WO2023218930A1 - ガスタービン制御装置、ガスタービン制御方法、及びプログラム - Google Patents

ガスタービン制御装置、ガスタービン制御方法、及びプログラム Download PDF

Info

Publication number
WO2023218930A1
WO2023218930A1 PCT/JP2023/016133 JP2023016133W WO2023218930A1 WO 2023218930 A1 WO2023218930 A1 WO 2023218930A1 JP 2023016133 W JP2023016133 W JP 2023016133W WO 2023218930 A1 WO2023218930 A1 WO 2023218930A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow rate
fuel
fuel flow
gas turbine
calculation unit
Prior art date
Application number
PCT/JP2023/016133
Other languages
English (en)
French (fr)
Inventor
一茂 高木
竜児 竹中
皓士郎 福本
修平 戸田
伸明 林田
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Publication of WO2023218930A1 publication Critical patent/WO2023218930A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/04Air intakes for gas-turbine plants or jet-propulsion plants
    • F02C7/042Air intakes for gas-turbine plants or jet-propulsion plants having variable geometry
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/04Air intakes for gas-turbine plants or jet-propulsion plants
    • F02C7/057Control or regulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C9/00Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C9/00Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
    • F02C9/16Control of working fluid flow
    • F02C9/20Control of working fluid flow by throttling; by adjusting vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C9/00Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
    • F02C9/26Control of fuel supply
    • F02C9/28Regulating systems responsive to plant or ambient parameters, e.g. temperature, pressure, rotor speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C9/00Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
    • F02C9/48Control of fuel supply conjointly with another control of the plant
    • F02C9/50Control of fuel supply conjointly with another control of the plant with control of working fluid flow
    • F02C9/54Control of fuel supply conjointly with another control of the plant with control of working fluid flow by throttling the working fluid, by adjusting vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel

Definitions

  • the present disclosure relates to a gas turbine control device, a gas turbine control method, and a program.
  • This application claims priority based on Japanese Patent Application No. 2022-076848 filed in Japan on May 9, 2022, the contents of which are incorporated herein.
  • a fuel supply system that supplies fuel to a combustor may be divided into a plurality of fuel supply systems from the viewpoint of combustion efficiency and combustion stability.
  • the ratio at which fuel is distributed to each of the plurality of fuel supply systems, that is, the fuel distribution ratio, can be calculated based on the turbine inlet temperature.
  • the turbine inlet temperature is estimated based on the measurement data obtained by the sensor installed in the gas turbine, and the estimated turbine inlet temperature is used.
  • the fuel distribution ratio is calculated based on the fuel distribution ratio. Therefore, it is important to ensure the accuracy of the estimated turbine inlet temperature.
  • the turbine inlet temperature after combustion is estimated from the fuel flow rate and air flow rate flowing into the combustor, and the estimated turbine inlet temperature is corrected using the turbine outlet temperature measured by a sensor, that is, the exhaust gas temperature.
  • a technique is disclosed that improves the accuracy of the turbine inlet temperature by doing so.
  • Patent Document 1 it is difficult to uniquely determine the turbine efficiency, which is the relationship between the turbine inlet temperature and the exhaust gas temperature. Therefore, the technique disclosed in Patent Document 1 has a problem in that even if the turbine inlet temperature is corrected by the exhaust gas temperature, the correction may not be able to improve the accuracy of the turbine inlet temperature. Further, even if the turbine efficiency can be uniquely determined, the performance of the gas turbine 10 changes due to aging deterioration and the like as the gas turbine 10 is operated for a long period of time. Therefore, it is not possible to continue to use a uniquely determined turbine efficiency for a long period of time, so there is a problem that it becomes difficult to stably maintain the accuracy of the turbine inlet temperature.
  • the present disclosure has been made to solve the above problems, and provides a gas turbine control device, a gas turbine control method, and a gas turbine control method that can maintain accuracy of turbine inlet temperature over a long period of time without using turbine efficiency.
  • the purpose is to provide programs.
  • a gas turbine control device provides a fuel flow rate that indicates the amount of fuel flowing into a combustor of a gas turbine based on measurement data regarding a fuel supply system that supplies fuel to a combustor of a gas turbine.
  • an air flow rate calculation unit that calculates an air flow rate indicating the amount of air taken into the compressor based on measurement data regarding the compressor of the gas turbine;
  • a turbine inlet temperature calculation unit that calculates a turbine inlet temperature based on a flow rate and a physical model equation regarding a thermal energy balance regarding the combustor; and a turbine inlet temperature calculation unit that calculates a heat balance of the gas turbine based on measured data regarding the energy balance of the gas turbine.
  • a heat balance calculation section that performs calculations to satisfy the requirements and outputs calculation results
  • a state detection section that detects the state of the gas turbine
  • a correction processing section that corrects either or both of the fuel flow rate and the air flow rate based on the calculation result output by the balance calculation section and provides the corrected information to the turbine inlet temperature calculation section.
  • a gas turbine control method includes the steps of: calculating a fuel flow rate indicating the amount of fuel flowing into the combustor based on measurement data regarding a fuel supply system that supplies fuel to the combustor of the gas turbine; a step of calculating an air flow rate indicating the amount of air taken into the compressor based on measurement data regarding the compressor of the turbine; a physical model equation regarding the fuel flow rate, the air flow rate, and the thermal energy balance regarding the combustor; a step of calculating a turbine inlet temperature based on the energy balance of the gas turbine; a step of performing a calculation to satisfy a heat balance of the gas turbine based on measurement data regarding the energy balance of the gas turbine and outputting a calculation result; and a step of outputting the calculation result.
  • the method includes the step of correcting either or both of the flow rate and the air flow rate to calculate the turbine inlet temperature.
  • a program includes: a fuel flow rate calculation unit that causes a computer to calculate a fuel flow rate indicating the amount of fuel flowing into the combustor based on measurement data regarding a fuel supply system that supplies fuel to the combustor of a gas turbine; Air flow rate calculation means for calculating an air flow rate indicating the amount of air taken into the compressor based on measured data regarding the compressor of the gas turbine; a thermal energy balance regarding the fuel flow rate, the air flow rate, and the combustor; a turbine inlet temperature calculation means for calculating a turbine inlet temperature based on a physical model equation related to the gas turbine; Balance calculating means, state detecting means for detecting the state of the gas turbine, based on the calculation result output by the heat balance calculating means when the state of the gas turbine detected by the state detecting means is a statically stable state,
  • This is a program for functioning as a correction processing means for correcting one or both of the fuel flow rate and the air flow rate and providing the corrected information to the turbine inlet temperature calculation means.
  • the accuracy of the turbine inlet temperature can be maintained over a long period of time without using turbine efficiency.
  • FIG. 1 is a schematic diagram showing a configuration example of a gas turbine power generation plant according to a first embodiment of the present disclosure.
  • FIG. 1 is a block diagram illustrating a configuration example of a gas turbine control device according to a first embodiment of the present disclosure.
  • 1 is a flowchart (Part 1) illustrating an example of the operation of the gas turbine control device according to the first embodiment of the present disclosure.
  • FIG. 2 is a flowchart (Part 2) illustrating an example of the operation of the gas turbine control device according to the first embodiment of the present disclosure.
  • FIG. FIG. 3 is a flowchart (part 3) illustrating an example of the operation of the gas turbine control device according to the first embodiment of the present disclosure.
  • FIG. 1 is a schematic diagram showing a configuration example of a gas turbine power generation plant according to a first embodiment of the present disclosure.
  • FIG. 1 is a block diagram illustrating a configuration example of a gas turbine control device according to a first embodiment of the present disclosure.
  • 1 is a flowchar
  • FIG. 2 is a flowchart (Part 1) illustrating an operation example of a gas turbine control device according to another configuration example of the first embodiment of the present disclosure.
  • FIG. 2 is a flowchart (Part 2) illustrating an operation example of the gas turbine control device according to another configuration example of the first embodiment of the present disclosure.
  • FIG. FIG. 2 is a schematic diagram showing a configuration example of a gas turbine power generation plant according to a second embodiment of the present disclosure.
  • FIG. 2 is a block diagram showing a configuration example of a gas turbine control device according to a second embodiment of the present disclosure.
  • FIG. 2 is a flowchart (part 1) illustrating an example of the operation of the gas turbine control device according to the second embodiment of the present disclosure.
  • FIG. 2 is a flowchart (Part 2) illustrating an example of the operation of the gas turbine control device according to the second embodiment of the present disclosure.
  • FIG. FIG. 3 is a flowchart (Part 3) illustrating an example of the operation of the gas turbine control device according to the second embodiment of the present disclosure.
  • FIG. FIG. 2 is a block diagram illustrating a configuration example of a gas turbine control device according to a third embodiment of the present disclosure.
  • 12 is a flowchart (Part 1) illustrating an example of the operation of the gas turbine control device according to the third embodiment of the present disclosure.
  • 12 is a flowchart (Part 2) illustrating an example of the operation of the gas turbine control device according to the third embodiment of the present disclosure.
  • FIG. 1 is a schematic block diagram showing the configuration of a computer according to at least one embodiment.
  • FIGS. 1 to 16 are schematic diagrams showing configuration examples of gas turbine power plants 100 and 100a according to first and second embodiments of the present disclosure, respectively.
  • FIG. 2, FIG. 9, and FIG. 13 are block diagrams showing configuration examples of gas turbine control devices 20, 20a, and 20b according to first to third embodiments of the present disclosure, respectively.
  • 3 to 5 are flowcharts showing operation examples of the gas turbine control device 20 according to the first embodiment of the present disclosure.
  • 6 and 7 are flowcharts illustrating an operation example of the gas turbine control device 20 according to another configuration example of the first embodiment of the present disclosure.
  • FIG. 10 to 12 are flowcharts illustrating an example of the operation of the gas turbine control device 20a according to the second embodiment of the present disclosure.
  • 14 and 15 are flowcharts illustrating an example of the operation of the gas turbine control device 20b according to the third embodiment of the present disclosure.
  • FIG. 16 is a schematic block diagram showing the configuration of a computer according to at least one embodiment of the present disclosure.
  • the same reference numerals are used for the same or corresponding components, and the description thereof will be omitted as appropriate.
  • all calculations will be described as being performed within a single gas turbine control device as shown in FIGS. Only.
  • the fuel flow rate and turbine inlet temperature calculation may be performed by the gas turbine control device, and the heat balance calculation and the correction coefficient calculation may be performed by a different computer.
  • the combination of each calculation process and the hardware that executes the calculation process can be changed as appropriate.
  • FIG. 1 is an overall configuration diagram of a gas turbine power generation plant 100 according to a first embodiment.
  • the gas turbine power generation plant 100 includes a gas turbine 10, a gas turbine control device 20 that controls the gas turbine 10, a fuel supply device 30 that supplies fuel, and a fuel supply system 40 that guides the fuel supplied by the fuel supply device 30 to the gas turbine 10. , a generator 50 that generates electricity by being driven by the power of the gas turbine 10, and various sensors 25a to 25l that measure various state quantities and transmit the measured data detected by measurement to the gas turbine control device 20. Equipped with
  • the gas turbine 10 includes a compressor 11, a combustor 12, and a turbine 13.
  • the compressor 11 generates high-pressure compressed air by sucking in air and compressing the sucked air. Compressed air generated by the compressor 11 is supplied to a combustor 12 and a turbine 13 located downstream.
  • the compressor 11 includes a compressor rotor 111 that rotates around a main shaft As, a compressor casing 112 that covers the compressor rotor 111 from the outer circumferential side, and an inlet guide vane that adjusts the amount of air taken in by the compressor 11. 14 (IGV (Inlet Guide Vane)).
  • IGV Inlet Guide Vane
  • the inlet guide vane 14 is connected to the gas turbine control device 20 by a control line such as a communication line as shown by the dotted arrow, and the inlet guide vane 14 receives a command value from the gas turbine control device 20 to control the compressor. The amount of air taken in by 11 is adjusted.
  • the turbine 13 includes a turbine rotor 131 that rotates around the main shaft As, and a turbine casing 132 that covers the turbine rotor 131 from the outer circumferential side.
  • the compressor rotor 111 and the turbine rotor 131 are connected and rotate integrally about the main shaft As.
  • the combustor 12 injects fuel supplied from the fuel supply system 40 into compressed air produced by the compressor 11 and burns it, thereby producing high-pressure, high-temperature combustion gas.
  • the combustor 12 includes a combustor inner cylinder 121 and a combustor chamber 16 that covers the combustor inner cylinder 121.
  • the combustor inner cylinder 121 burns the fuel in the combustor chamber 16 by injecting and igniting the fuel supplied from the fuel supply system 40 .
  • the combustor casing 16 is connected to the compressor casing 112 and the turbine casing 132, and the combustion gas generated in the combustor casing 16 is supplied to the turbine casing 132 so that the turbine rotor 131 As the turbine rotor 131 rotates, the compressor rotor 111 rotates integrally to suck air.
  • the fuel supply system 40 supplies the fuel supplied by the fuel supply device 30 to the combustor 12 through fuel piping at a predetermined pressure and flow rate.
  • the fuel supply system 40 is a fuel pipe shown by a solid line or a broken line arrow in FIG. It includes a valve (hereinafter referred to as a flow control valve) 41, a nozzle 42, and a manifold pipe 43.
  • the fuel supply system 40 includes three fuel supply systems: a fuel supply system 40-1, a fuel supply system 40-2, and a fuel supply system 40-3.
  • the fuel supply device 30 branches the fuel to be supplied into three parts, and supplies each of the branched fuels to a fuel supply system 40-1, a fuel supply system 40-2, and a fuel supply system 40-3.
  • the fuel supply system 40-1 is a top hat fuel supply system for supplying fuel to the top hat portion of the combustor 12
  • the fuel supply system 40-2 is a top hat fuel supply system for supplying fuel to the center of the combustor inner cylinder 121.
  • the fuel supply system 40-3 is a main fuel supply system that supplies fuel to a portion surrounding the center of the combustor inner cylinder 121.
  • the flow control valve 41 is a flow control valve 41- corresponding to each of the fuel supply systems 40-1 to 40-3. It has 1,41-2,41-3.
  • Each of the flow control valves 41-1, 41-2, and 41-3 is connected to the gas turbine control device 20 by a control line such as a communication line, as shown by dotted arrows.
  • the flow control valve 41-1, 41-2, and 41-3 receives a command value indicating the valve opening for each from the gas turbine control device 20 through the control line, the flow control valve 41-1, 41-2, and 41-3 opens at the opening according to the received command value. Increase or decrease the opening of the valve.
  • the nozzle 42 has nozzles 42-1, 42-2, and 42-3 corresponding to each of the fuel supply systems 40-1 to 40-3.
  • the manifold piping 43 only the manifold piping 43 corresponding to the fuel supply system 40-1 is shown in FIG. , one manifold pipe 43 is provided.
  • the branch numbers of the symbols will be made to correspond and the manifold piping 43 will be referred to as manifold piping 43-1 to 43-3, respectively.
  • Each of the manifold piping 43-1 to 43-3 is connected to the combustor 12.
  • the manifold piping 43-1 supplies fuel to the top hat portion of the combustor 12, and the manifold piping 43-2 supplies fuel to the top hat portion of the combustor 12.
  • fuel is supplied to the center of the combustor inner cylinder 121, and the manifold pipe 43-3 supplies fuel to a portion surrounding the center of the combustor inner cylinder 121.
  • the rotor 15 is connected to the compressor rotor 111, and rotates together with the compressor rotor 111 and the turbine rotor 131 about the main shaft As.
  • Generator 50 is connected to one end of compressor rotor 111 via rotor 15 .
  • the generator 50 is driven by the rotation of the rotor 15 to generate electricity.
  • Each of the various sensors 25a to 25l is connected to the gas turbine control device 20 through a control line such as a communication line, as shown by dotted arrows, and the measurement data detected by measurement is sent to the gas turbine control device 20 through the control line. Send to 20.
  • the flow control valve front pressure sensor 25a, the flow control valve back pressure sensor 25b, and the fuel temperature sensor 25c detect measurement data regarding the fuel supply system 40 as shown below.
  • the flow control valve front pressure sensor 25a includes flow control valve front pressure sensors 25a-1, 25a-2, 25a-3 provided for each fuel supply system 40-1, 40-2, 40-3.
  • Each of the flow control valve front pressure sensors 25a-1, 25a-2, 25a-3 is a flow control valve that measures the pressure of fuel flowing into the corresponding flow control valve 41-1, 41-2, 41-3. Prepressures P 1FV (1), P 1FV (2), and P 1FV (3) are detected.
  • the flow regulating valve post-pressure sensor 25b includes flow regulating valve post-pressure sensors 25b-1, 25b-2, 25b-3 provided for each fuel supply system 40-1, 40-2, 40-3.
  • Each of the flow control valve rear pressure sensors 25b-1, 25b-2, 25b-3 detects a flow rate which is the pressure of the fuel flowing out from each of the corresponding flow control valves 41-1, 41-2, 41-3. Detect the post-valve adjustment pressures P 2FV (1), P 2FV (2), and P 2FV (3).
  • the fuel temperature sensor 25c includes fuel temperature sensors 25c-1, 25c-2, and 25c-3 provided for each fuel supply system 40-1, 40-2, and 40-3.
  • Each of the fuel temperature sensors 25c-1, 25c-2, 25c-3 detects a fuel temperature T f which is the temperature of the fuel flowing through the fuel pipes of the corresponding fuel supply systems 40-1, 40-2, 40-3. (1), T f (2), and T f (3) are detected.
  • Power meter sensor 25d detect measurement data regarding the gas turbine as shown below.
  • the wattmeter sensor 25d measures the power generated by the generator 50, and detects the measured power as the gas turbine output G out .
  • the index differential pressure sensor 25e detects the compressor index differential pressure P index .
  • the compressor index differential pressure P index is the pressure difference between the pressure at the casing suction port of the compressor 11 and the pressure near the blades inside the compressor 11, and is an index of the air flow rate taken in by the compressor 11.
  • the value is
  • the compressor inlet pressure sensor 25f detects the compressor inlet pressure P1C , which is the pressure at the casing suction port of the compressor 11.
  • the compressor inlet temperature sensor 25g detects the compressor inlet temperature T1C , which is the temperature at the casing suction port of the compressor 11.
  • the compressor outlet pressure sensor 25h detects the compressor outlet pressure P2C , which is the pressure at the outlet of the compressor 11.
  • the compressor outlet temperature sensor 25i detects the compressor outlet temperature T2C , which is the temperature at the outlet of the compressor 11.
  • the combustor casing temperature sensor 25j detects the combustor casing temperature TCS , which is the combustion gas temperature, that is, the temperature of the air inside the combustor casing 16.
  • the exhaust gas pressure sensor 25k detects the exhaust gas pressure P2T , which is the pressure at the outlet of the turbine 13.
  • the exhaust gas temperature sensor 25l detects the exhaust gas temperature T2T , which is the temperature at the outlet of the turbine 13.
  • the gas turbine control device 20 includes a fuel flow rate calculation unit 201, an air flow rate calculation unit 202, a heat balance calculation unit 203, a correction processing unit 204, a state detection unit 205, a turbine inlet temperature calculation unit 206, and a fuel flow rate calculation unit 201. It includes a distribution ratio calculation section 207 and a valve opening degree calculation section 208.
  • the fuel flow rate calculation unit 201 calculates valve opening degrees O 1 , O 2 given as command values to the flow control valve 41 with respect to a predetermined fuel flow rate calculation function f 1 ( ⁇ ). , O 3 and the measured data regarding each of the fuel supply systems 40-1, 40-2, 40-3 to calculate the amount of fuel flowing into the combustor 12 of the gas turbine 10 per unit time.
  • the fuel flow rate G ft is calculated.
  • the measurement data regarding each of the fuel supply systems 40-1, 40-2, and 40-3 are the flow control valve front pressures P 1FV (1), P 1FV (2 ), P 1FV (3), the flow control valve post-pressure detected by the flow control valve post-pressure sensor 25b, P 2FV (1), P 2FV (2), P 2FV (3), and the fuel detected by the fuel temperature sensor 25c.
  • This is data on temperatures T f (1), T f (2), and T f (3).
  • the fuel flow rate calculation unit 201 calculates the fuel flow rate for each of the fuel supply systems 40-1, 40-2, and 40-3 as shown in the following equations (1), (2), and (3).
  • a calculation is performed using a calculation function f 1 ( ⁇ ) to determine the fuel flow rate G ft (1) that flows into the combustor 12 through each of the fuel supply systems 40-1, 40-2, and 40-3 per unit time; A fuel flow rate G ft (2) and a fuel flow rate G ft (3) are calculated.
  • the fuel flow rate calculation unit 201 calculates a fuel flow rate G ft (1) corresponding to the fuel supply system 40-1 and a fuel flow rate G ft (2 ) and the fuel flow rate G ft (3) corresponding to the fuel supply system 40-3 to calculate the fuel flow rate G ft that flows into the combustor 12 through the fuel supply system 40 per unit time.
  • the air flow rate calculation unit 202 calculates measurement data regarding the compressor 11 of the gas turbine 10, that is, the compressor index differential pressure P index detected by the index differential pressure sensor 25e and the compressor inlet pressure detected by the compressor inlet pressure sensor 25f.
  • P 1C and the compressor inlet temperature T 1C detected by the compressor inlet temperature sensor 25g are substituted into a predetermined air flow rate calculation function f 2 ( ⁇ ) as shown in the following equation (5) to calculate the unit time.
  • An air flow rate G at indicating the amount of air taken in by the compressor 11 of the gas turbine 10 at a time is calculated.
  • the heat balance calculation unit 203 calculates the measured value against a calculation formula (hereinafter referred to as a gas turbine heat balance calculation formula) indicating that the overall energy balance of the gas turbine 10, that is, the work balance and the heat balance match.
  • a gas turbine heat balance calculation formula indicating that the overall energy balance of the gas turbine 10, that is, the work balance and the heat balance match.
  • the measurement data that the heat balance calculation unit 203 applies to the gas turbine heat balance calculation formula includes, for example, the gas turbine output G out detected by the wattmeter sensor 25d, the exhaust gas pressure P 2T detected by the exhaust gas pressure sensor 25k, and the exhaust gas temperature sensor.
  • the state detection unit 205 detects temporal changes in state quantities of the gas turbine power generation plant 100 expressed by various measurement data detected by various sensors 25a to 25l connected to the gas turbine control device 20, and changes in the state quantities of the generator 50. It is detected whether the state of the gas turbine power generation plant 100 is in a transient state or a static state based on the electric power generated by the gas turbine power generation plant 100 . For example, the state detection unit 205 detects the state of the gas turbine power generation plant 100 as a static state when the amount of change in the state quantity over time is less than a predetermined threshold value. On the other hand, the state detection unit 205 detects the state of the gas turbine power plant 100 as a transient state when the amount of change over time is equal to or greater than the threshold value.
  • the correction processing section 204 includes a fuel flow rate correction section 210 and an air flow rate correction section 220.
  • the fuel flow rate correction section 210 includes a fuel side management section 211, a fuel side storage section 212, a fuel correction coefficient calculation section 213, and a fuel correction coefficient application section 214.
  • the fuel side management unit 211 associates the fuel flow rate G ft calculated by the fuel flow rate calculation unit 201 with the fuel flow rate G fs calculated by the heat balance calculation unit 203 according to the state detected by the state detection unit 205, and determines the fuel side. It is written into the storage unit 212 and stored.
  • the fuel-side management unit 211 outputs the latest combination of the fuel flow rate G ft and the fuel flow rate G fs to the fuel correction coefficient calculation unit 213 .
  • the fuel side storage unit 212 stores combinations of the fuel flow rate G ft and the fuel flow rate G fs in chronological order.
  • the fuel correction coefficient application unit 214 is, for example, a multiplier, and calculates the fuel flow rate by multiplying the fuel flow rate G ft calculated by the fuel flow rate calculation unit 201 by the fuel correction coefficient K f calculated by the fuel correction coefficient calculation unit 213.
  • the air flow rate correction section 220 includes an air side management section 221, an air side storage section 222, an air correction coefficient calculation section 223, and an air correction coefficient application section 224.
  • the air side management unit 221 associates the air flow rate G at calculated by the air flow rate calculation unit 202 with the air flow rate G as calculated by the heat balance calculation unit 203 according to the state detected by the state detection unit 205, and determines the air side. It is written into the storage unit 222 and stored.
  • the air side management unit 221 outputs the latest combination of the air flow rate G at and the air flow rate G as to the air correction coefficient calculation unit 223 .
  • the air side storage unit 222 stores combinations of the air flow rate G at and the air flow rate G as in chronological order.
  • the air correction coefficient application unit 224 is, for example, a multiplier, and calculates the air flow rate by multiplying the air flow rate G at calculated by the air flow rate calculation unit 202 by the air correction coefficient Ka calculated by the air correction coefficient calculation unit 223.
  • the turbine inlet temperature calculation unit 206 calculates the corrected fuel flow rate G fcor , the corrected air flow rate G acor , the combustor casing temperature T CS detected by the combustor casing temperature sensor 25j, and the fuel temperature sensors 25c-1 to 25c-.
  • the fuel temperature Tf which is the average value of the fuel temperatures Tf (1), Tf (2), and Tf (3) detected by the combustor
  • the turbine inlet temperature T 1T is calculated by substituting it into an equation for solving the heat balance around the combustor 12, that is, a function f 3 ( ⁇ ) which is a physical model equation regarding the thermal energy balance regarding the combustor 12.
  • the physical model equation related to the thermal energy balance represented by the function f 3 ( ⁇ ) of the above equation (6) is, for example, an equation obtained by transforming the unsteady physical model.
  • the expression expressing the unsteady physical model is, for example, a model expression expressing that the thermal energy flowing into the combustor 12 is equal to the thermal energy flowing out from the combustor 12, and the turbine inlet temperature included in the model expression
  • thermal energy flowing into the combustor 12 in the unsteady physical model is represented by the sum of the thermal energy of the fuel, the thermal energy of the air, and the exothermic energy of the combustion gas.
  • Thermal energy exiting the combustor 12 is represented by the thermal energy at the inlet of the turbine 13.
  • the fuel distribution ratio calculation unit 207 Based on the turbine inlet temperature T 1T calculated by the turbine inlet temperature calculation unit 206, the fuel distribution ratio calculation unit 207 adjusts the fuel supply systems 40-1, 40 according to a predetermined relational expression between the turbine inlet temperature T 1T and the fuel distribution ratio.
  • the fuel distribution ratios D 1 , D 2 , and D 3 for each of ⁇ 2 and 40-3 are calculated.
  • the sum of the three fuel distribution ratios D 1 , D 2 , and D 3 calculated by the fuel distribution ratio calculation unit 207 is 100%.
  • the valve opening calculation unit 208 calculates the valve opening based on the fuel distribution ratios D 1 , D 2 , D 3 calculated by the fuel distribution ratio calculation unit 207 and a fuel control signal command value (CSO: Control Signal Output) given from the outside. , calculate the valve openings O 1 , O 2 , O 3 for each of the flow control valves 41-1, 41-2, 41-3 using a predetermined valve opening calculation formula.
  • the fuel control signal command value (CSO) is a control output signal that controls the fuel flow rate supplied to the combustor 12.
  • the valve opening calculation unit 208 provides each of the calculated valve openings O 1 , O 2 , and O 3 as command values for the corresponding flow control valves 41 - 1 , 41 - 2 , and 41 - 3 .
  • the flow regulating valve 41-1 adjusts its opening according to the valve opening O 1
  • the flow regulating valve 41-2 adjusts its opening according to the valve opening O 2
  • the flow regulating valve 41-2 adjusts its opening according to the valve opening O 2
  • 3 adjusts the opening degree according to the valve opening degree O3 .
  • the valve opening degree calculation unit 208 feeds back the calculated valve opening degrees O 1 , O 2 , O 3 to the fuel flow rate calculation unit 201 .
  • the flow control valve front pressure sensors 25a-1 to 25a-3, the flow control valve back pressure sensors 25b-1 to 25b-3, and the fuel temperature sensors 25c-1 to 25c-3 perform measurements at each detection cycle.
  • the detected measurement data is transmitted to the gas turbine control device 20 via a control line.
  • the fuel flow rate calculation unit 201 calculates the flow control valve pre-pressures P 1FV (1), P 1FV (2), P 1FV (3) transmitted by the flow control valve pre-pressure sensors 25a-1 to 25a-3, and the flow control valve
  • the flow control valve rear pressures P 2FV (1), P 2FV (2), P 2FV (3) transmitted by the rear pressure sensors 25b-1 to 25b-3 and the fuel temperature sensors 25c-1 to 25c-3 transmit It receives and takes in fuel temperatures T f (1), T f (2), and T f (3).
  • the fuel flow rate calculation section 201 takes in the valve opening degrees O 1 , O 2 , and O 3 calculated and outputted by the valve opening degree calculation section 208 in the previous detection cycle (S1-1).
  • the fuel flow rate calculation unit 201 substitutes the data taken in in the process of step S1-1 into equations (1), (2), and (3) as described above, and calculates the fuel flow rate G ft (1), G Calculate ft (2) and G ft (3).
  • the fuel flow rate calculation unit 201 totals the fuel flow rates G ft (1), G ft (2), and G ft (3), and calculates the amount of fuel flow in the combustor 12 of the gas turbine 10 per unit time, as shown in equation (4). Calculate the fuel flow rate G ft indicating the amount of fuel flowing into.
  • the fuel flow rate calculation unit 201 outputs the calculated fuel flow rate G ft to the fuel side management unit 211 and the fuel correction coefficient application unit 214 (S2-1).
  • the wattmeter sensor 25d, exhaust gas pressure sensor 25k, exhaust gas temperature sensor 25l, compressor inlet pressure sensor 25f, compressor inlet temperature sensor 25g, compressor outlet pressure sensor 25h, and compressor outlet temperature sensor 25i measure each detection cycle.
  • the measurement data detected by the measurement is transmitted to the gas turbine control device 20 through the control line.
  • the heat balance calculation unit 203 calculates the gas turbine output G out transmitted by the wattmeter sensor 25d, the exhaust gas pressure P 2T transmitted by the exhaust gas pressure sensor 25k, the exhaust gas temperature T 2T transmitted by the exhaust gas temperature sensor 25l, and the compressor inlet.
  • the compressor outlet temperature T2C transmitted by the outlet temperature sensor 25i is received and taken in (S1-2).
  • the heat balance calculation unit 203 calculates the fuel flow rate G fs and the air flow rate G as based on the data imported in the process of step S1-2 and the gas turbine heat balance calculation formula.
  • the heat balance calculation unit 203 outputs the calculated fuel flow rate G fs to the fuel side management unit 211, and outputs the calculated air flow rate G as to the air side management unit 221 (S2-2).
  • the index differential pressure sensor 25e performs measurement every detection period and transmits data of the compressor index differential pressure P index , which is measurement data detected by measurement, to the gas turbine control device 20 via a control line.
  • the air flow rate calculation unit 202 calculates the compressor index differential pressure P index transmitted by the index differential pressure sensor 25e, the compressor inlet pressure P 1C transmitted by the compressor inlet pressure sensor 25f, and the compressor inlet temperature sensor 25g transmitted.
  • the compressor inlet temperature T1C is received and taken in (S1-3).
  • the air flow rate calculation unit 202 substitutes the data acquired in the process of step S1-3 into equation (5) to indicate the amount of air taken in by the compressor 11 of the gas turbine 10 per unit time, as described above. Calculate the air flow rate G at .
  • the air flow rate calculation unit 202 outputs the calculated air flow rate G at to the air side management unit 221 and the air correction coefficient application unit 224 (S2-3). Note that in FIG. 3, the set of processes in steps S1-1 and S2-1, the set of processes in steps S1-2 and S2-2, and the set of processes in steps S1-3 and S2-3 are It will be held in
  • the correction processing unit 204 When the correction processing unit 204 receives the fuel flow rate G ft , the fuel flow rate G fs , the air flow rate G at , and the air flow rate G as , it starts a subroutine of the storage unit management process shown in FIG. 5 (S3).
  • the fuel side management unit 211 takes in the fuel flow rate G ft outputted by the fuel flow rate calculation unit 201 and the fuel flow rate G fs outputted by the heat balance calculation unit 203.
  • the air side management unit 221 takes in the air flow rate G at outputted by the air flow rate calculation unit 202 and the air flow rate G as outputted by the heat balance calculation unit 203 (S100).
  • Each of the fuel side management section 211 and the air side management section 221 receives data indicating the state of the gas turbine power generation plant 100 detected by the state detection section 205 from the state detection section 205 at the time when each of the fuel side management sections 211 and the air side management section 221 finishes the process of step S100 performed by each of them. Acquire (S101). Each of the fuel-side management unit 211 and the air-side management unit 221 determines whether or not the acquired state data indicates a static state (S102).
  • the fuel side management unit 211 determines in the process of step S102 that the data indicating the acquired state indicates a static state (S102, Yes), the fuel side management unit 211 calculates the fuel flow rate G ft acquired in the process of step S100. , and the fuel flow rate G fs are written and stored in the fuel side storage unit 212 in association with each other.
  • the fuel-side management unit 211 stores the combinations of fuel flow rate G ft and fuel flow rate G fs sequentially written in the fuel-side storage unit 212 in chronological order, for example, so that the combinations to be newly written are: It is written into the fuel side storage unit 212 so that it is at the beginning of the chronological order (S103-1).
  • the fuel side management section 211 outputs the combination of the fuel flow rate G ft and the fuel flow rate G fs written in the fuel side storage section 212 to the fuel correction coefficient calculation section 213 (S104-1).
  • the fuel side management unit 211 determines that the fuel flow rate G acquired in the process of step S100 is ft and fuel flow rate Gfs , and reads out the latest combination of fuel flow rate Gft and fuel flow rate Gfs among the combinations stored in the fuel side storage unit 212. As described above, when the fuel-side storage unit 212 stores the combinations in chronological order such that the latest combination is at the top, the fuel-side management unit 211 stores the combinations stored at the top of the fuel-side storage unit 212 as the latest combinations.
  • the fuel-side management unit 211 outputs the read combination of the latest fuel flow rate G ft and fuel flow rate G fs to the fuel correction coefficient calculation unit 213 (S105-1).
  • step S102 determines in the process of step S102 that the data indicating the acquired state indicates a static state (S102, Yes)
  • the processes of steps S103-2 and S104-2 are performed. be exposed.
  • the air side management unit 221 determines in the process of step S102 that the acquired data indicating the state does not indicate a static state (S102, No)
  • the process of step S105-2 is performed.
  • each of the processes in steps S103-2, S104-2, and S105-2 is the process in steps S103-1, S104-1, and S105-1 in which the branch number of each step number is replaced with "-1".
  • the fuel flow rate G ft is read as the air flow rate G at
  • the fuel flow rate G fs is read as the air flow rate G as
  • the fuel side management section 211 is read as the air side management section 221
  • the fuel side storage section 212 is read as the air side storage section. 222
  • the fuel correction coefficient calculation section 213 is replaced with the air correction coefficient calculation section 223.
  • the fuel side management section 211 sends the most recently acquired combination of the fuel flow rate G ft and the fuel flow rate G fs to the fuel correction coefficient calculation section 213. If the state detected by the state detection unit 205 is not a static state, the latest combination of the fuel flow rate G ft and the fuel flow rate G fs stored in the fuel side storage unit 212 is sent to the fuel correction coefficient calculation unit 213. It will be output. In other words, the fuel-side management unit 211 calculates the combination of the latest fuel flow rate G ft and fuel flow rate G fs in the static state by using the fuel correction coefficient, regardless of which state the state detection unit 205 detects.
  • the air side management unit 221 also calculates the combination of the latest air flow rate G at and air flow rate G as in the static state by using the air correction coefficient, regardless of which state the state detection unit 205 detects. It will be output to the calculation unit 223.
  • the processing of steps S104-1, S104-2, S105-1, and S105-2 is completed, the subroutine of the storage management processing of FIG. 5 is completed, and the process returns to the processing of FIG. 3. Note that in FIG. 5, the processing performed by the fuel-side management section 211 and the processing performed by the air-side management section 221 are performed in parallel.
  • the fuel correction coefficient calculation unit 213 takes in the combination of the fuel flow rate G ft and the fuel flow rate G fs output by the fuel-side management unit 211 (S4-1).
  • the fuel correction coefficient calculation unit 213 calculates the fuel correction coefficient K f by dividing the fuel flow rate G fs by the fuel flow rate G ft .
  • the fuel correction coefficient calculation unit 213 outputs the calculated fuel correction coefficient K f to the fuel correction coefficient application unit 214 (S5-1).
  • the fuel correction coefficient application unit 214 takes in the fuel flow rate G ft outputted by the fuel flow rate calculation unit 201 and the fuel correction coefficient K f outputted by the fuel correction coefficient calculation unit 213.
  • the fuel correction coefficient application unit 214 multiplies the fuel flow rate G ft by the fuel correction coefficient K f to calculate a corrected fuel flow rate G fcor .
  • the fuel correction coefficient application unit 214 outputs the calculated corrected fuel flow rate G fcor to the turbine inlet temperature calculation unit 206 (S6-1).
  • the air flow rate correction unit 220 performs the processes of steps S4-2, S5-2, and S6-2 in FIG.
  • each of the processes of steps S4-2, S5-2, and S6-2 is the process of S4-1, S5-1, and S6-1 in which the branch number of each step number is replaced with "-1".
  • the fuel flow rate G ft is read as the air flow rate G at
  • the fuel flow rate G fs is read as the air flow rate G as
  • the fuel correction coefficient calculation section 213 is read as the air correction coefficient calculation section 223
  • the fuel correction coefficient application section 214 is read as the air correction coefficient calculation section 213.
  • the coefficient application section 224 is replaced, the fuel flow rate calculation section 201 is replaced with the air flow rate calculation section 202, the fuel correction coefficient K f is replaced with the air correction coefficient Ka , and the corrected fuel flow rate G fcor is replaced with the corrected air flow rate G acor . It is.
  • the turbine inlet temperature calculation unit 206 takes in the corrected fuel flow rate G fcor outputted by the fuel correction coefficient application unit 214 and the corrected air flow rate G acor outputted by the air correction coefficient application unit 224.
  • the turbine inlet temperature calculation unit 206 calculates the combustor casing temperature T CS sent by the combustor casing temperature sensor 25j and the fuel temperatures T f (1), T f sent from the fuel temperature sensors 25c-1 to 25c-3. (2) and T f (3) are received and taken in.
  • the combustor casing temperature sensor 25j performs measurement at each detection cycle and transmits data of the combustor casing temperature TCS , which is measurement data detected by measurement, to the gas turbine control device 20 via a control line.
  • the turbine inlet temperature calculation unit 206 calculates the fuel temperature T f which is the average value of the taken in fuel temperatures T f (1), T f (2), and T f (3). As described above, the turbine inlet temperature calculation unit 206 substitutes the corrected fuel flow rate G fcor , the corrected air flow rate G acor , the combustor casing temperature T CS , and the fuel temperature T f into equation (6). Calculate the turbine inlet temperature T 1T . The turbine inlet temperature calculation unit 206 outputs the calculated turbine inlet temperature T 1T to the fuel distribution ratio calculation unit 207 (S20).
  • the fuel distribution ratio calculation unit 207 takes in the turbine inlet temperature T 1T output from the turbine inlet temperature calculation unit 206 .
  • the fuel distribution ratio calculation unit 207 calculates a value for each of the fuel supply systems 40-1, 40-2, and 40-3 using a relational expression between the turbine inlet temperature T1T and the fuel distribution ratio based on the taken-in turbine inlet temperature T1T .
  • the fuel distribution ratio calculation unit 207 outputs the calculated fuel distribution ratios D 1 , D 2 , D 3 to the valve opening degree calculation unit 208 (S21).
  • the valve opening calculation section 208 takes in the fuel distribution ratios D 1 , D 2 , D 3 outputted by the fuel distribution ratio calculation section 207 and a fuel control signal command value (CSO) given from the outside.
  • the valve opening calculation unit 208 calculates the flow control valves 41-1, 41 according to a valve opening calculation formula based on the captured fuel distribution ratios D 1 , D 2 , D 3 and the fuel control signal command value (CSO). Calculate the valve opening degrees O 1 , O 2 , O 3 for each of ⁇ 2 and 41-3.
  • the valve opening calculation unit 208 outputs each of the calculated valve openings O 1 , O 2 , O 3 to the corresponding flow control valves 41-1, 41-2, and 41-3.
  • the valve opening degree calculation unit 208 outputs the calculated valve opening degrees O 1 , O 2 , O 3 to the fuel flow rate calculation unit 201 (S22), and the process ends.
  • the gas turbine control device 20 of the first embodiment calculates two types of fuel flow rates G ft and G fs .
  • One fuel flow rate G ft is determined by the fuel flow rate calculation unit 201 as follows: valve opening degree O 1 , O 2 , O 3 , flow control valve front pressure P 1FV (1), P 1FV (2), P 1FV (3). , is calculated using the following parameters: pressure after the flow control valve P 2FV (1), P 2FV (2), P 2FV (3) and fuel temperature T f (1), T f (2) T f (3). Ru.
  • the fuel flow rate calculation unit 201 Since the parameters used by the fuel flow rate calculation unit 201 have a quick response, even if the state of the gas turbine power generation plant 100 is in a transient state, it can follow drastic changes in the transient state and calculate the fuel flow rate G ft with a certain degree of accuracy. It can be calculated. However, the fuel flow rate calculation function f 1 ( ⁇ ) used by the fuel flow rate calculation unit 201 to calculate the fuel flow rate G ft is such that the Cv characteristic of the flow control valve 41, which is predetermined when constructing the function, is the true flow control valve. This may include absolute errors such as errors due to deviations in specifications, such as differences in the Cv characteristics of No. 41, and errors when modeling was performed to calculate the fuel flow rate.
  • the Cv characteristic is a characteristic indicating how much fuel can flow through the flow control valve 41. Since it may contain such an absolute error, even if the accuracy of the parameters substituted into the fuel flow rate calculation function f 1 ( ⁇ ) is increased, the fuel flow rate G ft obtained using the function will be , absolute accuracy may be low.
  • the other fuel flow rate G fs is determined by the heat balance calculation unit 203 based on the gas turbine output G out , the exhaust gas pressure P 2T , the exhaust gas temperature T 2T , the compressor inlet pressure P 1C , and the compressor inlet pressure P 1C. It is calculated using the following parameters: temperature T 1C , compressor outlet pressure P 2C , and compressor outlet temperature T 2C .
  • the gas turbine heat balance calculation formula used by the heat balance calculation unit 203 to calculate the fuel flow rate G fs is a calculation formula that indicates that the entire energy balance of the gas turbine 10 matches, so the fuel flow rate calculation unit 201 uses the gas turbine heat balance calculation formula.
  • the fuel flow rate G fs can be calculated with higher absolute accuracy.
  • measurement data of the temperature obtained from the gas turbine 10, such as the exhaust gas temperature T2T may have a large response delay.
  • the gas turbine output G out indicating the electric power generated by the generator 50 may be affected by disturbances such as an imbalance in supply and demand occurring in the power system connected to the generator 50 .
  • the fuel flow rate G fs calculated by the heat balance calculation unit 203 has higher accuracy than the fuel flow rate G ft when the gas turbine power generation plant 100 is in a static state, but when the gas turbine power generation plant 100 is in a transient state, may be less accurate than the fuel flow rate Gft .
  • the fuel flow rate correction unit 210 of the correction processing unit 204 uses the above two types of fuel flow rates G ft and G fs to correct both the static state and the transient state by the processing described with reference to FIGS. 3 to 5. In this state, it can be said that the following processing is performed in order to prevent the accuracy of the fuel flow rate given to the turbine inlet temperature calculation unit 206 from becoming low. For example, assume that at time t1, the heat balance calculation unit 203 calculates the fuel flow rate G fs and the fuel flow rate calculation unit 201 calculates the fuel flow rate G ft .
  • the state of the gas turbine power generation plant 100 detected by the state detection unit 205 is a static state.
  • the fuel side management unit 211 records the combination of the fuel flow rates G fs and G ft at time t1 in the fuel side storage unit 212, and calculates the fuel correction coefficient for the combination of the fuel flow rates G ft and G fs at time t1. 213.
  • the fuel side management unit 211 takes in the fuel flow rate G fs at time t1 output by the heat balance calculation unit 203, if the state of the gas turbine power generation plant 100 detected by the state detection unit 205 is not a statically stable state, That is, in the case of a transient state, the combination of fuel flow rates G fs and G ft at time t1 is not recorded in the fuel side storage unit 212.
  • the fuel side management unit 211 uses the latest combination of fuel flow rates G ft and G fs written in the fuel side storage unit 212 as a fuel correction coefficient calculation unit, instead of the combination of the fuel flow rates G ft and G fs at time t1. 213.
  • the time at which this latest combination of fuel flow rates G ft and G fs is obtained is a time before time t1 and a time when the most recent static state was at time t. This time is defined as time t2.
  • the calculation for calculating the fuel correction coefficient K f of (G fs at time t2)/(G ft at time t2) is based on the fuel flow rate G at time t2, which is a time when it was in a static state immediately before time t1.
  • This calculation uses a combination of ft and G fs . Since the accuracy of the fuel flow rate G fs in a static state is high, the accuracy of the fuel correction coefficient K f is also high. Therefore, by multiplying the fuel flow rate G ft at time t1 by this highly accurate fuel correction coefficient K f , a corrected fuel flow rate G fcor that is more accurate than the fuel flow rate G ft at time t1 can be obtained .
  • the fuel-side management section 211 associates the fuel flow rates G ft and G fs and writes them in the fuel-side storage section 212 only in the static state, so that even when the state transitions to a transient state, , the fuel correction coefficient calculation unit 213 calculates a highly accurate fuel correction coefficient K f using the fuel flow rate G ft when the highly accurate fuel flow rate G fs obtained in the most recent static state is obtained. be able to. Further, as described above, the fuel correction coefficient calculation unit 213 can calculate the fuel correction coefficient K f with high accuracy even in a static state. Therefore, the accuracy of the corrected fuel flow rate G fcor calculated by the fuel correction coefficient application unit 214 is higher than the fuel flow rate G ft calculated by the fuel flow rate calculation unit 201 in either the static state or the transient state. Become.
  • the gas turbine control device 20 also calculates two types of air flow rates G at and Gas. Since the relationship between the air flow rates G at and Gas is similar to the relationship between the fuel flow rates G ft and G fs , the accuracy of the corrected air flow rate G acor calculated by the air correction coefficient application unit 224 is based on the static state. In either state, the air flow rate G at is higher than the air flow rate G at calculated by the air flow rate calculation unit 202. Therefore, the turbine inlet temperature calculation unit 206 can calculate the turbine inlet temperature T1T with high accuracy, regardless of whether it is in a static state or a transient state, without using the turbine efficiency, which is difficult to uniquely determine. becomes possible.
  • the heat balance calculation unit 203 uses the gas turbine heat balance calculation formula, it calculates the fuel flow rate G fs and the air flow rate G as that reflect the most recent performance of the gas turbine 10 .
  • the fuel flow rate correction unit 210 corrects the fuel flow rate G ft calculated by the fuel flow rate calculation unit 201 using the fuel flow rate G fs reflecting the performance of the most recent gas turbine 10 .
  • the air flow rate correction unit 220 corrects the air flow rate G at calculated by the air flow rate calculation unit 202 using the air flow rate G as reflecting the performance of the most recent gas turbine 10 . Therefore, the turbine inlet temperature calculation unit 206 can calculate the turbine inlet temperature T 1T that reflects the most recent performance of the gas turbine 10.
  • the correction processing unit 204 makes corrections to the fuel flow rate G ft and the air flow rate G at that follow the change in performance. It is possible to do this for That is, the correction by the correction processing unit 204 makes it possible to estimate the turbine inlet temperature T 1T with high accuracy over a long period of time and with high robustness against aging deterioration and the like.
  • the air flow rate correction unit 220 outputs a set of air flow rate G at and air flow rate G as to the air correction coefficient calculation unit 223 in the processing of steps S104-2 and S105-2. In contrast, for example, processing as shown in FIGS. 6 and 7 below may be performed.
  • FIG. 6 is a flowchart of a subroutine for storage management processing that is performed in place of the subroutine for storage management processing shown in FIG.
  • FIG. 7 is a flowchart showing the processing after step S3 in the flowchart shown in FIG. 3, and shows the processing performed in place of steps S4-1 to S6-1 and steps S4-2 to S6-2.
  • the storage management process subroutine shown in FIG. 6 is started as the process of step S3, and step S102 of FIG. Up to the process shown in FIG. 5, the same process as in FIG. 5 is performed.
  • step S102 determines in the process of step S102 that the data indicating the acquired state indicates a statically stable state (S102, Yes)
  • the fuel side management unit 211 performs the same process as step S103-1 in FIG. That is, a process is performed in which the fuel flow rate G ft acquired in the process of step S100 and the fuel flow rate G fs are written in association with each other and stored in the fuel side storage unit 212 (S103-1).
  • the fuel-side management unit 211 determines whether the number of combinations of the fuel flow rate G ft and the fuel flow rate G fs stored in the fuel-side storage unit 212 is greater than or equal to a predetermined number (S105-1). ).
  • the fuel-side management unit 211 determines that the number of combinations of the fuel flow rate G ft and the fuel flow rate G fs stored in the fuel-side storage unit 212 is equal to or greater than a predetermined number (S105-1, Yes ), reads all the combinations of fuel flow rate G ft and fuel flow rate G fs stored in the fuel side storage unit 212, and updates the update instruction signal including the read combination of fuel flow rate G ft and fuel flow rate G fs as a fuel correction coefficient. It is output to the calculation unit 213 (S106-1).
  • step S107 if the fuel-side management unit 211 determines that the number of combinations of the fuel flow rate G ft and the fuel flow rate G fs stored in the fuel-side storage unit 212 is not greater than or equal to a predetermined number (S105-1 , Yes), the process advances to step S107.
  • the air flow rate correction unit 220 performs the processes of steps S103-2, S105-2, and S106-2 in FIG.
  • each of the processes in steps S103-2, S105-2, and S106-2 is the process in S103-1, S105-1, and S106-1 in which the branch number of each step number is replaced with "-1".
  • the fuel flow rate G ft is read as the air flow rate G at
  • the fuel flow rate G fs is read as the air flow rate G as
  • the fuel side management section 211 is read as the air side management section 221
  • the fuel side storage section 212 is read as the air side storage section 222.
  • This is a process in which the fuel correction coefficient calculation section 213 is replaced with the air correction coefficient calculation section 223.
  • each of the fuel side management unit 211 and the air side management unit 221 determines in the process of step S102 that the data indicating the acquired state does not indicate a static state (S102, No)
  • each of the fuel side management unit 211 and the air side management unit 221 performs step S107.
  • step S107 when the process of step S107 is performed by the fuel-side management unit 211, the fuel-side management unit 211 outputs a non-update instruction signal to the fuel correction coefficient calculation unit 213, and the process is performed by the air-side management unit 221. If so, the air side management section 221 outputs a non-update instruction signal to the air correction coefficient calculation section 223 (S107).
  • steps S106-1, S106-2, and S107 When the processes of steps S106-1, S106-2, and S107 are completed, the subroutine of the storage management process is completed, and the processes after steps S10-1, S10-2 shown in FIG. 7 are started. Note that in FIG. 6, the processing performed by the fuel-side management section 211 and the processing performed by the air-side management section 221 are performed in parallel.
  • the fuel correction coefficient calculation unit 213 determines the type of instruction signal output by the fuel side management unit 211 (S10-1). When the fuel correction coefficient calculation unit 213 determines that the instruction signal output by the fuel-side management unit 211 is an update instruction signal (S10-1, update instruction signal), the fuel correction coefficient calculation unit 213 calculates a plurality of fuel flow rates G included in the update instruction signal. The combination of ft and fuel flow rate G fs is read and imported (S11-1). The fuel correction coefficient calculating unit 213 calculates an average value of a plurality of fuel flow rates G ft and an average value of a plurality of fuel flow rates G fs (S12-1).
  • the fuel correction coefficient calculation unit 213 calculates the fuel correction coefficient K f by dividing the average value of the calculated fuel flow rate G fs by the average value of the calculated fuel flow rate G ft .
  • the fuel correction coefficient calculation unit 213 writes the calculated fuel correction coefficient K f into an internal storage area to be stored therein, and outputs the calculated fuel correction coefficient K f to the fuel correction coefficient application unit 214 (S13-1). Thereafter, as the process of step S17-1, the same process as the process of step S6-1 in FIG. 3 is performed (S17-1).
  • step S10-1 determines in the process of step S10-1 that the instruction signal output by the fuel-side management unit 211 is a non-update instruction signal (S10-1, non-update instruction signal) , it is determined whether the previous fuel correction coefficient K f is stored in the internal storage area (S14-1). If the fuel correction coefficient calculation unit 213 determines that the previous fuel correction coefficient K f is stored in the internal storage area (S14-1, Yes), the fuel correction coefficient calculation unit 213 calculates the previous fuel correction coefficient K f from the internal storage area. The read fuel correction coefficient Kf is output to the fuel correction coefficient application section 214 (S15-1). Thereafter, the process proceeds to step S17-1.
  • the air flow rate correction unit 220 performs the processes of steps S10-2 to S17-2 in FIG.
  • the fuel flow rate G ft is changed to the air flow rate in the processes of S10-1 to S17-1 in which the branch number of each step number is replaced with "-1".
  • G at fuel flow rate G fs , air flow rate G as , fuel side management section 211, air side management section 221, fuel correction coefficient calculation section 213, air correction coefficient calculation section 223, fuel correction coefficient.
  • the application section 214 is replaced with the air correction coefficient application section 224, the fuel flow rate calculation section 201 is replaced with the air flow rate calculation section 202, the fuel correction coefficient K f is replaced with the air correction coefficient Ka , and the corrected fuel flow rate G fcor is replaced with the corrected air flow rate. This is a process that has been changed to G acor .
  • the fuel correction coefficient Kf obtained by the process shown in FIG. 7 above is a value calculated from the average value of multiple fuel flow rates Gft and the average value of multiple fuel flow rates Gfs .
  • the value reflects the relationship between the fuel flow rates G ft and G fs in a steady state
  • the air correction coefficient Ka also has a value that reflects the relationship between the air flow rates G at and Gas in the past static state. become. Therefore, reliability is improved compared to the case where one set of fuel flow rates G ft , G fs and one set of air flow rates G at , Gas are used like the gas turbine control device 20 of the first embodiment described above. Therefore, it is possible to obtain the fuel correction coefficient K f and the air correction coefficient K a with high accuracy.
  • steps S105-1 and 105-2 in FIG. 6 a value indicating the number of combinations that can improve reliability is determined in advance.
  • the processing of steps S16-1 and S16-2 in FIG. This is a process that is performed while the number of combinations stored in the section 222 is less than a predetermined value, and the average value of each of the fuel flow rates G ft , G fs and the air flow rates G at , Gas is calculated. This process is intended to not correct each of the fuel flow rate G ft and the air flow rate G at while the correction is not possible.
  • step S106-1 the fuel-side management unit 211 does not read out all the combinations of fuel flow rates G ft and G fs stored in the fuel-side storage unit 212 as described above.
  • a predetermined number of combinations may be read out such that new combinations are sequentially included in chronological order starting with the latest combination.
  • step S106-2 in FIG.
  • a predetermined number of combinations may be read out such that new combinations are sequentially included in chronological order starting from the combination.
  • the correction processing section 204 includes a fuel flow rate correction section 210 and an air flow rate correction section 220.
  • the correction processing section 204 may include only the fuel flow rate correction section 210.
  • the heat balance calculation unit 203 calculates only the fuel flow rate Gfs and outputs it to the fuel side management unit 211, and the air flow rate Gat calculated by the air flow rate calculation unit 202 is directly sent to the turbine inlet temperature calculation unit 206. It will be given to you.
  • the correction processing section 204 may include only the air flow rate correction section 220.
  • the heat balance calculation unit 203 calculates only the air flow rate G as and outputs it to the air side management unit 221, and the fuel flow rate G ft calculated by the fuel flow rate calculation unit 201 is directly sent to the turbine inlet temperature calculation unit 206. It will be given to you.
  • the fuel flow rate G ft calculated by the fuel flow rate calculation unit 201 and the air flow rate calculation unit 202 are calculated using the fuel flow rate G fs calculated by the heat balance calculation unit 203 and the air flow rate G as .
  • the calculated air flow rate G at was corrected.
  • the fuel correction coefficient Kf and the air correction coefficient Ka do not depend only on the measurement data referred to in the heat balance calculation unit 203, but change depending on various state quantities in the gas turbine power generation plant 100. It is considered that In the second embodiment, as described below, a configuration is provided in which the fuel correction coefficient K f and the air correction coefficient K a are made variable in accordance with changes in such state quantities.
  • FIG. 8 is an overall configuration diagram of a gas turbine power generation plant 100a according to the second embodiment.
  • the difference between the gas turbine power plant 100 according to the first embodiment and the gas turbine power plant 100a according to the second embodiment is that the gas turbine power plant 100a according to the second embodiment has a gas turbine control device 20 Instead, it is equipped with a gas turbine control device 20a, and is further equipped with a combustor casing pressure sensor 25m.
  • the combustor casing pressure sensor 25m is connected to the gas turbine control device 20a through a control line such as a communication line as shown by the dotted arrow, and detects the pressure inside the combustor casing 16 at each detection period.
  • the casing pressure P out is detected by measurement, and the detected combustor casing pressure P out is transmitted to the gas turbine control device 20a through a control line.
  • the gas turbine control device 20a includes a fuel flow rate calculation section 201, an air flow rate calculation section 202, a heat balance calculation section 203, a correction processing section 204a, a state detection section 205, a turbine inlet temperature calculation section 206, a fuel It includes a distribution ratio calculation section 207 and a valve opening degree calculation section 208.
  • the correction processing section 204a includes a fuel flow rate correction section 210a and an air flow rate correction section 220a.
  • the fuel flow rate correction section 210a includes a fuel side management section 211a, a fuel side storage section 212a, a fuel correction coefficient calculation section 213a, a fuel correction coefficient application section 214, and a fuel side regression analysis section 215.
  • the fuel side management unit 211a calculates the fuel flow rate G ft calculated by the fuel flow rate calculation unit 201 and the fuel flow rate G calculated by the heat balance calculation unit 203 according to the state detected by the state detection unit 205. fs , the combustor casing temperature T CS detected by the combustor casing temperature sensor 25j, and the combustor casing pressure P out detected by the combustor casing pressure sensor 25m are associated and written into the fuel side storage section 212a. Let me remember it.
  • the fuel side management unit 211a outputs a predetermined number of combinations of the fuel flow rate Gft , the fuel flow rate Gfs , the combustor chamber temperature TCS , and the combustor chamber pressure Pout to the fuel side regression analysis unit 215. do.
  • the fuel side storage unit 212a stores combinations of the fuel flow rate G ft , the fuel flow rate G fs , the combustor chamber temperature T CS , and the combustor chamber pressure P out in chronological order.
  • the fuel-side regression analysis unit 215 sets the explanatory variables to the combustor casing based on a predetermined number of combinations of fuel flow rate G ft , fuel flow rate G fs , combustor casing temperature T CS , and combustor casing pressure P out
  • the fuel correction coefficient calculation unit 213a substitutes the combustor chamber temperature T CS and the combustor chamber pressure P out into a regression equation to which the coefficients of the regression equation calculated by the fuel side regression analysis unit 215 are applied, and calculates the fuel Calculate the correction coefficient Kf .
  • the air flow rate correction section 220a includes an air side management section 221a, an air side storage section 222a, an air correction coefficient calculation section 223a, an air correction coefficient application section 224, and an air side regression analysis section 225.
  • the air side management unit 221a calculates the air flow rate G at calculated by the air flow rate calculation unit 202, the air flow rate G as calculated by the heat balance calculation unit 203, and the compressor inlet temperature according to the state detected by the state detection unit 205.
  • the compressor inlet temperature T 1C detected by the sensor 25g and the combustor casing pressure P out detected by the combustor casing pressure sensor 25m are written and stored in the air side storage section 222a in association with each other.
  • the air side management unit 221a outputs a predetermined number of combinations of the air flow rate G at , the air flow rate G as , the compressor inlet temperature T 1C , and the combustor chamber pressure P out to the air side regression analysis unit 225. .
  • the air side storage unit 222a stores combinations of the air flow rate G at , the air flow rate G as , the compressor inlet temperature T 1C , and the combustor chamber pressure P out in chronological order.
  • Ka air correction coefficient
  • the air correction coefficient calculation unit 223a performs air correction by substituting the compressor inlet temperature T 1C and the combustor chamber pressure P out into a regression equation to which the coefficients of the regression equation calculated by the air side regression analysis unit 225 are applied. Calculate the coefficient Ka .
  • the predetermined regression analysis performed by the fuel side regression analysis section 215 and the air side regression analysis section 225 is, for example, a linear multiple regression analysis.
  • the above-mentioned predetermined number for example, a value indicating the number of combinations required to calculate highly accurate coefficients in a predetermined regression analysis is predetermined.
  • FIG. 10 (Example of operation of gas turbine control device of second embodiment) Processing by the gas turbine control device 20a will be described with reference to FIGS. 10 to 12.
  • the process shown in FIG. 10 and the process shown in FIG. 11 executed as a subroutine of the storage management process in the process shown in FIG. is a process performed by the air-side regression analysis unit 225, and is hereinafter referred to as "regression analysis process.”
  • the process shown in FIG. 12 is a process performed by the fuel correction coefficient calculation unit 213a, the fuel correction coefficient application unit 214, the air correction coefficient calculation unit 223a, and the air correction coefficient application unit 224, and is hereinafter referred to as a "correction process.”
  • steps Sa1-1 and Sa2-1 are the same processes as steps S1-1 and S2-1 in FIG. 3.
  • steps Sa1-2 and Sa2-2 the same processing as steps S1-2 and S2-2 in FIG. 3 is performed.
  • steps Sa1-3 and Sa2-3, the same processing as steps S1-3 and S2-3 in FIG. 3 is performed.
  • steps Sa1-1 and Sa2-1, the set of processes in steps Sa1-2 and Sa2-2, and the set of processes in steps Sa1-3 and Sa2-3 are performed in parallel.
  • a subroutine for storage management processing shown in FIG. 11 is performed as processing in step Sa3.
  • the fuel-side management unit 211a receives and takes in the combustor casing temperature TCS sent by the combustor casing temperature sensor 25j and the combustor casing pressure Pout sent from the combustor casing pressure sensor 25m.
  • the fuel-side management unit 211a takes in the fuel flow rate G ft output by the fuel flow rate calculation unit 201 and the fuel flow rate G fs output by the heat balance calculation unit 203.
  • the air side management unit 221a receives and takes in the compressor inlet temperature T 1C transmitted by the compressor inlet temperature sensor 25g and the combustor casing pressure P out transmitted by the combustor casing pressure sensor 25m.
  • the air flow rate G at outputted by the air flow rate calculation unit 202 and the air flow rate G as outputted by the heat balance calculation unit 203 are taken in (Sa100).
  • Each of the fuel side management section 211a and the air side management section 221a receives data indicating the state of the gas turbine power generation plant 100a detected by the state detection section 205 from the state detection section 205 at the time when the process of step Sa100 performed by each of them is completed. Acquire (Sa101).
  • the fuel side management unit 211a and the air side management unit 221a determine whether the acquired state data indicates a static state (Sa102).
  • the fuel side management unit 211a determines the fuel flow rate G ft , fuel flow rate G fs , and combustion acquired in the process of step Sa100.
  • the combustor casing temperature T CS and the combustor casing pressure P out are written and stored in the fuel side storage section 212a in association with each other.
  • the fuel side management unit 211a stores the combination of the fuel flow rate G ft , the fuel flow rate G fs , the combustor chamber temperature T CS , and the combustor chamber pressure P out which are sequentially written in the fuel side storage unit 212a. For example, a new combination to be written is written to the fuel side storage unit 212a so that it is stored in chronological order (Sa103-1).
  • the fuel-side management unit 211a determines whether the number of combinations stored in the fuel-side storage unit 212a is greater than or equal to a predetermined number (Sa104-1). Assume that the fuel-side management unit 211a determines that the number of combinations stored in the fuel-side storage unit 212a is not greater than or equal to a predetermined number (Sa104-1, No). In this case, the fuel-side regression analysis unit 215 ends the process because there is not enough data to perform the predetermined regression analysis and the process cannot proceed to step Sa4-1 in FIG. 10.
  • the fuel-side management unit 211a determines that the number of combinations stored in the fuel-side storage unit 212a is greater than or equal to the predetermined number (Sa104-1, Yes)
  • the fuel-side management unit 211a selects the combinations in chronological order starting from the latest combination.
  • a predetermined number of combinations of the fuel flow rate G ft , fuel flow rate G fs , combustor chamber temperature T CS , and combustor chamber pressure P out are read out, and the predetermined number of read combinations are output to the fuel side regression analysis section 215. (Sa105-1), and the subroutine for storage management processing ends.
  • steps Sa103-2, Sa104-2, Sa105-2 processing is performed.
  • each of the processes of steps Sa103-2, Sa104-2, and Sa105-2 is the process of steps Sa103-1, Sa104-1, and Sa105-1 in which the branch number of each step number is replaced with "-1".
  • the fuel flow rate G ft is read as the air flow rate G at
  • the fuel flow rate G fs is read as the air flow rate Gas
  • the combustor chamber temperature T CS is read as the compressor inlet temperature T 1C
  • the fuel side management section 211a is read as the air flow rate G at.
  • the fuel side storage section 212a is replaced with the air side storage section 222a
  • the fuel side regression analysis section 215 is replaced with the air side regression analysis section 225.
  • step Sa102 the fuel-side management unit 211a and the air-side management unit 221a determine that the acquired data indicating the state does not indicate a static state (Sa102, No).
  • each of the fuel-side management section 211a and the air-side management section 221a stores the fuel-side storage section 212a and the air-side management section 212a and the air-side management section 212a and 221a, respectively, since the data taken in in the process of step Sa100 is data obtained in a transient state.
  • steps Sa105-1 and Sa105-2 When the processing of steps Sa105-1 and Sa105-2 is completed, the subroutine of the storage management processing is completed and the process returns to the processing of FIG. 10. Note that in FIG. 11, the processing performed by the fuel-side management section 211a and the processing performed by the air-side management section 221a are performed in parallel.
  • the fuel side regression analysis unit 215 calculates a predetermined number of fuel flow rates G ft , fuel flow rates G fs , combustor chamber temperature T CS , and combustor chamber pressures P out output by the fuel side management unit 211a. (Sa4-1).
  • the fuel-side regression analysis unit 215 performs a predetermined regression analysis based on a predetermined number of combinations of the imported fuel flow rate G ft , fuel flow rate G fs , combustor chamber temperature T CS , and combustor chamber pressure P out . and calculate the coefficients of the regression equation corresponding to the predetermined regression analysis.
  • the fuel-side regression analysis unit 215 outputs the calculated coefficient to the fuel correction coefficient calculation unit 213a (Sa5-1), and ends the process.
  • the air-side regression analysis unit 225 performs steps Sa4-2 and Sa5-2.
  • the fuel flow rate G ft is Replace the fuel flow rate Gfs with the air flow rate Gas
  • the combustor chamber temperature TCS with the compressor inlet temperature T1C
  • the fuel side management section 211a with the air side management section 221a
  • steps Sa4-1 and Sa5-1 and the set of processes in steps Sa4-2 and Sa5-2 are performed in parallel.
  • the process shown in FIG. 10 described above is performed as a process for one detection cycle, and the process shown in FIG. 10 is performed for each cycle.
  • the fuel correction coefficient calculation unit 213a calculates the combustor casing temperature TCS transmitted by the combustor casing temperature sensor 25j and the combustor casing pressure P transmitted by the combustor casing pressure sensor 25m. out and takes it in (Sa10-1).
  • the fuel correction coefficient calculation unit 213a determines whether or not the coefficient of the regression equation has been received from the fuel side regression analysis unit 215 (Sa11-1). If the fuel correction coefficient calculation unit 213a determines that the coefficient of the regression equation has been received (Sa11-1, Yes), the fuel correction coefficient calculation unit 213a takes in the received coefficient and writes it into an internal storage area to be stored.
  • the fuel correction coefficient calculating unit 213a calculates the fuel correction coefficient K f by substituting the combustor casing temperature T CS and the combustor casing pressure P out into a regression equation to which the imported coefficients are applied (Sa12- 1).
  • the fuel correction coefficient calculation unit 213a determines in the process of step Sa11-1 that the coefficient of the regression equation has not been received (Sa11-1, No), the previous coefficient is stored in the internal storage area. It is determined whether or not there is one (Sa13-1). When determining that the previous coefficient is stored in the internal storage area (Sa13-1, Yes), the fuel correction coefficient calculation unit 213 reads the previous coefficient from the internal storage area and applies the read coefficient.
  • the fuel correction coefficient K f is calculated by substituting the combustor casing temperature T CS and the combustor casing pressure P out into the regression equation (Sa14-1).
  • the air correction coefficient calculation unit 223a receives and takes in the compressor inlet temperature T 1C transmitted by the compressor inlet temperature sensor 25g and the combustor casing pressure P out transmitted by the combustor casing pressure sensor 25m (Sa10 -2). Thereafter, the air correction coefficient calculation section 223a and the air correction coefficient application section 224 perform the processes of steps Sa11-2 to Sa16-2.
  • the fuel flow rate G ft is Replace the fuel flow rate G fs with the air flow rate G as , replace the combustor chamber temperature TCS with the compressor inlet temperature T1C , and replace the fuel correction coefficient calculation unit 213a with the air correction coefficient calculation unit 223a.
  • the fuel correction coefficient application unit 214 is replaced with the air correction coefficient application unit 224
  • the fuel correction coefficient K f is replaced with the air correction coefficient K a
  • the fuel flow rate calculation unit 201 is replaced with the air flow rate calculation unit 202
  • the corrected fuel flow rate G fcor This is a process in which G acor is read as the corrected air flow rate G acor .
  • the "A" mark shown in FIG. 12 is a mark indicating that the process will be continued, and as the "A" mark indicates, the process will be the same as the process shown in FIG. 4 of the first embodiment. Processing takes place.
  • the series of processes shown in FIGS. 12 and 4 described above are performed in one detection cycle, and the series of processes shown in FIGS. 12 and 4 are performed in each cycle.
  • the fuel flow rate correction section 210a of the second embodiment adjusts the fuel flow rate G ft , the fuel flow rate G fs , and the combustor compartment temperature.
  • the combination of T CS and combustor chamber pressure P out is recorded in the fuel side storage section 212a, and the fuel correction coefficient K f is updated using the predetermined number of combinations recorded in the fuel side storage section 212a.
  • the fuel flow rate correction section 210a does not record in the fuel side storage section 212a and does not update the fuel correction coefficient Kf .
  • the air flow rate correction unit 220a adjusts the air flow rate G at , the air flow rate Gas , the compressor inlet temperature T 1C , and the combustor casing pressure.
  • the combination of P out is recorded in the air side storage section 222a, and the air correction coefficient Ka is updated using the predetermined number of combinations recorded in the air side storage section 222a.
  • the air flow rate correction section 220a does not record in the air side storage section 222a and does not update the air correction coefficient Ka .
  • the configuration of the second embodiment improves the accuracy of the fuel flow rate and air flow rate given to the turbine inlet temperature calculation unit 206 in both the static state and the transient state. This makes it possible for the turbine inlet temperature calculation unit 206 to maintain the accuracy of the turbine inlet temperature T 1T over a long period of time without using turbine efficiency, which is difficult to uniquely determine.
  • the fuel flow correction unit 210a uses a predetermined number of combinations of the fuel flow rate Gft , the fuel flow rate Gfs , the combustor chamber temperature TCS , and the combustor chamber pressure Pout .
  • a predetermined regression analysis is performed in which the explanatory variables are the combustor casing temperature TCS and the combustor casing pressure Pout , and the objective variable is the fuel correction coefficient Kf . Therefore, the fuel correction coefficient K f can be made variable in accordance with state quantities indicating the state of the gas turbine power generation plant 100a, such as the combustor casing temperature T CS and the combustor casing pressure P out .
  • the explanatory variable is adjusted to A predetermined regression analysis is performed using the temperature T 1C and the combustor casing pressure P out and the objective variable being the air correction coefficient K a . Therefore, the air correction coefficient K a can be made variable according to state variables indicating the state of the gas turbine power generation plant 100a, such as the compressor inlet temperature T 1C and the combustor casing pressure P out . Thereby, it is possible to obtain a highly accurate fuel correction coefficient K f and air correction coefficient K a in terms of reliability depending on the state of the gas turbine power generation plant 100a.
  • This is a process that is performed while the number of combinations stored in the section 222a is less than a predetermined value, and while the coefficients of the regression equation cannot be calculated, for each of the fuel flow rate G ft and the air flow rate G at This is a process that is intended not to make any corrections.
  • steps Sa14-1 and Sa14-2 that is, the processing of applying the previous coefficients to the regression equation, is performed when the state detected by the state detection unit 205 is not a statically stable state, that is, when it is a transient state. This is a process that is intended to not update the coefficients of the regression equation in the case of a transient state.
  • linear multiple regression analysis is applied as the predetermined regression analysis, but any regression analysis method other than linear multiple regression analysis may be applied as the predetermined regression analysis. Good too.
  • a regression analysis method based on machine learning such as SVR (Support Vector Regression) or random forest may be applied.
  • the fuel-side regression analysis unit 215 performs a predetermined regression analysis using the combustor casing temperature T CS and the combustor casing pressure P out as explanatory variables. Furthermore, the air side regression analysis unit 225 performs a predetermined regression analysis using the compressor inlet temperature T 1C and the combustor casing pressure P out as explanatory variables. However, these explanatory variables are shown as examples, and the fuel-side regression analysis unit 215 may use either the combustor chamber temperature T CS or the combustor chamber pressure P out as an explanatory variable.
  • the air side regression analysis unit 225 may use either the compressor inlet temperature T 1C or the combustor chamber pressure P out as an explanatory variable, or may use any one of the sensors 25a to 25a provided in the gas turbine power generation plant 100a. Any one of the measurement data measured by 25m, or a combination of a plurality of measurement data may be used as the explanatory variable. Furthermore, an arbitrary command value that the gas turbine control device 20a outputs for controlling the gas turbine 10, such as the above-mentioned fuel control signal command value (CSO), may be used as an explanatory variable, or measurement data and a command value may be used as an explanatory variable. A combination of these may be used as an explanatory variable.
  • CSO fuel control signal command value
  • step Sa105-1 in FIG. The combination of temperature T CS and combustor chamber pressure P out is read out and output to the fuel side regression analysis section 215.
  • the fuel-side management section 211a may read out all the combinations stored in the fuel-side storage section 212a and output them to the fuel-side regression analysis section 215 in the process of step Sa105-1.
  • the air side management unit 221a stores a predetermined number of air flow rates G at , air flow rates G as , compressor inlet temperature T 1C , and combustor inlet temperature T 1C from the air side storage unit 222a.
  • the combination of vehicle pressure P out is read out and output to the air side regression analysis section 225 .
  • the air side management section 221a may read out all the combinations stored in the air side storage section 222a and output them to the air side regression analysis section 225 in the process of step Sa105-2. .
  • the correction processing section 204a includes a fuel flow rate correction section 210a and an air flow rate correction section 220a.
  • the correction processing section 204a may include only the fuel flow rate correction section 210a.
  • the heat balance calculation unit 203 calculates and outputs only the fuel flow rate G fs , and the air flow rate G at calculated by the air flow rate calculation unit 202 is given to the turbine inlet temperature calculation unit 206.
  • the correction processing section 204a may include only the air flow rate correction section 220a.
  • the heat balance calculation unit 203 calculates and outputs only the air flow rate G as , and the fuel flow rate G ft calculated by the fuel flow rate calculation unit 201 is given to the turbine inlet temperature calculation unit 206.
  • the correction processing section 204a may include the fuel flow rate correction section 210a and the air flow rate correction section 220 of the first embodiment, or may include the air flow rate correction section 220a and the fuel flow rate correction section 220a of the first embodiment.
  • the flow rate correction unit 210 may also be provided.
  • the fuel flow rate G ft calculated by the fuel flow rate calculation unit 201 and the fuel flow rate G fs calculated by the heat balance calculation unit 203 are calculated by the three fuel supply systems 40-1, 40-2, This is the total value of the fuel flow rate supplied by each of 40-3.
  • the gas turbine power plants 100 and 100a of the first and second embodiments include three fuel supply systems 40-1, 40-2, and 40-3, the fuel supply system 40 It is more accurate to calculate the fuel flow rate G ft and the fuel flow rate G fs for each of -1, 40-2, and 40-3 and to individually correct each fuel flow rate G ft . It is believed that a turbine inlet temperature T 1T can be obtained.
  • the gas turbine control device 20b of the third embodiment has a configuration that performs such individual corrections, as described below.
  • a configuration in which the gas turbine control device 20 in the gas turbine power plant 100 of the first embodiment is replaced with the gas turbine control device 20b of the third embodiment will be referred to as a gas turbine power plant 100b.
  • FIG. 13 is a block diagram showing the configuration of a gas turbine control device 20b according to the third embodiment.
  • the gas turbine control device 20b includes a fuel flow rate calculation section 201b, an air flow rate calculation section 202, a heat balance calculation section 203b, a correction processing section 204b, a state detection section 205, a turbine inlet temperature calculation section 206, a fuel distribution ratio calculation section 207, and a valve. It includes an opening calculation section 208 and a fuel distribution amount calculation section 209.
  • the fuel flow rate calculation unit 201b has the same configuration as the fuel flow rate calculation unit 201 of the first embodiment except for the points shown below.
  • the fuel flow rate calculation unit 201 of the first embodiment calculates the fuel flow rates G ft (1), G ft (2), and G ft (3), and calculates the calculated fuel flow rates G ft (1), G ft (2). ), G ft (3) are summed to calculate the fuel flow rate G ft .
  • the fuel flow rate calculation unit 201b of the third embodiment outputs the calculated fuel flow rates G ft (1), G ft (2), and G ft (3) without summing them.
  • the heat balance calculation section 203b has the same configuration as the heat balance calculation section 203 of the first embodiment except for the points shown below.
  • the heat balance calculation unit 203 of the first embodiment calculates and outputs the fuel flow rate G fs and the air flow rate G as .
  • the heat balance calculation unit 203b of the third embodiment calculates and outputs only the fuel flow rate Gfs .
  • the fuel distribution amount calculation unit 209 sets the fuel flow rate G fs calculated by the heat balance calculation unit 203b to be a ratio of each of the fuel distribution ratios D 1 , D 2 , and D 3 calculated by the fuel distribution ratio calculation unit 207. , three fuel flow rates G fs (1), G fs (2), and G fs (3) are calculated. Since the fuel distribution ratio D 1 corresponds to the fuel supply system 40-1, the fuel flow rate G fs (1) calculated corresponding to the fuel distribution ratio D 1 corresponds to the fuel supply system 40-1. become. Similarly, the fuel supply system 40-2, the fuel distribution ratio D 2 and the fuel flow rate G fs (2) correspond to each other, and the fuel supply system 40-3, the fuel distribution ratio D 3 and the fuel flow rate G fs ( 3) will correspond.
  • the correction processing section 204b includes a fuel flow rate correction section 210b.
  • the fuel flow rate correction section 210b includes a fuel side management section 211b, a fuel side storage section 212b, fuel correction coefficient calculation sections 213-1, 213-2, 213-3, and fuel correction coefficient application sections 214-1, 214-2, 214. -3 and an adder 216.
  • the fuel side storage section 212b includes fuel side storage areas 212b-1, 212b-2, and 212b-3, which are storage areas provided in advance.
  • the fuel side management unit 211b associates the fuel flow rate G ft (1) corresponding to the fuel supply system 40-1 with the fuel flow rate G fs (1).
  • the fuel side management unit 211b associates the fuel flow rate G ft (2) corresponding to the fuel supply system 40-2 with the fuel flow rate G fs (2).
  • the fuel side management unit 211b associates the fuel flow rate G ft (3) corresponding to the fuel supply system 40-3 with the fuel flow rate G fs (3).
  • the fuel side management unit 211b determines the associated fuel flow rates G ft (1), G fs (1) and the associated fuel flow rates G ft (2), G fs (2) according to the state detected by the state detection unit 205.
  • the fuel side management unit 211b combines the latest fuel flow rates G ft (1) and G fs (1), the latest fuel flow rates G ft (2) and G fs (2), and the latest fuel flow rates G ft (3) and G fs (3) are output to fuel correction coefficient calculation units 213-1, 213-2, and 213-3, respectively.
  • the fuel side storage area 212b-1 stores a combination of fuel flow rates G ft (1) and G fs (1) in chronological order.
  • the fuel side storage area 212b-2 stores combinations of fuel flow rates G ft (2) and G fs (2) in chronological order.
  • the fuel side storage area 212b-3 stores combinations of fuel flow rates G ft (3) and G fs (3) in chronological order.
  • Each of the fuel correction coefficient calculation units 213-1, 213-2, and 213-3 has the same configuration as the fuel correction coefficient calculation unit 213 of the first embodiment.
  • Each of the fuel correction coefficient application sections 214-1, 214-2, and 214-3 has the same configuration as the fuel correction coefficient application section 214 of the first embodiment.
  • the adder 216 adds up the corrected fuel flow rates G fcor (1), G fcor (2), and G fcor (3) calculated by each of the fuel correction coefficient application units 214-1, 214-2, and 214-3. Calculate the corrected fuel flow rate Gfcor .
  • step Sb1-1 is the same as step S1-1 in FIG. 3, and is performed by the fuel flow rate calculation unit 201b.
  • step Sb1-2 is the same process as step S1-2 in FIG. 3, and is performed by the heat balance calculation unit 203b.
  • the fuel distribution amount calculation unit 209 takes in the fuel distribution ratios D 1 , D 2 , and D 3 calculated and output by the fuel distribution ratio calculation unit 207 in the previous detection cycle (step Sb1-3).
  • the fuel flow rate calculation unit 201b substitutes the data acquired in the process of step Sb1-1 into equations (1), (2), and (3) to obtain fuel flow rates G ft (1), G ft (2), Calculate G ft (3).
  • the fuel flow rate calculation unit 201b outputs the calculated fuel flow rates G ft (1), G ft (2), and G ft (3) to the fuel side management unit 211b.
  • the fuel flow rate calculation unit 201b outputs the calculated fuel flow rate G ft (1) to the fuel correction coefficient application unit 214-1, and outputs the fuel flow rate G ft (2) to the fuel correction coefficient application unit 214-2.
  • fuel flow rate G ft (3) is output to the fuel correction coefficient application section 214-3 (Sb2-1).
  • the heat balance calculation unit 203b calculates the fuel flow rate G fs based on the data acquired in the process of step Sb1-2 and the gas turbine heat balance calculation formula.
  • the heat balance calculation unit 203b outputs the calculated fuel flow rate G fs to the fuel distribution amount calculation unit 209 (Sb2-2).
  • the fuel flow rate correction unit 210b of the correction processing unit 204b calculates the fuel flow rates G ft (1), G ft (2), G ft (3), and the fuel flow rates G fs (1), G fs (2), G fs ( 3), a subroutine for storage management processing shown in FIG. 15 is started (Sb3).
  • the fuel side management unit 211b calculates the fuel flow rates G ft (1), G ft (2), G ft (3) output by the fuel flow rate calculation unit 201b and the fuel distribution amount calculation unit 209.
  • the output fuel flow rates G fs (1), G fs (2), and G fs (3) are taken in.
  • the fuel flow rate correction unit 210b associates the captured fuel flow rate G ft (1) with the fuel flow rate G fs (1), and associates the captured fuel flow rate G ft (2) with the fuel flow rate G fs (2).
  • the captured fuel flow rate G ft (3) and the fuel flow rate G fs (3) are associated (Sb100).
  • the fuel side management section 211b acquires data indicating the state of the gas turbine power generation plant 100b detected by the state detection section 205 from the state detection section 205 at the time when the process of step Sb100 is finished (Sb101).
  • the fuel-side management unit 211b determines whether the acquired state data indicates a static state (Sb102). When the fuel side management unit 211b determines that the acquired state data indicates a static state (Sb102, Yes), the fuel side management unit 211b performs steps Sb103-1, Sb103-2, and Sb103-3, and then , steps Sb104-1, Sb104-2, and Sb104-3 are performed.
  • the fuel side management unit 211b writes and stores the associated combination of the fuel flow rate G ft (1) and the fuel flow rate G fs (1) in the fuel side storage area 212b-1.
  • the fuel-side management unit 211b stores the combination of fuel flow rates G ft (1) and G fs (1) sequentially in the fuel-side storage area 212b-1 in chronological order in the fuel-side storage area 212b-1. For example, the newly written combination is written to the fuel side storage area 212b-1 so that it is at the beginning of the chronological order (Sb103-1).
  • the fuel side management unit 211b outputs the combination of the fuel flow rate G ft (1) and the fuel flow rate G fs (1) written in the fuel side storage area 212b-1 to the fuel correction coefficient calculation unit 213-1 (Sb104-1 ).
  • the fuel side management unit 211b reads the fuel flow rate G ft (1) as the fuel flow rate G ft (2) as the process of steps Sb103-2 and Sb104-2, and The flow rate G fs (1) is read as the fuel flow rate G fs (2), the fuel side storage area 212b-1 is read as the fuel side storage area 212b-2, and the fuel correction coefficient calculation unit 213-1 is replaced with the fuel correction coefficient calculation unit 213. -2 and perform the processing. Similarly, the fuel side management unit 211b changes the fuel flow rate G ft (1) to the fuel flow rate G ft (3) in the process of steps Sb103-1 and Sb104-1 as the process of steps Sb103-3 and Sb104-3.
  • the fuel side management unit 211b determines in the process of step Sb102 that the data indicating the acquired state does not indicate a static state (Sb102, No)
  • the fuel side management unit 211b calculates the fuel flow rate G ft (1 ), G ft (2), G ft (3) and fuel flow rates G fs (1), G fs (2), G fs (3) are discarded, and the fuel side storage areas 212b-1, 212b-2 are , 212b-3.
  • the fuel side management unit 211b stores information in the fuel side storage area 212b-3.
  • the combination stored at the beginning of each of -1, 212b-2, and 212b-3 is read out as the latest combination.
  • the fuel-side management unit 211b outputs the latest combination of fuel flow rates G ft (1) and G fs (1) read from the fuel-side storage area 212b-1 to the fuel correction coefficient calculation unit 213-1, and stores the combination in the fuel-side storage area 212b-1.
  • the combination of the latest fuel flow rates G ft (2) and G fs (2) read from the area 212b-2 is output to the fuel correction coefficient calculation unit 213-2, and the latest fuel read from the fuel side storage area 212b-3 is output.
  • the combination of flow rates G ft (3) and G fs (3) is output to the fuel correction coefficient calculation unit 213-3 (Sb105).
  • the fuel side management unit 211b sets a set of processes in steps Sb103-1 and Sb104-1, a set of processes in steps Sb103-2 and Sb104-2, and a set of processes in steps Sb103-3 and Sb104-.
  • the third set of processes may be performed in any order, or may be performed in parallel.
  • the fuel side management unit 211b reads the latest combination from each of the fuel side storage areas 212b-1, 212b-2, and 212b-3, and reads out the latest combination from each of the fuel correction coefficient calculation units 213-1, 213.
  • the process of outputting to each of -2 and 213-3 may be performed in any order, or may be performed in parallel.
  • the fuel correction coefficient calculation unit 213-1 takes in the combination of fuel flow rates G ft (1) and G fs (1) output by the fuel side management unit 211b (Sb4-1).
  • the fuel correction coefficient calculation unit 213-1 calculates the fuel correction coefficient K f (1) by dividing the fuel flow rate G fs (1) by the fuel flow rate G ft (1).
  • the fuel correction coefficient calculation unit 213-1 outputs the calculated fuel correction coefficient K f (1) to the fuel correction coefficient application unit 214-1 (Sb5-1).
  • the fuel correction coefficient application unit 214-1 takes in the fuel flow rate G ft (1) output from the fuel flow rate calculation unit 201b and the fuel correction coefficient K f (1) output from the fuel correction coefficient calculation unit 213-1.
  • the fuel correction coefficient applying unit 214-1 calculates the corrected fuel flow rate G fcor (1) by multiplying the fuel flow rate G ft (1) by the fuel correction coefficient K f (1).
  • the fuel correction coefficient applying unit 214-1 outputs the calculated corrected fuel flow rate G fcor (1) to the adder 216 (Sb6-1).
  • steps Sb4-2, Sb5-2, and Sb6-2 and the processing in steps Sb4-3, Sb5-3, and Sb6-3 are performed.
  • each of the processes of steps Sb4-2, Sb5-2, and Sb6-2 is the process of steps Sb4-1, Sb5-1, and Sb6-1 in which the branch number of each step number is replaced with "-1".
  • the fuel flow rate G ft (1) is read as the fuel flow rate G ft (2)
  • the fuel flow rate G fs (1) is read as the fuel flow rate G fs (2)
  • the fuel correction coefficient calculation unit 213-1 is read as the fuel flow rate G fs (2).
  • the calculation unit 213-2 is replaced with the fuel correction coefficient K f (1), the fuel correction coefficient application unit 214-1 is replaced with the fuel correction coefficient application unit 214-2, and the fuel correction coefficient K f (1) is replaced with the fuel correction coefficient K f (2).
  • This is a process in which the flow rate G fcor (1) is read as the corrected fuel flow rate G fcor (2).
  • each of the processes of steps Sb4-3, Sb5-3, and Sb6-3 is the same as that of steps Sb4-1, Sb5-1, and Sb6-1 in which the branch number of each step number is replaced with "-1".
  • the fuel flow rate G ft (1) is read as the fuel flow rate G ft (3)
  • the fuel flow rate G fs (1) is read as the fuel flow rate G fs (3)
  • the fuel correction coefficient calculation unit 213-1 is used to calculate the fuel correction coefficient.
  • fuel correction coefficient K f (1) is replaced with fuel correction coefficient K f (3)
  • fuel correction coefficient application section 214-1 is replaced with fuel correction coefficient application section 214-3, corrected fuel flow rate. This is a process in which G fcor (1) is replaced with corrected fuel flow rate G fcor (3).
  • the adder 216 takes in and takes in the corrected fuel flow rates G fcor (1), G fcor (2), and G fcor (3) output by each of the fuel correction coefficient application units 214-1, 214-2, and 214-3.
  • the corrected fuel flow rate G fcor is calculated by summing the corrected fuel flow rate G fcor (1), G fcor (2), and G fcor (3).
  • the adder 216 outputs the calculated corrected fuel flow rate G fcor to the turbine inlet temperature calculation unit 206 (Sb7).
  • the "A" mark shown in FIG. 14 is a mark indicating that the process will be continued, and as the "A" mark indicates, the process will be the same as the process shown in FIG. Processing takes place.
  • the series of processes shown in FIGS. 14 and 4 described above are performed as processing for one detection cycle, and the series of processes shown in FIGS. 14 and 4 are performed for each cycle.
  • the fuel flow rate correction unit 210b of the third embodiment adjusts the amount of fuel in the most recent static state, regardless of whether the state detected by the state detection unit 205 is a static steady state or a transient state.
  • the fuel correction coefficient K f is calculated using the flow rates G ft (1), G fs (1), the fuel flow rates G ft (2), G fs (2), and the fuel flow rates G ft (3), G fs (3). calculate. Therefore, like the configuration of the first embodiment, the configuration of the third embodiment is such that the accuracy of the fuel flow rate given to the turbine inlet temperature calculation unit 206 does not decrease in both the static state and the transient state. This allows the turbine inlet temperature calculation unit 206 to maintain the accuracy of the turbine inlet temperature T 1T over a long period of time without using turbine efficiency, which is difficult to uniquely determine.
  • the fuel distribution amount calculation unit 209 converts the fuel flow rate G fs calculated by the heat balance calculation unit 203b into a fuel flow rate G fs distributed according to the fuel distribution ratios D 1 , D 2 , D 3 .
  • (1), G fs (2), and G fs (3) are calculated.
  • Each of the fuel correction coefficient calculation units 213-1, 213-2, and 213-3 calculates a fuel correction coefficient based on the corresponding fuel flow rate G fs (1), G fs (2), and G fs (3). Calculate K f (1), K f (2), and K f (3).
  • Each of the fuel correction coefficient application units 214-1 to 214-3 calculates the fuel flow rate G ft (1), G ft (2), G ft (3) for each fuel supply system 40-1, 40-2, 40-3. ) are corrected by the corresponding fuel correction coefficients K f (1), K f (2), K f (3). Therefore, in the third embodiment, the inherent error that exists in each of the fuel supply systems 40-1, 40-2, and 40-3, that is, the fuel flow rate G fs (1) recorded during the static steady state.
  • the error in fuel flow rate G ft (1), the error in fuel flow rate G fs (2) and fuel flow rate G ft (2), and the error in fuel flow rate G fs (3) and fuel flow rate G ft (3) are individually calculated. Can be corrected.
  • the third embodiment it is possible to correct the fuel flow rate G ft with higher accuracy than in the configuration of the first embodiment in which the correction processing section 204 includes only the fuel flow rate correction section 210. This makes it possible to further improve the accuracy of the turbine inlet temperature T 1T calculated by the turbine inlet temperature calculation unit 206.
  • the fuel distribution amount calculation unit 209 uses the fuel distribution ratios D 1 , D 2 , and D 3 calculated by the fuel distribution ratio calculation unit 207 to calculate the fuel distribution amount calculated by the heat balance calculation unit 203b.
  • the fuel flow rates G fs (1), G fs (2) , and G fs (3) are calculated from the flow rate G fs.
  • the fuel distribution amount calculation unit 209 uses the valve opening degrees O 1 , O 2 , O 3 calculated by the valve opening calculation unit 208 to calculate the fuel flow rate G fs (1), G fs (2) and G fs (3) may be calculated.
  • each of the fuel supply systems 40-1, 40-2, 40-3 is provided with a sensor that measures the flow rate of fuel flowing through each of the fuel supply systems 40-1, 40-2, 40-3, and the sensor Using each fuel flow rate of the fuel supply systems 40-1, 40-2, and 40-3 obtained from the fuel flow rate G fs , the fuel flow rate G fs (1), G fs (2), G fs (3) may be calculated.
  • the "method of calculating each correction coefficient from the average value of the fuel flow rate and the air flow rate" described in the first embodiment is applied to the fuel flow rate correction unit 210b. You can do it like this.
  • the configuration of the second embodiment may be applied to the fuel flow rate correction section 210b.
  • the heat balance calculation unit 203b is replaced with the heat balance calculation unit 203 of the first embodiment
  • the correction processing unit 204b is replaced with the air flow rate correction unit 220 of the first embodiment.
  • the correction processing section 204b may include the air flow rate correction section 220a of the second embodiment.
  • the gas turbine power generation plants 100, 100a, 100b have fuel temperature sensors 25c-1, 25c corresponding to each of the fuel supply systems 40-1, 40-2, 40-3. -2, 25c-3.
  • the fuel supply device 30 may include a sensor that measures the temperature of the fuel before it is branched into three.
  • each of the fuel temperatures T f (2) and T f (3) is considered to be the same value as the fuel temperature T f (1), and the The processing in the third embodiment will be performed.
  • the fuel temperature T f (1) is given to the fuel flow rate calculation units 201, 201b and the turbine inlet temperature calculation unit 206, and the fuel flow rate calculation units 201, 201b calculate the equation (2),
  • the fuel temperature T f (1) is substituted for the fuel temperatures T f (2) and T f (3).
  • the turbine inlet temperature calculation unit 206 calculates the average value of the fuel temperatures T f (1), T f (2), and T f (3). There is no need to calculate it, and the fuel temperature T f (1) is substituted into equation (6) as the fuel temperature T f .
  • the fuel flow rate calculation units 201 and 201b calculate the flow control valve front pressure P 1FV (1) detected by each of the flow control valve front pressure sensors 25a-1 to 25a-3, P 1FV (2), P 1FV (3), and the flow regulating valve post pressures P 2FV (1), P 2FV (2), P 2FV detected by each of the flow regulating valve post pressure sensors 25b-1 to 25b-3. (3), a method of calculating the fuel flow rates G ft (1), G ft (2), and G ft (3) is adopted.
  • the fuel flow rate calculation units 201, 201b calculate the measured data regarding the fuel supply systems 40-1, 40-2, 40-3, more specifically, the fuel supply systems 40-1, 40-3. If there is measurement data regarding the pressure that can be measured at two locations in each of 2 and 40-3, the fuel flow rate G ft ( 1), G ft (2), and G ft (3) can be calculated.
  • the fuel flow rate G ft ( 1), G ft (2), and G ft (3) can be calculated.
  • a nozzle front pressure sensor that measures the pressure of the fuel flowing into the nozzles 42-1, 42-2, 42-3, and a flow control valve rear pressure sensor may be used.
  • a post-nozzle pressure sensor that measures the pressure of the fuel flowing out from the nozzles 42-1, 42-2, and 42-3 may be provided.
  • the fuel flow rate calculation units 201 and 201b take in the pressure measured by the nozzle front pressure sensor and the pressure measured by the nozzle back pressure sensor, and modify the fuel flow rate calculation function f so that these two pressures can be applied. 1 ( ⁇ ), the valve opening degree O 1 to O 3 , the two pressures, and the fuel temperature T f (1) to T f (3), the fuel flow rate G ft (1), G ft (2) , G ft (3).
  • manifold piping 43-1, 43-2 corresponding to each of the fuel supply systems 40-1, 40-2, 40-3
  • the first sensor that measures the pressure of the fuel in 43-3
  • the flow control valve post-pressure sensors 25b-1 to 25b-3 may also include a second sensor that measures the pressure of the outflowing fuel, that is, the exit pressure of the combustion nozzle.
  • the second sensor is the combustor casing pressure sensor 25m that measures the combustor casing pressure P out shown in the second embodiment.
  • the valve opening calculation unit 208 included in the gas turbine control devices 20, 20a, and 20b corresponds to each of the flow control valves 41-1, 41-2, and 41-3.
  • the valve opening degrees O 1 , O 2 , and O 3 are calculated.
  • the valve opening calculation unit 208 may calculate three Cv values corresponding to each of the flow control valves 41-1, 41-2, and 41-3.
  • the fuel flow rate calculation units 201 and 201b take in the three Cv values calculated by the valve opening degree calculation unit 208, and add the valve opening degree to the fuel flow rate calculation function f 1 ( ⁇ ) modified so that the Cv values can be applied.
  • Three Cv values are substituted for O 1 to O 3 to calculate the fuel flow rates G ft (1), G ft (2), and G ft (3).
  • the heat balance calculation units 203 and 203b calculate the gas turbine output G out , the exhaust gas pressure P 2T , the exhaust gas temperature T 2T , the compressor inlet pressure P 1C , and the compressor inlet pressure P 1C.
  • the inlet temperature T 1C , compressor outlet pressure P 2C , and compressor outlet temperature T 2C are taken in, measurement data other than these may be taken in.
  • the fuel supply system 40 includes three fuel supply systems 40-1 to 40-3, but two fuel supply systems 40-1 , 40-2, or four or more fuel supply systems 40-1, 40-2, 40-3, . . . may be used.
  • FIGS. 1 and 8 show a case in which the gas turbine 10 includes one combustor 12 as an example, the gas turbine 10 includes a plurality of combustors 12, each of which has a compressor 11. , a combustor 12 connected to a turbine 13, a plurality of combustor inner cylinders 121 corresponding to each of the plurality of combustors 12, and fuel supply systems 40-1, 40-2, 40-3,...
  • one combustor 12 is provided with a plurality of combustor inner cylinders 121, and fuel supply systems 40-1, 40-2, 40-3, ... corresponding to each of the plurality of combustor inner cylinders 121 are provided. It may be configured as follows. In this way, the configuration in which the number of fuel supply systems 40-1, 40-2, 40-3, the number of combustors 12, and the number of combustor inner cylinders 121 shown in the first to third embodiments is changed.
  • the number of components such as the flow control valve 41 provided in the gas turbine power generation plant 100, 100a, 100b will change according to the configuration change, and the number of components provided in the gas turbine control device 20, 20a, 20b will change.
  • the configuration of functional units will also change.
  • the gas turbine control devices 20, 20a, and 20b include It is assumed that the device is configured to calculate a command value for adjusting the amount of air taken in by the device.
  • the gas turbine power generation plants 100, 100a, 100b are equipped with flow regulating valves 41-1, 41-2, 41-3, but instead of the flow regulating valves, pressure A regulating valve may also be applied.
  • the gas turbine power plants 100, 100a, and 100b are configured as a gas turbine combined cycle power plant (GTCC) in which the steam turbine is further equipped with a steam turbine and the rotor 15 is connected to the steam turbine. may have been done.
  • GTCC gas turbine combined cycle power plant
  • the function f 3 ( ⁇ ) used by the turbine inlet temperature calculation unit 206 is a function constructed based on an unsteady physical model, and is a function constructed based on an unsteady physical model.
  • the thermal energy flowing into the combustion chamber 12 is represented by the sum of the thermal energy of the fuel, the thermal energy of the air, and the exothermic energy of the combustion gas.
  • the thermal energy of air varies depending on the specific enthalpy, which takes into account the influence of humidity due to water vapor contained in the air flowing into the combustor casing 16.
  • the turbine inlet temperature calculation unit 206 calculates the parameters to be substituted into the function f 3 ( ⁇ ), that is, the corrected fuel flow rate G fcor , the corrected air flow rate G acor , the combustor chamber temperature T CS , and the fuel temperature T f (1) , T f (2), and T f (3), but instead of calculating the air thermal energy using either the fuel temperature T f which is the average value of T f (2) or T f (3), the air thermal energy is calculated as follows. It's okay.
  • a sensor for measuring the humidity of the air flowing into the combustor casing 16 is newly provided, and the turbine inlet temperature calculation unit 206 calculates the relative humidity based on the humidity of the air flowing into the combustor casing 16 measured by the sensor.
  • the enthalpy may be calculated and the calculated specific enthalpy may be used to calculate the thermal energy of the air.
  • the state detection unit 205 performs the processing of detecting the state of the gas turbine power generation plant 100, the processing of steps S105-1 and S105-2 in FIG. In the processing of Steps Sa104-1 and Sa104-2 of No. 11, determination processing using an inequality sign with an equal sign is performed.
  • the present disclosure is not limited to this embodiment, and the determination process of "is or not greater than or equal to” is only one example, and the determination process of "exceeds or not" is only one example, and depending on how the threshold value is determined, It may be replaced with a determination process of "no or no".
  • the gas turbine control devices 20, 20a, and 20b include, for example, a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), and a computer readable memory. It consists of storage media, etc.
  • a series of processes for realizing various functions provided in the gas turbine control devices 20, 20a, and 20b are, for example, stored in a storage medium in the form of a program, and the CPU reads this program into a RAM or the like.
  • Various functions are realized by processing and calculating information.
  • the program may be pre-installed in a ROM or other storage medium, provided as being stored in a computer-readable storage medium, or distributed via wired or wireless communication means. etc. may also be applied.
  • Computer-readable storage media include magnetic disks, magneto-optical disks, CD-ROMs, DVD-ROMs, semiconductor memories, and the like.
  • each of the gas turbine control devices 20, 20a, and 20b is realized by the computer configuration shown in FIG. 16.
  • Computer 90 includes a processor 91, main memory 92, storage 93, and interface 94.
  • the above gas turbine control devices 20, 20a, 20b include fuel flow rate calculation units 201, 201b, heat balance calculation units 203, 203b, air flow rate calculation unit 202, correction processing units 204, 204a, 204b, state detection unit 205, turbine
  • the functional units of the inlet temperature calculation section 206, the fuel distribution ratio calculation section 207, the valve opening degree calculation section 208, and the fuel distribution amount calculation section 209 are implemented in the computer 90.
  • the operations of these functional units are stored in the storage 93 in the form of a program.
  • the processor 91 reads the program from the storage 93, loads it in the main memory 92, and executes the processes shown in the first to third embodiments according to the program loaded in the main memory 92. Further, the processor 91 reserves areas for, for example, the fuel side storage sections 212, 212a, 212b and the air side storage sections 222, 222a in the main memory 92 according to the program. Further, the processor 91 transmits data between the various sensors 25a to 20m, the inlet guide vane 14, and the flow control valve 41 to the functional units included in the gas turbine control devices 20, 20a, and 20b according to the program. An interface 94 for transmitting and receiving is assigned.
  • the program may be one for realizing a part of the functions to be performed by the computer 90.
  • the program may function in combination with another program already stored in the storage 93 or with another program installed in another device.
  • the computer may include a custom LSI (Large Scale Integrated Circuit) such as a PLD (Programmable Logic Device) in addition to or in place of the above configuration.
  • PLDs include PAL (Programmable Array Logic), GAL (Generic Array Logic), CPLD (Complex Programmable Logic Device), FPGA (Field Programmable Gate Array), and the like.
  • PLDs Programmable Logic Device
  • PAL Programmable Array Logic
  • GAL Generic Array Logic
  • CPLD Complex Programmable Logic Device
  • FPGA Field Programmable Gate Array
  • Examples of the storage 93 include HDD (Hard Disk Drive), SSD (Solid State Drive), magnetic disk, magneto-optical disk, CD-ROM (Compact Disc Read Only Memory), and DVD-ROM (Digital Versatile Disc Read Only Memory). , semiconductor memory, etc.
  • Storage 93 may be an internal medium connected directly to the bus of computer 90, or may be an external medium connected to computer 90 via an interface 94 or a communication line. Furthermore, when this program is distributed to the computer 90 via a communication line, the computer 90 that received the distribution may develop the program in the main memory 92 and execute the above processing. Furthermore, the storage 93 is a non-temporary tangible storage medium.
  • Each of the gas turbine control devices 20, 20a, and 20b according to the first to third embodiments described above is not limited to being implemented as an integrated computer.
  • fuel flow rate calculation units 201, 201b, air flow rate calculation unit 202, fuel correction coefficient application units 214, 214-1 to 214-3, air correction coefficient application unit 224, turbine inlet The configurations of the temperature calculation unit 206, fuel distribution ratio calculation unit 207, and valve opening degree calculation unit 208 and the configuration including functional units not included in these configurations are respectively provided in different computers, and the two computers are , data may be sent and received via a communication line.
  • the fuel flow rate calculation unit 201, the air flow rate calculation unit 202, the fuel correction coefficient calculation unit 213a, the fuel correction coefficient application unit 214, the air correction coefficient calculation unit 223a, the air correction coefficient application unit 224, the turbine The configurations of the inlet temperature calculation unit 206, fuel distribution ratio calculation unit 207, and valve opening degree calculation unit 208 and the configuration including functional units not included in these configurations are respectively provided in different computers, and the two computers However, data may be sent and received via a communication line.
  • gas turbine control device for example, gas turbine control device 20, 20a, 20b
  • gas turbine control device 20a, 20b gas turbine control device 20, 20a, 20b
  • the gas turbine control device includes measured data regarding the fuel supply system 40 that supplies fuel to the combustor 12 of the gas turbine 10 (for example, valve opening degrees O 1 , O 2 , O 3 , flow rate Pressure before valve adjustment P 1FV (1), P 1FV (2), P 1FV (3), pressure after flow adjustment valve P 2FV (1), P 2FV (2), P 2FV (3), fuel temperature T f ( 1), T f (2), T f (3)), a fuel flow rate calculation unit (for example, a fuel flow rate calculation unit 201, 201b) that calculates a fuel flow rate G ft indicating the amount of fuel flowing into the combustor based on ) and the amount of air taken in by the compressor based on measurement data regarding the compressor 11 of the gas turbine (for example, compressor index differential pressure P index , compressor inlet pressure P 1C , compressor inlet temperature T 1C ).
  • measured data regarding the fuel supply system 40 that supplies fuel to the combustor 12 of the gas turbine 10 for example, valve opening degrees O 1
  • an air flow rate calculation unit 202 that calculates an air flow rate G at indicating the fuel flow rate G ft , the air flow rate G at , and a physical model equation regarding the thermal energy balance regarding the combustor (for example, a fuel flow rate calculation function f 1 a turbine inlet temperature calculation unit 206 that calculates the turbine inlet temperature T 1T based on 2T , compressor inlet pressure P 1C , compressor inlet temperature T 1C , compressor outlet pressure P 2C , and compressor outlet temperature T 2C ), performs a calculation to satisfy the heat balance of the gas turbine, and outputs the calculation result.
  • a fuel flow rate calculation function f 1 a turbine inlet temperature calculation unit 206 that calculates the turbine inlet temperature T 1T based on 2T , compressor inlet pressure P 1C , compressor inlet temperature T 1C , compressor outlet pressure P 2C , and compressor outlet temperature T 2C
  • a heat balance calculation unit for example, heat balance calculation units 203, 203b
  • a state detection unit 205 that detects a state of the gas turbine
  • a correction processing unit for example, a correction processing unit (for example, processing units 204, 204a, 204b).
  • a gas turbine control device is the gas turbine control device according to (1), in which the fuel flow rate calculated by the fuel flow rate calculation unit is a first fuel flow rate G ft , and the air flow rate is The air flow rate calculated by the calculation unit is set as a first air flow rate G at , and the correction processing unit outputs an output from the heat balance calculation unit when the state of the gas turbine detected by the state detection unit is a statically stable state.
  • the second fuel flow rate G fs included in the calculation result is obtained, and based on the obtained second fuel flow rate and the first fuel flow rate at the time of obtaining the second fuel flow rate, the A fuel flow rate correction unit (for example, fuel flow rate correction units 210, 210a, 210b) that corrects the first fuel flow rate calculated by the fuel flow rate calculation unit and provides the corrected first fuel flow rate to the turbine inlet temperature calculation unit.
  • the A fuel flow rate correction unit for example, fuel flow rate correction units 210, 210a, 210b
  • the first air flow rate calculated by the air flow rate calculation unit is corrected based on the second air flow rate and the first air flow rate when the second air flow rate is obtained, and the corrected An air flow rate correction unit (for example, air flow rate correction units 220, 220a) that provides the first air flow rate to the turbine inlet temperature calculation unit, or both correction units are provided.
  • the second aspect it becomes possible to correct the first fuel flow rate G ft using the highly accurate second fuel flow rate G fs included in the calculation result of the heat balance calculation unit, and the first fuel flow rate G ft is included in the calculation result. Since the first air flow rate G at can be corrected by the second air flow rate G as with high accuracy, it becomes possible to calculate the turbine inlet temperature T 1T with high accuracy.
  • a gas turbine control device is the gas turbine control device according to (2), wherein the fuel flow rate correction section is configured such that the state of the gas turbine detected by the state detection section is a statically stable state.
  • Fuel correction coefficient calculation that calculates a fuel correction coefficient based on the second fuel flow rate that is the latest among those acquired in the case of and the first fuel flow rate when the latest second fuel flow rate is acquired. (for example, fuel correction coefficient calculation units 213, 213-1 to 213-3) and the first fuel flow rate calculated by the fuel flow rate calculation unit based on the fuel correction coefficient calculated by the fuel correction coefficient calculation unit.
  • a fuel correction coefficient application unit (for example, fuel correction coefficient application units 214, 214-1 to 214-3) that performs correction is provided.
  • the fuel correction coefficient K f is calculated using the latest second fuel flow rate G fs and the first fuel flow rate G ft at the time when the latest second fuel flow rate G fs is obtained. Since the first fuel flow rate G ft is corrected using the calculated fuel correction coefficient K f , it is possible to calculate the turbine inlet temperature T 1T with high accuracy, and the turbine inlet temperature T 1T can be maintained for a long period of time. Accuracy can be maintained.
  • a gas turbine control device is the gas turbine control device according to (2), wherein the fuel flow rate correction section is configured such that the state of the gas turbine detected by the state detection section is a statically stable state.
  • Fuel correction coefficient calculation that calculates a fuel correction coefficient based on the plurality of second fuel flow rates obtained in the case of and the first fuel flow rate when each of the plurality of second fuel flow rates is obtained. (for example, fuel correction coefficient calculation units 213, 213-1 to 213-3) and the first fuel flow rate calculated by the fuel flow rate calculation unit based on the fuel correction coefficient calculated by the fuel correction coefficient calculation unit.
  • a fuel correction coefficient application unit (for example, fuel correction coefficient application units 214, 214-1 to 214-3) that performs correction is provided.
  • the fuel correction coefficient K f is calculated based on the plurality of second fuel flow rates G fs and the plurality of first fuel flow rates G ft , and the fuel correction coefficient K f is calculated based on the calculated fuel correction coefficient K f . Since the fuel flow rate G ft of 1 is corrected, a highly accurate fuel correction coefficient K f in terms of reliability can be obtained.
  • the gas turbine control device is the gas turbine control device according to any one of (2) to (4), in which the air flow rate correction section is configured to Air correction based on the latest second air flow rate obtained when the gas turbine is in a static state and the first air flow rate when the latest second air flow rate is obtained.
  • an air correction coefficient calculation unit 223 that calculates a coefficient
  • an air correction coefficient application unit 224 that corrects the first air flow rate calculated by the air flow rate calculation unit using the air correction coefficient calculated by the air correction coefficient calculation unit.
  • the air correction coefficient K a is calculated using the latest second air flow rate G as and the first air flow rate G at when the latest second air flow rate G as is obtained. Since the first air flow rate G at is corrected using the calculated air correction coefficient Ka , it is possible to calculate the turbine inlet temperature T 1T with high accuracy, and the turbine inlet temperature T 1T can be maintained for a long period of time. Accuracy can be maintained.
  • the gas turbine control device is the gas turbine control device according to any one of (2) to (4), in which the air flow rate correction section is configured to Air correction based on the plurality of second air flow rates obtained when the gas turbine is in a static state and the first air flow rate when each of the plurality of second air flow rates is obtained.
  • an air correction coefficient calculation unit 223 that calculates a coefficient; and an air correction coefficient application unit 224 that corrects the first air flow rate calculated by the air flow rate calculation unit using the air correction coefficient calculated by the air correction coefficient calculation unit. , is provided.
  • the air correction coefficient K a is calculated based on the plurality of second air flow rates G as and the plurality of first air flow rates G at , and the air correction coefficient K a is calculated based on the calculated air correction coefficient K a . Since the air flow rate G at of 1 is corrected, a highly accurate air correction coefficient K a can be obtained in terms of reliability.
  • the gas turbine control device is the gas turbine control device according to any one of (2), (5), and (6), wherein the fuel flow rate correction section is configured to include the state detection section
  • the second fuel flow rate obtained when the state of the gas turbine detected by A predetermined regression analysis (e.g., linear multiple regression analysis) is performed based on the combustor casing temperature T CS and the combustor casing pressure P out to calculate coefficients of a regression equation corresponding to the predetermined regression analysis.
  • a fuel correction coefficient calculation unit (for example, fuel correction coefficient calculation units 213a, 213-1 to 213-3) that calculates a fuel correction coefficient by substituting data, and the fuel correction coefficient calculated by the fuel correction coefficient calculation unit , a fuel correction coefficient application unit (for example, fuel correction coefficient application units 214, 214-1 to 214-3) that corrects the first fuel flow rate corresponding to the data of the explanatory variables substituted into the regression equation; Be prepared.
  • a fuel correction coefficient application unit for example, fuel correction coefficient application units 214, 214-1 to 214-3
  • the gas turbine control device is the gas turbine control device according to any one of (2), (3), (4), and (7), in which the air flow rate correction section includes: The second air flow rate obtained when the state of the gas turbine detected by the state detection unit is a static steady state, and the first air flow rate and explanatory variable when the second air flow rate is obtained.
  • an air side regression analysis section 225 that performs a predetermined regression analysis based on the data and calculates coefficients of a regression equation corresponding to the predetermined regression analysis; an air correction coefficient calculation unit 223a that calculates an air correction coefficient by substituting data of the explanatory variable when the air flow rate calculation unit calculates the first air flow rate into the regression equation;
  • the air correction coefficient applying unit 224 corrects the first air flow rate corresponding to the data of the explanatory variable substituted into the regression equation using the air correction coefficient calculated by the calculation unit.
  • a gas turbine control device is the gas turbine control device according to (7) or (8), wherein the data of the explanatory variable is the measurement data and the gas turbine control device for controlling the gas turbine.
  • This data is an arbitrary combination of the command value data and the command value data.
  • the fuel correction coefficient K f or the air correction coefficient Ka that reflects the measurement data acquired by measurement and the data of the command value given to the gas turbine 10 is obtained.
  • the gas turbine control device is the gas turbine control device according to any one of (2) to (9), wherein the correction processing section includes the fuel flow rate correction section.
  • the heat The fuel distribution amount calculation unit 201b includes a fuel distribution amount calculation unit 209 that calculates the second fuel flow rate for each fuel supply system from the second fuel flow rate included in the calculation result output by the balance calculation unit.
  • the fuel distribution amount calculation unit calculates the second fuel flow rate included in the calculation result output by the heat balance calculation unit 203b when the state of the gas turbine detected by the detection unit is a static state.
  • the second fuel flow rate (for example, fuel flow rate G fs (1), G ft (2), G ft (3)) for each of the fuel supply systems is acquired, and each of the acquired second fuel flow rates and , the first fuel flow rate for each fuel supply system calculated by the fuel flow rate calculation unit based on each of the first fuel flow rates for each fuel supply system when each of the second fuel flow rates is obtained. correcting the fuel flow rate, and providing the corrected total value of the first fuel flow rate for each of the fuel supply systems to the turbine inlet temperature calculation unit.
  • the accuracy of the turbine inlet temperature is maintained over a long period of time without using turbine efficiency.
  • Fuel flow rate calculation unit 202 Air flow rate calculation unit 203 Heat balance calculation unit 204 Correction processing unit 205 State detection unit 206 Turbine inlet temperature calculation unit 207 Fuel distribution ratio calculation unit 208 Valve opening degree calculation unit 210 Fuel flow rate correction Section 211 Fuel side management section 212 Fuel side storage section 213 Fuel correction coefficient calculation section 214 Fuel correction coefficient application section 220 Air flow rate correction section 221 Air side management section 222 Air side storage section 223 Air correction coefficient calculation section 224 Air correction coefficient application section

Abstract

ガスタービン制御装置は、燃焼器に流入する燃料の量を示す燃料流量を算出する燃料流量算出部と、圧縮機が吸入する空気の量を示す空気流量を算出する空気流量算出部と、燃料流量と、空気流量と、燃焼器に関する熱エネルギ収支に関する物理モデル式とに基づいてタービン入口温度を算出するタービン入口温度算出部と、ガスタービンのエネルギ収支に関する計測データに基づいてガスタービンのヒートバランスを満たす演算を行って演算結果を出力するヒートバランス演算部と、ガスタービンの状態を検出する状態検出部と、状態検出部が検出するガスタービンの状態が静定状態の場合にヒートバランス演算部が出力する演算結果に基づいて、燃料流量と空気流量のいずれか一方、または、両方を補正してタービン入口温度算出部に与える補正処理部と、を備える。

Description

ガスタービン制御装置、ガスタービン制御方法、及びプログラム
 本開示は、ガスタービン制御装置、ガスタービン制御方法、及びプログラムに関する。
 本願は、2022年5月9日に、日本に出願された特願2022-076848号に基づき優先権を主張し、その内容をここに援用する。
 ガスタービンでは、例えば、圧縮機で生成された圧縮空気を取り込んだ燃焼器において燃料を噴射して燃焼ガスを生成する。生成した燃焼ガスがタービンを駆動することにより動力が生成される。燃焼器に燃料を供給する燃料供給系統は、燃焼効率や燃焼安定性の観点から、複数の燃料供給系統に分けられることがある。複数の燃料供給系統の各々に対して燃料を配分する比率、すなわち燃料配分比は、タービン入口温度に基づいて算出することが可能である。
 ただし、タービン入口温度を安定して計測できる計器が存在しないため、ガスタービンに備えられたセンサが計測することにより得られる計測データに基づいてタービン入口温度を推定し、推定したタービン入口温度を用いて燃料配分比を算出することが一般的に行われる。そのため、推定するタービン入口温度の精度を担保することが重要となる。例えば、特許文献1には、燃焼器に流入する燃料流量や空気流量から燃焼後のタービン入口温度を推定し、推定したタービン入口温度をセンサによって計測したタービン出口温度、すなわち排ガス温度を用いて補正することにより、タービン入口温度の精度を高める技術が開示されている。
日本国特許第6920456号公報
 しかしながら、タービン入口温度と排ガス温度の関係であるタービン効率を一意に定めることは難しい。そのため、特許文献1に開示されている技術には、タービン入口温度を排ガス温度によって補正しても、タービン入口温度の精度を高めるように補正できない場合があるという課題がある。また、タービン効率を一意に定めることができたとしても、ガスタービン10が長期間運転されることにより、経年劣化等によってガスタービン10の性能が変化する。そのため、長期間にわたって、一意に定めたタービン効率を使い続けることができないため、安定してタービン入口温度の精度を維持することが難しくなるという課題がある。
 本開示は、上記課題を解決するためになされたものであって、タービン効率を用いずに、長期間にわたってタービン入口温度の精度を維持することができるガスタービン制御装置、ガスタービン制御方法、及びプログラムを提供することを目的とする。
 上記課題を解決するために、本開示に係るガスタービン制御装置は、ガスタービンの燃焼器に燃料を供給する燃料供給系統に関する計測データに基づいて前記燃焼器に流入する燃料の量を示す燃料流量を算出する燃料流量算出部と、前記ガスタービンの圧縮機に関する計測データに基づいて前記圧縮機が吸入する空気の量を示す空気流量を算出する空気流量算出部と、前記燃料流量と、前記空気流量と、前記燃焼器に関する熱エネルギ収支に関する物理モデル式とに基づいてタービン入口温度を算出するタービン入口温度算出部と、前記ガスタービンのエネルギ収支に関する計測データに基づいて前記ガスタービンのヒートバランスを満たす演算を行って演算結果を出力するヒートバランス演算部と、前記ガスタービンの状態を検出する状態検出部と、前記状態検出部が検出する前記ガスタービンの状態が静定状態の場合に前記ヒートバランス演算部が出力する前記演算結果に基づいて、前記燃料流量と前記空気流量のいずれか一方、または、両方を補正して前記タービン入口温度算出部に与える補正処理部と、を備える。
 本開示に係るガスタービン制御方法は、ガスタービンの燃焼器に燃料を供給する燃料供給系統に関する計測データに基づいて前記燃焼器に流入する燃料の量を示す燃料流量を算出するステップと、前記ガスタービンの圧縮機に関する計測データに基づいて前記圧縮機が吸入する空気の量を示す空気流量を算出するステップと、前記燃料流量と、前記空気流量と、前記燃焼器に関する熱エネルギ収支に関する物理モデル式とに基づいてタービン入口温度を算出するステップと、前記ガスタービンのエネルギ収支に関する計測データに基づいて前記ガスタービンのヒートバランスを満たす演算を行って演算結果を出力するステップと、前記ガスタービンの状態を検出するステップと、前記状態を検出するステップによって検出された前記ガスタービンの状態が静定状態の場合に前記ヒートバランスを満たす演算を行うステップにおいて出力された前記演算結果に基づいて、前記燃料流量と前記空気流量のいずれか一方、または、両方を補正して前記タービン入口温度を算出するステップに与えるステップと、を含む。
 本開示に係るプログラムは、コンピュータを、ガスタービンの燃焼器に燃料を供給する燃料供給系統に関する計測データに基づいて前記燃焼器に流入する燃料の量を示す燃料流量を算出する燃料流量算出手段、前記ガスタービンの圧縮機に関する計測データに基づいて前記圧縮機が吸入する空気の量を示す空気流量を算出する空気流量算出手段、前記燃料流量と、前記空気流量と、前記燃焼器に関する熱エネルギ収支に関する物理モデル式とに基づいてタービン入口温度を算出するタービン入口温度算出手段、前記ガスタービンのエネルギ収支に関する計測データに基づいて前記ガスタービンのヒートバランスを満たす演算を行って演算結果を出力するヒートバランス演算手段、前記ガスタービンの状態を検出する状態検出手段、前記状態検出手段が検出する前記ガスタービンの状態が静定状態の場合に前記ヒートバランス演算手段が出力する前記演算結果に基づいて、前記燃料流量と前記空気流量のいずれか一方、または、両方を補正して前記タービン入口温度算出手段に与える補正処理手段、として機能させるためのプログラムである。
 本開示のガスタービン制御装置、ガスタービン制御方法、及びプログラムによれば、タービン効率を用いずに、長期間にわたってタービン入口温度の精度を維持することができる。
本開示の第1の実施形態に係るガスタービン発電プラントの構成例を示す模式図である。 本開示の第1の実施形態に係るガスタービン制御装置の構成例を示すブロック図である。 本開示の第1の実施形態に係るガスタービン制御装置の動作例を示すフローチャート(その1)である。 本開示の第1の実施形態に係るガスタービン制御装置の動作例を示すフローチャート(その2)である。 本開示の第1の実施形態に係るガスタービン制御装置の動作例を示すフローチャート(その3)である。 本開示の第1の実施形態の他の構成例に係るガスタービン制御装置の動作例を示すフローチャート(その1)である。 本開示の第1の実施形態の他の構成例に係るガスタービン制御装置の動作例を示すフローチャート(その2)である。 本開示の第2の実施形態に係るガスタービン発電プラントの構成例を示す模式図である。 本開示の第2の実施形態に係るガスタービン制御装置の構成例を示すブロック図である。 本開示の第2の実施形態に係るガスタービン制御装置の動作例を示すフローチャート(その1)である。 本開示の第2の実施形態に係るガスタービン制御装置の動作例を示すフローチャート(その2)である。 本開示の第2の実施形態に係るガスタービン制御装置の動作例を示すフローチャート(その3)である。 本開示の第3の実施形態に係るガスタービン制御装置の構成例を示すブロック図である。 本開示の第3の実施形態に係るガスタービン制御装置の動作例を示すフローチャート(その1)である。 本開示の第3の実施形態に係るガスタービン制御装置の動作例を示すフローチャート(その2)である。 少なくとも1つの実施形態に係るコンピュータの構成を示す概略ブロック図である。
 以下、本開示の実施形態に係るガスタービン制御装置、ガスタービン制御方法、及びプログラムについて、図1~図16を参照して説明する。図1、図8は、それぞれ、本開示の第1及び第2の実施形態に係るガスタービン発電プラント100,100aの構成例を示す模式図である。図2,図9,図13は、それぞれ、本開示の第1から第3の実施形態に係るガスタービン制御装置20,20a,20bの構成例を示すブロック図である。図3~図5は、本開示の第1の実施形態に係るガスタービン制御装置20の動作例を示すフローチャートである。図6、図7は、本開示の第1の実施形態の他の構成例に係るガスタービン制御装置20の動作例を示すフローチャートである。図10~図12は、本開示の第2の実施形態に係るガスタービン制御装置20aの動作例を示すフローチャートである。図14,図15は、本開示の第3の実施形態に係るガスタービン制御装置20bの動作例を示すフローチャートである。図16は、本開示の少なくとも1つの実施形態に係るコンピュータの構成を示す概略ブロック図である。なお、各図において同一または対応する構成には同一の符号を用いて説明を適宜省略する。
 なお、本開示に係る各実施形態においては、図2、図9等に示すごとく、全ての計算が単一のガスタービン制御装置内で行われるものとして説明するが、これはあくまで構成の一例にすぎない。すなわち、他の実施形態においては、例えば、燃料流量・タービン入口温度算出はガスタービン制御装置で行い、ヒートバランス計算や補正係数の算出は異なる計算機で行う態様であってもよい。その他、各計算処理と、当該計算処理を実行するハードウェアとの組み合わせは適宜変更可能である。
<第1の実施形態>
(第1の実施形態のガスタービン発電プラントの構成例)
 図1は、第1の実施形態のガスタービン発電プラント100の全体構成図である。ガスタービン発電プラント100は、ガスタービン10、ガスタービン10を制御するガスタービン制御装置20、燃料を供給する燃料供給装置30、燃料供給装置30が供給する燃料をガスタービン10に導く燃料供給系統40、ガスタービン10の動力で駆動されることにより発電を行う発電機50、及び、様々な状態量を計測し、計測により検出する計測データをガスタービン制御装置20に送信する各種のセンサ25a~25lを備える。
 ガスタービン10は、圧縮機11、燃焼器12、及びタービン13を備える。圧縮機11は、空気を吸入し、吸入した空気を圧縮することにより、高圧の圧縮空気を生成する。圧縮機11で生成された圧縮空気は下流側にある燃焼器12及びタービン13に対して供給される。圧縮機11は、主軸Asを中心軸として回転する圧縮機ロータ111と、圧縮機ロータ111を外周側から覆う圧縮機車室112と、圧縮機11が吸入する空気量を調整するためのインレットガイドベーン14(IGV(Inlet Guide Vane))とを備える。インレットガイドベーン14は、点線の矢印で示すように通信回線などの制御回線によりガスタービン制御装置20に接続されており、ガスタービン制御装置20からの指令値を受けたインレットガイドベーン14により圧縮機11が吸入する空気量が調整される。
 タービン13は、主軸Asを中心軸として回転するタービンロータ131と、タービンロータ131を外周側から覆うタービン車室132とを備える。圧縮機ロータ111と、タービンロータ131とは、連結されており、主軸Asを中心軸として一体的に回転する。燃焼器12は、圧縮機11によって生成された圧縮空気に対して、燃料供給系統40から供給される燃料を噴射して燃焼させることにより、高圧力、高温度の燃焼ガスを生成する。燃焼器12は、燃焼器内筒121と、燃焼器内筒121を覆う燃焼器車室16とを備える。燃焼器内筒121は、燃料供給系統40から供給される燃料を噴射して点火することにより、燃焼器車室16内の燃料を燃焼させる。燃焼器車室16は、圧縮機車室112と、タービン車室132とに連結されており、燃焼器車室16で生成された燃焼ガスが、タービン車室132に供給されて、タービンロータ131が回転し、タービンロータ131の回転により圧縮機ロータ111が一体的に回転して空気を吸入する。
 燃料供給系統40は、燃料供給装置30が供給する燃料を、燃料配管を通じて所定の圧力及び流量で燃焼器12に供給する。燃料供給系統40は、図1において、実線、または、破線の矢印で示す燃料配管であって燃料供給装置30とガスタービン10の間を接続する燃料配管の他に、燃料配管に設けられる流量調整弁(以下、流調弁という)41と、ノズル42と、マニホールド配管43とを備える。
 燃料供給系統40は、燃料供給系統40-1、燃料供給系統40-2、及び燃料供給系統40-3の3つの燃料供給系統を含んでいる。燃料供給装置30は、供給する燃料を3つに分岐し、分岐した燃料の各々を燃料供給系統40-1、燃料供給系統40-2、及び燃料供給系統40-3に供給する。例えば、燃料供給系統40-1は、燃焼器12のトップハット部に燃料を供給するためのトップハット燃料供給系統であり、燃料供給系統40-2は燃焼器内筒121の中心部に燃料を供給するパイロット燃料供給系統であり、燃料供給系統40-3は燃焼器内筒121の中心部を囲む部分に燃料を供給するメイン燃料供給系統である。
 燃料供給系統40が3つの燃料供給系統40-1~40-3を含んでいることから、流調弁41は、燃料供給系統40-1~40-3の各々に対応する流調弁41-1,41-2,41-3を有する。流調弁41-1,41-2,41-3の各々は、点線の矢印で示すように通信回線などの制御回線によりガスタービン制御装置20に接続されている。流調弁41-1,41-2,41-3の各々は、制御回線を通じてガスタービン制御装置20から各々に対する弁開度を示す指令値を受けると、受けた指令値にしたがった開度で弁の開度を大きくしたり小さくしたりする。
 流調弁41と同様に、ノズル42は、燃料供給系統40-1~40-3の各々に対応するノズル42-1,42-2,42-3を有する。マニホールド配管43については、図1では、紙面の都合上、燃料供給系統40-1に対応するマニホールド配管43のみを示しているが、実際には、燃料供給系統40-1~40-3ごとに、1つずつマニホールド配管43が設けられている。以下、燃料供給系統40-1~40-3の各々に対応するマニホールド配管43を個別に説明する必要がある場合、符号の枝番号を対応させて、それぞれマニホールド配管43-1~43-3という。マニホールド配管43-1~43-3の各々は、燃焼器12に接続されており、例えば、マニホールド配管43-1は、燃焼器12のトップハット部に燃料を供給し、マニホールド配管43-2は、燃焼器内筒121の中心部に燃料を供給し、マニホールド配管43-3は、燃焼器内筒121の中心部を囲む部分に燃料を供給する。
 ロータ15は、圧縮機ロータ111に連結されており、圧縮機ロータ111及びタービンロータ131と共に、主軸Asを中心軸として一体的に回転する。発電機50は、ロータ15を介して圧縮機ロータ111の一端に接続される。発電機50は、ロータ15の回転によって駆動されて発電を行って電力を生成する。
 次に、ガスタービン制御装置20に接続する各種のセンサ25a~25lについて説明する。各種のセンサ25a~25lの各々は、点線の矢印で示すように通信回線などの制御回線によりガスタービン制御装置20に接続されており、計測により検出する計測データを、制御回線を通じてガスタービン制御装置20に送信する。
 流調弁前圧力センサ25a、流調弁後圧力センサ25b、及び燃料温度センサ25cは、以下に示すような、燃料供給系統40に関する計測データを検出する。流調弁前圧力センサ25aは、燃料供給系統40-1,40-2,40-3ごとに備えられる流調弁前圧力センサ25a-1,25a-2,25a-3を有する。流調弁前圧力センサ25a-1,25a-2,25a-3の各々は、各々に対応する流調弁41-1,41-2,41-3に流入する燃料の圧力である流調弁前圧力P1FV(1),P1FV(2),P1FV(3)を検出する。流調弁後圧力センサ25bは、燃料供給系統40-1,40-2,40-3ごとに備えられる流調弁後圧力センサ25b-1,25b-2,25b-3を有する。流調弁後圧力センサ25b-1,25b-2,25b-3の各々は、各々に対応する流調弁41-1,41-2,41-3の各々から流出する燃料の圧力である流調弁後圧力P2FV(1),P2FV(2),P2FV(3)を検出する。
 燃料温度センサ25cは、燃料供給系統40-1,40-2,40-3ごとに備えられる燃料温度センサ25c-1,25c-2,25c-3を有する。燃料温度センサ25c-1,25c-2,25c-3の各々は、各々に対応する燃料供給系統40-1,40-2,40-3の燃料配管を流れる燃料の温度である燃料温度T(1),T(2),T(3)を検出する。
 電力計センサ25d、インデックス差圧センサ25e、圧縮機入口圧力センサ25f、圧縮機入口温度センサ25g、圧縮機出口圧力センサ25h、圧縮機出口温度センサ25i、燃焼器車室温度センサ25j、排ガス圧力センサ25k、及び排ガス温度センサ25lは、以下に示すような、ガスタービンに関する計測データを検出する。電力計センサ25dは、発電機50が発電する電力を計測し、計測した電力をガスタービン出力Goutとして検出する。
 インデックス差圧センサ25eは、圧縮機インデックス差圧Pindexを検出する。ここで、圧縮機インデックス差圧Pindexとは、圧縮機11のケーシング吸込口における圧力と、圧縮機11の内部の翼付近との圧力差であり、圧縮機11が吸入する空気流量の指標となる値である。圧縮機入口圧力センサ25fは、圧縮機11のケーシング吸込口における圧力である圧縮機入口圧力P1Cを検出する。圧縮機入口温度センサ25gは、圧縮機11のケーシング吸込口における温度である圧縮機入口温度T1Cを検出する。圧縮機出口圧力センサ25hは、圧縮機11の出口の圧力である圧縮機出口圧力P2Cを検出する。圧縮機出口温度センサ25iは、圧縮機11の出口の温度である圧縮機出口温度T2Cを検出する。燃焼器車室温度センサ25jは、燃焼ガス温度、すなわち燃焼器車室16内の空気の温度である燃焼器車室温度TCSを検出する。排ガス圧力センサ25kは、タービン13の出口の圧力である排ガス圧力P2Tを検出する。排ガス温度センサ25lは、タービン13の出口の温度である排ガス温度T2Tを検出する。
(第1の実施形態のガスタービン制御装置の構成例)
 ガスタービン制御装置20は、図2に示すように、燃料流量算出部201、空気流量算出部202、ヒートバランス演算部203、補正処理部204、状態検出部205、タービン入口温度算出部206、燃料配分比算出部207、及び弁開度算出部208を備える。
 ガスタービン制御装置20において、燃料流量算出部201は、予め定められる燃料流量算出関数f(・)に対して、流調弁41に対して指令値として与えられる弁開度O,O,Oを示すデータの各々と、燃料供給系統40-1,40-2,40-3の各々に関する計測データとを代入して単位時間当たりにガスタービン10の燃焼器12に流入する燃料の量を示す燃料流量Gftを算出する。ここで、燃料供給系統40-1,40-2,40-3の各々に関する計測データとは、流調弁前圧力センサ25aが検出する流調弁前圧力P1FV(1),P1FV(2),P1FV(3)、流調弁後圧力センサ25bが検出する流調弁後圧力P2FV(1),P2FV(2),P2FV(3)、及び燃料温度センサ25cが検出する燃料温度T(1),T(2),T(3)のデータである。これらのデータに基づいて、燃料流量算出部201は、次式(1),(2),(3)に示すように、燃料供給系統40-1,40-2,40-3ごとに燃料流量算出関数f(・)を用いた演算を行い、単位時間当たりに燃料供給系統40-1,40-2,40-3の各々を通じて燃焼器12に流入する燃料流量Gft(1)と、燃料流量Gft(2)と、燃料流量Gft(3)とを算出する。
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
 燃料流量算出部201は、次式(4)に示すように、燃料供給系統40-1に対応する燃料流量Gft(1)と、燃料供給系統40-2に対応する燃料流量Gft(2)と、燃料供給系統40-3に対応する燃料流量Gft(3)とを合計して単位時間当たりに燃料供給系統40を通じて燃焼器12に流入する燃料流量Gftを算出する。
Figure JPOXMLDOC01-appb-M000004
 空気流量算出部202は、ガスタービン10の圧縮機11に関する計測データ、すなわち、インデックス差圧センサ25eが検出する圧縮機インデックス差圧Pindexと、圧縮機入口圧力センサ25fが検出する圧縮機入口圧力P1Cと、圧縮機入口温度センサ25gが検出する圧縮機入口温度T1Cとを、次式(5)に示すように、予め定められる空気流量算出関数f(・)に代入して単位時間当たりにガスタービン10の圧縮機11が吸入する空気量を示す空気流量Gatを算出する。
Figure JPOXMLDOC01-appb-M000005
 ヒートバランス演算部203は、ガスタービン10の全体のエネルギ収支、すなわち仕事の収支や熱の収支が一致することを示す計算式(以下、ガスタービンヒートバランス計算式という)に対して、計測した計測データを適用することにより、計測データが得られた際の燃料流量Gfsと、空気流量Gasとを算出する。ヒートバランス演算部203が、ガスタービンヒートバランス計算式に適用する計測データは、例えば、電力計センサ25dが検出するガスタービン出力Gout、排ガス圧力センサ25kが検出する排ガス圧力P2T、排ガス温度センサ25lが検出する排ガス温度T2T、圧縮機入口圧力センサ25fが検出する圧縮機入口圧力P1C、圧縮機入口温度センサ25gが検出する圧縮機入口温度T1C、圧縮機出口圧力センサ25hが検出する圧縮機出口圧力P2C、及び圧縮機出口温度センサ25iが検出する圧縮機出口温度T2Cである。
 状態検出部205は、ガスタービン制御装置20に接続する各種のセンサ25a~25lが検出する各種の計測データによって表されるガスタービン発電プラント100の状態量の時間的な変化量や、発電機50が発電する電力などに基づいて、ガスタービン発電プラント100の状態が、過渡状態であるか、静定状態であるかを検出する。状態検出部205は、例えば、状態量の時間的な変化量が、予め定める閾値未満である場合にガスタービン発電プラント100の状態を静定状態として検出する。これに対して、状態検出部205は、時間的な変化量が、当該閾値以上である場合にガスタービン発電プラント100の状態を過渡状態として検出する。
 補正処理部204は、燃料流量補正部210と、空気流量補正部220とを備える。燃料流量補正部210は、燃料側管理部211、燃料側記憶部212、燃料補正係数算出部213、及び燃料補正係数適用部214を備える。燃料側管理部211は、状態検出部205が検出する状態にしたがって、燃料流量算出部201が算出する燃料流量Gftと、ヒートバランス演算部203が算出する燃料流量Gfsとを関連付けて燃料側記憶部212に書き込んで記憶させる。燃料側管理部211は、燃料流量Gftと燃料流量Gfsの最新の組み合わせを燃料補正係数算出部213に出力する。
 燃料側記憶部212は、燃料流量Gftと、燃料流量Gfsとの組み合わせを時系列順に記憶する。燃料補正係数算出部213は、最新の燃料流量Gfsを、最新の燃料流量Gftで除算して燃料補正係数K(=Gfs/Gft)を算出する。燃料補正係数適用部214は、例えば、乗算器であり、燃料流量算出部201が算出する燃料流量Gftに、燃料補正係数算出部213が算出する燃料補正係数Kを乗算することにより燃料流量Gftを補正し、補正後の燃料流量Gftである補正燃料流量Gfcor(=Gft×K)を出力する。
 空気流量補正部220は、空気側管理部221、空気側記憶部222、空気補正係数算出部223、及び空気補正係数適用部224を備える。空気側管理部221は、状態検出部205が検出する状態にしたがって、空気流量算出部202が算出する空気流量Gatと、ヒートバランス演算部203が算出する空気流量Gasとを関連付けて空気側記憶部222に書き込んで記憶させる。空気側管理部221は、空気流量Gatと空気流量Gasの最新の組み合わせを空気補正係数算出部223に出力する。
 空気側記憶部222は、空気流量Gatと、空気流量Gasとの組み合わせを時系列順に記憶する。空気補正係数算出部223は、最新の空気流量Gasを、最新の空気流量Gatで除算して空気補正係数K(=Gas/Gat)を算出する。空気補正係数適用部224は、例えば、乗算器であり、空気流量算出部202が算出する空気流量Gatに、空気補正係数算出部223が算出する空気補正係数Kを乗算することにより空気流量Gatを補正し、補正後の空気流量Gatである補正空気流量Gacor(=Gat×K)を出力する。
 タービン入口温度算出部206は、補正燃料流量Gfcorと、補正空気流量Gacorと、燃焼器車室温度センサ25jが検出する燃焼器車室温度TCSと、燃料温度センサ25c-1~25c-3が検出する燃料温度T(1),T(2),T(3)の平均値である燃料温度Tとを、次式(6)に示すように、予め定められる燃焼器12周りの熱収支を解く式、すなわち、燃焼器12に関する熱エネルギ収支に関する物理モデル式である関数f(・)に代入してタービン入口温度T1Tを算出する。
Figure JPOXMLDOC01-appb-M000006
 ここで、上記の式(6)の関数f(・)によって表される熱エネルギ収支に関する物理モデル式とは、例えば、非定常物理モデルを変形して得られる式である。非定常物理モデルを表す式とは、例えば、燃焼器12に流入する熱エネルギと、燃焼器12から流出する熱エネルギとが等しいことを表すモデル式であり、当該モデル式に含まれるタービン入口温度T1Tを左辺とし、他の要素を右辺とした式に変形することにより熱エネルギ収支に関する物理モデル式が得られる。なお、非定常物理モデルにおける燃焼器12に流入する熱エネルギは、燃料の熱エネルギ、空気の熱エネルギ、燃焼ガスの発熱エネルギの合計により表される。燃焼器12から流出する熱エネルギはタービン13の入口における熱エネルギにより表される。
 燃料配分比算出部207は、タービン入口温度算出部206が算出するタービン入口温度T1Tに基づいて、予め定められるタービン入口温度T1Tと燃料配分比の関係式により燃料供給系統40-1,40-2,40-3の各々に対する燃料配分比D,D,Dを算出する。燃料配分比算出部207が算出する3つの燃料配分比D,D,Dの合計は100%になる。
 弁開度算出部208は、燃料配分比算出部207が算出する燃料配分比D,D,Dと、外部から与えられる燃料制御信号指令値(CSO:Control Signal Output)とに基づいて、予め定められる弁開度算出式により、流調弁41-1,41-2,41-3の各々に対する弁開度O,O,Oを算出する。なお、燃料制御信号指令値(CSO)とは、燃焼器12に供給する燃料流量を制御する制御出力信号である。弁開度算出部208は、算出した弁開度O,O,Oの各々を、各々に対応する流調弁41-1,41-2,41-3に対する指令値として与える。これにより、流調弁41-1は、弁開度Oにしたがって開度を調整し、流調弁41-2は、弁開度Oにしたがって開度を調整し、流調弁41-3は、弁開度Oにしたがって開度を調整する。弁開度算出部208は、算出した弁開度O,O,Oを燃料流量算出部201にフィードバックする。
(第1の実施形態のガスタービン制御装置の動作例)
 図3から図5を参照しつつガスタービン制御装置20による処理について説明する。流調弁前圧力センサ25a-1~25a-3、流調弁後圧力センサ25b-1~25b-3、及び燃料温度センサ25c-1~25c-3は、検出周期ごとに計測を行い計測により検出した計測データを、制御回線を通じてガスタービン制御装置20に送信する。
 燃料流量算出部201は、流調弁前圧力センサ25a-1~25a-3が送信する流調弁前圧力P1FV(1),P1FV(2),P1FV(3)と、流調弁後圧力センサ25b-1~25b-3が送信する流調弁後圧力P2FV(1),P2FV(2),P2FV(3)と、燃料温度センサ25c-1~25c-3が送信する燃料温度T(1),T(2),T(3)とを受信して取り込む。燃料流量算出部201は、弁開度算出部208が前回の検出周期において算出して出力した弁開度O,O,Oを取り込む(S1-1)。
 燃料流量算出部201は、ステップS1-1の処理において取り込んだデータを、上記したように、式(1),(2),(3)に代入して、燃料流量Gft(1),Gft(2),Gft(3)を算出する。燃料流量算出部201は、式(4)に示すように、燃料流量Gft(1),Gft(2),Gft(3)を合計して単位時間当たりにガスタービン10の燃焼器12に流入する燃料の量を示す燃料流量Gftを算出する。燃料流量算出部201は、算出した燃料流量Gftを燃料側管理部211と、燃料補正係数適用部214とに出力する(S2-1)。
 電力計センサ25d、排ガス圧力センサ25k、排ガス温度センサ25l、圧縮機入口圧力センサ25f、圧縮機入口温度センサ25g、圧縮機出口圧力センサ25h、及び圧縮機出口温度センサ25iは、検出周期ごとに計測を行い計測により検出した計測データを、制御回線を通じてガスタービン制御装置20に送信する。
 ヒートバランス演算部203は、電力計センサ25dが送信するガスタービン出力Goutと、排ガス圧力センサ25kが送信する排ガス圧力P2Tと、排ガス温度センサ25lが送信する排ガス温度T2Tと、圧縮機入口圧力センサ25fが送信する圧縮機入口圧力P1Cと、圧縮機入口温度センサ25gが送信する圧縮機入口温度T1Cと、圧縮機出口圧力センサ25hが送信する圧縮機出口圧力P2Cと、圧縮機出口温度センサ25iが送信する圧縮機出口温度T2Cとを受信して取り込む(S1-2)。ヒートバランス演算部203は、ステップS1-2の処理において取り込んだデータと、ガスタービンヒートバランス計算式とに基づいて、燃料流量Gfsと、空気流量Gasとを算出する。ヒートバランス演算部203は、算出した燃料流量Gfsを燃料側管理部211に出力し、算出した空気流量Gasを空気側管理部221に出力する(S2-2)。
 インデックス差圧センサ25eは、検出周期ごとに計測を行い計測により検出した計測データである圧縮機インデックス差圧Pindexのデータを、制御回線を通じてガスタービン制御装置20に送信する。空気流量算出部202は、インデックス差圧センサ25eが送信する圧縮機インデックス差圧Pindexと、圧縮機入口圧力センサ25fが送信する圧縮機入口圧力P1Cと、圧縮機入口温度センサ25gが送信する圧縮機入口温度T1Cとを受信して取り込む(S1-3)。空気流量算出部202は、ステップS1-3の処理において取り込んだデータを、上記したように、式(5)に代入して単位時間当たりにガスタービン10の圧縮機11が吸入する空気量を示す空気流量Gatを算出する。空気流量算出部202は、算出した空気流量Gatを空気側管理部221と、空気補正係数適用部224とに出力する(S2-3)。なお、図3において、ステップS1-1,S2-1の処理のセットと、ステップS1-2,S2-2の処理のセットと、ステップS1-3,S2-3の処理のセットとは、並列に行われる。
 補正処理部204は、燃料流量Gftと、燃料流量Gfsと、空気流量Gatと、空気流量Gasとを受けると、図5に示す記憶部管理処理のサブルーチンを開始する(S3)。
 燃料流量補正部210において、燃料側管理部211は、燃料流量算出部201が出力する燃料流量Gftと、ヒートバランス演算部203が出力する燃料流量Gfsとを取り込む。空気流量補正部220において、空気側管理部221は、空気流量算出部202が出力する空気流量Gatと、ヒートバランス演算部203が出力する空気流量Gasとを取り込む(S100)。燃料側管理部211及び空気側管理部221の各々は、各々が行うステップS100の処理を終了した時点で状態検出部205が検出するガスタービン発電プラント100の状態を示すデータを状態検出部205から取得する(S101)。燃料側管理部211及び空気側管理部221の各々は、取得した状態を示すデータが、静定状態を示しているか否かを判定する(S102)。
 燃料側管理部211は、ステップS102の処理において、取得した状態を示すデータが、静定状態を示していると判定した場合(S102、Yes)、ステップS100の処理で取り込んだ燃料流量Gftと、燃料流量Gfsとを関連付けて燃料側記憶部212に書き込んで記憶させる。燃料側管理部211は、燃料側記憶部212に順次書き込む燃料流量Gftと燃料流量Gfsの組み合わせが燃料側記憶部212において時系列順に記憶されるように、例えば、新たに書き込む組み合わせが、時系列順の先頭になるように燃料側記憶部212に書き込む(S103-1)。燃料側管理部211は、燃料側記憶部212に書き込んだ燃料流量Gftと燃料流量Gfsの組み合わせを燃料補正係数算出部213に出力する(S104-1)。
 一方、燃料側管理部211は、ステップS102の処理において、取得した状態を示すデータが、静定状態を示していないと判定した場合(S102、No)、ステップS100の処理で取り込んだ燃料流量Gftと、燃料流量Gfsとを破棄し、燃料側記憶部212に記憶されている組み合わせのうち最新の燃料流量Gftと燃料流量Gfsの組み合わせを読み出す。上記したように燃料側記憶部212が最新の組み合わせが先頭になるように時系列順に記憶している場合、燃料側管理部211は、燃料側記憶部212の先頭に記憶されている組み合わせを最新の燃料流量Gftと燃料流量Gfsの組み合わせとして読み出す。燃料側管理部211は、読み出した最新の燃料流量Gftと燃料流量Gfsの組み合わせを燃料補正係数算出部213に出力する(S105-1)。
 空気側管理部221が、ステップS102の処理において、取得した状態を示すデータが、静定状態を示していると判定した場合(S102、Yes)、ステップS103-2,S104-2の処理が行われる。一方、空気側管理部221が、ステップS102の処理において、取得した状態を示すデータが、静定状態を示していないと判定した場合(S102、No)、ステップS105-2の処理が行われる。ここで、ステップS103-2,S104-2,S105-2の処理の各々は、各々のステップ番号の枝番号を「-1」に置き換えたステップS103-1,S104-1,S105-1の処理において、燃料流量Gftを空気流量Gatに読み替え、燃料流量Gfsを空気流量Gasに読み替え、燃料側管理部211を空気側管理部221に読み替え、燃料側記憶部212を空気側記憶部222に読み替え、燃料補正係数算出部213を空気補正係数算出部223に読み替えた処理である。
 これにより、燃料側管理部211は、状態検出部205が検出する状態が静定状態である場合、直近で取り込んだ燃料流量Gftと燃料流量Gfsの組み合わせを、燃料補正係数算出部213に出力し、状態検出部205が検出する状態が静定状態でない場合、燃料側記憶部212に記憶されている最新の燃料流量Gftと燃料流量Gfsの組み合わせを、燃料補正係数算出部213に出力することになる。言い換えると、燃料側管理部211は、状態検出部205が検出する状態がいずれの状態であったとしても、静定状態における最新の燃料流量Gftと燃料流量Gfsの組み合わせを、燃料補正係数算出部213に出力することになる。同様に、空気側管理部221も、状態検出部205が検出する状態がいずれの状態であったとしても、静定状態における最新の空気流量Gatと空気流量Gasの組み合わせを、空気補正係数算出部223に出力することになる。ステップS104-1,S104-2,S105-1,S105-2の処理が終了すると、図5の記憶部管理処理のサブルーチンが終了して、図3の処理に戻る。なお、図5において、燃料側管理部211が行う処理と、空気側管理部221が行う処理とは、並列に行われる。
 図3のステップS4-1に示すように、燃料補正係数算出部213は、燃料側管理部211が出力する燃料流量Gftと燃料流量Gfsの組み合わせを取り込む(S4-1)。燃料補正係数算出部213は、燃料流量Gfsを燃料流量Gftで除算して燃料補正係数Kを算出する。燃料補正係数算出部213は、算出した燃料補正係数Kを燃料補正係数適用部214に出力する(S5-1)。燃料補正係数適用部214は、燃料流量算出部201が出力する燃料流量Gftと、燃料補正係数算出部213が出力する燃料補正係数Kを取り込む。燃料補正係数適用部214は、燃料流量Gftに、燃料補正係数Kを乗算して補正燃料流量Gfcorを算出する。燃料補正係数適用部214は、算出した補正燃料流量Gfcorをタービン入口温度算出部206に出力する(S6-1)。
 空気流量補正部220によって、図3のステップS4-2,S5-2,S6-2の処理が行われる。ここで、ステップS4-2,S5-2,S6-2の処理の各々は、各々のステップ番号の枝番号を「-1」に置き換えたS4-1,S5-1,S6-1の処理において、燃料流量Gftを空気流量Gatに読み替え、燃料流量Gfsを空気流量Gasに読み替え、燃料補正係数算出部213を空気補正係数算出部223に読み替え、燃料補正係数適用部214を空気補正係数適用部224に読み替え、燃料流量算出部201を空気流量算出部202に読み替え、燃料補正係数Kを空気補正係数Kに読み替え、補正燃料流量Gfcorを補正空気流量Gacorに読み替えた処理である。
 なお、図3において、ステップS4-1,S5-1,S6-1の処理のセットと、ステップS4-2,S5-2,S6-2の処理のセットとは、並列に行われる。図3に示す「A」のマークは、処理が継続して行われることを示すマークであり、「A」のマークが示すように、その後、図4の処理が行われる。
 図4に示すように、タービン入口温度算出部206は、燃料補正係数適用部214が出力する補正燃料流量Gfcorと、空気補正係数適用部224が出力する補正空気流量Gacorとを取り込む。タービン入口温度算出部206は、燃焼器車室温度センサ25jが送信する燃焼器車室温度TCSと、燃料温度センサ25c-1~25c-3が送信する燃料温度T(1),T(2),T(3)とを受信して取り込む。なお、燃焼器車室温度センサ25jは、検出周期ごとに計測を行い計測により検出した計測データである燃焼器車室温度TCSのデータを、制御回線を通じてガスタービン制御装置20に送信する。タービン入口温度算出部206は、取り込んだ燃料温度T(1),T(2),T(3)の平均値である燃料温度Tを算出する。タービン入口温度算出部206は、上記したように、補正燃料流量Gfcorと、補正空気流量Gacorと、燃焼器車室温度TCSと、燃料温度Tとを式(6)に代入してタービン入口温度T1Tを算出する。タービン入口温度算出部206は、算出したタービン入口温度T1Tを燃料配分比算出部207に出力する(S20)。
 燃料配分比算出部207は、タービン入口温度算出部206が出力するタービン入口温度T1Tを取り込む。燃料配分比算出部207は、取り込んだタービン入口温度T1Tに基づいて、タービン入口温度T1Tと燃料配分比の関係式により、燃料供給系統40-1,40-2,40-3の各々に対する燃料配分比D,D,Dを算出する。燃料配分比算出部207は、算出した燃料配分比D,D,Dを弁開度算出部208に出力する(S21)。
 弁開度算出部208は、燃料配分比算出部207が出力する燃料配分比D,D,Dと、外部から与えられる燃料制御信号指令値(CSO)とを取り込む。弁開度算出部208は、取り込んだ燃料配分比D,D,Dと、燃料制御信号指令値(CSO)と基づいて、弁開度算出式により、流調弁41-1,41-2,41-3の各々に対する弁開度O,O,Oを算出する。弁開度算出部208は、算出した弁開度O,O,Oの各々を、各々に対応する流調弁41-1,41-2,41-3に出力する。弁開度算出部208は、算出した弁開度O,O,Oを燃料流量算出部201に出力し(S22)、処理が終了する。
 上記の図3及び図4に示す一連の処理が、1回の検出周期の処理として行われ、周期ごとに図3及び図4に示す一連の処理が行われることになる。
(第1の実施形態の構成における作用・効果)
 上記したように、第1の実施形態のガスタービン制御装置20は、2通りの燃料流量Gft,Gfsを算出する。一方の燃料流量Gftは、燃料流量算出部201によって、弁開度O,O,O、流調弁前圧力P1FV(1),P1FV(2),P1FV(3)と、流調弁後圧力P2FV(1),P2FV(2),P2FV(3)と、燃料温度T(1),T(2)T(3)というパラメータを用いて算出される。燃料流量算出部201が用いるパラメータは、応答が速いため、ガスタービン発電プラント100の状態が過渡状態であっても、過渡状態における激しい変化に追随して、一定の精度を有する燃料流量Gftを算出することができる。ただし、燃料流量算出部201が燃料流量Gftの算出に用いる燃料流量算出関数f(・)は、当該関数を構築する際に予め定める流調弁41のCv特性が、真の流調弁41のCv特性と相違しているといった諸元のズレによる誤差、燃料流量を算出するためにモデル化を行った際の誤差といった絶対的な誤差を含んでいる可能性がある。なお、Cv特性とは、流調弁41においてどれだけ燃料を流すことができるのかということを示す特性である。このような絶対的な誤差を含んでいる可能性があるため、燃料流量算出関数f(・)に代入するパラメータの精度を高くしたとしても、当該関数を用いて得られる燃料流量Gftついては、絶対的な精度が低い可能性がある。
 これに対して、他方の燃料流量Gfsは、ヒートバランス演算部203によって、ガスタービン出力Goutと、排ガス圧力P2Tと、排ガス温度T2Tと、圧縮機入口圧力P1Cと、圧縮機入口温度T1Cと、圧縮機出口圧力P2Cと、圧縮機出口温度T2Cというパラメータを用いて算出される。ヒートバランス演算部203が、燃料流量Gfsの算出に用いるガスタービンヒートバランス計算式は、ガスタービン10の全体のエネルギ収支が一致することを示す計算式であるため、燃料流量算出部201が用いる燃料流量算出関数f(・)に比べると、絶対的な精度の高い燃料流量Gfsを算出することができる。ただし、ヒートバランス演算部203が用いるパラメータの中で、排ガス温度T2Tなどのガスタービン10から得られる温度の計測データは、応答遅れが大きい場合がある。また、発電機50が発電する電力を示すガスタービン出力Goutは、発電機50に接続している電力系統において需給バランスの崩れなどが発生するなどの外乱の影響を受ける場合がある。そのため、ヒートバランス演算部203が算出する燃料流量Gfsは、ガスタービン発電プラント100の状態が静定状態である場合には、燃料流量Gftよりも精度が高くなる一方で、過渡状態の場合には、燃料流量Gftよりも精度が低くなる可能性がある。
 補正処理部204の燃料流量補正部210は、上記の2通りの燃料流量Gft,Gfsを用いて、図3から図5を参照して説明した処理により、静定状態と過渡状態の両方の状態において、タービン入口温度算出部206に与える燃料流量の精度が低くならないようにするために、以下のような処理を行っているということがいえる。例えば、時刻t1において、ヒートバランス演算部203が燃料流量Gfsを算出し、燃料流量算出部201が燃料流量Gftを算出したとする。更に、燃料側管理部211が、ヒートバランス演算部203が出力する時刻t1の燃料流量Gfsを取り込んだ際に、状態検出部205が検出するガスタービン発電プラント100の状態が静定状態であるとする。この場合、燃料側管理部211は、時刻t1の燃料流量Gfs,Gftの組み合わせを燃料側記憶部212に記録すると共に、時刻t1の燃料流量Gft,Gfsの組み合わせを燃料補正係数算出部213に出力する。ここで、燃料補正係数算出部213が算出する燃料補正係数Kは、K=Gfs/Gftである。そのため、燃料補正係数適用部214は、Gft×K=Gfsという演算を行うことになり、燃料補正係数適用部214が算出する補正燃料流量Gfcorは、時刻t1の燃料流量Gfsに等しくなる。この場合の燃料流量Gfsは、静定状態のものであるため、補正燃料流量Gfcorは、燃料流量Gftよりも高い精度になる。
 一方、燃料側管理部211は、ヒートバランス演算部203が出力する時刻t1の燃料流量Gfsを取り込んだ際に、状態検出部205が検出するガスタービン発電プラント100の状態が静定状態でない場合、すなわち、過渡状態である場合、時刻t1の燃料流量Gfs,Gftの組み合わせを燃料側記憶部212に記録しない。燃料側管理部211は、時刻t1の燃料流量Gft,Gfsの組み合わせに替えて、燃料側記憶部212に書き込まれている最新の燃料流量Gft,Gfsの組み合わせを燃料補正係数算出部213に出力する。この最新の燃料流量Gft,Gfsの組み合わせが得られた時刻は、時刻t1以前の時刻であって時刻tの直近の静定状態であった時刻である。この時刻を、時刻t2とする。この場合、燃料補正係数算出部213が算出する燃料補正係数Kは、K=(時刻t2のGfs)/(時刻t2のGft)である。そのため、燃料補正係数適用部214は、(時刻t1のGft)×K=(時刻t1のGft)×(時刻t2のGfs)/(時刻t2のGft)という演算を行うことになる。ここで、(時刻t2のGfs)/(時刻t2のGft)という燃料補正係数Kを算出する演算は、時刻t1の直近において静定状態であった時刻である時刻t2の燃料流量Gft,Gfsの組み合わせが用いられている演算である。静定状態における燃料流量Gfsの精度は高いことから、燃料補正係数Kの精度も高くなる。したがって、この精度の高い燃料補正係数Kを、時刻t1の燃料流量Gftに乗算することにより、時刻t1の燃料流量Gftよりも精度の高い補正燃料流量Gfcorが得られることになる。
 このように、燃料側管理部211が、静定状態の場合のみ、燃料流量Gft,Gfsを関連付けて燃料側記憶部212に書き込んでおくことにより、過渡状態に遷移した場合であっても、燃料補正係数算出部213は、直近の静定状態において得られた精度の高い燃料流量Gfsが得られた際の燃料流量Gftを用いて、精度の高い燃料補正係数Kを算出することができる。また、上記したように、燃料補正係数算出部213は、静定状態においても精度の高い燃料補正係数Kを算出することができる。したがって、燃料補正係数適用部214が算出する補正燃料流量Gfcorの精度は、静定状態と過渡状態のいずれの状態であっても、燃料流量算出部201が算出する燃料流量Gftよりも高くなる。
 ガスタービン制御装置20では、空気流量についても、2通りの空気流量Gat,Gasを算出するようにしている。空気流量Gat,Gasの関係についても、燃料流量Gft,Gfsの関係と同様のことがいえるため、空気補正係数適用部224が算出する補正空気流量Gacorの精度は、静定状態と過渡状態のいずれの状態であっても、空気流量算出部202が算出する空気流量Gatよりも高くなる。そのため、タービン入口温度算出部206は、静定状態と過渡状態のいずれの状態であっても、一意に定めることが難しいタービン効率を用いることなく、精度の高いタービン入口温度T1Tを算出することが可能になる。
 ヒートバランス演算部203は、ガスタービンヒートバランス計算式を用いていることから、直近のガスタービン10の性能を反映した燃料流量Gfsと、空気流量Gasとを算出していることになる。燃料流量補正部210は、直近のガスタービン10の性能が反映された燃料流量Gfsにより、燃料流量算出部201が算出する燃料流量Gftを補正する。同様に、空気流量補正部220は、直近のガスタービン10の性能が反映された空気流量Gasにより、空気流量算出部202が算出する空気流量Gatを補正する。そのため、タービン入口温度算出部206は、直近のガスタービン10の性能が反映されたタービン入口温度T1Tを算出することができることになる。そうしてみると、補正処理部204は、経年劣化等によってガスタービン10の性能が変化した場合であっても、その性能の変化に追随した補正を燃料流量Gftと、空気流量Gatとに対して行うことを可能にしている。すなわち、補正処理部204による補正により、長期間にわたって精度が高く、かつ経年劣化等に対してロバスト性の高いタービン入口温度T1Tを推定することが可能になる。
(燃料流量と空気流量の各々の平均値より各々の補正係数を算出する手法)
 上記の第1の実施形態のガスタービン制御装置20では、燃料流量補正部210において、燃料側管理部211は、図5のステップS104-1の処理において、直前のステップS100の処理において取り込んだ1組の燃料流量Gftと燃料流量Gfsを燃料補正係数算出部213に出力し、ステップS105-1の処理において、燃料側記憶部212に記憶されている最新の1組の燃料流量Gftと燃料流量Gfsを燃料補正係数算出部213に出力している。空気流量補正部220においてもステップS104-2,S105-2の処理において、同様に1組の空気流量Gatと空気流量Gasを空気補正係数算出部223に出力している。これに対して、例えば、以下に示す図6,図7に示すような処理を行うようにしてもよい。
 図6は、図5に示す記憶部管理処理のサブルーチンに置き換えて行われる記憶部管理処理のサブルーチンのフローチャートである。図7は、図3に示すフローチャートのステップS3以降の処理を示すフローチャートであり、ステップS4-1~S6-1及びステップS4-2~S6-2に替えて行われる処理を示している。図3において、ステップS2-1,S2-2,S2-3までの処理が行われた後、ステップS3の処理として、図6に示す記憶部管理処理のサブルーチンが開始され、図6のステップS102の処理までは、図5と同一の処理が行われる。
 燃料側管理部211は、ステップS102の処理において、取得した状態を示すデータが、静定状態を示していると判定した場合(S102、Yes)、図5のステップS103-1と同一の処理、すなわち、ステップS100の処理で取り込んだ燃料流量Gftと、燃料流量Gfsとを関連付けて燃料側記憶部212に書き込んで記憶させる処理を行う(S103-1)。燃料側管理部211は、燃料側記憶部212に記憶されている燃料流量Gftと燃料流量Gfsの組み合わせの数が、予め定められる所定数以上であるか否かを判定する(S105-1)。燃料側管理部211は、燃料側記憶部212に記憶されている燃料流量Gftと燃料流量Gfsの組み合わせの数が、予め定められる所定数以上であると判定した場合(S105-1、Yes)、燃料側記憶部212に記憶されている全ての燃料流量Gftと燃料流量Gfsの組み合わせを読み出し、読み出した燃料流量Gftと燃料流量Gfsの組み合わせを含む更新指示信号を燃料補正係数算出部213に出力する(S106-1)。一方、燃料側管理部211は、燃料側記憶部212に記憶されている燃料流量Gftと燃料流量Gfsの組み合わせの数が、予め定められる所定数以上ではないと判定した場合(S105-1、Yes)、処理をステップS107に進める。
 空気流量補正部220によって、図6のステップS103-2,S105-2,S106-2の処理が行われる。ここで、ステップS103-2,S105-2,S106-2の処理の各々は、各々のステップ番号の枝番号を「-1」に置き換えたS103-1,S105-1,S106-1の処理において、燃料流量Gftを空気流量Gatに読み替え、燃料流量Gfsを空気流量Gasに読み替え、燃料側管理部211を空気側管理部221に読み替え、燃料側記憶部212を空気側記憶部222に読み替え、燃料補正係数算出部213を空気補正係数算出部223に読み替えた処理である。
 燃料側管理部211と空気側管理部221の各々は、ステップS102の処理において、取得した状態を示すデータが、静定状態を示していないと判定した場合(S102、No)、各々がステップS107の処理を行う。ここで、ステップS107の処理は、燃料側管理部211によって行われる場合、燃料側管理部211が非更新指示信号を燃料補正係数算出部213に出力する処理であり、空気側管理部221によって行われる場合、空気側管理部221が非更新指示信号を空気補正係数算出部223に出力する処理である(S107)。
 ステップS106-1,S106-2,S107の処理が終了すると、記憶部管理処理のサブルーチンが終了して、図7に示すステップS10-1,S10-2以降の処理が開始される。なお、図6において、燃料側管理部211が行う処理と、空気側管理部221が行う処理とは、並列に行われる。
 燃料補正係数算出部213は、燃料側管理部211が出力する指示信号の種類を判定する(S10-1)。燃料補正係数算出部213は、燃料側管理部211が出力する指示信号が、更新指示信号であると判定した場合(S10-1,更新指示信号)、更新指示信号に含まれる複数の燃料流量Gftと燃料流量Gfsの組み合わせを読み出して取り込む(S11-1)。燃料補正係数算出部213は、複数の燃料流量Gftの平均値と、複数の燃料流量Gfsの平均値とを算出する(S12-1)。燃料補正係数算出部213は、算出した燃料流量Gfsの平均値を、算出した燃料流量Gftの平均値で除算して燃料補正係数Kを算出する。燃料補正係数算出部213は、算出した燃料補正係数Kを内部の記憶領域に書き込んで記憶させると共に、算出した燃料補正係数Kを燃料補正係数適用部214に出力する(S13-1)。その後、ステップS17-1の処理として、図3のステップS6-1の処理と同一の処理が行われる(S17-1)。
 一方、燃料補正係数算出部213は、ステップS10-1の処理において、燃料側管理部211が出力する指示信号が、非更新指示信号であると判定した場合(S10-1,非更新指示信号)、内部の記憶領域に前回の燃料補正係数Kが記憶されているか否かを判定する(S14-1)。燃料補正係数算出部213は、内部の記憶領域に前回の燃料補正係数Kが記憶されていると判定した場合(S14-1、Yes)、内部の記憶領域から前回の燃料補正係数Kを読み出し、読み出した燃料補正係数Kを燃料補正係数適用部214に出力する(S15-1)。その後、処理は、ステップS17-1に進められる。燃料補正係数算出部213は、内部の記憶領域に前回の燃料補正係数Kが記憶されていないと判定した場合(S14-1、No)、K=1である燃料補正係数Kを燃料補正係数適用部214に出力する(S16-1)。その後、処理は、ステップS17-1に進められる。なお、燃料補正係数Kの値が「1」である場合、ステップS17-1の処理において、燃料補正係数適用部214は、燃料流量Gftに対して「1」を乗算することになるため、実質的には、補正が行われないことになり、燃料補正係数適用部214は、燃料流量算出部201が出力する燃料流量Gftを補正燃料流量Gfcorとしてタービン入口温度算出部206に出力することになる。
 空気流量補正部220によって、図7のステップS10-2~S17-2の処理が行われる。ここで、ステップS10-2~S17-2の処理の各々は、各々のステップ番号の枝番号を「-1」に置き換えたS10-1~S17-1の処理において、燃料流量Gftを空気流量Gatに読み替え、燃料流量Gfsを空気流量Gasに読み替え、燃料側管理部211を空気側管理部221に読み替え、燃料補正係数算出部213を空気補正係数算出部223に読み替え、燃料補正係数適用部214を空気補正係数適用部224に読み替え、燃料流量算出部201を空気流量算出部202に読み替え、燃料補正係数Kを空気補正係数Kに読み替え、補正燃料流量Gfcorを補正空気流量Gacorに読み替えた処理である。
 なお、図7において、ステップS10-1~S17-1の処理のセットと、ステップS10-2~S17-2の処理のセットとは、並列に行われる。図7に示す「A」のマークは、処理が継続して行われることを示すマークであり、「A」のマークが示すように、その後、図4の処理が行われる。
 上記の図7の処理によって得られる燃料補正係数Kは、複数の燃料流量Gftの平均値と、複数の燃料流量Gfsの平均値とによって算出された値であることから、過去の静定状態における燃料流量Gft,Gfsの関係が反映された値になり、空気補正係数Kも、同様に、過去の静定状態における空気流量Gat,Gasの関係が反映された値になる。そのため、上記した第1の実施形態のガスタービン制御装置20のように1組の燃料流量Gft,Gfsと、1組の空気流量Gat,Gasとを用いる場合よりも、信頼性の面で精度の高い燃料補正係数K及び空気補正係数Kを得ることができる。精度の高い燃料補正係数K及び空気補正係数Kを用いて補正を行うことにより、補正によって得られる補正燃料流量Gfcor及び補正空気流量Gacorの精度を高めることが可能になる。したがって、精度の高い補正燃料流量Gfcor及び補正空気流量Gacorに基づいてタービン入口温度算出部206が算出するタービン入口温度T1Tの精度も向上する。
 図6のステップS105-1,105-2の処理において用いられる所定数として、信頼性を高める程度の組み合わせの個数を示す値が予め定められることになる。図7のステップS16-1,S16-2の処理、すなわち燃料補正係数K=1として出力する処理、及び空気補正係数K=1として出力する処理は、燃料側記憶部212及び空気側記憶部222に記憶されている組み合わせの個数が、所定値未満である間に行われる処理であり、燃料流量Gft,Gfs及び空気流量Gat,Gasの各々の平均値を算出することができない間、燃料流量Gftと空気流量Gatの各々に対して補正を行わないことを意図する処理である。図7のステップS15-1,S15-2の処理、すなわち前回の燃料補正係数Kを補正に用いる処理、及び前回の空気補正係数Kを補正に用いる処理は、状態検出部205が検出した状態が、静定状態でない場合、すなわち過渡状態の場合に行われる処理であり、過渡状態の場合には、燃料補正係数K及び空気補正係数Kの更新を行わないことを意図する処理である。
 なお、図6のステップS106-1,S106-2の処理として、以下のような処理を行うようにしてもよい。燃料側管理部211は、図6のステップS106-1の処理において、上記のように、燃料側記憶部212に記憶されている全ての燃料流量Gft,Gfsの組み合わせを読み出すのではなく、最新の組み合わせを先頭として時系列順において新しい組み合わせが順に含まれるように予め定められる所定数の組み合わせを読み出すようにしてもよい。同様に、空気側管理部221は、図6のステップS106-2の処理において、空気側記憶部222に記憶されている全ての空気流量Gat,Gasの組み合わせを読み出すのではなく、最新の組み合わせを先頭として時系列順において新しい組み合わせが順に含まれるように予め定められる所定数の組み合わせを読み出すようにしてもよい。このようにすることで、移動平均値に基づく燃料補正係数K及び空気補正係数Kを得ることができるので、燃料側記憶部212と空気側記憶部222に記憶されている全ての組み合わせを用いる場合よりも計算量を削減することができ、また、より直近のガスタービン10の性能が反映された精度の高いタービン入口温度T1Tを得ることが可能になる。
 また、燃料側記憶部212、及び空気側記憶部222に、所定数以上の組み合わせが記憶される段階になると、時系列順に記憶される個々の組み合わせに含まれる値の変化が小さくなっていると想定される。このような想定を前提として、燃料側管理部211は、図6のステップS106-1の処理において、最新の1組の燃料流量Gft,Gfsの組み合わせを読み出し、図7においてステップS12-1の処理をスキップして、ステップS13-1の処理において、燃料補正係数算出部213が、最新の燃料流量Gfsを、最新の燃料流量Gftで除算して燃料補正係数K(=Gfs/Gft)を算出するようにしてもよい。同様に、空気側管理部221は、図6のステップS106-2の処理において、最新の1組の空気流量Gat,Gasの組み合わせを読み出し、図7においてステップS12-2の処理をスキップして、ステップS13-2の処理において、空気補正係数算出部223が、最新の空気流量Gasを、最新の空気流量Gatで除算して空気補正係数K(=Gas/Gat)を算出するようにしてもよい。
(第1の実施形態におけるその他の構成例)
 上記の第1の実施形態では、補正処理部204は、燃料流量補正部210と、空気流量補正部220とを備えている。これに対して、補正処理部204は、燃料流量補正部210のみを備えるようにしてもよい。この場合、ヒートバランス演算部203は、燃料流量Gfsのみを算出して燃料側管理部211に出力し、空気流量算出部202が算出する空気流量Gatが、そのままタービン入口温度算出部206に与えられることになる。また、補正処理部204は、空気流量補正部220のみを備えるようにしてもよい。この場合、ヒートバランス演算部203は、空気流量Gasのみを算出して空気側管理部221に出力し、燃料流量算出部201が算出する燃料流量Gftが、そのままタービン入口温度算出部206に与えられることになる。
<第2の実施形態>
 第1の実施形態では、ヒートバランス演算部203が算出する燃料流量Gfsと、空気流量Gasとを用いて、燃料流量算出部201が算出する燃料流量Gftと、空気流量算出部202が算出する空気流量Gatとを補正するようにしていた。ところで、燃料補正係数K及び空気補正係数Kは、ヒートバランス演算部203において参照している計測データのみに依存するわけではなく、ガスタービン発電プラント100における様々な状態量に依存して変化するものと考えられる。第2の実施形態では、以下に説明するように、燃料補正係数K及び空気補正係数Kを、このような状態量の変化に応じて可変にする構成を備える。
(第2の実施形態のガスタービン発電プラントの構成例)
 図8は、第2の実施形態のガスタービン発電プラント100aの全体構成図である。第1の実施形態に係るガスタービン発電プラント100と、第2の実施形態に係るガスタービン発電プラント100aとの違いは、第2の実施形態に係るガスタービン発電プラント100aは、ガスタービン制御装置20に替えてガスタービン制御装置20aを備えており、更に、燃焼器車室圧力センサ25mを備える点である。燃焼器車室圧力センサ25mは、点線の矢印で示すように通信回線などの制御回線によりガスタービン制御装置20aに接続されており、検出周期ごとに燃焼器車室16内の圧力である燃焼器車室圧力Poutを計測により検出し、検出した燃焼器車室圧力Poutを、制御回線を通じてガスタービン制御装置20aに送信する。
(第2の実施形態のガスタービン制御装置の構成例)
 ガスタービン制御装置20aは、図9に示すように、燃料流量算出部201、空気流量算出部202、ヒートバランス演算部203、補正処理部204a、状態検出部205、タービン入口温度算出部206、燃料配分比算出部207、及び弁開度算出部208を備える。補正処理部204aは、燃料流量補正部210aと、空気流量補正部220aとを備える。燃料流量補正部210aは、燃料側管理部211a、燃料側記憶部212a、燃料補正係数算出部213a、燃料補正係数適用部214、及び燃料側回帰分析部215を備える。
 燃料流量補正部210aにおいて、燃料側管理部211aは、状態検出部205が検出する状態にしたがって、燃料流量算出部201が算出する燃料流量Gftと、ヒートバランス演算部203が算出する燃料流量Gfsと、燃焼器車室温度センサ25jが検出する燃焼器車室温度TCSと、燃焼器車室圧力センサ25mが検出する燃焼器車室圧力Poutとを関連付けて燃料側記憶部212aに書き込んで記憶させる。燃料側管理部211aは、予め定められる所定数の燃料流量Gft、燃料流量Gfs、燃焼器車室温度TCS、及び燃焼器車室圧力Poutの組み合わせを燃料側回帰分析部215に出力する。
 燃料側記憶部212aは、燃料流量Gft、燃料流量Gfs、燃焼器車室温度TCS、及び燃焼器車室圧力Poutの組み合わせを時系列順に記憶する。燃料側回帰分析部215は、所定数の燃料流量Gft、燃料流量Gfs、燃焼器車室温度TCS、及び燃焼器車室圧力Poutの組み合わせに基づいて、説明変数を燃焼器車室温度TCS及び燃焼器車室圧力Poutとし、目的変数を燃料補正係数K(=燃料流量Gfs/燃料流量Gft)とする所定の回帰分析を行い、当該所定の回帰分析に対応する回帰式の係数を算出する。燃料補正係数算出部213aは、燃料側回帰分析部215が算出する回帰式の係数を適用した回帰式に、燃焼器車室温度TCSと、燃焼器車室圧力Poutとを代入して燃料補正係数Kを算出する。
 空気流量補正部220aは、空気側管理部221a、空気側記憶部222a、空気補正係数算出部223a、空気補正係数適用部224、及び空気側回帰分析部225を備える。空気側管理部221aは、状態検出部205が検出する状態にしたがって、空気流量算出部202が算出する空気流量Gatと、ヒートバランス演算部203が算出する空気流量Gasと、圧縮機入口温度センサ25gが検出する圧縮機入口温度T1Cと、燃焼器車室圧力センサ25mが検出する燃焼器車室圧力Poutとを関連付けて空気側記憶部222aに書き込んで記憶させる。空気側管理部221aは、予め定められる所定数の空気流量Gat、空気流量Gas、圧縮機入口温度T1C、及び燃焼器車室圧力Poutの組み合わせを空気側回帰分析部225に出力する。
 空気側記憶部222aは、空気流量Gat、空気流量Gas、圧縮機入口温度T1C、及び燃焼器車室圧力Poutの組み合わせを時系列順に記憶する。空気側回帰分析部225は、所定数の空気流量Gat、空気流量Gas、圧縮機入口温度T1C、及び燃焼器車室圧力Poutの組み合わせに基づいて、説明変数を圧縮機入口温度T1C及び燃焼器車室圧力Poutとし、目的変数を空気補正係数K(=空気流量Gas/空気流量Gat)とする所定の回帰分析を行い、当該所定の回帰分析に対応する回帰式の係数を算出する。空気補正係数算出部223aは、空気側回帰分析部225が算出する回帰式の係数を適用した回帰式に、圧縮機入口温度T1Cと、燃焼器車室圧力Poutとを代入して空気補正係数Kを算出する。
 ここで、燃料側回帰分析部215及び空気側回帰分析部225が行う所定の回帰分析とは、例えば、線形重回帰分析である。また、上記の所定数として、例えば、所定の回帰分析において精度の良い係数を算出するのに必要な組み合わせの個数を示す値が予め定められる。
(第2の実施形態のガスタービン制御装置の動作例)
 図10から図12を参照しつつガスタービン制御装置20aによる処理について説明する。図10に示す処理と、図10に示す処理の中で記憶部管理処理のサブルーチンとして実行される図11に示す処理は、燃料側管理部211a、燃料側回帰分析部215、空気側管理部221a、空気側回帰分析部225によって行われる処理であり、以下、「回帰分析処理」という。図12に示す処理は、燃料補正係数算出部213a、燃料補正係数適用部214、空気補正係数算出部223a、空気補正係数適用部224によって行われる処理であり、以下、「補正処理」という。
(回帰分析処理について)
 図10において、ステップSa1-1,Sa2-1は、図3のステップS1-1,S2-1と同一の処理が行われる。ステップSa1-2,Sa2-2は、図3のステップS1-2,S2-2と同一の処理が行われる。ステップSa1-3,Sa2-3は、図3のステップS1-3,S2-3と同一の処理が行われる。なお、ステップSa1-1,Sa2-1の処理のセットと、ステップSa1-2,Sa2-2の処理のセットと、ステップSa1-3,Sa2-3の処理のセットとは、並列に行われる。ステップSa2-1,Sa2-2,Sa2-3の処理の後、ステップSa3の処理として、図11に示す記憶部管理処理のサブルーチンが行われる。
 燃料側管理部211aは、燃焼器車室温度センサ25jが送信する燃焼器車室温度TCSと、燃焼器車室圧力センサ25mが送信する燃焼器車室圧力Poutとを受信して取り込む。燃料側管理部211aは、燃料流量算出部201が出力する燃料流量Gftと、ヒートバランス演算部203が出力する燃料流量Gfsとを取り込む。空気側管理部221aは、圧縮機入口温度センサ25gが送信する圧縮機入口温度T1Cと、燃焼器車室圧力センサ25mが送信する燃焼器車室圧力Poutとを受信して取り込む。空気流量算出部202が出力する空気流量Gatと、ヒートバランス演算部203が出力する空気流量Gasとを取り込む(Sa100)。
 燃料側管理部211a及び空気側管理部221aの各々は、各々が行うステップSa100の処理を終了した時点で状態検出部205が検出するガスタービン発電プラント100aの状態を示すデータを状態検出部205から取得する(Sa101)。燃料側管理部211a及び空気側管理部221aは、取得した状態を示すデータが、静定状態を示しているか否かを判定する(Sa102)。
 燃料側管理部211aは、取得した状態を示すデータが、静定状態を示していると判定した場合(Sa102、Yes)、ステップSa100の処理で取り込んだ燃料流量Gft、燃料流量Gfs、燃焼器車室温度TCS、及び燃焼器車室圧力Poutを関連付けて燃料側記憶部212aに書き込んで記憶させる。燃料側管理部211aは、燃料側記憶部212aに順次書き込む燃料流量Gft、燃料流量Gfs、燃焼器車室温度TCS、及び燃焼器車室圧力Poutの組み合わせが燃料側記憶部212aにおいて時系列順に記憶されるように、例えば、新たに書き込む組み合わせが、時系列順の先頭になるように燃料側記憶部212aに書き込む(Sa103-1)。
 燃料側管理部211aは、燃料側記憶部212aに記憶されている組み合わせの数が、所定数以上であるか否かを判定する(Sa104-1)。燃料側管理部211aが、燃料側記憶部212aに記憶されている組み合わせの数が、所定数以上でないと判定したとする(Sa104-1、No)。この場合、燃料側回帰分析部215が、所定の回帰分析を行うのに十分なデータが存在せず、図10のステップSa4-1の処理に進められないことから、処理を終了する。
 一方、燃料側管理部211aは、燃料側記憶部212aに記憶されている組み合わせの数が、所定数以上であると判定した場合(Sa104-1、Yes)、最新の組み合わせを先頭として時系列順に所定数の燃料流量Gft、燃料流量Gfs、燃焼器車室温度TCS、及び燃焼器車室圧力Poutの組み合わせを読み出し、読み出した所定数の組み合わせを燃料側回帰分析部215に出力して(Sa105-1)、記憶部管理処理のサブルーチンの処理を終了する。
 空気側管理部221が、ステップSa102の処理において、取得した状態を示すデータが、静定状態を示していると判定した場合(Sa102、Yes)、ステップSa103-2,Sa104-2,Sa105-2の処理が行われる。ここで、ステップSa103-2,Sa104-2,Sa105-2の処理の各々は、各々のステップ番号の枝番号を「-1」に置き換えたステップSa103-1,Sa104-1,Sa105-1の処理において、燃料流量Gftを空気流量Gatに読み替え、燃料流量Gfsを空気流量Gasに読み替え、燃焼器車室温度TCSを圧縮機入口温度T1Cに読み替え、燃料側管理部211aを空気側管理部221aに読み替え、燃料側記憶部212aを空気側記憶部222aに読み替え、燃料側回帰分析部215を空気側回帰分析部225に読み替えた処理である。
 一方、ステップSa102の処理において、燃料側管理部211a及び空気側管理部221aが、取得した状態を示すデータが、静定状態を示していないと判定したとする(Sa102、No)。この場合、燃料側管理部211a及び空気側管理部221aの各々は、ステップSa100の処理で取り込んだデータが、過渡状態において得られたデータであるため、各々に対応する燃料側記憶部212a及び空気側記憶部222aに記録する必要がなく、また、各々に対応する燃料側記憶部212a及び空気側記憶部222aが記憶するデータの更新がないため、回帰式の係数の更新を行う必要もないことから、処理を終了する。
 ステップSa105-1,Sa105-2の処理が終了すると、記憶部管理処理のサブルーチンが終了して、図10の処理に戻る。なお、図11において、燃料側管理部211aが行う処理と、空気側管理部221aが行う処理とは、並列に行われる。
 図10に戻り、燃料側回帰分析部215は、燃料側管理部211aが出力する所定数の燃料流量Gft、燃料流量Gfs、燃焼器車室温度TCS、及び燃焼器車室圧力Poutの組み合わせを取り込む(Sa4-1)。燃料側回帰分析部215は、取り込んだ所定数の燃料流量Gft、燃料流量Gfs、燃焼器車室温度TCS、及び燃焼器車室圧力Poutの組み合わせに基づいて、所定の回帰分析を行い、当該所定の回帰分析に対応する回帰式の係数を算出する。燃料側回帰分析部215は、算出した係数を燃料補正係数算出部213aに出力して(Sa5-1)、処理を終了する。
 同様に、空気側回帰分析部225は、ステップSa4-2,Sa5-2の処理を行う。ここで、ステップSa4-2,Sa5-2の処理の各々は、各々のステップ番号の枝番号を「-1」に置き換えたステップSa4-1,Sa5-1の処理において、燃料流量Gftを空気流量Gatに読み替え、燃料流量Gfsを空気流量Gasに読み替え、燃焼器車室温度TCSを圧縮機入口温度T1Cに読み替え、燃料側管理部211aを空気側管理部221aに読み替え、燃料側回帰分析部215を空気側回帰分析部225に読み替え、燃料補正係数算出部213aを空気補正係数算出部223aに読み替えた処理である。
 なお、図10において、ステップSa4-1,Sa5-1の処理のセットと、ステップSa4-2,Sa5-2の処理のセットとは、並列に行われる。上記の図10に示す処理が、1回の検出周期の処理として行われ、周期ごとに図10に示す処理が行われることになる。
(補正処理について)
 図12に示すように、燃料補正係数算出部213aは、燃焼器車室温度センサ25jが送信する燃焼器車室温度TCSと、燃焼器車室圧力センサ25mが送信する燃焼器車室圧力Poutとを受信して取り込む(Sa10-1)。燃料補正係数算出部213aは、燃料側回帰分析部215から回帰式の係数を受けているか否かを判定する(Sa11-1)。燃料補正係数算出部213aは、回帰式の係数を受けていると判定した場合(Sa11-1、Yes)、受けた係数を取り込んで内部の記憶領域に書き込んで記憶させる。燃料補正係数算出部213aは、取り込んだ係数を適用した回帰式に、燃焼器車室温度TCSと、燃焼器車室圧力Poutとを代入して燃料補正係数Kを算出する(Sa12-1)。
 一方、燃料補正係数算出部213aは、ステップSa11-1の処理において、回帰式の係数を受けていないと判定した場合(Sa11-1、No)、内部の記憶領域に前回の係数が記憶されているか否かを判定する(Sa13-1)。燃料補正係数算出部213は、内部の記憶領域に前回の係数が記憶されていると判定した場合(Sa13-1、Yes)、内部の記憶領域から前回の係数を読み出し、読み出した係数を適用した回帰式に、燃焼器車室温度TCSと、燃焼器車室圧力Poutとを代入して燃料補正係数Kを算出する(Sa14-1)。燃料補正係数算出部213は、内部の記憶領域に前回の係数が記憶されていないと判定した場合(Sa13-1、No)、K=1である燃料補正係数Kを燃料補正係数適用部214に出力する(Sa15-1)。ステップSa12-1,Sa14-1,Sa15-1の処理の後、ステップSa16-1の処理として、図3のステップS6-1の処理と同一の処理が行われる(Sa16-1)。
 空気補正係数算出部223aは、圧縮機入口温度センサ25gが送信する圧縮機入口温度T1Cと、燃焼器車室圧力センサ25mが送信する燃焼器車室圧力Poutとを受信して取り込む(Sa10-2)。その後、空気補正係数算出部223a及び空気補正係数適用部224によってステップSa11-2~Sa16-2の処理が行われる。ここで、ステップSa11-2~Sa16-2の処理の各々は、各々のステップ番号の枝番号を「-1」に置き換えたステップSa11-1~Sa16-1の処理において、燃料流量Gftを空気流量Gatに読み替え、燃料流量Gfsを空気流量Gasに読み替え、燃焼器車室温度TCSを圧縮機入口温度T1Cに読み替え、燃料補正係数算出部213aを空気補正係数算出部223aに読み替え、燃料補正係数適用部214を空気補正係数適用部224に読み替え、燃料補正係数Kを空気補正係数Kに読み替え、燃料流量算出部201を空気流量算出部202に読み替え、補正燃料流量Gfcorを補正空気流量Gacorに読み替えた処理である。
 なお、ステップSa10-1~Sa16-1の処理のセットと、Sa10-2~Sa16-2の処理のセットとは、並列に行われる。図12に示す「A」のマークは、処理が継続して行われることを示すマークであり、「A」のマークが示すように、その後、第1の実施形態の図4の処理と同一の処理が行われる。上記の図12及び図4に示す一連の処理が、1回の検出周期の処理として行われ、周期ごとに図12及び図4に示す一連の処理が行われることになる。
(第2の実施形態の構成における作用・効果)
 上記したように、第2の実施形態の燃料流量補正部210aは、状態検出部205が検出する状態が、静定状態である場合、燃料流量Gft、燃料流量Gfs、燃焼器車室温度TCS、及び燃焼器車室圧力Poutの組み合わせを燃料側記憶部212aに記録し、燃料側記憶部212aに記録されている所定数の組み合わせを用いて燃料補正係数Kを更新する。一方、燃料流量補正部210aは、状態検出部205が検出する状態が、静定状態でない場合、燃料側記憶部212aへの記録を行わず、燃料補正係数Kの更新も行わない。同様に、空気流量補正部220aは、状態検出部205が検出する状態が、静定状態である場合、空気流量Gat、空気流量Gas、圧縮機入口温度T1C、及び燃焼器車室圧力Poutの組み合わせを空気側記憶部222aに記録し、空気側記憶部222aに記録されている所定数の組み合わせを用いて空気補正係数Kを更新する。一方、空気流量補正部220aは、状態検出部205が検出する状態が、静定状態でない場合、空気側記憶部222aへの記録を行わず、空気補正係数Kの更新も行わない。そのため、第2の実施形態の構成は、第1の実施形態の構成と同様に、静定状態と過渡状態の両方の状態において、タービン入口温度算出部206に与える燃料流量と空気流量の精度が低くならないようにして、タービン入口温度算出部206が、一意に定めることが難しいタービン効率を用いることなく、長期間にわたってタービン入口温度T1Tの精度を維持することを可能にしている。
 さらに、第2の実施形態では、燃料流量補正部210aにおいて、燃料流量Gft、燃料流量Gfs、燃焼器車室温度TCS、及び燃焼器車室圧力Poutの所定数の組み合わせを用いて、説明変数を燃焼器車室温度TCS及び燃焼器車室圧力Poutとし、目的変数を燃料補正係数Kとする所定の回帰分析を行っている。そのため、燃料補正係数Kを、燃焼器車室温度TCSや燃焼器車室圧力Poutといったガスタービン発電プラント100aの状態を示す状態量に応じて可変にすることができる。同様に、空気流量補正部220aにおいて、空気流量Gat、空気流量Gas、圧縮機入口温度T1C、及び燃焼器車室圧力Poutの所定数の組み合わせを用いて、説明変数を圧縮機入口温度T1C及び燃焼器車室圧力Poutとし、目的変数を空気補正係数Kとする所定の回帰分析を行っている。そのため、空気補正係数Kを、圧縮機入口温度T1Cや燃焼器車室圧力Poutといったガスタービン発電プラント100aの状態を示す状態量に応じて可変にすることができる。それにより、ガスタービン発電プラント100aの状態に応じた信頼性の面で精度の高い燃料補正係数K及び空気補正係数Kを得ることができる。精度の高い燃料補正係数K及び空気補正係数Kを用いて補正を行うことにより、補正によって得られる補正燃料流量Gfcor及び補正空気流量Gacorの精度を高めることが可能になる。したがって、精度の高い補正燃料流量Gfcor及び補正空気流量Gacorに基づいてタービン入口温度算出部206が算出するタービン入口温度T1Tの精度も向上する。
 図12のステップSa15-1,Sa15-2の処理、すなわち燃料補正係数K=1として出力する処理、及び空気補正係数K=1として出力する処理は、燃料側記憶部212a及び空気側記憶部222aに記憶されている組み合わせの個数が、所定値未満である間に行われる処理であり、回帰式の係数を算出することができない間、燃料流量Gftと空気流量Gatの各々に対して補正を行わないことを意図する処理である。また、ステップSa14-1,Sa14-2の処理、すなわち前回の係数を回帰式に適用する用いる処理は、状態検出部205が検出した状態が、静定状態でない場合、すなわち過渡状態の場合に行われる処理であり、過渡状態の場合には、回帰式の係数の更新を行わないことを意図する処理である。
(第2の実施形態におけるその他の構成例)
 上記の第2の実施形態では、所定の回帰分析として、線形重回帰分析を適用しているが、所定の回帰分析として、線形重回帰分析以外の任意の回帰分析の手法を適用するようにしてもよい。例えば、SVR(Support Vector Regression)やランダムフォレストなどの機械学習による回帰分析の手法を適用するようにしてもよい。
 上記の第2の実施形態では、燃料側回帰分析部215は、説明変数を燃焼器車室温度TCS及び燃焼器車室圧力Poutとして所定の回帰分析を行うようにしている。また、空気側回帰分析部225は、説明変数を圧縮機入口温度T1C及び燃焼器車室圧力Poutとして所定の回帰分析を行うようにしている。ただし、これらの説明変数は、一例として示したものであり、燃料側回帰分析部215は、燃焼器車室温度TCS及び燃焼器車室圧力Poutのいずれか一方を説明変数としてもよいし、空気側回帰分析部225は、圧縮機入口温度T1C及び燃焼器車室圧力Poutのいずれか一方を説明変数としてもよいし、ガスタービン発電プラント100aに備えられている任意のセンサ25a~25mが計測する計測データのいずれか1つ、または、複数を組み合わせたものを説明変数としてもよい。また、ガスタービン制御装置20aがガスタービン10の制御のために出力する任意の指令値、例えば、上記した燃料制御信号指令値(CSO)などを説明変数としてもよいし、計測データと、指令値とを組み合わせたものを説明変数としてもよい。
 上記の第2の実施形態では、図11のステップSa105-1の処理において、燃料側管理部211aは、燃料側記憶部212aから所定数の燃料流量Gft、燃料流量Gfs、燃焼器車室温度TCS、及び燃焼器車室圧力Poutの組み合わせを読み出して燃料側回帰分析部215に出力するようにしている。これに対して、燃料側管理部211aは、ステップSa105-1の処理において、燃料側記憶部212aに記憶されている全ての組み合わせを読み出して燃料側回帰分析部215に出力するようにしてもよい。同様に、図11のステップSa105-2の処理において、空気側管理部221aは、空気側記憶部222aから所定数の空気流量Gat、空気流量Gas、圧縮機入口温度T1C、及び燃焼器車室圧力Poutの組み合わせを読み出して空気側回帰分析部225に出力するようにしている。これに対して、空気側管理部221aは、ステップSa105-2の処理において、空気側記憶部222aに記憶されている全ての組み合わせを読み出して空気側回帰分析部225に出力するようにしてもよい。
 上記の第2の実施形態では、補正処理部204aは、燃料流量補正部210aと、空気流量補正部220aとを備えている。これに対して、補正処理部204aは、燃料流量補正部210aのみを備えるようにしてもよい。この場合、ヒートバランス演算部203は、燃料流量Gfsのみを算出して出力し、空気流量算出部202が算出する空気流量Gatが、タービン入口温度算出部206に与えられることになる。また、補正処理部204aは、空気流量補正部220aのみを備えるようにしてもよい。この場合、ヒートバランス演算部203は、空気流量Gasのみを算出して出力し、燃料流量算出部201が算出する燃料流量Gftが、タービン入口温度算出部206に与えられることになる。また、補正処理部204aが、燃料流量補正部210aと、第1の実施形態の空気流量補正部220とを備えるようにしてもよいし、空気流量補正部220aと、第1の実施形態の燃料流量補正部210とを備えるようにしてもよい。
<第3の実施形態>
 第1及び第2の実施形態では、燃料流量算出部201が算出する燃料流量Gft及びヒートバランス演算部203が算出する燃料流量Gfsは、3つの燃料供給系統40-1,40-2,40-3の各々によって供給される燃料流量の合計値になっている。これに対して、第1及び第2の実施形態のガスタービン発電プラント100,100aは、3つの燃料供給系統40-1,40-2,40-3を備えていることから、燃料供給系統40-1,40-2,40-3の各々に対する燃料流量Gftと、燃料流量Gfsとを算出して、個々の燃料流量Gftに対して個別に補正を行う方が、より精度の高いタービン入口温度T1Tを得ることができると考えられる。第3の実施形態のガスタービン制御装置20bは、以下に説明するように、このような個別の補正を行う構成を備える。以下、説明の便宜上、第1の実施形態のガスタービン発電プラント100において、ガスタービン制御装置20を、第3の実施形態のガスタービン制御装置20bに置き換えた構成をガスタービン発電プラント100bという。
(第3の実施形態のガスタービン制御装置の構成例)
 図13は、第3の実施形態のガスタービン制御装置20bの構成を示すブロック図である。ガスタービン制御装置20bは、燃料流量算出部201b、空気流量算出部202、ヒートバランス演算部203b、補正処理部204b、状態検出部205、タービン入口温度算出部206、燃料配分比算出部207、弁開度算出部208、及び燃料配分量算出部209を備える。燃料流量算出部201bは、以下に示す点以外については、第1の実施形態の燃料流量算出部201と同一の構成を備える。第1の実施形態の燃料流量算出部201は、燃料流量Gft(1),Gft(2),Gft(3)を算出し、算出した燃料流量Gft(1),Gft(2),Gft(3)を合計して燃料流量Gftを算出している。これに対して、第3の実施形態の燃料流量算出部201bは、合計することなく、算出した燃料流量Gft(1),Gft(2),Gft(3)を出力する。ヒートバランス演算部203bは、以下に示す点以外については、第1の実施形態のヒートバランス演算部203と同一の構成を備える。第1の実施形態のヒートバランス演算部203は、燃料流量Gfsと空気流量Gasを算出して出力している。これに対して、第3の実施形態のヒートバランス演算部203bは、燃料流量Gfsのみを算出して出力する。
 燃料配分量算出部209は、ヒートバランス演算部203bが算出する燃料流量Gfsが、燃料配分比算出部207が算出する燃料配分比D,D,Dの各々の比率になるように、3つの燃料流量Gfs(1),Gfs(2),Gfs(3)を算出する。燃料配分比Dは、燃料供給系統40-1に対応しているため、燃料配分比Dに対応して算出する燃料流量Gfs(1)は、燃料供給系統40-1に対応することになる。同様に、燃料供給系統40-2と、燃料配分比Dと、燃料流量Gfs(2)とが対応し、燃料供給系統40-3と、燃料配分比Dと、燃料流量Gfs(3)とが対応することになる。
 補正処理部204bは、燃料流量補正部210bを備える。燃料流量補正部210bは、燃料側管理部211b、燃料側記憶部212b、燃料補正係数算出部213-1,213-2,213-3、燃料補正係数適用部214-1,214-2,214-3、及び加算器216を備える。燃料側記憶部212bは、自らに予め設けられる記憶領域である燃料側記憶領域212b-1,212b-2,212b-3を備える。
 燃料側管理部211bは、燃料供給系統40-1に対応する燃料流量Gft(1)と、燃料流量Gfs(1)とを関連付ける。燃料側管理部211bは、燃料供給系統40-2に対応する燃料流量Gft(2)と、燃料流量Gfs(2)とを関連付ける。燃料側管理部211bは、燃料供給系統40-3に対応する燃料流量Gft(3)と、燃料流量Gfs(3)とを関連付ける。燃料側管理部211bは、状態検出部205が検出する状態にしたがって、関連付けた燃料流量Gft(1),Gfs(1)と、関連付けた燃料流量Gft(2),Gfs(2)と、関連付けた燃料流量Gft(3),Gfs(3)とを、それぞれ燃料側記憶領域212b-1,212b-2,212b-3に書き込んで記憶させる。燃料側管理部211bは、最新の燃料流量Gft(1),Gfs(1)の組み合わせと、最新の燃料流量Gft(2),Gfs(2)の組み合わせと、最新の燃料流量Gft(3),Gfs(3)の組み合わせとを、それぞれ燃料補正係数算出部213-1,213-2,213-3に出力する。
 燃料側記憶部212bにおいて、燃料側記憶領域212b-1は、燃料流量Gft(1),Gfs(1)の組み合わせを時系列順に記憶する。燃料側記憶領域212b-2は、燃料流量Gft(2),Gfs(2)の組み合わせを時系列順に記憶する。燃料側記憶領域212b-3は、燃料流量Gft(3),Gfs(3)の組み合わせを時系列順に記憶する。燃料補正係数算出部213-1,213-2,213-3の各々は、第1の実施形態の燃料補正係数算出部213と同一の構成である。燃料補正係数適用部214-1,214-2,214-3の各々は、第1の実施形態の燃料補正係数適用部214と同一の構成である。加算器216は、燃料補正係数適用部214-1,214-2,214-3の各々が算出する補正燃料流量Gfcor(1),Gfcor(2),Gfcor(3)を合計して補正燃料流量Gfcorを算出する。
(第3の実施形態のガスタービン制御装置の動作例)
 図14,図15を参照しつつガスタービン制御装置20bによる処理について説明する。図14において、ステップSb1-1の処理は、図3のステップS1-1と同一の処理が燃料流量算出部201bによって行われる。ステップSb1-2の処理は、図3のステップS1-2と同一の処理がヒートバランス演算部203bによって行われる。燃料配分量算出部209は、前回の検出周期において燃料配分比算出部207が算出して出力した燃料配分比D,D,Dを取り込む(ステップSb1-3)。
 燃料流量算出部201bは、ステップSb1-1の処理において取り込んだデータを、式(1),(2),(3)に代入して、燃料流量Gft(1),Gft(2),Gft(3)を算出する。燃料流量算出部201bは、算出した燃料流量Gft(1),Gft(2),Gft(3)を、燃料側管理部211bに出力する。燃料流量算出部201bは、算出した燃料流量Gft(1)を、燃料補正係数適用部214-1に出力し、燃料流量Gft(2)を、燃料補正係数適用部214-2に出力し、燃料流量Gft(3)を、燃料補正係数適用部214-3に出力する(Sb2-1)。
 ヒートバランス演算部203bは、ステップSb1-2の処理において取り込んだデータと、ガスタービンヒートバランス計算式とに基づいて、燃料流量Gfsを算出する。ヒートバランス演算部203bは、算出した燃料流量Gfsを燃料配分量算出部209に出力する(Sb2-2)。
 燃料配分量算出部209は、ヒートバランス演算部203bが算出する燃料流量Gfsが、ステップSb1-3の処理において取り込んだ燃料配分比D,D,Dの各々の比率になるように、3つの燃料流量Gfs(1),Gfs(2),Gfs(3)を算出する。例えば、燃料配分量算出部209は、Gfs(1)=Gfs×D/(D+D+D)、Gfs(2)=Gfs×D/(D+D+D)、Gfs(3)=Gfs×D/(D+D+D)として算出する。燃料配分量算出部209は、算出した燃料流量Gfs(1),Gfs(2),Gfs(3)を燃料側管理部211bに出力する(Sb2-3)。
 なお、ステップSb1-1,Sb1-2の処理のセットと、ステップSb1-2,Sb2-2の処理のセットと、ステップSb1-3の処理とは、並列に行われる。
 補正処理部204bの燃料流量補正部210bは、燃料流量Gft(1),Gft(2),Gft(3)と、燃料流量Gfs(1),Gfs(2),Gfs(3)とを受けると、図15に示す記憶部管理処理のサブルーチンを開始する(Sb3)。
 燃料流量補正部210bにおいて、燃料側管理部211bは、燃料流量算出部201bが出力する燃料流量Gft(1),Gft(2),Gft(3)と、燃料配分量算出部209が出力する燃料流量Gfs(1),Gfs(2),Gfs(3)とを取り込む。燃料流量補正部210bは、取り込んだ燃料流量Gft(1)と、燃料流量Gfs(1)とを関連付け、取り込んだ燃料流量Gft(2)と、燃料流量Gfs(2)とを関連付け、取り込んだ燃料流量Gft(3)と、燃料流量Gfs(3)とを関連付ける(Sb100)。燃料側管理部211bは、ステップSb100の処理を終了した時点で状態検出部205が検出するガスタービン発電プラント100bの状態を示すデータを状態検出部205から取得する(Sb101)。
 燃料側管理部211bは、取得した状態を示すデータが、静定状態を示しているか否かを判定する(Sb102)。燃料側管理部211bは、取得した状態を示すデータが、静定状態を示していると判定した場合(Sb102、Yes)、ステップSb103-1,Sb103-2,Sb103-3の処理を行い、その後、ステップSb104-1,Sb104-2,Sb104-3の処理を行う。
 すなわち、燃料側管理部211bは、関連付けた燃料流量Gft(1)と燃料流量Gfs(1)の組み合わせを燃料側記憶領域212b-1に書き込んで記憶させる。燃料側管理部211bは、燃料側記憶領域212b-1に順次書き込む燃料流量Gft(1),Gfs(1)の組み合わせが燃料側記憶領域212b-1において時系列順に記憶されるように、例えば、新たに書き込む組み合わせが、時系列順の先頭になるように燃料側記憶領域212b-1に書き込む(Sb103-1)。燃料側管理部211bは、燃料側記憶領域212b-1に書き込んだ燃料流量Gft(1)と燃料流量Gfs(1)の組み合わせを燃料補正係数算出部213-1に出力する(Sb104-1)。
 燃料側管理部211bは、ステップSb103-2,Sb104-2の処理として、ステップSb103-1,Sb104-1の処理において、燃料流量Gft(1)を燃料流量Gft(2)に読み替え、燃料流量Gfs(1)を燃料流量Gfs(2)に読み替え、燃料側記憶領域212b-1を燃料側記憶領域212b-2に読み替え、燃料補正係数算出部213-1を燃料補正係数算出部213-2に読み替えた処理を行う。同様に、燃料側管理部211bは、ステップSb103-3,Sb104-3の処理として、ステップSb103-1,Sb104-1の処理において、燃料流量Gft(1)を燃料流量Gft(3)に読み替え、燃料流量Gfs(1)を燃料流量Gfs(3)に読み替え、燃料側記憶領域212b-1を燃料側記憶領域212b-3に読み替え、燃料補正係数算出部213-1を燃料補正係数算出部213-3に読み替えた処理を行う。
 燃料側管理部211bは、ステップSb102の処理において、取得した状態を示すデータが、静定状態を示していないと判定した場合(Sb102、No)ステップSb100の処理で取り込んだ燃料流量Gft(1),Gft(2),Gft(3)と、燃料流量Gfs(1),Gfs(2),Gfs(3)とを破棄し、燃料側記憶領域212b-1,212b-2,212b-3の各々において記憶されている組み合わせのうち最新の組み合わせを読み出す。上記したように燃料側記憶領域212b-1,212b-2,212b-3が最新の組み合わせが先頭になるように時系列順に記憶している場合、燃料側管理部211bは、燃料側記憶領域212b-1,212b-2,212b-3の各々の先頭に記憶されている組み合わせを最新の組み合わせとして読み出す。燃料側管理部211bは、燃料側記憶領域212b-1から読み出した最新の燃料流量Gft(1),Gfs(1)の組み合わせを燃料補正係数算出部213-1に出力し、燃料側記憶領域212b-2から読み出した最新の燃料流量Gft(2),Gfs(2)の組み合わせを燃料補正係数算出部213-2に出力し、燃料側記憶領域212b-3から読み出した最新の燃料流量Gft(3),Gfs(3)の組み合わせを燃料補正係数算出部213-3に出力する(Sb105)。
 なお、図15の処理において、燃料側管理部211bは、ステップSb103-1,Sb104-1の処理のセットと、ステップSb103-2,Sb104-2の処理のセットと、ステップSb103-3,Sb104-3の処理のセットとをいずれの順番で行うようにしてもよいし、並列に行うようにしてもよい。また、燃料側管理部211bは、ステップSb105の処理において、燃料側記憶領域212b-1,212b-2,212b-3の各々からの最新の組み合わせを読み出して燃料補正係数算出部213-1,213-2,213-3の各々に出力する処理を、いずれの順番で行ってもよいし、並列に行うようにしてもよい。
 図14に戻り、燃料補正係数算出部213-1は、燃料側管理部211bが出力する燃料流量Gft(1),Gfs(1)の組み合わせを取り込む(Sb4-1)。燃料補正係数算出部213-1は、燃料流量Gfs(1)を燃料流量Gft(1)で除算して燃料補正係数K(1)を算出する。燃料補正係数算出部213-1は、算出した燃料補正係数K(1)を燃料補正係数適用部214-1に出力する(Sb5-1)。燃料補正係数適用部214-1は、燃料流量算出部201bが出力する燃料流量Gft(1)と、燃料補正係数算出部213-1が出力する燃料補正係数K(1)を取り込む。燃料補正係数適用部214-1は、燃料流量Gft(1)に、燃料補正係数K(1)を乗算して補正燃料流量Gfcor(1)を算出する。燃料補正係数適用部214-1は、算出した補正燃料流量Gfcor(1)を加算器216に出力する(Sb6-1)。
 同様に、ステップSb4-2,Sb5-2,Sb6-2の処理と、ステップSb4-3,Sb5-3,Sb6-3の処理とが行われる。ここで、ステップSb4-2,Sb5-2,Sb6-2の処理の各々は、各々のステップ番号の枝番号を「-1」に置き換えたステップSb4-1,Sb5-1,Sb6-1の処理において、燃料流量Gft(1)を燃料流量Gft(2)に読み替え、燃料流量Gfs(1)を燃料流量Gfs(2)に読み替え、燃料補正係数算出部213-1を燃料補正係数算出部213-2に読み替え、燃料補正係数K(1)を燃料補正係数K(2)に読み替え、燃料補正係数適用部214-1を燃料補正係数適用部214-2に読み替え、補正燃料流量Gfcor(1)を補正燃料流量Gfcor(2)に読み替えた処理である。また、ステップSb4-3,Sb5-3,Sb6-3の処理の各々は、各々のステップ番号の枝番号を「-1」に置き換えたステップSb4-1,Sb5-1,Sb6-1の処理において、燃料流量Gft(1)を燃料流量Gft(3)に読み替え、燃料流量Gfs(1)を燃料流量Gfs(3)に読み替え、燃料補正係数算出部213-1を燃料補正係数算出部213-3に読み替え、燃料補正係数K(1)を燃料補正係数K(3)に読み替え、燃料補正係数適用部214-1を燃料補正係数適用部214-3に読み替え、補正燃料流量Gfcor(1)を補正燃料流量Gfcor(3)に読み替えた処理である。
 加算器216は、燃料補正係数適用部214-1,214-2,214-3の各々が出力する補正燃料流量Gfcor(1),Gfcor(2),Gfcor(3)を取り込み、取り込んだ補正燃料流量Gfcor(1),Gfcor(2),Gfcor(3)を合計して補正燃料流量Gfcorを算出する。加算器216は、算出した補正燃料流量Gfcorをタービン入口温度算出部206に出力する(Sb7)。図14に示す「A」のマークは、処理が継続して行われることを示すマークであり、「A」のマークが示すように、その後、第1の実施形態の図4の処理と同一の処理が行われる。上記の図14及び図4に示す一連の処理が、1回の検出周期の処理として行われ、周期ごとに図14及び図4に示す一連の処理が行われることになる。
(第3の実施形態における作用・効果)
 上記したように、第3の実施形態の燃料流量補正部210bは、状態検出部205が検出する状態が、静定状態と過渡状態のいずれの状態であっても、直近の静定状態の燃料流量Gft(1),Gfs(1)、燃料流量Gft(2),Gfs(2)、及び燃料流量Gft(3),Gfs(3)を用いて燃料補正係数Kを算出する。そのため、第3の実施形態の構成は、第1の実施形態の構成と同様に、静定状態と過渡状態の両方の状態において、タービン入口温度算出部206に与える燃料流量の精度が低くならないようにして、タービン入口温度算出部206が、一意に定めることが難しいタービン効率を用いることなく、長期間にわたってタービン入口温度T1Tの精度を維持することを可能にしている。
 さらに、第3の実施形態では、燃料配分量算出部209は、ヒートバランス演算部203bが算出する燃料流量Gfsを、燃料配分比D,D,Dにしたがって配分した燃料流量Gfs(1),Gfs(2),Gfs(3)を算出する。燃料補正係数算出部213-1,213-2,213-3の各々は、各々に対応する燃料流量Gfs(1),Gfs(2),Gfs(3)に基づいて、燃料補正係数K(1),K(2),K(3)を算出する。燃料補正係数適用部214-1~214-3の各々は、燃料供給系統40-1,40-2,40-3ごとの燃料流量Gft(1),Gft(2),Gft(3)の各々を、各々に対応する燃料補正係数K(1),K(2),K(3)によって補正する。そのため、第3の実施形態では、燃料供給系統40-1,40-2,40-3の各々に存在する固有の誤差、すなわち、静定状態の際に記録した燃料流量Gfs(1)と燃料流量Gft(1)の誤差、燃料流量Gfs(2)と燃料流量Gft(2)の誤差、及び燃料流量Gfs(3)と燃料流量Gft(3)の誤差を、個々に補正することができる。したがって、第3の実施形態では、第1の実施形態の構成において補正処理部204が燃料流量補正部210のみを備えた場合の構成よりも、高い精度で燃料流量Gftの補正を行うことを可能とし、それによって、タービン入口温度算出部206が算出するタービン入口温度T1Tの精度をより向上させることが可能になる。
(第3の実施形態におけるその他の構成例)
 上記の第3の実施形態では、燃料配分量算出部209は、燃料配分比算出部207が算出する燃料配分比D,D,Dを用いて、ヒートバランス演算部203bが算出する燃料流量Gfsから燃料流量Gfs(1),Gfs(2),Gfs(3)を算出するようにしている。これに対して、燃料配分量算出部209は、弁開度算出部208が算出する弁開度O,O,Oを用いて、燃料流量Gfsから燃料流量Gfs(1),Gfs(2),Gfs(3)を算出するようにしてもよい。
 また、燃料供給系統40-1,40-2,40-3の各々において、燃料供給系統40-1,40-2,40-3の各々を流れる燃料の流量を計測するセンサを備え、当該センサから得られる燃料供給系統40-1,40-2,40-3の各々の燃料流量を用いて、燃料流量Gfsから燃料流量Gfs(1),Gfs(2),Gfs(3)を算出するようにしてもよい。ただし、燃料供給系統40-1,40-2,40-3の各々を流れる燃料の流量をセンサによって計測することにより得られる燃料流量のデータは、燃料供給系統40-1,40-2,40-3の各々を流れる凡その比率を知るには十分な精度のデータであるが、計測における絶対的な誤差を含んだデータであるため、燃料流量算出部201bが算出する燃料流量Gft(1),Gft(2),Gft(3)と異なる値になり、また、当該データの合計値をタービン入口温度算出部206に与えたとしても、精度の良いタービン入口温度T1Tが得られるデータではない。
 上記の第3の実施形態において、燃料流量補正部210bに対して、第1の実施形態において説明した「燃料流量と空気流量の各々の平均値より各々の補正係数を算出する手法」を適用するようにしてもよい。また、燃料流量補正部210bに対して、第2の実施形態の構成を適用するようにしてもよい。また、第3の実施形態において、ヒートバランス演算部203bを、第1の実施形態のヒートバランス演算部203に置き換えた上で、補正処理部204bが、第1の実施形態の空気流量補正部220を備えるようにしてもよいし、補正処理部204bが、第2の実施形態の空気流量補正部220aを備えるようにしてもよい。
(第1から第3の実施形態におけるその他の構成例)
 上記の第1から第3の実施形態において、ガスタービン発電プラント100,100a,100bは、燃料供給系統40-1,40-2,40-3の各々に対応する燃料温度センサ25c-1,25c-2,25c-3を備えている。例えば、燃料供給系統40-1,40-2,40-3の各々を流れる燃料の温度に大きな差がない場合には、燃料温度センサ25c-1,25c-2,25c-3のいずれか1つを備えるようにしてもよいし、燃料供給装置30において3つに分岐される前の燃料の温度を測定するセンサを備えるようにしてもよい。例えば、燃料温度センサ25c-1のみを備える場合、燃料温度T(2),T(3)の各々を燃料温度T(1)と同一値であるとみなして、上記した第1から第3の実施形態における処理が行われることになる。一例として、燃料流量算出部201,201b、及びタービン入口温度算出部206には、燃料温度T(1)のみが与えられることになり、燃料流量算出部201,201bは、式(2),式(3)の演算を行う場合、燃料温度T(2),T(3)に替えて燃料温度T(1)を代入することになる。また、タービン入口温度算出部206は、式(6)に対して燃料温度Tを代入する際に、燃料温度T(1),T(2),T(3)の平均値を算出する必要はなく、燃料温度T(1)を燃料温度Tとして式(6)に代入することになる。
 上記の第1から第3の実施形態において、燃料流量算出部201,201bは、流調弁前圧力センサ25a-1~25a-3の各々が検出する流調弁前圧力P1FV(1),P1FV(2),P1FV(3)と、流調弁後圧力センサ25b-1~25b-3の各々が検出する流調弁後圧力P2FV(1),P2FV(2),P2FV(3)とに基づいて、燃料流量Gft(1),Gft(2),Gft(3)を算出する手法を採用している。ただし、当該手法は一例であり、燃料流量算出部201,201bは、燃料供給系統40-1,40-2,40-3に関する計測データ、より詳細には、燃料供給系統40-1,40-2,40-3の各々の2か所において計測することができる圧力に関する計測データがあれば、当該計測データが適用できるように変形した燃料流量算出関数f(・)によって燃料流量Gft(1),Gft(2),Gft(3)を算出することができる。例えば、流調弁前圧力センサ25a-1~25a-3に替えて、ノズル42-1,42-2,42-3に流入する燃料の圧力を計測するノズル前圧力センサと、流調弁後圧力センサ25b-1~25b-3に替えて、ノズル42-1,42-2,42-3から流出する燃料の圧力を計測するノズル後圧力センサとを備えるようにしてもよい。この場合、燃料流量算出部201,201bは、ノズル前圧力センサが計測する圧力と、ノズル後圧力センサが計測する圧力とを取り込み、これら2つの圧力が適用できるように変形した燃料流量算出関数f(・)と、弁開度O~Oと、当該2つの圧力と、燃料温度T(1)~T(3)とによって燃料流量Gft(1),Gft(2),Gft(3)を算出することになる。また、例えば、流調弁前圧力センサ25a-1~25a-3に替えて、燃料供給系統40-1,40-2,40-3の各々に対応するマニホールド配管43-1,43-2,43-3内の燃料の圧力を計測する第1のセンサと、流調弁後圧力センサ25b-1~25b-3に替えて、マニホールド配管43-1,43-2,43-3の各々から流出する燃料の圧力、すなわち、燃焼ノズルの出口圧力を計測する第2のセンサとを備えるようにしてもよい。なお、第2のセンサの一例は、第2の実施形態において示した燃焼器車室圧力Poutを計測する燃焼器車室圧力センサ25mである。
 上記の第1から第3の実施形態では、ガスタービン制御装置20,20a,20bが備える弁開度算出部208は、流調弁41-1,41-2,41-3の各々に対応する弁開度O,O,Oを算出するようにしている。これに対して、弁開度算出部208は、流調弁41-1,41-2,41-3の各々に対応する3つのCv値を算出するようにしてもよい。この場合、燃料流量算出部201,201bは、弁開度算出部208が算出する3つのCv値を取り込み、Cv値が適用できるように変形した燃料流量算出関数f(・)に弁開度O~Oに替えて3つのCv値を代入して燃料流量Gft(1),Gft(2),Gft(3)を算出することになる。
 上記の第1から第3の実施形態において、ヒートバランス演算部203,203bは、ガスタービン出力Goutと、排ガス圧力P2Tと、排ガス温度T2Tと、圧縮機入口圧力P1Cと、圧縮機入口温度T1Cと、圧縮機出口圧力P2Cと、圧縮機出口温度T2Cとを取り込むようにしているが、これら以外の計測データを取り込むようにしてもよい。
 上記の第1から第3の実施形態において、一例として、燃料供給系統40が、3つの燃料供給系統40-1~40-3を備える場合を示しているが、2つの燃料供給系統40-1,40-2を備える構成や、4つ以上の燃料供給系統40-1,40-2,40-3,…を備える構成などであってもよい。また、図1,図8では、一例として、ガスタービン10が、1つの燃焼器12を備える場合を示しているが、ガスタービン10が、複数の燃焼器12であって各々が圧縮機11と、タービン13とに連結する燃焼器12を備え、複数の燃焼器12の各々に対応する複数の燃焼器内筒121と、燃料供給系統40-1,40-2,40-3,…とがそれぞれ備えられるように構成されていてもよい。また、1つの燃焼器12において複数の燃焼器内筒121が備えられ、複数の燃焼器内筒121の各々に対応する燃料供給系統40-1,40-2,40-3,…が備えられるように構成されていてもよい。このように、第1から第3の実施形態において示した燃料供給系統40-1,40-2,40-3の個数や、燃焼器12の個数や、燃焼器内筒121の個数を変える構成変更が行われる場合、当該構成変更に応じてガスタービン発電プラント100,100a,100bにおいて備えられる流調弁41などの部品の数が変わることになり、ガスタービン制御装置20,20a,20bが備える機能部の構成も変わることになる。
 上記の第1から第3の実施形態において、ガスタービン制御装置20,20a,20bは、図2,図9,図13に示す構成に加えて、インレットガイドベーン14に対して与えるインレットガイドベーン14が吸入する空気量を調整する指令値を算出する構成を備えているものとする。
 上記の第1から第3の実施形態において、ガスタービン発電プラント100,100a,100bは、流調弁41-1,41-2,41-3を備えているが、流量調整弁に替えて圧力調整弁を適用するようにしてもよい。
 上記の第1から第3の実施形態において、ガスタービン発電プラント100,100a,100bは、更にスチームタービンを備え、ロータ15に当該スチームタービンが連結されたガスタービンコンバインドサイクル発電プラント(GTCC)として構成されていてもよい。
 上記の第1から第3の実施形態において、タービン入口温度算出部206が利用する関数f(・)は、非定常物理モデルに基づいて構築された関数であり、非定常物理モデルにおける燃焼器12に流入する熱エネルギは、上記したように、燃料の熱エネルギ、空気の熱エネルギ、燃焼ガスの発熱エネルギの合計により表される。ところで、空気の熱エネルギは、燃焼器車室16に流入する空気に含まれる水蒸気による湿度の影響を考慮した比エンタルピーに応じて変動する。そのため、タービン入口温度算出部206は、関数f(・)に代入するパラメータ、すなわち補正燃料流量Gfcor、補正空気流量Gacor、燃焼器車室温度TCS、及び燃料温度T(1),T(2),T(3)の平均値である燃料温度Tのいずれかによって空気の熱エネルギを算出するのではなく、以下のようにして空気の熱エネルギを算出するようにしてもよい。すなわち、燃焼器車室16に流入する空気の湿度を計測するセンサを新たに備え、タービン入口温度算出部206は、当該センサによって計測した燃焼器車室16に流入する空気の湿度に基づいて比エンタルピーを算出し、算出した比エンタルピーを用いて空気の熱エネルギを算出するようにしてもよい。
 また、上記の第1から第3の実施形態の構成では、状態検出部205が、ガスタービン発電プラント100の状態を検出する処理、図6のステップS105-1,S105-2の処理、及び図11のステップSa104-1,Sa104-2の処理において、等号付き不等号を用いた判定処理を行っている。しかしながら、本開示は、当該実施の形態に限られるものではなく、「以上であるか否か」という判定処理は一例に過ぎず、閾値の定め方に応じて、ぞれぞれ「超過するか否か」という判定処理に置き換えられてもよい。
 以上、本開示の実施形態について図面を参照して詳述してきたが、具体的な構成はこの実施の形態に限られるものではなく、本開示の要旨を逸脱しない範囲の設計等も含まれる。
<コンピュータ構成>
 上記の第1から第3の実施形態において、ガスタービン制御装置20,20a,20bは、例えば、CPU(Central Processing Unit)、RAM(Random Access Memory)、ROM(Read Only Memory)、及びコンピュータ読み取り可能な記憶媒体等から構成されている。そして、ガスタービン制御装置20,20a,20bが備える各種機能を実現するための一連の処理は、一例として、プログラムの形式で記憶媒体等に記憶されており、このプログラムをCPUがRAM等に読み出して、情報の加工・演算処理を実行することにより、各種機能が実現される。なお、プログラムは、ROMやその他の記憶媒体に予めインストールしておく形態や、コンピュータ読み取り可能な記憶媒体に記憶された状態で提供される形態、有線又は無線による通信手段を介して配信される形態等が適用されてもよい。コンピュータ読み取り可能な記憶媒体とは、磁気ディスク、光磁気ディスク、CD-ROM、DVD-ROM、半導体メモリ等である。
 より具体的には、上記の第1から第3の実施形態に係るガスタービン制御装置20,20a,20bの各々は、図16に示すコンピュータの構成によって実現される。コンピュータ90は、プロセッサ91、メインメモリ92、ストレージ93、及びインタフェース94を備える。上記のガスタービン制御装置20,20a,20bが備える燃料流量算出部201,201b、ヒートバランス演算部203,203b、空気流量算出部202、補正処理部204,204a,204b、状態検出部205、タービン入口温度算出部206、燃料配分比算出部207、弁開度算出部208、及び燃料配分量算出部209の機能部は、コンピュータ90に実装される。これらの機能部の動作は、プログラムの形式でストレージ93に記憶される。プロセッサ91は、プログラムをストレージ93から読み出してメインメモリ92に展開し、メインメモリ92に展開されたプログラムにしたがって、第1から第3の実施形態において示した処理を実行する。また、プロセッサ91は、プログラムにしたがって、例えば、燃料側記憶部212,212a,212b、及び空気側記憶部222,222aの領域をメインメモリ92に確保する。また、プロセッサ91は、プログラムにしたがって、ガスタービン制御装置20,20a,20bが備える機能部に対して、各種のセンサ25a~20m、インレットガイドベーン14、及び流調弁41との間でデータの送受信を行うインタフェース94を割り当てる。
 プログラムは、コンピュータ90に発揮させる機能の一部を実現するためのものであってもよい。例えば、プログラムは、ストレージ93に既に記憶されている他のプログラムとの組み合わせ、または他の装置に実装された他のプログラムとの組み合わせによって機能を発揮させるものであってもよい。なお、他の実施形態においては、コンピュータは、上記構成に加えて、または上記構成に代えてPLD(Programmable Logic Device)などのカスタムLSI(Large Scale Integrated Circuit)を備えてもよい。PLDの例としては、PAL(Programmable Array Logic)、GAL(Generic Array Logic)、CPLD(Complex Programmable Logic Device)、FPGA(Field Programmable Gate Array)等が挙げられる。この場合、プロセッサによって実現される機能の一部または全部が当該集積回路によって実現されてよい。
 ストレージ93の例としては、HDD(Hard Disk Drive)、SSD(Solid State Drive)、磁気ディスク、光磁気ディスク、CD-ROM(Compact Disc Read Only Memory)、DVD-ROM(Digital Versatile Disc Read Only Memory)、半導体メモリ等が挙げられる。ストレージ93は、コンピュータ90のバスに直接接続された内部メディアであってもよいし、インタフェース94または通信回線を介してコンピュータ90に接続される外部メディアであってもよい。また、このプログラムが通信回線によってコンピュータ90に配信される場合、配信を受けたコンピュータ90が当該プログラムをメインメモリ92に展開し、上記処理を実行してもよい。また、ストレージ93は、一時的でない有形の記憶媒体である。
 上記の第1から第3の実施形態に係るガスタービン制御装置20,20a,20bの各々は、一体のコンピュータとして実現されることに限定されない。例えば、第1及び第3の実施形態では、燃料流量算出部201,201b、空気流量算出部202、燃料補正係数適用部214,214-1~214-3、空気補正係数適用部224、タービン入口温度算出部206、燃料配分比算出部207、及び弁開度算出部208の構成と、当該構成に含まれない機能部を含む構成とが、それぞれ異なるコンピュータに備えられており、2つのコンピュータが、通信回線によりデータの送受信を行うようにしてもよい。また、第2の実施形態では、燃料流量算出部201、空気流量算出部202、燃料補正係数算出部213a、燃料補正係数適用部214、空気補正係数算出部223a、空気補正係数適用部224、タービン入口温度算出部206、燃料配分比算出部207、及び弁開度算出部208の構成と、当該構成に含まれない機能部を含む構成とが、それぞれ異なるコンピュータに備えられており、2つのコンピュータが、通信回線によりデータの送受信を行うようにしてもよい。
<付記>
 各実施形態に記載のガスタービン制御装置(例えば、ガスタービン制御装置20,20a,20b)は、例えば以下のように把握される。
(1)第1の態様に係るガスタービン制御装置は、ガスタービン10の燃焼器12に燃料を供給する燃料供給系統40に関する計測データ(例えば、弁開度O,O,O、流調弁前圧力P1FV(1),P1FV(2),P1FV(3)、流調弁後圧力P2FV(1),P2FV(2),P2FV(3)、燃料温度T(1),T(2),T(3))に基づいて前記燃焼器に流入する燃料の量を示す燃料流量Gftを算出する燃料流量算出部(例えば、燃料流量算出部201,201b)と、前記ガスタービンの圧縮機11に関する計測データ(例えば、圧縮機インデックス差圧Pindex、圧縮機入口圧力P1C、圧縮機入口温度T1C)に基づいて前記圧縮機が吸入する空気の量を示す空気流量Gatを算出する空気流量算出部202と、前記燃料流量Gftと、前記空気流量Gatと、前記燃焼器に関する熱エネルギ収支に関する物理モデル式(例えば、燃料流量算出関数f(・))とに基づいてタービン入口温度T1Tを算出するタービン入口温度算出部206と、前記ガスタービンのエネルギ収支に関する計測データ(例えば、ガスタービン出力Gout、排ガス圧力P2T、排ガス温度T2T、圧縮機入口圧力P1C、圧縮機入口温度T1C、圧縮機出口圧力P2C、及び圧縮機出口温度T2C)に基づいて前記ガスタービンのヒートバランスを満たす演算を行って演算結果を出力するヒートバランス演算部(例えば、ヒートバランス演算部203,203b)と、前記ガスタービンの状態を検出する状態検出部205と、前記状態検出部が検出する前記ガスタービンの状態が静定状態の場合に前記ヒートバランス演算部が出力する前記演算結果に基づいて、前記燃料流量と前記空気流量のいずれか一方、または、両方を補正して前記タービン入口温度算出部に与える補正処理部(例えば、補正処理部204,204a,204b)と、を備える。第1の態様、及び以下の各態様によれば、ヒートバランス演算部の演算結果に基づいて、燃料流量Gftと空気流量Gatの補正が可能になるため、一意に定めることが難しいタービン効率を用いることなく補正を行うことができ、更に、ヒートバランス演算部は、繰り返し計測される計測データに基づいて演算を行うため、長期間にわたってタービン入口温度T1Tの精度を維持することができる。
(2)第2の態様に係るガスタービン制御装置は、(1)のガスタービン制御装置であって、前記燃料流量算出部が算出する燃料流量を第1の燃料流量Gftとし、前記空気流量算出部が算出する空気流量を第1の空気流量Gatとし、前記補正処理部は、前記状態検出部が検出する前記ガスタービンの状態が静定状態の場合に前記ヒートバランス演算部が出力する前記演算結果に含まれる第2の燃料流量Gfsを取得し、取得した前記第2の燃料流量と、当該第2の燃料流量を取得した際の前記第1の燃料流量とに基づいて、前記燃料流量算出部が算出する前記第1の燃料流量を補正し、補正した前記第1の燃料流量を前記タービン入口温度算出部に与える燃料流量補正部(例えば、燃料流量補正部210,210a,210b)と、前記状態検出部が検出する前記ガスタービンの状態が静定状態の場合に前記ヒートバランス演算部が出力する前記演算結果に含まれる第2の空気流量Gasを取得し、取得した前記第2の空気流量と、当該第2の空気流量を取得した際の前記第1の空気流量とに基づいて、前記空気流量算出部が算出する前記第1の空気流量を補正し、補正した前記第1の空気流量を前記タービン入口温度算出部に与える空気流量補正部(例えば、空気流量補正部220,220a)とのいずれか一方の補正部、または、両方の補正部を備える。第2の態様によれば、ヒートバランス演算部の演算結果に含まれる精度の高い第2の燃料流量Gfsによって第1の燃料流量Gftを補正することが可能になり、当該演算結果に含まれる精度の高い第2の空気流量Gasによって第1の空気流量Gatを補正することが可能になるので、精度の高いタービン入口温度T1Tを算出することが可能になる。
(3)第3の態様に係るガスタービン制御装置は、(2)のガスタービン制御装置であって、前記燃料流量補正部は、前記状態検出部が検出する前記ガスタービンの状態が静定状態の場合に取得した中で最新の前記第2の燃料流量と、当該最新の第2の燃料流量を取得した際の前記第1の燃料流量とに基づいて燃料補正係数を算出する燃料補正係数算出部(例えば、燃料補正係数算出部213,213-1~213-3)と、前記燃料補正係数算出部が算出する前記燃料補正係数によって前記燃料流量算出部が算出する前記第1の燃料流量を補正する燃料補正係数適用部(例えば、燃料補正係数適用部214,214-1~214-3)と、を備える。第3の態様によれば、最新の第2の燃料流量Gfsと、最新の第2の燃料流量Gfsを取得した際の第1の燃料流量Gftとを用いて燃料補正係数Kを算出し、算出した燃料補正係数Kによって第1の燃料流量Gftを補正するため、精度の高いタービン入口温度T1Tを算出することが可能になると共に、長期間にわたってタービン入口温度T1Tの精度を維持することができる。
(4)第4の態様に係るガスタービン制御装置は、(2)のガスタービン制御装置であって、前記燃料流量補正部は、前記状態検出部が検出する前記ガスタービンの状態が静定状態の場合に取得した複数の前記第2の燃料流量と、当該複数の第2の燃料流量の各々を取得した際の前記第1の燃料流量とに基づいて燃料補正係数を算出する燃料補正係数算出部(例えば、燃料補正係数算出部213,213-1~213-3)と、前記燃料補正係数算出部が算出する前記燃料補正係数によって前記燃料流量算出部が算出する前記第1の燃料流量を補正する燃料補正係数適用部(例えば、燃料補正係数適用部214,214-1~214-3)と、を備える。第4の態様によれば、複数の第2の燃料流量Gfsと、複数の第1の燃料流量Gftとに基づいて燃料補正係数Kを算出し、算出した燃料補正係数Kによって第1の燃料流量Gftを補正するため、信頼性の面で精度の高い燃料補正係数Kが得られることになる。
(5)第5の態様に係るガスタービン制御装置は、(2)から(4)のいずれか1つのガスタービン制御装置であって、前記空気流量補正部は、前記状態検出部が検出する前記ガスタービンの状態が静定状態の場合に取得した中で最新の前記第2の空気流量と、当該最新の第2の空気流量を取得した際の前記第1の空気流量とに基づいて空気補正係数を算出する空気補正係数算出部223と、前記空気補正係数算出部が算出する前記空気補正係数によって前記空気流量算出部が算出する前記第1の空気流量を補正する空気補正係数適用部224と、を備える。第5の態様によれば、最新の第2の空気流量Gasと、最新の第2の空気流量Gasを取得した際の第1の空気流量Gatとを用いて空気補正係数Kを算出し、算出した空気補正係数Kによって第1の空気流量Gatを補正するため、精度の高いタービン入口温度T1Tを算出することが可能になると共に、長期間にわたってタービン入口温度T1Tの精度を維持することができる。
(6)第6の態様に係るガスタービン制御装置は、(2)から(4)のいずれか1つのガスタービン制御装置であって、前記空気流量補正部は、前記状態検出部が検出する前記ガスタービンの状態が静定状態の場合に取得した複数の前記第2の空気流量と、当該複数の第2の空気流量の各々を取得した際の前記第1の空気流量とに基づいて空気補正係数を算出する空気補正係数算出部223と、前記空気補正係数算出部が算出する前記空気補正係数によって前記空気流量算出部が算出する前記第1の空気流量を補正する空気補正係数適用部224と、を備える。第6の態様によれば、複数の第2の空気流量Gasと、複数の第1の空気流量Gatとに基づいて空気補正係数Kを算出し、算出した空気補正係数Kによって第1の空気流量Gatを補正するため、信頼性の面で精度の高い空気補正係数Kが得られることになる。
(7)第7の態様に係るガスタービン制御装置は、(2),(5),(6)のいずれか1つのガスタービン制御装置であって、前記燃料流量補正部は、前記状態検出部が検出する前記ガスタービンの状態が静定状態の場合に取得した前記第2の燃料流量と、当該第2の燃料流量を取得した際の前記第1の燃料流量及び説明変数のデータ(例えば、燃焼器車室温度TCS及び燃焼器車室圧力Pout)とに基づいて所定の回帰分析(例えば、線形重回帰分析)を行って前記所定の回帰分析に対応する回帰式の係数を算出する燃料側回帰分析部215と、前記燃料側回帰分析部が算出する前記係数を適用した前記回帰式に対して、前記燃料流量算出部が前記第1の燃料流量を算出した際の前記説明変数のデータを代入して燃料補正係数を算出する燃料補正係数算出部(例えば、燃料補正係数算出部213a,213-1~213-3)と、前記燃料補正係数算出部が算出する前記燃料補正係数によって、前記回帰式に代入した前記説明変数のデータに対応する前記第1の燃料流量を補正する燃料補正係数適用部(例えば、燃料補正係数適用部214,214-1~214-3)と、を備える。第7の態様によれば、回帰分析を利用することにより、信頼性の面で精度の高い燃料補正係数Kが得られることになる。
(8)第8の態様に係るガスタービン制御装置は、(2),(3),(4),(7)のいずれか1つのガスタービン制御装置であって、前記空気流量補正部は、前記状態検出部が検出する前記ガスタービンの状態が静定状態の場合に取得した前記第2の空気流量と、当該第2の空気流量を取得した際の前記第1の空気流量及び説明変数のデータとに基づいて所定の回帰分析を行って前記所定の回帰分析に対応する回帰式の係数を算出する空気側回帰分析部225と、前記空気側回帰分析部が算出する前記係数を適用した前記回帰式に対して、前記空気流量算出部が前記第1の空気流量を算出した際の前記説明変数のデータを代入して空気補正係数を算出する空気補正係数算出部223aと、前記空気補正係数算出部が算出する前記空気補正係数によって、前記回帰式に代入した前記説明変数のデータに対応する前記第1の空気流量を補正する空気補正係数適用部224と、を備える。第8の態様によれば、回帰分析を利用することにより、信頼性の面で精度の高い空気補正係数Kが得られることになる。
(9)第9の態様に係るガスタービン制御装置は、(7)または(8)のガスタービン制御装置であって、前記説明変数のデータは、前記計測データと、前記ガスタービンの制御のための指令値のデータとを任意に組み合わせたデータである。第9の態様によれば、計測によって取得する計測データと、ガスタービン10に与える指令値のデータとを反映した燃料補正係数K、または、空気補正係数Kが得られることになる。
(10)第10の態様に係るガスタービン制御装置は、(2)から(9)のいずれか1つのガスタービン制御装置であって、前記補正処理部が、前記燃料流量補正部を備えている場合であって、かつ前記燃料供給系統が複数存在している場合、複数の前記燃料供給系統ごとの燃料配分比率(例えば、燃料配分比D,D,D)に基づいて、前記ヒートバランス演算部が出力する前記演算結果に含まれる前記第2の燃料流量から前記燃料供給系統ごとの前記第2の燃料流量を算出する燃料配分量算出部209を備え、前記燃料流量算出部201bは、前記燃料供給系統ごとの前記第1の燃料流量(例えば、燃料流量Gft(1),Gft(2),Gft(3))を算出し、前記燃料流量補正部210bは、前記状態検出部が検出する前記ガスタービンの状態が静定状態の場合に前記ヒートバランス演算部203bが出力する前記演算結果に含まれる第2の燃料流量に替えて、前記燃料配分量算出部が算出する前記燃料供給系統ごとの前記第2の燃料流量(例えば、燃料流量Gfs(1),Gft(2),Gft(3))を取得し、取得した前記第2の燃料流量の各々と、前記第2の燃料流量の各々を取得した際の前記燃料供給系統ごとの前記第1の燃料流量の各々とに基づいて、前記燃料流量算出部が算出する前記燃料供給系統ごとの前記第1の燃料流量を補正し、補正した前記燃料供給系統ごとの前記第1の燃料流量の合計値を前記タービン入口温度算出部に与える。第10の態様によれば、燃料供給系統40-1,40-2,40-3ごとの燃料流量Gft(1),Gft(2),Gft(3)を個別に補正することが可能になる。
 上述した一態様によれば、タービン効率を用いずに、長期間にわたってタービン入口温度の精度を維持する。
20 ガスタービン制御装置
201 燃料流量算出部
202 空気流量算出部
203 ヒートバランス演算部
204 補正処理部
205 状態検出部
206 タービン入口温度算出部
207 燃料配分比算出部
208 弁開度算出部
210 燃料流量補正部
211 燃料側管理部
212 燃料側記憶部
213 燃料補正係数算出部
214 燃料補正係数適用部
220 空気流量補正部
221 空気側管理部
222 空気側記憶部
223 空気補正係数算出部
224 空気補正係数適用部

Claims (12)

  1.  ガスタービンの燃焼器に燃料を供給する燃料供給系統に関する計測データに基づいて前記燃焼器に流入する燃料の量を示す燃料流量を算出する燃料流量算出部と、
     前記ガスタービンの圧縮機に関する計測データに基づいて前記圧縮機が吸入する空気の量を示す空気流量を算出する空気流量算出部と、
     前記燃料流量と、前記空気流量と、前記燃焼器に関する熱エネルギ収支に関する物理モデル式とに基づいてタービン入口温度を算出するタービン入口温度算出部と、
     前記ガスタービンのエネルギ収支に関する計測データに基づいて前記ガスタービンのヒートバランスを満たす演算を行って演算結果を出力するヒートバランス演算部と、
     前記ガスタービンの状態を検出する状態検出部と、
     前記状態検出部が検出する前記ガスタービンの状態が静定状態の場合に前記ヒートバランス演算部が出力する前記演算結果に基づいて、前記燃料流量と前記空気流量のいずれか一方、または、両方を補正して前記タービン入口温度算出部に与える補正処理部と、
     を備えるガスタービン制御装置。
  2.  前記燃料流量算出部が算出する燃料流量を第1の燃料流量とし、
     前記空気流量算出部が算出する空気流量を第1の空気流量とし、
     前記補正処理部は、
     前記状態検出部が検出する前記ガスタービンの状態が静定状態の場合に前記ヒートバランス演算部が出力する前記演算結果に含まれる第2の燃料流量を取得し、取得した前記第2の燃料流量と、当該第2の燃料流量を取得した際の前記第1の燃料流量とに基づいて、前記燃料流量算出部が算出する前記第1の燃料流量を補正し、補正した前記第1の燃料流量を前記タービン入口温度算出部に与える燃料流量補正部と、
     前記状態検出部が検出する前記ガスタービンの状態が静定状態の場合に前記ヒートバランス演算部が出力する前記演算結果に含まれる第2の空気流量を取得し、取得した前記第2の空気流量と、当該第2の空気流量を取得した際の前記第1の空気流量とに基づいて、前記空気流量算出部が算出する前記第1の空気流量を補正し、補正した前記第1の空気流量を前記タービン入口温度算出部に与える空気流量補正部とのいずれか一方の補正部、または、両方の補正部
     を備える請求項1に記載のガスタービン制御装置。
  3.  前記燃料流量補正部は、
     前記状態検出部が検出する前記ガスタービンの状態が静定状態の場合に取得した中で最新の前記第2の燃料流量と、当該最新の第2の燃料流量を取得した際の前記第1の燃料流量とに基づいて燃料補正係数を算出する燃料補正係数算出部と、
     前記燃料補正係数算出部が算出する前記燃料補正係数によって前記燃料流量算出部が算出する前記第1の燃料流量を補正する燃料補正係数適用部と、
     を備える請求項2に記載のガスタービン制御装置。
  4.  前記燃料流量補正部は、
     前記状態検出部が検出する前記ガスタービンの状態が静定状態の場合に取得した複数の前記第2の燃料流量と、当該複数の第2の燃料流量の各々を取得した際の前記第1の燃料流量とに基づいて燃料補正係数を算出する燃料補正係数算出部と、
     前記燃料補正係数算出部が算出する前記燃料補正係数によって前記燃料流量算出部が算出する前記第1の燃料流量を補正する燃料補正係数適用部と、
     を備える請求項2に記載のガスタービン制御装置。
  5.  前記空気流量補正部は、
     前記状態検出部が検出する前記ガスタービンの状態が静定状態の場合に取得した中で最新の前記第2の空気流量と、当該最新の第2の空気流量を取得した際の前記第1の空気流量とに基づいて空気補正係数を算出する空気補正係数算出部と、
     前記空気補正係数算出部が算出する前記空気補正係数によって前記空気流量算出部が算出する前記第1の空気流量を補正する空気補正係数適用部と、
     を備える請求項2に記載のガスタービン制御装置。
  6.  前記空気流量補正部は、
     前記状態検出部が検出する前記ガスタービンの状態が静定状態の場合に取得した複数の前記第2の空気流量と、当該複数の第2の空気流量の各々を取得した際の前記第1の空気流量とに基づいて空気補正係数を算出する空気補正係数算出部と、
     前記空気補正係数算出部が算出する前記空気補正係数によって前記空気流量算出部が算出する前記第1の空気流量を補正する空気補正係数適用部と、
     を備える請求項2に記載のガスタービン制御装置。
  7.  前記燃料流量補正部は、
     前記状態検出部が検出する前記ガスタービンの状態が静定状態の場合に取得した前記第2の燃料流量と、当該第2の燃料流量を取得した際の前記第1の燃料流量及び説明変数のデータとに基づいて所定の回帰分析を行って前記所定の回帰分析に対応する回帰式の係数を算出する燃料側回帰分析部と、
     前記燃料側回帰分析部が算出する前記係数を適用した前記回帰式に対して、前記燃料流量算出部が前記第1の燃料流量を算出した際の前記説明変数のデータを代入して燃料補正係数を算出する燃料補正係数算出部と、
     前記燃料補正係数算出部が算出する前記燃料補正係数によって、前記回帰式に代入した前記説明変数のデータに対応する前記第1の燃料流量を補正する燃料補正係数適用部と、
     を備える請求項2に記載のガスタービン制御装置。
  8.  前記空気流量補正部は、
     前記状態検出部が検出する前記ガスタービンの状態が静定状態の場合に取得した前記第2の空気流量と、当該第2の空気流量を取得した際の前記第1の空気流量及び説明変数のデータとに基づいて所定の回帰分析を行って前記所定の回帰分析に対応する回帰式の係数を算出する空気側回帰分析部と、
     前記空気側回帰分析部が算出する前記係数を適用した前記回帰式に対して、前記空気流量算出部が前記第1の空気流量を算出した際の前記説明変数のデータを代入して空気補正係数を算出する空気補正係数算出部と、
     前記空気補正係数算出部が算出する前記空気補正係数によって、前記回帰式に代入した前記説明変数のデータに対応する前記第1の空気流量を補正する空気補正係数適用部と、
     を備える請求項2に記載のガスタービン制御装置。
  9.  前記説明変数のデータは、前記計測データと、前記ガスタービンの制御のための指令値のデータとを任意に組み合わせたデータである、
     請求項7または請求項8に記載のガスタービン制御装置。
  10.  前記補正処理部が、前記燃料流量補正部を備えている場合であって、かつ前記燃料供給系統が複数存在している場合、
     複数の前記燃料供給系統ごとの燃料配分比率に基づいて、前記ヒートバランス演算部が出力する前記演算結果に含まれる前記第2の燃料流量から前記燃料供給系統ごとの前記第2の燃料流量を算出する燃料配分量算出部を備え、
     前記燃料流量算出部は、
     前記燃料供給系統ごとの前記第1の燃料流量を算出し、
     前記燃料流量補正部は、
     前記状態検出部が検出する前記ガスタービンの状態が静定状態の場合に前記ヒートバランス演算部が出力する前記演算結果に含まれる第2の燃料流量に替えて、前記燃料配分量算出部が算出する前記燃料供給系統ごとの前記第2の燃料流量を取得し、取得した前記第2の燃料流量の各々と、前記第2の燃料流量の各々を取得した際の前記燃料供給系統ごとの前記第1の燃料流量の各々とに基づいて、前記燃料流量算出部が算出する前記燃料供給系統ごとの前記第1の燃料流量を補正し、補正した前記燃料供給系統ごとの前記第1の燃料流量の合計値を前記タービン入口温度算出部に与える、
     請求項2から請求項8のいずれか一項に記載のガスタービン制御装置。
  11.  ガスタービンの燃焼器に燃料を供給する燃料供給系統に関する計測データに基づいて前記燃焼器に流入する燃料の量を示す燃料流量を算出するステップと、
     前記ガスタービンの圧縮機に関する計測データに基づいて前記圧縮機が吸入する空気の量を示す空気流量を算出するステップと、
     前記燃料流量と、前記空気流量と、前記燃焼器に関する熱エネルギ収支に関する物理モデル式とに基づいてタービン入口温度を算出するステップと、
     前記ガスタービンのエネルギ収支に関する計測データに基づいて前記ガスタービンのヒートバランスを満たす演算を行って演算結果を出力するステップと、
     前記ガスタービンの状態を検出するステップと、
     前記状態を検出するステップによって検出された前記ガスタービンの状態が静定状態の場合に前記ヒートバランスを満たす演算を行うステップにおいて出力された前記演算結果に基づいて、前記燃料流量と前記空気流量のいずれか一方、または、両方を補正して前記タービン入口温度を算出するステップに与えるステップと、
     を含むガスタービン制御方法。
  12.  コンピュータを、
     ガスタービンの燃焼器に燃料を供給する燃料供給系統に関する計測データに基づいて前記燃焼器に流入する燃料の量を示す燃料流量を算出する燃料流量算出手段、
     前記ガスタービンの圧縮機に関する計測データに基づいて前記圧縮機が吸入する空気の量を示す空気流量を算出する空気流量算出手段、
     前記燃料流量と、前記空気流量と、前記燃焼器に関する熱エネルギ収支に関する物理モデル式とに基づいてタービン入口温度を算出するタービン入口温度算出手段、
     前記ガスタービンのエネルギ収支に関する計測データに基づいて前記ガスタービンのヒートバランスを満たす演算を行って演算結果を出力するヒートバランス演算手段、
     前記ガスタービンの状態を検出する状態検出手段、
     前記状態検出手段が検出する前記ガスタービンの状態が静定状態の場合に前記ヒートバランス演算手段が出力する前記演算結果に基づいて、前記燃料流量と前記空気流量のいずれか一方、または、両方を補正して前記タービン入口温度算出手段に与える補正処理手段、
     として機能させるためのプログラム。
PCT/JP2023/016133 2022-05-09 2023-04-24 ガスタービン制御装置、ガスタービン制御方法、及びプログラム WO2023218930A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-076848 2022-05-09
JP2022076848A JP2023166083A (ja) 2022-05-09 2022-05-09 ガスタービン制御装置、ガスタービン制御方法、及びプログラム

Publications (1)

Publication Number Publication Date
WO2023218930A1 true WO2023218930A1 (ja) 2023-11-16

Family

ID=88730368

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/016133 WO2023218930A1 (ja) 2022-05-09 2023-04-24 ガスタービン制御装置、ガスタービン制御方法、及びプログラム

Country Status (2)

Country Link
JP (1) JP2023166083A (ja)
WO (1) WO2023218930A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002138857A (ja) * 2000-11-01 2002-05-17 Honda Motor Co Ltd ガスタービンエンジンの加減速制御装置
JP2005240608A (ja) * 2004-02-25 2005-09-08 Mitsubishi Heavy Ind Ltd ガスタービン制御装置
US20090281737A1 (en) * 2006-12-07 2009-11-12 Abb Research Ltd Method and system for monitoring process states of an internal combustion engine
JP2016023604A (ja) * 2014-07-22 2016-02-08 三菱重工業株式会社 温度推定装置、燃焼器、ガスタービン、温度推定方法及びプログラム
JP2018135859A (ja) * 2017-02-23 2018-08-30 三菱日立パワーシステムズ株式会社 ガスタービン制御装置、ガスタービンプラントおよびガスタービン制御方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002138857A (ja) * 2000-11-01 2002-05-17 Honda Motor Co Ltd ガスタービンエンジンの加減速制御装置
JP2005240608A (ja) * 2004-02-25 2005-09-08 Mitsubishi Heavy Ind Ltd ガスタービン制御装置
US20090281737A1 (en) * 2006-12-07 2009-11-12 Abb Research Ltd Method and system for monitoring process states of an internal combustion engine
JP2016023604A (ja) * 2014-07-22 2016-02-08 三菱重工業株式会社 温度推定装置、燃焼器、ガスタービン、温度推定方法及びプログラム
JP2018135859A (ja) * 2017-02-23 2018-08-30 三菱日立パワーシステムズ株式会社 ガスタービン制御装置、ガスタービンプラントおよびガスタービン制御方法

Also Published As

Publication number Publication date
JP2023166083A (ja) 2023-11-21

Similar Documents

Publication Publication Date Title
CN111914362B (zh) 一种研发阶段涡扇发动机模型自适应方法
CN101900033B (zh) 用于改进燃气涡轮性能的系统和方法
US7610746B2 (en) Combustion control device for gas turbine
KR101775861B1 (ko) 가스 터빈의 연소 제어 장치 및 연소 제어 방법 및 프로그램
CN113945384B (zh) 核心机工作状态下部件实际特性的获取方法及装置
US8573037B2 (en) Method for determining emission values of a gas turbine, and apparatus for carrying out said method
CN102953833A (zh) 用自适应卡尔曼滤波器进行燃气轮机建模的方法和系统
US9909509B2 (en) Gas turbine fuel supply method and arrangement
JP2010242758A (ja) バルブを能動的に調整するための方法およびシステム
JP6889008B2 (ja) 較正された性能モデルによる機械の制御
US10767569B2 (en) Method for controlling the operation of a gas turbine with an averaged turbine outlet temperature
JP6192707B2 (ja) ガスタービンを制御するために少なくとも1つの燃焼温度を求める方法、及び、この方法を実行するガスタービン
WO2023218930A1 (ja) ガスタービン制御装置、ガスタービン制御方法、及びプログラム
RU2013143479A (ru) Цифровая электронная система управления с встроенной полной термогазодинамической математической моделью газотурбинного двигателя и авиационный газотурбинный двигатель
JP6684453B2 (ja) 蒸気タービン発電機の抽気制御方法及びその制御装置
JP7461201B2 (ja) ガスタービン制御装置、ガスタービン制御方法、及び、ガスタービン制御プログラム
US11643977B2 (en) Gas turbine control device, gas turbine control method, and program
JP5615052B2 (ja) ガスタービンプラント及びガスタービンプラントの制御方法
US20210317782A1 (en) Modeling and control of gas cycle power plant operation by varying split load for multiple gas turbines
US20240151186A1 (en) Delay time calculation method and gas turbine control method, and delay time calculation apparatus and control apparatus for gas turbine
CN113341694B (zh) 一种流量控制阀控制策略的等效验证系统及方法
ITMI20091459A1 (it) Metodo e dispositivo di controllo per controllare un impianto a ciclo combinato e impianto a ciclo combinato
CN116384079A (zh) 一种发动机整机条件下稳定边界预测方法和装置
JP2019203470A (ja) 上限可能出力の設定方法及び設定システム
JPH09189242A (ja) 流量制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23803412

Country of ref document: EP

Kind code of ref document: A1