WO2023221236A1 - 一种航空燃油管路坠撞冲击试验装置 - Google Patents

一种航空燃油管路坠撞冲击试验装置 Download PDF

Info

Publication number
WO2023221236A1
WO2023221236A1 PCT/CN2022/101043 CN2022101043W WO2023221236A1 WO 2023221236 A1 WO2023221236 A1 WO 2023221236A1 CN 2022101043 W CN2022101043 W CN 2022101043W WO 2023221236 A1 WO2023221236 A1 WO 2023221236A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel pipeline
impact test
test device
crash impact
mounting
Prior art date
Application number
PCT/CN2022/101043
Other languages
English (en)
French (fr)
Inventor
张部声
毛凯
李�杰
崔修斌
宁薇薇
朱大巍
张呈波
王苏波
姚瑾
雷霆
张晓鹏
Original Assignee
天津航天瑞莱科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 天津航天瑞莱科技有限公司 filed Critical 天津航天瑞莱科技有限公司
Publication of WO2023221236A1 publication Critical patent/WO2023221236A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M7/00Vibration-testing of structures; Shock-testing of structures
    • G01M7/08Shock-testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/02Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/30Investigating strength properties of solid materials by application of mechanical stress by applying a single impulsive force, e.g. by falling weight
    • G01N3/303Investigating strength properties of solid materials by application of mechanical stress by applying a single impulsive force, e.g. by falling weight generated only by free-falling weight
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/003Generation of the force
    • G01N2203/0032Generation of the force using mechanical means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0058Kind of property studied
    • G01N2203/0069Fatigue, creep, strain-stress relations or elastic constants
    • G01N2203/0075Strain-stress relations or elastic constants
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/026Specifications of the specimen
    • G01N2203/0262Shape of the specimen
    • G01N2203/0274Tubular or ring-shaped specimens
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/06Indicating or recording means; Sensing means
    • G01N2203/0641Indicating or recording means; Sensing means using optical, X-ray, ultraviolet, infrared or similar detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/06Indicating or recording means; Sensing means
    • G01N2203/067Parameter measured for estimating the property
    • G01N2203/0682Spatial dimension, e.g. length, area, angle

Definitions

  • the invention relates to the technical field of impact testing, and in particular to an aviation fuel pipeline crash impact testing device.
  • the fuel pipeline is compared to the "blood vessel" on the aircraft. Before its design is finalized, it must be considered that it has sufficient deformation ability under the conditions of the aircraft's survivable crash and will not cause the fuel pipeline to rupture, so as to reduce the risk of the aircraft in the event of a crash.
  • the risk of fire in the event of a possible crash requires that the fuel pipeline must be subjected to a crash impact test.
  • CCAR25.993(f) requires that "the design and installation of each fuel pipe in the fuselage must allow a reasonable degree of deformation and stretching without oil leakage.”
  • a typical example of an aircraft is a civil aircraft. Its fuel pipeline length can reach more than 4 meters, its maximum crash speed under survivable crash conditions reaches 47ft/s, and objects on the aircraft body that may cause damage to the fuel pipeline weigh more than 30kg. Impact contact size is less than 5mm.
  • a crash impact test device suitable for fuel pipelines must be available.
  • the device must be capable of injecting and pressurizing a very long fuel pipeline to simulate actual working conditions.
  • the ability must have high impact verticality, high speed and low loss. It must be able to adjust the weight of the falling knife and meet the impact of a specific cutter head shape.
  • the device should have the ability to characterize impact force and impact deformation.
  • the existing drop-weight test equipment does not have the ability to carry out the above-mentioned long fuel pipeline drop impact test.
  • the purpose of the present invention is to provide a crash impact test device for aviation fuel pipelines in view of the technical defects existing in the prior art.
  • This device can carry out different impact tests on the internally injected and pressurized fuel pipelines. Weight, free-fall impact with different cutter head forms, and has the ability to characterize the dynamic impact force and deformation of the fuel pipeline.
  • An aviation fuel pipeline crash impact test device including a split tower installed on a basic platform and a fuel pipeline installation platform arranged in a straight line, which is arranged inside the split tower and located on the fuel pipeline installation platform.
  • the guide system above the platform is constrained by the guide system and can achieve a free-fall vertical drop.
  • the fuel pipeline installation platform includes two installation platforms that are installed apart along the length direction. Each of the installation platforms There is a mounting base, and two of the mounting seats are used to be installed at both ends of the fuel pipeline and to tension the fuel pipeline by moving along the axial direction of the mounting platform. Horizontal bolts are arranged on the vertical plate of each mounting seat.
  • One end of the force sensor is coaxially connected, and the other end of the force sensor is coaxially connected to an adapter plug that can simulate liquid injection and pressurization of the fuel pipeline; a flexible horizontal arrangement is arranged below the separated space of the two installation platforms. Rope, a buffer device is provided below the flexible rope.
  • the present invention has at least the following advantages over the prior art:
  • the split tower is assembled and built from top to bottom in the present invention, which is not only easy to build but also easy to disassemble, which greatly improves the convenience and economy of project implementation;
  • the present invention adopts free counterweight, wedge-shaped tool seat and detachable tool head, which can realize different qualities and forms of falling knife impact. Its wedge shape can well ensure that other positions in the falling tool system except the tool head are uniform. It does not come into contact with the fuel pipeline, which greatly improves the effectiveness of the fuel pipeline crash impact test;
  • the tensioning devices at both ends of the fuel pipeline in the present invention can flexibly adjust the tightness of the pipeline to avoid sagging of the pipeline due to its own weight, which will affect the crash impact test effect;
  • the present invention can realize the liquid injection and pressurization of the fuel pipeline and the characterization of dynamic impact force and deformation.
  • Figure 1 is a schematic diagram of the overall structure of the aviation fuel pipeline crash impact test device of the present invention
  • Figure 2 is a schematic diagram of the split tower of the aviation fuel pipeline crash impact test device of the present invention.
  • Figure 3 is a schematic diagram of the guidance and falling knife system of the aviation fuel pipeline crash impact test device of the present invention.
  • FIG. 4 is a detailed schematic diagram of the falling knife system of the aviation fuel pipeline crash impact test device of the present invention.
  • Figure 5 is a fuel pipeline installation platform including a flexible rope and a buffer device of the aviation fuel pipeline crash impact test device of the present invention
  • FIG. 6 is a detailed schematic diagram of the fuel pipeline installation platform of the aviation fuel pipeline crash impact test device of the present invention.
  • 1 is a split tower, 101 is the upper frame, 102 is the middle upper frame, 103 is the middle lower frame, 104 is the lower frame, and 105 is the mounting column;
  • 2 is the guide system
  • 201 is the hoist
  • 202 is the lifting ring
  • 203 is the wire rope
  • 204 is the fixed pulley
  • 205 is the tensioner
  • 206 is the fixed ring
  • 3 is the falling knife system
  • 301 is the lifting rope
  • 302 is the electric suction iron
  • 303 is the counterweight
  • 304 is the knife seat
  • 305 is the knife head
  • 5 is the fuel pipeline installation platform, 501 is the installation platform, 502 is the mounting base, 503 is the hexagon socket bolt, 504 is the force sensor, 505 is the adapter plug, 506 is the clamp, and 507 is the clamp support seat;
  • the aviation fuel pipeline crash impact test device includes a split tower 1, a guide system 2, a falling knife system 3, a fuel pipeline 4, and a fuel pipeline installation platform. 5.
  • Flexible rope 6, buffer device 7 and basic platform 8; among them, the split tower is preferably made of ordinary steel and has a trapezoidal shape.
  • the height of a single frame can be freely designed according to the target crash height and on-site transportation and installation conditions. , different single frames are fastened by bolts. Since the height of a single frame can reach four meters, in order to reduce the lifting height of the overall tower, it needs to be assembled sequentially from top to bottom.
  • the split tower is composed of an upper frame 101, a middle upper frame 102, a middle lower frame 103, and a lower frame 104.
  • the middle lower frame 103 and the lower frame 104 are connected by bolts to form a split tower.
  • the lower part is installed on the base platform 8 through the mounting column 105 and T-bolts; then the upper frame 101 is connected to the middle and upper frame 102 through bolts, and then the whole is installed to the lower half of the split tower through bolts.
  • a split tower 1 is formed.
  • the basic platform is preferably made of ordinary steel, its thickness is not less than 50mm, and its total weight should be more than 10 times greater than the weight of the entire system.
  • T-shaped slots are arranged on the basic platform for installation and fixation of the entire system.
  • the guide system preferably uses four phosphate-coated steel wire ropes with a diameter of 10 mm.
  • the four steel wire ropes are arranged in a rectangular shape.
  • the tops of the four steel wire ropes are installed vertically on the top of the split tower through rope buckles and lifting rings, and the bottom ends pass through After bypassing the fixed pulley and connecting the horizontal tensioner, install it vertically.
  • a hoist 201 and four lifting rings 202 are installed on the upper frame 101 through bolts, and four steel wire ropes 203 (with phosphate coating on the surface) and drop wires are threaded.
  • the knife holder 304 of the knife system 3 has through holes for passing steel wires in the nearly four corners of the knife holder 304.
  • Each of the four steel wire ropes passes through a through hole for passing the steel wire and is slidably connected to the knife holder 304.
  • the fixed pulley 204, the tensioner 205 and the fixed ring 206 are fixed with bolts at appropriate positions below the steel wire rope 203, and the positions of each other are finely adjusted through the plumb line to ensure that the steel wire rope 203 is in a tight and vertical state.
  • the steel wire rope 203 The lower end of the tensioner goes around the fixed pulley 204 and is fixed with the tensioner 205. The other end of the tensioner 205 is connected and fixed with the fixed ring 206.
  • the required adjustable and replaceable counterweight 303 is detachably installed on the upper end of the knife seat 304 through bolts, and a cutter head 305 is detachably installed on the lower end.
  • the front end of the cutter head 305 has a V-shaped or wedge-shaped structure. The angle of its wedge is smaller than the angle of deformation of the fuel pipeline to facilitate crash impact on the fuel pipeline 4; the electric magnet 302 and the groove at the top of the counterweight 303 are installed with a small gap to absorb and cooperate. At this time, the electric magnet 302 must not power ups.
  • the hanging hoist, electric iron suction iron, counterweight, knife holder, and knife head integrally constitute the knife drop system 3 of the present invention.
  • the hanging hoist is preferably electric and has a wireless remote control function. Its maximum lifting weight should be greater than the total weight of the falling knife system that needs to be lifted. It is equipped with automatic braking when power is off and an anti-top limiter, and The lifting speed is no more than 6 meters/minute.
  • the electric iron magnet is preferably a power-off type electric iron magnet, that is, there is a strong magnetic force when the power is turned off, and there is no magnetic force when the direct current is turned on, and the magnetic force should be greater than the falling knife that needs to be lifted (consisted of a counterweight, Total weight of tool holder and tool head.
  • the counterweight is preferably made of modulated steel, and a shallow groove matching the size of the electric magnet is opened at the top of the center of gravity of the falling knife system, so that the falling knife system The lifting line always passes through the center of gravity of the falling knife system to ensure the verticality of the crash.
  • the number of counterweights may be two or more, and countersunk holes are used between two or more counterweights for bolt fastening, and the outline of the counterweights should be rounded, and The fit between the shallow groove on the top of the top counterweight and the electric magnet should be a small gap fit.
  • the knife holder is preferably made of modulated steel, with a threaded hole for installing a counterweight at the top and a threaded hole for installing a cutter head at the bottom.
  • the shape of the tool holder is wedge-shaped, and the angle of the wedge is calculated based on the cosine theorem and the deformation triangle of the fuel pipeline to ensure that the angle of the wedge should be smaller than the angle of deformation of the fuel pipeline to prevent the tool holder from being The fuel line was touched during the crash.
  • the diameter of the through hole for passing the steel wire rope around the knife holder is 2 mm larger than the diameter of the steel wire rope.
  • the cutter head is preferably made of tempered steel or steel of other required materials. It is detachable.
  • the shape of the cutter head can be designed as a rectangle or other required shapes, but it should be carried out Necessary reinforcement to increase the strength of the cutter head.
  • the reinforcement should be oblique ribs, and the angle of the oblique ribs should be consistent with or even smaller than the wedge angle of the cutter holder. That is, the angle of the oblique ribs should also be smaller than the angle of deformation of the fuel pipeline to prevent the oblique ribs of the cutter head from being damaged during a crash. Touch the fuel line.
  • the fuel pipeline installation platform optionally includes a mounting platform, a mounting base, a hexagon socket bolt, a force sensor, an adapter plug, an installation clamp, and a clamp support seat.
  • two mounting platforms 501 separated along the length direction are arranged coaxially at intervals, and are installed on the basic platform 8 through multiple mounting legs.
  • Each mounting platform 501 passes through a long hole or a waist-shaped hole.
  • install adapter plugs 505, force sensors 504, and hexagon socket bolts 503 on both sides of the fuel pipeline 4 in order to install the fuel pipeline 4 on both sides. between mounting bases 502.
  • the tension of the fuel pipeline 4 can be adjusted to a large extent through the waist-shaped through hole on the mounting platform 501, and the tension to a small extent can be adjusted to the hexagon socket bolts 503.
  • clamps 506 are arranged on the two installation platforms 501.
  • the clamps 506 are installed on the clamp support base 507.
  • the fuel pipeline 4 can be finally fixed on the installation platform 501 through the clamps 506 and the clamp support base 507.
  • a flexible rope 6 and a buffer device 7 are installed horizontally just below the fuel pipeline 4 and at a spaced position between the two installation platforms 501.
  • the levelness of the flexible rope is measured with a spirit level.
  • both ends of the flexible rope 6 are respectively fixed on the mounting legs of a mounting platform, and the buffer device is arranged below the flexible rope.
  • the installation platform is preferably made of ordinary steel and is two independent installation platforms with a certain distance.
  • Each installation platform has enough mounting plane to install the fuel pipeline.
  • the installation plane has through holes (not shown) and waist-shaped holes (not shown) for installation.
  • the mounting base is preferably made of ordinary steel, and there is a mounting hole at the bottom connected to the mounting base.
  • the hexagonal socket head bolts are preferably grade 12.9 bolts.
  • the length of the bolts should be appropriate to ensure that bolts of this length can be in close contact with the mounting base and can be threaded with the threads built into the force sensor to tighten the fuel pipe.
  • the purpose of the pipeline is to prevent the fuel pipeline from sagging due to gravity.
  • the contact surface of the hexagon socket bolt fits the mounting base and is screwed into the internal thread of the force sensor.
  • the tension adjustment of the fuel pipeline can be achieved by rotating the hexagon socket bolt.
  • the force sensor is preferably an impact force sensor with threaded mounting holes on both sides to facilitate threaded connection with the adapter plug and the hexagon socket bolt. It is electrically charged, has fast dynamic response, and has high sensitivity to tension and compression. The error is small.
  • one end of the adapter plug is preferably connected to the internal thread of the fuel pipeline, and the other end is in an external hexagonal shape to facilitate installation with a wrench.
  • One end of the adapter plug is provided with an external thread that matches the internal thread of the fuel pipeline.
  • a liquid injection and pressurizing hole for liquid or gas is opened inside the adapter plug, which is used for simulated liquid injection and pressurization of the fuel pipeline.
  • the adapter plug The plug has an L-shaped liquid injection and pressurizing channel.
  • the openings at both ends of the L-shaped liquid injection and pressurizing channel respectively form the side wall and the end face of the adapter plug.
  • the holes on the side wall are connected with the holes on the end face. It is L-shaped, and the end of the hole on the end face extends into the fuel pipeline.
  • the flexible rope preferably has sufficient elasticity and is placed directly below the fuel pipeline at a certain height.
  • the height is determined by the impact deformation of the target after impact.
  • the height value of the flexible rope is taken from the fuel pipeline. The required minimum deformation value.
  • the buffering device preferably uses sandbags to recover excess impact energy and ensure sufficient buffering capacity to prevent the falling knife system from hitting the basic platform.
  • the degree of deformation of the fuel pipeline can be roughly judged through the movement of the flexible rope with the naked eye.
  • the crash impact process can also be collected through a high-speed camera and combined with machine vision technology to quantitatively calculate the crash impact speed. and deformation.
  • the falling knife system After completing the construction of the falling knife system 3 with a certain weight and cutter head shape, the falling knife system is not powered on, a laser rangefinder (not shown) is arranged under the cutter head, and a high-speed camera is arranged directly in front of the fuel pipeline 4 (not shown).
  • the fuel pipeline 4 can be filled with liquid and pressurized to the specified value, and the fuel pipeline can be filled and pressurized to the specified value through the waist-shaped hole on the installation platform 501 and the hexagon socket bolts 503. 4 tension adjustments.
  • the fuel pipeline crash impact test device provided by the invention can realize the crash impact assessment of the fuel pipeline under the conditions of liquid injection and pressure.
  • the device is easy to build and disassemble, and the weight of the falling knife and the shape of the knife head are adjustable.
  • the falling knife system has no contact with the fuel pipeline except the cutter head, the impact speed loss is less than 5%, the impact vertical angle deviation is less than 2°, the fuel pipeline tension is adjustable, and the impact force and deformation can be measured.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

一种航空燃油管路坠撞冲击试验装置,包括安装于基础平台(8)上的分体式塔架(1)及一字型的燃油管路安装平台(5)、设置在分体式塔架(1)内部并位于燃油管路安装平台(5)上方的导向系统(2),受导向系统(2)导向约束能实现自由落体垂直下降的落刀,燃油管路安装平台(5)包括两个沿长度方向隔开的安装台(501),安装台(501)上有两个用于两端固定并张紧燃油管路(4)的安装座(502),安装座(502)立板上经水平布置的螺栓同轴连接力传感器(504)一端,力传感器(504)另一端同轴连接能对燃油管路(4)模拟注液及加压的转接堵头(505),两个安装台(501)隔开空间的下方水平布置柔性绳(6),柔性绳(6)下方设置缓冲装置(7)。该装置能实现对内部进行注液和加压的燃油管路(4)开展自由落体式坠撞冲击试验,具备燃油管路(4)动态冲击力和变形表征能力。

Description

一种航空燃油管路坠撞冲击试验装置 技术领域
本发明涉及冲击试验技术领域,特别是涉及一种航空燃油管路坠撞冲击试验装置。
背景技术
燃油管路被比为航空器上的“血管”,其在设计定型前,必须要考虑其在航空器可生存坠撞条件下拥有足够的变形能力且不会出现燃油管路的破裂,以降低航空器在可能发生的坠撞情形下起火的风险,这就要求燃油管路必须要开展坠撞冲击试验。CCAR25.993(f)中要求“机身内每根燃油导管的设计和安装,必须允许有合理程度的变形和拉伸而不漏油”。航空器的典型代表民用飞机,其燃油管路长度可达4米以上,其可生存坠撞条件下的最大坠撞速度达到47ft/s,机体上可能对燃油管路造成伤害的物体重量大于30kg、冲击接触尺寸小于5mm。
为了实现如此长的燃油导管的上述坠撞冲击考核,必须要有适合燃油管路的坠撞冲击试验装置,该装置必须要具备可对很长的燃油管路注液加压以模拟实际工作情形的能力,必须要冲击垂直度高、速度大且损耗小,必须要可调节落刀重量且满足特定刀头形状的冲击,同时该装置应具备冲击力和冲击变形表征能力。
目前,现有的落锤类试验设备不具备开展上述长燃油管路坠撞冲击试验的能力。
发明内容
本发明的目的是针对现有技术中存在的技术缺陷,而提供一种航空燃油管路坠撞冲击试验装置,该装置能够实现对内部进行了注液和加压的燃油管路开展不同落刀重量、不同刀头形式的自由落体式坠撞冲击,并具备燃油管路动态冲击力和变形表征能力。
为实现本发明的目的所采用的技术方案是:
一种航空燃油管路坠撞冲击试验装置,包括安装于基础平台上的分体式塔架以及一字型布置的燃油管路安装平台、设置在分体式塔架内部并位于所述燃油管路安装平台上方的导向系统,受所述导向系统导向约束能实现自由落体垂直下降的落刀,所述燃油管路安装平台包括两个沿长度方向隔开安装的安装台,每个所述安装台上有一安装座,两个所述安装座用于安装于燃油管路两端并通过沿安装台轴向方向移动以张紧燃油管路,每个所述安装座的立板上通过水平布置的螺栓同轴连接力传感器的一端,所述力传感器的另一端同轴连接能对燃油管路模拟注液及加压的转接堵头;两个所述安装台的隔开空间的下方水平布置柔性绳,所述柔性绳下方设置有缓冲装置。
藉由前述设计,使得本发明较之现有技术至少具有如下优点:
1)本发明中采用分体式塔架自上而下组装和搭建,不仅易搭建而且易拆卸,极大地提高了工程实现的便捷性和经济性;
2)本发明中采用四根(直径为10mm)磷化涂层垂直钢丝绳作为落刀导向系统,使落刀的冲击速度损失低于5%、冲击垂直角度偏差低于2°;
3)本发明中采用自由配重、楔形刀座和可拆卸刀头,可实现不同质量和形式的落刀冲击,其楔形形状可以很好地保证落刀系统中除刀头外的其它位置均不与燃油管路接触,极大提高了燃油管路坠撞冲击试验的有效性;
4)本发明中燃油管路的两端拉紧装置,可以灵活调节管路的松紧程度,避免因管路因自重而出现下垂,影响坠撞冲击试验效果;
5)本发明可以实现燃油管路的注液加压和动态冲击力以及变形的表征。
附图说明
图1为本发明的航空燃油管路坠撞冲击试验装置的总体结构示意图;
图2为本发明的航空燃油管路坠撞冲击试验装置的分体式塔架示意图;
图3为本发明的航空燃油管路坠撞冲击试验装置导向和落刀系统示意图;
图4为本发明的航空燃油管路坠撞冲击试验装置的落刀系统详细示意图;
图5为本发明的航空燃油管路坠撞冲击试验装置的包含柔性绳、缓冲装置的燃油管路安装平台;
图6为本发明的航空燃油管路坠撞冲击试验装置的燃油管路安装平台详细示意图。
附图标记:
1为分体式塔架,101为上框架,102为中上框架,103为中下框架,104为下框架,105为安装柱;
2为导向系统,201为吊葫芦,202为吊环,203为钢丝绳,204为定滑轮,205为拉紧器、206为固定环;
3为落刀系统,301为起吊绳,302为电吸铁,303为配重,304为刀座,305为刀头;
4为燃油管路;
5为燃油管路安装平台,501为安装台,502为安装座,503为内六角螺栓,504为力传感器,505为转接堵头,506为卡箍,507为卡箍支撑座;
6为柔性绳;
7为缓冲装置;
8为基础平台。
具体实施方式
以下结合附图和具体实施例对本发明作进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
如图1至图6所示,本发明实施例的航空燃油管路坠撞冲击试验装置,包括分体式塔架1、导向系统2、落刀系统3、燃油管路4、燃油管路安装平台5、柔性绳6、缓冲装置7和基础平台8;其中,分体式塔架,优选地采用普通型钢质,形状为梯形,根据目标坠撞高度、现场运输安装条件,可自由地设计单个框架高度,不同单个框架之间通过螺栓紧固。由于单个框架的高度可达到四米,为了降低整体塔架的起吊所需高度,需自上而下进行依次组装。
作为一个实施例,所述分体式塔架由上框架101、中上框架102、中下框架103与下框架104组成,其中,中下框架103与下框架104通过螺栓连接,形成分体式塔架下半部分,并通过安装柱105和T型螺栓将其整体安装至基础平台8上;再将上框架101通过螺栓与中上框架102连接,然后将整体通过螺栓安装至分体式塔架下半部分上,形成分体式塔架1。
作为一个实施例,所述的基础平台,优先地采用普通钢质的钢材制作,其厚度不低于50mm、总重量应大于整个系统重量的10倍以上。
进一步地,所述基础平台上布有大量的T型槽,用于整个系统的安装固定。
其中,所述导向系统优选地采用四根直径为10mm的磷化涂层钢丝绳,四根钢丝绳矩形状布置,其顶端各自通过绳扣和吊环竖直地安装在分体式塔架顶端,底端通过绕过定滑轮和水平拉紧器连接后进行竖直拉紧安装。
作为一个实施例,在上框架101上通过螺栓安装吊葫芦201、四个吊环202(安装于上框架的顶端的顶板上),并穿好四根钢丝绳203(表面有磷化涂层)和落刀系统3的刀座304,刀座304的近四角方向有穿钢丝绳的通孔,四根钢丝绳各自对应穿过一个穿钢丝绳的通孔与所述刀座304滑动连接。
其中,在钢丝绳203的下方合适位置通过螺栓固定定滑轮204、拉紧器205以及固定环206,并通过铅垂线微调相互之间的位置,确保钢丝绳203处于拉紧且垂直的状态,钢丝绳203的下端绕过定滑轮204并与拉紧器205固定,拉紧器205的另一端与固定环206连接固定。
其中,在所述的刀座304上端通过螺栓可拆卸式安装需要的可调节更换的配重303,下端可拆卸式安装有刀头305,刀头305的前端为V形状或是楔形的结构,其楔形的角度小 于燃油管路变形的角度,以方便对燃油管路4进行坠撞冲击;电吸铁302与配重303顶端的凹槽进行小间隙吸附配合安装,此时电吸铁302不得通电。所述吊葫芦、电吸铁、配重、刀座、刀头整体构成本发明的落刀系统3。
本发明实施例中,所述的吊葫芦优选地选用电动、带无线遥控的功能,其最大起吊重量应大于所需提升的落刀系统总重,具备断电自动刹车和防冲顶限位,且提升速度不大于6米/分钟。
本发明实施例中,所述的电吸铁优先地选用失电型电吸铁,即断电有强磁力、通直流电后无磁力,且磁力应大于所需提升的落刀(由配重、刀座、刀头构成)总重。
本发明实施例中,所述的配重优先地,采用调制钢质的钢材制作,并在落刀系统的重心位置的顶端开有与电吸铁尺寸相匹配的浅凹槽,使落刀系统的起吊线始终通过落刀系统重心,以保证坠撞垂直度。
进一步地,本发明实施例中,所述的配重可以是两个或是多个,两个以上配重之间采用沉孔进行螺栓紧固,配重的轮廓应进行倒圆角处理,且顶端的配重的顶部的浅凹槽与电吸铁之间的配合应采用小间隙配合。
本发明实施例中,所述的刀座优先地采用调制钢质的钢材制作,顶部具有安装配重的螺纹孔,底部具有安装刀头的螺纹孔。
本发明实施例中,进一步地,所述的刀座的形状为楔形,楔形的角度结合余弦定理和燃油管路变形三角形计算,确保楔形的角度应小于燃油管路变形的角度,防止刀座在坠撞过程中触碰到燃油管路。
本发明实施例中,进一步地,所述的刀座四周的穿钢丝绳的通孔直径比所述钢丝绳的直径大2mm。
本发明实施例中,所述的刀头优先地采用调制钢质的钢材制作或其它要求的材质的钢材制作,为可拆卸式,刀头形状可设计为长方形或其它要求的形状,但应进行必要的加筋以增加刀头强度。
其中,所述的加筋应为斜筋,斜筋的角度应与刀座楔形角度一致甚至更小,即斜筋角度也小于燃油管路变形的角度,防止刀头斜筋在坠撞过程中触碰到燃油管路。
本发明实施例中,所述燃油管路安装平台可选的,包括安装台、安装座、内六角螺栓、力传感器、转接堵头、安装卡箍以及卡箍支撑座。
本发明实施例中,两个沿长度方向分开的安装台501间隔同轴线布置,通过多个安装腿安装于基础平台8上,在每个安装台501上通过长型孔或是腰型孔,位置可轴向调节的 安装有一个安装座502,根据燃油管路的长度,调整安装座在腰型孔处的位置,实现燃油管路的初步拉紧安装;两个安装座502之间用于安装待试验的燃油管路4,安装燃油管路时,在燃油管路4的两侧依次安装转接堵头505、力传感器504、内六角螺栓503,实现将燃油管路4安装于两个安装座502之间。
其中,所述燃油管路4的张紧程度大幅度调整可通过安装台501上的腰型通孔进行,张紧程度小幅度调整可通过内六角螺栓503进行。
其中,两个安装台501上布置有卡箍506,卡箍506安装于卡箍支撑座507上,通过卡箍506和卡箍支撑座507能将燃油管路4最终固定在安装台501上。
其中,在燃油管路4的正下方且于两个安装台501之间的隔开位置,水平安装有柔性绳6和缓冲装置7,柔性绳的水平度通过水平尺进行测量。其中,柔性绳6的两端各自固定于一个安装台的安装腿上,所述缓冲装置布置于所述柔性绳的下方。
本发明实施例中,所述安装台优先地采用普通钢质的钢材制作,为两个有一定的距离的独立安装台,每个安装台上有足够的安装平面来安装燃油管路,所述的安装平面布有安装用的通孔(未示出)、腰型孔(未示出)。
本发明实施例中,所述安装座优先地采用普通钢质的钢材制作,底部有安装孔与安装座相连。
所述的内六角螺栓优先地采用12.9级螺栓,螺栓长度应合适,确保使用该长度的螺栓能够与安装座接触紧密,且能够与力传感器内设的螺纹进行螺纹连接,以达到拉紧燃油管路的目的,防止燃油管路因重力原因而下垂。
其中,所述内六角螺栓的接触面与安装座贴合,且旋入所述力传感器的内螺纹内,通过旋转内六角螺栓能实现燃油管路的张紧调节。
本发明实施例中,所述力传感器优先地采用冲击型力传感器,两侧有螺纹安装孔,以方便与转接堵头以及内六角螺栓螺纹连接,为电荷性,动态响应快、拉压灵敏度误差小。
本发明实施例中,所述转接堵头优先地,其一端与燃油管路内螺纹进行连接,另一端为外六角形状,便于利用扳手进行安装。所述转接堵头一端设有与燃油管路内螺纹配合的外螺纹。
本发明实施例中,进一步地,所述转接堵头内部开有通液或气的注液加压孔,用于为燃油管路进行模拟注液及加压,具体的,所述转接堵头具有L形注液加压通道,该L形注液加压通道的两端开孔分别形成该转接堵头的侧壁以及端面上,该侧壁上的孔与端面上的孔相通呈L形,端面上的孔所在端伸入到燃油管路内,在通过侧面上孔(可以安装加压阀) 以及L形注液加压通道加压加液完成后采用相应的阀门关闭密封即可。
本发明实施例中,所述柔性绳优先地具有足够的弹性,置于燃油管路正下方一定高度,高度由目标坠撞冲击变形确定,优选的,所述柔性绳的高度值取燃油管路要求的最小变形值。
本发明实施例中,所述缓冲装置优先地选用沙袋,用于多余冲击能量的回收,确保缓冲能力足够,以避免落刀系统撞击到基础平台。
进一步地,本发明实施例,可以通过肉眼直观地通过柔性绳运动情况粗略判断燃油管路的变形程度,亦可通过高速相机采集坠撞冲击过程,结合机器视觉技术,定量地计算坠撞冲击速度和变形。
本发明应用于燃油管路坠撞冲击试验的具体方法如下:
1)完成一定重量、一定刀头形状的落刀系统3搭建后,落刀系统不通电,在刀头下方布置激光测距仪(未示出),在燃油管路4正前方布置高速摄像机(未示出)。
2)通过转接堵头505的注液加压口,实现对燃油管路4的注液并加压至指定值,通过安装台501上的腰型孔和内六角螺栓503实现对燃油管路4的张紧度调节。
3)利用吊葫芦201将落刀系统的落刀提升至指定的高度,并用激光测距仪测量记录落刀高度(测量记录完毕后拆除或移走激光测距仪)。
4)对落刀系统3直流通电,此时落刀系统3的落刀沿着四根钢丝绳203呈现自由落体式下降,并用高速相机记录冲击过程,完成冲击试验。
本发明提供的燃油管路坠撞冲击试验装置可以实现对燃油管路在注液和带压情形下的坠撞冲击考核,该装置具有易搭建易拆卸、落刀重量和刀头形式可调节、落刀系统除刀头外不与燃油管路接触、冲击速度损失低于5%、冲击垂直角度偏差低于2°、燃油管路张紧度可调节、冲击力和变形可测量等优点。
以上显示和描述了本发明的基本原理和主要特征和本发明的优点,对于本领域技术人员而言,显然本发明不限于上述示范性实施例的细节,而且在不背离本发明的精神或基本特征的情况下,能够以其他的具体形式实现本发明;
因此,无论从哪一点来看,均应将实施例看作是示范性的,而且是非限制性的,本发明的范围由所附权利要求而不是上述说明限定,因此旨在将落在权利要求的等同要件的含义和范围内的所有变化囊括在本发明内,不应将权利要求中的任何附图标记视为限制所涉及的权利要求。
此外,应当理解,虽然本说明书按照实施方式加以描述,但并非每个实施方式仅包 含一个独立的技术方案,说明书的这种叙述方式仅仅是为清楚起见,本领域技术人员应当将说明书作为一个整体,各实施例中的技术方案也可以经适当组合,形成本领域技术人员可以理解的其他实施方式。

Claims (10)

  1. 航空燃油管路坠撞冲击试验装置,其特征在于,包括安装于基础平台上的分体式塔架以及一字型布置的燃油管路安装平台、设置在分体式塔架内部并位于所述燃油管路安装平台上方的导向系统,受所述导向系统导向约束能实现自由落体垂直下降的落刀,所述燃油管路安装平台包括两个沿长度方向隔开安装的安装台,每个所述安装台上有一安装座,两个所述安装座用于安装于燃油管路两端并通过沿安装台轴向方向移动以张紧燃油管路,每个所述安装座的立板上通过水平布置的螺栓同轴连接力传感器的一端,所述力传感器的另一端同轴连接能对燃油管路模拟注液及加压的转接堵头;两个所述安装台的隔开空间的下方水平布置柔性绳,所述柔性绳下方设置有缓冲装置。
  2. 根据权利要求1所述航空燃油管路坠撞冲击试验装置,其特征在于,所述导向系统包括四根呈矩形状布置的钢丝绳,所述落刀具有配合所述钢丝绳的四个通孔,所述钢丝绳穿过所述通孔与所述落刀连接。
  3. 根据权利要求2所述航空燃油管路坠撞冲击试验装置,其特征在于,所述钢丝绳的顶端各自通过吊环安装在分体式塔架的顶端,底端绕过定滑轮和水平拉紧器连接进行竖直拉紧安装。
  4. 根据权利要求1所述航空燃油管路坠撞冲击试验装置,其特征在于,所述落刀包括楔形状的刀座,刀座的上端可拆卸式安装有配重、下端可拆卸式安装有刀头,电吸铁与配重顶端的凹槽进行间隙吸附配合,所述电吸铁为失电型电吸铁,不通电时与配重吸附在一起,通电时断开。
  5. 根据权利要求4所述航空燃油管路坠撞冲击试验装置,其特征在于,所述电吸铁通过其顶端连接的垂直布置的起吊绳与吊葫芦连接,所述吊葫芦安装于分体式塔架的顶端。
  6. 根据权利要求4所述航空燃油管路坠撞冲击试验装置,其特征在于,所述刀座的楔形的角度小于燃油管路变形的角度,以防止所述刀座在坠撞过程中触碰到燃油管路。
  7. 根据权利要求1所述航空燃油管路坠撞冲击试验装置,其特征在于,所述转接堵头具有L形注液加压通道,该L形注液加压通道的两端开孔分别形成于该转接堵头的侧壁以及端面上。
  8. 根据权利要求1所述航空燃油管路坠撞冲击试验装置,其特征在于,所述缓冲装置为沙袋,所述安装台上通过卡箍支撑座安装有燃油管路的卡箍。
  9. 根据权利要求1所述航空燃油管路坠撞冲击试验装置,其特征在于,在燃油管路的正前方布置高速摄像机。
  10. 根据权利要求1所述航空燃油管路坠撞冲击试验装置,其特征在于,所述螺栓与力传感器螺纹连接,所述力传感器与所述转接堵头螺纹连接,所述转接堵头与燃油管路螺纹连接。
PCT/CN2022/101043 2022-05-16 2022-06-24 一种航空燃油管路坠撞冲击试验装置 WO2023221236A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210525906.XA CN114608782B (zh) 2022-05-16 2022-05-16 一种航空燃油管路坠撞冲击试验装置
CN202210525906.X 2022-05-16

Publications (1)

Publication Number Publication Date
WO2023221236A1 true WO2023221236A1 (zh) 2023-11-23

Family

ID=81870514

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/101043 WO2023221236A1 (zh) 2022-05-16 2022-06-24 一种航空燃油管路坠撞冲击试验装置

Country Status (2)

Country Link
CN (1) CN114608782B (zh)
WO (1) WO2023221236A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114608782B (zh) * 2022-05-16 2022-08-02 天津航天瑞莱科技有限公司 一种航空燃油管路坠撞冲击试验装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005077176A (ja) * 2003-08-29 2005-03-24 Sony Corp 落下衝撃試験装置及びそれに用いる治具の締め付け装置
CN102519699A (zh) * 2011-12-12 2012-06-27 中联重科股份有限公司 落物冲击试验装置及驾驶室综合试验系统
CN203772657U (zh) * 2014-03-31 2014-08-13 中国商用飞机有限责任公司 用于飞机燃油管路柔性接头的极限剪切试验系统
CN104748915A (zh) * 2013-12-26 2015-07-01 上海众源燃油分配器制造有限公司 一种用于高压燃油管低压检漏的工装
CN109115634A (zh) * 2018-10-17 2019-01-01 福州大学 可精确测量冲击载荷与动态位移的落锤冲击试验台及试验方法
CN209247819U (zh) * 2019-01-18 2019-08-13 中国建筑科学研究院有限公司 一种用于校准加速度传感器的冲击试验装置
CN112683698A (zh) * 2020-12-21 2021-04-20 西安交通大学 一种材料中等应变速率拉伸冲击试验台
CN113790856A (zh) * 2021-11-17 2021-12-14 济宁康华机电科技有限公司 一种燃油管密封性检测机构
CN114608782A (zh) * 2022-05-16 2022-06-10 天津航天瑞莱科技有限公司 一种航空燃油管路坠撞冲击试验装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012037398A (ja) * 2010-08-09 2012-02-23 San Alloy:Kk 落錘式衝撃試験装置及び落錘式衝撃試験方法
CN201885863U (zh) * 2010-11-19 2011-06-29 锦州锦恒汽车安全系统有限公司 安全气囊跌落冲击试验装置
CN104034504B (zh) * 2014-05-26 2016-05-11 浙江大学 悬浮隧道整体冲击响应试验装置
CN108680326B (zh) * 2018-04-16 2019-09-03 天津大学 一种海底管道落物撞击模拟试验方法
CN109297837A (zh) * 2018-11-13 2019-02-01 大连民族大学 一种落锤冲击加载装置
CN111707437A (zh) * 2020-07-07 2020-09-25 中国矿业大学(北京) 一种模拟高空坠落物冲击油气管道实验平台及应用方法
CN112198069A (zh) * 2020-11-11 2021-01-08 昆明理工大学 一种落锤冲击试验机防二次冲击装置及其试验方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005077176A (ja) * 2003-08-29 2005-03-24 Sony Corp 落下衝撃試験装置及びそれに用いる治具の締め付け装置
CN102519699A (zh) * 2011-12-12 2012-06-27 中联重科股份有限公司 落物冲击试验装置及驾驶室综合试验系统
CN104748915A (zh) * 2013-12-26 2015-07-01 上海众源燃油分配器制造有限公司 一种用于高压燃油管低压检漏的工装
CN203772657U (zh) * 2014-03-31 2014-08-13 中国商用飞机有限责任公司 用于飞机燃油管路柔性接头的极限剪切试验系统
CN109115634A (zh) * 2018-10-17 2019-01-01 福州大学 可精确测量冲击载荷与动态位移的落锤冲击试验台及试验方法
CN209247819U (zh) * 2019-01-18 2019-08-13 中国建筑科学研究院有限公司 一种用于校准加速度传感器的冲击试验装置
CN112683698A (zh) * 2020-12-21 2021-04-20 西安交通大学 一种材料中等应变速率拉伸冲击试验台
CN113790856A (zh) * 2021-11-17 2021-12-14 济宁康华机电科技有限公司 一种燃油管密封性检测机构
CN114608782A (zh) * 2022-05-16 2022-06-10 天津航天瑞莱科技有限公司 一种航空燃油管路坠撞冲击试验装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHU DEXUAN; GE RUI; BIAN GANG; ZHOU WEI: "Research on the Crashworthiness Airworthiness Requirement and Compliance Method for Civil Airplane Fuselage Fuel Line", no. 123, 30 December 2016 (2016-12-30), pages 56 - 60, XP009550581, ISSN: 1674-9804, DOI: 10.19416/j.cnki.1674-9804.2016.04.014 *

Also Published As

Publication number Publication date
CN114608782A (zh) 2022-06-10
CN114608782B (zh) 2022-08-02

Similar Documents

Publication Publication Date Title
WO2023221236A1 (zh) 一种航空燃油管路坠撞冲击试验装置
WO2023134227A1 (zh) 一种用于钢丝绳抗拉性能测试检测机
KR20160063961A (ko) 멀티 로드 테스트 장치
CN110296828A (zh) 便携式组合压力释放阀检测台及检测方法
CN106525373A (zh) 一种水平冲击响应谱测量装置
CN106017951A (zh) 一体化道路载荷和环境应力综合模拟油气悬挂试验系统
CN203385550U (zh) 瞬时式防坠安全器检测试验台
CN204823586U (zh) 一种矿井提升钢丝绳在线安全检测装置
CN208780373U (zh) 检测设备
CN106018546A (zh) 一种用于磁粉检测灵敏度校验的试片辅助装置
CN108895933B (zh) 一种雷管抗拉性能检测装置
CN207472657U (zh) 高速动车组头车上边梁压缩试验加载装置
CN103674446A (zh) 一种提速铁道客车转向架气密性测试系统及方法
CN209542287U (zh) 一种窨井盖检测承座装置
CN208420330U (zh) 一种超重超大试件振动试验支撑导向装置
CN103278318B (zh) 太阳翼铰链线驱动特性测试装置
CN109668779A (zh) 一种拉伸试验法测紧固带平板试样力学性能的夹具装置
CN206019783U (zh) 全自动探针式蓄电池液面检测装置
CN204514599U (zh) 活动式梯具拉力试验机
CN203838265U (zh) 一种有源负载测试装置
CN205562273U (zh) 动态冲击切割试验机
CN110793859A (zh) 一种模块化钢丝螺套强度试验装置
CN205879862U (zh) 一种用于磁粉检测灵敏度校验的试片辅助装置
CN113252463B (zh) 一种电缆引入装置夹紧试验台
CN203869887U (zh) 一种吊舱应急投放试验装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22942267

Country of ref document: EP

Kind code of ref document: A1