JP2005240608A - ガスタービン制御装置 - Google Patents

ガスタービン制御装置 Download PDF

Info

Publication number
JP2005240608A
JP2005240608A JP2004049194A JP2004049194A JP2005240608A JP 2005240608 A JP2005240608 A JP 2005240608A JP 2004049194 A JP2004049194 A JP 2004049194A JP 2004049194 A JP2004049194 A JP 2004049194A JP 2005240608 A JP2005240608 A JP 2005240608A
Authority
JP
Japan
Prior art keywords
thermal efficiency
turbine
function unit
combustor
inlet temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004049194A
Other languages
English (en)
Inventor
Akihiko Saito
昭彦 齋藤
Takashi Sonoda
隆 園田
Hitoi Ono
仁意 小野
Chikasuke Nakamura
愼祐 中村
Kozo Toyama
浩三 外山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2004049194A priority Critical patent/JP2005240608A/ja
Publication of JP2005240608A publication Critical patent/JP2005240608A/ja
Withdrawn legal-status Critical Current

Links

Images

Abstract

【課題】 ガスタービンを一旦停止した後に再起動しても、タービン入口温度を正確に推定する。
【解決手段】 タービン入口温度推定機能部30は、燃焼器の熱効率等を物理モデル式に適用することにより、タービン入口温度を推定する。停止していたタービンを再起動する場合に低負荷運転を行い、この低負荷運転時の熱効率ηL’を熱効率算出機能部60にて求める。熱効率補正機能部40は、前回運転における低負荷運転時の効率ηLと今回運転における低負荷運転時の熱効率ηL’との比を、前回の熱効率特性に乗算して、今回の熱効率特性を得る。そして、負荷に応じて、今回の熱効率特性から求めた熱効率η’をタービン入口温度推定機能部30に送り、タービン入口温度推定機能部30は熱効率η’を用いてタービン入口温度を推定する。
【選択図】 図1

Description

本発明は、ガスタービン制御装置に関するものであり、ガスタービンを一旦停止させてから再起動するときにおいても、正確にガスタービン入口温度を推定することができるようにしたものである。
発電所などで稼動するガスタービンは、コンプレッサにより圧縮した空気とガス燃料が燃焼器に供給され、燃焼器での燃焼に伴う高温の燃焼ガスを利用してタービンを回転させる。タービンの回転軸の周りには、コンプレッサ用の動翼とタービン用の動翼とが設けられ、燃焼器から供給される高温燃焼ガスによりタービン用動翼が回転する。また、図4に示すように、燃焼器では、メインの燃料が供給される燃料ノズル103とパイロット燃料が供給されるパイロットノズルとが燃焼器内筒104内に設けられ、圧縮機から吐出される空気111と燃料とを混合して燃焼し、燃焼器尾筒105からタービンに燃焼ガスを流出する。
図4は、燃焼器の構成例を示す図である。燃焼器は、空気と予混合されたメイン燃料と予混合されないパイロット燃料とがそれぞれ供給される燃料ノズル103及びパイロットノズルと、メイン燃料と混合される圧縮空気がコンプレッサから供給される圧縮空気吐出口と、燃焼により火炎が発生する燃焼器内筒104と、燃焼ガスをタービンに送り出す燃焼器外筒106と、バイパス弁108とを有する。
ガスタービンの制御は、ガスタービンの構成要素である、圧縮機、燃焼器、タービン、及び発電機の各々異なる特性上の要求を満足させる必要がある。このため、図5に示すように、次の各制御回路を並列的に働かせ、これら各制御回路の出力のうち最小信号を選択する手法によって、相互に関連し合う各状態変数の保護制御の要求を同時に満足させて、且つ、最も効率的な運転が行えるようにしている。
図5に示すように、(a)回転数に基づく速度ガバナ制御回路201、(b)発電機出力に基づくロードリミッタ制御回路202、(c)排ガス温度及び燃焼器圧力に基づくタービン温度リミット制御回路203、(d)燃焼器圧力に基づく燃料リミット制御回路204、の全制御回路201〜204の出力のうち、最小信号をミニマムセレクタ回路205で選択し、その選択した信号を制御出力CSO(Control Signal Output:燃料制御信号)とし、このCSOを基に燃料供給量の制御を行う。
タービン温度リミット制御回路203は、タービン入口温度を設計値以内とするための排ガス温度制御を行うものである。
ガスタービン制御では、昇負荷及びMW(メガワット:タービン出力)/周波数の急減等による燃料制御信号CSO増加時には、タービン入口温度T1Tが設計許容値を超過(オーバーシュート)する恐れがある。
現状は、燃焼器内が高温/高圧/高速流のため、タービン入口温度T1Tが直接計測不能であるので、代わりに、排ガス温度、ブレードパス温度を使用し、オーバーシュート防止を行っている。ここで、ブレードパス温度とは、図6に示すように、タービンを通過した直後の高温ガスの温度であり、排ガス温度とは、それよりも下流側での排ガスの温度であり、タービン入口温度T1Tとは、タービンに入る直前のガスの温度である。
しかし、上記のように、排ガス温度、ブレードパス温度を用いてタービン入口温度T1Tを制御する方法では、燃料投入からの応答、計測遅れが大きいことから、温調リミット制御(タービン入口温度T1Tが設計許容値を超過しないようにする制御)の設定値は、遅れを考慮に入れた保守的な値(遅れを考慮した安全率を組み込んだ値)となっている。これにより、昇負荷速度が制限される。
実開平5−7942号公報には、次のタービン入口温度リミット制御回路が記載されている。ガスタービンの排ガス温度を計る温度計、燃焼器圧力を計る圧力計、燃焼器に供給する蒸気の量を計る蒸気投入量計、圧力計の出力を受け予め設定されたタービン入口温度に対応するタービン出口温度リミット信号を発生する第1の関数発生器、蒸気投入量計の出力を受け温度バイアスを出力する第2の関数発生器、温度計、圧力計、及び関数発生器の出力を受けタービンリミット制御信号を出力する出力制御手段を設けるものである。
特開2001−329855公報には、次のガスタービンのタービン入口温度予測方法が記載されている。ガスタービンの出口温度Aと吸入空気温度Bと回転数NによりパラメータPを構成し、計測した出口温度Aと吸入空気温度Bと回転数Nを代入したパラメータPの値と校正時のみ計測したタービン入口温度からタービン入口温度をパラメータPの関数で表し、この関数によりタービン入口温度を算出する。
かかる現状において、従来計測不可能であったタービン入口温度T1Tが予測できることが望まれている。また、経年劣化などプラントの性状が変化した場合にも、タービン入口温度T1Tの算出に必要なパラメータ(熱効率を含む)を正確に更新できることが望まれている。また、その更新はオンラインで自動更新でき、調整を必要としないことが望まれている。また、タービン入口温度T1Tの定常値を常に補正できることが望まれている。更に、機器保護の優先のために犠牲になっていた昇負荷速度を改善できることが望まれている。
そこで本願出願人は、従来計測不可能であったタービン入口温度T1Tが予測でき、経年劣化などプラントの性状が変化した場合にも、タービン入口温度T1Tの算出に必要なパラメータ(熱効率を含む)を正確に更新でき、機器保護の優先のために犠牲になっていた昇負荷速度を改善できるガスタービン制御装置及びガスタービン制御方法を先に開発して特許出願した(特開2003−293795号公報)。
<すでに出願した発明の内容>
ここで、すでに出願した発明(特願2002−102984:特開2003−293795)の内容を説明しておく。
図7に示すように、すでに出願した発明の実施形態では、既設計測点(車室温度T3、燃料温度Tf、燃焼器流入空気流量G3、燃料流量Gf)および燃焼器熱効率ηより、タービン入口温度T4(またはT1Tともいう)を応答遅れなく推定する。
図7に示すように、実施形態は、遅れ補償機能部20と、T1T(タービン入口温度)推定機能部30とを有している。
遅れ補償機能部20は、位相進み要素を有しており、その位相進み要素を用いて、既設のセンサから入力した既設計測点(車室温度T3、燃料温度Tf、燃焼器流入空気流量G3、燃料流量Gf)の遅れ補償を行い、その遅れ補償を行ってなる値T3’、Tf’、G3’、Gf’をT1T推定機能部30に出力する。
遅れ補償機能部20の補償式は、K(1+αTs)/(1+Ts)である。ただし、α>1である。既設のセンサによる計測値である、車室温度T3、燃料温度Tf、燃焼器流入空気流量G3、燃料流量Gfに対して、それぞれ遅れ補償を行ったものが、T3’、Tf’、G3’、Gf’である。
T1T推定機能部30は、燃焼器に流入する状態量と、物理モデル(物理量)からT1Tの動的挙動を推定する。T1T推定機能部30は、燃焼器熱効率ηと、遅れ補償機能部20から出力された値(T3’、Tf’、G3’、Gf’)を入力して、T1T(T4)を推定する。
具体的には、燃焼器の熱収支式(1)にてT4を計算する。
Figure 2005240608
上式で燃焼器は、図8のようにモデル化した。図8は、燃焼器モデル化要素を示している。車室102は、図4の車室102に対応しており、尾筒105は、図4の尾筒105に対応している。
熱収支式(1)は、図8の燃焼器コントロールボリューム(以下CCV)10の熱収支により求まるが、以下に各項の説明を記す。以下の式(2)は、上記式(1)に説明の便宜のために符号を付したものである。
Figure 2005240608
単位時間あたりCCV10に流入する熱量は、項[2](燃料)と、項[3](空気)である。CCV10内での燃料発熱量は項[4]であり、流入燃料流量Gfと燃料のカロリーHf、燃料の効率ηにより求まる。CCV10からの流出熱量は、燃焼後の燃焼ガス(排気ガス)の持つ熱量項[5]である(G4=G3+Gf)。よって、CCV10内の温度変化(項[1])は、以上の熱の流入・流出より式(1)(=式(2))で表される。
入力変数を図9に示す。計測信号(車室温度T3、燃料温度Tf、燃焼器流入空気流量G3、燃料流量Gf)には、計測器の検出遅れを位相進み要素で補償する。これにより、従来の排ガス温度からT1Tを予測する場合に比べ応答性に優れ、実際のT1Tと同等の速応性を有する推定が可能になる。
なお、図9に示すように、式(1)によりT1T計算を行うときに用いる入出力変数は、以下の通りである。
3:車室温度[℃]
f:燃料温度[℃]
4:タービン入口温度[℃]
3:燃焼器流入空気流量[kg/s]
f:燃料流量[kg/s]
4:タービン入口燃焼ガス流量[kg/s]
p3:車室比熱[kcal/kg℃]
pf:燃料比熱[kcal/kg℃]
p4:燃焼ガス比熱[kcal/kg℃]
f:発熱量[kcal/kg]
η:燃焼器の熱効率[kcal/kg]
cb:車室〜尾筒容積[m3
γ4:燃焼ガス比重[kg/m3
t:時間[sec]
3、Tf、及びGfは、計測値であり、遅れ補償する。G3は、計測値であり、遅れ補償する、もしくは算出する。T4=T1Tである。
4=G3+Gfである。
p3、cpf、cp4、Hf、γ4は、物性値である。
ηは、設計値であり設計段階で算出する。
cbは、設計値である。
実施形態では、単位時間あたりにCCV(燃焼器自身を含む燃焼器の周辺部)10に流入する熱量(項[2]及び[3])と、CCV10内での発熱量(項[4])と、CCV10から流出する熱量(項[5])の熱収支と、CCV10内での温度変化(項[1])との関係に基づいて、T4を演算により求める。
実施形態によれば、従来計測不可能であったタービン入口温度T1Tが予測可能となる。
特開2003−293795
ところで、本出願人が先に出願した発明(特願2002−102984)を基に検討を加えたところ、更に改良すべき点が発見された。つまり、ガスタービンが一旦停止した後に、再び起動するとき(ガスタービン負荷がゼロの状態から定格運転になるまでの間)における、タービン入口温度の推定値の精度をより向上させる必要があるという課題を発見した。
このように再起動時における、タービン入口温度の推定値の精度が十分でない理由は、ガスタービン停止中における、(1)燃料発熱量の変化、(2)機器の熱損失等に起因して、熱効率ηが変化することにある。つまり、タービン入口温度を推定するために必要な熱効率ηは、ガスタービン停止中の諸量変化に伴い変化してしまうのである。
図10は、従来のかかる不具合を説明するものである。従来ではガスタービンが停止する直前(100%定格運転時)の熱効率ηを記憶している。ガスタービンの停止中に、機器の温度低下や燃料性状の変化があった場合には、ガスタービンを再起動する際(ガスタービン負荷上昇時)において、前回運転時における停止直前(100%定格運転時)の熱効率ηをそのまま用いるので、タービン入口温度推定機能部が推定したタービン入口温度が、実際の温度からずれる可能性があった。つまり、従来技術では、ガスタービンの停止前の熱効率ηを用いて起動するため、起動後に負荷上昇し定格領域に達した際における、ガスタービン入口温度の推定値精度を確保することができなかった。
本発明は、上記従来技術に鑑み、ガスタービンを一旦停止させた後に、ガスタービン負荷をゼロから定格負荷にまで昇負荷させていく際において、熱効率を補正し、起動後の昇負荷時のタービン入口温度の推定精度を向上させることができるガスタービン制御装置を提供することを目的とする。
上記課題を解決する本発明は、ガスタービンの燃焼器自身を含む燃焼器の周辺部に流入する熱量と、前記燃焼器の周辺部内での発熱量と、前記燃焼器の周辺部から流出する熱量の熱収支と、前記燃焼器の周辺部内での温度変化と、前記燃焼器の熱効率との関係に基づいて、タービンの入口温度を推定するタービン入口温度推定機能部と、
一旦停止した後に再起動したガスタービンが予め設定した低負荷で運転する低負荷運転時に、タービン出口情報を基に、前記低負荷運転時におけるタービン入口温度を算出するタービン入口温度算出機能部と、
車室温度T3,燃料温度Tf、燃焼器流入空気流量G3,燃料流量Gfと、前記タービン入口温度算出機能部にて算出したタービン入口温度を用いて、前記低負荷運転時における熱効率η’Lを求める熱効率算出機能部と、
前回のガスタービン運転時における各ガスタービン負荷に応じた熱効率である熱効率特性を記憶していると共に、前記熱効率算出機能部にて算出した今回のガスタービンの前記低負荷運転時における熱効率η’Lと、前回のガスタービンの前記低負荷運転時の熱効率ηLより今回の熱効率特性を求め、今回の熱効率特性から、今回のガスタービンの各負荷に応じた熱効率を出力する熱効率補正機能部とを有し、
前記タービン入口温度推定機能部は、前記熱効率補正機能部から出力される熱効率を用いてタービン入口温度を推定することを特徴とする。
また本発明は、タービンの入口温度をT4、燃焼器の周辺部に流入する空気流量G3の計測遅れを補償した値をG’3、燃料流量Gfの計測遅れを補償した値をG’f、燃料温度Tfの計測遅れを補償した値をT’f、前記燃焼器の周辺部における空気の流入部の温度T3の計測遅れを補償した値をT’3、前記流入部の比熱をcp3、燃料の発熱量をHf、前記燃焼器の熱効率をη、燃焼ガス比熱をcp4、前記燃焼器の周辺部の容積をVcb、燃焼ガス比重をγ4、燃料比熱をcpf、前記タービンの入口の燃焼ガス流量をG4、時間をtとしたとき、下記式(1)に基づいて、前記タービンの入口温度T4を推定するタービン入口温度推定機能部と、
一旦停止した後に再起動したガスタービンが予め設定した低負荷で運転する低負荷運転時に、タービン出口情報を基に、前記低負荷運転時におけるタービン入口温度を算出するタービン入口温度算出機能部と、
車室温度T3の計測遅れを補償した値T’3,燃料温度Tfの計測遅れを補償した値T’f、燃焼器流入空気流量G3の計測遅れを補償した値G’3,燃料流量Gfの計測遅れを補償した値G’fと、前記タービン入口温度算出機能部にて算出したタービン入口温度を用いて、前記低負荷運転時における熱効率η’Lを求める熱効率算出機能部と、
前回のガスタービン運転時における各ガスタービン負荷に応じた熱効率である熱効率特性を記憶していると共に、前記熱効率算出機能部にて算出した今回のガスタービンの前記低負荷運転時における熱効率η’Lと、前回のガスタービンの前記低負荷運転時の熱効率ηLより今回の熱効率特性を求め、今回の熱効率特性から、今回のガスタービンの各負荷に応じた熱効率を出力する熱効率補正機能部とを有し、
前記タービン入口温度推定機能部は、前記熱効率補正機能部から出力される熱効率を用いてタービン入口温度を推定することを特徴とする。
Figure 2005240608
また本発明は、前記タービン入口温度算出機能部で用いる前記タービン出口情報は、排ガス温度、またはブレードパス温度、または発電機出力/車室圧力であることを特徴とする。
また本発明は、ガスタービンの燃焼器自身を含む燃焼器の周辺部に流入する熱量と、前記燃焼器の周辺部内での発熱量と、前記燃焼器の周辺部から流出する熱量の熱収支と、前記燃焼器の周辺部内での温度変化と、前記燃焼器の熱効率との関係に基づいて、タービンの入口温度を推定するタービン入口温度推定機能部と、
燃焼器流入諸量ごとに、ガスタービンの停止時間に応じて燃焼器流入諸量と補正量との関係を示す補正マップを有しており、ガスタービンの停止時間が入力されると、停止時間に応じた補正量を出力する特性変化マップ機能部と、
前回のガスタービン運転時における各ガスタービン負荷に応じた熱効率である熱効率特性を記憶していると共に、前記特性変化マップ機能部から出力された補正量により前回のガスタービン運転時の熱効率特性を補正して今回の熱効率特性を求め、今回の熱効率特性から、今回のガスタービンの各負荷に応じた熱効率を出力する熱効率補正機能部とを有し、
前記タービン入口温度推定機能部は、前記熱効率補正機能部から出力される熱効率を用いてタービン入口温度を推定することを特徴とする。
また本発明は、タービンの入口温度をT4、燃焼器の周辺部に流入する空気流量G3の計測遅れを補償した値をG’3、燃料流量Gfの計測遅れを補償した値をG’f、燃料温度Tfの計測遅れを補償した値をT’f、前記燃焼器の周辺部における空気の流入部の温度T3の計測遅れを補償した値をT’3、前記流入部の比熱をcp3、燃料の発熱量をHf、前記燃焼器の熱効率をη、燃焼ガス比熱をcp4、前記燃焼器の周辺部の容積をVcb、燃焼ガス比重をγ4、燃料比熱をcpf、前記タービンの入口の燃焼ガス流量をG4、時間をtとしたとき、下記式(1)に基づいて、前記タービンの入口温度T4を推定するタービン入口温度推定機能部と、
燃焼器流入諸量である、車室温度T3の計測遅れを補償した値T’3,燃料温度Tfの計測遅れを補償した値T’f、燃焼器流入空気流量G3の計測遅れを補償した値G’3,燃料流量Gfの計測遅れを補償した値G’f、ごとに、ガスタービンの停止時間に応じて燃焼器流入量と補正量との関係を示す補正マップを有しており、ガスタービンの停止時間が入力されると、停止時間に応じた補正量を出力する特性変化マップ機能部と、
前回のガスタービン運転時における各ガスタービン負荷に応じた熱効率である熱効率特性を記憶していると共に、前記特性変化マップ機能部から出力された補正量により前回のガスタービン運転時の熱効率特性を補正して今回の熱効率特性を求め、今回の熱効率特性から、今回のガスタービンの各負荷に応じた熱効率を出力する熱効率補正機能部とを有し、
前記タービン入口温度推定機能部は、前記熱効率補正機能部から出力される熱効率を用いてタービン入口温度を推定することを特徴とするガスタービン制御装置。
Figure 2005240608
本発明によれば、ガスタービンを一旦停止させて、このガスタービンの停止中に、機器の温度低下や燃料性状の変化があった場合であっても、再起動するときには、再起動時の低負荷運転時において、熱効率を今回の(再起動時)の状態合わせた最適な熱効率に補正し、補正した熱効率を用いてガスタービン入口温度を推定するため、正確にガスタービン入口温度を推定することができる。
本発明を実施するための最良の形態では、図3に示すように、前回のガスタービン運転中における(つまり停止直前)の熱効率特性を記憶しておく。そしてガスタービンを一旦停止し、その後に再起動するときには、ガスタービンを起動後に低負荷運転状態を所定期間にわたり維持し、この期間においてスチームタービンを起動する。更に、この低負荷運転状態において、前回のガスタービンの低負荷運転時の熱効率と、今回のガスタービンの低負荷運転時の熱効率とを比較し、比較結果を基に、前回の熱効率特性を補正し、補正した熱効率特性を、今回の運転時の熱効率特性として用いて、タービン入口温度を推定する。このように低負荷運転時に熱効率特性を補正するため、ガスタービン負荷が上昇したときにおいても、タービン入口温度の推定を正確に行うことができる。
図1は本発明の実施例1にかかるガスタービン制御装置を示すブロック図である。この実施例1は、ガスタービンを一旦停止させた後に、ガスタービン負荷をゼロから定格負荷にまで昇負荷させていく際において、熱効率を補正し、起動後の昇負荷時のタービン入口温度の推定精度を向上させるものである。
なお、本実施例1にかかるガスタービン制御装置は、ガスタービンと蒸気タービンとを組み合わせたコンバインドサイクルプラントに適用するものである。このコンバインドサイクルプラントでは、起動する場合には、最初にガスタービンのみを起動し、ガスタービンの負荷が予め決めた低負荷(例えば定格運転負荷の25%)になったときに、ガスタービンを所定期間だけ低負荷運転状態(例えば定格運転負荷の25%)に維持し、この期間に蒸気タービンの起動を開始する。そして蒸気タービンが起動したら、ガスタービン及び蒸気タービンの出力を共に増加させて定格運転状態にまでもっていく。
実施例1のガスタービン制御装置は、図1に示すように、遅れ補償機能部20と、タービン入口温度推定機能部30と、熱効率補正機能部40と、タービン入口温度算出機能部50と、熱効率算出機能部60とで構成されている。
このうち、遅れ補償機能部20と、タービン入口温度推定機能部30は、図7に示す従来のものと同じ機能を果たすものである。ただし、タービン入口温度推定機能部30にて用いる熱効率は、従来技術ではガスタービンの停止前の熱効率ηを用いていたが、本実施例では熱効率補正機能部40により補正した熱効率η’を用いる。
遅れ補償機能部20は、車室温度T3,燃料温度Tf、燃焼器流入空気流量G3、燃料流量Gfの計測遅れを位相進み要素で補償し、遅れ補償した車室温度T’3,燃料温度T’f、燃焼器流入空気流量G’3、燃料流量G’fを、タービン入口温度推定機能部30及び熱効率算出機能部60に出力する。
ガスタービンを一旦停止させた後に、ガスタービン負荷をゼロから昇負荷していく際に、蒸気タービンを起動させるため、ガスタービン負荷を一定期間だけ予め決めた低負荷運転状態(本例では定格運転負荷の25%)に維持している期間において、タービン入口温度算出機能部50は、タービン出口情報を基に、この低負荷運転時(25%負荷運転時)におけるタービン入口温度T4を算出する。
タービン入口温度算出機能部50において、タービン入口温度T4を算出する回路は、従来からある既存の回路を採用することができる。タービン入口温度T4を算出する手法としては、次のようないくつかの手法がある。
(1)第1の手法では、タービン出口の排ガス温度から、低負荷運転時(25%負荷運転時)におけるタービン入口温度T4を算出する。算出の方法は、予め決めた関数により演算したり、予め設定した対応マップ(タービン出口排ガス温度とタービン入口温度T4との関係を示す対応マップ)により算出したりする。この手法では、排ガス温度からタービン入口温度T4を算出するので、信頼性よくタービン入口温度T4を算出することができる。ひいては、熱効率補正機能部40にて求める熱効率を信頼性よく求めることができる。
(2)第2の手法では、タービン出口のブレードパス温度から、低負荷運転時(25%負荷運転時)におけるタービン入口温度T4を算出する。算出の方法は、予め決めた関数により演算したり、予め設定した対応マップ(ブレードパス温度とタービン入口温度T4との関係を示す対応マップ)により算出したりする。この手法では、応答性の速いブレードパス温度を用いることにより、迅速にタービン入口温度T4を算出することができる。ひいては、熱効率補正機能部40にて求める熱効率を高速に求めることができる。
(3)第3の手法では、燃焼器部分の車室圧力と発電機出力から、低負荷運転時(25%負荷運転時)におけるタービン入口温度T4を算出する。算出の方法は、予め決めた関数により演算する。この手法では、応答性の向上と精度の向上が期待できる。ひいては、熱効率補正機能部40にて求める熱効率の、応答性の向上と精度の向上が期待できる。
なお上記第1から第3の手法を任意に組み合わせて、タービン入口温度T4を算出することもできる。
熱効率算出機能部60は、タービン入口温度算出機能部50にて算出した、低負荷運転時(25%負荷運転時)におけるタービン入口温度T4と、遅れ補償機能部20から出力される遅れ補償した車室温度T’3,燃料温度T’f、燃焼器流入空気流量G’3、燃料流量G’fを、次式(3)に適用することにより、低負荷運転時(25%負荷運転時)における熱効率η’Lを求める。なお式(3)は、式(1)から求めたものである。
Figure 2005240608
熱効率補正機能部40は、前回のガスタービンを起動して定格運転したときにおける、各ガスタービン負荷に応じた熱効率を記憶している。図中では、点線の特性が、前回運転時の熱効率特性である。なお、この熱効率補正機能部40は、ガスタービンの負荷がどの程度になっているかを、燃料制御信号CSOにより求めているが、他の信号をもとに、ガスタービン負荷を検出するようにしてもよい。
熱効率補正機能部40は、熱効率算出部60から、今回の起動時での低負荷運転時(25%負荷運転時)における熱効率η’Lが入力されると、この熱効率η’Lと、前回の起動時での低負荷運転時(25%負荷運転時)における熱効率ηLとの比η’L/ηLを求める。更に、熱効率補正機能部40は、前回運転時における各ガスタービン負荷に応じた熱効率特性(点線で示す特性)に、比η’L/ηLを乗算することにより、今回の運転時における各ガスタービン負荷に応じた熱効率特性(実線で示す特性:負荷ゼロから定格負荷までの各負荷に対応する熱効率)を求める。つまり、熱効率補正機能部40は、ガスタービン起動直後の低負荷運転中に、熱効率を補正した今回の熱効率特性(実線で示す特性)を求める。
この熱効率補正機能部40は、運転負荷が上昇していったら、今回の運転時における各ガスタービン負荷に応じた熱効率特性(実線で示す特性)を参照して、各負荷に応じた熱効率η’を、タービン入口温度推定機能部30に出力する。
タービン入口温度推定機能部30は、遅れ補償機能部20から出力される遅れ補償した車室温度T’3,燃料温度T’f、燃焼器流入空気流量G’3、燃料流量G’fと、熱効率補正機能部40から出力された各負荷に応じた熱効率η’を、式(4)に適用することにより、タービン入口温度を推定する。なお、式(4)は、式(1)における熱効率ηを、熱効率η’に置き換えたものである。
Figure 2005240608
このタービン入口温度推定機能部30で演算する式(4)に用いる熱効率η’は、今回の運転時における各ガスタービン負荷に応じた最適な熱効率であるため、ガスタービン起動後における各負荷において、ガスタービン入口温度の推定を精度よく行うことができる。
図2は本発明の実施例2にかかるガスタービン制御装置を示すブロック図である。この実施例2は、ガスタービンを一旦停止させた後に、ガスタービン負荷をゼロから定格負荷にまで昇負荷させていく際において、タービンの停止時間を考慮して熱効率を補正し、起動後の昇負荷時のタービン入口温度の推定精度を向上させるものである。
なお、本実施例2にかかるガスタービン制御装置は、ガスタービンと蒸気タービンとを組み合わせたコンバインドサイクルプラントのみならず、ガスタービン単体の発電プラントにも適用することができる。
実施例2のガスタービン制御装置は、図2に示すように、遅れ補償機能部20と、タービン入口温度推定機能部30と、熱効率補正機能部40と、特性変化マップ機能部70とで構成されている。
このうち、遅れ補償機能部20と、タービン入口温度推定機能部30は、図1に示す実施例1のものと同様である。つまり、遅れ補償機能部20は、車室温度T3,燃料温度Tf、燃焼器流入空気流量G3、燃料流量Gfの計測遅れを位相進み要素で補償し、遅れ補償した車室温度T’3,燃料温度T’f、燃焼器流入空気流量G’3、燃料流量G’fを、タービン入口温度推定機能部30及び特性変化マップ機能部70に出力する。また、入口温度推定機能部30は、熱効率補正機能部40により補正した熱効率η’を用いて、前述した式(4)を用いて、タービン入口温度を推定する。
特性変化マップ機能部70は、燃焼器流入諸量、具体的には、遅れ補償した車室温度T’3,燃料温度T’f、燃焼器流入空気流量G’3、燃料流量G’fごとに、ガスタービンの停止時間に応じた、各燃焼器流入諸量と補正量βとの関係を示す補正マップを有している。
この特性変化マップ機能部70に、タービンの停止時間(即ち前回のガスタービンの運転を停止した時点から、今回のガスタービンの運転を開始した時点までの時間)が入力されると、特性変化マップ機能部70は、補正マップを参照することにより、停止時間に応じて、各燃焼器流入諸量ごとの補正量を求め、求めた補正量を、例えば平均演算することにより、補正量βを求める。この求めた補正量βは熱効率補正機能部40に送られる。
熱効率補正機能部40は、前回のガスタービンを起動して定格運転したときにおける、各ガスタービン負荷に応じた熱効率を記憶している。図中では、点線の特性が、前回運転時の熱効率特性である。なお、この熱効率補正機能部40は、ガスタービンの負荷がどの程度になっているかを、燃料制御信号CSOにより求めているが、他の信号をもとに、ガスタービン負荷を検出するようにしてもよい。
熱効率補正機能部40は、特性変化マップ機能部70から、今回の停止時間に応じた補正量βが入力されると、前回運転時における各ガスタービン負荷に応じた熱効率特性(点線で示す特性)に、補正量βを乗算することにより、今回の運転時における各ガスタービン負荷に応じた熱効率特性(実線で示す特性:負荷ゼロから定格負荷までの各負荷に対応する熱効率)を求める。つまり、熱効率補正機能部40は、タービンの停止時間に応じて、熱効率を補正した今回の熱効率特性(実線で示す特性)を求める。
この熱効率補正機能部40は、運転負荷が上昇していったら、今回の運転時における各ガスタービン負荷に応じた熱効率特性(実線で示す特性)を参照して、各負荷に応じた熱効率η’を、タービン入口温度推定機能部30に出力する。
タービン入口温度推定機能部30は、遅れ補償機能部20から出力される遅れ補償した車室温度T’3,燃料温度T’f、燃焼器流入空気流量G’3、燃料流量G’fと、熱効率補正機能部40から出力された各負荷に応じた熱効率η’を、前述した式(4)に適用することにより、タービン入口温度を推定する。
このタービン入口温度推定機能部30で演算する式(4)に用いる熱効率η’は、タービンの停止時間に応じて補正をすることにより、今回の運転時における各ガスタービン負荷に応じた最適な熱効率となっているため、ガスタービン起動後における各負荷において、ガスタービン入口温度の推定を精度よく行うことができる。
本発明は、ガスタービンと蒸気タービンとを組み合わせたコンバインドサイクルプラントや、ガスタービン単体のプラントにおいて、ガスタービンの入口温度を、正確かつ迅速に推定する場合に、適用可能である。
本発明の実施例1にかかるガスタービン制御装置を示すブロック図である。 本発明の実施例2にかかるガスタービン制御装置を示すブロック図である。 本発明を実施するための最良の形態を示す説明図である。 燃焼器を示す構成図である。 ガスタービン制御回路を示す回路図である。 タービン入口温度、排ガス温度、ブレードパス温度を示す説明図である。 先に出願したガスタービン制御装置を示すブロック図である。 燃焼器をモデル化したモデル図である。 入力変数を示す説明図である。 従来技術の問題点を示す説明図である。
符号の説明
10 燃焼器コントロールボリューム
20 遅れ補償機能部
30 タービン入口温度推定機能部
40 熱効率補正機能部
50 タービン入口温度算出機能部
60 熱効率算出機能部
70 特性変化マップ機能部

Claims (5)

  1. ガスタービンの燃焼器自身を含む燃焼器の周辺部に流入する熱量と、前記燃焼器の周辺部内での発熱量と、前記燃焼器の周辺部から流出する熱量の熱収支と、前記燃焼器の周辺部内での温度変化と、前記燃焼器の熱効率との関係に基づいて、タービンの入口温度を推定するタービン入口温度推定機能部と、
    一旦停止した後に再起動したガスタービンが予め設定した低負荷で運転する低負荷運転時に、タービン出口情報を基に、前記低負荷運転時におけるタービン入口温度を算出するタービン入口温度算出機能部と、
    車室温度T3,燃料温度Tf、燃焼器流入空気流量G3,燃料流量Gfと、前記タービン入口温度算出機能部にて算出したタービン入口温度を用いて、前記低負荷運転時における熱効率η’Lを求める熱効率算出機能部と、
    前回のガスタービン運転時における各ガスタービン負荷に応じた熱効率である熱効率特性を記憶していると共に、前記熱効率算出機能部にて算出した今回のガスタービンの前記低負荷運転時における熱効率η’Lと、前回のガスタービンの前記低負荷運転時の熱効率ηLより今回の熱効率特性を求め、今回の熱効率特性から、今回のガスタービンの各負荷に応じた熱効率を出力する熱効率補正機能部とを有し、
    前記タービン入口温度推定機能部は、前記熱効率補正機能部から出力される熱効率を用いてタービン入口温度を推定することを特徴とするガスタービン制御装置。
  2. タービンの入口温度をT4、燃焼器の周辺部に流入する空気流量G3の計測遅れを補償した値をG’3、燃料流量Gfの計測遅れを補償した値をG’f、燃料温度Tfの計測遅れを補償した値をT’f、前記燃焼器の周辺部における空気の流入部の温度T3の計測遅れを補償した値をT’3、前記流入部の比熱をcp3、燃料の発熱量をHf、前記燃焼器の熱効率をη、燃焼ガス比熱をcp4、前記燃焼器の周辺部の容積をVcb、燃焼ガス比重をγ4、燃料比熱をcpf、前記タービンの入口の燃焼ガス流量をG4、時間をtとしたとき、下記式(1)に基づいて、前記タービンの入口温度T4を推定するタービン入口温度推定機能部と、
    一旦停止した後に再起動したガスタービンが予め設定した低負荷で運転する低負荷運転時に、タービン出口情報を基に、前記低負荷運転時におけるタービン入口温度を算出するタービン入口温度算出機能部と、
    車室温度T3の計測遅れを補償した値T’3,燃料温度Tfの計測遅れを補償した値T’f、燃焼器流入空気流量G3の計測遅れを補償した値G’3,燃料流量Gfの計測遅れを補償した値G’fと、前記タービン入口温度算出機能部にて算出したタービン入口温度を用いて、前記低負荷運転時における熱効率η’Lを求める熱効率算出機能部と、
    前回のガスタービン運転時における各ガスタービン負荷に応じた熱効率である熱効率特性を記憶していると共に、前記熱効率算出機能部にて算出した今回のガスタービンの前記低負荷運転時における熱効率η’Lと、前回のガスタービンの前記低負荷運転時の熱効率ηLより今回の熱効率特性を求め、今回の熱効率特性から、今回のガスタービンの各負荷に応じた熱効率を出力する熱効率補正機能部とを有し、
    前記タービン入口温度推定機能部は、前記熱効率補正機能部から出力される熱効率を用いてタービン入口温度を推定することを特徴とするガスタービン制御装置。
    Figure 2005240608
  3. 請求項1又は請求項2において、前記タービン入口温度算出機能部で用いる前記タービン出口情報は、排ガス温度、またはブレードパス温度、または発電機出力/車室圧力であることを特徴とするガスタービン制御装置。
  4. ガスタービンの燃焼器自身を含む燃焼器の周辺部に流入する熱量と、前記燃焼器の周辺部内での発熱量と、前記燃焼器の周辺部から流出する熱量の熱収支と、前記燃焼器の周辺部内での温度変化と、前記燃焼器の熱効率との関係に基づいて、タービンの入口温度を推定するタービン入口温度推定機能部と、
    燃焼器流入諸量ごとに、ガスタービンの停止時間に応じて燃焼器流入諸量と補正量との関係を示す補正マップを有しており、ガスタービンの停止時間が入力されると、停止時間に応じた補正量を出力する特性変化マップ機能部と、
    前回のガスタービン運転時における各ガスタービン負荷に応じた熱効率である熱効率特性を記憶していると共に、前記特性変化マップ機能部から出力された補正量により前回のガスタービン運転時の熱効率特性を補正して今回の熱効率特性を求め、今回の熱効率特性から、今回のガスタービンの各負荷に応じた熱効率を出力する熱効率補正機能部とを有し、
    前記タービン入口温度推定機能部は、前記熱効率補正機能部から出力される熱効率を用いてタービン入口温度を推定することを特徴とするガスタービン制御装置。
  5. タービンの入口温度をT4、燃焼器の周辺部に流入する空気流量G3の計測遅れを補償した値をG’3、燃料流量Gfの計測遅れを補償した値をG’f、燃料温度Tfの計測遅れを補償した値をT’f、前記燃焼器の周辺部における空気の流入部の温度T3の計測遅れを補償した値をT’3、前記流入部の比熱をcp3、燃料の発熱量をHf、前記燃焼器の熱効率をη、燃焼ガス比熱をcp4、前記燃焼器の周辺部の容積をVcb、燃焼ガス比重をγ4、燃料比熱をcpf、前記タービンの入口の燃焼ガス流量をG4、時間をtとしたとき、下記式(1)に基づいて、前記タービンの入口温度T4を推定するタービン入口温度推定機能部と、
    燃焼器流入諸量である、車室温度T3の計測遅れを補償した値T’3,燃料温度Tfの計測遅れを補償した値T’f、燃焼器流入空気流量G3の計測遅れを補償した値G’3,燃料流量Gfの計測遅れを補償した値G’f、ごとに、ガスタービンの停止時間に応じて燃焼器流入量と補正量との関係を示す補正マップを有しており、ガスタービンの停止時間が入力されると、停止時間に応じた補正量を出力する特性変化マップ機能部と、
    前回のガスタービン運転時における各ガスタービン負荷に応じた熱効率である熱効率特性を記憶していると共に、前記特性変化マップ機能部から出力された補正量により前回のガスタービン運転時の熱効率特性を補正して今回の熱効率特性を求め、今回の熱効率特性から、今回のガスタービンの各負荷に応じた熱効率を出力する熱効率補正機能部とを有し、
    前記タービン入口温度推定機能部は、前記熱効率補正機能部から出力される熱効率を用いてタービン入口温度を推定することを特徴とするガスタービン制御装置。
    Figure 2005240608

JP2004049194A 2004-02-25 2004-02-25 ガスタービン制御装置 Withdrawn JP2005240608A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004049194A JP2005240608A (ja) 2004-02-25 2004-02-25 ガスタービン制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004049194A JP2005240608A (ja) 2004-02-25 2004-02-25 ガスタービン制御装置

Publications (1)

Publication Number Publication Date
JP2005240608A true JP2005240608A (ja) 2005-09-08

Family

ID=35022616

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004049194A Withdrawn JP2005240608A (ja) 2004-02-25 2004-02-25 ガスタービン制御装置

Country Status (1)

Country Link
JP (1) JP2005240608A (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007187159A (ja) * 2006-01-10 2007-07-26 General Electric Co <Ge> ガスタービン燃料制御方法および装置
JP2008045552A (ja) * 2006-08-15 2008-02-28 General Electric Co <Ge> ガスタービンエンジンの制御システム及びガスタービンエンジンアセンブリ
JP2010276023A (ja) * 2009-05-27 2010-12-09 General Electric Co <Ge> ガスタービンの性能を補正するシステム及び方法
JP2012002126A (ja) * 2010-06-16 2012-01-05 Mitsubishi Heavy Ind Ltd 排ガス温度推定装置、排ガス温度推定方法、及びガスタービンプラント
JP2015140661A (ja) * 2014-01-27 2015-08-03 三菱重工業株式会社 燃料供給装置、燃焼器、ガスタービン、及び燃料供給方法
KR20190102268A (ko) 2017-02-23 2019-09-03 미츠비시 히타치 파워 시스템즈 가부시키가이샤 가스 터빈 제어 장치, 가스 터빈 플랜트 및 가스 터빈 제어 방법
CN114320493A (zh) * 2022-01-14 2022-04-12 中国能源建设集团浙江省电力设计院有限公司 一种9h级联合循环机组增压机组间的无扰切换方法
US11378019B2 (en) 2016-12-15 2022-07-05 Mitsubishi Heavy Industries, Ltd. Gas turbine control apparatus and gas turbine control method
WO2023218930A1 (ja) * 2022-05-09 2023-11-16 三菱重工業株式会社 ガスタービン制御装置、ガスタービン制御方法、及びプログラム

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007187159A (ja) * 2006-01-10 2007-07-26 General Electric Co <Ge> ガスタービン燃料制御方法および装置
JP2008045552A (ja) * 2006-08-15 2008-02-28 General Electric Co <Ge> ガスタービンエンジンの制御システム及びガスタービンエンジンアセンブリ
JP2010276023A (ja) * 2009-05-27 2010-12-09 General Electric Co <Ge> ガスタービンの性能を補正するシステム及び方法
JP2012002126A (ja) * 2010-06-16 2012-01-05 Mitsubishi Heavy Ind Ltd 排ガス温度推定装置、排ガス温度推定方法、及びガスタービンプラント
JP2015140661A (ja) * 2014-01-27 2015-08-03 三菱重工業株式会社 燃料供給装置、燃焼器、ガスタービン、及び燃料供給方法
US11378019B2 (en) 2016-12-15 2022-07-05 Mitsubishi Heavy Industries, Ltd. Gas turbine control apparatus and gas turbine control method
KR20190102268A (ko) 2017-02-23 2019-09-03 미츠비시 히타치 파워 시스템즈 가부시키가이샤 가스 터빈 제어 장치, 가스 터빈 플랜트 및 가스 터빈 제어 방법
DE112018000962T5 (de) 2017-02-23 2019-12-12 Mitsubishi Hitachi Power Systems, Ltd. Gasturbinensteuervorrichtung, gasturbinenanlage und gasturbinensteuerverfahren
US11248537B2 (en) 2017-02-23 2022-02-15 Mitsubishi Power, Ltd. Gas turbine control device, gas turbine plant, and gas turbine control method
CN114320493A (zh) * 2022-01-14 2022-04-12 中国能源建设集团浙江省电力设计院有限公司 一种9h级联合循环机组增压机组间的无扰切换方法
CN114320493B (zh) * 2022-01-14 2023-11-03 中国能源建设集团浙江省电力设计院有限公司 一种9h级联合循环机组增压机组间的无扰切换方法
WO2023218930A1 (ja) * 2022-05-09 2023-11-16 三菱重工業株式会社 ガスタービン制御装置、ガスタービン制御方法、及びプログラム

Similar Documents

Publication Publication Date Title
US8516829B2 (en) Systems and methods for modifying the performance of a gas turbine
JP4119908B2 (ja) ガスタービンの燃焼制御装置
JP4119909B2 (ja) ガスタービンの燃焼制御装置
US5080496A (en) Method and apparatus for compensated temperature prediction
JP4831820B2 (ja) ガスタービン出力学習回路及びこれを備えたガスタービンの燃焼制御装置
US7530216B2 (en) Control system for a gas turbine engine
US8504276B2 (en) Gas turbine engine controls for minimizing combustion dynamics and emissions
WO2004033874A1 (ja) 燃焼器制御装置
JP6431825B2 (ja) 調整装置を備えた内燃機関
US9938905B2 (en) Method and arrangement for controlling fuel supply for a gas turbine
US9909509B2 (en) Gas turbine fuel supply method and arrangement
WO2018155552A1 (ja) ガスタービン制御装置、ガスタービンプラントおよびガスタービン制御方法
JPWO2012105053A1 (ja) ガスタービン発電プラントの制御装置
JP2005240608A (ja) ガスタービン制御装置
EP2184465B1 (en) Intake air heating control device for gas turbine
JP2003293795A (ja) ガスタービン制御装置及びガスタービン制御方法
JP6134616B2 (ja) 2軸ガスタービン
JP2012002126A (ja) 排ガス温度推定装置、排ガス温度推定方法、及びガスタービンプラント
JP5485023B2 (ja) ガスタービン燃料の供給圧力制御機構、ガスタービン及びガスタービン燃料の供給圧力制御方法
JP2004124851A (ja) ガスタービンプラントおよびガスタービンの燃料供給方法
KR100437523B1 (ko) 가스터빈엔진의 천이성능시험에 의한 정상상태성능 예측방법

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070501