群GRを構成する。また、本実施例では、第2レンズ群G2が合焦レンズ群GFに該当する。
 第1レンズ群G1は、光軸に沿って物体側から順に並んだ、両凹形状の負レンズL11と、両凸形状の正レンズL12と、両凸形状の正レンズL13と両凹形状の負レンズL14とが接合された接合負レンズと、から構成される。負レンズL11は、像面側のレンズ面が非球面である。
 第2レンズ群G2は、光軸に沿って物体側から順に並んだ、物体側に凹面を向けた負メニスカスレンズL21と、両凸形状の正レンズL22と、両凸形状の正レンズL23と、から構成される。正レンズL23は、像面側のレンズ面が非球面である。
 第3レンズ群G3は、光軸に沿って物体側から順に並んだ、物体側に凹面を向けた正メニスカスレンズL31と物体側に凹面を向けた負メニスカスレンズL32とが接合された接合正レンズと、両凹形状の負レンズL33と、から構成される。第3レンズ群G3の像側に、像面Iが配置される。第3レンズ群G3と像面Iとの間には、光学フィルターFLが配設されている。
 以下の表5に、第5実施例に係る光学系の諸元の値を掲げる。
(表5)
[全体諸元]
  f=51.500             FNO=1.46
  ω=22.89                Y=21.70
 TL=96.455              Bf=12.055
 βM=0.477               βR=1.049
fAM=49.098              fM=43.754
 fE=-53.954
[レンズ諸元]
 面番号    R      D    nd    νd
  1   -1011.3026   1.200   1.61272   58.54
  2*    71.1508   5.000
  3     49.8099   6.800   1.83481   42.73
  4    -340.2042   0.200
  5     38.0076   9.800   1.77250   49.62
  6    -69.4851   1.000   1.67270   32.19
  7     24.0943   6.000
  8      ∞     (D8)            (絞りS)
  9    -19.9414   0.800   1.67270   32.19
  10   -523.8033   0.200
  11    771.8063   6.300   1.77250   49.62
  12    -30.7112   2.300
  13    94.8763   7.700   1.77250   49.62
  14*   -52.2961   (D14)
  15   -472.2588   8.100   1.77250   49.62
  16    -33.2104   1.200   1.53172   48.78
  17   -120.9626   5.000
  18    -37.6797   1.200   1.67270   32.19
  19   1000.0000   10.500
  20     ∞     1.600   1.51680   64.20
  21     ∞     0.500
[非球面データ]
 第2面
 κ=1.0000,A4=2.09682E-06,A6=5.08234E-10,A8=7.22650E-13,A10=0.00000E+00
 第14面
 κ=1.0000,A4=2.94054E-06,A6=2.73765E-10,A8=0.00000E+00,A10=0.00000E+00
[可変間隔データ]
     無限遠合焦状態  近距離合焦状態
     f=51.500    β=-0.100
  D0     ∞       485.4
  D8    17.100      11.486
  D14    4.500      10.114
[レンズ群データ]
 群   始面   焦点距離
 G1    1   102.950
 G2    9    43.754
 G3    15   -132.026
 図10(A)は、第5実施例に係る光学系の無限遠合焦時の諸収差図である。図10(B)は、第5実施例に係る光学系の近距離合焦時の諸収差図である。各諸収差図より、第5実施例に係る光学系は、無限遠合焦時のみならず近距離合焦時においても、諸収差が良好に補正され、優れた結像性能を有していることがわかる。
(第6実施例)
 第6実施例について、図11~図12および表6を用いて説明する。図11は、第6実施例に係る光学系のレンズ構成を示す図である。第6実施例に係る光学系OL(6)は、光軸に沿って物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、開口絞りSと、負の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、負の屈折力を有する第4レンズ群G4とから構成される。無限遠物体から近距離物体への合焦の際、第2レンズ群G2と第3レンズ群G3とが互いに異なる軌跡(移動量)で光軸に沿って物体側へ移動し、隣り合う各レンズ群の間隔が変化する。なお、合焦の際、第1レンズ群G1および第4レンズ群G4は、像面Iに対して位置が固定される。
 開口絞りSは、第1レンズ群G1と第2レンズ群G2との間に配設される。合焦の際、開口絞りSは、像面Iに対して位置が固定される。本実施例では、第1レンズ群G1が、全体として正の屈折力を有する前群GAを構成する。第2レンズ群G2と第3レンズ群G3とが、全体として正の屈折力を有する中間群GMを構成する。第4レンズ群G4が、全体として負の屈折力を有する後群GRを構成する。また、本実施例では、第2レンズ群G2が第1合焦レンズ群GF1に該当し、第3レンズ群G3が第2合焦レンズ群GF2に該当する。
 第1レンズ群G1は、光軸に沿って物体側から順に並んだ、物体側に凸面を向けた正メニスカスレンズL11と、物体側に凸面を向けた正メニスカスレンズL12と、物体側に凸面を向けた負メニスカスレンズL13と、から構成される。
 第2レンズ群G2は、光軸に沿って物体側から順に並んだ、物体側に凹面を向けた負メニスカスレンズL21と、両凸形状の正レンズL22と、から構成される。正レンズL22は、ガラス製レンズ本体の像面側の面に樹脂層が設けられて構成される複合型のレンズである。樹脂層の像面側の面が非球面であり、正レンズL22は複合型の非球面レンズである。後述の[レンズ諸元]において、面番号10がレンズ本体の物体側の面、面番号11がレンズ本体の像面側の面および樹脂層の物体側の面(両者が接合する面)、面番号12が樹脂層の像面側の面を示す。
 第3レンズ群G3は、物体側に凹面を向けた正メニスカスレンズL31から構成される。
 第4レンズ群G4は、両凹形状の負レンズL41から構成される。第4レンズ群G4の像側に、像面Iが配置される。第4レンズ群G4と像面Iとの間には、光学フィルターFLが配設されている。
 以下の表6に、第6実施例に係る光学系の諸元の値を掲げる。
(表6)
[全体諸元]
  f=77.600             FNO=2.04
  ω=15.48                Y=21.70
 TL=91.455              Bf=14.055
 βM=0.590               βR=1.115
fAM=69.617              fM=55.148
 fE=-127.561
[レンズ諸元]
 面番号    R      D    nd    νd
  1     32.0851   8.800   1.60311   60.69
  2    427.2670   0.200
  3     27.4269   5.200   1.77250   49.62
  4     46.4244   2.200
  5    149.1282   1.000   1.68893   31.16
  6     19.0570   7.300
  7      ∞     (D7)            (絞りS)
  8    -23.7246   0.800   1.56732   42.58
  9    -365.7671   0.200
  10    149.2853   5.500   1.77250   49.62
  11    -53.9601   0.200   1.56093   36.64
  12*   -50.7397   (D12)
  13   -1478.0798   8.000   1.60311   60.69
  14    -33.2322   (D14)
  15    -87.5938   1.200   1.48749   70.32
  16    215.3355   12.500
  17     ∞     1.600   1.51680   64.20
  18     ∞     0.500
[非球面データ]
 第12面
 κ=1.0000,A4=8.63577E-06,A6=-3.87641E-09,A8=4.23228E-11,A10=-7.82625E-14
[可変間隔データ]
     無限遠合焦状態  近距離合焦状態
     f=77.600    β=-0.100
  D0     ∞       731.9
  D7    21.100      12.434
  D12    2.000       2.135
  D14   13.700      22.131
[レンズ群データ]
 群   始面   焦点距離
 G1    1   117.952
 G2    8   -957.754
 G3    13    56.252
 G4    15   -127.561
 図12(A)は、第6実施例に係る光学系の無限遠合焦時の諸収差図である。図12(B)は、第6実施例に係る光学系の近距離合焦時の諸収差図である。各諸収差図より、第6実施例に係る光学系は、無限遠合焦時のみならず近距離合焦時においても、諸収差が良好に補正され、優れた結像性能を有していることがわかる。
(第7実施例)
 第7実施例について、図13~図14および表7を用いて説明する。図13は、第7実施例に係る光学系のレンズ構成を示す図である。第7実施例に係る光学系OL(7)は、光軸に沿って物体側から順に並んだ、正の屈折力を有する第1レンズ群G1と、開口絞りSと、正の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3とから構成される。無限遠物体から近距離物体への合焦の際、第2レンズ群G2が光軸に沿って物体側へ移動し、隣り合う各レンズ群の間隔が変化する。なお、合焦の際、第1レンズ群G1および第3レンズ群G3は、像面Iに対して位置が固定される。
 開口絞りSは、第1レンズ群G1と第2レンズ群G2との間に配設される。合焦の際、開口絞りSは、像面Iに対して位置が固定される。本実施例では、第1レンズ群G1が、全体として正の屈折力を有する前群GAを構成する。第2レンズ群G2が、全体として正の屈折力を有する中間群GMを構成する。第3レンズ群G3が、全体として負の屈折力を有する後群GRを構成する。また、本実施例では、第2レンズ群G2が合焦レンズ群GFに該当する。
 第1レンズ群G1は、光軸に沿って物体側から順に並んだ、物体側に凸面を向けた正メニスカスレンズL11と、物体側に凸面を向けた正メニスカスレンズL12と物体側に凸面を向けた負メニスカスレンズL13とが接合された接合負レンズと、から構成される。正メニスカスレンズL11は、像面側のレンズ面が非球面である。
 第2レンズ群G2は、光軸に沿って物体側から順に並んだ、物体側に凹面を向けた負メニスカスレンズL21と、両凸形状の正レンズL22と、物体側に凹面を向けた正メニスカスレンズL23と、から構成される。正レンズL22は、像面側のレンズ面が非球面である。
 第3レンズ群G3は、両凹形状の負レンズL31から構成される。第3レンズ群G3の像側に、像面Iが配置される。第3レンズ群G3と像面Iとの間には、光学フィルターFLが配設されている。
 以下の表7に、第7実施例に係る光学系の諸元の値を掲げる。
(表7)
[全体諸元]
  f=77.600             FNO=2.05
  ω=15.48                Y=21.70
 TL=91.155              Bf=13.288
 βM=0.617               βR=1.145
fAM=67.754              fM=60.108
 fE=-93.756
[レンズ諸元]
 面番号    R      D    nd    νd
  1     36.1757   7.500   1.60311   60.69
  2*    91.6415   0.200
  3     26.4224   8.000   1.77250   49.62
  4     60.5724   1.000   1.69895   30.13
  5     18.5472   7.800
  6      ∞     (D6)            (絞りS)
  7    -24.0725   0.800   1.57501   41.51
  8    -315.3193   0.100
  9    127.7089   6.000   1.77250   49.62
  10*   -43.8778   2.500
  11   -123.5831   7.000   1.48749   70.32
  12    -29.0241   (D12)
  13    -64.6872   1.200   1.48749   70.32
  14    156.7010   11.500
  15     ∞     1.600   1.51680   64.20
  16     ∞     0.733
[非球面データ]
 第2面
 κ=1.0000,A4=7.14080E-07,A6=-1.98200E-10,A8=0.00000E+00,A10=0.00000E+00
 第10面
 κ=1.0000,A4=6.70063E-06,A6=3.97954E-09,A8=0.00000E+00,A10=0.00000E+00
[可変間隔データ]
     無限遠合焦状態  近距離合焦状態
     f=77.600    β=-0.100
  D0     ∞       738.2
  D6    21.100      12.711
  D12   14.900      23.289
[レンズ群データ]
 群   始面   焦点距離
 G1    1   109.766
 G2    7    60.108
 G3    13   -93.756
 図14(A)は、第7実施例に係る光学系の無限遠合焦時の諸収差図である。図14(B)は、第7実施例に係る光学系の近距離合焦時の諸収差図である。各諸収差図より、第7実施例に係る光学系は、無限遠合焦時のみならず近距離合焦時においても、諸収差が良好に補正され、優れた結像性能を有していることがわかる。
 次に、[条件式対応値]の表を下記に示す。この表には、各条件式(1)~(12)に対応する値を、全実施例(第1~第7実施例)について纏めて示す。
 条件式(1)  2.60<DSE/DM<3.50
 条件式(2)  0.80<fAM/f<1.00
 条件式(3)  0.50<DA/(DM+DR)<1.20
 条件式(4)  1.70<DSR/DM<3.40
 条件式(5)  0.60<fM/f<1.30
 条件式(6)  0.60<fA/(-fR)<1.50
 条件式(7)  0.60<{1-(βM)2}×(βR)2<1.50
 条件式(8)  0.70<DA/DM<2.30
 条件式(9)  9.00<|fF1|/f<90.00
 条件式(10) 0.30<fF2/f<2.00
 条件式(11) 0.80<(-fE)/f<16.00
 条件式(12) 1.00<(-fR)/f<3.90
 [条件式対応値](第1~第4実施例)
  条件式  第1実施例  第2実施例  第3実施例  第4実施例
  (1)   2.779     2.936     2.751     3.219
  (2)   0.886     0.902     0.873     0.953
  (3)   0.561     0.668     1.105     0.732
  (4)   1.830     1.968     1.877     2.278
  (5)   0.977     1.069     1.058     0.883
  (6)   0.896     1.006     0.791     0.857
  (7)   1.105     1.067     1.176     0.851
  (8)   1.094     1.314     2.071     1.420
  (9)    ―     13.378    11.671    80.259
 (10)    ―     1.333     1.318     0.982
 (11)   2.879     2.301    14.543     1.048
 (12)   2.704     2.459     3.427     2.333
 [条件式対応値](第5~第7実施例)
  条件式  第5実施例  第6実施例  第7実施例
  (1)   3.145     3.156     3.268
  (2)   0.953     0.897     0.873
  (3)   0.732     0.972     0.949
  (4)   2.249     3.084     3.195
  (5)   0.850     0.711     0.775
  (6)   0.780     0.925     1.171
  (7)   0.850     0.810     0.812
  (8)   1.387     1.042     1.018
  (9)    ―     12.342      ―
 (10)    ―     0.725      ―
 (11)   1.048     1.644     1.208
 (12)   2.564     1.644     1.208
 上記各実施例によれば、小型でありながら、明るくて良好な光学性能を有する光学系を実現することができる。
 上記各実施例は本願発明の一具体例を示しているものであり、本願発明はこれらに限定されるものではない。
 以下の内容は、本実施形態の光学系の光学性能を損なわない範囲で適宜採用することが可能である。
 本実施形態の光学系の実施例として3群または4群構成のものを示したが、本願はこれに限られず、その他の群構成(例えば、5群、6群等)の光学系を構成することもできる。具体的には、本実施形態の光学系の最も物体側や最も像面側にレンズ又はレンズ群を追加した構成でも構わない。なお、レンズ群とは、合焦時に変化する空気間隔で分離された、少なくとも1枚のレンズを有する部分を示す。
 レンズ群または部分レンズ群を光軸に垂直な方向の成分を持つように移動させ、または、光軸を含む面内方向に回転移動(揺動)させて、手ブレによって生じる像ブレを補正する防振レンズ群としても良い。
 レンズ面は、球面または平面で形成されても、非球面で形成されても構わない。レンズ面が球面または平面の場合、レンズ加工および組立調整が容易になり、加工および組立調整の誤差による光学性能の劣化を防げるので好ましい。また、像面がずれた場合でも描写性能の劣化が少ないので好ましい。
 レンズ面が非球面の場合、非球面は、研削加工による非球面、ガラスを型で非球面形状に形成したガラスモールド非球面、ガラスの表面に樹脂を非球面形状に形成した複合型非球面のいずれでも構わない。また、レンズ面は回折面としても良く、レンズを屈折率分布型レンズ(GRINレンズ)あるいはプラスチックレンズとしても良い。
 開口絞りは、第1レンズ群(前群)と第2レンズ群(中間群)との間に配置されるのが好ましいが、開口絞りとしての部材を設けずに、レンズの枠でその役割を代用しても良い。
 各レンズ面には、フレアやゴーストを軽減し、コントラストの高い光学性能を達成するために、広い波長域で高い透過率を有する反射防止膜を施しても良い。
 G1 第1レンズ群          G2 第2レンズ群
 G3 第3レンズ群          G4 第4レンズ群
  I 像面               S 開口絞り

Claims (16)

  1.  光軸に沿って物体側から順に並んだ、正の屈折力を有する前群と、絞りと、正の屈折力を有する中間群と、負の屈折力を有する後群とからなり、
     合焦の際、前記中間群が光軸に沿って移動し、前記前群と前記中間群との間隔が変化し、前記中間群と前記後群との間隔が変化し、
     以下の条件式を満足する光学系。
     2.60<DSE/DM<3.50
     0.80<fAM/f<1.00
     但し、DSE:前記絞りから前記後群の最も像面側のレンズ面までの光軸上の距離
        DM:無限遠合焦状態における前記中間群の光軸上の長さ
        fAM:無限遠合焦状態における前記前群と前記中間群との合成焦点距離
        f:無限遠合焦状態における前記光学系の焦点距離
  2.  光軸に沿って物体側から順に並んだ、正の屈折力を有する前群と、絞りと、正の屈折力を有する中間群と、負の屈折力を有する後群とからなり、
     合焦の際、前記中間群が光軸に沿って移動し、前記前群と前記中間群との間隔が変化し、前記中間群と前記後群との間隔が変化し、
     以下の条件式を満足する光学系。
     0.80<fAM/f<1.00
     0.50<DA/(DM+DR)<1.20
     1.70<DSR/DM<3.40
     但し、fAM:無限遠合焦状態における前記前群と前記中間群との合成焦点距離
        f:無限遠合焦状態における前記光学系の焦点距離
        DA:無限遠合焦状態における前記前群の光軸上の長さ
        DM:無限遠合焦状態における前記中間群の光軸上の長さ
        DR:無限遠合焦状態における前記後群の光軸上の長さ
        DSR:前記絞りから前記後群の最も物体側のレンズ面までの光軸上の距離
  3.  以下の条件式を満足する請求項1または2に記載の光学系。
     0.60<fM/f<1.30
     但し、fM:無限遠合焦状態における前記中間群の焦点距離
  4.  以下の条件式を満足する請求項1~3のいずれか一項に記載の光学系。
     0.60<fA/(-fR)<1.50
     但し、fA:無限遠合焦状態における前記前群の焦点距離
        fR:無限遠合焦状態における前記後群の焦点距離
  5.  以下の条件式を満足する請求項1~4のいずれか一項に記載の光学系。
     0.60<{1-(βM)2}×(βR)2<1.50
     但し、βM:無限遠合焦状態における前記中間群の横倍率
        βR:無限遠合焦状態における前記後群の横倍率
  6.  以下の条件式を満足する請求項1~5のいずれか一項に記載の光学系。
     0.70<DA/DM<2.30
     但し、DA:無限遠合焦状態における前記前群の光軸上の長さ
        DM:無限遠合焦状態における前記中間群の光軸上の長さ
  7.  最も像面側に配置されたレンズが負レンズである請求項1~6のいずれか一項に記載の光学系。
  8.  最も物体側から2番目に配置されたレンズが正レンズである請求項1~7のいずれか一項に記載の光学系。
  9.  最も像面側から3番目に配置されたレンズが正レンズである請求項1~8のいずれか一項に記載の光学系。
  10.  前記中間群は、光軸に沿って物体側から順に並んだ、第1合焦レンズ群と、第2合焦レンズ群とからなり、
     合焦の際、前記第1合焦レンズ群と前記第2合焦レンズ群とが互いに異なる軌跡で光軸に沿って移動し、
     以下の条件式を満足する請求項1~9のいずれか一項に記載の光学系。
     9.00<|fF1|/f<90.00
     但し、fF1:前記第1合焦レンズ群の焦点距離
  11.  前記中間群は、光軸に沿って物体側から順に並んだ、第1合焦レンズ群と、正の屈折力を有する第2合焦レンズ群とからなり、
     合焦の際、前記第1合焦レンズ群と前記第2合焦レンズ群とが互いに異なる軌跡で光軸に沿って移動し、
     以下の条件式を満足する請求項1~10のいずれか一項に記載の光学系。
     0.30<fF2/f<2.00
     但し、fF2:前記第2合焦レンズ群の焦点距離
  12.  以下の条件式を満足する請求項1~11のいずれか一項に記載の光学系。
     0.80<(-fE)/f<16.00
     但し、fE:前記後群の最も像面側に配置されたレンズの焦点距離
  13.  以下の条件式を満足する請求項1~12のいずれか一項に記載の光学系。
     1.00<(-fR)/f<3.90
     但し、fR:無限遠合焦状態における前記後群の焦点距離
  14.  請求項1~13のいずれか一項に記載の光学系を備えて構成される光学機器。
  15.  光軸に沿って物体側から順に並んだ、正の屈折力を有する前群と、絞りと、正の屈折力を有する中間群と、負の屈折力を有する後群とからなる光学系の製造方法であって、
     合焦の際、前記中間群が光軸に沿って移動し、前記前群と前記中間群との間隔が変化し、前記中間群と前記後群との間隔が変化し、
     以下の条件式を満足するように、
     レンズ鏡筒内に各レンズを配置する光学系の製造方法。
     2.60<DSE/DM<3.50
     0.80<fAM/f<1.00
     但し、DSE:前記絞りから前記後群の最も像面側のレンズ面までの光軸上の距離
        DM:無限遠合焦状態における前記中間群の光軸上の長さ
        fAM:無限遠合焦状態における前記前群と前記中間群との合成焦点距離
        f:無限遠合焦状態における前記光学系の焦点距離
  16.  光軸に沿って物体側から順に並んだ、正の屈折力を有する前群と、絞りと、正の屈折力を有する中間群と、負の屈折力を有する後群とからなる光学系の製造方法であって、
     合焦の際、前記中間群が光軸に沿って移動し、前記前群と前記中間群との間隔が変化し、前記中間群と前記後群との間隔が変化し、
     以下の条件式を満足するように、
     レンズ鏡筒内に各レンズを配置する光学系の製造方法。
     0.80<fAM/f<1.00
     0.50<DA/(DM+DR)<1.20
     1.70<DSR/DM<3.40
     但し、fAM:無限遠合焦状態における前記前群と前記中間群との合成焦点距離
        f:無限遠合焦状態における前記光学系の焦点距離
        DA:無限遠合焦状態における前記前群の光軸上の長さ
        DM:無限遠合焦状態における前記中間群の光軸上の長さ
        DR:無限遠合焦状態における前記後群の光軸上の長さ
        DSR:前記絞りから前記後群の最も物体側のレンズ面までの光軸上の距離
PCT/JP2023/016565 2022-05-16 2023-04-27 光学系、光学機器、および光学系の製造方法 WO2023223799A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022080077 2022-05-16
JP2022-080077 2022-05-16

Publications (1)

Publication Number Publication Date
WO2023223799A1 true WO2023223799A1 (ja) 2023-11-23

Family

ID=88835074

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/016565 WO2023223799A1 (ja) 2022-05-16 2023-04-27 光学系、光学機器、および光学系の製造方法

Country Status (1)

Country Link
WO (1) WO2023223799A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012181508A (ja) * 2011-02-10 2012-09-20 Sigma Corp 結像光学系
JP2013125213A (ja) * 2011-12-15 2013-06-24 Olympus Imaging Corp インナーフォーカスレンズ系及びそれを備えた撮像装置
JP2013195587A (ja) * 2012-03-16 2013-09-30 Ricoh Co Ltd 結像レンズ、撮像装置および情報装置
JP2014095841A (ja) * 2012-11-09 2014-05-22 Ricoh Co Ltd 撮像光学系、カメラ装置および携帯情報端末装置
JP2015075501A (ja) * 2013-10-04 2015-04-20 株式会社シグマ 結像光学系
WO2017130571A1 (ja) * 2016-01-26 2017-08-03 ソニー株式会社 撮像レンズおよび撮像装置
WO2019220614A1 (ja) * 2018-05-18 2019-11-21 株式会社ニコン 光学系、光学機器、および光学系の製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012181508A (ja) * 2011-02-10 2012-09-20 Sigma Corp 結像光学系
JP2013125213A (ja) * 2011-12-15 2013-06-24 Olympus Imaging Corp インナーフォーカスレンズ系及びそれを備えた撮像装置
JP2013195587A (ja) * 2012-03-16 2013-09-30 Ricoh Co Ltd 結像レンズ、撮像装置および情報装置
JP2014095841A (ja) * 2012-11-09 2014-05-22 Ricoh Co Ltd 撮像光学系、カメラ装置および携帯情報端末装置
JP2015075501A (ja) * 2013-10-04 2015-04-20 株式会社シグマ 結像光学系
WO2017130571A1 (ja) * 2016-01-26 2017-08-03 ソニー株式会社 撮像レンズおよび撮像装置
WO2019220614A1 (ja) * 2018-05-18 2019-11-21 株式会社ニコン 光学系、光学機器、および光学系の製造方法

Similar Documents

Publication Publication Date Title
JP5277624B2 (ja) マクロレンズ、光学装置、マクロレンズのフォーカシング方法
JP5396888B2 (ja) 広角レンズ、撮像装置、広角レンズの製造方法
JP2000235145A (ja) 広角レンズ
JP3528946B2 (ja) ズームレンズ
JP2000214386A (ja) 防振機能を備えたバックフォ―カスの長いズ―ムレンズ
JPH1123967A (ja) ズームレンズ
JP5428775B2 (ja) 広角レンズ、撮像装置、広角レンズの製造方法
JP2002006214A (ja) ズームレンズ及び該レンズを備える撮影装置
JP2023171585A (ja) 変倍光学系、光学機器、及び変倍光学系の製造方法
JP5320995B2 (ja) 広角レンズ、光学装置
WO2023223799A1 (ja) 光学系、光学機器、および光学系の製造方法
JP6701831B2 (ja) 光学系及び光学機器
JP7218813B2 (ja) 変倍光学系及び光学機器
JP5282399B2 (ja) マクロレンズ、光学装置、マクロレンズのフォーカシング方法
JP2017161846A (ja) 光学系、光学機器および光学系の製造方法
JP2001004920A (ja) ズームレンズ
JP2000002837A (ja) ズームレンズ
JP5320996B2 (ja) 広角レンズ、光学装置
WO2023176512A1 (ja) 光学系、光学機器、および光学系の製造方法
JP2000321497A (ja) ズームレンズ
JP7238701B2 (ja) 光学系および光学装置
WO2024034309A1 (ja) 変倍光学系、光学機器、および変倍光学系の製造方法
WO2021117429A1 (ja) 光学系、光学機器、および光学系の製造方法
WO2024071161A1 (ja) 光学系、光学機器、および光学系の製造方法
WO2023176513A1 (ja) 光学系、光学機器、および光学系の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23807409

Country of ref document: EP

Kind code of ref document: A1