WO2023223775A1 - レーザー光透過性樹脂組成物、成形品及び複合成形品 - Google Patents

レーザー光透過性樹脂組成物、成形品及び複合成形品 Download PDF

Info

Publication number
WO2023223775A1
WO2023223775A1 PCT/JP2023/016070 JP2023016070W WO2023223775A1 WO 2023223775 A1 WO2023223775 A1 WO 2023223775A1 JP 2023016070 W JP2023016070 W JP 2023016070W WO 2023223775 A1 WO2023223775 A1 WO 2023223775A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
parts
resin composition
resin
laser light
Prior art date
Application number
PCT/JP2023/016070
Other languages
English (en)
French (fr)
Inventor
孝人 磯村
光騎 永井
Original Assignee
ポリプラスチックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ポリプラスチックス株式会社 filed Critical ポリプラスチックス株式会社
Publication of WO2023223775A1 publication Critical patent/WO2023223775A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/22Compounds containing nitrogen bound to another nitrogen atom
    • C08K5/23Azo-compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates

Definitions

  • the present invention relates to a laser-transmissive resin composition, a molded article, and a composite molded article.
  • Polybutylene terephthalate resin has excellent heat resistance, mechanical strength, dimensional stability, electrical properties, and moldability, and is widely used in electrical and electronic fields, automobile fields, and the like.
  • Resin molded products are generally used in combination with other parts, and in recent years, laser welding has been increasingly used to join them.
  • Laser welding is a joining method in which a resin molded product that transmits laser light and a resin molded product that absorbs laser light are overlapped and welded by irradiating a laser beam from the side of the resin molded product that has laser light transparency. be.
  • Polybutylene terephthalate resin has lower laser light transmittance than polystyrene resins, polyamide resins, etc., and is therefore not suitable for producing molded products on the laser light transmitting side.
  • carbon black which is commonly used as a coloring agent to color resin black, absorbs laser light even when blended in a very small amount, so it should not be used in molded products on the side that transmits laser light. I can't. Therefore, when coloring the molded product on the laser light transmitting side black, an organic dye or pigment that transmits the laser light is used.
  • Patent Document 1 describes a black-colored resin composition containing a plurality of chromatic pigments.
  • Patent Document 2 describes a dark colored resin composition containing a polymer dye.
  • Organic dyes or pigments have heat resistance that can be used with polybutylene terephthalate, have high laser light transmittance, and almost never develop a black color. Therefore, when organic dyes or pigments are monochromatic, if the amount is small, they will develop red, green, etc., making it difficult to develop black. If the amount is too large, the color becomes dark, but the light transmittance of the resin composition is greatly reduced. For these reasons, when using organic dyes or pigments, it has been necessary to adjust the color to black by combining a plurality of dyes or pigments of different colors and blending them in as small an amount as possible. However, because polybutylene terephthalate resin has a high hiding power, even when coloring it black using multiple types of dyes and pigments, the amount of dyes and pigments must be increased compared to other resins. Laser light transmittance may further decrease.
  • An object of the present invention is to provide a resin composition that is colored black and has high laser light transmittance, as well as molded products and composite molded products using the same.
  • the present invention has the following aspects.
  • [1] Contains a polybutylene terephthalate resin, a polycarbonate resin, and a chromium complex azo dye,
  • the content of the polycarbonate resin is 60 parts by mass or more and 100 parts by mass or less based on 100 parts by mass of the polybutylene terephthalate resin,
  • Transparent resin composition [4] The laser-transmissive resin composition according to any one of [1] to [3], wherein the chromium complex azo dye contains Color Index (C.I.) Solvent Black 28.
  • the laser-transmissive resin composition (hereinafter also simply referred to as "resin composition") according to the present embodiment includes a polybutylene terephthalate resin, a polycarbonate resin, and a chromium complex azo dye, and the content of the polycarbonate resin is from 60 parts by mass to 100 parts by mass based on 100 parts by mass of the polybutylene terephthalate resin, and the content of the chromium complex azo dye is from 0.08 parts by mass to 0.08 parts by mass based on 100 parts by mass of the polybutylene terephthalate resin. It is 50 parts by mass or less.
  • a resin composition that is colored black and has high laser light transmittance can be obtained.
  • Polybutylene terephthalate resin contains a dicarboxylic acid component containing at least terephthalic acid or its ester-forming derivative (C 1-6 alkyl ester, acid halide, etc.) and an alkylene glycol having at least 4 carbon atoms (1 , 4-butanediol) or its ester-forming derivatives (acetylated products, etc.).
  • the polybutylene terephthalate resin is not limited to a homopolybutylene terephthalate resin, but may be a copolymer containing 60 mol% or more of butylene terephthalate units.
  • the amount of terminal carboxyl groups in the polybutylene terephthalate resin is preferably 50 meq/kg or less, preferably 30 meq/kg or less, and more preferably 25 meq/kg or less.
  • the intrinsic viscosity of the polybutylene terephthalate resin is not particularly limited as long as it does not impede the effects of the present invention, but it is preferably 0.60 dL/g or more and 1.2 dL/g or less, and 0.65 dL/g or more and 0.9 dL. /g or less is more preferable.
  • the resulting polybutylene terephthalate resin composition has particularly excellent moldability.
  • the intrinsic viscosity can also be adjusted by blending polybutylene terephthalate resins having different intrinsic viscosities.
  • a polybutylene terephthalate resin with an intrinsic viscosity of 0.9 dL/g is prepared by blending a polybutylene terephthalate resin with an intrinsic viscosity of 1.0 dL/g and a polybutylene terephthalate resin with an intrinsic viscosity of 0.7 dL/g. Can be done.
  • the intrinsic viscosity of polybutylene terephthalate resin can be measured, for example, in o-chlorophenol at a temperature of 35°C.
  • an aromatic dicarboxylic acid other than terephthalic acid or an ester-forming derivative thereof is used as a comonomer component
  • isophthalic acid, phthalic acid, 2,6-naphthalenedicarboxylic acid, 4,4'- C 8-14 aromatic dicarboxylic acids such as dicarboxydiphenyl ether; C 4-16 alkanedicarboxylic acids such as succinic acid, adipic acid, azelaic acid, sebacic acid; C 5-10 cycloalkanedicarboxylic acids such as cyclohexanedicarboxylic acid Acid: Ester-forming derivatives (C 1-6 alkyl ester derivatives, acid halides, etc.) of these dicarboxylic acid components can be used. These dicarboxylic acid components can be used alone or in combination of two or more.
  • C 8-12 aromatic dicarboxylic acids such as isophthalic acid
  • C 6-12 alkanedicarboxylic acids such as adipic acid, azelaic acid, and sebacic acid are more preferred.
  • glycol component other than 1,4-butanediol as a comonomer component, for example, ethylene glycol, propylene glycol, trimethylene glycol, 1,3-butylene glycol, hexamethylene glycol, neopentyl.
  • C2-10 alkylene glycols such as glycol and 1,3-octanediol; polyoxyalkylene glycols such as diethylene glycol, triethylene glycol, and dipropylene glycol; alicyclic diols such as cyclohexanedimethanol and hydrogenated bisphenol A; bisphenol Aromatic diols such as A, 4,4'-dihydroxybiphenyl; C2-4 alkylene oxide adducts of bisphenol A, such as 2-mole ethylene oxide adducts of bisphenol A, and 3-mole propylene oxide adducts of bisphenol A; Alternatively, ester-forming derivatives (acetylated products, etc.) of these glycols can be used. These glycol components can be used alone or in combination of two or more.
  • C2-6 alkylene glycols such as ethylene glycol and trimethylene glycol
  • polyoxyalkylene glycols such as diethylene glycol
  • alicyclic diols such as cyclohexanedimethanol are more preferred.
  • Comonomer components that can be used in addition to dicarboxylic acid components and glycol components include, for example, 4-hydroxybenzoic acid, 3-hydroxybenzoic acid, 6-hydroxy-2-naphthoic acid, 4-carboxy-4'-hydroxybiphenyl, etc.
  • Aromatic hydroxycarboxylic acids aliphatic hydroxycarboxylic acids such as glycolic acid and hydroxycaproic acid; C3-12 lactones such as propiolactone, butyrolactone, valerolactone, caprolactone ( ⁇ -caprolactone, etc.); esters of these comonomer components
  • Formative derivatives C 1-6 alkyl ester derivatives, acid halides, acetylated products, etc. can be mentioned.
  • the content of the polybutylene terephthalate resin is preferably 30% by mass or more and 65% by mass or less, more preferably 35% by mass or more and 60% by mass or less, and 38% by mass or more and 50% by mass or less, based on the total mass of the resin composition. It is more preferably not more than 40% by mass and not more than 50% by mass.
  • the content of polybutylene terephthalate resin is 30% by mass or more and 65% by mass or less of the total mass of the resin composition, it may be 38% by mass or 39% by mass, and these are the lower limit values. Alternatively, the range may be the upper limit value.
  • PC resins examples include polymers obtained by reacting a dihydroxy compound with a carbonate ester such as phosgene or diphenyl carbonate.
  • the dihydroxy compound may be an alicyclic compound such as an alicyclic diol, but is preferably an aromatic compound, more preferably a bisphenol compound. Dihydroxy compounds can be used alone or in combination of two or more.
  • Bisphenol compounds include bis(4-hydroxyphenyl)methane, bis(4-hydroxy-3-methylphenyl)methane, 1,1-bis(4-hydroxyphenyl)ethane, 1,1-bis(4-hydroxy- 3-methylphenyl)ethane, 1,1-bis(4-hydroxyphenyl)propane, 2,2-bis(4-hydroxyphenyl)propane (bisphenol A), 2,2-bis(4-hydroxy-3-methyl) phenyl)propane, 2,2-bis(4-hydroxy-3,5-dimethylphenyl)propane, 2,2-bis(4-hydroxy-3-ethylphenyl)propane, 2,2-bis(4-hydroxy- 3-t-butylphenyl)propane, 2,2-bis(4-hydroxy-3-bromophenyl)propane, 2,2-bis(4-hydroxyphenyl)butane, 2,2-bis(4-hydroxyphenyl) -3-methylbutane, 2,2-bis(4-hydroxyphenyl)p
  • Dihydroxyaryl sulfide Dihydroxyaryl sulfoxide such as 4,4'-dihydroxydiphenyl sulfoxide, 4,4'-dihydroxy-3,3'-dimethyldiphenyl sulfoxide; 4,4'-dihydroxydiphenyl ketone, 4 , 4'-dihydroxy-3,3'-dimethyldiphenylketone and other dihydroxyaryl ketones.
  • Preferred polycarbonate resins include bisphenol A polycarbonate.
  • the polycarbonate resin may be a homopolycarbonate or a copolycarbonate.
  • One type of polycarbonate resin may be used alone, or two or more types may be used in combination.
  • the melt viscosity of the polycarbonate resin at 300° C. and a shear rate of 1000 sec -1 is preferably 0.20 kPa s or more, more preferably 0.21 kPa s or more, and 0.22 kPa s or more. is more preferable, even more preferably 0.24 kPa ⁇ s or more, and particularly preferably 0.25 kPa ⁇ s or more. Note that the melt viscosity is measured in accordance with ISO11443.
  • the content of the polycarbonate resin is 60 parts by mass or more and 100 parts by mass or less, preferably 65 parts by mass or more and 90 parts by mass or less, and 70 parts by mass or more and 85 parts by mass or less, based on 100 parts by mass of the polybutylene terephthalate resin. It is more preferably 72 parts by mass or more and 82 parts by mass or less, and particularly preferably 75 parts by mass or more and 80 parts by mass or less.
  • the content of the polycarbonate resin is less than 60 parts by mass, the laser light transmittance is insufficient, and it is impossible to both color the resin composition black and improve the laser light transmittance.
  • the content of the polycarbonate resin may be 76.1 parts by mass or 78.1 parts by mass in the range of 60 parts by mass or more and 100 parts by mass or less with respect to 100 parts by mass of polybutylene terephthalate resin. , 78.3 parts by mass, a range with these as the lower limit or upper limit, or a combination of these.
  • the total content of polybutylene terephthalate resin and polycarbonate resin in the thermoplastic resin contained in the resin composition is preferably 80% by mass or more based on the total mass of the thermoplastic resin, and more Preferably it is 90% by mass or more, and more preferably 100% by mass.
  • the thermoplastic resin in the resin composition may consist only of polybutylene terephthalate resin and polycarbonate resin (B).
  • the chromium complex azo dye is preferably a 1:2 type chromium complex azo dye, such as Color Index (C.I.) Solvent Black 28 (CAS NO. 12237-23-9), Color Index (C.I.) Examples include Solvent Black 35 (CAS NO. 61631-53-1), and it is more preferable to include one or more selected from these.
  • the chromium complex azo dye is preferably Color Index (C.I.) Solvent black 28.
  • the content of the chromium complex azo dye is 0.08 parts by mass or more and 0.50 parts by mass or less, and 0.09 parts by mass or more and 0.45 parts by mass or less, based on 100 parts by mass of the polybutylene terephthalate resin. It is preferably 0.10 parts by mass or more and 0.40 parts by mass or less, and even more preferably 0.13 parts by mass or more and 0.40 parts by mass or less. If the content of the chromium complex azo dye is less than 0.08 parts by mass, the lightness (L* value) will be high and it will be difficult to color it black. If the content of the chromium complex azo dye exceeds 0.50 parts by mass, laser light transmittance may decrease.
  • the content of the chromium complex azo dye may be 0.13 parts by mass, and may be 0.39 parts by mass in the range of 0.08 parts by mass or more and 0.50 parts by mass or less based on 100 parts by mass of the polybutylene terephthalate resin. %, a range with these as the lower limit or upper limit, or a combination of these.
  • the chromium complex azo dye can color the resin composition black by itself without using other dyes or pigments, but the resin composition may contain the chromium complex azo dye to the extent that it does not impede the effects of the present invention. It may also contain colorants other than dyes. Other colorants include organic dyes and pigments. Examples of organic dyes and pigments include yellow pigments (for example, anthraquinone-based yellow pigments), green pigments (for example, phthalocyanine-based green pigments), and purple pigments (for example, perylene-based purple pigments). Organic dyes and pigments can be used alone or in combination of two or more.
  • the content of organic dyes and pigments is preferably as low as possible, for example, 0.00 parts by mass per 100 parts by mass of polybutylene terephthalate resin. It is preferably less than 40 parts by mass, more preferably less than 0.10 parts by mass.
  • the resin composition can include a colorant including a chromium complex azo dye.
  • the content of the chromium complex azo dye in the colorant is preferably 80% by mass or more, more preferably 90% by mass or more, even more preferably 98% by mass, and even more preferably 100% by mass or more. It may be mass %.
  • the colorant may consist solely of chromium complex azo dye.
  • the resin composition can contain a filler, if necessary, from the viewpoint of increasing mechanical strength.
  • the filler include organic or inorganic fillers, such as fibrous fillers, plate-like fillers, and powdery fillers.
  • fibrous fillers include glass fibers, asbestos fibers, silica fibers, alumina fibers, silica-alumina fibers, aluminum silicate fibers, zirconia fibers, potassium titanate fibers, whiskers (whiskers of alumina, silicon nitride, etc.), and the like.
  • Inorganic fibers include organic fibers such as fibers made of aliphatic or aromatic polyamides, aromatic polyesters, fluororesins, acrylic resins such as polyacrylonitrile, rayon, and the like.
  • Examples of the plate-like filler include talc, mica, and glass flakes.
  • Examples of the particulate filler include glass beads, glass powder, milled fibers (eg, milled glass fibers, etc.), wollastonite (wollastonite), and the like. Note that wollastonite may be in the form of a plate, a column, a fiber, or the like.
  • One filler may be used alone, or two or more fillers may be used in combination.
  • glass fiber is preferred from the viewpoints of not impairing laser light transmittance, increasing heat resistance and mechanical strength, and being inexpensive and easily available.
  • the average fiber diameter of the fibrous filler is, for example, approximately 1 ⁇ m or more and 30 ⁇ m or less (preferably 3 ⁇ m or more and 20 ⁇ m or less), and the average fiber length is, for example, 100 ⁇ m or more and 5 mm or less (preferably 300 ⁇ m or more and 4 mm or less, and more preferably 500 ⁇ m or more). 3.5 mm or less).
  • the average primary particle diameter of the plate-like or powdery filler can be, for example, about 10 ⁇ m or more and 500 ⁇ m or less, preferably about 15 ⁇ m or more and 100 ⁇ m or less.
  • the average fiber diameter and average fiber length of the fibrous filler, and the average primary particle size of the plate-like or powder-like filler are those of the fibrous filler, plate-like, or powder-like filler before being blended into the resin composition.
  • the filler it is a value calculated by analyzing images taken with a CCD camera and using a weighted average, for example, using a dynamic image analysis method/particle (state) analyzer PITA-3 manufactured by Seishin Enterprise Co., Ltd. It can be calculated.
  • the content ratio of the inorganic filler is preferably 10 parts by mass or more and 140 parts by mass or less, more preferably 10 parts by mass or more and 100 parts by mass or less, and 30 parts by mass with respect to 100 parts by mass of the polybutylene terephthalate resin.
  • the amount is more preferably 100 parts by weight or more, and particularly preferably 50 parts by weight or more and 80 parts by weight or less.
  • the content ratio of the inorganic filler is 10 parts by mass or more and 140 parts by mass or less with respect to 100 parts by mass of the polybutylene terephthalate resin, it may be 76.1 parts by mass, or 78.1 parts by mass, and The amount may be 78.3 parts by mass, the lower limit or the upper limit may be the lower limit or the upper limit, or the range may be a combination of these.
  • the resin composition may contain known substances that are generally added to thermoplastic resins and thermosetting resins, such as antioxidants, in order to impart desired properties according to the purpose, within a range that does not impede the effects of the present invention.
  • Stabilizers such as UV absorbers and UV absorbers, transesterification inhibitors (e.g. monobasic calcium phosphate, etc.), hydrolysis resistance improvers, plasticizers, antistatic agents, flame retardants, flame retardant aids, anti-dripping agents, mold release agents , a lubricant, a crystallization accelerator, a crystal nucleating agent (for example, boron nitride, etc.), etc. can be blended.
  • the resin composition can contain an epoxy resin for the purpose of improving hydrolysis resistance.
  • the epoxy resin include biphenyl type epoxy resin, bisphenol A type epoxy resin, phenol novolac type epoxy resin, and cresol novolac type epoxy resin.
  • Epoxy resins may be used alone or in combination of two or more.
  • the content of the epoxy resin is preferably 1 to 10 parts by weight, more preferably 1.5 to 5 parts by weight, and 2 to 4 parts by weight based on 100 parts by weight of the polybutylene terephthalate resin. is even more preferable.
  • the content of the epoxy resin is 1 to 10 parts by mass based on 100 parts by mass of the polybutylene terephthalate resin, it may be 2.6 parts by mass, and this is the lower limit or upper limit. Good too.
  • the resin composition can also contain thermoplastic resins other than polybutylene terephthalate resin and polycarbonate resin, if necessary.
  • the resin composition may include an elastomer such as an olefin elastomer, a styrene elastomer, a polyester elastomer, or a core-shell polymer.
  • the elastomer can improve impact resistance, and by lowering the elastic modulus, the adhesion between the molded product on the laser light transmission side and the molded product on the laser light absorption side increases during laser welding, and weldability can be improved.
  • the resin composition according to this embodiment has high laser light transmittance and excellent warp deformation, so it can be made into a resin composition with excellent laser weldability even without adding an elastomer.
  • the content of the elastomer in the resin composition may be less than 10 parts by weight, may be less than 5 parts by weight, and may be less than 1 part by weight based on 100 parts by weight of the polybutylene terephthalate resin. It can be done.
  • the resin composition can be configured to be elastomer-free.
  • the content of polyamide in the resin composition is small.
  • the content of polyamide in the resin composition is preferably less than 10 parts by weight, more preferably less than 5 parts by weight, and less than 1 part by weight based on 100 parts by weight of polybutylene terephthalate resin. It is more preferable that In one embodiment, the resin composition preferably does not contain polyamide resin.
  • the resin composition preferably does not contain a laser light absorbing compound or contains less than 0.01% by mass of the laser light absorbing compound.
  • the laser light absorbing compound include carbon black, nigrosine, and aniline black.
  • the method for producing the resin composition is not limited, and examples include a method in which each component is melt-kneaded and extruded into pellets using a melt-kneading device such as a single-screw or twin-screw extruder, and Examples include a method of preparing pellets (masterbatch) and mixing a predetermined amount of the pellets. Note that the pellets may be prepared by, for example, melting and mixing the components except for the brittle components (such as the glass reinforcing material) and then mixing the brittle components.
  • the resin composition is colored black and has the property of transmitting laser light when a molded article with a thickness of 1 to 2 mm is irradiated with the laser light.
  • the resin composition preferably has an L* value in the CIE color system of 20 or less, and a light transmittance at a wavelength of 940 nm, in a molded article with a thickness of 1 mm, preferably 50% or more. , more preferably 55% or more, still more preferably 60% or more.
  • the L* value in the CIE color system is 20 or less and the light transmittance at a wavelength of 940 nm is 50% or more, it is colored black and has very high laser light transmittance. It can be made into a resin composition. As a result, it is possible to bond well with the welded object by laser welding, and it is possible to create an appearance that is consistent with the black-colored welded object.
  • the resin composition may have an L* value of 15 or less in the CIE color system in a molded article having a thickness of 1 mm.
  • the resin composition may have a light transmittance of 60% or more at a wavelength of 940 nm in a molded article with a thickness of 1 mm. In another embodiment, the resin composition may have a light transmittance of 70% or more at a wavelength of 940 nm in a molded article with a thickness of 1 mm. In this embodiment, the resin composition may have an L* value of 20 or less in the CIE color system in a molded article having a thickness of 1 mm.
  • CIE color system (1976) is a quantitative representation method of color defined by the Commission Internationale del'Eclairage.
  • L * value is an index representing lightness.
  • the L* value in the CIE color system can be measured using a spectrophotometer.
  • the resin composition preferably has a light transmittance of 20% or more at a wavelength of 940 nm, more preferably 25% or more, in a molded article with a thickness of 2 mm. In a molded article with a thickness of 2 mm, if the light transmittance at a wavelength of 940 nm is 20% or more, it can be joined to an object to be welded by laser welding. In one embodiment, the resin composition may have a light transmittance of 40% or more at a wavelength of 940 nm in a molded article with a thickness of 2 mm.
  • the resin composition according to this embodiment can be used in various applications where polybutylene terephthalate resin is used.
  • the resin composition according to the present embodiment is colored black and has high laser light transmittance, it can be preferably used for producing molded products on the side that transmit laser light among molded products subjected to laser welding. .
  • the molded article for laser welding according to this embodiment is molded using the above-described laser-transparent resin composition, and includes the above-described laser-transparent resin composition. Since it contains the above-mentioned laser light transmitting resin composition, it is colored black and has high laser light transmittance. As a result, it can be preferably used as a molded product on the laser beam transmission side.
  • the laser beam transparent resin composition is as described above.
  • the molding method for the molded article for laser welding is not particularly limited, and any known molding method can be employed.
  • it can be manufactured by a method in which pellets of the resin composition described above are prepared and then molded, or by a method in which one or more of the components of the resin composition are directly charged into a molding machine.
  • the molding method conventional methods such as extrusion molding, injection molding, compression molding, blow molding, vacuum molding, rotational molding, and gas injection molding can be employed, but injection molding is usually used.
  • the mold temperature during injection molding is usually about 40 to 90°C, preferably about 50 to 80°C, more preferably about 60 to 80°C.
  • the shape of the molded product for laser welding is not particularly limited, but since it is used by joining with a mating material (another molded product made of thermoplastic resin) by laser welding, it may have a shape that has a contact surface such as a flat surface (for example, a plate shape). is preferred. Since the molded product for laser welding according to this embodiment has high transparency to laser light, the thickness of the welded part, that is, the thickness of the molded product in the area through which the laser light passes (thickness in the direction in which the laser light passes), is wide. For example, it may be about 0.1 to 3.0 mm, preferably 0.5 to 2.5 mm, and more preferably about 1.0 to 2.0 mm.
  • the composite molded product according to this embodiment includes a laser light transmission side molded product (hereinafter also referred to as "first molded product”), a laser light absorption side molded product (hereinafter also referred to as "second molded product”), including.
  • the molded product for laser welding according to the present embodiment described above is used as the molded product on the laser beam transmission side.
  • the laser light transmission side molded product high bonding strength can be obtained when laser welding is performed, and it can also be used as the laser light absorption side molded product, which is usually colored black with carbon black or the like. It is possible to create a composite molded product with a uniform color tone.
  • the molded product for laser welding as the first molded product is as described above.
  • the main component of the resin constituting the second molded product is preferably polyalkylene terephthalate resin.
  • the polyalkylene terephthalate resin include polybutylene terephthalate resin, polyethylene terephthalate resin, polytrimethylene terephthalate resin, and the like.
  • the term "main component" here means 50% by mass or more based on the total mass of the resin constituting the second molded product.
  • the content of the polyalkylene terephthalate resin is preferably more than 50% by mass, more preferably 60% by mass or more, based on the total mass of the resin constituting the second molded product.
  • the resin constituting the second molded product may include various thermoplastic resins.
  • Examples include olefin resins, vinyl resins, styrene resins, acrylic resins, polyester resins, polyamide resins, and polycarbonate resins.
  • a resin of the same type or the same type as the resin constituting the first molded product aromatic polyester resin such as PBT resin, PET resin, and/or polycarbonate resin
  • a second molded article may also be formed.
  • the second molded product may contain an absorber or colorant for laser light.
  • black pigments or dyes can usually be used, especially carbon blacks (eg acetylene black, lamp black, thermal black, furnace black, channel black, Ketjen black, etc.).
  • the average particle diameter of carbon black may be usually about 10 to 1000 nm, preferably about 10 to 100 nm.
  • the absorbents can be used alone or in combination of two or more.
  • the coloring agent can be selected as appropriate depending on the application, and includes, for example, inorganic pigments [black colors such as carbon black (e.g., acetylene black, lamp black, thermal black, furnace black, channel black, Ketjen black, etc.)] pigments, red pigments such as iron oxide red, orange pigments such as molybdate orange, white pigments such as titanium oxide], organic pigments (yellow pigments, orange pigments, red pigments, blue pigments, green pigments, etc.). .
  • inorganic pigments black colors such as carbon black (e.g., acetylene black, lamp black, thermal black, furnace black, channel black, Ketjen black, etc.)] pigments, red pigments such as iron oxide red, orange pigments such as molybdate orange, white pigments such as titanium oxide], organic pigments (yellow pigments, orange pigments, red pigments, blue pigments, green pigments, etc.).
  • Colorants can be used alone or in combination of two or more.
  • the proportion of the absorbent and colorant is preferably 0.1 to 10% by mass, more preferably 0.3 to 5% by mass, and 0.3 to 5% by mass, based on the entire second molded article. More preferably, it is 3% by mass.
  • the laser light transmission side molded product and the laser light absorption side molded product are joined and integrated by laser welding.
  • the first molded product and the second molded product into contact (especially surface contact at least at the joint part) and irradiating a laser beam from the first molded product side
  • the first molded product and the second molded product can be brought into contact with each other.
  • a lens system may be used to focus a laser beam on the interface between the first molded product and the second molded product to weld the contact interface.
  • the laser light source is not particularly limited, and for example, dye lasers, gas lasers (excimer lasers, argon lasers, krypton lasers, helium-neon lasers, etc.), solid state lasers (YAG lasers, etc.), semiconductor lasers, etc. can be used.
  • a pulsed laser is usually used as the laser beam.
  • the irradiation speed of the laser beam is not particularly limited, and can be, for example, 10 to 5000 mm/sec.
  • C Polycarbonate (melt viscosity at 300°C, shear rate 1000 sec -1 : 0.27 kPa ⁇ s)
  • C Filler: Glass fiber, manufactured by Nippon Electric Glass Co., Ltd., product name: ECS03 T-127, average fiber diameter 13 ⁇ m, average fiber length 3 mm
  • D Colorant D-1: Manufactured by BASF, Orasol Black X45 (C.I. Solvent Black 28)
  • D-2 Phthalocyanine green pigment (C.I. Pigment Green 7)
  • D-3 Anthraquinone yellow pigment (C.I. Pigment Yellow 147)
  • D-4 Perylene-based purple pigment (C.I.
  • Polyester elastomer Toyobo Co., Ltd., Perprene P-90BD
  • G Monobasic calcium phosphate: Taihei Kagaku Sangyo Co., Ltd.
  • H Antioxidant: Chang Chun Petrochemical, AO-60RG
  • I Epoxy resin: manufactured by Mitsubishi Chemical Corporation, Epicoat 1004K
  • J Lubricant: manufactured by Riken Vitamin Co., Ltd., L-7640
  • K Boron nitride: manufactured by JFE Mineral Co., Ltd.
  • Plasticizer manufactured by ADEKA Co., Ltd., ADEKASIZER UL-100
  • Examples 1 to 3 Comparative Examples 1 to 8
  • the cylinder temperature was 260°C
  • the discharge amount was 15 kg/h
  • the screw rotation speed was mixed.
  • the mixture was melt-kneaded and extruded at 130 rpm to obtain resin composition pellets.
  • Test pieces (1) were injection molded using an injection molding machine S-2000i100B manufactured by Fanuc Corporation at a cylinder temperature of 260°C and a mold temperature of 80°C to form test pieces (1) of 80 mm x 80 mm x 1 mm thick and 80 mm x 1 mm thick.
  • Test pieces (2) each having a size of 80 mm x 2 mm in thickness were prepared.
  • Test pieces (1) and (2) were measured using the CIE color system using a color computer (manufactured by Nippon Denshoku Co., Ltd., product name: Spectral color difference meter SE6000) under the conditions of a hole diameter of ⁇ 10 mm, a C light 2 degree field of view, and reflection. The L * value was measured. If the L* value is 20 or less, it can be determined that the color is black. The results are shown in Tables 1 and 2.
  • a test piece for a color transfer test was prepared as follows. (1) A cut piece with a size of 20 mm x 20 mm x 1 mm thickness was cut out from the test piece (1) to obtain a colored test piece (3). (2) Polybutylene terephthalate (manufactured by Polyplastics Co., Ltd., intrinsic viscosity 0.69 dL/g) 70% by mass and glass fiber (manufactured by Nippon Electric Glass Co., Ltd., product name: ECS03 T-127, average fiber diameter 13 ⁇ m, average After mixing with 30% by mass (fiber length: 3 mm), the mixture was melt-kneaded and extruded using TEX30 manufactured by Japan Steel Works at a cylinder temperature of 260°C, a discharge rate of 15 kg/h, and a screw rotation speed of 130 rpm to obtain resin composition pellets.
  • TEX30 manufactured by Japan Steel Works
  • the obtained pellets were injection molded using an injection molding machine S-2000i100B manufactured by Fanuc Corporation at a cylinder temperature of 260° C. and a mold temperature of 80° C. to obtain a molded product of 80 mm x 80 mm x 1 mm thickness.
  • a cut piece with a size of 20 mm x 20 mm x 1 mm thickness was cut out from this molded product to obtain an uncolored test piece (4).
  • the resin compositions of Examples 1 to 3 containing predetermined amounts of polybutylene terephthalate resin, polycarbonate resin, and chromium complex azo dye were evaluated according to the CIE color system in a molded article with a thickness of 1 mm. Since the L* value is 20 or less and the light transmittance at a wavelength of 940 nm is 50% or more, it is clear that the resin composition is colored black and has high laser light transmittance. Further, no color transfer was observed even when the product was brought into contact with an uncolored product at high temperature.
  • the resin composition of Comparative Example 1 in which the content of the chromium complex azo dye is less than the predetermined amount, has an L* value of more than 30 in the CIE color system, and is colored black with high brightness. could not.
  • the resin composition of Comparative Example 2 in which the content of the chromium complex azo dye is higher than the predetermined amount, has a sufficiently low L* value in the CIE color system and is colored black, but the wavelength of a 1 mm thick molded product is The light transmittance at 940 nm was less than 50%, resulting in low laser light transmittance.
  • the resin compositions of Comparative Examples 3 and 5 in which the content of polycarbonate resin is less than the predetermined amount have an L* value of 20 or less in the CIE color system in Comparative Example 3, but an L* value of 20 or less in Comparative Example 5. is more than 20, and in both Comparative Examples 3 and 5, the light transmittance at a wavelength of 940 nm of the molded product with a thickness of 1 mm is less than 50%, and it is necessary to color it black and improve the laser light transmittance. It has not been possible to achieve both.
  • polybutylene terephthalate modified with 12.5 moles of isophthalic acid has superior permeability compared to polybutylene terephthalate, but in Comparative Example 4, where the content of polycarbonate resin is less than the specified amount, the content of the chromium complex azo dye is lower than the specified amount. Even when the amount was less than the quantitative value, the light transmittance of a 1 mm thick molded article at a wavelength of 940 nm was less than 50%, resulting in low laser light transmittance.
  • the resin composition of Comparative Example 6 which contains a polybutylene terephthalate resin and a polyamide resin in place of the polycarbonate resin, has an L value in the CIE color system even though it contains a chromium complex azo dye within a predetermined amount. *The value exceeded 20, the brightness was high, and the product was not colored black, and the light transmittance at a wavelength of 940 nm for a 1 mm thick molded product was less than 10%, resulting in an excessively low laser light transmittance.
  • the resin composition of Comparative Example 7 containing only polybutylene terephthalate resin as the thermoplastic resin had an L* value of 20 in the CIE color system despite containing the chromium complex azo dye within a predetermined amount.
  • the light transmittance at a wavelength of 940 nm for a 1 mm thick molded article was less than 10%, resulting in an excessively low laser light transmittance.
  • the resin composition of Comparative Example 8 in which the content of polycarbonate resin was less than the predetermined amount and three colors of pigments other than chromium complex azo dyes were used, had an L* value of 20 or less in the CIE color system and was colored black. However, the light transmittance of a molded article with a thickness of 1 mm at a wavelength of 940 nm was 40% or less, resulting in low laser light transmittance. In addition, color migration to other resin molded products was confirmed.
  • the resin composition according to the present embodiment is colored black and has high laser light transmittance, it can be suitably used for manufacturing molded products for laser welding. Specifically, it can be suitably used as a resin member used in fields such as electric/electronic fields and automobile fields, and has industrial applicability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

黒色に着色されかつレーザー光透過性が高い樹脂組成物、並びにそれを用いた成形品及び複合成形品を提供する。 ポリブチレンテレフタレート樹脂と、ポリカーボネート樹脂と、クロム錯体アゾ染料と、を含み、 ポリカーボネート樹脂の含有量が、ポリブチレンテレフタレート樹脂100質量部に対して60質量部以上100質量部以下であり、 クロム錯体アゾ染料の含有量が、ポリブチレンテレフタレート樹脂100質量部に対して0.08質量部以上0.50質量部以下である、レーザー光透過性樹脂組成物とする。

Description

レーザー光透過性樹脂組成物、成形品及び複合成形品
 本発明は、レーザー光透過性樹脂組成物、成形品及び複合成形品に関する。
 ポリブチレンテレフタレート樹脂は、耐熱性、機械的強度、寸法安定性、電気的特性、及び成形性に優れており、電気・電子分野や自動車分野等で広く利用されている。樹脂成形品は、他の部品と組み合わせて使用されることが一般的であり、その接合に近年ではレーザー溶着が採用されることが多くなっている。
 レーザー溶着は、レーザー光透過性を有する樹脂成形品とレーザー光吸収性を有する樹脂成形品とを重ね合わせ、レーザー光透過性を有する樹脂成形品側からレーザー光線を照射することにより溶着させる接合方法である。
 ポリブチレンテレフタレート樹脂は、ポリスチレン樹脂及びポリアミド樹脂等に比べてレーザー光透過性が低いためレーザー光透過側成形品の製造には適していない。加えて、樹脂を黒色に着色する着色剤として一般的に使用されているカーボンブラックは、極めて少量を配合した場合であってもレーザー光を吸収するため、レーザー光透過側成形品に使用することができない。そのため、レーザー光透過側成形品を黒色に着色する際には、レーザー光透過性のある有機系の染料や顔料等が使用されている。特許文献1には、複数の有彩色色素を含む黒色に着色された樹脂組成物が記載されている。特許文献2には、ポリマー色素を含む暗色に着色された樹脂組成物が記載されている。
特開2006-199861号公報 特開2007-297473号公報
 有機系の染料又は顔料は、ポリブチレンテレフタレートで使用可能な耐熱性を有し、レーザー光透過性が高く、かつ黒色に発色するものはほとんどない。そのため、有機系の染料又は顔料は、単色では配合量が少ないと赤色や緑色等に発色してしまい黒色に発色させることが難しい。配合量が多いと暗色になるものの樹脂組成物の光線透過率を大きく低下させてしまう。このような理由から、有機系の染料又は顔料を使用する場合は、異なる色の染料又は顔料を複数組み合わせてなるべく少ない量で配合することにより黒色に調整する必要があった。しかし、ポリブチレンテレフタレート樹脂は隠蔽性が高いため、複数種類の染料や顔料を用いて黒色に着色する場合でも他の樹脂に比べて染料や顔料の配合量を多くしなければならず、その結果レーザー光透過性がさらに低下してしまうことがある。
 本発明は、黒色に着色されかつレーザー光透過性が高い樹脂組成物、並びにそれを用いた成形品及び複合成形品を提供することを課題とする。
 本発明は以下の態様を有する。
[1]ポリブチレンテレフタレート樹脂と、ポリカーボネート樹脂と、クロム錯体アゾ染料と、を含み、
 ポリカーボネート樹脂の含有量が、ポリブチレンテレフタレート樹脂100質量部に対して60質量部以上100質量部以下であり、
 クロム錯体アゾ染料の含有量が、ポリブチレンテレフタレート樹脂100質量部に対して0.08質量部以上0.50質量部以下である、レーザー光透過性樹脂組成物。
[2]充填剤をさらに含み、充填剤の含有量がポリブチレンテレフタレート樹脂100質量部に対して10質量部以上100質量部以下である、[1]に記載のレーザー光透過性樹脂組成物。
[3]厚さ1mmの成形品において、CIE表色系におけるL*値が20以下でありかつ波長940nmにおける光線透過率が50%以上である、[1]又は[2]に記載のレーザー光透過性樹脂組成物。
[4]クロム錯体アゾ染料が、カラーインデックス(C.I.)ソルベントブラック28を含む、[1]から[3]のいずれかに記載のレーザー光透過性樹脂組成物。
[5]ポリカーボネート樹脂の300℃、剪断速度1000sec-1における溶融粘度が0.20kPa・s以上である、[1]から[4]のいずれかに記載のレーザー光透過性樹脂組成物。
[6][1]から[5]のいずれかに記載のレーザー光透過性樹脂組成物を含む、レーザー溶着用成形品。
[7]レーザー光透過側成形品である、[6]に記載の成形品。
[8][7]に記載の成形品と、レーザー光吸収側成形品と、を含む、複合成形品。
 本発明によれば、黒色に着色されかつレーザー光透過性が高い樹脂組成物、並びにそれを用いた成形品及び複合成形品を提供することができる。
 以下、本発明の一実施形態について詳細に説明するが、本発明の範囲はここで説明する一実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々の変更ができる。また、特定のパラメータについて、複数の上限値及び下限値が記載されている場合、これらの上限値及び下限値の内、任意の上限値と下限値とを組合せて好適な数値範囲とすることができる。一実施形態について記載した特定の説明が他の実施形態についても当てはまる場合には、他の実施形態においてはその説明を省略している場合がある。
[レーザー光透過性樹脂組成物]
 本実施形態に係るレーザー光透過性樹脂組成物(以下、単に「樹脂組成物」ともいう)は、ポリブチレンテレフタレート樹脂と、ポリカーボネート樹脂と、クロム錯体アゾ染料と、を含み、ポリカーボネート樹脂の含有量が、ポリブチレンテレフタレート樹脂100質量部に対して60質量部以上100質量部以下であり、クロム錯体アゾ染料の含有量が、ポリブチレンテレフタレート樹脂100質量部に対して0.08質量部以上0.50質量部以下である。
 ポリブチレンテレフタレート樹脂と、ポリカーボネート樹脂と、クロム錯体アゾ染料とを所定量で含むことにより、黒色に着色されかつレーザー光透過性が高い樹脂組成物にすることができる。
(ポリブチレンテレフタレート樹脂)
 ポリブチレンテレフタレート樹脂(PBT樹脂)は、少なくともテレフタル酸又はそのエステル形成性誘導体(C1-6のアルキルエステルや酸ハロゲン化物等)を含むジカルボン酸成分と、少なくとも炭素原子数4のアルキレングリコール(1,4-ブタンジオール)又はそのエステル形成性誘導体(アセチル化物等)を含むグリコール成分とを重縮合して得られるポリブチレンテレフタレート樹脂である。本実施形態において、ポリブチレンテレフタレート樹脂はホモポリブチレンテレフタレート樹脂に限らず、ブチレンテレフタレート単位を60モル%以上含有する共重合体であってもよい。
 ポリブチレンテレフタレート樹脂の末端カルボキシル基量は50meq/kg以下であることが好ましく、30meq/kg以下であることがおり好ましく、25meq/kg以下であることがさらに好ましい。
 ポリブチレンテレフタレート樹脂の固有粘度は、本発明の効果を阻害しない範囲で特に制限されないが、0.60dL/g以上1.2dL/g以下であることが好ましく、0.65dL/g以上0.9dL/g以下であることがより好ましい。このような範囲の固有粘度のポリブチレンテレフタレート樹脂を用いる場合には、得られるポリブチレンテレフタレート樹脂組成物が特に成形性に優れたものとなる。また、異なる固有粘度を有するポリブチレンテレフタレート樹脂をブレンドして、固有粘度を調整することもできる。例えば、固有粘度1.0dL/gのポリブチレンテレフタレート樹脂と固有粘度0.7dL/gのポリブチレンテレフタレート樹脂とをブレンドすることにより、固有粘度0.9dL/gのポリブチレンテレフタレート樹脂を調製することができる。ポリブチレンテレフタレート樹脂の固有粘度は、例えば、o-クロロフェノール中で温度35℃の条件で測定することができる。
 ポリブチレンテレフタレート樹脂の調製において、コモノマー成分としてテレフタル酸以外の芳香族ジカルボン酸又はそのエステル形成性誘導体を用いる場合、例えば、イソフタル酸、フタル酸、2,6-ナフタレンジカルボン酸、4,4’-ジカルボキシジフェニルエーテル等のC8-14の芳香族ジカルボン酸;コハク酸、アジピン酸、アゼライン酸、セバシン酸等のC4-16のアルカンジカルボン酸;シクロヘキサンジカルボン酸等のC5-10のシクロアルカンジカルボン酸;これらのジカルボン酸成分のエステル形成性誘導体(C1-6のアルキルエステル誘導体や酸ハロゲン化物等)を用いることができる。これらのジカルボン酸成分は、単独で又は2種以上を組み合わせて使用できる。
 これらのジカルボン酸成分の中では、イソフタル酸等のC8-12の芳香族ジカルボン酸、及び、アジピン酸、アゼライン酸、セバシン酸等のC6-12のアルカンジカルボン酸がより好ましい。
 ポリブチレンテレフタレート樹脂の調製において、コモノマー成分として1,4-ブタンジオール以外のグリコール成分を用いる場合、例えば、エチレングリコール、プロピレングリコール、トリメチレングリコール、1,3-ブチレングリコール、ヘキサメチレングリコール、ネオペンチルグリコール、1,3-オクタンジオール等のC2-10のアルキレングリコール;ジエチレングリコール、トリエチレングリコール、ジプロピレングリコール等のポリオキシアルキレングリコール;シクロヘキサンジメタノール、水素化ビスフェノールA等の脂環式ジオール;ビスフェノールA、4,4’-ジヒドロキシビフェニル等の芳香族ジオール;ビスフェノールAのエチレンオキサイド2モル付加体、ビスフェノールAのプロピレンオキサイド3モル付加体等の、ビスフェノールAのC2-4のアルキレンオキサイド付加体;又はこれらのグリコールのエステル形成性誘導体(アセチル化物等)を用いることができる。これらのグリコール成分は、単独で又は2種以上を組み合わせて使用できる。
 これらのグリコール成分の中では、エチレングリコール、トリメチレングリコール等のC2-6のアルキレングリコール、ジエチレングリコール等のポリオキシアルキレングリコール、又は、シクロヘキサンジメタノール等の脂環式ジオール等がより好ましい。
 ジカルボン酸成分及びグリコール成分の他に使用できるコモノマー成分としては、例えば、4-ヒドロキシ安息香酸、3-ヒドロキシ安息香酸、6-ヒドロキシ-2-ナフトエ酸、4-カルボキシ-4’-ヒドロキシビフェニル等の芳香族ヒドロキシカルボン酸;グリコール酸、ヒドロキシカプロン酸等の脂肪族ヒドロキシカルボン酸;プロピオラクトン、ブチロラクトン、バレロラクトン、カプロラクトン(ε-カプロラクトン等)等のC3-12ラクトン;これらのコモノマー成分のエステル形成性誘導体(C1-6のアルキルエステル誘導体、酸ハロゲン化物、アセチル化物等)が挙げられる。
 ポリブチレンテレフタレート樹脂の含有量は、樹脂組成物の全質量の30質量%以上65質量%以下であることが好ましく、35質量%以上60質量%以下であることがより好ましく、38質量%以上50質量%以下であることがさらに好ましく、40質量%以上50質量%以下とすることもできる。ポリブチレンテレフタレート樹脂の含有量が、樹脂組成物の全質量の30質量%以上65質量%以下である場合、38質量%であってもよく、39質量%であってもよく、これらを下限値又は上限値とする範囲であってもよい。
(ポリカーボネート樹脂)
 ポリカーボネート樹脂(PC樹脂)としては、ジヒドロキシ化合物と、ホスゲン又はジフェニルカーボネートなどの炭酸エステルとの反応により得られる重合体が挙げられる。ジヒドロキシ化合物は、脂環式ジオールなどの脂環族化合物などであってもよいが、好ましくは芳香族化合物、より好ましくはビスフェノール化合物である。ジヒドロキシ化合物は、単独で又は2種以上組み合わせて使用できる。
 ビスフェノール化合物としては、ビス(4-ヒドロキシフェニル)メタン、ビス(4-ヒドロキシ-3-メチルフェニル)メタン、1,1-ビス(4-ヒドロキシフェニル)エタン、1,1-ビス(4-ヒドロキシ-3-メチルフェニル)エタン、1,1-ビス(4-ヒドロキシフェニル)プロパン、2,2-ビス(4-ヒドロキシフェニル)プロパン(ビスフェノールA)、2,2-ビス(4-ヒドロキシ-3-メチルフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3,5-ジメチルフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3-エチルフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3-t-ブチルフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3-ブロモフェニル)プロパン、2,2-ビス(4-ヒドロキシフェニル)ブタン、2,2-ビス(4-ヒドロキシフェニル)-3-メチルブタン、2,2-ビス(4-ヒドロキシフェニル)ペンタン、2,2-ビス(4-ヒドロキシフェニル)ヘキサン、2,2-ビス(4-ヒドロキシフェニル-4-メチルペンタン、2,2-ビス(4-ヒドロキシフェニル)オクタン、ビス(4-ヒドロキシフェニル)フェニルメタン、ビス(4-ヒドロキシフェニル)ジフェニルメタン、ビス(4-ヒドロキシフェニル)ジベンジルメタン、1,1-ビス(4-ヒドロキシフェニル)-1-フェニルプロパン、2,2,2’,2’-テトラヒドロ3,3,3’,3’-テトラメチル-1,1’-スピロビ-[1H-インデン]-6,6’-ジオールなどのビス(ヒドロキシアリール)C1-10アルカン、好ましくはビス(ヒドロキシアリール)C1-6アルカン;1,1-ビス(4-ヒドロキシフェニル)シクロペンタン、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサンなどのビス(ヒドロキシアリール)C4-10シクロアルカン;4,4’-ジヒドロキシジフェニルエーテル、4,4’-ジヒドロキシ-3,3’-ジメチルジフェニルエーテル等のジヒドロキシアリールエーテル;4,4’-ジヒドロキシジフェニルスルホン、4,4’-ジヒドロキシ-3,3’-ジメチルジフェニルスルホン等のジヒドロキシアリールスルホン;4,4’-ジヒドロキシジフェニルスルフィド、4,4’-ジヒドロキシ-3,3’-ジメチルジフェニルスルフィド等のジヒドロキシアリールスルフィド;4,4’-ジヒドロキシジフェニルスルフォキシド、4,4’-ジヒドロキシ-3,3’-ジメチルジフェニルスルフォキシド等のジヒドロキシアリールスルフォキシド;4,4’-ジヒドロキシジフェニルケトン、4,4’-ジヒドロキシ-3,3’-ジメチルジフェニルケトン等のジヒドロキシアリールケトン等が挙げられる。
 好ましいポリカーボネート樹脂としては、ビスフェノールA型ポリカーボネートが挙げられる。
 ポリカーボネート樹脂は、ホモポリカーボネートであってもよいし、コポリカーボネートであってもよい。ポリカーボネート樹脂は、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 ポリカーボネート樹脂の300℃、剪断速度1000sec-1における溶融粘度は、0.20kPa・s以上であることが好ましく、0.21kPa・s以上であることがより好ましく、0.22kPa・s以上であることがさらに好ましく、0.24kPa・s以上であることがよりさらに好ましく、0.25kPa・s以上であることが特に好ましい。なお、溶融粘度の測定はISO11443に準拠して行う。
 ポリカーボネート樹脂の含有量は、ポリブチレンテレフタレート樹脂100質量部に対し、60質量部以上100質量部以下であり、65質量部以上90質量部以下であることが好ましく、70質量部以上85質量部以下であることがより好ましく、72質量部以上82質量部以下であることがさらに好ましく、75質量部以上80質量部以下であることが特に好ましい。ポリカーボネート樹脂の含有量が60質量部未満であるとレーザー光透過性が十分でなく、樹脂組成物を黒色に着色することとレーザー光透過性を向上させることとを両立することができない。ポリカーボネート樹脂の含有量が100質量部を超えるとポリブチレンテレフタレート樹脂の結晶化が低下し、耐熱性や耐薬品性の低下、成形時の離型不良が発生する場合があり好ましくない。
 ポリカーボネート樹脂の含有量は、ポリブチレンテレフタレート樹脂100質量部に対し、60質量部以上100質量部以下の範囲において、76.1質量部であってもよく、78.1質量部であってもよく、78.3質量部であってもよく、これらを下限値又は上限値とする範囲であってもよく、これらを組み合わせた範囲であってもよい。
 一実施形態において、樹脂組成物に含まれる熱可塑性樹脂中の、ポリブチレンテレフタレート樹脂及びポリカーボネート樹脂の総含有量は、熱可塑性樹脂の全質量に対して、好ましくは80質量%以上であり、より好ましくは90質量%以上であり、さらに好ましくは100質量%である。一実施形態において、樹脂組成物中の熱可塑性樹脂は、ポリブチレンテレフタレート樹脂及びポリカーボネート樹脂(B)のみからなり得る。
(クロム錯体アゾ染料)
 クロム錯体アゾ染料は、1:2型クロム錯体アゾ染料であることが好ましく、カラーインデックス(C.I.)ソルベントブラック28(CAS NO.12237-23-9)、カラーインデックス(C.I.)ソルベントブラック35(CAS NO.61631-53-1)が挙げられ、これらから選ばれる1以上を含むことがより好ましい。一実施形態において、クロム錯体アゾ染料は、カラーインデックス(C.I.)ソルベントブラック28(Solvent black 28)であることが好ましい。
 クロム錯体アゾ染料は、カーボンブラックと同様に、ポリブチレンテレフタレート樹脂に配合すると、たとえ少量であったとしても透過率が低下してしまう。しかしながら、驚くべきことに、ポリブチレンテレフタレート樹脂とポリカーボネートとクロム錯体アゾ染料とを所定量で配合すると、黒色に着色されかつレーザー光透過性が高い樹脂組成物にすることができる。
 クロム錯体アゾ染料は、ポリブチレンテレフタレート樹脂が使用される環境では昇華などが少なく、例えば電子製品の筐体などに使用しても汚染による動作不良を生じさせにくい。また、色移りが少ないので、樹脂組成物の成形品を他の樹脂部材と接触させて保管する場合でも他の樹脂部材を汚染することが少なく、意匠性の低下や染料の付着が少ない。
 クロム錯体アゾ染料は、ポリブチレンテレフタレート樹脂のように透過率が低く隠蔽性が高い樹脂に配合すると透過性を低下させるためレーザー溶着用透過材には不適だが、本実施形態に係る樹脂組成物であれば、単色でかつ少量で黒色に着色することができるため、レーザー溶着用透過材に添加する着色剤として使用ができる。そのため、従来の有機系の染料及び顔料のように複数種類を組み合わせて使用する必要がなく、種類、配合量及び配合比等を検討する必要がないため生産性が高まる。
 クロム錯体アゾ染料の含有量は、ポリブチレンテレフタレート樹脂100質量部に対して0.08質量部以上0.50質量部以下であり、0.09質量部以上0.45質量部以下であることが好ましく、0.10質量部以上0.40質量部以下であることがより好ましく、0.13質量部以上0.40質量部以下であることがさらに好ましい。クロム錯体アゾ染料の含有量が0.08質量部未満であると明度(L*値)が高くなり黒色に着色することが難しい。クロム錯体アゾ染料の含有量が0.50質量部を超えるとレーザー光透過性が低下することがある。クロム錯体アゾ染料の含有量は、ポリブチレンテレフタレート樹脂100質量部に対して0.08質量部以上0.50質量部以下の範囲において、0.13質量部であってもよく、0.39質量部であってもよく、これらを下限値又は上限値とする範囲であってもよく、これらを組み合わせた範囲であってもよい。
 クロム錯体アゾ染料は、他の染料及び顔料を使用しなくても単独で樹脂組成物を黒色に着色することができるが、樹脂組成物は、本発明の効果を阻害しない範囲において、クロム錯体アゾ染料以外の他の着色剤を含んでいてもよい。他の着色剤としては、有機系の染料及び顔料等が挙げられる。有機系の染料及び顔料としては、例えば、黄色顔料(例えばアントラキノン系黄色顔料)、緑色顔料(例えばフタロシアニン系緑色顔料)、紫色顔料(例えばペリレン系紫色顔料)等が挙げられる。有機系の染料及び顔料は、単独で又は2種以上を組み合わせて使用できる。
 レーザー光透過性をより向上させる観点及び成形品の色移りを防ぐ観点から、有機系の染料及び顔料の含有量は、少ない方が好ましく、例えば、ポリブチレンテレフタレート樹脂100質量部に対して0.40質量部未満であることが好ましく、0.10質量部未満であることがより好ましい。
 一実施形態において、樹脂組成物は、クロム錯体アゾ染料を含む着色剤を含むことができる。一実施形態において、着色剤中のクロム錯体アゾ染料の含有量は、80質量%以上であることが好ましく、90質量%以上であることがより好ましく、98質量%であることがさらに好ましく、100質量%であってもよい。一実施形態において、着色剤はクロム錯体アゾ染料のみからなり得る。
(充填剤)
 樹脂組成物は、必要に応じて、機械的強度を高める観点から、充填剤を含むことができる。充填剤としては、有機又は無機充填剤が挙げられ、例えば、繊維状充填剤、板状充填剤、又は粉粒状充填剤が挙げられる。繊維状充填剤としては、例えば、ガラス繊維、アスベスト繊維、シリカ繊維、アルミナ繊維、シリカ-アルミナ繊維、アルミニウムシリケート繊維、ジルコニア繊維、チタン酸カリウム繊維、ウィスカー(アルミナ、窒化珪素等のウィスカー)等の無機質繊維;脂肪族又は芳香族ポリアミド、芳香族ポリエステル、フッ素樹脂、ポリアクリロニトリル等のアクリル樹脂、レーヨン等で形成された繊維等の有機質繊維が挙げられる。板状充填剤としては、例えば、タルク、マイカ、ガラスフレーク等が挙げられる。粉粒状充填剤としては、例えば、ガラスビーズ、ガラス粉、ミルドファイバー(例えば、ミルドガラスファイバー等)、ウォラストナイト(珪灰石)等が挙げられる。なお、ウォラストナイトは、板状、柱状、繊維状等の形態であってもよい。充填剤は、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。これらの無機充填剤のうち、レーザー光透過性を損なわず、耐熱性、機械的強度を高める観点及び安価であり入手しやすい観点等から、ガラス繊維が好ましい。
 繊維状充填剤の平均繊維径は、例えば、1μm以上30μm以下(好ましくは3μm以上20μm以下)程度、平均繊維長は、例えば、100μm以上5mm以下(好ましくは300μm以上4mm以下、さらに好ましくは500μm以上3.5mm以下)程度であってもよい。また、板状又は粉粒状充填剤の平均一次粒子径は、例えば、10μm以上500μm以下、好ましくは15μm以上100μm以下程度とすることができる。
 なお、繊維状充填剤の平均繊維径及び平均繊維長、並びに板状又は粉粒状充填剤の平均一次粒子径は、樹脂組成物中に配合される前の繊維状充填剤、板状又は粉粒状充填剤について、CCDカメラで撮影した画像を解析し、加重平均により算出した値であり、例えば、株式会社セイシン企業製、動的画像解析法/粒子(状態)分析計PITA-3等を用いて算出することができる。
 無機充填剤の含有割合は、ポリブチレンテレフタレート樹脂100質量部に対して、10質量部以上140質量部以下であることが好ましく、10質量部以上100質量部以下であることがより好ましく、30質量部以上100質量部以下であることがさらに好ましく、50質量部以上80質量部以下であることが特に好ましい。無機充填剤の含有割合が、ポリブチレンテレフタレート樹脂100質量部に対して、10質量部以上140質量部以下である場合、76.1質量部であってもよく、78.1質量部であってもよく、78.3質量部であってもよく、これらを下限値又は上限値とする範囲であってもよく、これらを組み合わせた範囲であってもよい。
(その他の添加剤)
 樹脂組成物は、本発明の効果を阻害しない範囲で、その目的に応じた所望の特性を付与するために、一般に熱可塑性樹脂及び熱硬化性樹脂に添加される公知の物質、例えば、酸化防止剤や紫外線吸収剤等の安定剤、エステル交換防止剤(例えば第一リン酸カルシウム等)、耐加水分解性改善剤、可塑剤、帯電防止剤、難燃剤、難燃助剤、滴下防止剤離型剤、潤滑剤、結晶化促進剤、結晶核剤(例えば窒化硼素等)等を配合することが可能である。
 例えば、樹脂組成物は、耐加水分解性を改善する目的で、エポキシ樹脂を含むことができる。エポキシ樹脂としては、例えば、ビフェニル型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂等が挙げられる。エポキシ樹脂は、1種を単独で使用してもよく2種以上を併用することもできる。エポキシ樹脂の含有量は、ポリブチレンテレフタレート樹脂100質量部に対して1~10質量部であることが好ましく、1.5~5質量部であることがより好ましく、2~4質量部であることがさらに好ましい。エポキシ樹脂の含有量が、ポリブチレンテレフタレート樹脂100質量部に対して1~10質量部である場合、2.6質量部であってもよく、これを下限値又は上限値とする範囲であってもよい。
 樹脂組成物は、必要に応じて、ポリブチレンテレフタレート樹脂及びポリカーボネート樹脂以外の、他の熱可塑性樹脂を含有することもできる。
 例えば、樹脂組成物は、オレフィン系エラストマー、スチレン系エラストマー、ポリエステル系エラストマー、コアシェルポリマー等のエラストマーを含んでいてもよい。エラストマーにより耐衝撃性を向上させることができ、弾性率が低下することでレーザー溶着時にレーザー光透過側成形品とレーザー光吸収側成形品の密着性が増し、溶着性を向上することが出来る。
 本実施形態に係る樹脂組成物は、レーザー光透過性が高く、反り変形に優れるため、エラストマーを添加しなくてもレーザー溶着性に優れた樹脂組成物にすることができる。一実施形態において、樹脂組成物は、エラストマーの含有量がポリブチレンテレフタレート樹脂100質量部に対して、10質量部未満とすることができ、5質量部未満とすることができ、1質量部未満とすることができる。一実施形態において、樹脂組成物は、エラストマーを含まないように構成することができる。
 ポリブチレンテレフタレート樹脂は、ポリアミド樹脂と併用されると明度(L*値)が高くなり黒色に着色され難いとともにレーザー光透過性が低下する傾向にある。よって、樹脂組成物中のポリアミドの含有量は少ない方が好ましい。一実施形態において、樹脂組成物は、ポリアミドの含有量がポリブチレンテレフタレート樹脂100質量部に対して10質量部未満であることが好ましく、5質量部未満であることがより好ましく、1質量部未満であることがさらに好ましい。一実施形態において、樹脂組成物は、ポリアミド樹脂を含まないことが好ましい。
 樹脂組成物は、レーザー光透過性をさらに高めるため、レーザー光吸収性化合物を含まない、又は樹脂組成物中に0.01質量%未満であることが好ましい。レーザー光吸収性化合物としては、例えばカーボンブラック、ニグロシン、アニリンブラック等が挙げられる。
(樹脂組成物)
 樹脂組成物の製造方法は、限定されず、例えば、1軸又は2軸押出機等の溶融混練装置を用いて、各成分を溶融混練して押出すことによりペレットとする方法や、組成の異なるペレット(マスターバッチ)を調製しそのペレットを所定量混合する方法等が挙げられる。なお、ペレットは、例えば、脆性成分(ガラス系補強材など)を除く成分を溶融混合した後に、脆性成分を混合することにより調製してもよい。
 一実施形態において、樹脂組成物は、黒色に着色されており、かつ厚さ1~2mmの成形品にレーザー光線を照射した際にレーザー光を透過させる性質を有している。
 一実施形態において、樹脂組成物は、厚さ1mmの成形品において、CIE表色系におけるL*値が好ましくは20以下であり、かつ波長940nmにおける光線透過率が、好ましくは50%以上であり、より好ましくは55%以上であり、さらに好ましくは60%以上である。厚さ1mmの成形品において、CIE表色系におけるL*値が20以下でありかつ波長940nmにおける光線透過率が50%以上である場合は、黒色に着色されかつレーザー光透過性が非常に高い樹脂組成物にすることができる。その結果、レーザー溶着により被溶着体と良好に接合することができ、かつ黒色に着色された被溶着体と統一感のある外観にすることができる。
 一実施形態において、樹脂組成物は、厚さ1mmの成形品において、CIE表色系におけるL*値が15以下であり得る。この実施形態において、樹脂組成物は、厚さ1mmの成形品において、波長940nmにおける光線透過率が60%以上であり得る。
 別の実施形態において、樹脂組成物は、厚さ1mmの成形品において、波長940nmにおける光線透過率が70%以上であり得る。この実施形態において、樹脂組成物は、厚さ1mmの成形品において、CIE表色系におけるL*値が20以下であり得る。
 「CIE表色系」(1976)は、国際照明委員会(Commission Internationale del’Eclairage)により定められた色の定量的な表示法である。「L値」は明度を表す指標である。CIE表色系におけるL*値は、分光色差計を用いて測定することができる。
 一実施形態において、樹脂組成物は、厚さ2mmの成形品において、波長940nmにおける光線透過率が20%以上であることが好ましく、25%以上であることがより好ましい。厚さ2mmの成形品において、波長940nmにおける光線透過率が20%以上であれば、レーザー溶着により被溶着体と接合することができる。一実施形態において、樹脂組成物は、厚さ2mmの成形品において、波長940nmにおける光線透過率が40%以上であり得る。
 本実施形態に係る樹脂組成物は、ポリブチレンテレフタレート樹脂が使用される種々の用途に用いることができる。特に、本実施形態に係る樹脂組成物は、黒色に着色されかつレーザー光透過性が高いので、レーザー溶着に供される成形品のうちレーザー光透過側成形品の製造用に好ましく用いることができる。
[レーザー溶着用成形品]
 本実施形態に係るレーザー溶着用成形品は、上記したレーザー光透過性樹脂組成物を用いて成形されたものであり、上記したレーザー光透過性樹脂組成物を含む。上記したレーザー光透過性樹脂組成物を含むので、黒色に着色されかつレーザー光透過性が高い。その結果、レーザー光透過側成形品として好ましく用いることができる。レーザー光透過性樹脂組成物については上記のとおりである。
 レーザー溶着用成形品の成形方法は特に限定されず、公知の成形方法を採用することができる。例えば、上記した樹脂組成物のペレットを調整した後に成形する方法や、成形機に樹脂組成物の各成分の1又は2以上を直接仕込む方法等で製造できる。
 成形方法は、押出成形、射出成形、圧縮成形、ブロー成形、真空成形、回転成形、ガスインジェクションモールディング等の慣用の方法を採用することができるが、通常、射出成形により成形される。射出成形時の金型温度は、通常40~90℃、好ましくは50~80℃、さらに好ましくは60~80℃程度である。
 レーザー溶着用成形品の形状は特に制限されないが、レーザー溶着により相手材(熱可塑性樹脂からなる他の成形品)と接合して用いるため、平面などの接触面を有する形状(例えば、板状)が好ましい。本実施形態に係るレーザー溶着用成形品はレーザー光に対する透過性が高いので、溶着部の厚み、すなわちレーザー光が透過する部位の成形品の厚み(レーザー光が透過する方向の厚み)は、広い範囲から選択でき、例えば、0.1~3.0mm、好ましくは0.5~2.5mm、より好ましくは、1.0~2.0mm程度であってもよい。
[複合成形品]
 本実施形態に係る複合成形品は、レーザー光透過側成形品(以下「第1の成形品」ともいう)と、レーザー光吸収側成形品(以下「第2の成形品」ともいう)と、を含む。レーザー光透過側成形品は、上記した本実施形態に係るレーザー溶着用成形品を用いる。上記したレーザー溶着用成形品をレーザー光透過側成形品として用いることにより、レーザー溶着した場合に高い接合強度が得られるとともに、通常カーボンブラック等で黒色に着色されているレーザー光吸収側成形品と色調が統一された複合成形品にすることができる。第1の成形品としてのレーザー溶着用成形品については上記のとおりである。
 第2の成形品を構成する樹脂の主成分としては、ポリアルキレンテレフタレート樹脂が望ましい。ポリアルキレンテレフタレート樹脂としては、ポリブチレンテレフタレート樹脂、ポチエチレンテレフタレート樹脂、ポリトリメチレンテレフタレート樹脂などが挙げられる。「主成分」とは、ここでは第2の成形品を構成する樹脂の全質量に対して50質量%以上であることを意味している。一実施形態において、ポリアルキレンテレフタレート樹脂の含有量は、第2の成形品を構成する樹脂の全質量に対して、50質量%を超えることが好ましく、60質量%以上であることがより好ましい。
 また第2の成形品を構成する樹脂は、種々の熱可塑性樹脂を含んでもよい。例えば、オレフィン系樹脂、ビニル系樹脂、スチレン系樹脂、アクリル系樹脂、ポリエステル系樹脂、ポリアミド系樹脂、ポリカーボネート系樹脂などが挙げられる。
 一実施形態において、第1の成形品を構成する樹脂と同種類又は同系統の樹脂(PBT系樹脂、PET系樹脂等の芳香族ポリエステル系樹脂、及び/又はポリカーボネート系樹脂)又はその組成物で第2の成形品を構成してもよい。
 第2の成形品は、レーザー光に対する吸収剤又は着色剤を含んでいてもよい。吸収剤としては、通常、黒色顔料又は染料、特にカーボンブラック(例えば、アセチレンブラック、ランプブラック、サーマルブラック、ファーネスブラック、チャンネルブラック、ケッチェンブラックなど)が使用できる。カーボンブラックの平均粒子径は、通常、10~1000nm、好ましくは10~100nm程度であってもよい。吸収剤は、単独で又は2種以上組み合わせて使用できる。着色剤としては、用途等に応じて適宜選択することができ、例えば、無機顔料[カーボンブラック(例えば、アセチレンブラック、ランプブラック、サーマルブラック、ファーネスブラック、チャンネルブラック、ケッチェンブラックなど)などの黒色顔料、酸化鉄赤などの赤色顔料、モリブデートオレンジなどの橙色顔料、酸化チタンなどの白色顔料など]、有機顔料(黄色顔料、橙色顔料、赤色顔料、青色顔料、緑色顔料など)等が挙げられる。着色剤は、単独で又は2種以上組み合わせて使用できる。
 吸収剤及び着色剤の割合は、第2の成形品の全体に対して0.1~10質量%であることが好ましく、0.3~5質量%であることがより好ましく、0.3~3質量%であることがさらに好ましい。
 複合成形品は、レーザー光透過側成形品とレーザー光吸収側成形品とがレーザー溶着により接合され、一体化されていることが好ましい。例えば、第1の成形品と第2の成形品とを接触(特に少なくとも接合部を面接触)させ、第1の成形品側からレーザー光線を照射することにより、第1の成形品と第2の成形品との界面を溶融させて接合面を密着させ、冷却することにより2種の成形品を接合、一体化して1つの複合成形品とすることができる。必要によりレンズ系を利用して、第1の成形品と第2の成形品との界面にレーザー光線を集光させ接触界面を溶着してもよい。
 レーザー光源としては、特に制限されず、例えば、色素レーザー、気体レーザー(エキシマレーザー、アルゴンレーザー、クリプトンレーザー、ヘリウム-ネオンレーザーなど)、固体レーザー(YAGレーザーなど)、半導体レーザーなどが利用できる。レーザー光線としては、通常、パルスレーザーが利用される。
 レーザー光線の照射速度は、特に限定されず、例えば、10~5000mm/secとすることができる。
 以下に実施例を示して本発明を更に具体的に説明するが、これらの実施例により本発明の解釈が限定されるものではない。
 実施例及び比較例で用いた材料は以下のとおりである。
[材料]
(A)ポリブチレンテレフタレート
 A-1:ポリプラスチックス株式会社製 ポリブチレンテレフタレート、固有粘度0.69dL/g
 A-2:ポリプラスチックス株式会社製 イソフタル酸12.5モル変性ポリブチレンテレフタレート
(B)ポリカーボネート:帝人株式会社製ポリカーボネート(300℃、剪断速度1000sec-1における溶融粘度:0.27kPa・s)
(C)充填剤:ガラス繊維、日本電気硝子株式会社製、製品名:ECS03 T-127、平均繊維径13μm、平均繊維長3mm
(D)着色剤
 D-1:BASF社製、Orasol Black X45(C.I. Solvent Black 28)
 D-2:フタロシアニン系緑色顔料(C.I. Pigment Green 7)
 D-3:アントラキノン系黄色顔料(C.I. Pigment Yellow 147)
 D-4:ペリレン系紫色顔料(C.I. Pigment Violet 29)
(E)ポリアミド:UBE株式会社製 1015B
(F)ポリエステルエラストマー:東洋紡株式会社製、ペルプレンP-90BD
(G)第一リン酸カルシウム:太平化学産業株式会社製
(H)酸化防止剤:Chang Chun Petrochemical製、AO-60RG
(I)エポキシ樹脂:三菱ケミカル株式会社製、エピコート1004K
(J)滑剤:理研ビタミン株式会社製、L-7640
(K)窒化硼素:JFEミネラル株式会社製
(L)可塑剤:株式会社ADEKA製、アデカサイザーUL-100
[実施例1~3、比較例1~8]
 ポリブチレンテレフタレート樹脂100質量部に対し、各成分を表1,2に示す割合で混合した後、株式会社日本製鋼所製TEX30を用いて、シリンダー温度260℃、吐出量15kg/h、スクリュ回転数130rpmで溶融混練して押出し、樹脂組成物ペレットを得た。
(成形条件)
 得られたペレットを、ファナック株式会社製射出成型機S-2000i100Bを用いてシリンダー温度260℃、金型温度80℃で射出成形し、80mm×80mm×厚さ1mmの試験片(1)及び80mm×80mm×厚さ2mmの試験片(2)をそれぞれ作製した。
[評価]
(レーザー光透過性)
 上記試験片(1),(2)を20mm×20mmの正方形状に16分割し、各分割片の中央部を、分光光度計(日本分光株式会社製,V770)を用いて、波長940nmでの光線透過率(%)を測定し、最も透過率の低い値を代表値とした。結果を表1,2に示す。
(CIE L値)
 試験片(1),(2)を、カラーコンピューター(日本電色株式会社製、製品名:分光色差計 SE6000)を用いて、孔径φ10mm、C光2度視野、反射の条件でCIE表色系におけるL値を測定した。L*値が20以下の場合に黒色と判断できる。結果を表1,2に示す。
(色移行(色移り))
 次のようにして色移り試験用の試験片を作製した。
(1)上記試験片(1)から20mm×20mm×厚さ1mmの大きさの切削片を切り出し、着色試験片(3)を得た。
(2)ポリブチレンテレフタレート(ポリプラスチックス株式会社製、固有粘度0.69dL/g)70質量%とガラス繊維(日本電気硝子株式会社製、製品名:ECS03 T-127、平均繊維径13μm、平均繊維長3mm)30質量%とを混合した後、日本製鋼所製TEX30を用いて、シリンダー温度260℃、吐出量15kg/h、スクリュ回転数130rpmで溶融混練して押出し、樹脂組成物ペレットを得た。得られたペレットを、ファナック株式会社製射出成型機S-2000i100Bを用いてシリンダー温度260℃、金型温度80℃で射出成形し、80mm×80mm×厚さ1mmの成形品を得た。この成形品から20mm×20mm×厚さ1mmの大きさの切削片を切り出し、無着色試験片(4)を得た。
 着色試験片(3)の一つの主面と無着色試験片(4)の一つの主面とを重ね合わせ、エスペック社製恒温槽を用いて130℃で30時間加熱した。室温(26℃)まで放冷後、重ね合わせた面を開き、無着色試験片(4)への色移行の有無を目視で確認した。結果を表1,2に示す。
Figure JPOXMLDOC01-appb-T000001

Figure JPOXMLDOC01-appb-T000002
 表1に示すように、ポリブチレンテレフタレート樹脂と、ポリカーボネート樹脂と、クロム錯体アゾ染料とを所定量で含む実施例1~3の樹脂組成物は、厚さ1mmの成形品において、CIE表色系におけるL*値が20以下でありかつ波長940nmにおける光線透過率が50%以上であることから、黒色に着色されかつレーザー光透過性が高い樹脂組成物であることが明らかである。また、無着色品と高温下で接触させても色移りが確認できなかった。
 表2に示すように、クロム錯体アゾ染料の含有量が所定量よりも少ない比較例1の樹脂組成物は、CIE表色系におけるL*値が30を超えており、明度が高く黒色に着色できなかった。
 クロム錯体アゾ染料の含有量が所定量よりも多い比較例2の樹脂組成物は、CIE表色系におけるL*値は十分に低く黒色に着色されているが、厚さ1mmの成形品の波長940nmにおける光線透過率が50%未満でありレーザー光透過性が低い結果となった。
 ポリカーボネート樹脂の含有量が所定量よりも少ない比較例3、5の樹脂組成物は、比較例3においてはCIE表色系におけるL*値は20以下であるものの、比較例5においてはL*値は20を超えており、かつ比較例3,5のいずれも厚さ1mmの成形品の波長940nmにおける光線透過率が50%未満であり、黒色に着色することとレーザー光透過性を向上させることとを両立することができていない。
 クロム錯体アゾ染料の含有量及びポリカーボネート樹脂の含有量がいずれも所定量よりも少ない比較例4の樹脂組成物は、CIE表色系におけるL*値が50を超えており黒色に着色できなかった。通常、イソフタル酸12.5モル変性ポリブチレンテレフタレートはポリブチレンテレフタレートに比べ透過性に優れるが、ポリカーボネート樹脂の含有量が所定量よりも少ない比較例4においては、クロム錯体アゾ染料の含有量が所定量よりも少ない場合であっても、厚さ1mmの成形品の波長940nmにおける光線透過率が50%未満でありレーザー光透過性が低い結果となった。
 ポリブチレンテレフタレート樹脂と、ポリカーボネート樹脂に替えてポリアミド樹脂とを含む比較例6の樹脂組成物は、クロム錯体アゾ染料を所定量の範囲内で含有しているにもかかわらずCIE表色系におけるL*値が20を超えて明度が高くなり黒色に着色できていないとともに、厚さ1mmの成形品の波長940nmにおける光線透過率が10%未満となりレーザー光透過性が過度に低い結果となった。
 熱可塑性樹脂としてポリブチレンテレフタレート樹脂のみを含む比較例7の樹脂組成物は、クロム錯体アゾ染料を所定量の範囲内で含有しているにもかかわらずCIE表色系におけるL*値が20を超えて明度が高くなり黒色に着色できていないとともに、厚さ1mmの成形品の波長940nmにおける光線透過率が10%未満となりレーザー光透過性が過度に低い結果となった。
 ポリカーボネート樹脂の含有量が所定量よりも少なく、かつクロム錯体アゾ染料以外の顔料を3色使用した比較例8の樹脂組成物は、CIE表色系におけるL*値が20以下であり黒色に着色することができているが、厚さ1mmの成形品の波長940nmにおける光線透過率が40%以下でありレーザー光透過性が低い結果となった。加えて、他の樹脂成形品への色移行が確認された。
 本実施形態に係る樹脂組成物は、黒色に着色されかつレーザー光透過性が高いため、レーザー溶着用成形品の製造に好適に用いることができる。具体的には、電気・電子分野や自動車分野等の分野で使用される樹脂部材として好適に用いることができ、産業上の利用可能性を有している。
 
 

Claims (8)

  1.  ポリブチレンテレフタレート樹脂と、ポリカーボネート樹脂と、クロム錯体アゾ染料と、を含み、
     ポリカーボネート樹脂の含有量が、ポリブチレンテレフタレート樹脂100質量部に対して60質量部以上100質量部以下であり、
     クロム錯体アゾ染料の含有量が、ポリブチレンテレフタレート樹脂100質量部に対して0.08質量部以上0.50質量部以下である、レーザー光透過性樹脂組成物。
  2.  充填剤をさらに含み、充填剤の含有量がポリブチレンテレフタレート樹脂100質量部に対して10質量部以上100質量部以下である、請求項1に記載のレーザー光透過性樹脂組成物。
  3.  厚さ1mmの成形品において、CIE表色系におけるL*値が20以下でありかつ波長940nmにおける光線透過率が50%以上である、請求項1又は2に記載のレーザー光透過性樹脂組成物。
  4.  クロム錯体アゾ染料が、カラーインデックス(C.I.)ソルベントブラック28を含む、請求項1又は2に記載のレーザー光透過性樹脂組成物。
  5.  ポリカーボネート樹脂の300℃、剪断速度1000sec-1における溶融粘度が0.20kPa・s以上である、請求項1又は2に記載のレーザー光透過性樹脂組成物。
  6.  請求項1又は2に記載のレーザー光透過性樹脂組成物を含む、レーザー溶着用成形品。
  7.  レーザー光透過側成形品である、請求項6に記載の成形品。
  8.  請求項7に記載の成形品と、レーザー光吸収側成形品と、を含む、複合成形品。
     
     
PCT/JP2023/016070 2022-05-17 2023-04-24 レーザー光透過性樹脂組成物、成形品及び複合成形品 WO2023223775A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022080931 2022-05-17
JP2022-080931 2022-05-17

Publications (1)

Publication Number Publication Date
WO2023223775A1 true WO2023223775A1 (ja) 2023-11-23

Family

ID=88835006

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/016070 WO2023223775A1 (ja) 2022-05-17 2023-04-24 レーザー光透過性樹脂組成物、成形品及び複合成形品

Country Status (1)

Country Link
WO (1) WO2023223775A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016137713A (ja) * 2015-01-22 2016-08-04 三菱エンジニアリングプラスチックス株式会社 レーザー溶着用部材及び成形品
WO2017146196A1 (ja) * 2016-02-25 2017-08-31 三菱エンジニアリングプラスチックス株式会社 レーザー溶着用樹脂組成物及びその溶着体
JP2019038880A (ja) * 2017-08-22 2019-03-14 三菱エンジニアリングプラスチックス株式会社 レーザー溶着用樹脂組成物及びその溶着体
JP2022071438A (ja) * 2020-10-28 2022-05-16 ポリプラスチックス株式会社 レーザー溶着用成形品、レーザー溶着用成形品のレーザー透過率のばらつき抑制剤、レーザー溶着用成形品の耐アルカリ性向上剤

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016137713A (ja) * 2015-01-22 2016-08-04 三菱エンジニアリングプラスチックス株式会社 レーザー溶着用部材及び成形品
WO2017146196A1 (ja) * 2016-02-25 2017-08-31 三菱エンジニアリングプラスチックス株式会社 レーザー溶着用樹脂組成物及びその溶着体
JP2019038880A (ja) * 2017-08-22 2019-03-14 三菱エンジニアリングプラスチックス株式会社 レーザー溶着用樹脂組成物及びその溶着体
JP2022071438A (ja) * 2020-10-28 2022-05-16 ポリプラスチックス株式会社 レーザー溶着用成形品、レーザー溶着用成形品のレーザー透過率のばらつき抑制剤、レーザー溶着用成形品の耐アルカリ性向上剤

Similar Documents

Publication Publication Date Title
JP5254971B2 (ja) レーザー透過性樹脂成形品及びその複合成形品
JP2003183524A (ja) レーザーを吸収する低カーボンブラック含有量の成形用組成物
EP3448657B1 (en) Laser weldable compositions, articles formed therefrom, and methods of manufacture
JP2016155939A (ja) レーザー溶着用樹脂組成物及びその溶着体
WO2021125205A1 (ja) レーザー溶着用成形品、レーザー溶着用成形品のレーザー透過率のばらつき抑制剤
US20240010819A1 (en) Resin composition, molded article, and applications thereof
WO2019117074A1 (ja) レーザー溶着及びレーザーマーキングが可能な成形品
JP2005187798A (ja) レーザ溶着用着色樹脂組成物およびそれを用いた複合成形体
WO2023223775A1 (ja) レーザー光透過性樹脂組成物、成形品及び複合成形品
JP6993971B2 (ja) レーザー溶着用樹脂組成物及び成形品、複合成形品及びその製造方法、並びにレーザー光透過性向上方法
WO2016117493A1 (ja) レーザー溶着用部材及び成形品
WO2020218149A1 (ja) レーザー溶着用ポリブチレンテレフタレート樹脂組成物
WO2023140118A1 (ja) レーザー光透過側成形品用樹脂組成物及びその成形品
JP2022071438A (ja) レーザー溶着用成形品、レーザー溶着用成形品のレーザー透過率のばらつき抑制剤、レーザー溶着用成形品の耐アルカリ性向上剤
WO2022249980A1 (ja) レーザー透過性樹脂組成物及びその成形品
JP2008189764A (ja) 黒色のレーザー溶着用ポリエステル樹脂組成物およびこれを用いた成形品
JP2007320995A (ja) レーザー溶着用樹脂組成物およびそれからなる成形品
JP7487583B2 (ja) 樹脂組成物、成形体、レーザー溶着用キット、車載カメラモジュール、および、成形体の製造方法
WO2022265000A1 (ja) 構造体、構造体の製造方法、および、ミリ波レーダーモジュール
WO2023149503A1 (ja) 樹脂組成物、成形体、ペレット、および、レーザー溶着体
JP6983777B2 (ja) レーザー溶着用樹脂組成物及び成形品
JPH09183890A (ja) 液晶性ポリエステル樹脂組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23807387

Country of ref document: EP

Kind code of ref document: A1