WO2023223689A1 - ホットメルト接着剤用組成物 - Google Patents

ホットメルト接着剤用組成物 Download PDF

Info

Publication number
WO2023223689A1
WO2023223689A1 PCT/JP2023/013521 JP2023013521W WO2023223689A1 WO 2023223689 A1 WO2023223689 A1 WO 2023223689A1 JP 2023013521 W JP2023013521 W JP 2023013521W WO 2023223689 A1 WO2023223689 A1 WO 2023223689A1
Authority
WO
WIPO (PCT)
Prior art keywords
melt adhesive
hot melt
adhesive composition
poly
hydroxyalkanoate
Prior art date
Application number
PCT/JP2023/013521
Other languages
English (en)
French (fr)
Inventor
秀典 田中
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Publication of WO2023223689A1 publication Critical patent/WO2023223689A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/12Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by using adhesives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/16Compositions of unspecified macromolecular compounds the macromolecular compounds being biodegradable
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/06Non-macromolecular additives organic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J167/00Adhesives based on polyesters obtained by reactions forming a carboxylic ester link in the main chain; Adhesives based on derivatives of such polymers
    • C09J167/04Polyesters derived from hydroxycarboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J5/00Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers
    • C09J5/06Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers involving heating of the applied adhesive

Definitions

  • the present invention relates to a hot melt adhesive composition.
  • Hot melt adhesives are adhesives that are solid at room temperature and are mainly composed of thermoplastic resins, and are used, for example, for sealing cardboard boxes and cartons.
  • a hot melt adhesive for example, the adhesive is heated and melted using a hot gun and applied to the adhesive surface, the base materials are bonded together, and then the adhesive is cooled and solidified. The base materials can be bonded together.
  • EVA ethylene-vinyl acetate
  • plastic waste is causing a burden on the global environment, including its impact on the ecosystem, the generation of harmful gases during combustion, and global warming due to the large amount of heat generated by combustion.As a material that can solve this problem, Development of biodegradable plastics is gaining momentum.
  • Patent Document 1 discloses a hot melt adhesive using a biodegradable plastic, and specifically, a polymer containing a lactic acid block and an aliphatic polyester block composed of a diol and a dicarboxylic acid.
  • a hot melt adhesive containing as a main component is disclosed.
  • biodegradable plastics such as polylactic acid biodegrade in compost, etc.
  • they cannot be expected to biodegrade in a short period of time in the actual ocean, where the temperature is low.
  • poly(3-hydroxyalkanoate) resins are attracting attention because they are materials that can be biodegraded even in seawater.
  • Patent Document 2 a solution of a poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) copolymer, which is a type of poly(3-hydroxyalkanoate)-based resin, and an organic solvent is made into a biodegradable solution. It is disclosed that it can be used as an adhesive. However, the use of poly(3-hydroxyalkanoate) resins in hot melt adhesives has not been reported.
  • the inventor has investigated that poly(3-hydroxyalkanoate)-based resins generally have a high melt viscosity, and it is difficult to heat-melt them and apply them to a base material as a hot-melt adhesive. found. On the other hand, it has also been found that when a poly(3-hydroxyalkanoate) resin having a relatively low molecular weight is used, there is a problem in that although the melt viscosity is reduced, the mechanical properties are reduced.
  • an object of the present invention is to provide a hot melt adhesive composition that contains a poly(3-hydroxyalkanoate) resin, has a reduced melt viscosity, and has good mechanical properties. do.
  • the present inventors have determined that by constructing a hot melt adhesive by combining poly(3-hydroxyalkanoate) resin with polycaprolactone, a type of biodegradable resin, the melt viscosity
  • the present inventors have discovered that it is possible to provide a composition for hot melt adhesives that has a reduced amount of oxidation and good mechanical properties, and has completed the present invention.
  • the present invention relates to a hot melt adhesive composition containing a poly(3-hydroxyalkanoate) resin (A) and polycaprolactone (B).
  • the present invention also provides a method for producing a laminate, in which the hot melt adhesive composition is melted under heating and applied to a first base material, and then the coated surface is bonded to a second base material.
  • the present invention also relates to a method of manufacturing a laminate by cooling the composition and bonding a first base material and a second base material.
  • thermoplastic adhesive composition that contains a poly(3-hydroxyalkanoate) resin, has a reduced melt viscosity, and has good mechanical properties.
  • the hot melt adhesive composition according to the present embodiment contains at least a poly(3-hydroxyalkanoate) resin (A) and polycaprolactone (B).
  • Poly(3-hydroxyalkanoate) resin is a general term for polymers containing at least 3-hydroxyalkanoic acid as a monomer unit, and is generally biodegradable.
  • poly(3-hydroxyalkanoate) resin may be abbreviated as P3HA.
  • P3HA is an aliphatic polyester, preferably a polyester containing no aromatic ring. As P3HA, only one type may be used, or two or more types may be used in combination.
  • the P3HA is a 3-hydroxyalkanoic acid repeating unit represented by the formula: [-CHR-CH 2 -CO-O-] (wherein R is an alkyl group represented by C n H 2n+1 , and n is 1 or more An integer of 15 or less) is preferably a polyester containing as an essential repeating unit.
  • the P3HA preferably contains 50 mol% or more of the total monomer repeating units (100 mol%), more preferably 70 mol% or more, of the 3-hydroxyalkanoic acid repeating unit represented by the above formula.
  • the P3HA may be a homopolymer or a copolymer.
  • the P3HA may be a copolymer containing two or more types of repeating units represented by the above formula, or a copolymer containing a repeating unit represented by the above formula and another repeating unit. It may be.
  • the form of copolymerization is not particularly limited and may be random copolymerization, alternating copolymerization, block copolymerization, graft copolymerization, etc., but random copolymerization is preferred because it is easily available.
  • P3HA examples include poly(3-hydroxybutyrate) (abbreviation: P3HB), poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (abbreviation: P3HB3HH), and poly(3-hydroxybutyrate) (abbreviation: P3HB3HH).
  • P3HB3HV Hydroxybutyrate-co-3-hydroxyvalerate
  • P3HB4HB Poly(3-hydroxybutyrate-co-4-hydroxybutyrate)
  • P3HB4HB Poly(3-hydroxybutyrate-co- 3-hydroxyoctanoate)
  • P3HB3HO poly(3-hydroxybutyrate-co-3-hydroxyoctadecanoate)
  • P3HB3HOD poly(3-hydroxybutyrate-co-3-hydroxy) decanoate
  • P3HB3HD poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-3-hydroxyhexanoate
  • P3HB3HV3HH poly(3HB3HV3HH), and the like.
  • P3HB, P3HB3HH, P3HB3HV, and P3HB4HB are preferred because they are easy to produce industrially.
  • the melting point or crystallinity of PHA can be changed, and as a result, physical properties such as Young's modulus and heat resistance can be changed, and between polypropylene and polyethylene.
  • a copolymer of 3-hydroxybutyrate and 3-hydroxyhexanoic acid, from the viewpoints that it is possible to impart the physical properties of Certain P3HB3HH are particularly preferred.
  • P3HA can be produced by microorganisms. Such microorganism-produced P3HA is usually P3HA composed only of D-form (R-form) hydroxyalkanoic acid repeating units. Among microorganism-produced P3HA, P3HB and P3HB3HH are preferred, and P3HB3HH is more preferred, since they are easy to produce industrially.
  • the average content ratio of repeating units in P3HA is 3-hydroxybutyrate units/other repeating units from the viewpoint of flexibility or balance between workability and initial fixability.
  • the average content ratio of hydroxyalkanoate units (3-hydroxyhexanoate units when P3HA is P3HB3HH) is preferably 97/3 to 75/25 (mol/mol), and 95/5 to 80/mol. 20 (mo1/mo1) is more preferable, and 95/5 to 85/15 (mo1/mo1) is particularly preferable.
  • the average content ratio of the other hydroxyalkanoate units in P3HA is 3 mol% or more, the flexibility of P3HA can be improved, and the melting point is lowered, making it difficult to melt and apply the hot melt adhesive composition. The workability when doing this can be improved.
  • the average content ratio of the other hydroxyalkanoate units in P3HA is 25 mol% or less, an appropriate crystallization rate can be achieved, and the hot melt adhesive composition can be melted and applied to attach it to other substrates. Initial fixation when mated can be improved.
  • the numerical range of the average content ratio described above refers to the average content ratio of repeating units contained in the entire mixture of two or more types of P3HA contained in the hot melt adhesive composition.
  • the average content ratio of repeating units of P3HA can be measured by hydrolyzing or alcohol esterifying monomer units and using gas chromatography or the like (for example, see International Publication No. 2014/020838).
  • the molecular weight of P3HA is not particularly limited, but from the viewpoint of the balance between adhesive strength and workability during melt coating, the weight average molecular weight is preferably 10,000 to 1,500,000, and 100,000 to 1,000. ,000 is more preferable, and 150,000 to 800,000 is even more preferable.
  • the weight average molecular weight is 10,000 or more, the strength of the adhesive layer is good and sufficient adhesive force can be achieved.
  • it is 1,500,000 or less, the melt viscosity is reduced and the workability when melting and applying the hot melt adhesive composition can be improved.
  • P3HA two or more types of P3HA having different weight average molecular weights may be used together.
  • P3HA with a relatively high molecular weight and P3HA with a relatively low molecular weight may be used in combination, since the balance between melt viscosity reduction and good mechanical properties is particularly excellent.
  • the weight average molecular weights of these two types of P3HA can be appropriately selected from within the weight average molecular weight range described above.
  • the method for measuring the weight average molecular weight is to use gel permeation chromatography (GPC) ("Shodex GPC-101" manufactured by Showa Denko Co., Ltd.) using polystyrene gel ("Shodex K-804" manufactured by Showa Denko Co., Ltd.) as a column, It can be determined as the molecular weight when converted to polystyrene using chloroform as the mobile phase.
  • GPC gel permeation chromatography
  • a column in the GPC a column suitable for measuring the molecular weight may be used.
  • the microorganism that produces P3HA is not particularly limited as long as it has the ability to produce P3HA.
  • the first P3HB-producing bacterium was Bacillus megaterium, which was discovered in 1925, and other bacteria include Cupriavidus necator (former classification: Alcaligenes eutrophus), Ralstonia eutrophus Hua (Ralstonia eutropha)) , Alcaligenes latus and other natural microorganisms are known. In these microorganisms, P3HB accumulates inside the cells.
  • ateriol ., 179, p4821-4830 (1997)) is preferred.
  • Microbial cells obtained by culturing such microorganisms under appropriate conditions and accumulating P3HA inside the cells are used.
  • genetically modified microorganisms into which various P3HA synthesis-related genes have been introduced may be used, and culture conditions including the type of substrate may be optimized, depending on the P3HA to be produced.
  • Polycaprolactone is a polyester having monomer units represented by the formula: [-(CH 2 ) 5 -CO-O-].
  • PCL polycaprolactone
  • PCL can usually be produced by ring-opening polymerization of ⁇ -caprolactone using cationic or anionic initiators. Organometallic catalysts may be used to promote polymerization. However, PCL obtained by other manufacturing methods can also be used. Further, the structure of the end sealing is not particularly limited. PCL generally has a melting point of 50 to 65°C, a crystallization temperature of 10 to 30°C, and a glass transition temperature of -50 to -60°C, but is not limited thereto.
  • the molecular weight of PCL is not particularly limited, but from the viewpoint of the balance between adhesive strength and workability during melt coating, the weight average molecular weight is preferably 1,000 to 500,000, more preferably 5,000 to 400,000. It is preferably 10,000 to 300,000, more preferably 20,000 to 250,000.
  • the weight average molecular weight is 1,000 or more, the strength of the adhesive layer becomes good and sufficient adhesive force can be achieved.
  • the melt viscosity is reduced and the workability when melting and applying the hot melt adhesive composition can be improved.
  • the weight average molecular weight of PCL is preferably 100,000 or more, more preferably 120,000 or more.
  • the weight average molecular weight of PCL is preferably less than 100,000, more preferably 90,000 or less, and even more preferably 70,000 or less.
  • PCL two or more types of PCL having mutually different weight average molecular weights may be used in combination.
  • the weight average molecular weight of the first PCL is preferably 100,000 or more, more preferably 120,000 or more.
  • the weight average molecular weight of the second PCL is preferably 70,000 or less, more preferably 50,000 or less, and even more preferably 40,000 or less.
  • the ratio of the first PCL having a relatively high molecular weight and the second PCL having a relatively low molecular weight is not particularly limited, but the weight ratio of the first PCL/second PCL is preferably 95/5 to 40/60. , more preferably 90/10 to 50/50, and even more preferably 85/15 to 60/40. If both PCLs are used in combination within this range, it is possible to achieve both the improvement in mechanical properties by the first PCL and the reduction in melt viscosity by the second PCL at a higher level.
  • the weight average molecular weight of PCL can be measured by the same measuring method as for the weight average molecular weight of P3HA described above.
  • the content ratio of the poly(3-hydroxyalkanoate) resin (A) and polycaprolactone (B) can be set as appropriate, but the content ratio of (A) component/(B)
  • the weight ratio of the components is 95/5 to 5/95.
  • the weight ratio is more preferably 90/10 to 10/90, even more preferably 80/20 to 20/80, and particularly preferably 70/30 to 30/70. Further, it may be 95/5 to 50/50 or 50/50 to 5/95. From the viewpoint of further reducing the melt viscosity, the ratio is preferably 50/50 to 5/95.
  • the hot melt adhesive composition according to this embodiment may further contain glycerin fatty acid ester (C).
  • glycerin fatty acid ester (C) By blending the glycerin fatty acid ester (C), the melt viscosity can be greatly reduced while maintaining the mechanical properties to some extent.
  • glycerin fatty acid ester any of glycerin monoester, diester, or triester can be used; From this point of view, triesters of glycerin are preferred. Among the triesters of glycerin, glycerin diacetomonoester is particularly preferred. Specific examples of glycerin diaceto monoester include glycerin diaceto monolaurate, glycerin diaceto monooleate, glycerin diaceto monostearate, glycerin diaceto monocaprylate, glycerin diaceto monodecanoate, and the like. Among them, glycerin diacetomonolaurate is preferred. Examples of commercially available modified glycerin compounds include Riken Vitamin Co., Ltd.'s "BIOCIZER” and “Rikemar” (registered trademark) PL series.
  • the content of the glycerin fatty acid ester (C) is 0 to 100 parts by weight in total of the poly(3-hydroxyalkanoate) resin (A) and polycaprolactone (B).
  • the amount is preferably 50 parts by weight.
  • the lower limit is preferably 0.1 part by weight or more, more preferably 1 part by weight or more, even more preferably 5 parts by weight or more.
  • the upper limit is preferably 30 parts by weight or less, more preferably 20 parts by weight or less, even more preferably 15 parts by weight or less.
  • the hot melt adhesive composition may contain only poly(3-hydroxyalkanoate) resin (A) and polycaprolactone (B) as resin components, but may also contain other resins. May be contained.
  • Such other resins are preferably biodegradable resins, such as aliphatic polyester resins such as polybutylene succinate and polylactic acid, polybutylene adipate terephthalate, polybutylene sebatate terephthalate, and polybutylene acetate. Examples include aliphatic aromatic polyester resins such as ester terephthalate.
  • the content of these other resins may be about 0 to 30 parts by weight, and may be about 0 to 30 parts by weight, based on a total of 100 parts by weight of the poly(3-hydroxyalkanoate) resin (A) and polycaprolactone (B). It is preferably 10 parts by weight, more preferably 0 to 5 parts by weight, particularly preferably 0 to 1 part by weight.
  • the hot melt adhesive composition may further contain a plasticizer other than the glycerin fatty acid ester (C).
  • plasticizers are not particularly limited, but include, for example, dibasic acid ester compounds, adipate ester compounds, polyether ester compounds, benzoate ester compounds, citric acid ester compounds, and isosorbide ester compounds. Examples include compounds.
  • dibasic acid ester compounds examples include dibutyl adipate, diisobutyl adipate, bis(2-ethylhexyl) adipate, diisononyl adipate, diisodecyl adipate, bis[2-(2-butoxyethoxy)ethyl]adipate, bis[2- (2-Butoxyethoxy)ethyl] adipate, bis(2-ethylhexyl) azelate, dibutyl sebacate, bis(2-ethylhexyl) sebacate, diethyl succinate, mixed dibasic acid ester compounds, and the like.
  • adipic acid ester compounds examples include diethylhexyl adipate, dioctyl adipate, diisononyl adipate, and the like.
  • polyether ester compounds examples include polyethylene glycol dibenzoate, polyethylene glycol dicaprylate, polyethylene glycol diisostearate, and the like.
  • the content of the plasticizer other than the glycerin fatty acid ester (C) is about 0 to 30 parts by weight based on the total of 100 parts by weight of the poly(3-hydroxyalkanoate) resin (A) and polycaprolactone (B). It is preferably 0 to 10 parts by weight, more preferably 0 to 5 parts by weight, and particularly preferably 0 to 1 part by weight.
  • the hot melt adhesive composition may contain additives commonly used in the field of adhesives.
  • additives include inorganic fillers such as talc, calcium carbonate, mica, silica, titanium oxide, and alumina, rice husk, wood flour, waste paper such as newspaper, various starches, organic fillers such as cellulose, pigments, Colorants such as dyes, odor absorbers such as activated carbon and zeolite, fragrances such as vanillin and dextrin, antioxidants, antioxidants, weather resistance improvers, ultraviolet absorbers, crystal nucleating agents, lubricants, mold release agents, repellents Examples include water preparations, antibacterial agents, sliding properties improvers, tackifiers, fillers, and drugs.
  • the additive may contain only one type, or may contain two or more types. Further, the solid content concentration of the additive can be appropriately set depending on the intended use thereof.
  • the hot-melt adhesive composition according to the present embodiment exhibits a solid or semi-solid state at room temperature (usually about 15 to 30° C.). It does not exhibit fluidity suitable for coating at room temperature, but exhibits fluidity suitable for coating by heating to an appropriate temperature and melting it.
  • the hot melt adhesive composition does not substantially contain volatile organic solvents or water.
  • the total amount of organic solvent and water in the hot melt adhesive composition is preferably 10% by weight or less, more preferably 1% by weight or less, and even more preferably 0.1% by weight or less.
  • the hot-melt adhesive composition may be used as a hot-melt adhesive as is, or it may be used as a hot-melt adhesive after addition of appropriate additives, shape adjustment, etc. It may also be used as
  • the shape of the hot melt adhesive composition is not particularly limited, but it can be in the shape of a general hot melt adhesive, and specifically, it can be in the shape of a stick, pellet, or sheet. Alternatively, it may be in the form of a film.
  • the hot-melt adhesive composition has a relatively low viscosity when heated and melted, that is, the melt viscosity, and therefore the work required to melt the hot-melt adhesive composition and apply it to a substrate is difficult. properties can be good.
  • the hot melt adhesive composition has a melt viscosity measured using a capillograph at a shear rate of 1.2 x 10 2 s -1 and a temperature of 150°C. It is preferably 2,900 Pa ⁇ s or less, more preferably 2,000 Pa ⁇ s or less, even more preferably 1,500 Pa ⁇ s or less, and particularly preferably 1,000 Pa ⁇ s or less.
  • the hot melt adhesive composition can be used to bond two base materials after being heated and melted. Specifically, the hot melt adhesive composition is heated and melted, applied to a first base material, and then the coated surface is bonded to a second base material, and the composition is cooled and solidified. The first base material and the second base material can be bonded together.
  • a glue gun or a hot gun can be used when heating the hot melt adhesive composition and applying it to the first base material.
  • the hot-melt adhesive composition may be placed on the first base material and the second base material, heated to melt the composition, and then cooled. Substrates can be adhered.
  • the heating temperature for melting the hot-melt adhesive composition can be appropriately set in consideration of the melting point of the hot-melt adhesive composition, for example, within a range of about 100 to 180°C. It's good to be there.
  • the type of base material on which the hot melt adhesive composition can be used is not particularly limited, but since the hot melt adhesive composition is biodegradable, the base material may also be biodegradable. It is preferable to indicate. Note that the shape of the base material is not particularly limited.
  • Substrates exhibiting biodegradability are not particularly limited, but include paper (mainly composed of cellulose), cellophane, cellulose ester, polyvinyl alcohol, polyamino acids, polyglycolic acid, pullulan, biodegradable polyester, and the like. Furthermore, materials obtained by depositing inorganic substances such as aluminum and silica on these base materials can also be used as the base materials. Among these, paper or biodegradable polyester is preferred because it has excellent heat resistance and biodegradability.
  • the type of paper is not particularly limited, and examples include cup base paper, glossy paper, kraft paper, high quality paper, coated paper, thin paper, glassine paper, paperboard, and the like.
  • the biodegradable polyester that can constitute the base material is not particularly limited, and may include aliphatic polyester resins such as polybutylene succinate (PBS)-based resins, polycaprolactone-based resins, polyhydroxyalkanoate-based resins, and polybutylene adipate.
  • aliphatic polyester resins such as polybutylene succinate (PBS)-based resins, polycaprolactone-based resins, polyhydroxyalkanoate-based resins, and polybutylene adipate.
  • aliphatic aromatic polyester resins such as terephthalate (PBAT) resin, polybutylene sebatate terephthalate resin, and polybutylene succinate terephthalate resin.
  • the base material may be added with a water-resistant agent, a water repellent, an inorganic substance, etc. as necessary, or may be surface-treated with an oxygen barrier layer coating, a water vapor barrier coating, etc. It's okay.
  • hot melt adhesive composition is not particularly limited, and it can be used for various adhesives, but specific examples include cardboard boxes, cartons (paper boxes), Examples include the assembly of sanitary materials (for example, disposable diapers, etc.).
  • a hot melt adhesive composition according to item 1 wherein the poly(3-hydroxyalkanoate) resin (A) is a poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) copolymer.
  • a hot melt adhesive according to item 2 wherein the average content ratio of 3-hydroxyhexanoate units in the poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) copolymer is 3 to 25 mol%. Composition for use.
  • the hot melt adhesive composition according to any one of items 1 to 3 has a melt viscosity of 2,900 Pa ⁇ s or less when measured at a shear rate of 1.2 ⁇ 10 2 s -1 and a temperature of 150°C. Composition for hot melt adhesives.
  • the hot melt adhesive composition according to any one of items 1 to 4 wherein the poly(3-hydroxyalkanoate) resin (A) has a weight average molecular weight of 100,000 to 1,000,000.
  • the polycaprolactone (B) has a weight average molecular weight of 20,000 to 250,000.
  • Poly(3-hydroxyalkanoate) resin (A-2): average content ratio 3HB/3HH 89/11 (mol%/mol%), weight average molecular weight 200,000 g/mol
  • the weight average molecular weight of each resin was determined by gel permeation chromatography (GPC) ("Shodex GPC-101" manufactured by Showa Denko Co., Ltd.) using polystyrene gel (“Shodex K-804" manufactured by Showa Denko Co., Ltd.) as a column and chloroform. It was used as a mobile phase and was calculated as the molecular weight when converted to polystyrene.
  • GPC gel permeation chromatography
  • Examples 1 to 42 The total amount of poly(3-hydroxyalkanoate) resin (A) and polycaprolactone (B) was added to a kneading/extrusion test device (Laboplast Mill manufactured by Toyo Seiki Seisakusho) at the weight ratios listed in each table. The mixture was added in an amount of 40 g and kneaded at 150° C. for 5 to 10 minutes. In Examples 33 to 42, a total amount of 40 g of (A) + (B) was set to 100 parts by weight, and glycerin fatty acid ester (C) in the weight parts listed in the table was added to the kneading/extrudability test apparatus. , kneading was performed in the same manner.
  • melt viscosity The melt viscosity of the kneaded product obtained in each Example, or the melt viscosity of the poly(3-hydroxyalkanoate) resin (A) in Comparative Examples 1 and 2, was measured by capillograph. The measurement temperature was 150°C. Each table shows the melt viscosity (Pa ⁇ s) at an extrusion rate of 10 mm/min (shear rate of 1.2 ⁇ 10 2 s ⁇ 1 ).
  • Table 1 shows the results of Comparative Examples 1 and 2 in which the melt viscosity and tensile test were evaluated using the poly(3-hydroxyalkanoate) resin (A) alone.
  • Comparative Example 1 has relatively good mechanical properties, but has a high melt viscosity and is not suitable for use as a hot melt adhesive.
  • Comparative Example 2 using a poly(3-hydroxyalkanoate) resin (A) having a relatively low molecular weight, the melt viscosity was lower than that of Comparative Example 1, but the elongation at break was significantly reduced.
  • melt viscosity and tensile test evaluations were performed on kneaded products prepared by using poly(3-hydroxyalkanoate) resin (A) in combination with polycaprolactone (B). All Examples had lower melt viscosity than Comparative Example 1 and could be used as hot melt adhesives. Furthermore, the elongation at break was greater than that of Comparative Example 2, and the mechanical properties were good.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

ポリ(3-ヒドロキシアルカノエート)系樹脂を含有しながら溶融粘度が低減され、かつ良好な機械物性を有するホットメルト接着剤用組成物を提供する。 ポリ(3-ヒドロキシアルカノエート)系樹脂(A)、及び、ポリカプロラクトン(B)、を含有する、ホットメルト接着剤用組成物。ポリ(3-ヒドロキシアルカノエート)系樹脂(A)は、ポリ(3-ヒドロキシブチレート-co-3-ヒドロキシヘキサノエート)共重合体であってよい。前記ホットメルト接着剤用組成物を加熱下で溶融させ、第一基材に塗布した後、塗布面を第二基材に貼り合わせ、該組成物を冷却して第一基材と第二基材を接着することにより、積層体を製造できる。

Description

ホットメルト接着剤用組成物
 本発明は、ホットメルト接着剤用組成物に関する。
 ホットメルト接着剤は、熱可塑性樹脂を主成分とする常温で固形の接着剤であり、例えば段ボール箱やカートンの封函などに使用されている。
 ホットメルト接着剤を使用する際には、例えば、ホットガンなどを用いて該接着剤を加熱溶融させて接着面に塗布した後、基材同士を貼り合わせた後、該接着剤を冷却固化させることで基材同士を接着させることができる。
 このようなホットメルト接着剤の主成分である樹脂材料としては、従来、エチレン-ビニルアセテート(EVA)コポリマー、エチレン-アクリレート・コポリマー、ポリオレフィン、ポリアミド、ポリエステル、ポリカーボネート、合成ゴム等が知られている。
 一方、プラスチック廃棄物が、生態系への影響、燃焼時の有害ガス発生、大量の燃焼熱量による地球温暖化等、地球環境に負荷を与える原因となっており、この問題を解決できる材料として、生分解性プラスチックの開発が盛んになっている。
 特許文献1では、生分解性プラスチックを利用したホットメルト接着剤が開示されており、具体的には、乳酸のブロックと、ジオールとジカルボン酸とから構成される脂肪族ポリエステルのブロックとを含むポリマーを主成分とするホットメルト接着剤が開示されている。
 しかし、ポリ乳酸などの生分解性プラスチックは、コンポスト等では生分解するものの、温度が低い実海洋中では短期間での生分解を期待できない。
 そのような中、ポリ(3-ヒドロキシアルカノエート)系樹脂は海水中でも生分解が進行し得る材料であるため、注目されている。
 特許文献2では、ポリ(3-ヒドロキシアルカノエート)系樹脂の1種であるポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシヘキサノエート)共重合体と有機溶媒との溶液を生分解性接着剤として利用することが開示されている。
 しかしながら、ポリ(3-ヒドロキシアルカノエート)系樹脂をホットメルト接着剤に利用することは報告されていない。
特開2021-102775号公報 国際公開第2021/153250号公報
 本発明者が検討したところ、ポリ(3-ヒドロキシアルカノエート)系樹脂は、一般的に溶融粘度が高く、ホットメルト接着剤として加熱溶融させて基材に塗工することが困難であることが判明した。一方、分子量が比較的低いポリ(3-ヒドロキシアルカノエート)系樹脂を使用すると、溶融粘度は低減されるものの機械物性が低下してしまう問題があることも判明した。
 本発明は、上記現状に鑑み、ポリ(3-ヒドロキシアルカノエート)系樹脂を含有しながら溶融粘度が低減され、かつ良好な機械物性を有するホットメルト接着剤用組成物を提供することを目的とする。
 本発明者らは、鋭意検討した結果、ポリ(3-ヒドロキシアルカノエート)系樹脂に、生分解性樹脂の1種であるポリカプロラクトンを併用してホットメルト接着剤を構成することにより、溶融粘度が低減され、かつ良好な機械物性を有するホットメルト接着剤用組成物を提供できることを見出し、本発明を完成するに至った。
 即ち、本発明は、ポリ(3-ヒドロキシアルカノエート)系樹脂(A)、及び、ポリカプロラクトン(B)、を含有する、ホットメルト接着剤用組成物に関する。
 また本発明は、積層体の製造方法であって、前記ホットメルト接着剤用組成物を加熱下で溶融させ、第一基材に塗布した後、塗布面を第二基材に貼り合わせ、該組成物を冷却して第一基材と第二基材を接着することによる、積層体の製造方法にも関する。
 本発明によれば、ポリ(3-ヒドロキシアルカノエート)系樹脂を含有しながら溶融粘度が低減され、かつ良好な機械物性を有するホットメルト接着剤用組成物を提供することができる。
 以下に、本発明の実施形態について説明するが、本発明は以下の実施形態に限定されるものではない。
 本実施形態に係るホットメルト接着剤用組成物は、少なくとも、ポリ(3-ヒドロキシアルカノエート)系樹脂(A)、及び、ポリカプロラクトン(B)、を含有する。
 <ポリ(3-ヒドロキシアルカノエート)系樹脂(A)>
 ポリ(3-ヒドロキシアルカノエート)系樹脂は、少なくとも3-ヒドロキシアルカン酸をモノマーユニットとして含む重合体の総称であり、一般的に生分解性を有する。以下ではポリ(3-ヒドロキシアルカノエート)系樹脂をP3HAと略する場合がある。P3HAは、脂肪族ポリエステルであって、好ましくは芳香環を含まないポリエステルである。P3HAとしては、1種類のみを用いてもよいし、2種類以上を併用してもよい。
 前記P3HAは、式:[-CHR-CH-CO-O-]で示される3-ヒドロキシアルカン酸繰り返し単位(式中、RはC2n+1で表されるアルキル基で、nは1以上15以下の整数である)を必須の繰り返し単位として含むポリエステルであることが好ましい。前記P3HAは、前記式で示される3-ヒドロキシアルカン酸繰り返し単位を、全モノマー繰り返し単位(100mol%)のうち50mol%以上含むものが好ましく、70mol%以上含むものがより好ましい。
 前記P3HAは、単独重合体であってもよいし、共重合体であってもよい。前記P3HAが共重合体である場合、前記式で示される繰り返し単位を2種類以上含む共重合体であってもよいし、前記式で示される繰り返し単位と、他の繰り返し単位を含む共重合体であってもよい。また、共重合の形式としては特に限定されず、ランダム共重合、交互共重合、ブロック共重合、グラフト共重合等であってよいが、入手が容易であるためランダム共重合が好ましい。
 P3HAの具体例としては、例えば、ポリ(3-ヒドロキシブチレート)(略称:P3HB)、ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシヘキサノエート)(略称:P3HB3HH)、ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシバリレート)(略称:P3HB3HV)、ポリ(3-ヒドロキシブチレート-コ-4-ヒドロキシブチレート)(略称:P3HB4HB)、ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシオクタノエート)(略称:P3HB3HO)、ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシオクタデカノエート)(略称:P3HB3HOD)、ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシデカノエート)(略称:P3HB3HD)、ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシバリレート-コ-3-ヒドロキシヘキサノエート)(略称:P3HB3HV3HH)等が挙げられる。中でも、工業的に生産が容易であることから、P3HB、P3HB3HH、P3HB3HV、P3HB4HBが好ましい。
 P3HA中の繰り返し単位の組成比を変えることで、PHAの融点または結晶化度を変化させ、結果として、ヤング率、耐熱性等の物性を変化させることができ、かつ、ポリプロピレンとポリエチレンとの間の物性を付与することが可能であること、および工業的に生産が容易であり、物性的に有用なプラスチックであるという観点から、3-ヒドロキシブチレートと3-ヒドロキシヘキサン酸の共重合体であるP3HB3HHが特に好ましい。
 P3HAは微生物によって産生され得る。このような微生物産生P3HAは、通常、D体(R体)のヒドロキシアルカン酸繰り返し単位のみから構成されるP3HAである。微生物産生P3HAの中でも、工業的に生産が容易である点から、P3HB、P3HB3HHが好ましく、P3HB3HHがより好ましい。
 P3HAが3-ヒドロキシブチレート(3HB)単位を含むものである場合、P3HAにおける繰り返し単位の平均含有比率は、柔軟性又は作業性と初期固定性のバランスの観点から、3-ヒドロキシブチレート単位/他のヒドロキシアルカノエート単位(P3HAがP3HB3HHである場合、3-ヒドロキシヘキサノエート単位)の平均含有比率が、97/3~75/25(mol/mol)であることが好ましく、95/5~80/20(mo1/mo1)がより好ましく、95/5~85/15(mo1/mo1)が特に好ましい。
 P3HAにおける前記他のヒドロキシアルカノエート単位の平均含有比率が3mol%以上であると、P3HAの柔軟性が良好となり得ることに加え、融点が低下し、ホットメルト接着剤用組成物を溶融させて塗布する際の作業性が良好となり得る。また、P3HAにおける前記他のヒドロキシアルカノエート単位の平均含有比率が25mol%以下であると、適度な結晶化速度を達成でき、ホットメルト接着剤用組成物を溶融させ塗布して他基材と貼り合わせた時の初期固定性が改善され得る。
 P3HAとしては、繰り返し単位の平均含有比率が互いに異なる2種類以上のP3HAを併用することができる。その場合、前述した平均含有比率の数値範囲は、ホットメルト接着剤用組成物に含まれる2種以上のP3HAの混合物全体に含まれる繰り返し単位の平均含有比率を指す。
 P3HAの繰り返し単位の平均含有比率は、モノマー単位まで加水分解またはアルコールエステル化しガスクロマトグラフィー等によって測定することができる(例えば、国際公開第2014/020838号参照)。
 P3HAの分子量は特に限定されないが、接着力と溶融塗布時の作業性のバランスの観点から、重量平均分子量が10,000~1,500,000であることが好ましく、100,000~1,000,000がより好ましく、150,000~800,000がさらに好ましい。重量平均分子量が10,000以上であると、接着層の強度が良好となり、十分な接着力を達成することができる。一方、1,500,000以下であると、溶融粘度が低減され、ホットメルト接着剤用組成物を溶融させて塗布する際の作業性が良好となり得る。
 P3HAとしては、重量平均分子量が互いに異なる2種類以上のP3HAを併用してもよい。特に、溶融粘度低減と良好な機械物性のバランスが特に優れていることから、分子量が比較的高いP3HAと、分子量が比較的低いP3HAを併用してもよい。これら2種のP3HAが示す重量平均分子量は、前述した重量平均分子量の範囲内から適宜選択することができる。
 前記重量平均分子量の測定方法は、ゲル浸透クロマトグラフィー(GPC)(昭和電工社製「Shodex GPC-101」)を用い、カラムにポリスチレンゲル(昭和電工社製「Shodex K-804」)を用い、クロロホルムを移動相とし、ポリスチレン換算した場合の分子量として求めることができる。当該GPCにおけるカラムとしては、前記分子量を測定するのに適切なカラムを使用すればよい。
 P3HAを生産する微生物としては、P3HAの生産能を有する微生物であれば特に限定されない。例えば、P3HB生産菌としては、1925年に発見されたBacillus megateriumが最初で、他にもカプリアビダス・ネケイター(Cupriavidus necator)(旧分類:アルカリゲネス・ユートロファス(Alcaligenes eutrophus)、ラルストニア・ユートロフア(Ralstonia eutropha))、アルカリゲネス・ラタス(Alcaligenes latus)などの天然微生物が知られている。これらの微生物ではP3HBが菌体内に蓄積される。
 また、3HBとその他のヒドロキシアルカノエートとの共重合体の生産菌としては、P3HB3HVおよびP3HB3HH生産菌であるアエロモナス・キヤビエ(Aeromonas caviae)、P3HB4HB生産菌であるアルカリゲネス・ユートロファス(Alcaligenes eutrophus)などが知られている。特に、P3HB3HHに関し、P3HB3HHの生産性を上げるために、P3HA合成酵素群の遺伝子を導入したアルカリゲネス・ユートロファス AC32株(Alcaligenes eutrophus AC32, FERM BP-6038)(T.Fukui,Y.Doi,J.Bateriol.,179,p4821-4830(1997))が好ましい。このような微生物を適切な条件で培養して菌体内にP3HAを蓄積させた微生物菌体が用いられる。また上記以外にも、生産したいP3HAに合わせて、各種P3HA合成関連遺伝子を導入した遺伝子組換え微生物を用いても良いし、基質の種類を含む培養条件の最適化をすればよい。
 <ポリカプロラクトン(B)>
 ポリカプロラクトンは、式:[-(CH-CO-O-]で表される単量体単位を有するポリエステルである。以下ではポリカプロラクトンをPCLと略する場合がある。PCLは、通常、カチオン又はアニオン開始剤を用いたε-カプロラクトンの開環重合によって製造され得る。重合を促進するために、有機金属触媒が使用される場合がある。但し、他の製造方法により得られたPCLを用いることもできる。また、末端封止の構造は特に限定されない。PCLは、一般的に、50~65℃の融点、10~30℃の結晶化温度、-50~-60℃のガラス転移点を持つが、これらに限定されない。
 PCLの分子量は特に限定されないが、接着力と溶融塗布時の作業性のバランスの観点から、重量平均分子量が1,000~500,000であることが好ましく、5,000~400,000がより好ましく、10,000~300,000がさらに好ましく、20,000~250,000が特に好ましい。重量平均分子量が1,000以上であると、接着層の強度が良好となり、十分な接着力を達成することができる。一方、500,000以下であると、溶融粘度が低減され、ホットメルト接着剤用組成物を溶融させて塗布する際の作業性が良好となり得る。
 特に、強度や伸びなどの機械物性がより良好になり得る観点から、PCLの重量平均分子量は、100,000以上であることが好ましく、120,000以上がより好ましい。
 一方、溶融粘度をより低減する観点からは、PCLの重量平均分子量は、100,000未満であることが好ましく、90,000以下がより好ましく、70,000以下がさらに好ましい。
 PCLとしては、重量平均分子量が互いに異なる2種類以上のPCLを併用してもよい。特に、溶融粘度低減と良好な機械物性のバランスが特に優れていることから、分子量が比較的高い第一PCLと、分子量が比較的低い第二PCLを併用する態様が好ましい。
 この態様において、第一PCLの重量平均分子量は、100,000以上であることが好ましく、120,000以上がより好ましい。また、第二PCLの重量平均分子量は、70,000以下であることが好ましく、50,000以下がより好ましく、40,000以下がさらに好ましい。
 分子量が比較的高い第一PCLと分子量が比較的低い第二PCLの使用比率は特に限定されないが、第一PCL/第二PCLの重量比は、95/5~40/60であることが好ましく、90/10~50/50がより好ましく、85/15~60/40がさらに好ましい。この範囲内で両PCLを併用すると、第一PCLによる機械物性の改善と、第二PCLによる溶融粘度の低減をより高レベルで両立することができる。
 PCLの重量平均分子量は、前述したP3HAの重量平均分子量の場合と同様の測定方法によって測定することができる。
 前記ホットメルト接着剤用組成物において、ポリ(3-ヒドロキシアルカノエート)系樹脂(A)とポリカプロラクトン(B)の含有比率は、適宜設定することができるが、(A)成分/(B)成分の重量比が95/5~5/95であることが好ましい。この範囲内では、海水分解性を有するポリ(3-ヒドロキシアルカノエート)系樹脂を利用しながら、溶融粘度が低減され、かつ良好な機械物性を有するホットメルト接着剤用組成物を提供することができる。前記重量比は、90/10~10/90であることがより好ましく、80/20~20/80がさらに好ましく、70/30~30/70が特に好ましい。また、95/5~50/50であってもよいし、50/50~5/95であってもよい。溶融粘度をより低減する観点から、50/50~5/95であることが好ましい。
 <グリセリン脂肪酸エステル(C)>
 本実施形態に係るホットメルト接着剤用組成物は、グリセリン脂肪酸エステル(C)をさらに含有してもよい。グリセリン脂肪酸エステル(C)を配合することにより、機械物性をある程度保持しつつ溶融粘度を大きく低減することができる。
 グリセリン脂肪酸エステルとしては、グリセリンのモノエステル、ジエステル、又はトリエステルのいずれも使用することができるが、ポリ(3-ヒドロキシアルカノエート)系樹脂(A)及びポリカプロラクトン(B)との相溶性の観点から、グリセリンのトリエステルが好ましい。グリセリンのトリエステルのなかでも、グリセリンジアセトモノエステルが特に好ましい。グリセリンジアセトモノエステルの具体例としては、グリセリンジアセトモノラウレート、グリセリンジアセトモノオレエート、グリセリンジアセトモノステアレート、グリセリンジアセトモノカプリレート、グリセリンジアセトモノデカノエート等が挙げられる。中でも、グリセリンジアセトモノラウレートが好ましい。前記変性グリセリン系化合物の市販品としては、理研ビタミン株式会社の「BIOCIZER」、「リケマール」(登録商標)PLシリーズ等が例示される。
 前記ホットメルト接着剤用組成物において、グリセリン脂肪酸エステル(C)の含有量は、ポリ(3-ヒドロキシアルカノエート)系樹脂(A)とポリカプロラクトン(B)の合計100重量部に対して、0~50重量部であることが好ましい。下限値は0.1重量部以上であることが好ましく、1重量部以上がより好ましく、5重量部以上がさらに好ましい。上限値は30重量部以下であることが好ましく、20重量部以下がより好ましく、15重量部以下がさらに好ましい。
 <他の成分>
 前記ホットメルト接着剤用組成物は、樹脂成分として、ポリ(3-ヒドロキシアルカノエート)系樹脂(A)及びポリカプロラクトン(B)のみを含有するものであってもよいが、他の樹脂をさらに含有してもよい。そのような他の樹脂は、生分解性樹脂であることが好ましく、例えば、ポリブチレンサクシネート、ポリ乳酸等の脂肪族ポリエステル系樹脂や、ポリブチレンアジペートテレフタレート、ポリブチレンセバテートテレフタレート、ポリブチレンアゼレートテレフタレート等の脂肪族芳香族ポリエステル系樹脂等が挙げられる。
 これら他の樹脂の含有量は、ポリ(3-ヒドロキシアルカノエート)系樹脂(A)とポリカプロラクトン(B)の合計100重量部に対して、0~30重量部程度であってよく、0~10重量部が好ましく、0~5重量部がより好ましく、0~1重量部が特に好ましい。
 前記ホットメルト接着剤用組成物は、グリセリン脂肪酸エステル(C)以外の可塑剤をさらに含有してもよい。そのような可塑剤としては特に限定されないが、例えば、二塩基酸エステル系化合物、アジピン酸エステル系化合物、ポリエーテルエステル系化合物、安息香酸エステル系化合物、クエン酸エステル系化合物、イソソルバイドエステル系化合物等が挙げられる。
 前記二塩基酸エステル系化合物としては、例えば、ジブチルアジペート、ジイソブチルアジペート、ビス(2-エチルヘキシル)アジペート、ジイソノニルアジペート、ジイソデシルアジペート、ビス[2-(2-ブトキシエトキシ)エチル]アジペート、ビス[2-(2-ブトキシエトキシ)エチル]アジペート、ビス(2-エチルヘキシル)アゼレート、ジブチルセバケート、ビス(2-エチルヘキシル)セバケート、ジエチルサクシネート、混基二塩基酸エステル化合物等が挙げられる。
 前記アジピン酸エステル系化合物としては、例えば、ジエチルヘキシルアジペート、ジオクチルアジペート、ジイソノニルアジペート等が挙げられる。
 前記ポリエーテルエステル系化合物としては、ポリエチレングリコールジベンゾエート、ポリエチレングリコールジカプリレート、ポリエチレングリコールジイソステアレート等が挙げられる。
 グリセリン脂肪酸エステル(C)以外の可塑剤の含有量は、ポリ(3-ヒドロキシアルカノエート)系樹脂(A)とポリカプロラクトン(B)の合計100重量部に対して、0~30重量部程度であってよく、0~10重量部が好ましく、0~5重量部がより好ましく、0~1重量部が特に好ましい。
 前記ホットメルト接着剤用組成物は、接着剤の分野で通常用いられ得る添加剤を含んでもよい。そのような添加剤としては、タルク、炭酸カルシウム、マイカ、シリカ、酸化チタン、アルミナ等の無機充填剤、もみがら、木粉、新聞紙等の古紙、各種デンプン、セルロース等の有機充填剤、顔料、染料等の着色剤、活性炭、ゼオライト等の臭気吸収剤、バニリン、デキストリン等の香料、酸化防止剤、抗酸化剤、耐候性改良剤、紫外線吸収剤、結晶核剤、滑剤、離型剤、撥水剤、抗菌剤、摺動性改良剤、粘着付与剤、フィラー、薬剤等が挙げられる。添加剤は、1種のみを含んでもよいし、2種以上を含んでいてもよい。また、添加剤の固形分濃度は、その使用目的に応じて適宜設定可能である。
 <ホットメルト接着剤用組成物>
 本実施形態に係るホットメルト接着剤用組成物は、常温(通常15~30℃程度)で固形状又は半固形状を呈するものである。常温では塗布に適した流動性を示さず、適度な温度に加熱して溶融させることにより、塗布に適した流動性を示すものである。
 また、前記ホットメルト接着剤用組成物は、揮発性の有機溶剤又は水を実質的に含有しないものである。具体的には、ホットメルト接着剤用組成物中の有機溶剤及び水の総量は、10重量%以下であることが好ましく、1重量%以下がより好ましく、0.1重量%以下がさらに好ましい。
 前記ホットメルト接着剤用組成物は、そのままホットメルト接着剤として使用されるものであってもよいし、適当な添加剤の追加配合や、形状の調整等の処理を行ってからホットメルト接着剤として使用されるものであってもよい。
 前記ホットメルト接着剤用組成物の形状は特に限定されないが、一般的なホットメルト接着剤の形状を採用することができ、具体的には、スティック(棒)状、ペレット(粒)状、シート又はフィルム状等が挙げられる。
 前記ホットメルト接着剤用組成物は、加熱溶融させたときの粘度、即ち溶融粘度が比較的低いものであり、そのため、ホットメルト接着剤用組成物を溶融させて基材に塗布する時の作業性が良好なものとなり得る。
 このように比較的低い溶融粘度を示す指標として、前記ホットメルト接着剤用組成物は、キャピログラフを用いて、剪断速度1.2×10-1、及び温度150℃で測定した溶融粘度が2,900Pa・s以下であることが好ましく、2,000Pa・s以下がより好ましく、1,500Pa・s以下がさらに好ましく、1,000Pa・s以下が特に好ましい。
 前記ホットメルト接着剤用組成物は、加熱溶融させた後、2つの基材を接着するために使用することができる。具体的には、前記ホットメルト接着剤用組成物を加熱して溶融させ、第一基材に塗布した後、その塗布面を第二基材に貼り合わせ、該組成物を冷却し固化させることで第一基材と第二基材を接着することができる。前記ホットメルト接着剤用組成物を加熱して第一基材に塗布する際には、グルーガン又はホットガンを使用することができる。
 また、前記ホットメルト接着剤用組成物を第一基材と第二基材に載置した後、加熱して該組成物を溶融させ、その後、冷却することによっても第一基材と第二基材を接着することができる。
 前記ホットメルト接着剤用組成物を溶融させる際の加熱温度は、前記ホットメルト接着剤用組成物の融点を考慮して適宜設定することができるが、例えば、100~180℃程度の範囲内であってよい。
 前記ホットメルト接着剤用組成物を使用することができる前記基材の種類としては特に限定されないが、前記ホットメルト接着剤用組成物が生分解性を示すことから、前記基材も生分解性を示すことが好ましい。尚、前記基材の形状は特に限定されない。
 生分解性を示す基材としては特に限定されないが、紙(主成分がセルロース)、セロハン、セルロースエステル、ポリビニルアルコール、ポリアミノ酸、ポリグリコール酸、プルラン、生分解性ポリエステル等が挙げられる。また、これら基材に、アルミ、シリカ等の無機物を蒸着したものも、前記基材として使用できる。中でも、耐熱性に優れ、生分解性に優れる点から、紙または生分解性ポリエステルが好ましい。
 紙の種類は、特に限定されず、カップ原紙、片艶紙、クラフト紙、上質紙、コート紙、薄葉紙、グラシン紙、板紙等が挙げられる。
 前記基材を構成し得る生分解性ポリエステルとしては特に限定されず、ポリブチレンサクシネート(PBS)系樹脂、ポリカプロラクトン系樹脂、ポリヒドロキシアルカノエート系樹脂等の脂肪族ポリエステル樹脂や、ポリブチレンアジペートテレフタレート(PBAT)系樹脂、ポリブチレンセバテートテレフタレート系樹脂、ポリブチレンサクシネートテレフタレート系樹脂等の脂肪族芳香族ポリエステル樹脂が挙げられる。
 前記基材は、必要に応じて、耐水剤、撥水剤、無機物等が添加されたものであってもよいし、酸素バリア層コーティング、水蒸気バリアコーティング等の表面処理が施されたものであってもよい。
 前記ホットメルト接着剤用組成物を使用する用途としては特に限定されず、各種接着に使用することができるが、具体例としては、段ボールの封函、カートン(紙製の箱)の封函、衛生材料(例えば紙おむつ等)の組立等を挙げることができる。
 以下の各項目では、本開示における好ましい態様を列挙するが、本発明は以下の項目に限定されるものではない。
[項目1]
 ポリ(3-ヒドロキシアルカノエート)系樹脂(A)、及び、ポリカプロラクトン(B)、を含有する、ホットメルト接着剤用組成物。
[項目2]
 ポリ(3-ヒドロキシアルカノエート)系樹脂(A)が、ポリ(3-ヒドロキシブチレート-co-3-ヒドロキシヘキサノエート)共重合体である、項目1に記載のホットメルト接着剤用組成物。
[項目3]
 ポリ(3-ヒドロキシブチレート-co-3-ヒドロキシヘキサノエート)共重合体中の3-ヒドロキシヘキサノエート単位の平均含有比率が3~25mol%である、項目2に記載のホットメルト接着剤用組成物。
[項目4]
 ホットメルト接着剤用組成物は、剪断速度1.2×10-1、及び温度150℃で測定した溶融粘度が2,900Pa・s以下である、項目1~3のいずれかに記載のホットメルト接着剤用組成物。
[項目5]
 ポリ(3-ヒドロキシアルカノエート)系樹脂(A)は重量平均分子量が100,000~1,000,000である、項目1~4のいずれかに記載のホットメルト接着剤用組成物。
[項目6]
 ポリカプロラクトン(B)は重量平均分子量が20,000~250,000である、項目1~5のいずれかに記載のホットメルト接着剤用組成物。
[項目7]
 ポリカプロラクトン(B)は、重量平均分子量が互いに異なる2種類以上のポリカプロラクトンを含む、項目1~6のいずれかに記載のホットメルト接着剤用組成物。
[項目8]
 ポリ(3-ヒドロキシアルカノエート)系樹脂(A)/ポリカプロラクトン(B)の重量比が95/5~5/95である、項目1~7のいずれかに記載のホットメルト接着剤用組成物。
[項目9]
 グリセリン脂肪酸エステル(C)を更に含有する、項目1~8のいずれかに記載のホットメルト接着剤用組成物。
[項目10]
 グリセリン脂肪酸エステル(C)がグリセリンジアセトモノラウレートである、項目9に記載のホットメルト接着剤用組成物。
[項目11]
 グリセリン脂肪酸エステル(C)の含有量が、ポリ(3-ヒドロキシアルカノエート)系樹脂(A)とポリカプロラクトン(B)の合計100重量部に対して、50重量部以下である、項目9又は10に記載のホットメルト接着剤用組成物。
[項目12]
 積層体の製造方法であって、
 項目1~11のいずれかに記載のホットメルト接着剤用組成物を加熱下で溶融させ、第一基材に塗布した後、塗布面を第二基材に貼り合わせ、該組成物を冷却して第一基材と第二基材を接着することによる、積層体の製造方法。
 以下に実施例を示し、本発明をより具体的に説明するが、本発明はこれらの実施例に何ら限定されるものではない。
 実施例及び比較例においては、以下の原料を使用した。
 [使用したポリ(3-ヒドロキシアルカノエート)系樹脂(A)]
ポリ(3-ヒドロキシアルカノエート)系樹脂(A-1):平均含有比率3HB/3HH=89/11(mol%/mol%)、重量平均分子量は60万g/mol
ポリ(3-ヒドロキシアルカノエート)系樹脂(A-2):平均含有比率3HB/3HH=89/11(mol%/mol%)、重量平均分子量は20万g/mol
 [ポリカプロラクトン(B)]
(B-1):ポリ-ε-カプロラクトン:富士フィルム和光純薬製、重量平均分子量28,500
(B-2):Capa6250:インジェビティ製、重量平均分子量66,200
(B-3):Capa6400:インジェビティ製、重量平均分子量80,900
(B-4):Capa6500:インジェビティ製、重量平均分子量138,800
(B-5):Capa6800:インジェビティ製、重量平均分子量232,500
グリセリン脂肪酸エステル(C):理研ビタミン製BIOCIZER
 [重量平均分子量の測定法]
 各樹脂の重量平均分子量は、ゲル浸透クロマトグラフィー(GPC)(昭和電工社製「Shodex GPC-101」)によって、カラムにポリスチレンゲル(昭和電工社製「Shodex K-804」)を用い、クロロホルムを移動相とし、ポリスチレン換算した場合の分子量として求めた。
 (実施例1~42)
 混練・押出性試験装置(東洋精機製作所製ラボプラストミル)に、ポリ(3-ヒドロキシアルカノエート)系樹脂(A)とポリカプロラクトン(B)を、各表に記載の重量比で、合計量が40gになるように投入し、150℃で5~10分間の混練を行った。
 実施例33~42では、(A)+(B)の合計量40gを100重量部とし、表に記載の重量部数のグリセリン脂肪酸エステル(C)を前記混練・押出性試験装置に追加投入して、同様に混練を行った。
 (比較例1及び2)
 表の記載に従って、ポリ(3-ヒドロキシアルカノエート)系樹脂(A)のみを使用した。
 [溶融粘度]
 各実施例で得た混練物の溶融粘度、又は、比較例1及び2ではポリ(3-ヒドロキシアルカノエート)系樹脂(A)の溶融粘度をキャピログラフによって測定した。測定温度は150℃とした。各表には押出速度10mm/min(剪断速度1.2×10-1)における溶融粘度(Pa・s)を記載した。
 [引張試験]
 各実施例で得た混練物、又は、比較例1及び2ではポリ(3-ヒドロキシアルカノエート)系樹脂(A)を160℃でプレス成型し、100μm厚のシートを得た。得られたシートから、3号ダンベル形状の試験片を切り抜き、引張試験用のサンプルとして使用した。
 引張試験は、島津製作所製AG-2000Aを使用して実施し、測定温度:23℃、引張速度50mm/minとした。各表には、破断時強度(MPa)と破断時伸び(%)を記載した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 表1では、ポリ(3-ヒドロキシアルカノエート)系樹脂(A)単独で溶融粘度及び引張試験の評価を行った比較例1及び2の結果を示した。比較例1では、機械物性は比較的良好であるものの、溶融粘度が高くホットメルト接着剤としての使用に適していない。一方、分子量が比較的低いポリ(3-ヒドロキシアルカノエート)系樹脂(A)を使用した比較例2では、溶融粘度は比較例1より低い値を示したものの、破断時伸びが大きく低下した。
 表2~6における各実施例では、ポリ(3-ヒドロキシアルカノエート)系樹脂(A)にポリカプロラクトン(B)を併用して調製した混練物について溶融粘度及び引張試験の各評価を行った。いずれの実施例も、比較例1より溶融粘度が低くホットメルト接着剤としての使用が可能であった。また、比較例2より破断時伸びが大きく、機械物性が良好であった。

Claims (12)

  1.  ポリ(3-ヒドロキシアルカノエート)系樹脂(A)、及び、ポリカプロラクトン(B)、を含有する、ホットメルト接着剤用組成物。
  2.  ポリ(3-ヒドロキシアルカノエート)系樹脂(A)が、ポリ(3-ヒドロキシブチレート-co-3-ヒドロキシヘキサノエート)共重合体である、請求項1に記載のホットメルト接着剤用組成物。
  3.  ポリ(3-ヒドロキシブチレート-co-3-ヒドロキシヘキサノエート)共重合体中の3-ヒドロキシヘキサノエート単位の平均含有比率が3~25mol%である、請求項2に記載のホットメルト接着剤用組成物。
  4.  ホットメルト接着剤用組成物は、剪断速度1.2×10-1、及び温度150℃で測定した溶融粘度が2,900Pa・s以下である、請求項1又は2に記載のホットメルト接着剤用組成物。
  5.  ポリ(3-ヒドロキシアルカノエート)系樹脂(A)は重量平均分子量が100,000~1,000,000である、請求項1又は2に記載のホットメルト接着剤用組成物。
  6.  ポリカプロラクトン(B)は重量平均分子量が20,000~250,000である、請求項1又は2に記載のホットメルト接着剤用組成物。
  7.  ポリカプロラクトン(B)は、重量平均分子量が互いに異なる2種類以上のポリカプロラクトンを含む、請求項1又は2に記載のホットメルト接着剤用組成物。
  8.  ポリ(3-ヒドロキシアルカノエート)系樹脂(A)/ポリカプロラクトン(B)の重量比が95/5~5/95である、請求項1又は2に記載のホットメルト接着剤用組成物。
  9.  グリセリン脂肪酸エステル(C)を更に含有する、請求項1又は2に記載のホットメルト接着剤用組成物。
  10.  グリセリン脂肪酸エステル(C)がグリセリンジアセトモノラウレートである、請求項9に記載のホットメルト接着剤用組成物。
  11.  グリセリン脂肪酸エステル(C)の含有量が、ポリ(3-ヒドロキシアルカノエート)系樹脂(A)とポリカプロラクトン(B)の合計100重量部に対して、50重量部以下である、請求項9に記載のホットメルト接着剤用組成物。
  12.  積層体の製造方法であって、
     請求項1又は2に記載のホットメルト接着剤用組成物を加熱下で溶融させ、第一基材に塗布した後、塗布面を第二基材に貼り合わせ、該組成物を冷却して第一基材と第二基材を接着することによる、積層体の製造方法。
PCT/JP2023/013521 2022-05-16 2023-03-31 ホットメルト接着剤用組成物 WO2023223689A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022079932 2022-05-16
JP2022-079932 2022-05-16

Publications (1)

Publication Number Publication Date
WO2023223689A1 true WO2023223689A1 (ja) 2023-11-23

Family

ID=88834955

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/013521 WO2023223689A1 (ja) 2022-05-16 2023-03-31 ホットメルト接着剤用組成物

Country Status (1)

Country Link
WO (1) WO2023223689A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05271638A (ja) * 1992-01-27 1993-10-19 Natl Starch & Chem Investment Holding Corp ポリヒドロキシブチレート/ヒドロキシバレレートベースホットメルト接着剤
JPH11193371A (ja) * 1997-12-27 1999-07-21 Toyo Purasuto:Kk 生分解性熱接着剤
JP2010506979A (ja) * 2006-10-13 2010-03-04 スリーエム イノベイティブ プロパティズ カンパニー 2−オクチル(メタ)アクリレート接着剤組成物

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05271638A (ja) * 1992-01-27 1993-10-19 Natl Starch & Chem Investment Holding Corp ポリヒドロキシブチレート/ヒドロキシバレレートベースホットメルト接着剤
JPH11193371A (ja) * 1997-12-27 1999-07-21 Toyo Purasuto:Kk 生分解性熱接着剤
JP2010506979A (ja) * 2006-10-13 2010-03-04 スリーエム イノベイティブ プロパティズ カンパニー 2−オクチル(メタ)アクリレート接着剤組成物

Similar Documents

Publication Publication Date Title
FI117510B (fi) Biologisesti hajoavia polymeereja, menetelmä niiden valmistamiseksi, sekä niiden käyttö biologisesti hajoavien muotokappaleiden valmistukseen
AU689130B2 (en) Biodegradable/compostable hot melt adhesives comprising polyester of lactic acid
KR101731123B1 (ko) 지방족 폴리에스테르
US9062186B2 (en) Bio-resins
FI117440B (fi) Biologisesti hajoavia polymeerejä, menetelmä niiden valmistamiseksi sekä niiden käyttö biologisesti hajoavien muotokappaleiden valmistukseen
WO2004000939A1 (ja) ポリ乳酸系重合体組成物、その成形品、および、フィルム
WO1990001521A1 (en) Degradable thermoplastic from lactides
KR20110059907A (ko) 종이의 코팅 방법
KR20120099716A (ko) 수축 필름의 제조 방법
JP6008860B2 (ja) ジアンヒドロヘキシトールのアルキルエステルによる脂肪族ポリエステルの可塑化
AU2011231669A1 (en) Process for producing cling films
JP5353768B2 (ja) 樹脂組成物
US20110237743A1 (en) Process for producing clingfilms
ES2765700T3 (es) Adhesivo termofusible no reactivo con mejorador de tiempo de fraguado
JP4270925B2 (ja) 乳酸系ポリマーの組成物
WO2023223689A1 (ja) ホットメルト接着剤用組成物
US20230002549A1 (en) Poly(3-hydroxyacid) polymers from long-chain epoxides and their uses related to hot melt adhesives
JP2005041980A (ja) 樹脂用可塑剤及び該可塑剤を含む樹脂組成物、並びに、該樹脂組成物を成形してなる成形体
JPWO2018181500A1 (ja) 生分解性ポリエステルフィルムの製造方法
WO2021153250A1 (ja) 生分解性ポリエステル溶液およびその利用
JP2010042655A (ja) 積層フィルム及びそれからなる包装材
JP2004083627A (ja) グリコール酸系ポリマーの組成物及びその加工品
JP2007138187A (ja) ポリ乳酸系樹脂組成物およびそれからなる成形品
AU4223889A (en) Degradable thermoplastic from lactides
JP2004083624A (ja) グリコール酸系ポリマー組成物及びその加工品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23807304

Country of ref document: EP

Kind code of ref document: A1