WO2023221498A1 - 像素单元的驱动电路及显示面板 - Google Patents

像素单元的驱动电路及显示面板 Download PDF

Info

Publication number
WO2023221498A1
WO2023221498A1 PCT/CN2022/140822 CN2022140822W WO2023221498A1 WO 2023221498 A1 WO2023221498 A1 WO 2023221498A1 CN 2022140822 W CN2022140822 W CN 2022140822W WO 2023221498 A1 WO2023221498 A1 WO 2023221498A1
Authority
WO
WIPO (PCT)
Prior art keywords
switch
unit
module
output
precharge
Prior art date
Application number
PCT/CN2022/140822
Other languages
English (en)
French (fr)
Inventor
周仁杰
袁海江
Original Assignee
惠科股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 惠科股份有限公司 filed Critical 惠科股份有限公司
Priority to EP22942518.6A priority Critical patent/EP4451254A1/en
Publication of WO2023221498A1 publication Critical patent/WO2023221498A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/02Details of power systems and of start or stop of display operation
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/04Display protection

Definitions

  • the present application relates to the field of display technology, and in particular to pixel unit driving circuits and display panels.
  • LED displays are currently widely used in various fields because they have many advantages such as low voltage, energy saving, and long service life.
  • the light-emitting device such as micro-LED
  • the light-emitting device maintains a certain connection with the corresponding power supply unit and is not completely disconnected, causing the light-emitting device of the display panel to be easily damaged, and the display panel The display life is short.
  • the related technology after the light-emitting device of the display panel is extinguished, it lights up again, which is insensitive and affects the display effect.
  • This application provides a driving circuit for a pixel unit and a display panel to at least solve the problem of short display life of display panels in related technologies.
  • the present application provides a driving circuit for a pixel unit, which is used to drive the light-emitting unit of the pixel unit.
  • the driving circuit includes a main control module, a switch module, a trigger module, a precharge module, a power supply unit and a precharge power supply unit.
  • the main control module is electrically connected to the switch module and the trigger module respectively, and transmits scanning signals to the switch module and the trigger module.
  • the switch module is also connected to the light-emitting unit and the trigger module respectively.
  • the precharge module is electrically connected, the trigger module is also electrically connected to the precharge module, and the precharge module is also electrically connected to the power supply unit and the precharge power supply unit respectively, wherein the switch module is used to receive the The line scan signal controls the on/off of the light-emitting unit and the pre-charge module; the trigger module is used to trigger the light-emitting unit and the pre-charge module according to the received line scan signal when the light-emitting unit is disconnected from the pre-charge module.
  • the light-emitting unit is used to connect the light-emitting unit and the pre-charge module.
  • the luminous display is controlled by the power supply voltage transmitted by the power supply unit through the precharge module, and is controlled by the precharge voltage generated by the precharge power supply unit when the precharge module is connected. Control the luminous display.
  • the present application provides a display panel including a plurality of pixel units.
  • the pixel units include a light-emitting unit and a driving circuit that drives the light-emitting unit.
  • the driving circuit includes the driving circuit described in the first aspect.
  • the driving circuit is configured with a main control module, a switch module, a trigger module, a precharge module, a power supply unit and a precharge power supply unit.
  • the module transmits the scan signal to the switch module and the trigger module.
  • the switch module controls the on/off of the light-emitting unit and the precharge module based on the received scan signal.
  • the trigger module The scanning signal controls the on-off of the power supply unit and the pre-charge module, and controls the on-off of the pre-charge power supply unit and the pre-charge module, and enables the light-emitting unit to communicate with the pre-charge module when the light-emitting unit is connected to the pre-charge module.
  • the transmitted power supply voltage is controlled to perform luminous display
  • the precharge voltage generated by the precharge module connected to the precharge power supply unit is controlled to perform luminous display, so that when the light emitting unit is extinguished, the light emitting unit is relative to the power supply unit.
  • the display response speed has the beneficial effect of improving display response sensitivity and display effect.
  • Figure 1 is a logic block diagram of a driving circuit of a pixel unit according to an embodiment of the present application
  • Figure 2 is a logic block diagram 1 of a driving circuit of a pixel unit according to a preferred embodiment of the present application;
  • Figure 3 is a topology diagram of the precharge module, switch module, and light-emitting unit according to an embodiment of the present application
  • Figure 4 is a topology diagram of a switch module and a light-emitting unit according to an embodiment of the present application
  • Figure 5 is a topology diagram of a trigger module according to an embodiment of the present application.
  • Figure 6 is a logic block diagram 2 of the driving circuit of the pixel unit according to the preferred embodiment of the present application.
  • FIG. 7 is a topology diagram of a driving circuit of a pixel unit according to an embodiment of the present application.
  • Figure 1 is a logic block diagram of a driving circuit of a pixel unit according to an embodiment of the present application.
  • Figure 7 is a topology diagram of a driving circuit of a pixel unit according to an embodiment of the present application.
  • the driving circuit of a pixel unit shown in Figure 1 and Figure 7 The circuit is used to drive the light emitting unit 100 of the pixel unit to emit light.
  • the driving circuit of the pixel unit provided by the embodiment of the present application includes a light-emitting unit 100.
  • the light-emitting unit 100 may be a micron light-emitting diode (Micro-LED), but is not limited to a micron light-emitting diode.
  • the driving circuit includes a main control module 200, a switch module 300, a trigger module 400, a precharge module 500, a power supply unit 600 and a precharge power supply unit 700.
  • the main control module 200 is electrically connected to the switch module 300 and the trigger module 400 respectively.
  • the module 200 can transmit scan signals to the switch module 300 and the trigger module 400 respectively.
  • the switch module 300 is also electrically connected to the light emitting unit 100 and the precharge module 500 respectively.
  • the trigger module 400 is also electrically connected to the precharge module 500.
  • the precharge module 500 It is also electrically connected to the power supply unit 600 and the precharge power supply unit 700 respectively.
  • the switch module 200 can receive the line scan signal sent by the main control module 200, and the switch module 200 can control the on/off circuit between the light emitting unit 100 and the precharge module 500 according to the received line scan signal.
  • the trigger module 400 controls the circuit between the power supply unit 600 and the precharge module 500 according to the received line scan signal, and the trigger module 400 controls the on/off of the circuit between the power supply unit 600 and the precharge module 500 according to the received line scan signal.
  • the signal controls the on/off circuit between the precharge power supply unit 700 and the precharge module 500 .
  • the light-emitting unit 100 When the light-emitting unit 100 is connected to the pre-charge module 500, the light-emitting unit 100 is controlled by the power supply unit 600 through the power supply voltage transmitted by the pre-charge module 500 to emit light and display, and the light-emitting unit 100 is connected to the pre-charge power supply unit 700 by the pre-charge module 500.
  • the generated precharge voltage is controlled to perform luminous display.
  • one end of the light-emitting unit 100 is connected to the power supply voltage, and the other end of the light-emitting unit 100 is connected to the precharge voltage.
  • the voltage difference between the power supply voltage and the precharge voltage is greater than the rated conduction voltage of the light-emitting unit 100, that is, When the tube voltage drops, the light-emitting unit 100 performs light-emitting display.
  • the main control module 200 includes a microcontroller, which includes but is not limited to one of the following: a microcontroller, a digital signal processor (Digital Signal Processing, DSP for short), a field-programmable gate array (Field- Programmable Gate Array (FPGA for short).
  • a microcontroller includes but is not limited to one of the following: a microcontroller, a digital signal processor (Digital Signal Processing, DSP for short), a field-programmable gate array (Field- Programmable Gate Array (FPGA for short).
  • DSP Digital Signal Processing
  • FPGA Field- Programmable Gate Array
  • the row scanning port of the main control module 200 is electrically connected to the control port of the switch module 300.
  • the input end of the precharge module 500 is electrically connected to the power supply unit 600 and the precharge power supply unit 700.
  • the input end of the switch module 200 is connected to the control port of the switch module 300.
  • the output terminal of the precharge module 500 is connected, and the output terminal of the switch module 300 is connected to the light emitting unit 100 .
  • the switch module 300 in this embodiment includes a first switch unit 31 and a second switch unit 32
  • the precharge module 500 includes a first precharge unit 51 and a second precharge unit 52 .
  • the first input port of the first precharge unit 51 is electrically connected to the positive power supply terminal (refer to Vdd in FIG. 3 ) of the power supply unit 600 , and the second input port of the first precharge unit 51 is connected to a voltage of the precharge power supply unit 700
  • the port (refer to Va in FIG. 3 ) is electrically connected, and the output terminal of the first precharging unit 51 is electrically connected to the input terminal of the first switch unit 31 .
  • the output terminal of the first switch unit 31 is electrically connected to the first terminal of the light emitting unit 100 .
  • the second terminal of the light emitting unit 100 is electrically connected to the input terminal of the second switch unit 32 .
  • the output terminal of the second switch unit 32 is electrically connected to the output terminal of the second precharge unit 52,
  • the first input port of the second precharge unit 52 is connected to the negative power terminal of the power supply unit 600 (for example, the negative pole of the power supply, or ground), and the second input port of the second precharge unit 52 is connected to another terminal of the precharge power supply unit 700 .
  • voltage port (refer to Vb in FIG. 3 ), the voltage provided by the other voltage port is set to a voltage that cannot be the voltage at which the light-emitting unit 100 emits light and displays.
  • the main control module 200 controls the switch module 300, it controls the first switch unit 31 and the second switch unit 32 at the same time, so that both ends of the light-emitting unit 100 are in contact with the corresponding precharge.
  • the unit is connected or disconnected.
  • the light-emitting unit 100 is the smallest pixel unit of the display panel.
  • the light-emitting unit 100 may be a micron light-emitting diode (Micro-LED).
  • the anode of the micron light-emitting diode corresponds to the first end of the light-emitting unit 100, and the cathode of the micron light-emitting diode Corresponding to the second end of the light emitting unit 100 .
  • the power supply unit 600 provides power to the light-emitting unit 100.
  • the power supply unit 600 provides a DC voltage to the light-emitting unit 100 (for example, the voltage value of the DC voltage may be 5V, 3.3V or 1.8V).
  • the precharge power supply unit 700 can provide the corresponding voltage and precharge through the corresponding charging element of the precharge module 500 after the light-emitting unit 100 is turned off and before the next light-emitting display, thereby providing equipment for the light-emitting unit 100 to emit light and display in advance.
  • the energy storage with a constant voltage value enables the light-emitting unit 100 to respond quickly the next time it displays, preventing the display effect from being affected by slow display response speed.
  • the precharge power supply unit 700 and the power supply unit 600 can use the same power module, or they can use different power modules.
  • the precharge power supply unit 700 and the power supply unit 600 respectively correspond to the power supply.
  • the voltage value of the output voltage of the voltage output port corresponding to the precharge power supply unit 700 is set to a voltage value smaller than the power supply voltage of the power supply unit 100 .
  • the scan signal port of the main control module 200 is connected to the input end of the trigger module 400 .
  • the triggering of the triggering module 400 mainly considers the relevant control during the extinguishing process of the light-emitting unit 100, that is, when the horizontal scan signal changes from a high level to a low level and does not change back to a high level. Control, and after the horizontal scan signal changes to high level, the light-emitting unit 100 has emitted light, and the relevant triggering mechanism does not exist. Therefore, after the horizontal scan signal changes to high level, the default is that the light-emitting unit 100 has completed the light-emitting display.
  • the trigger module 400 is triggered by the falling edge of the line scan signal. That is, when the line scan signal transitions from a high level to a low level, the trigger module 400 will be triggered to start and generate a corresponding signal. Control the on/off circuit between the power supply unit 600 and the precharge module 500 , and control the related control signals on the on/off circuit between the precharge power supply unit 700 and the precharge module 500 .
  • the switch module 300 controls both ends of the light emitting unit 100 to disconnect from the precharge module 500 , to achieve disconnection from the power supply.
  • the main control module 200, the switch module 300, the trigger module 400, the precharge module 500, the power supply unit 600 and the precharge power supply unit 700 are provided, and the main control module 200 sends signals to the switch module 300 and the trigger module. 400 transmits the line scan signal, so that the switch module 300 controls the on/off circuit between the light-emitting unit 100 and the precharge module 500 according to the received line scan signal, thereby isolating the light-emitting unit 100 from the power supply, that is, even if the light-emitting unit 100 is input The power supply is blocked.
  • the trigger module 400 controls the circuit between the power supply unit 600 and the precharge module 500 according to the received line scan signal, and the trigger module 400 controls the on/off of the circuit between the power supply unit 600 and the precharge module 500 according to the received line scan signal.
  • the signal controls the on and off of the circuit between the pre-charge power supply unit 700 and the pre-charge module 500, thereby isolating the light-emitting unit 100 from the power supply and at the same time providing energy storage for the next lighting of the light-emitting unit 100, so that the light-emitting unit 100 and the
  • the precharge module 500 is connected, the light emitting unit 100 is controlled by the power supply unit 600 through the power supply voltage transmitted by the precharge module 500 to emit light, and is controlled by the precharge voltage generated by the precharge module 500 connected to the precharge power supply unit 700. Make a luminous display.
  • the light-emitting unit 100 reacts quickly to emit light, which solves the problems of short display life and insensitive display response of display panels in related technologies, realizes the protection of the light-emitting unit 100, improves the response speed of the light-emitting unit 100 and improves the display. Beneficial effects of response sensitivity and display effects.
  • Figure 2 is a logical block diagram of a driving circuit of a pixel unit according to a preferred embodiment of the present application.
  • Figure 3 is a topological diagram of a precharge module, a switch module, and a light-emitting unit according to an embodiment of the present application.
  • the precharge module 500 includes a first precharge unit 51 and a second precharge unit 52.
  • the first precharge unit 51 includes A dual-channel switch unit 501 and a charging element 502.
  • the second pre-charging unit 52 also includes a dual-channel switch unit 501 and a charging element 502.
  • the first input end of the dual-channel switch unit 501 of the first precharge unit 51 is electrically connected to the positive power port of the power supply unit 600 (refer to Vdd in FIGS. 3 and 7 ).
  • the dual-channel switch unit 501 of the first precharge unit 51 The second input terminal of is electrically connected to the first port of the charging power supply unit 700 (refer to Va in Figure 7).
  • the first input end of the dual-channel switch unit 501 of the second precharge unit 52 is electrically connected to the negative power port of the power supply unit 600 (refer to Vss in Figure 3 and Figure 7 , in practice, the negative power port may be the common ground GND)
  • the second input end of the dual-channel switch unit 501 of the second precharge unit 52 is electrically connected to the second port of the precharge power supply unit 700 (refer to Vb in Figure 3 and Figure 7 , the voltage of the second port cannot cause light emitting. a voltage at which unit 100 emits light).
  • the output end of the trigger module 400 is electrically connected to the first controlled end and the second controlled end of the dual-channel switch unit 501 of the first precharge unit 51, and the output end of the trigger module 400 is also electrically connected to the dual channel switch unit 501 of the second precharge unit 52.
  • the electrical connection points of the first output end and the second output end of the dual-channel switch unit 501 of the first precharge unit 51 are electrically connected to the charging element 502 (refer to C1 in FIG. 3 and FIG. 7 ) and the electrical connection points of the switch module 300 .
  • the electrical connection points of the first output end and the second output end of the dual-channel switch unit 501 of the second precharging unit 52 are electrically connected to the charging element 502 (refer to C2 in FIG. 3 and FIG. 7 ) and the electrical connection points of the switch module 300 .
  • the charging element 502 is grounded away from the end electrically connected to the switch module 300 .
  • the trigger module 400 When the light-emitting unit 100 is disconnected from the precharge module 500, the trigger module 400 generates a trigger signal to control the dual-channel switch unit 501 according to the received line scan signal.
  • the dual-channel switch unit 501 can control the switch module 300 to connect one of the power supply unit 600 and the precharge power supply unit 700 according to the trigger signal output by the trigger module 400.
  • the charging element 502 may be precharged based on the precharge voltage provided by the precharge power supply unit 700 .
  • the precharge module 500 controls the charging element 502 to precharge, and when the switch module 300 switches the precharge module 500 When communicating with the light-emitting unit 100, the pre-charging module 500 controls the power supply unit 600 to communicate with the light-emitting unit 100.
  • the trigger module 400 is triggered by the falling edge of the line scan signal.
  • the dual-channel switch unit 300 receives the corresponding trigger signal, it will correspondingly control the switch module 300 to disconnect from the power supply unit 600 and connect the precharge power supply unit 700 , or control the switch module 300 to disconnect from the precharge power supply unit 700 and connect to the power supply unit 600 .
  • the precharge voltage of the charging element 502 (corresponding to the charging element 502 of the first precharging unit 51 ) reaches a preset threshold, precharging is stopped and the voltage is stabilized by the charging element 502 .
  • the switch module 300 connects the precharging module 500 and the light-emitting unit 100.
  • the light-emitting unit 100 is powered by the power supply voltage (refer to Vdd in Figures 3 and 7) and precharge voltage (refer to Va in Figures 3 and 7) provided by the power supply unit 600 to emit light.
  • the light emitting unit 100 responds quickly.
  • the dual-channel switch unit 501 includes a first switch tube (refer to FIG. 2 T1, T2) and the second switch tube (refer to T6, T7 in Figure 3 and Figure 7), the input end of the first switch tube is connected to the first input end, and the input end of the second switch tube is connected to the second input end, The control end of the first switch tube is connected to the first controlled end, the control end of the second switch tube is connected to the second controlled end, the output end of the first switch tube is connected to the first output end, and the output end of the second switch tube is connected to the third Two output terminals.
  • the first switch tube is used to control the connection between its input terminal and the output terminal when the level of the trigger signal received at its control terminal is a preset low level, and the level of the trigger signal received at its control terminal is a preset low level. When set to high level, the input terminal and output terminal are controlled to be disconnected.
  • the second switch tube is used to control its input terminal to be disconnected from the output terminal when the level of the trigger signal received at its control terminal is a preset level, and to control the level of the trigger signal received at its control terminal to be a preset level.
  • the input terminal and the output terminal are controlled to be connected.
  • the dual-channel switch unit 501 controls the precharge power supply unit 700 to connect with the switch module 300, and when the first switch tube When the input end and the output end of the second switch tube are disconnected and the input end and the output end of the second switch tube are connected, the dual-channel switch unit 501 controls the power supply unit 600 to connect with the switch module 300 .
  • connection or disconnection of the input end and the output end of the first switch tube corresponding to the first precharge unit 51 and the second precharge unit 52 is controlled synchronously, that is, the third switch tube of the first precharge unit 51 is controlled synchronously.
  • the input terminal and the output terminal of a switch tube are connected, the input terminal and the output terminal of the first switch tube of the second precharging unit 52 are also connected, and the same is true when the switch tube is disconnected.
  • connection or disconnection of the input end and the output end of the second switch tube corresponding to the first precharge unit 51 and the second precharge unit 52 is also synchronously controlled.
  • the corresponding switch tube 52 is turned on or off to realize the connection or disconnection of the circuit loop of the corresponding channel. For example: when the input end of the first switch tube corresponding to the first precharge unit 51 and the second precharge unit 52 is connected to When the output terminals are connected, at this time, the corresponding power supply unit 600 and the light-emitting unit 100 form a corresponding circuit loop, and the light-emitting unit 100 performs light-emitting display.
  • the first switch transistor and the second switch transistor in the embodiment of the present application include but are not limited to triodes, MOS transistors, and thin film transistors. Moreover, based on the content disclosed in this application, those skilled in the art can easily think of modifying the dual-channel switch unit 501 disclosed in this application into a dual-pass switching unit that is compatible with the specific selection of the switch tube. Therefore, regardless of This application can be implemented whether the switching transistor is an NPN or PNP transistor, an N-channel or P-channel switching MOS transistor, or an N-type thin film transistor or a P-type thin film transistor, and is not used in the embodiments of the present application. limited.
  • the first switch transistor is a P-type switch transistor, such as a P-type MOS transistor or a P-type thin film transistor
  • the second switch transistor is an N-type switch transistor, such as an N-type MOS transistor or an N-type thin film transistor.
  • the charging element includes a capacitor (see C1, C2 in Figure 2).
  • Figure 4 is a topology diagram of a switch module and a light-emitting unit according to an embodiment of the present application.
  • the switch module 300 includes a first switch unit 31 and a second switch unit 32.
  • the first switch unit 31 includes a third input terminal (refer to the switch tube T12 and the switch tube in FIGS.
  • the second switch unit 32 includes a fourth input terminal (refer to the electrical connection points of the switch T13, the switch T2, the switch T6 and the capacitor C2 in FIGS. 3-4 and 7 ), a fourth output terminal (refer to the FIGS. 3-4 and the electrical connection point between the switch tube T13 and the light-emitting unit 100 in Figure 7) and the fourth control terminal (refer to Figures 3-4 and the electrical connection point between the switch tube T13 and the main control module in Figure 7), the fourth input terminal and the light-emitting
  • the second end of the unit 100 is electrically connected, the fourth output end is electrically connected to the first output end and the second output end of the dual-channel switch unit 501 of the second precharge unit 52, and the fourth control end is also connected to the main control module 200.
  • the line scan signal port is electrically connected.
  • the first switch unit 31 is used to control the connection between the third input terminal and the third output terminal according to the horizontal scan signal received by the third control terminal.
  • the main control module 200 outputs the corresponding line scan signal along its line scan signal port (corresponding to high and low levels, where high level is represented by “1" and low level is represented by “0"),
  • the first switch unit 31 correspondingly controls the third input terminal to communicate with the third output terminal, that is, controls the first terminal to communicate with the first precharge unit 51 .
  • the first switch unit 41 correspondingly controls the third input terminal to disconnect from the third output terminal, that is, controls the first terminal to disconnect from the first precharge unit 51 .
  • the second switch unit 32 is used to control the connection between the fourth input terminal and the fourth output terminal according to the horizontal scan signal received by the fourth control terminal.
  • the horizontal scan signal received by the fourth control terminal is the same as the horizontal scan signal received by the third control terminal. That is, when the horizontal scan signal received by the third control terminal is high level, the fourth control terminal The terminal also receives a high-level horizontal scan signal, and the second switch unit 32 correspondingly controls the fourth input terminal to connect with the fourth output terminal, that is, controls the second terminal to connect to the negative power supply (refer to Figures 3-4 and 7 Vss).
  • the fourth control terminal also receives the line scan signal of low level, and the second switch unit 32 correspondingly controls the fourth input terminal and the fourth output terminal to be disconnected. That is to say, the second terminal is controlled to be disconnected from the corresponding negative power supply.
  • the switch module 300 controls the light emitting unit 100 to be connected to the precharge module 500 and when the third input terminal is disconnected from the third output terminal.
  • the switch module 300 controls the light emitting unit 100 to disconnect from the precharge module 500 .
  • the first switch unit 31 includes a first A controlled switch (refer to the switch T11 in FIGS. 3, 4 and 7) and a second controlled switch (refer to the switch T12 in FIGS. 3, 4 and 7).
  • the second switch unit 32 includes a third Controlled switch (refer to switch tube T13 in Figure 3, Figure 4 and Figure 7), the controlled end of the first controlled switch is connected to the third control end, and the input end of the first controlled switch is electrically connected to the main control module 200.
  • the output end of the first controlled switch is electrically connected to the controlled end of the second controlled switch, and the input end of the second controlled switch is connected to the third input end.
  • the output end of the second controlled switch is connected to the third output end, the controlled end of the third controlled switch is connected to the fourth control end, the input end of the third controlled switch is connected to the fourth input end, and the output end of the third controlled switch is connected Connect to the fourth output terminal.
  • the first controlled switch is used to control the connection between the input terminal and the output terminal of the first controlled switch according to the line scan signal received by the controlled terminal of the first controlled switch.
  • the main control module 200 outputs the corresponding line scan signal along its line scan signal port (corresponding to high and low levels, where high level is represented by “1” and low level is represented by “0"),
  • line scan signal received by the controlled end of the first controlled switch is high level
  • the input end and the output end of the first controlled switch are connected.
  • the line scan signal received by the controlled end of the first controlled switch When it is low level, the input terminal of the first controlled switch is disconnected from the output terminal.
  • the second controlled switch is used to control the input end of the second controlled switch to be connected to the output end when the input end of the first controlled switch is connected to the output end, and to control the connection between the input end and the output end of the first controlled switch. When disconnected, the input terminal of the second controlled switch is controlled to be disconnected from the output terminal.
  • the third controlled switch is used to control the connection between the input terminal and the output terminal of the third controlled switch according to the line scan signal received by the controlled terminal of the third controlled switch.
  • the line scan signal received by the controlled end of the third controlled switch is the same as the line scan signal received by the controlled end of the first controlled switch. That is, when the controlled end of the first controlled switch When the line scan signal received by the terminal is high level, the controlled end of the third controlled switch is also a high level line scan signal, and the third controlled switch controls its input end and output end to be connected correspondingly, so that the third controlled switch The two terminal pairs are connected to the negative power supply or ground. When the line scan signal received by the controlled terminal of the first controlled switch is low level, the controlled terminal of the third controlled switch also receives a low level control signal. The three controlled switches control the input terminal and the output terminal to be disconnected correspondingly, so that the second terminal is disconnected from the negative power supply or ground.
  • the first controlled switch, the second controlled switch and the third controlled switch are all switching tubes.
  • the switching transistors include but are not limited to transistors, MOS transistors, and thin film transistors.
  • the first controlled switch T, the second controlled switch and the third controlled switch disclosed in this application can be modified to be the same as the switch tube according to the specific selection of the switch tube. Select a controlled switch that is suitable for the type. Therefore, whether the switch tube is an NPN or PNP transistor, an N-channel or P-channel switching MOS tube, or an N-type thin film transistor or a P-type thin film transistor. Implementation of this application is not limited in the embodiments of this application.
  • the first controlled switch, the second controlled switch and the third controlled switch are all N-type switching transistors, such as N-type thin film transistors.
  • FIG. 5 is a topology diagram of a trigger module according to an embodiment of the present application.
  • the trigger module 400 includes The first flip-flop U1, the second flip-flop U2, an inverter (refer to Figure 5 and Figure 7, U4 and U5 are both inverters) and the CMOS inverter unit 41, the first flip-flop U1 includes a first A set port (refer to 1D in Figure 5 and Figure 7), a first reset port (refer to 1C in Figure 5 and 7) and a first status output port, the second flip-flop U2 includes a second set port (refer to 2D in Figure 5 and Figure 7), a second reset port (refer to 2C in Figure 2) and a second status output port.
  • the first reset port is connected to the input end of the trigger module 400 and is electrically connected to the line scan signal port. , the first reset port is also electrically connected to the second reset port through an inverter (refer to U4 in Figure 5 and Figure 7), the first status output port is electrically connected to the second set port, and the second status output port is electrically connected.
  • the output end of the CMOS inversion unit 41 is connected to the trigger module 400. output terminal.
  • the first flip-flop U1 is used to set the level at the first set port before the level of the line scan signal changes when the level of the line scan signal received by the first reset port changes to a preset low level as
  • the first status signal is output along the first status output port, and when the level of the line scan signal received by the first reset port changes to the preset high level, the level at the first set port is used as the first status signal. Output along the first state output port.
  • the second flip-flop U2 is used to convert the first status signal received by the second set port before the level of the line scan signal changes to a preset low level when the level of the line scan signal received by the second reset port changes.
  • the second status signal is output along the second status output port, and when the level of the horizontal scan signal received by the second reset port changes to the preset high level, the first status signal received by the second set port is used as the second status signal.
  • the two-state signal is output along the second-state output port.
  • the CMOS inversion unit 41 is used to invert the second status signal to generate an enable signal that controls the on/off circuit between the power supply unit 600 and the precharge module 500, and to generate a control signal between the precharge power supply unit 700 and the precharge module 500.
  • the enable signal for switching on and off the circuit between modules 500.
  • both the first flip-flop U1 and the second flip-flop U2 are D-type latches.
  • the first state output port output of the first flip-flop U1 maintains the state of the first set port immediately before the falling edge of the line scan signal arrives, and does not follow the first state output port thereafter.
  • the state of the set port changes.
  • the line scan signal passes through the inverter U4
  • the line scan signal received by the second reset port of the second flip-flop U2 becomes high level, causing the second state output of the second flip-flop U2.
  • the port output remains the same as the input of the second set port.
  • the second set port of the second flip-flop U2 is the output of the first state output port of the first flip-flop U1
  • the second state of the second flip-flop U2 The output of the output port becomes the same state as the first set port immediately before the falling edge of the horizontal scan signal arrives.
  • both the first flip-flop U1 and the second flip-flop U2 include falling edge flip-flops, CMOS reverse
  • the unit 41 includes a third switching tube T4 and a fourth switching tube T5.
  • the controlled terminals of the third switching tube T4 and the fourth switching tube T5 are both connected to the second state output port.
  • the input terminal of the third switching tube T4 is electrically connected to the first state output port.
  • the output end of the third switch tube T4 is electrically connected to the input end of the fourth switch tube T5 and the output end of the trigger module 400, and the output end of the fourth switch tube T5 is connected to the ground. .
  • the third switch T4 is used to control the connection between its input end and the output end when the second state signal received at its controlled end is a preset low level, and the second state signal received at its controlled end is When the high level is preset, the input terminal and the output terminal are controlled to be disconnected.
  • the fourth switch T5 is used to control its input end and output end to disconnect when the second state signal received at its controlled end is a preset low level, and to control the second state signal received at its controlled end. When the preset high level is set, the input terminal and output terminal are controlled to be connected.
  • the CMOS reverse unit 41 is used to change the level to the second state of the preset low level when the input terminal and the output terminal of the third switch tube T4 are connected and the input terminal and the output terminal of the fourth switch tube T5 are disconnected.
  • the signal is converted into an enable signal whose level is a preset high level, and when the input terminal and the output terminal of the third switch tube T4 are disconnected and the input terminal and the output terminal of the fourth switch tube T5 are connected, the level is
  • the second status signal with a preset high level is converted into an enable signal with a preset low level.
  • CMOS reverse unit 41 adopts an upper P and lower N CMOS structure.
  • CMOS has extremely small static power consumption and an extremely small threshold voltage range, which is close to an ideal switch.
  • the voltage provided by the first power supply is used.
  • the third switching tube T4 and the fourth switching tube T5 are controlled to avoid the problem of insufficient trigger output thrust.
  • the third switching transistor T4 and the fourth switching transistor T5 in the embodiment of the present application include but are not limited to triodes, MOS transistors, and thin film transistors. Moreover, based on the content disclosed in this application, those skilled in the art can easily think of modifying the CMOS inversion unit 41 disclosed in this application into a CMOS inversion unit that is suitable for the selection of the switch tube according to the specific selection of the switch tube. Therefore, regardless of This application can be implemented whether the switching transistor is an NPN or PNP transistor, an N-channel or P-channel switching MOS transistor, or an N-type thin film transistor or a P-type thin film transistor, and is not used in the embodiments of the present application. limited.
  • the third switching transistor T4 is a P-type switching transistor, such as a PNP transistor, a P-channel MOS transistor or a P-type thin film transistor.
  • the fourth switching transistor T5 is an N-type switching transistor, such as an NPN transistor, an N-channel MOS transistor, or an N-type thin film transistor.
  • the scanning signal port and the input end of the trigger module 400 are also connected in series with the first diode D1, and the anode of the first diode D1
  • the first diode D1 is electrically connected to the horizontal scan signal port
  • the cathode of the first diode D1 is electrically connected to the input end of the trigger module 400 .
  • the first diode 41 is used to rectify the line scan signal input to the trigger module.
  • the first diode 41 rectifies the line scan signal to filter out the clutter in the line scan signal, so that the trigger module 400 can receive Get accurate trigger signals to avoid false triggers.
  • FIG. 6 is a logic block diagram 2 of a driving circuit of a pixel unit according to a preferred embodiment of the present application.
  • the driving circuit also includes feedback Unit 800, the detection end of the feedback unit 800 is electrically connected to the electrical connection point of the charging element 502 and the switch module 300 (refer to the electrical connection points of the capacitor C1 and the switch tube T1, the switch tube T7 and the switch tube T12 in Figure 7), the feedback unit 800 The output end of is electrically connected to the input end of the trigger module 400 (refer to the electrical connection point between the first diode D1 and the inverter U4 in Figure 7), where,
  • the feedback unit 800 is used to detect whether the precharge voltage generated by precharging the charging element 502 (corresponding to detecting the voltage of C1 in FIG. 7 ) is less than a preset threshold, and to feed back the corresponding feedback signal to the trigger module 400 .
  • the trigger module 400 is configured to generate a precharge disconnection trigger signal when the feedback signal indicates that the precharge voltage is not less than a preset threshold.
  • the dual-channel switch unit 501 is used to control the precharge power supply unit 700 to disconnect from the switch module 300 according to the precharge disconnection trigger signal output by the trigger module 400.
  • the precharging power supply unit 700 when disconnected from the switch module 300, it indicates that precharging is completed, and the voltage after precharging is stabilized through the corresponding charging element 502.
  • the charging element 502 is used to stop precharging when the feedback signal indicates that the precharging voltage is not less than the preset threshold.
  • the feedback unit 800 includes a voltage comparator U3.
  • the forward input end of the voltage comparator U3 is electrically connected to the second power supply V2.
  • the reverse input end of the voltage comparator U1 is connected to the detection end of the feedback unit 800.
  • the voltage The output terminal of the comparator U3 is connected to the output terminal of the feedback unit 800, where the voltage comparator U3 is used to detect the magnitude of the precharge voltage corresponding to the voltage of the second power supply V2, and output a corresponding feedback signal.
  • the voltage comparator U3 when the precharge voltage Va reaches the preset threshold, the voltage comparator U3 outputs a low level, and then a falling edge is output to the trigger module 400, and the falling edge is the trigger
  • the module 400 triggers the precharge module 500 to perform precharging on another falling edge. Since the level of the first setting port of the first flip-flop U1 is high level, the second status output port of the second flip-flop U2 The output is low level, and then outputs high level after being reversed by the CMOS reverse unit 41.
  • the dual-channel switch unit 501 disconnects the precharge power supply unit 700 from the switch module 300.
  • the precharge voltage corresponding to the second precharge unit 52 Vb is also disconnected, thereby maintaining and stabilizing the precharged voltage, speeding up the response speed of the light-emitting unit 100 when emitting light, and at the same time achieving isolation protection for the light-emitting unit 100 .
  • Embodiments of the present application also provide a pixel unit, including a light-emitting unit and a driving circuit that drives the light-emitting unit to emit light.
  • the driving circuit includes the driving circuit of the pixel unit in the above embodiment.
  • An embodiment of the present application also provides a display panel, including a plurality of pixel units.
  • the pixel unit includes a light-emitting unit and a driving circuit that drives the light-emitting unit.
  • the driving circuit is the driving circuit in the above embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

一种像素单元的驱动电路及显示面板,驱动电路的开关模块(300)根据由主控模块(200)输送的行扫信号,控制发光单元(100)与预充电模块(500)的通断,触发模块(400)在发光单元(100)与预充电模块(500)断开时,根据由主控模块(200)输送的行扫信号,分别控制供电单元(600)与预充电模块(500)、预充供电单元(700)与预充电模块(500)的通断,发光单元(100)在发光单元(100)与预充电模块(500)连通时,受供电单元(600)通过预充电模块(500)所传输的供电电压(Vdd)和预充电模块(500)连通预充供电单元(700)所生成的预充电压(Va)进行发光显示。

Description

像素单元的驱动电路及显示面板
相关申请
本申请要求于2022年5月18日向中华人民共和国国家知识产权局提交的申请号为202210551407.8、申请名称为“像素单元的驱动电路及显示面板”的申请专利的优先权,并通过引用的方式将其全部内容并入本公开。
领域
本申请涉及显示技术领域,尤其涉及像素单元的驱动电路及显示面板。
背景
相关技术中,由于LED显示具有低压、节能、使用此寿命长等诸多优点,目前在各个领域中均得到广泛的应用。
相关技术中,显示面板中的发光器件(例如:micro-LED)在熄灭时,发光器件与对应供电单元保持一定的连接,并未完全断开,造成显示面板的发光器件极易损伤,显示面板的显示寿命短,同时,相关技术中,显示面板的发光器件熄灭后,再次点亮,反应不灵敏,影响显示效果。
针对相关技术中显示面板显示寿命短的问题,尚未存在有效的解决方案。
概述
本申请提供了像素单元的驱动电路及显示面板,以至少解决相关技术中显示面板显示寿命短的问题。
一个方面,本申请提供了像素单元的驱动电路,用于驱动所述像素单元的发光单元,所述驱动电路包括主控模块、开关模块、触发模块、预充电模块、供电单元和预充供电单元,所述主控模块分别与所述开关模块和所述触发模块电连接,并向所述开关模块和所述触发模块输送行扫信号,所述开关模块还分别与所述发光单元和所述预充电模块电连接,所述触发模块还与所述预充电模块电连接,所述预充电模块还分别与供电单元和预充供电单元电连接,其中,所述开关模块,用于基于接收到的所述行扫信号控制所述发光单元与所述预充电模块的通断;所述触发模块,用于在所述发光单元与所述预充电模块断开时,根据接收到的所述行扫信号,控制所述供电单元与所述预充电模块的通断,以及控制所述预充供电单元与所述预充电模块的通断;所述发光单元,用于在所述发光单元与所述预充电模块连通时,受所述供电单元通过所述预充电模块所传输的供电电压的控制进行发光显 示,以及受所述预充电模块连通所述预充供电单元所生成的预充电压的控制进行发光显示。
另一个方面,本申请提供了显示面板,包括多个像素单元,所述像素单元包括发光单元和驱动所述发光单元的驱动电路,所述驱动电路包括第一方面所述的驱动电路。
与相关技术相比,本申请中提供了像素单元的驱动电路及显示面板,该驱动电路通过设置主控模块、开关模块、触发模块、预充电模块、供电单元和预充供电单元,通过主控模块向开关模块和触发模块输送行扫信号,开关模块根据接收到的行扫信号,控制发光单元与预充电模块的通断,触发模块在发光单元与预充电模块断开时,根据接收到的行扫信号,控制供电单元与预充电模块的通断,以及控制预充供电单元与预充电模块的通断,并使发光单元在发光单元与预充电模块连通时,受供电单元通过预充电模块所传输的供电电压的控制进行发光显示,以及受所述预充电模块连通所述预充供电单元所生成的预充电压的控制进行发光显示,进而使得发光单元在熄灭时,发光单元相对供电单元完全断开,解决相关技术中显示面板显示寿命短的问题,通过在对发光单元进行熄灭控制过程中将发光单元与供电单元切断并进行预充充电,实现对发光单元进行保护,提高发光单元发光显示的反应速度,提高显示反应灵敏度和显示效果的有益效果。
本申请的一个或多个实施例的细节在以下附图和描述中提出,以使本申请的其他特征、目的和优点更加简明易懂。
附图说明
此处的附图被并入详述中并构成本详述的一部分,示出了符合本申请的实施例,并与详述一起用于解释本申请的原理。
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,对于本领域普通技术人员而言,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是根据本申请实施例的像素单元的驱动电路的逻辑框图;
图2是根据本申请优选实施例的像素单元的驱动电路的逻辑框图一;
图3是根据本申请实施例的预充电模块、开关模块、发光单元的拓扑图;
图4是根据本申请实施例的开关模块与发光单元的拓扑图;
图5是根据本申请实施例的触发模块的拓扑图;
图6是根据本申请优选实施例的像素单元的驱动电路的逻辑框图二;
图7是根据本申请实施例的像素单元的驱动电路的拓扑图。
详述
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请的一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本申请保护的范围。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。
图1是根据本申请实施例的像素单元的驱动电路的逻辑框图,图7是根据本申请实施例的像素单元的驱动电路的拓扑图,图1与图7所示的一种像素单元的驱动电路,用于驱动像素单元的发光单元100的发光。
请参阅图1、图7,本申请实施例提供的像素单元的驱动电路,图中包括发光单元100,发光单元100可以为微米发光二极管(Micro-LED),但不限于微米发光二极管。该驱动电路包括主控模块200、开关模块300、触发模块400、预充电模块500、供电单元600和预充供电单元700,主控模块200分别与开关模块300和触发模块400电连接,主控模块200可以分别向开关模块300和触发模块400输送行扫信号,开关模块300还分别与发光单元100和预充电模块500电连接,触发模块400还与预充电模块500电连接,预充电模块500还分别与供电单元600和预充供电单元700电连接。
开关模块200可以接收主控模块200发送的行扫信号,开关模块200可以根据接收到的行扫信号,控制发光单元100与预充电模块500之间电路的通断。
在发光单元100与预充电模块500断开时,触发模块400根据接收到的行扫信号,控制供电单元600与预充电模块500之间电路的通断,以及触发模块400根据接收到的行扫信号,控制预充供电单元700与预充电模块500之间电路的通断。
在发光单元100与预充电模块500连通时,发光单元100受供电单元600通过预充电模块500所传输的供电电压的控制进行发光显示,以及发光单元100受预充电模块500连通预充供电单元700时所生成的预充电压的控制进行发光显示。
在本实施例中,发光单元100的一端接入供电电压,发光单元100的另一端接入预充电压,当供电电压与预充电压的电压差大于发光单元100额定的导通电压,也就是管压降时,发光单元100进行发光显示。
在本实施例中,主控模块200包括微控器,微控器包括但不限于以下其中一种:单片 机、数字信号处理器(Digital Signal Processing,简称DSP)、现场可编程门阵列(Field-Programmable Gate Array,简称FPGA)。
在本实施例中,主控模块200的行扫描端口与开关模块300的控制端口电连接,预充电模块500的输入端电连接供电单元600和预充供电单元700,开关模块200的输入端与预充电模块500的输出端连接,开关模块300的输出端则连接发光单元100。
为满足形成完整的电路回路,进而在控制发光单元100熄灭时,将发光单元100与对应的电源完全切断。本实施例中的开关模块300包括:第一开关单元31和第二开关单元32,预充电模块500包括:第一预充单元51和第二预充单元52。
第一预充单元51的第一输入端口与供电单元600的正电源端(参考图3中的Vdd)电连接,第一预充电单元51的第二输入端口与预充供电单元700的一个电压端口(参考图3中的Va)电连接,第一预充单元51的输出端与第一开关单元31的输入端电连接。
第一开关单元31的输出端与发光单元100的第一端电连接。
发光单元100的第二端与第二开关单元32的输入端电连接。
第二开关单元32的输出端与第二预充单元52的输出端电连接,
第二预充单元52的第一输入端口与供电单元600的负电源端(例如:电源负极,或,地),第二预充单元52的第二输入端口和预充供电单元700的另一个电压端口(参考图3中的Vb),该另一电压端口提供的电压设定为不能是发光单元100发光显示的电压。
在本实施例中,主控模块200对开关模块300进行控制时,是对第一开关单元31和第二开关单元32同时进行控制的,从而使的发光单元100的两端与对应的预充单元连通或断开。
在本实施例中,发光单元100为显示面板的最小像素单元,发光单元100可以是微米发光二极管(Micro-LED),微米发光二极管的阳极对应发光单元100的第一端,微米发光二极管的阴极对应发光单元100的第二端。
在本实施例中,供电单元600向发光单元100提供电源,在本实施例中供电单元600为发光单元100提供直流电压(例如:直流电压的电压值可以为5V、3.3V或1.8V)。预充供电单元700可以在发光单元100当次熄灭后、下次发光显示之前,通过提供对应的电压并通过预充电模块500对应的充电元件进行预充电,从而提前为发光单元100发光显示提供设定电压值的蓄能,使的发光单元100下次显示时,能快速反应,避免因显示反应速度慢而影响显示效果。
在本实施例中,预充供电单元700和供电单元600可以采用同一电源模块,也可以采用不同的电源模块,当采用同一电源模块时,则预充供电单元700和供电单元600分别对应该电源模块不同的电压输出端口,预充供电单元700对应的电压输出端口的输出电压的电压值设置为小于供电单元100的供电电压的电压值。
在本实施例中,主控模块200的行扫信号端口是与触发模块400的输入端连接的。在本实施例中,触发模块400的触发主要考虑的是在发光单元100熄灭过程中的相关控制,也就是在行扫信号自高电平变化为低电平至未变回至高电平阶段的控制,而在行扫信号变化为高电平后,发光单元100已发光,相关的触发机制不存在,因此,对于行扫信号变化为高电平后,默认为发光单元100已完成发光显示。
在某些实施方案中,触发模块400采用行扫信号的下降沿触发,也就是在行扫信号自高电平转化为低电平这一状态时,触发模块400会被触发启动,并对应生成控制供电单元600与预充电模块500之间电路的通断,以及控制预充供电单元700与预充电模块500之间电路的通断的相关控制信号。
在本实施例中,启动触发模块400时,开关模块300因接收到的行扫信号的电平为地电平,此时,开关模块300控制发光单元100的两端与预充电模块500断开,籍以实现与电源的切断。
在本实施例中,通过设置主控模块200、开关模块300、触发模块400、预充电模块500、供电单元600和预充供电单元700,并通过主控模块200向开关模块300和触发信模块400输送行扫信号,以使开关模块300根据接收到的行扫信号控制发光单元100与预充电模块500之间电路的通断,实现对发光单元100与电源的隔离,也即使输入发光单元100的电源被阻断。在发光单元100与预充电模块500断开时,触发模块400根据接收到的行扫信号,控制供电单元600与预充电模块500之间电路的通断,以及触发模块400根据接收到的行扫信号,控制预充供电单元700与预充电模块500之间电路的通断,实现发光单元100与电源的隔离的同时,为发光单元100下次的发光提供蓄能,使的在发光单元100与预充电模块500连通时,发光单元100受供电单元600通过预充电模块500所传输的供电电压的控制进行发光显示,以及受预充电模块500连通预充供电单元700所生成的预充电压的控制进行发光显示。
在本实施例中,发光单元100发光反应快速,解决相关技术中显示面板显示寿命短、显示反应不灵敏的问题,实现对发光单元100进行保护,提高发光单元100发光显示的反 应速度,提高显示反应灵敏度和显示效果的有益效果。
图2是根据本申请优选实施例的像素单元的驱动电路的逻辑框图一,图3是根据本申请实施例的预充电模块、开关模块、发光单元的拓扑图,为实现发光单元100熄灭时与电源隔离和进行预充电,参考图1至图3、图7,在某些实施方案中,预充电模块500包括第一预充单元51和第二预充单元52,第一预充单元51包括双通道开关单元501和充电元件502,第二预充单元52也包括双通道开关单元501和充电元件502。
第一预充单元51的双通道开关单元501的第一输入端电连接供电单元600的正电源端口(参考图3和图7中的Vdd),第一预充单元51的双通道开关单元501的第二输入端电连接充供电单元700的第一端口(参考图7中的Va)。第二预充单元52的双通道开关单元501的第一输入端电连接供电单元600的负电源端口(参考图3和图7中的Vss,实际中,该负电源端口可以是公共地GND),第二预充单元52的双通道开关单元501的第二输入端电连接预充供电单元700的第二端口(参考图3和图7中的Vb,该第二端口的电压为不能使发光单元100发光的一个电压)。触发模块400的输出端电连接第一预充单元51的双通道开关单元501的第一受控端和第二受控端,触发模块400的输出端还电连接第二预充单元52的双通道开关单元501的第一受控端和第二受控端。第一预充单元51的双通道开关单元501的第一输出端和第二输出端的电连接点与充电元件502(参考图3和图7中的C1)和开关模块300电连接点电连接。第二预充单元52的双通道开关单元501的第一输出端和第二输出端的电连接点与充电元件502(参考图3和图7中的C2)和开关模块300电连接点电连接。充电元件502背离与开关模块300电连接的端接地。
在发光单元100与预充电模块500断开时,触发模块400根据接收到的行扫信号,生成控制双通道开关单元501的触发信号。
双通道开关单元501可以根据触发模块400输出的触发信号,控制开关模块300连通供电单元600和预充供电单元700其中之一。
充电元件502可以基于预充供电单元700提供的预充电压进行预充电。
在开关模块300连通预充供电单元700,且开关模块300将预充电模块500和发光单元100断开时,预充电模块500控制充电元件502进行预充电,以及在开关模块300将预充电模块500和发光单元100连通时,预充电模块500控制供电单元600连通发光单元100。
在本实施例中,触发模块400采用行扫信号下降沿触发,双通道开关单元300在接收到对应的触发信号时,会对应控制开关模块300与供电单元600断开而连通预充供电单元 700,或者控制开关模块300与预充供电单元700断开而连接供电单元600。
在本实施例中,当充电元件502(对应于第一预充单元51对应的充电元件502)的预充电压达到预设阈值时,会停止预充,并通过充电元件502进行稳压。
在本实施例中,当行扫信号自预设低电平变化至高电平时,开关模块300会将预充电模块500和发光单元100连通,此时,因经过的充电元件502的预充电,发光单元100由供电单元600提供的供电电压(参考图3和图7中的Vdd)和预充电压(参考图3和图7中的Va)进行供电而发光,发光单元100的发光反应迅速。
在某些实施方案中,为实现预充电模块500对开关模块300与供电单元600的隔离以及实现预充电,参考图3和图7,双通道开关单元501包括第一开关管(参考图2中的T1、T2)和第二开关管(参考图3和图7中的T6、T7),第一开关管的输入端对接第一输入端,第二开关管的输入端对接第二输入端,第一开关管的控制端对接第一受控端,第二开关管的控制端对接第二受控端,第一开关管的输出端对接第一输出端,第二开关管的输出端对接第二输出端。
第一开关管,用于在其控制端接收到的触发信号的电平为预设低电平时,控制其输入端与输出端连通,以及在其控制端接收到的触发信号的电平为预设高电平时,控制其输入端与输出端断开。
第二开关管,用于在其控制端接收到的触发信号的电平为预设电平时,控制其输入端与输出端断开,以及在其控制端接收到的触发信号的电平为预充高电平时,控制其输入端与输出端连通。
在第一开关管的输入端与输出端连通、第二开关管的输入端与输出端断开时,双通道开关单元501控制预充供电单元700与开关模块300连通,以及在第一开关管的输入端与输出端断开、第二开关管的输入端与输出端连通时,双通道开关单元501控制供电单元600与开关模块300连通。
在本实施例中,第一预充单元51和第二预充单元52对应的第一开关管的输入端与输出端的连通或断开是同步控制的,也就是第一预充单元51的第一开关管的输入端与输出端导通时,第二预充单元52的第一开关管的输入端与输出端也导通,断开也是如此。同时,第一预充单元51和第二预充单元52对应的第二开关管的输入端与输出端的连通或断开也是同步控制的,通过在第一预充单元51和第二预充单元52对应的开关管的导通或断开,实现对应通道的电路回路的连通或断开,例如:当第一预充单元51和第二预充单元 52对应的第一开关管的输入端与输出端连通时,此时,对应供电单元600与发光单元100构成对应的电路回路,发光单元100进行发光显示。
在本申请实施例中的第一开关管和第二开关管包括但不限于三极管、MOS管、薄膜晶体管。并且,根据本申请披露的内容,本领域技术人员容易想到根据开关管的具体选型将本申请披露的双通道开关单元501修改为与开关管选型相适应的双通过开关单元,因此,无论开关管为NPN型或PNP型的三极管,还是N沟道或P沟道的开关MOS管,又或是N型薄膜晶体管或P型薄膜晶体管均可以实现本申请,在本申请实施例中并不作限定。
在某些实施方案中,第一开关管为P型开关管,例如:P型MOS管或P型薄膜晶体管,第二开关管为N型开关管,例如:N型MOS管或N型薄膜晶体管。
在某些实施方案中,充电元件包括电容器(参考图2中的C1、C2)。
图4是根据本申请实施例的开关模块与发光单元的拓扑图,为了实现发光单元两端与对应电源的通断控制,进行实现发光单元的发光或熄灭,参考图1至图4、图7,在某些实施方案中,开关模块300包括第一开关单元31和第二开关单元32,第一开关单元31包括第三输入端(参考图3-4及图7中开关管T12与开关管T1、开关管T7及电容C1的电连接点)、第三输出端(参考图3-4及图7中开关管T12与发光单元100的电连接点)和第三控制端(参考图3-4及图7中开关管T11与主控模块的电连接点),第三输入端与第一预充单元51的双通道开关单元501的第一输出端和第二输出端电连接,第三输出端与发光单元100的第一端电连接,第三控制端与主控模块200的行扫信号端口电连接。
第二开关单元32包括第四输入端(参考图3-4及图7中开关管T13与开关管T2、开关管T6及电容C2的电连接点)、第四输出端(参考图3-4及图7中开关管T13与发光单元100的电连接点)和第四控制端(参考图3-4及图7中开关管T13与主控模块的电连接点),第四输入端与发光单元100的第二端电连接,第四输出端与第二预充单元52的双通道开关单元501的第一输出端和第二输出端电连接,第四控制端也与主控模块200的行扫信号端口电连接。
第一开关单元31,用于根据第三控制端接收到的行扫信号,控制第三输入端与第三输出端的通断。
在本实施例中,主控模块200沿其行扫信号端口输出对应的行扫信号(对应为高低电平,其中,高电平用“1”表示,低电平用“0”表示),当第三控制端接收到的控制信号为高电平时,第一开关单元31对应控制第三输入端与第三输出端连通,也就是控制第一端与 第一预充单元51连通。当第三控制端接收到的行扫信号为低电平时,第一开关单元41对应控制第三输入端与第三输出端断开,也就是控制第一端与第一预充单元51断开。
第二开关单元32,用于根据第四控制端接收到的行扫信号,控制第四输入端与第四输出端的通断。
在本实施例中,第四控制端接收到的行扫信号与第三控制端接收到的行扫信号相同,也就是当第三控制端接收到的行扫信号为高电平时,第四控制端也接收到高电平的行扫信号,第二开关单元32对应控制第四输入端与第四输出端连通,也就是控制第二端接通负电源(参考图3-4及图7中的Vss)。当第三控制端接收到的行扫信号为低电平时,第四控制端也接收到低电平的行扫信号,第二开关单元32对应控制第四输入端与第四输出端断开,也就是控制第二端与对应的负电源断开。
在第三输入端与第三输出端连通、第四输入端与第四输出端连通时,开关模块300控制发光单元100与预充电模块500连通,以及在第三输入端与第三输出端断开、第四输入端与第四输出端断开时,开关模块300控制发光单元100与预充电模块500断开。
为了进一步实现发光单元两端与对应电源的通断控制,进而实现发光单元100的发光或熄灭,参考图1至图4、图7,在某些实施方案中,第一开关单元31包括第一受控开关(参考图3、图4及图7中的开关管T11)和第二受控开关(参考图3、图4及图7中的开关管T12),第二开关单元32包括第三受控开关(参考图3、图4及图7中的开关管T13),第一受控开关的受控端对接第三控制端,第一受控开关的输入端电连接主控模块200的第一数据端口(参考图7中的网络标号DATA),第一受控开关的输出端电连接第二受控开关的受控端,第二受控开关的输入端对接第三输入端,第二受控开关的输出端对接第三输出端,第三受控开关的受控端对接第四控制端,第三受控开关的输入端对接第四输入端,第三受控开关的输出端对接第四输出端。
第一受控开关,用于根据第一受控开关的受控端接收的行扫信号,控制第一受控开关的输入端与输出端的通断。
在本实施例中,主控模块200沿其行扫信号端口输出对应的行扫信号(对应为高低电平,其中,高电平用“1”表示,低电平用“0”表示),当第一受控开关的受控端接收到的行扫信号为高电平时,第一受控开关的输入端与输出端连通,当第一受控开关的受控端接收到的行扫信号为低电平时,第一受控开关的输入端与输出端断开。
第二受控开关,用于在第一受控开关的输入端与输出端连通时,控制第二受控开关的 输入端与输出端连通,以及在第一受控开关的输入端与输出端断开时,控制第二受控开关的输入端与输出端断开。
第三受控开关,用于根据第三受控开关的受控端接收的行扫信号,控制第三受控开关的输入端与输出端的通断。
在本实施例中,第三受控开关的受控端接收到的行扫信号与第一受控开关的受控端接收到的行扫信号相同,也就是当第一受控开关的受控端接收到的行扫信号为高电平时,第三受控开关的受控端,也是高电平的行扫信号,第三受控开关对应控制其输入端与输出端连通,以使的第二端对连接负电源或地,当第一受控开关的受控端接收到的行扫信号为低电平时,第三受控开关的受控端也接收到低电平的控制信号,第三受控开关对应控制其输入端与输出端断开,以使的第二端与负电源或地断开。
在本申请实施例中的第一受控开关、第二受控开关和第三受控开关均为开关管。在本实施例中,开关管包括但不限于三极管、MOS管、薄膜晶体管。并且,根据本申请披露的内容,本领域技术人员容易想到根据开关管的具体选型将本申请披露的第一受控开关T、第二受控开关和第三受控开关修改为与开关管选型相适应的受控开关,因此,无论开关管为NPN型或PNP型的三极管,还是N沟道或P沟道的开关MOS管,又或是N型薄膜晶体管或P型薄膜晶体管均可以实现本申请,在本申请实施例中并不作限定。
在某些实施方案中,第一受控开关、第二受控开关和第三受控开关均为N型开关管,例如:N型薄膜晶体管。
图5是根据本申请实施例的触发模块的拓扑图,为实现为发光单元100提供预充电压,在某些实施方案中,参考图1至图2、图5、图7,触发模块400包括第一触发器U1、第二触发器U2、反相器(参考图5及图7中所示,U4和U5都是反向器)和CMOS反向单元41,第一触发器U1包括第一置位端口(参考图5及图7中的1D)、第一复位端口(参考图5及图7中的1C)和第一状态输出端口,第二触发器U2包括第二置位端口(参考图5及图7中的2D)、第二复位端口(参考图2中的2C)和第二状态输出端口,第一复位端口对接触发模块400的输入端,并与行扫信号端口电连接,第一复位端口还通过一个反相器(参考图5及图7中的U4)与第二复位端口电连接,第一状态输出端口与第二置位端口电连接,第二状态输出端口电连接CMOS反向单元41的输入端,并通过一个反相器(参考图5及图7中的U5)与第一置位端口电连接,CMOS反向单元41的输出端对接触发模块400的输出端。
第一触发器U1,用于在第一复位端口接收到的行扫信号的电平变化为预设低电平时, 将在行扫信号的电平变化前第一置位端口处的电平作为第一状态信号沿第一状态输出端口输出,以及在第一复位端口接收到的行扫信号的电平变化为预设高电平时,将第一置位端口处的电平作为第一状态信号沿第一状态输出端口输出。
第二触发器U2,用于在第二复位端口接收到的行扫信号的电平变化为预设低电平时,将行扫信号的电平变化前第二置位端口接收的第一状态信号作为第二状态信号沿第二状态输出端口输出,以及在第二复位端口接收到的行扫信号的电平变化为预设高电平时,将第二置位端口接收的第一状态信号作为第二状态信号沿第二状态输出端口输出。
CMOS反向单元41,用于将第二状态信号进行反向,以生成控制供电单元600与预充电模块500之间电路的通断的使能信号,以及生成控制预充供电单元700与预充电模块500之间电路的通断的使能信号。
在本实施例中,第一触发器U1和第二触发器U2均为D型锁存器。当行扫信号由高电平跳变至低电平的时候,第一触发器U1的第一状态输出端口输出保持行扫信号下降沿到达前瞬间第一置位端口的状态,此后不在跟随第一置位端口的状态而改变,行扫信号经过反相器U4后,第二触发器U2的第二复位端口接收的行扫信号变为了高电平,使得第二触发器U2的第二状态输出端口输出保持跟第二置位端口的输入相同,由于第二触发器U2的第二置位端口就是第一触发器U1的第一状态输出端口的输出,所以第二触发器U2的第二状态输出端口的输出变成与行扫信号的下降沿到达前瞬间时第一置位端口的相同状态。
在某些实施方案中,为进一步实现为发光单元100提供预充电压,参考图2、图5和图7,第一触发器U1和第二触发器U2均包括下降沿触发器,CMOS反向单元41包括第三开关管T4和第四开关管T5,第三开关管T4和第四开关管T5的受控端均连接第二状态输出端口,第三开关管T4的输入端电连接第一电源(参考图5及图7中的Vup),第三开关管T4的输出端分别电连接第四开关管T5的输入端和触发模块400的输出端,第四开关管T5的输出端对地。
第三开关管T4,用于在其受控端接收到的第二状态信号为预设低电平时,控制其输入端与输出端连通,以及在其受控端接收到的第二状态信号为预设高电平时,控制其输入端与输出端断开。
第四开关管T5,用于在其受控端接收到的第二状态信号为预设低电平时,控制其输入端与输出端断开,以及在其受控端接收到的第二状态信号为预设高电平时,控制其输入端 与输出端连通。
CMOS反向单元41,用于在第三开关管T4的输入端与输出端连通、第四开关管T5的输入端与输出端断开时,将电平为预设低电平的第二状态信号转换为电平为预设高电平的使能信号,以及在第三开关管T4的输入端与输出端断开、第四开关管T5的输入端与输出端连通时,将电平为预设高电平的第二状态信号转换为电平为预设低电平的使能信号。
需要说明的是,CMOS反向单元41采用上P下N的CMOS结构,CMOS具有静态功耗极小,阈值电压范围及其小,接近理想开关,而且经过CMOS,用于第一电源提供的电压控制第三开关管T4和第四开关管T5,从而避免了触发器输出推力不足的问题。
在本申请实施例中的第三开关管T4和第四开关管T5包括但不限于三极管、MOS管、薄膜晶体管。并且,根据本申请披露的内容,本领域技术人员容易想到根据开关管的具体选型将本申请披露的CMOS反向单元41修改为与开关管选型相适应的CMOS反向单元,因此,无论开关管为NPN型或PNP型的三极管,还是N沟道或P沟道的开关MOS管,又或是N型薄膜晶体管或P型薄膜晶体管均可以实现本申请,在本申请实施例中并不作限定。
在某些实施方案中,第三开关管T4为P型开关管,例如:PNP三极管、P沟道MOS管或,P型薄膜晶体管。
在某些实施方案中,第四开关管T5为N型开关管,例如:NPN三极管、N沟道MOS管或,N型薄膜晶体管。
在某些实施方案中,为降低干扰,对发光单元100预充电压进行精准控制,行扫信号端口与触发模块400的输入端还串联第一二极管D1,第一二极管D1的阳极电连接行扫信号端口,第一二极管D1的阴极电连接触发模块400的输入端。
第一二极管41用于对输入触发模块的行扫信号进行整流,通过第一二极管41对行扫信号进行整流,过滤掉行扫信号中的杂波,从而使触发模块400能接收到精准的触发信号,避免误触发。
图6是根据本申请优选实施例的像素单元的驱动电路的逻辑框图二,为实现使预充电后的电压处于稳定状态,在某些实施方案中,参考图6-7,驱动电路还包括反馈单元800,反馈单元800的检测端电连接充电元件502与开关模块300的电连接点(参考图7中电容C1与开关管T1、开关管T7及开关管T12的电连接点),反馈单元800的输出端电连接触发模块400的输入端(参考图7中第一二极管D1与反相器U4的电连接点),其中,
反馈单元800,用于检测充电元件502(对应检测图7中C1的电压)预充电所生成的预充电压是否小于预设阈值,并向触发模块400反馈对应的反馈信号。
触发模块400,用于在反馈信号表示预充电压不小于预设阈值时,生成预充断开触发信号。
双通道开关单元501,用于根据触发模块400输出的预充断开触发信号,控制预充供电单元700与开关模块300断开。
在本实施例中,预充供电单元700与开关模块300断开时,表示预充电结束,通过对应的充电元件502对完成预充的电压进行稳压。
充电元件502,用于在在反馈信号表示预充电压不小于预设阈值时,停止预充电。
在某些实施方案中,反馈单元800包括电压比较器U3,电压比较器U3的正向输入端电连接第二电源V2,电压比较器U1的反向输入端对接反馈单元800的检测端,电压比较器U3的输出端对接反馈单元800的输出端,其中,电压比较器U3,用于检测预充电压与第二电源V2对应的电压的大小,输出对应的反馈信号。
需要说明的是,在本实施例中,当预充电压Va的大小达到预设阈值时,经过电压比较器U3,输出低电平,那么向触发模块400输出一个下降沿,该下降沿是触发模块400触发预充电模块500进行预充电后的再一次下降沿,由于第一触发器U1的第一置位端口的电平为高电平,那么第二触发器U2的第二状态输出端口的输出为低电平,经过CMOS反向单元41反向后输出高电平,双通道开关单元501将预充供电单元700与开关模块300断开,同时第二预充单元52对应的预充电压Vb也断开,以此实现了对预充电的电压进行维持及稳压,加快了发光单元100发光时的反应速度,同时有实现了对发光单元100的隔离保护。
本申请实施例还提供了像素单元,包括发光单元和驱动发光单元发光的驱动电路,驱动电路包括上述实施例中的像素单元的驱动电路。
本申请实施例还提供了显示面板,包括多个像素单元,像素单元包括发光单元和驱动发光单元的驱动电路,该驱动电路为上述实施例中的驱动电路。
需要说明的是,在本文中,诸如“第一”和“第二”等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而 且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上所述仅是本申请的具体实施方式,使本领域技术人员能够理解或实现本申请。对这些实施例的多种修改对本领域的技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本申请的精神或范围的情况下,在其它实施例中实现。因此,本申请将不会被限制于本文所示的这些实施例,而是要符合与本文所申请的原理和新颖特点相一致的最宽的范围。

Claims (24)

  1. 一种像素单元的驱动电路,用于驱动所述像素单元的发光单元,其中,所述驱动电路包括主控模块、开关模块、触发模块、预充电模块、供电单元和预充供电单元,所述主控模块分别与所述开关模块和所述触发模块电连接,并向所述开关模块和所述触发模块输送行扫信号,所述开关模块还分别与所述发光单元和所述预充电模块电连接,所述触发模块还与所述预充电模块电连接,所述预充电模块还分别与所述供电单元和所述预充供电单元电连接,其中,
    所述开关模块,用于基于接收到的所述行扫信号控制所述发光单元与所述预充电模块的通断;
    所述触发模块,用于在所述发光单元与所述预充电模块断开时,根据接收到的所述行扫信号,控制所述供电单元与所述预充电模块的通断,以及控制所述预充供电单元与所述预充电模块的通断;
    所述发光单元,用于在所述发光单元与所述预充电模块连通时,受所述供电单元通过所述预充电模块所传输的供电电压的控制进行发光显示,以及受所述预充电模块连通所述预充供电单元所生成的预充电压的控制进行发光显示。
  2. 根据权利要求1所述的驱动电路,其中,所述预充电模块包括第一预充单元和第二预充单元,所述第一预充单元和所述第二预充单元均分别包括双通道开关单元和充电元件,所述第一预充单元对应的所述双通道开关单元的第一输入端电连接所述供电单元的正电源端口,所述第一预充单元对应的所述双通道开关单元的第二输入端电连接所述预充供电单元的第一端口,所述第二预充单元对应的所述双通道开关单元的第一输入端电连接所述供电单元的负电源端口,所述第二预充单元对应的所述双通道开关单元的第二输入端电连接所述预充供电单元的第二端口,每个所述双通道开关单元的第一受控端和第二受控端均电连接所述触发模块的输出端,所述双通道开关单元的第一输出端和第二输出端均与所述开关模块和对应的所述充电元件的一端电连接,对应的所述充电元件的另一端接地,其中,
    所述触发模块,用于在所述发光单元与所述预充电模块断开时,基于所述触发模块接收到的行扫信号,生成控制所述双通道开关单元的触发信号;
    所述双通道开关单元,用于根据所述触发模块输出的所述触发信号,控制所述开关模块连通所述供电单元和所述预充供电单元其中之一;
    所述充电元件,用于基于所述预充供电单元提供的预充电压进行预充电;
    所述预充电模块,用于在所述开关模块连通所述预充供电单元,且所述开关模块将所述预充电模块和所述发光单元断开时,控制所述充电元件进行预充电,以及在所述开关模块将所述预充电模块和所述发光单元连通时,控制所述供电单元连通所述发光单元。
  3. 根据权利要求2所述的驱动电路,其中,所述双通道开关单元包括第一开关管和第二开关管,所述第一开关管的输入端对接所述第一输入端,所述第二开关管的输入端对接所述第二输入端,所述第一开关管的控制端对接所述第一受控端,所述第二开关管的控制端对接所述第二受控端,所述第一开关管的输出端对接所述第一输出端,所述第二开关管的输出端对接所述第二输出端,其中,
    所述第一开关管,用于在其控制端接收到的所述触发信号的电平为预设低电平时,控制其输入端与输出端连通,以及在其控制端接收到的所述触发信号的电平为预设高电平时,控制其输入端与输出端断开;
    所述第二开关管,用于在其控制端接收到的所述触发信号的电平为预设电平时,控制其输入端与输出端断开,以及在其控制端接收到的所述触发信号的电平为预设高电平时,控制其输入端与输出端连通;
    所述双通道开关单元,用于在所述第一开关管的输入端与输出端连通、所述第二开关管的输入端与输出端断开时,控制所述预充供电单元与所述开关模块连通,以及在所述第一开关管的输入端与输出端断开、所述第二开关管的输入端与输出端连通时,控制所述供电单元与所述开关模块连通。
  4. 根据权利要求3所述的驱动电路,其中,所述第一开关管为以下其中一种:P型MOS管、P型薄膜晶体管,和/或,所述第二开关管为以下其中一种:N型MOS管、N型薄膜晶体管。
  5. 根据权利要求2所述的驱动电路,其中,所述开关模块包括第一开关单元和第二开关单元,所述第一开关单元包括第三输入端、第三输出端和第三控制端,所述第二开关单元包括第四输入端、第四输出端和第四控制端,所述第三输入端与所述第一预充单元的所述双通道开关单元的第一输出端和第二输出端电连接,所述第三输出端与所述发光单元的第一端电连接,所述第三控制端与所述主控模块的行扫信号端口电连接,所述第四输入端与所述发光单元的第二端电连接,所述第四输出端与所述第二预充单元的所述双通道开关单元的第一输出端和第二输出端电连接,所述第四控制端与所述主控模块的行扫信号端口 电连接,其中,
    所述第一开关单元,用于根据所述第三控制端接收到的行扫信号,控制所述第三输入端与所述第三输出端的通断;
    所述第二开关单元,用于根据所述第四控制端接收到的行扫信号,控制所述第四输入端与所述第四输出端的通断;
    所述开关模块,用于在所述第三输入端与所述第三输出端连通、所述第四输入端与所述第四输出端连通时,控制所述发光单元与所述预充电模块连通,以及在所述第三输入端与所述第三输出端断开、所述第四输入端与所述第四输出端断开时,控制所述发光单元与所述预充电模块断开。
  6. 根据权利要求5所述的驱动电路,其中,所述第一开关单元包括第一受控开关和第二受控开关,所述第二开关单元包括第三受控开关,所述第一受控开关的受控端对接所述第三控制端,所述第一受控开关的输入端电连接所述主控模块的第一数据端口,所述第一受控开关的输出端电连接所述第二受控开关的受控端,所述第二受控开关的输入端对接所述第三输入端,所述第二受控开关的输出端对接所述第三输出端,所述第三受控开关的受控端对接所述第四控制端,所述第三受控开关的输入端对接所述第四输入端,所述第三受控开关的输出端对接所述第四输出端,其中,
    所述第一受控开关,用于根据所述第一受控开关的受控端接收的行扫信号,控制所述第一受控开关的输入端与输出端的通断;
    所述第二受控开关,用于在所述第一受控开关的输入端与输出端连通时,控制所述第二受控开关的输入端与输出端连通,以及在所述第一受控开关的输入端与输出端断开时,控制所述第二受控开关的输入端与输出端断开;
    所述第三受控开关,用于根据所述第三受控开关的受控端接收的行扫信号,控制所述第三受控开关的输入端与输出端的通断。
  7. 根据权利要求6所述的驱动电路,其中,所述第一受控开关为N型薄膜晶体管,所述第二受控开关为N型薄膜晶体管,和/或,所述第三受控开关为N型薄膜晶体管。
  8. 根据权利要求4所述的驱动电路,其中,所述触发模块包括第一触发器、第二触发器、反相器和CMOS反向单元,所述第一触发器包括第一置位端口、第一复位端口和第一状态输出端口,所述第二触发器包括第二置位端口、第二复位端口和第二状态输出端口,所述第一复位端口对接所述触发模块的输入端,并与所述行扫信号端口电连接,所述第一 复位端口还通过一个所述反相器与所述第二复位端口电连接,所述第一状态输出端口与所述第二置位端口电连接,所述第二状态输出端口电连接所述CMOS反向单元的输入端,并通过一个所述反相器与所述第一置位端口电连接,所述CMOS反向单元的输出端对接所述触发模块的输出端,其中,
    所述第一触发器,用于在所述第一复位端口接收到的行扫信号的电平变化为预设低电平时,将在行扫信号的电平变化前所述第一置位端口处的电平作为第一状态信号沿所述第一状态输出端口输出,以及在所述第一复位端口接收到的行扫信号的电平变化为预设高电平时,将所述第一置位端口处的电平作为第一状态信号沿所述第一状态输出端口输出;
    所述第二触发器,用于在所述第二复位端口接收到的行扫信号的电平变化为预设低电平时,将行扫信号的电平变化前所述第二置位端口接收的所述第一状态信号作为第二状态信号沿所述第二状态输出端口输出,以及在所述第二复位端口接收到的行扫信号的电平变化为预设高电平时,将所述第二置位端口所述接收的所述第一状态信号作为第二状态信号沿所述第二状态输出端口输出;
    所述CMOS反向单元,用于将所述第二状态信号进行反向,以生成控制所述供电单元与所述预充电模块之间电路的通断的使能信号,以及生成控制所述预充供电单元与所述预充电模块之间电路的通断的使能信号。
  9. 根据权利要求8所述的驱动电路,其中,所述第一触发器和所述第二触发器均包括下降沿触发器,所述CMOS反向单元包括第三开关管和第四开关管,所述第三开关管和所述第四开关管的受控端均连接所述第二状态输出端口,所述第三开关管的输入端电连接第一电源,所述第三开关管的输出端分别电连接所述第四开关管的输入端和所述触发模块的输出端,所述第四开关管的输出端对地,其中,
    所述第三开关管,用于在其受控端接收到的所述第二状态信号为预设低电平时,控制其输入端与输出端连通,以及在其受控端接收到的所述第二状态信号为预设高电平时,控制其输入端与输出端断开;
    所述第四开关管,用于在其受控端接收到的所述第二状态信号为预设低电平时,控制其输入端与输出端断开,以及在其受控端接收到的所述第二状态信号为预设高电平时,控制其输入端与输出端连通;
    所述CMOS反向单元,用于在所述第三开关管的输入端与输出端连通、所述第四开关管的输入端与输出端断开时,将电平为预设低电平的所述第二状态信号转换为电平为预设 高电平的使能信号,以及在所述第三开关管的输入端与输出端断开、所述第四开关管的输入端与输出端连通时,将电平为预设高电平的所述第二状态信号转换为电平为预设低电平的使能信号。
  10. 根据权利要求8所述的驱动电路,其中,所述第三开关管为以下其中一种:PNP三极管、P沟道MOS管或,P型薄膜晶体管,和/或,所述第四开关管为以下其中一种:NPN三极管、N沟道MOS管或,N型薄膜晶体管。
  11. 根据权利要求8所述的驱动电路,其中,所述行扫信号端口与所述触发模块的输入端还串联第一二极管,所述第一二极管的阳极电连接所述行扫信号端口,所述第一二极管的阴极电连接所述触发模块的输入端,其中,所述第一二极管用于对输入所述触发模块的行扫信号进行整流。
  12. 根据权利要求2所述的驱动电路,其中,所述驱动电路还包括反馈单元,所述反馈单元的检测端电连接所述充电元件与所述开关模块的电连接点,所述反馈单元的输出端电连接所述触发模块的输入端,其中,
    所述反馈单元,用于检测所述充电元件预充电所生成的预充电压是否小于预设阈值,并向所述触发模块反馈对应的反馈信号;
    所述触发模块,用于在所述反馈信号表示所述预充电压不小于预设阈值时,生成预充断开触发信号;
    所述双通道开关单元,用于根据所述触发模块输出的预充断开触发信号,控制所述预充供电单元与所述开关模块断开;
    所述充电元件,用于在在所述反馈信号表示所述预充电压不小于预设阈值时,停止预充电。
  13. 根据权利要求12所述的驱动电路,其中,所述反馈单元包括电压比较器,所述电压比较器的正向输入端电连接第二电源,所述电压比较器的反向输入端对接所述反馈单元的检测端,所述电压比较器的输出端对接所述反馈单元的输出端,其中,所述电压比较器,用于检测所述预充电压与所述第二电源对应的电压的大小,输出对应的所述反馈信号。
  14. 根据权利要求1所述的驱动电路,其中,所述主控模块包括微控器,所述微控器包括以下其中一种:单片机、DSP、FPGA。
  15. 一种显示面板,包括多个像素单元,所述像素单元包括发光单元和驱动所述发光单元的驱动电路,其中,所述驱动电路包括主控模块、开关模块、触发模块、预充电模块、 供电单元和预充供电单元,所述主控模块分别与所述开关模块和所述触发模块电连接,并向所述开关模块和所述触发模块输送行扫信号,所述开关模块还分别与所述发光单元和所述预充电模块电连接,所述触发模块还与所述预充电模块电连接,所述预充电模块还分别与所述供电单元和所述预充供电单元电连接,其中,
    所述开关模块,用于基于接收到的所述行扫信号控制所述发光单元与所述预充电模块的通断;
    所述触发模块,用于在所述发光单元与所述预充电模块断开时,根据接收到的所述行扫信号,控制所述供电单元与所述预充电模块的通断,以及控制所述预充供电单元与所述预充电模块的通断;
    所述发光单元,用于在所述发光单元与所述预充电模块连通时,受所述供电单元通过所述预充电模块所传输的供电电压的控制进行发光显示,以及受所述预充电模块连通所述预充供电单元所生成的预充电压的控制进行发光显示。
  16. 根据权利要求15所述的显示面板,其中,所述预充电模块包括第一预充单元和第二预充单元,所述第一预充单元和所述第二预充单元均分别包括双通道开关单元和充电元件,所述第一预充单元对应的所述双通道开关单元的第一输入端电连接所述供电单元的正电源端口,所述第一预充单元对应的所述双通道开关单元的第二输入端电连接所述预充供电单元的第一端口,所述第二预充单元对应的所述双通道开关单元的第一输入端电连接所述供电单元的负电源端口,所述第二预充单元对应的所述双通道开关单元的第二输入端电连接所述预充供电单元的第二端口,每个所述双通道开关单元的第一受控端和第二受控端均电连接所述触发模块的输出端,所述双通道开关单元的第一输出端和第二输出端均与所述开关模块和对应的所述充电元件的一端电连接,对应的所述充电元件的另一端接地,其中,
    所述触发模块,用于在所述发光单元与所述预充电模块断开时,基于所述触发模块接收到的行扫信号,生成控制所述双通道开关单元的触发信号;
    所述双通道开关单元,用于根据所述触发模块输出的所述触发信号,控制所述开关模块连通所述供电单元和所述预充供电单元其中之一;
    所述充电元件,用于基于所述预充供电单元提供的预充电压进行预充电;
    所述预充电模块,用于在所述开关模块连通所述预充供电单元,且所述开关模块将所述预充电模块和所述发光单元断开时,控制所述充电元件进行预充电,以及在所述开关模 块将所述预充电模块和所述发光单元连通时,控制所述供电单元连通所述发光单元。
  17. 根据权利要求16所述的显示面板,其中,所述双通道开关单元包括第一开关管和第二开关管,所述第一开关管的输入端对接所述第一输入端,所述第二开关管的输入端对接所述第二输入端,所述第一开关管的控制端对接所述第一受控端,所述第二开关管的控制端对接所述第二受控端,所述第一开关管的输出端对接所述第一输出端,所述第二开关管的输出端对接所述第二输出端,其中,
    所述第一开关管,用于在其控制端接收到的所述触发信号的电平为预设低电平时,控制其输入端与输出端连通,以及在其控制端接收到的所述触发信号的电平为预设高电平时,控制其输入端与输出端断开;
    所述第二开关管,用于在其控制端接收到的所述触发信号的电平为预设电平时,控制其输入端与输出端断开,以及在其控制端接收到的所述触发信号的电平为预设高电平时,控制其输入端与输出端连通;
    所述双通道开关单元,用于在所述第一开关管的输入端与输出端连通、所述第二开关管的输入端与输出端断开时,控制所述预充供电单元与所述开关模块连通,以及在所述第一开关管的输入端与输出端断开、所述第二开关管的输入端与输出端连通时,控制所述供电单元与所述开关模块连通。
  18. 根据权利要求16所述的显示面板,其中,所述开关模块包括第一开关单元和第二开关单元,所述第一开关单元包括第三输入端、第三输出端和第三控制端,所述第二开关单元包括第四输入端、第四输出端和第四控制端,所述第三输入端与所述第一预充单元的所述双通道开关单元的第一输出端和第二输出端电连接,所述第三输出端与所述发光单元的第一端电连接,所述第三控制端与所述主控模块的行扫信号端口电连接,所述第四输入端与所述发光单元的第二端电连接,所述第四输出端与所述第二预充单元的所述双通道开关单元的第一输出端和第二输出端电连接,所述第四控制端与所述主控模块的行扫信号端口电连接,其中,
    所述第一开关单元,用于根据所述第三控制端接收到的行扫信号,控制所述第三输入端与所述第三输出端的通断;
    所述第二开关单元,用于根据所述第四控制端接收到的行扫信号,控制所述第四输入端与所述第四输出端的通断;
    所述开关模块,用于在所述第三输入端与所述第三输出端连通、所述第四输入端与所 述第四输出端连通时,控制所述发光单元与所述预充电模块连通,以及在所述第三输入端与所述第三输出端断开、所述第四输入端与所述第四输出端断开时,控制所述发光单元与所述预充电模块断开。
  19. 根据权利要求18所述的显示面板,其中,所述第一开关单元包括第一受控开关和第二受控开关,所述第二开关单元包括第三受控开关,所述第一受控开关的受控端对接所述第三控制端,所述第一受控开关的输入端电连接所述主控模块的第一数据端口,所述第一受控开关的输出端电连接所述第二受控开关的受控端,所述第二受控开关的输入端对接所述第三输入端,所述第二受控开关的输出端对接所述第三输出端,所述第三受控开关的受控端对接所述第四控制端,所述第三受控开关的输入端对接所述第四输入端,所述第三受控开关的输出端对接所述第四输出端,其中,
    所述第一受控开关,用于根据所述第一受控开关的受控端接收的行扫信号,控制所述第一受控开关的输入端与输出端的通断;
    所述第二受控开关,用于在所述第一受控开关的输入端与输出端连通时,控制所述第二受控开关的输入端与输出端连通,以及在所述第一受控开关的输入端与输出端断开时,控制所述第二受控开关的输入端与输出端断开;
    所述第三受控开关,用于根据所述第三受控开关的受控端接收的行扫信号,控制所述第三受控开关的输入端与输出端的通断。
  20. 根据权利要求18所述的显示面板,其中,所述触发模块包括第一触发器、第二触发器、反相器和CMOS反向单元,所述第一触发器包括第一置位端口、第一复位端口和第一状态输出端口,所述第二触发器包括第二置位端口、第二复位端口和第二状态输出端口,所述第一复位端口对接所述触发模块的输入端,并与所述行扫信号端口电连接,所述第一复位端口还通过一个所述反相器与所述第二复位端口电连接,所述第一状态输出端口与所述第二置位端口电连接,所述第二状态输出端口电连接所述CMOS反向单元的输入端,并通过一个所述反相器与所述第一置位端口电连接,所述CMOS反向单元的输出端对接所述触发模块的输出端,其中,
    所述第一触发器,用于在所述第一复位端口接收到的行扫信号的电平变化为预设低电平时,将在行扫信号的电平变化前所述第一置位端口处的电平作为第一状态信号沿所述第一状态输出端口输出,以及在所述第一复位端口接收到的行扫信号的电平变化为预设高电平时,将所述第一置位端口处的电平作为第一状态信号沿所述第一状态输出端口输出;
    所述第二触发器,用于在所述第二复位端口接收到的行扫信号的电平变化为预设低电平时,将行扫信号的电平变化前所述第二置位端口接收的所述第一状态信号作为第二状态信号沿所述第二状态输出端口输出,以及在所述第二复位端口接收到的行扫信号的电平变化为预设高电平时,将所述第二置位端口所述接收的所述第一状态信号作为第二状态信号沿所述第二状态输出端口输出;
    所述CMOS反向单元,用于将所述第二状态信号进行反向,以生成控制所述供电单元与所述预充电模块之间电路的通断的使能信号,以及生成控制所述预充供电单元与所述预充电模块之间电路的通断的使能信号。
  21. 根据权利要求20所述的显示面板,其中,所述第一触发器和所述第二触发器均包括下降沿触发器,所述CMOS反向单元包括第三开关管和第四开关管,所述第三开关管和所述第四开关管的受控端均连接所述第二状态输出端口,所述第三开关管的输入端电连接第一电源,所述第三开关管的输出端分别电连接所述第四开关管的输入端和所述触发模块的输出端,所述第四开关管的输出端对地,其中,
    所述第三开关管,用于在其受控端接收到的所述第二状态信号为预设低电平时,控制其输入端与输出端连通,以及在其受控端接收到的所述第二状态信号为预设高电平时,控制其输入端与输出端断开;
    所述第四开关管,用于在其受控端接收到的所述第二状态信号为预设低电平时,控制其输入端与输出端断开,以及在其受控端接收到的所述第二状态信号为预设高电平时,控制其输入端与输出端连通;
    所述CMOS反向单元,用于在所述第三开关管的输入端与输出端连通、所述第四开关管的输入端与输出端断开时,将电平为预设低电平的所述第二状态信号转换为电平为预设高电平的使能信号,以及在所述第三开关管的输入端与输出端断开、所述第四开关管的输入端与输出端连通时,将电平为预设高电平的所述第二状态信号转换为电平为预设低电平的使能信号。
  22. 根据权利要求18所述的显示面板,其中,所述行扫信号端口与所述触发模块的输入端还串联第一二极管,所述第一二极管的阳极电连接所述行扫信号端口,所述第一二极管的阴极电连接所述触发模块的输入端,其中,所述第一二极管用于对输入所述触发模块的行扫信号进行整流。
  23. 根据权利要求16所述的显示面板,其中,所述驱动电路还包括反馈单元,所述反 馈单元的检测端电连接所述充电元件与所述开关模块的电连接点,所述反馈单元的输出端电连接所述触发模块的输入端,其中,
    所述反馈单元,用于检测所述充电元件预充电所生成的预充电压是否小于预设阈值,并向所述触发模块反馈对应的反馈信号;
    所述触发模块,用于在所述反馈信号表示所述预充电压不小于预设阈值时,生成预充断开触发信号;
    所述双通道开关单元,用于根据所述触发模块输出的预充断开触发信号,控制所述预充供电单元与所述开关模块断开;
    所述充电元件,用于在在所述反馈信号表示所述预充电压不小于预设阈值时,停止预充电。
  24. 根据权利要求23所述的显示面板,其中,所述反馈单元包括电压比较器,所述电压比较器的正向输入端电连接第二电源,所述电压比较器的反向输入端对接所述反馈单元的检测端,所述电压比较器的输出端对接所述反馈单元的输出端,其中,所述电压比较器,用于检测所述预充电压与所述第二电源对应的电压的大小,输出对应的所述反馈信号。
PCT/CN2022/140822 2022-05-18 2022-12-21 像素单元的驱动电路及显示面板 WO2023221498A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22942518.6A EP4451254A1 (en) 2022-05-18 2022-12-21 Drive circuit for pixel unit, and display panel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210551407.8 2022-05-18
CN202210551407.8A CN115206227B (zh) 2022-05-18 2022-05-18 像素单元的驱动电路及显示面板

Publications (1)

Publication Number Publication Date
WO2023221498A1 true WO2023221498A1 (zh) 2023-11-23

Family

ID=83574577

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/140822 WO2023221498A1 (zh) 2022-05-18 2022-12-21 像素单元的驱动电路及显示面板

Country Status (3)

Country Link
EP (1) EP4451254A1 (zh)
CN (1) CN115206227B (zh)
WO (1) WO2023221498A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115206227B (zh) * 2022-05-18 2023-04-07 惠科股份有限公司 像素单元的驱动电路及显示面板

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1499471A (zh) * 2002-11-08 2004-05-26 �����ɷ� 有源型发光显示面板的驱动方法和驱动装置
CN103596344A (zh) * 2013-12-02 2014-02-19 广东威创视讯科技股份有限公司 一种led驱动系统和方法
CN106297667A (zh) * 2016-09-26 2017-01-04 京东方科技集团股份有限公司 像素电路及其驱动方法、阵列基板以及显示装置
CN110189705A (zh) * 2019-06-19 2019-08-30 京东方科技集团股份有限公司 像素电路、显示面板和显示设备
JP2020013074A (ja) * 2018-07-20 2020-01-23 セイコーエプソン株式会社 電気光学装置および電子機器
CN113487996A (zh) * 2021-07-22 2021-10-08 上海闻泰信息技术有限公司 像素驱动电路、显示面板及显示设备
CN115206227A (zh) * 2022-05-18 2022-10-18 惠科股份有限公司 像素单元的驱动电路及显示面板

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100432554B1 (ko) * 2002-11-29 2004-05-24 하나 마이크론(주) 유기 전계 발광 디바이스 디스플레이 구동장치 및 방법
CN106782310B (zh) * 2017-03-01 2019-09-03 上海天马有机发光显示技术有限公司 一种像素电路、驱动方法、显示面板以及显示装置
CN214541526U (zh) * 2021-04-20 2021-10-29 重庆康佳光电技术研究院有限公司 像素电路及显示装置
CN113362765A (zh) * 2021-06-24 2021-09-07 合肥维信诺科技有限公司 像素电路及其驱动方法和显示装置
CN114360454B (zh) * 2021-12-29 2022-10-21 长沙惠科光电有限公司 发光单元控制电路、方法、阵列基板及显示面板

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1499471A (zh) * 2002-11-08 2004-05-26 �����ɷ� 有源型发光显示面板的驱动方法和驱动装置
CN103596344A (zh) * 2013-12-02 2014-02-19 广东威创视讯科技股份有限公司 一种led驱动系统和方法
CN106297667A (zh) * 2016-09-26 2017-01-04 京东方科技集团股份有限公司 像素电路及其驱动方法、阵列基板以及显示装置
JP2020013074A (ja) * 2018-07-20 2020-01-23 セイコーエプソン株式会社 電気光学装置および電子機器
CN110189705A (zh) * 2019-06-19 2019-08-30 京东方科技集团股份有限公司 像素电路、显示面板和显示设备
CN113487996A (zh) * 2021-07-22 2021-10-08 上海闻泰信息技术有限公司 像素驱动电路、显示面板及显示设备
CN115206227A (zh) * 2022-05-18 2022-10-18 惠科股份有限公司 像素单元的驱动电路及显示面板

Also Published As

Publication number Publication date
CN115206227A (zh) 2022-10-18
EP4451254A1 (en) 2024-10-23
CN115206227B (zh) 2023-04-07

Similar Documents

Publication Publication Date Title
WO2018113361A1 (zh) 像素电路及其驱动方法、显示装置
WO2020248762A1 (zh) 供电控制电路、供电控制方法和显示装置
WO2018113324A1 (zh) 像素电路及其驱动方法、显示装置
CN110689840B (zh) 一种像素电路、短路检测方法和显示面板
WO2020001027A1 (zh) 像素驱动电路及方法、显示装置
WO2023221498A1 (zh) 像素单元的驱动电路及显示面板
CN112669765B (zh) 断点自修复像素驱动电路、驱动方法及显示装置
WO2017063251A1 (zh) 线路保护电路以及液晶显示器
CN114863879B (zh) 有机发光二极管控制电路及显示面板
CN106847179A (zh) 一种像素补偿电路及显示装置
WO2019237756A1 (zh) 像素电路及其驱动方法、显示面板和显示装置
US11238764B2 (en) Light emitting control circuit, driving method thereof, array substrate and display device
CN113889022A (zh) 移位寄存器、显示面板和显示装置
US11961467B2 (en) Compensation circuit, control chip and display device
US9384693B2 (en) Pixel circuit and display apparatus using the same
US20190251896A1 (en) Pixel Driving Circuit
US20180301093A1 (en) Pixel compensation circuit and display device
TW202113784A (zh) 畫素電路
WO2022252627A1 (zh) 电源电路、驱动装置和显示装置
CN205354335U (zh) 电力抄表终端
US20220270540A1 (en) Light-emitting element control circuit, display panel and display device
CN105243833A (zh) 电力抄表终端
US20210201788A1 (en) Pixel Driving Circuit, Display Device and Driving Method
CN205810345U (zh) 一种像素电路、有机电致发光显示面板及显示装置
WO2024045443A1 (zh) 稳压电路及显示面板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22942518

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022942518

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022942518

Country of ref document: EP

Effective date: 20240716