WO2023218773A1 - ヘッドアップディスプレイ装置 - Google Patents

ヘッドアップディスプレイ装置 Download PDF

Info

Publication number
WO2023218773A1
WO2023218773A1 PCT/JP2023/012131 JP2023012131W WO2023218773A1 WO 2023218773 A1 WO2023218773 A1 WO 2023218773A1 JP 2023012131 W JP2023012131 W JP 2023012131W WO 2023218773 A1 WO2023218773 A1 WO 2023218773A1
Authority
WO
WIPO (PCT)
Prior art keywords
head
hud
virtual image
area
display device
Prior art date
Application number
PCT/JP2023/012131
Other languages
English (en)
French (fr)
Inventor
望 下田
尚樹 安藤
長平 小野
Original Assignee
マクセル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by マクセル株式会社 filed Critical マクセル株式会社
Publication of WO2023218773A1 publication Critical patent/WO2023218773A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K35/00Instruments specially adapted for vehicles; Arrangement of instruments in or on vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R11/00Arrangements for holding or mounting articles, not otherwise provided for
    • B60R11/02Arrangements for holding or mounting articles, not otherwise provided for for radio sets, television sets, telephones, or the like; Arrangement of controls thereof
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays

Definitions

  • the present disclosure relates to technology for a head-up display device (sometimes referred to as HUD).
  • HUD head-up display device
  • Patent Document 1 states, ⁇ To reduce the deviation of the projection position of an image projected on a monocular head-up display (HUD) from the line of sight of one eye (monocular) due to vibrations of the vehicle or changes in the driver's posture, "Improve the visibility of displayed information.”
  • Patent Document 1 states, ⁇ One embodiment includes display information generation means 32 that generates projection information, and information to be displayed generated by the display information generation means on the front shield along the line of sight of the driver.
  • It has a combiner 11 for overlapping, a front camera 3 that captures scenery that comes into the driver's line of sight in order to detect vibrations of the vehicle, and a driver camera 5 that captures changes in the relative position of the driver and the vehicle.
  • the position of the information projected onto the combiner is changed based on the information acquired by the driver camera.
  • the HUD device installed in a vehicle has the function of displaying a virtual image corresponding to information such as vehicle speed (in other words, a non-AR virtual image) in a predetermined position, in addition to the object of the actual scenery.
  • Some devices have an AR (Augmented Reality) function, which is a function of superimposing and displaying a virtual image while aligning the position with respect to a target object.
  • a HUD device having an AR function is sometimes referred to as an AR-HUD.
  • the AR-HUD can display AR virtual images such as alert information and navigation information superimposed on objects visible from the driver's perspective in the driver's seat. Thereby, the AR-HUD can support safe driving by the driver.
  • the HUD device In order to display a virtual image that is more suitable for AR or non-AR, the HUD device is required to have a HUD area that supports a wider field of view (FOV).
  • FOV field of view
  • the area or range where a virtual image can be displayed on the transparent area of a transparent member such as a windshield or combiner (dedicated display board) is defined as the HUD area (head-up display area), HUD display area, and display range. , or display area.
  • a HUD device that displays a virtual image for driving support in the HUD area should minimize movement of the driver's viewpoint (in this case, not the position of the eyes in the vehicle, but the point of gaze ahead of the driver's line of sight). is desirable.
  • the driver's viewpoint line of sight
  • the movement may become large.
  • the driver's line of sight generally moves toward the destination of the right turn and gazes in that direction. In that case, the difference in distance between the virtual image displayed in the HUD area and the gaze point to which the line of sight moves becomes large, which is undesirable. If the driver's line of sight moves outside the HUD area while a virtual image is displayed within the HUD area, the driver cannot clearly see the virtual image within the HUD area. In addition, even if there is an object that you want to display an AR virtual image of, such as an alert, outside the HUD area depending on the situation such as a right turn, the FOV of the HUD area is limited, so the AR virtual image can be displayed within the HUD area. It is not possible to display a virtual image of
  • An object of the present disclosure is to provide a technology that can form a more suitable HUD region regarding the technology of a HUD device.
  • a typical embodiment of the present disclosure has the configuration shown below.
  • a head-up display device includes a video display device and a video projection unit that reflects video light from the video display device, and projects a virtual image based on the video light reflected from the video projection unit.
  • a head-up display area that is a display area that can be displayed is formed, and the horizontal direction corresponding to the horizontal direction within the screen in the head-up display area is the first direction, and the vertical direction corresponding to the vertical direction within the screen is the second direction.
  • the positions in the left-right direction corresponding to the first direction which are the formation positions of the head-up display area, include at least a first position, which is an initial position, and a position to the left or right of the first position.
  • the position of the head-up display area is moved from the first position to the second position, and the virtual image is displayed in the head-up display area at the second position.
  • a more suitable HUD region can be formed regarding the technology of the HUD device. Problems, configurations, effects, etc. other than those described above are shown in the detailed description.
  • FIG. 1 shows an example of the configuration of a vehicle equipped with the HUD device of the first embodiment.
  • 2 shows an example of mounting the HUD device of Embodiment 1 in the vehicle of FIG. 1.
  • FIG. An example of the configuration of the HUD device according to the first embodiment of FIG. 2 is shown.
  • An example of the configuration of sensors and the like for acquiring vehicle information in a vehicle control unit is shown.
  • FIG. 6 is a schematic explanatory diagram showing an example of vertical movement of the HUD region due to rotation of the first rotation axis of the concave mirror mechanism in the HUD device of the first embodiment.
  • FIG. 6 is a schematic explanatory diagram showing an example of movement of the HUD area in the left-right direction due to rotation of the second rotation axis of the concave mirror mechanism in the HUD device of the first embodiment.
  • 1 shows a first configuration example of functional blocks in the HUD device of the first embodiment.
  • 2 shows a second configuration example of functional blocks in the HUD device of the first embodiment.
  • 3 shows a third configuration example of functional blocks in the HUD device of the first embodiment.
  • An example of implementation of the HUD device of Embodiment 1 of FIG. 3 is shown.
  • FIG. 2 shows a perspective view of a configuration example of a concave mirror mechanism in the HUD device of the first embodiment.
  • FIG. 11 shows plan views of the concave mirror mechanism of FIG. 10 viewed from various directions.
  • FIG. 11 is a schematic explanatory diagram showing the relationship between rotation of the concave mirror mechanism of FIG. 10 around the second rotation axis and movement of the HUD area in the left-right direction.
  • FIG. 4 shows an example of movement of the HUD area in the left-right direction and an example of virtual image display in the HUD device of the first embodiment.
  • FIG. 7 is a plan view of a concave mirror mechanism viewed from various directions in a HUD device according to a modification of the first embodiment. 4 shows a configuration example of functional blocks in a HUD device according to a modification of the first embodiment.
  • a plan view of a concave mirror mechanism in which the second rotating shaft is provided on the right side is shown from various directions.
  • a plan view of a concave mirror mechanism in which the second rotation axis is provided on the left side is shown from various directions.
  • a plan view of a concave mirror mechanism in which a slide mechanism is provided is shown from various directions.
  • An example of the configuration of another HUD area in a HUD device of another modification is shown.
  • 3 shows a basic control flow in the HUD device of the first embodiment. 3 shows a flow related to left and right movement control of the HUD area in the HUD device of the first embodiment. 3 shows a flow related to vertical movement control of the HUD area in the HUD device of the first embodiment.
  • a detailed flow regarding left and right movement control of the HUD area in the HUD device of the first embodiment is shown.
  • An example of control modes (states) in the HUD device of the first embodiment will be shown.
  • An example of the horizontal movement position of the HUD area in multiple stages in the HUD device of the first embodiment is shown.
  • An example of a multi-step right movement position of the HUD area in a HUD device according to a modification of the first embodiment is shown.
  • An example of conditions/trigger for starting horizontal movement of the HUD area in the HUD device of the first embodiment will be shown.
  • An example of conditions/trigger for ending horizontal movement of the HUD area in the HUD device of the first embodiment will be shown.
  • An example of a fixed setting of the left and right positions of the HUD area in a HUD device according to a modification of the first embodiment is shown.
  • An example of a GUI related to setting the left and right positions of the HUD area in the HUD device of the first embodiment is shown.
  • An example of display in the central HUD area of the HUD device of Embodiment 1 is shown.
  • a display example in the HUD area when the original video is moved to the right and displayed is shown.
  • a display example is shown when the HUD area of the HUD device according to the first embodiment is moved to the right position.
  • An example will be shown in which a virtual image of an alert is displayed in the HUD area moved to the right position in the HUD device of the first embodiment.
  • An example of adjusting an AR virtual image using the HUD device of Embodiment 1 will be described. Another example of adjusting the AR virtual image using the HUD device of Embodiment 1 will be described. Another example of adjusting the AR virtual image using the HUD device of Embodiment 1 will be described. An example of adjustment for a non-AR virtual image in the HUD device of Embodiment 1 will be shown. An example of adjustment for a non-AR virtual image in the HUD device of Embodiment 1 will be shown. An example of adjustment for a non-AR virtual image in the HUD device of Embodiment 1 will be shown. An example of control during movement of the HUD area in the HUD device of Embodiment 1 is shown.
  • Another example of control during movement of the HUD area in the HUD device of Embodiment 1 will be shown.
  • An example of the arrangement of non-AR virtual images within the HUD area in the HUD device of the first embodiment is shown.
  • An example of control corresponding to a right turn schedule using the HUD device of Embodiment 1 will be shown.
  • An explanatory diagram regarding distortion correction in the HUD device of the first embodiment is shown.
  • An example of display according to the result of distortion correction in the HUD device of Embodiment 1 is shown.
  • Another display example according to the result of distortion correction in the HUD device of Embodiment 1 will be shown.
  • a detailed control processing flow example (part 1) is shown for the HUD device of the first embodiment.
  • a detailed control processing flow example (part 2) is shown for the HUD device of the first embodiment.
  • a detailed control processing flow example (part 3) is shown for the HUD device of the first embodiment.
  • a detailed control processing flow example (part 4) is shown for the HUD device of the first embodiment.
  • the main body for these is the processor or the controller made up of the processor, etc. , equipment, computers, systems, etc.
  • a computer executes processing according to a program read onto a memory, using resources such as a memory and a communication interface as appropriate by a processor. Thereby, predetermined functions, processing units, etc. are realized.
  • the processor is composed of, for example, a semiconductor device such as a CPU/MPU or a GPU.
  • the processing is not limited to software program processing, but can also be implemented using a dedicated circuit. As the dedicated circuit, FPGA, ASIC, CPLD, etc. can be applied.
  • the program may be installed in advance as data on the target computer, or may be distributed as data from the program source to the target computer.
  • the program source may be a program distribution server on a communication network or a non-transitory computer-readable storage medium such as a memory card or disk.
  • a program may be composed of multiple modules.
  • a computer system may be configured by multiple devices.
  • the computer system may be configured with a client server system, a cloud computing system, an IoT system, etc.
  • Various types of data and information are configured, for example, in a structure such as a table or a list, but are not limited thereto. Expressions such as identification information, identifier, ID, name, number, etc. can be replaced with each other.
  • the HUD device of the embodiment is an AR-HUD having an AR function.
  • the HUD device of the embodiment includes at least an image display device and an image projection section, and based on the image light from the image display device, the image light reflected by the image projection section is transmitted to a transparent vehicle such as a windshield or a combiner of a vehicle. Project onto the transparent area of the member.
  • the transparent member is a member that constitutes an area through which the driver can see and see the scenery ahead.
  • the HUD device of the embodiment forms a HUD region on or in front of the windshield or the like when viewed from the driver's viewpoint (eye position), and displays a virtual image as a real image within the HUD region.
  • the HUD device of the embodiment has a mechanism for changing, moving, and adjusting the formation position of the HUD area.
  • the HUD device of the embodiment changes the direction of projection of reflected image light from the reflective surface of the image projection section by rotating the image projection section using a drive mechanism. This changes the position of the HUD region relative to the windshield or the like.
  • the image projection unit is explained using a concave mirror, and the drive mechanism is a concave mirror mechanism that drives the concave mirror.
  • the HUD device of the embodiment has, as the concave mirror mechanism, a mechanism that changes the direction of the concave mirror in the left and right directions (in other words, in the lateral direction, horizontal direction, etc.) with respect to the vehicle and the driver.
  • this mechanism rotates the concave mirror around a rotation axis that extends vertically (in other words, vertically, vertically, etc.), thereby changing the direction of the reflected image light from side to side. It is a mechanism for changing.
  • the position of the HUD region relative to the windshield or the like is changed in the left-right direction, in other words, it is moved.
  • the concave mirror mechanism has a rotation axis (sometimes referred to as a vertical axis, a Z axis, a second rotation axis, etc.) that extends in the vertical direction, which is the short direction, relative to the left and right direction, which is the longitudinal direction of the concave mirror. ) will be established.
  • the concave mirror mechanism is provided with a drive system such as a motor that rotates the concave mirror around its second rotation axis.
  • the HUD device of the embodiment controls the position of the HUD area by controlling the rotation of the concave mirror mechanism by driving and controlling the drive system.
  • the HUD device of the embodiment includes the above-mentioned concave mirror mechanism, so that the HUD area can be moved, for example, to the left and right positions (in other words, the second position) with respect to the initial position (in other words, the reference position, default position, center position, first position). , post-move position). Thereby, the apparent FOV of the HUD area as seen from the driver can be increased.
  • the HUD device according to the embodiment includes the concave mirror mechanism described above, so that a virtual image can be displayed according to the position of the HUD area.
  • the HUD device of the embodiment When displaying a virtual image in the HUD area, the HUD device of the embodiment superimposes the virtual image according to the position of the object in the actual scene based on vehicle navigation information or alert information, and displays it as AR. do. At this time, the HUD device of the embodiment utilizes the concave mirror mechanism described above to enable AR display in the HUD area at suitable positions in the center or left and right, corresponding to a wide FOV.
  • the HUD device of the embodiment can move the HUD area to the left or right of the initial position depending on the situation of the vehicle, driver, etc., for example, in accordance with the direction of travel of the vehicle. Thereby, the movement of the driver's viewpoint (line of sight) between the virtual image in the HUD area and the object in the real scene can be minimized. This can contribute to safe driving.
  • the HUD device of the embodiment can display a virtual image that could not be displayed well in the HUD area before movement by moving the HUD area to the left or right position. For example, if you want to display AR alert information for a target such as a pedestrian in front of the right outside the HUD area when the vehicle is turning right, you can move the HUD area to the right position. Within the HUD area, AR of alert information tailored to the target can be displayed satisfactorily. This can contribute to safe driving.
  • the HUD device of the embodiment acquires and inputs ADAS information from, for example, ADAS (Advanced driver-assistance systems) of a vehicle, and adjusts the concave surface according to the direction of travel of the vehicle according to the ADAS information.
  • ADAS Advanced driver-assistance systems
  • a mirror mechanism allows the HUD area to be moved left and right.
  • the HUD device of the embodiment acquires vehicle traveling direction information from ADAS information, and when the vehicle traveling direction indicates a right turn, for example, by rotating the concave mirror in one direction at a predetermined angle, The HUD area is moved rightward from the initial position to a predetermined right position located a predetermined distance.
  • the HUD area is moved to a predetermined distance leftward from the initial position. Move it to the left position.
  • the equipment and information for moving the HUD area based on the concave mirror mechanism are not limited to the above example.
  • the HUD device of the first embodiment will be explained using FIGS. 1 to 13.
  • the HUD device 1 of the first embodiment includes a concave mirror mechanism shown in FIG. 10 etc., and the direction of the concave mirror can be changed in the left-right direction by rotation, so that the HUD area 5 as shown in FIG. The position of can be changed horizontally.
  • FIG. 1 shows a schematic configuration of a vehicle 2 equipped with a HUD device 1 according to the first embodiment.
  • the vehicle 2 includes a control unit 100 that is a vehicle controller.
  • the control unit 100 controls the running of the vehicle 2 and the like.
  • HUD device 1 communicates with control unit 100 through an interface such as CAN or LIN.
  • Control unit 100 and HUD device 1 constitute an in-vehicle system of vehicle 2.
  • the HUD device 1 generates image light and projects it onto the transparent area of the windshield 3.
  • a HUD area 5 is formed in the transparent area of the windshield 3, and a virtual image is displayed within the HUD area 5.
  • the control unit 100 can display video information as a virtual image in the HUD area 5 by controlling the HUD device 1 through a CAN signal or the like.
  • the control unit 100 acquires vehicle information 4 using various sensors, measurement devices, communication devices, etc. as shown in FIG. 4, which will be described later.
  • the HUD device 1 inputs and acquires vehicle information 4 from the control unit 100 through a CAN signal or the like.
  • FIG. 1 etc. (X, Y, Z) is used as a coordinate system and direction for explanation.
  • FIG. 1 and other figures show a spatial coordinate system for the vehicle 2 and the driver.
  • the Z axis and Z direction are vertical directions, in other words, vertical directions and vertical directions.
  • the X axis and the X direction are the first horizontal direction, in other words, the left and right direction, the lateral direction of the vehicle, or the width direction of the vehicle.
  • the Y axis and the Y direction are the second horizontal direction orthogonal to the X axis, in other words, the longitudinal direction of the vehicle or the traveling direction of the vehicle.
  • FIG. 2 shows an example of mounting the HUD device 1 of the first embodiment in the vehicle 2 of FIG. 1.
  • FIG. 2 shows a schematic diagram of the vehicle 2 in FIG. 1 in the YZ plane when viewed from the X-axis direction.
  • a HUD device 1 particularly a video display unit 200, is mounted within a dashboard 70 of a vehicle 2.
  • the video display unit 200 of the HUD device 1 includes the video display device 10, a mirror M2, and a concave mirror M1 within a housing.
  • a plurality of mirrors M2 may be arranged, or no mirror M2 may be arranged.
  • the image display device 10, the mirror M2, the concave mirror M1, and other optical systems are arranged and fixed in a predetermined positional relationship within the housing. Further, the video display device 10 may be placed and fixed outside the housing.
  • An opening 7 through which the image light of the HUD device 1 is emitted is provided in a part of the casing of the video display unit 200 and a part of the dashboard 70.
  • the opening 7 is provided with a dustproof cover made of a transparent member.
  • the image display device 10 emits image light.
  • the mirror M2 is, for example, a plane mirror and a folding mirror.
  • Mirror M2 reflects the image light from image display device 10 toward concave mirror M1.
  • the concave mirror M1 functions as an image projection unit that magnifies and reflects the image light from the mirror M2 toward a set angle direction or a predetermined direction.
  • the concave mirror M1 is constituted by, for example, a free-form mirror, a mirror having an optical axis asymmetric shape, or the like.
  • the concave mirror M1 is constituted by a mirror having a concave reflective surface.
  • the concave mirror M1 is provided with a drive system such as a rotating shaft J1 and a motor 61.
  • This drive system allows the direction of the concave mirror M1 to be changed.
  • FIGS. 2 and 3 only illustrate the rotation mechanism of the first rotation axis J1 of the concave mirror M1, that is, the mechanism that changes the HUD area 5 in the vertical direction.
  • the concave mirror M1 further has a mechanism for rotating the second rotation axis J2, that is, a mechanism for changing the HUD area 5 in the left-right direction.
  • the image light from the image display device 10 is reflected by the mirror M2 and the concave mirror M1, and the reflected image light is emitted from the opening 7 and projected onto the surface of the windshield 3. It is reflected and heads toward the driver's viewpoint 6.
  • a HUD region 5 is formed with respect to the windshield 3, and a virtual image 9 can be visually recognized within the HUD region 5.
  • a virtual image 6 formed by image light is displayed superimposed on the actual scene in front.
  • the virtual image 9 is video information that is independently displayed at a predetermined position in the case of non-AR.
  • the virtual image 9 is video information that is displayed in a superimposed manner in accordance with the position of the target object.
  • video information that becomes the virtual image 9, such as information such as vehicle speed, navigation information, and alert information.
  • a camera 90 is also installed in the vehicle 2.
  • the camera 90 is installed near the rearview mirror, for example, but is not limited thereto.
  • the camera 90 includes an exterior camera that photographs the outside of the vehicle and an in-vehicle camera that photographs the inside of the vehicle.
  • FIG. 3 shows a configuration example of the video display unit 200 of the HUD device 1 of FIG. 2 in a YZ plane.
  • the video display unit 200 includes the video display device 10, a concave mirror M1, and a mirror M2 in a housing 60, and these components are arranged and fixed in a predetermined positional relationship.
  • the video display device 10 may be attached inside the casing 60 as illustrated, or may be attached outside the casing 60. Further, as will be described later (see FIG. 7, etc.), other components such as the control unit 101, which is a controller of the HUD device 1, may be mounted inside the housing 60 or outside the housing 60. good.
  • the video display device 10 includes a light source device 11 and a display panel or liquid crystal display (LCD) 12.
  • the video display device 10 is an image forming unit that forms an image.
  • the video display device 10 generates and emits video light a1.
  • the light source device 11 is configured using, for example, a semiconductor light source element as a light source, and generates predetermined light source light and supplies it to the LCD 12.
  • the light source device 11 functions as a backlight source for the LCD 12.
  • As the semiconductor light source element an LED (Light Emitting Diode) element is typically used.
  • the LCD 12 is an example of a display device.
  • the LCD 12 forms a video or image on a display surface based on an input video signal, and emits video light a1 from the display surface.
  • the LCD 12 forms an image by modulating the transmittance of light from the light source device 11 for each pixel according to the image signal, and outputs the image as image light a1. Note that only the optical axis of the image light a1 and the like is shown by a dashed line.
  • Image light a1 from the image display device 10 is projected onto the mirror M2 and reflected by the mirror M2 so as to be turned back toward the concave mirror M1.
  • the reflected light is shown as image light a2 from mirror M2.
  • the image light a2 from the mirror M2 is projected onto the reflective surface of the concave mirror M1, and is reflected by the concave mirror M1 toward the windshield 3 through the opening 7.
  • the image light reflected from the concave mirror M1 is shown as image light a3.
  • the image light a3 from the concave mirror M1 passes through the opening 7 and is projected onto the surface of the windshield 3, forming the HUD region 5 of FIG.
  • FIG. 3 like FIG. 2, only the first rotation axis J1 and the motor 61 are shown for the concave mirror M1.
  • the concave mirror M1 is rotatable around the first rotation axis J1 based on the drive of the motor 61. Due to the rotation about the first rotation axis J1, the direction of projection of the image light a3 from the reflective surface of the concave mirror M1 changes as shown by the arrow. As a result, the formation position of the HUD region 5 in FIG. 2 is changed in the vertical direction 5a. Moreover, ON/OFF of the concave mirror M1 can be adjusted by rotating about the first rotation axis J1.
  • some conventional HUD devices include a drive system such as a motor 61 installed on the rotation axis J1 extending in the X-axis direction in the concave mirror M1, similar to FIG. 3.
  • the HUD device of the prior art example can adjust the position of the HUD region 5 in the vertical direction 5a by rotating the concave mirror M1 around the X-axis by driving the motor 61 or the like.
  • the HUD device of the first embodiment has a function of adjusting the position of the HUD region 5 in the vertical direction 5a by rotating the concave mirror M1 around the rotation axis J1, as in the conventional art example.
  • This adjustment function in the vertical direction 5a is mainly used for the following two purposes.
  • the first is a so-called calibration function, which adjusts the position of the HUD area 5 up and down in accordance with the position of the eye box including the viewpoint 6 of the driver in the driver's seat in the vehicle 2.
  • the second is a function to block external light such as sunlight, in other words, a function to prevent external light from entering the housing 60 and prevent panel burnout of the video display device 10 (external light blocking function). This is a function to adjust the ON/OFF state of a so-called concave mirror.
  • a state s1 indicated by a broken line indicates a rotating state of the concave mirror M1 during normal display, and the image light a3, which is reflected light, travels in the illustrated direction d1.
  • a state s2 indicated by a solid line indicates a rotating state of the concave mirror M1 when preventing the incidence of external light, and the image light a3, which is reflected light, travels in the illustrated direction d2.
  • the concave mirror M1 has a reflective surface tilted, for example, backward in the Y-axis direction (vehicle longitudinal direction). The direction d2 of the image light a3 from the reflective surface is tilted further back than the direction d1.
  • the HUD device 1 When preventing the incidence of external light, the HUD device 1 thus rotates the concave mirror M1 around the rotation axis J1 to be in the state s2. In state s2, even if external light such as sunlight is incident in the opposite direction to direction d1, the external light will not be incident on the reflective surface of concave mirror M1, or even if it is incident, the external light will not be incident on the reflective surface of concave mirror M1.
  • the direction of the reflected light of the incident external light is set so that it does not enter the mirror M2 and the display surface of the image display device 10. This makes it possible to prevent burnout of the panel of the video display device 10, especially the LCD 12.
  • the HUD device 1 sets the concave mirror M1 to the state s2 as an external light prevention mode.
  • the HUD device 1 sets the concave mirror M1 to state s1 as a normal display mode.
  • the HUD device 1 of the first embodiment has such an adjustment function in the vertical direction 5a of the HUD region 5 as in the prior art example, and furthermore, the concave mirror M1 is provided with a concave mirror M1 extending in the Z-axis direction. 2 It has a function of moving the position of the HUD area 5 in the left-right direction by rotating it around the rotation axis J2 (FIGS. 6, 10, etc.).
  • the HUD area 5 shows two areas: an area formed to match the slope of the windshield 3, and an area formed at a predetermined distance in front beyond the windshield 5. .
  • the HUD area 5 is an area formed in front when viewed from the driver's viewpoint 6, and conceptually includes these areas.
  • FIG. 4 shows an example of the configuration of sensors and the like related to the vehicle information 4 in FIG. 1.
  • FIG. 4 shows a configuration example of various sensors connected to the control unit 100 of the vehicle 2, in other words, an information acquisition device, a measurement device, a communication device, etc.
  • the control unit 100 acquires vehicle information 4 from sensors installed in various parts of the vehicle 2 .
  • Various sensors periodically detect, for example, parameter values related to conditions such as driving conditions inside and outside the vehicle 2.
  • the control unit 100 determines and detects various events related to the vehicle 2 based on sensor detection information.
  • the vehicle information 4 is a general term for information related to the driving status of the vehicle 2 and the like.
  • Vehicle information 4 includes ADAS information and the like.
  • the vehicle information 4 includes, for example, speed information and gear information of the vehicle 2, steering angle information, lamp lighting information, external light information, distance information, infrared information, engine ON/OFF information, camera image information, acceleration gyro information, and GPS. (Global Positioning System) information, navigation information, vehicle-to-vehicle communication information, and road-to-vehicle communication information.
  • the camera image information includes in-vehicle camera image information and outside-vehicle camera image information.
  • the GPS information includes current time information, latitude and longitude information.
  • FIG. 4 shows an example of various sensors installed in the vehicle 2.
  • various sensors may be installed in the HUD device 1.
  • Various sensors include a vehicle speed sensor 401, shift position sensor 402, steering wheel angle sensor 403, headlight sensor 404, illuminance sensor 405, chromaticity sensor 406, distance sensor 407, infrared sensor 408, engine start sensor 409, and acceleration sensor 410.
  • gyro sensor 411 temperature sensor 412, wireless transmitter/receiver for road-to-vehicle communication 413, wireless transmitter/receiver for vehicle-to-vehicle communication 414, interior camera 415, exterior camera 416, GPS receiver 417, VICS (Vehicle Information and Communication System, registered trademark) ) receiver 418, etc.
  • Various sensors are not limited to these, and can be added, deleted, replaced, etc.
  • the vehicle speed sensor 401 detects the speed of the vehicle 2 (also referred to as vehicle speed) and generates speed information that is the detection result.
  • the shift position sensor 402 detects the current gear and generates gear information as a detection result.
  • the steering wheel steering angle sensor 403 detects the current steering angle of the steering wheel, and generates steering wheel angle information as a detection result.
  • the headlight sensor 404 detects whether the headlight is turned on or off, and generates lamp lighting information as a detection result.
  • the illuminance sensor 405 and the chromaticity sensor 406 detect external light and generate external light information as a detection result.
  • the distance sensor 407 detects the distance between the vehicle 2 and an external object, and generates distance information that is the detection result.
  • the infrared sensor 408 detects the presence or absence of an object in a short distance from the vehicle 2, the distance, etc., and generates infrared information as a detection result.
  • Engine start sensor 409 detects ON/OFF of the engine and generates ON/OFF information as a detection result.
  • Acceleration sensor 410 and gyro sensor 411 detect acceleration and angular velocity of vehicle 2, and generate acceleration gyro information representing the attitude and behavior of vehicle 2 as a detection result.
  • Temperature sensor 412 detects the temperature inside and outside of vehicle 2, and generates temperature information as a detection result.
  • the in-vehicle camera 415 generates in-vehicle camera image information by photographing the inside of the vehicle 2.
  • the vehicle exterior camera 416 generates vehicle exterior camera image information by photographing the outside of the vehicle 2 .
  • camera 90 in FIG. 2 corresponds to in-vehicle camera 415 and out-vehicle camera 416.
  • the in-vehicle camera 415 photographs, for example, the driver's posture, eye position, movement, etc., and constitutes a DMS (Driver Monitoring System). By analyzing video information from in-vehicle cameras, it is possible to understand the driver's fatigue status and line of sight. Further, the vehicle exterior camera 416 photographs the surrounding situation, such as the front of the vehicle 2, for example.
  • the vehicle exterior camera 416 includes a drive recorder that records video of the situation while the vehicle is running.
  • the road-to-vehicle communication wireless transceiver 413 generates road-to-vehicle communication information through road-to-vehicle communication between the vehicle 2 and roads, signs, traffic lights, and the like.
  • the vehicle-to-vehicle communication wireless transceiver 414 generates vehicle-to-vehicle communication information through vehicle-to-vehicle communication between the vehicle 2 and other nearby vehicles.
  • the GPS receiver 417 generates GPS information by receiving GPS signals from GPS satellites. For example, current time, latitude, and longitude can be acquired as GPS information.
  • the VICS receiver 418 generates VICS information obtained by receiving the VICS signal.
  • the GPS receiver 417 and the VICS receiver 418 may be provided as part of the navigation system.
  • FIG. 5 shows an XZ plane in the left-right direction (X-axis direction or vehicle width direction) and up-down direction (Z-axis direction) of the vehicle 2, with the windshield 3 (in FIG. 5
  • FIG. 3 is a schematic explanatory diagram showing a configuration example of the position of the HUD region 5 relative to the windshield 3 according to the rotational state of the concave mirror M1 when viewed schematically as a rectangle.
  • FIG. 5 shows an example of movement of the HUD region 5 in the vertical direction (Z-axis direction) according to the rotational state of the first rotation axis J1 of the concave mirror M1.
  • FIG. 3 is a schematic explanatory diagram showing a configuration example of the position of the HUD region 5 relative to the windshield 3 according to the rotational state of the concave mirror M1 when viewed schematically as a rectangle.
  • FIG. 5 shows an example of movement of the HUD region 5 in the vertical direction (Z-axis direction) according to the rotational state of the first rotation axis J
  • FIG. 5 and the like schematically show a case where the steering wheel 8 is provided for a right-hand drive vehicle.
  • FIG. 5 and the like show the case where the HUD area 5A is formed at the initial position near the center of the transparent area of the windshield 3 in the X-axis direction, this is a schematic illustration, and Not limited.
  • the position of the HUD area 5 is adjusted in the vertical direction 5a as a setting that matches the state of the viewpoint 6 of the driver seated in the driver's seat, in other words, as a calibration.
  • an arrow image for navigation, an image representing the distance to the destination, and the like are displayed as examples of the virtual image 9 in the HUD area 5.
  • the HUD area 5A is located at the position shown in the figure. It is formed.
  • the position of this HUD area 5A may be described as an initial position, a reference position, a default position, a center position, a first position, etc.
  • FIG. 6 shows the configuration of the position of the formation of the HUD region 5 with respect to the windshield 3 according to the rotational state of the concave mirror M1 when the windshield 3 is viewed forward from the driver's viewpoint 6.
  • FIG. 6 shows the position in the vertical direction 5a as shown in FIG. 5 according to the rotational state of the concave mirror M1 when the windshield 3 is viewed forward from the driver's viewpoint 6.
  • the reflected light from the concave mirror M1 travels in the direction shown by the solid arrow, and the HUD area 5A is located at the position shown in the figure. It is formed.
  • the rotational state of the concave mirror M1 regarding the rotation axis J2 is set to a predetermined state L as shown by the dotted line by driving the motor 62, the reflected light from the concave mirror M1 is reflected as shown by the dotted line arrow.
  • the HUD region 5L is formed at the position shown in the figure, moving further to the left than in state A.
  • the position of this HUD area 5L may be described as a left position, a second position, etc.
  • the HUD region 5R is formed at the position shown in the figure, moving further to the right than in state A.
  • the position of this HUD area 5R may be described as a right position, a second position, etc.
  • the left position and the right position are not distinguished, they may be collectively referred to as the left and right positions or the second position.
  • the HUD area 5 can be rotated left and right within a predetermined movement range. It can be moved in direction 5b.
  • region 5 is illustrated as the center point of a rectangular area
  • FIG. 6 shows a case in which the HUD device 1 is designed so that the amount of movement of the HUD region 5 in the left-right direction 5b is larger than the amount of movement in the up-down direction 5a of FIG. 5, the design is not limited to this.
  • the HUD area 5 is movable in the left-right direction 5b, so when viewed from the driver's viewpoint 6, the apparent FOV of the HUD area 5 is the HUD area 5L, 5A, 5R at each position. This is a large range that combines the following.
  • FIG. 7 shows a first configuration example of functional blocks of the HUD device 1 according to the first embodiment.
  • the HUD device 1 includes a control section 101 that is a controller, a communication section 103, a display device driving section 105, and a mirror mechanism M1.
  • the mirror mechanism M1 is the aforementioned concave mirror, and includes a first mirror drive section 111 and a second mirror drive section 112.
  • the HUD device 1 in this embodiment includes a storage unit 102, an audio input device 106, and an audio output device 107, but is not limited thereto. These units are connected to each other via a bus 109 or the like, and can input/output and communicate with each other.
  • control unit 101 is a controller or a control device.
  • the control unit 101 implements control functions and the like based on processing by a processor.
  • the control function is a function to control the entire HUD device 1 and each part, and includes a function to control the position of the HUD area 5.
  • the control unit 101 realizes functions by software program processing or a dedicated circuit.
  • the present invention is not limited to this, and the HUD device 1 of the present invention may not include the control unit 101.
  • the control unit of the vehicle can function as the control unit 101 of the HUD device 1. In such a case, the method of controlling the entire HUD device 1 and each part by the control unit of the vehicle is the same as that of the control unit 101 of the HUD device 1.
  • the storage unit 102 is configured using a storage device or the like.
  • the storage unit 102 includes, for example, a nonvolatile memory 102A and a volatile memory 102B.
  • the storage unit 102 stores various data and information handled by the control unit 101 and the like, including computer programs.
  • the communication unit 103 is a device equipped with a communication interface.
  • the communication unit 103 is connected to the control unit 100 (for example, an electronic control unit: ECU) via an interface such as a CAN (Controller Area Network) or a LIN (Local Interconnect Network) of the vehicle 2 as a communication interface, and is capable of communicating. be.
  • ECU electronice control unit
  • CAN Controller Area Network
  • LIN Local Interconnect Network
  • the display device drive unit 105 is a device that drives the light source device 11 and the LCD 12 of the video display device 10 based on control from the control unit 101, and includes a drive circuit and the like.
  • the first mirror drive unit 111 and the second mirror drive unit 112 are devices that drive the concave mirror M1, which is a mirror mechanism.
  • the mirror first drive unit 111 is a mechanism including a motor 61 of the first rotation axis J1 shown in FIG. 2 and the like.
  • the second mirror drive unit 111 is a mechanism that includes a motor 62 and the like of the second rotation axis J2 as shown in FIG. 6 and the like.
  • the audio input device 106 is composed of a microphone, a circuit, and the like.
  • the audio output device 107 is composed of a speaker, a circuit, and the like. Although a case is shown in which the HUD device 1 is equipped with the audio input device 106 and the audio output device 107, the HUD device 1 is not limited to this. Device 107 may also be used.
  • the control unit 101 in FIG. 7 acquires input information such as vehicle information 4 (FIG. 1), ADAS information, and event information from the control unit 100 as a CAN signal 701 through the communication unit 103.
  • the input information includes detection signals of various sensors, information as a result of processing the detection signals by the control unit 100, and the like.
  • the input information also includes information on an object in the actual scene detected based on the image of the camera 90, for example, and alert information and navigation information to be superimposed on the object.
  • the control unit 101 uses a control function to generate video information to be displayed as a virtual image on the HUD area 5, as necessary, based on such input information.
  • the control unit 101 generates a video signal and the like for controlling the display device driving unit 105 based on the video information.
  • control unit 101 when the HUD device 1 performs audio output, the control unit 101 generates audio output information and controls the audio output device 107. Furthermore, when inputting the voice of a user such as a driver, the control unit 101 performs voice recognition based on the input voice of the voice input device 106 and receives predetermined instructions.
  • the configuration is not limited to the example shown in FIG. 7, and the HUD device 1 may be equipped with various sensors, for example.
  • the control unit 101 may use the detection information of the sensor to determine and detect the state of the HUD device 1 and the state of the vicinity of the HUD device 1, and perform predetermined control.
  • FIG. 8A shows a second configuration example of functional blocks of the HUD device 1 according to the first embodiment.
  • the second configuration example shows a more detailed configuration example with respect to the first configuration example.
  • the control unit 101 of the HUD device 1 includes an MCU (Micro Controller Unit) 800, a memory 810, a vehicle information acquisition unit 815, a display driver 820, an operation input unit 825, and the like.
  • the video display unit 200 includes a solar radiation sensor 66 and the like in addition to the same components as described above.
  • the control unit 101 is configured to include an MCU 800.
  • the MCU 800 includes a processor, memory, peripheral functions, and the like.
  • Memory 810 corresponds to nonvolatile memory 102A and volatile memory 102B in FIG.
  • the vehicle information acquisition unit 815 is a device that acquires the vehicle information 4 of the vehicle 2, and can be implemented using the communication unit 103 in FIG. 7 or the like.
  • the display driver 820 is a driver that drives the LCD 12.
  • the operation input unit 825 is a part that inputs and obtains operation input information for the HUD device 1 by a user such as a driver, although it can be omitted, and can be implemented using, for example, a control panel with a touch panel or a remote control.
  • the operation input unit 825 may receive operation input information from the control unit 100 of the vehicle 2 via CAN communication.
  • the control unit 100 acquires operation input information input by the driver using a device such as a button provided on the steering wheel 8 or the like of the vehicle 2, and transmits it to the HUD device 1.
  • the control unit 101 may perform predetermined control according to the operation input information.
  • the solar radiation sensor 66 is installed near the concave mirror M1 or the opening 7, for example.
  • the solar radiation sensor 66 detects the incidence of external light such as sunlight.
  • the HUD device 1 may similarly use a temperature sensor 412 (FIG. 4). Note that the solar radiation sensor 66 may be part of the sensors shown in FIG. 4, and the HUD device 1 may receive detection information of the solar radiation sensor 66 from the control unit 100.
  • the MCU 800 includes a video data generation section 801, a distortion correction section 802, a light source adjustment section 803, a HUD area position change section 804, a mirror change section 805, a protection processing section 806, etc. as functional blocks realized based on processing by a processor.
  • the video data generation unit 801 generates video data related to the virtual image 9 to be displayed in the HUD area 5 based on input information such as the vehicle information 4. Based on the video data, the distortion correction unit 802 takes into account the curvature of the windshield 3 and corrects the distortion so that the virtual image 9 displayed in the HUD area 5 becomes an image with a suitable shape without distortion. Performs correction processing and outputs video data after distortion correction.
  • the light source adjustment unit 803 adjusts the on/off state of the light source of the light source device 12, the amount of light, etc. in accordance with the video data and the like.
  • the HUD area position changing unit 804 performs control processing to change and adjust the position of the HUD area 5 based on the vehicle information 4, ADAS information, navigation information, etc., or operation input information by the user. As a specific example, the HUD area position changing unit 804 determines to change/adjust the position of the HUD area 5 if a predetermined condition is satisfied based on ADAS information and navigation information. Then, the HUD area position changing unit 804 controls the rotation of the concave mirror M1 in order to move it to the determined position of the HUD area 5.
  • the HUD area position changing unit 804 and the mirror changing unit 805 have both a changing function in the vertical direction 5a as shown in FIG. 5 and a changing function in the horizontal direction 5b as shown in FIG. This is the part that includes control.
  • the mirror changing section 805 is a section that drives and controls the rotation of the concave mirror M1 according to the control from the HUD area position changing section 804.
  • the mirror change unit 805 drives and controls the mirror first drive unit 111 using a first drive signal.
  • the first mirror drive unit 111 is a mechanism that includes the first rotating shaft J1 and the motor 61 described above.
  • the mirror changing unit 805 drives and controls the mirror second driving unit 112 using the second drive signal.
  • the second mirror drive unit 112 is a mechanism that includes the second rotating shaft J2 and the motor 62 described above.
  • the protection processing unit 806 blocks external light from entering the housing 60 of the HUD device 1 based on the detection information of the solar radiation sensor 66, and performs protection to prevent panel burnout of the LCD 12, which is a display device. This is the part that performs processing.
  • the protection processing unit 806 performs protection processing based on the detection information of the solar radiation sensor 66 when it detects the incidence of external light such as sunlight from the opening 7 as shown in FIG. 3 or FIG. 9 described later. , control is performed to transition to the above-mentioned external light incidence prevention mode (in other words, protection mode).
  • the protection processing unit 806 cooperates with the HUD area position changing unit 804 and controls the concave mirror M1 to be in a rotational state (state s2 in FIG. 3) corresponding to the protection mode.
  • control unit 100 may include an audio data generation unit, an audio driver, etc. as other components, and in that case, the audio output device 107 in FIG. 7 or the audio output device of the vehicle 2. Audio output may also be performed from the above. Examples of the audio output include navigation and alert audio outputs that correspond to the display of the virtual image 9.
  • FIG. 8B shows a third configuration example that is a modification to the second configuration example of FIG. 8A.
  • the configuration example in FIG. 8B differs from FIG. 8A in that the HUD area position changing unit 804 is provided in two parts: a HUD area position up/down adjustment unit 804A and a HUD area position left/right moving unit 804B.
  • the mirror changing section 805 is provided in two parts: a mirror vertical adjustment section 805A and a mirror left/right moving section 805B. That is, in the configuration example of FIG. 8B, the control and drive for adjusting the HUD area 5 in the vertical direction 5a and the control and drive for moving the HUD area 5 in the left-right direction 5b are divided into two parts and performed independently and in parallel. It is set in.
  • the HUD region position vertical adjustment unit 804A performs control to adjust the position of the HUD region 5 in the vertical direction 5a by rotating the concave mirror M1 around the rotation axis J1, for example, based on operation input information.
  • the mirror vertical adjustment section 805A drives the mirror first drive section 111 according to the control from the HUD area position vertical adjustment section 804A.
  • the HUD area position left/right moving unit 804B moves the position of the HUD area 5 in the left/right direction 5b by automatically rotating the concave mirror M1 around the rotation axis J2 based on, for example, the vehicle information 4 or ADAS information. control.
  • the mirror left/right moving unit 805B drives the mirror second driving unit 112 under control from the HUD area position left/right moving unit 804B.
  • protection mode control can be applied in FIG. 8B as well as in FIG. 8A using the solar radiation sensor 66 and the protection processing unit 806. In that case, the protection processing unit 806 cooperates with the HUD area position vertical adjustment unit 304A.
  • FIG. 9 is a perspective view showing an example of mounting the video display unit 200 of the HUD device 1 in FIG. An example implementation is shown.
  • a module of the video display device 10 an optical system such as a mirror M2 and a concave mirror M1, a dustproof cover for the opening 7, and the like are fixed to the housing 60.
  • the image light from the mirror M2 is reflected by the concave mirror M1 so that the optical axis is indicated by a dashed line, passes through the dustproof cover of the opening 7, and is emitted to the outside.
  • the optical axis of incidence of external light such as sunlight is shown by a solid line arrow in the opposite direction to the optical axis of such image light.
  • a solar radiation sensor 66 is installed at one location on the dustproof cover of the opening 7.
  • the solar radiation sensor 66 detects the incidence of external light such as sunlight on the dustproof cover and the concave mirror M1 in a range 66a shown by a cone, for example, and outputs detection information.
  • the direction of incidence of external light such as sunlight is assumed to be opposite to the direction of the optical axis of the image light.
  • the light source device 11 is configured as a module having an LED board, a heat sink, a collimator, a polarization conversion element, a light guide, a diffuser plate, etc., as a mounting example.
  • This light source device 11 generates light source light that is controlled to have specific polarization and has directivity at a narrow divergence angle.
  • the display device 12 including the LCD 12 uses the light source light as a backlight to generate and emit directional image light.
  • the virtual image 9 in the HUD area 5 is formed as a directional virtual image 9 based on such image light.
  • the LED board is a board that has a plurality of LED elements as semiconductor light source elements.
  • the heat sink radiates heat from the LED board.
  • a collimator is provided on the exit side of the light emitted from each LED element of the LED board.
  • the collimator is an element that controls the traveling direction of light, and converts the light from the LED element into substantially parallel light and emits it.
  • a polarization conversion element is provided on the exit side of the light from the collimator.
  • the polarization conversion element is an element that aligns polarization characteristics, and converts substantially parallel light from the collimator that has random polarization into light that has linear polarization.
  • the polarization conversion element is configured by combining a polarization conversion prism and a wavelength plate.
  • a light guide is provided on the exit side of the light from the polarization conversion element.
  • the light guide receives the linearly polarized light from the polarization conversion element, and controls the light distribution and outputs the light while reflecting it in an output direction different from the input direction, that is, in the direction where the LCD 12 is located, by the reflecting part.
  • the light guide includes a reflection section that performs reflection and light distribution control.
  • the reflecting portion is formed by alternately repeating each of a plurality of reflecting surfaces and each of a plurality of connecting surfaces, and each reflecting surface is set to have a different direction.
  • the light emitted from the light guide enters the diffusion plate, is diffused, and enters the back side of the LCD 12.
  • the LCD 12 uses this incident light as a backlight to generate image light.
  • the image light emitted from the display surface of the LCD 12 becomes directional image light.
  • FIG. 10 shows a perspective view of an example of the mounting configuration of the concave mirror M1.
  • the XZ plane is mainly shown so that the reflective surface, which is the main surface of the concave mirror M1, can be clearly seen.
  • FIG. 11 shows a plan view of the concave mirror M1 as viewed from each axial direction.
  • FIG. 12 shows the relationship between the HUD region 5 and an XY plan view of the concave mirror M1 viewed from above (Z-axis).
  • (X, Y, Z) coordinate system and direction in the description are described as a coordinate system matched to the concave mirror M1 in FIG. 10 and the like, unlike in FIG. 1 and the like.
  • the reflective surface of the concave mirror M1 is arranged on the XZ plane in FIGS. 10 and 10, but is arranged as a slope with respect to the XZ plane in FIGS. 2 and 9.
  • the configuration of the mechanism of the concave mirror M1 in the HUD device 1 of the first embodiment is as follows.
  • the concave mirror M1 includes a mirror holder 51, a concave mirror body 52, a first rotating shaft J1, a motor 61, a support member 63, a second rotating shaft J2, a motor 62, and the like.
  • the HUD area 5 is configured as a horizontally long screen where the size in the horizontal direction (horizontal direction within the screen) is larger than the size in the vertical direction (vertical direction within the screen), as shown in FIG. Ru. Therefore, correspondingly, the LCD 12 of the image display device 10 also has a horizontally long display surface, and the concave mirror M1, the reflective surface, and the effective area also have a horizontally long shape.
  • the axis extending in the lateral direction, which is the longitudinal direction of the concave mirror M1 is the X axis
  • the axis extending in the longitudinal direction, which is the lateral direction is the Z axis.
  • Rotation axes are provided for the X-axis and the Z-axis, respectively.
  • the X axis is a first rotation axis J1
  • the Z axis is a second rotation axis J2.
  • the concave mirror M1 (mirror holder 51 and concave mirror main body 52) around the rotation axis J1, which is the The vertical direction 5a is changed, and thereby the HUD area 5 moves in the vertical direction 5a.
  • the direction ra corresponds to upward movement as in state U and HUD area 5U in FIG. 5
  • the direction rb corresponds to downward movement as in state D and HUD area 5D in FIG.
  • the direction of projection of the reflected image light of the concave mirror M1 is changed to the left and right direction 5b as described above (FIG. 6 etc.), As a result, the HUD area 5 moves in the left-right direction 5b.
  • the angle of rotation around the rotation axis J2, which is the Z-axis, is ⁇ , and one direction of rotation is rc, and the opposite direction is rd.
  • the direction rc corresponds to movement to the left as in state L and HUD region 5L in FIG. 6, and the direction rd corresponds to movement in the right direction as in state R and HUD region 5R in FIG.
  • the first rotating shaft J1 and the motor 61 are supported by a support member 63.
  • the support member 63 is fixed to the housing 60 (FIG. 9).
  • the reflecting surface which is the illustrated main surface of the concave mirror body 52, has a concave curved surface. Furthermore, this curved surface may have a free-form surface shape or a non-axisymmetric shape that corresponds to the design of optical characteristics such as aberration correction and magnification.
  • the mirror holder 51 of the concave mirror M1 has a roughly frame shape, and is provided with a mirror holder axis serving as the first rotation axis J1 on the X axis extending in the longitudinal direction.
  • mirror holder shafts are provided as first rotational shafts J1 at vertically central positions on each of the left and right sides of the mirror holder 51.
  • a mirror holder 51 is fixed to the mirror holder shaft.
  • a motor 61 which is a first motor, is connected to the first rotating shaft J1 as a first drive system and a first drive device. The motor 61 is driven based on the drive control described above to rotate the first rotating shaft J1.
  • a concave mirror main body 52 is provided inside the frame of the mirror holder 51 of the concave mirror M1.
  • a mirror axis serving as a second rotation axis J2 is provided on the Z axis extending in the transverse direction of the mirror holder 51.
  • mirror shafts are provided at the left and right center positions on each of the upper and lower sides of the mirror holder 51.
  • a second rotation shaft J2 provided at the left-right center position of the concave mirror body 52 is rotatably connected to a bearing provided at the left-right center position of the mirror holder 51.
  • a concave mirror body 52 is fixed to the mirror shaft.
  • a motor 62 which is a second motor, is connected to the second rotating shaft J2 as a second drive system and second drive device. The motor 62 is driven based on the drive control described above to rotate the second rotating shaft J2.
  • the mirror holder 51 When moving the HUD area 5 in the vertical direction 5a as shown in FIG. 5, etc., the mirror holder 51 is rotated around the first rotation axis J1 by driving the motor 61. Following the rotation of the mirror holder 51, the concave mirror body 52, motor 62, etc. are also rotated around the first rotation axis J1 integrally with the mirror holder 51. With this rotation, the projection direction of the reflected image light from the concave mirror M1 is changed to the vertical direction 5a, so the position of the HUD area 5 moves in the vertical direction 5a.
  • the concave mirror main body 52 is rotated around the second rotation axis J2 by driving the motor 62.
  • the mirror holder 51 does not rotate and remains stationary, and only the concave mirror main body 52 is rotated with respect to the mirror holder 51.
  • the projection direction of the reflected image light from the concave mirror M1 is changed to the left-right direction 5b, so the position of the HUD area 5 moves in the left-right direction 5b.
  • FIG. 11 shows an XZ plan view
  • (B) shows a YZ plan view seen from the direction of arrow A
  • (C) shows an XY plan view seen from the direction of arrow B.
  • a motor 61 is installed on the left side of the mirror holder 51
  • a motor 62 is built in the lower side of the mirror holder 51.
  • the mirror holder 51 and the concave mirror main body 52 are in the initial position A, and the concave mirror main body 52 is arranged in the XZ plane along the four sides of the frame of the mirror holder 51. .
  • the first drive system and the second drive system may be implemented by separately providing gears and motors, for example.
  • the position of the drive system motor, etc. is not limited to this example, and may be in any position, both up and down and left and right.
  • the solid line shows the state A of the mirror holder 51 and the concave mirror main body 52 at the initial position
  • the broken line shows the state D rotated in the direction rb, for example.
  • State A is changed to state D by rotating the concave mirror M1 around the rotation axis J1 at a certain angle ⁇ in the direction rb.
  • state D the upper sides of the concave mirror body 52 and the mirror holder 51 are tilted forward in the Y-axis direction.
  • the direction of the image light from the concave mirror M1 is toward the front in the Y-axis direction and toward the bottom in the Z-axis direction. Thereby, the position of the HUD area 5 moves further downward in the up-down direction 5a.
  • the concave mirror main body 52 shows a state L in which the broken line is tilted to the left and rotated, and a solid line shows a state R in which it is rotated and tilted to the right, for example.
  • State A is changed to state R by rotating the concave mirror body 52 around the rotation axis J2 at a certain angle ⁇ in the direction rc.
  • the concave mirror main body 52 rotates in the direction rd at a certain angle ⁇ around the rotation axis J2, thereby changing to the state L.
  • state L the right side of the concave mirror body 52 is tilted so as to protrude rearward in the Y-axis direction. As a result, the position of the HUD area 5 moves further to the left in the left-right direction 5b.
  • state R the left side of the concave mirror body 52 is tilted so as to protrude rearward in the Y-axis direction. As a result, the position of the HUD area 5 moves further to the right in the left-right direction 5b.
  • FIG. 12 corresponding to FIG. 11(C) and FIG. 6, the rotation direction of the concave mirror body 52 about the second rotation axis J2 of the concave mirror M1 and the HUD area 5 corresponding to the rotation direction are shown. It represents the relationship with the direction of movement.
  • the lower side of FIG. 12 shows the concave mirror M1 as an XY plane view similar to FIG. 11(C), and the upper side of FIG. 12 shows the XZ plane as seen from the driver.
  • the movement of the position of the HUD area 5 is illustrated.
  • the broken line shows state A corresponding to the initial position
  • the solid line shows state R when tilted to the right.
  • the broken line shows the HUD area 5A at the initial position, center position, etc. corresponding to state A
  • the solid line shows the HUD area 5A at the right position corresponding to state R. 5R is shown.
  • the rotation of the concave mirror body 52 from the state A to the state R is a rotation at a certain angle ⁇ in the direction rd around the rotation axis J2.
  • the position of the rightmost HUD region 5R is determined according to the maximum angle ⁇ .
  • the dashed-dotted line arrow indicates the optical axis from the center point of the reflective surface of the concave mirror main body 52 to the center point of the HUD region 5R at the right position.
  • position of the HUD area 5 is expressed, for example, by the center point of a rectangle.
  • the position of the HUD area 5A in state A, which is the initial state, is represented by position 1201
  • position in state R, which has moved to the right is represented by position 1202.
  • Positions in the left-right direction 5b corresponding to the X-axis are represented by positions 1211 and 1212.
  • the amount or distance of movement 1200 from center position 1211 to right position 1212 is an amount or distance depending on the angle of rotation ⁇ .
  • the position of the HUD area 5 may be expressed by the position coordinates of the upper left point or the lower right point of a rectangle. Moreover, the rectangular size of the HUD area 5 hardly changes before and after the movement. Further, the rotation direction of the concave mirror is not limited to this embodiment, since it differs depending on the position of the concave mirror with respect to the vehicle.
  • the motor 61 and the motor 62 may each be coaxial and corotating, and there are no limitations on mounting details such as the installation position or type of the motor.
  • the motors 61 and 62 may be motors that can finely control the amount of rotation, such as stepping motors, or motors that can control the amount of rotation more coarsely and stepwise. Any available motor may be applied. In the former case, the position of the HUD area 5 can be controlled to move finely, and in the latter case, the position of the HUD area 5 can be controlled to move more coarsely and in stages.
  • various types of motors can be applied, such as a DC motor, an AC motor, a PM motor, an ultrasonic motor, an induction motor, and a stepping motor.
  • FIG. 13 is a schematic explanatory diagram showing an example of a real scene and a display example of display content of the virtual image 9 displayed in the HUD area 5 in the XZ plane when looking forward from the driver's viewpoint 6. It is.
  • the HUD area 5A indicated by a broken line frame indicates the HUD area 5 at the center position in the initial state.
  • the HUD device 1 acquires information on the vehicle traveling direction based on navigation information of the vehicle 2 and the like.
  • the vehicle traveling direction is, for example, a direction corresponding to a right turn at an intersection ahead, and corresponds to the forward direction (Y direction) along the own lane before the first right turn, and to the right direction (X direction) after the right turn.
  • the HUD device 1 rotates the concave mirror M1 around the second rotation axis J2 in accordance with the vehicle traveling direction.
  • the direction of rotation in accordance with the vehicle traveling direction corresponds to direction rd in FIG. 12 .
  • the HUD area 5 moves from the initial position of the HUD area 5A to the right position of the HUD area 5R, as shown in the figure.
  • Movement 1300 indicates movement from position 1301 of HUD area 5A to position 1302 of HUD area 5R as right movement.
  • the solid rectangular frame indicates the HUD area 5R at the right position after movement.
  • the rectangular frame that is the maximum range of the HUD area 5 is not displayed as a virtual image.
  • the virtual image 9a is an example of a navigation image (in other words, a navigation display) for navigating a right turn, as an example of the virtual image 9 displayed in the HUD area 5A at the initial position before movement.
  • Virtual image 9a is generated based on navigation information of vehicle 2.
  • Control unit 101 of HUD device 1 generates virtual image 9a based on navigation information from control unit 100 of vehicle 2.
  • This virtual image 9a is an AR image that matches the road surface.
  • This example of the virtual image 9a is composed of images of a plurality of triangles, and the plurality of triangles are arranged so as to curve from the road surface of the road going straight ahead to the road surface of the right turn destination.
  • the virtual image 9b is a navigation image after the virtual image 9a has been moved, as an example of the virtual image 9 displayed within the HUD area 5R at the right position after the movement.
  • the virtual image 9a also moves to the right like the virtual image 9b. Note that this is a case where the virtual images 9a and 9b are arranged at the same position within the HUD area 5 before and after the movement.
  • the virtual image 9c is an example of an alert image (in other words, an alert display).
  • This virtual image 9c is generated based on alert information included in the ADAS information of the vehicle 2.
  • Control unit 101 of HUD device 1 generates virtual image 9c based on alert information of ADAS information from control unit 100 of vehicle 2. For example, if a pedestrian 1303 is detected on the sidewalk on the right side of the vehicle 2 at a position diagonally in front of the right as seen from the vehicle 2, corresponding to the right turn destination, the pedestrian 1303 is This is an alert display targeting the pedestrian 1303 to call attention to the pedestrian 1303.
  • This alert image is an AR image adjusted to the position of the target pedestrian 1301.
  • the virtual image 9c that is this alert image is, for example, a ring-shaped image along the road surface, but is not limited to this, and may also be a frame image, an alert mark image, or the like.
  • the virtual image 9d and the virtual image 9e are examples of non-AR images displayed at a predetermined position within the HUD area 5.
  • the virtual image 9d is an example of an image that displays the current vehicle speed.
  • the virtual image 9e is an example of an image that displays the distance to a destination (for example, an intersection at which to turn right).
  • the virtual image 9d and the virtual image 9e are displayed at a predetermined position, for example, in a lower area within the HUD area 5.
  • the HUD device 1 of the first embodiment moves and changes the position of the HUD area 5, for example, in accordance with changes in the vehicle traveling direction.
  • the HUD device 1 forms the HUD 5A at the initial position, the center position, when the vehicle traveling direction is the forward direction (Y direction).
  • the HUD device 1 forms the HUD region 5R at the right position, for example, from immediately before the right turn to immediately after the right turn. do.
  • the amount of movement 1300 from the HUD area 5A at the initial position to the HUD area 5R at the right position and the corresponding rotation angle ⁇ of the concave mirror M1 may be set in advance in the HUD device 1, or may be controlled. It may be varied within the maximum range depending on the situation.
  • the HUD area 5 automatically moves from the HUD area 5A to the HUD area 5R under control. Thereby, during the right turn of the vehicle 2, the movement of the point ahead of the driver's line of sight (point of gaze) can be reduced.
  • the driver can reduce the movement of his or her line of sight between the virtual image 9 within the HUD area 5 and an object outside the HUD area 5 (for example, near a right turn destination). This can contribute to safe driving.
  • the virtual image 9b in the HUD area 5R after movement has changed to a position to the right of the virtual image 9a in the HUD area 5A before movement. Therefore, when the gaze point of the driver's line of sight moves further to the right side due to a right turn, for example, even when looking toward the pedestrian 1303, the virtual image 9b in the HUD area 5R after moving from the driver. easy to see.
  • An example of the moving distance of the gaze point of the driver's line of sight is the distance between the virtual image 9a in the HUD area 5A and the pedestrian 1303 before the movement, and the distance between the virtual image 9b in the HUD area 5R and the pedestrian 1303 after the movement. An example is the distance from the pedestrian 1303. After the latter movement, the movement distance between the gaze points is smaller.
  • the pedestrian 1303 to be alerted is not present in the HUD area 5A before movement. Therefore, conventionally, an alert image such as the virtual image 9c cannot be displayed in the HUD area 5A before movement. Even if an alert image such as the virtual image 9c is displayed in the HUD area 5A before movement, the display cannot be suitably matched to the position of the target pedestrian 1303.
  • the HUD device 1 can display an alert image such as the virtual image 9c in the HUD region 5R after movement as a suitable AR virtual image matched to the position of the pedestrian 1303. In this way, according to the first embodiment, the virtual image that could not be displayed before the movement of the HUD area 5 can also be displayed after the movement.
  • the HUD device 1 of the first embodiment moves the position of the HUD area 5, for example, from the right HUD area 5R to the initial position HUD area 5A, based on a change in the vehicle traveling direction. . Then, the HUD device 1 displays the virtual image 9 in accordance with the HUD area 5A after the movement.
  • a more suitable HUD area 5 can be formed.
  • the position of the HUD area 5 can be moved and changed in the left and right direction 5b. Can be adjusted. Thereby, the position of the virtual image 9 displayed within the HUD area 5 can be moved, changed, and adjusted in the left-right direction 5b, and the apparent FOV as seen from the driver can be increased.
  • the HUD area 5 can be moved to the left and right positions according to the vehicle traveling direction, for example, and the AR virtual image 9, such as an alert for a target object, can be suitably displayed.
  • the difference in the position of the driver's line of sight and the amount of viewpoint movement between the virtual image 9 in the HUD area 5 and the object in the real scene can be reduced, contributing to safe driving.
  • the HUD device 1 of the first embodiment can change and move the position of the HUD area 5 in the left-right direction 5b by using the mechanism of the concave mirror M1.
  • the specific input and conditions for controlling the change/movement of the position of the HUD area 5 in the above example, the case where vehicle traveling direction information is used was explained, but this is not limited to this. , various possibilities are possible, as described below.
  • the control unit 101 (see FIG. 7, etc.) of the HUD device 1 changes the position of the HUD area 5 in the left-right direction 5b by rotating the concave mirror M1 according to information from the control unit 100 of the vehicle 2.
  • the case of controlling changes and movements has been explained.
  • the present invention is not limited to this, and a portion other than the control unit 101 of the HUD device 1 or an external device to the HUD device 1, such as the control unit 100 of the vehicle 2, may perform such control using the mechanism of the concave mirror M1 of the HUD device 1. may be performed in the same way.
  • the HUD device 1 changes the position of the HUD area 5 to the left or right in response to the driver's operation of the steering wheel 8 shown in FIG. May be controlled. Further, the HUD device 1 may be controlled to change the position of the HUD area 5 to the left or right according to operation input information by the driver, for example, according to the operation of a button provided on the steering wheel 8.
  • the rotation amount and rotation angle range of the concave mirror M1 around the first rotation axis J1 and the rotation amount and rotation angle range of the concave mirror M1 around the second rotation axis J2 refer to, for example, the concave surface relative to the vehicle. It varies depending on the arrangement position of the mirror M1 and is determined depending on the required function, and may be different.
  • FIG. 14 A hardware configuration of a modified example of the HUD device 1 of the first embodiment will be described using FIG. 14 and subsequent figures.
  • This modification has the following main points of difference from the first embodiment (FIG. 10, etc.).
  • the mechanism related to the concave mirror M1 does not include a mechanism part that rotates around the first rotation axis J1 described above to adjust the position of the HUD area 5 in the vertical direction 5a, but rotates around the second rotation axis J2. It has only a mechanical part that rotates to move the position of the HUD area 5 in the left-right direction 5b.
  • the HUD device 1 of the modified example rotates the concave mirror M1 around the rotation axis J2 according to the vehicle information 4 etc., as in the first embodiment, to change the position of the HUD area 5 (display area) from side to side. Move in direction 5b.
  • FIG. 14 shows a configuration example of the mechanism of the concave mirror M1 in the HUD device 1 of the modification.
  • (A), (B), and (C) of FIG. 14 show plan views seen from each direction similarly to FIG. 11.
  • the concave mirror M1 does not require the above-mentioned mirror holder 51, rotating shaft J1, or motor 61, and has a concave mirror body 52.
  • the concave mirror body 52 has a rotating shaft J2 and a motor 62 connected to the rotating shaft J2.
  • the rotation axis J2 corresponds to the Z axis in the coordinate system of the concave mirror M1, and the vertical axis extending in the lateral direction.
  • the HUD device 1 rotates the concave mirror body 52 around the rotation axis J2 by driving and controlling the motor 62.
  • the direction of the image light from the reflective surface of the concave mirror body 52 is changed to the left-right direction 5b with respect to the windshield 3, as in FIG. Moving.
  • state A is shown as the initial state of the concave mirror body 52, and the rotation angle ⁇ of the rotation axis J2 is the initial angle.
  • FIG. 14C shows a state L in which the concave mirror body 52 is tilted to the left and a state R in which it is tilted to the right.
  • a left-position HUD region 5L and a right-position HUD region 5R are formed similarly to FIG. 6.
  • FIG. 15 shows an example of the configuration of functional blocks in a modified HUD device 1 in the same way as FIG. 7 .
  • the configuration of FIG. 15 differs from FIG. 7 in that it does not include the mirror first drive section 111. Furthermore, the control unit 101 and the control function do not include a portion that controls driving of the first mirror drive unit 111.
  • the first mirror drive unit 111 in FIG. It is sufficient to control only the change in the left-right direction 5b, and the mirror change unit 805 drives and controls only the second mirror drive unit 112.
  • the HUD area position vertical adjustment section 804A, the mirror vertical adjustment section 805A, and the mirror first drive section 111 in FIG. 8B are deleted. .
  • the HUD area position left/right moving unit 804B only needs to perform control to change the position of the HUD area 5 in the left/right direction 5b, and the mirror left/right moving unit 805B drives and controls only the second mirror drive unit 112.
  • the effect of the functional portion of the first embodiment that moves the HUD area 5 in the left-right direction 5b can be obtained. Furthermore, according to the modified example, there is no need to provide the first rotating shaft J1, the motor 61, the mirror holder 51, etc. in the concave mirror M1, so the mounting configuration can be simplified.
  • FIG. 16 shows a configuration example of the mechanism of the concave mirror M1 in the HUD device 1 which is another modification to the HUD device 1 of the first embodiment.
  • the concave mirror M1 is not provided at the center position in the X-axis direction as described above with respect to the second rotation axis J2, but is provided at a position closer to either the left or right.
  • the second rotation axis J2 of the concave mirror M1 is provided at a position closer to the right side when the reflective surface is viewed from the X-Z plane, as shown in (A). .
  • the concave mirror main body 52 is shown in a state A corresponding to the initial state by a broken line, and in a state R tilted to the right by a solid line.
  • the HUD region 5R at the right position is formed similarly to FIGS. 6 and 12.
  • the HUD device 1 rotates the concave mirror body 52 around the rotation axis J2 with respect to the mirror holder 51 based on the drive of the motor 62.
  • the left side of the concave mirror body 52 comes out backward in the Y-axis direction from the state A. Rotate to .
  • the HUD area 5 moves to the right position, similar to FIGS. 6 and 12.
  • FIG. 17 shows an example of the structure of the mechanism of the concave mirror M1 in another modification.
  • the second rotation axis J2 of the concave mirror M1 is closer to the left side when viewed from the XZ plane, which is a plan view of the reflective surface, as shown in (A). It is located in the same position.
  • the concave mirror body 52 when the concave mirror body 52 is rotated in the direction rc around the rotation axis J2, the right side of the concave mirror body 52 is on the rear side in the Y-axis direction from the initial state A. Rotate so that it appears. As a result, the HUD area 5 moves to the left position similarly to FIGS. 6 and 12.
  • the concave mirror body 52 when the concave mirror body 52 is rotated in the direction rd around the rotation axis J2, the concave mirror body 52 rotates from the initial state A so that the right side of the concave mirror body 52 comes out to the rear in the Y-axis direction. do. As a result, the HUD area 5 moves to the right position, similar to FIGS. 6 and 12.
  • FIGS. 16 and 17 can be adopted. Further, these modifications can be similarly applied to the modification shown in FIG. 14, and the structure may be such that the mechanical portion related to the first rotation axis J1 is omitted.
  • the position where the second rotation axis J2 and the like are provided in the X-axis direction of the concave mirror M1 is not limited to the example described above, and can be selected according to the design.
  • FIG. 18 shows a configuration example of the mechanism of the concave mirror M1 in the HUD device 1 which is still another modification to the HUD device 1 of the first embodiment.
  • the concave mirror M1 is implemented not as a rotation mechanism using a rotation axis but as a slide mechanism.
  • the mechanism of the concave mirror M1 in this modification includes a mirror holder 51a, a concave mirror body 52, a rotating shaft J1, a motor 61, etc., and does not include the above-mentioned rotating shaft J2.
  • a rotating shaft J1 and a motor 61 are provided on the mirror holder 51a.
  • the mirror holder 51a is provided with a recess 51b in a portion that accommodates the concave mirror body 52.
  • a concave mirror main body 52 is set in the recess 51b, and the concave mirror main body 52 can slide in the X-axis direction along the concave surface of the recess 51b. This sliding is a three-dimensional movement along the concave surface.
  • a groove and a slide drive mechanism for sliding the concave mirror body 52 in the direction of the concave surface in the X-axis direction are mounted in the concave portion 51b.
  • the slide drive mechanism can be implemented using, for example, a motor.
  • the concave mirror main body 52 is in the initial state A with respect to the mirror holder 51a, and the broken line is the state R in which it has been slid to the left along the concave surface in the X-axis direction. It shows.
  • state R after this sliding movement, the direction of the image light from the reflective surface of the concave mirror main body 52 changes to the right, so the HUD area 5 moves from the initial position to the right position.
  • the function of moving the position of the HUD area 5 in the left-right direction 5b can be realized using a slide mechanism instead of a rotation mechanism, similar to the first embodiment.
  • the first rotating shaft J1 and the motor 61 may be omitted from the configuration shown in FIG. 18.
  • the HUD device 1 only has the function of moving the position of the HUD area 5 in the left-right direction 5b.
  • the mirror holder 51a is not the recess 51b but an opening similar to the first embodiment, and a sliding mechanism for the concave mirror body 52 is provided in the opening. Good too.
  • FIG. 19 shows, as a modified example of the configuration of the HUD area 5, another configuration example of the HUD area 5 according to the detailed configuration of the HUD device 1.
  • FIG. 19 illustrates a case where a user U1, who is a driver in the vehicle 2, views a virtual image 9 of the HUD area 5 forward (on the front side of the Y-axis) via the windshield 3.
  • the HUD region 5 may be formed in multiple regions. In the example of FIG.
  • the HUD area 5 is formed in the Y-axis direction corresponding to the longitudinal direction of the vehicle 2, and the HUD area 5F is formed on the upper side at a position farther away from the driver, and It has two HUD areas, the HUD area 5N being formed on the lower side at a closer position.
  • These HUD regions 5F and 5N may be arranged to be separated from each other when viewed from the driver, or may be arranged to partially overlap. Further, these HUD regions 5F and 5N may be formed as slopes when viewed from the driver.
  • these HUD areas 5F and 5N may be used depending on the content of the virtual image 9.
  • an AR virtual image 9 may be displayed in the HUD area 5F
  • a non-AR virtual image 9 may be displayed in the HUD area 5N.
  • an AR virtual image 9 such as an alert is displayed in accordance with a target such as a pedestrian 1901 in the actual scene.
  • a virtual image 9 such as vehicle speed is displayed in the HUD area 5N.
  • a plurality of HUD regions 5 as shown in FIG. 19 can be formed according to the detailed configuration of the HUD device 1.
  • an optical element for changing the optical distance may be inserted in addition to the mirror M2 and the concave mirror M1.
  • the mechanism of the concave mirror M1 in the first embodiment can be similarly applied.
  • the HUD device 1 of the first embodiment has a function of controlling the position of the HUD area 5 by a controller based on the hardware configuration including the concave mirror M1.
  • This function is a function realized by a controller that is a part of the HUD device 1 (for example, the control unit 101 in FIG. 7). Note that this function is not limited to this, and this function may be realized by the control unit 100 that controls the HUD device 1 in FIG. 1. That is, this function may be any function realized by the in-vehicle system of the vehicle 2.
  • the HUD device of the prior art example has a motor 61 mounted on the longitudinal axis of rotation J1 so as to adjust the inclination of the concave mirror in the vertical direction (FIG. 5) in order to adjust the HUD area in the vertical direction.
  • the motor 61 was driven and controlled by a controller.
  • the rotation axis in the lateral direction is used to adjust the inclination of the concave mirror M1 in the left-right direction (FIG. 6).
  • a motor 62 is mounted on J2, and the motor 62 is driven and controlled by a controller (control unit 101 in FIG. 7). The controller needs to appropriately drive and control the motor 61 and the motor 62.
  • the two types of motors 61 and 62 are individually controlled (mirror first drive unit 111 and mirror second drive unit 112 in FIG. 7).
  • the two types of motors 61 and 62 can be of the same type or different types. Since it is desirable that the vertical movement of the HUD area 5 (FIG. 5) be able to be finely adjusted, it is desirable that a type such as a stepping motor that can be finely adjusted be used as the motor 61 for the first rotation axis J1. . On the other hand, the horizontal movement of the HUD area 5 (FIG. 6) does not necessarily require as fine an adjustment as in the vertical direction. Therefore, the motor 62 for the second rotating shaft J2 may be of a type such as a stepping motor that allows fine adjustment, but a less expensive motor may be used to move only a fixed amount.
  • the HUD area in the vertical direction is first automatically moved to an approximate suitable position, and then finely adjusted to the optimal position and height by the user's manual operation (for example, by operating the handle or remote control buttons). be done.
  • the movement of the HUD area in the left and right direction may be manually operated by the user, but it is assumed that the HUD device will automatically control the movement in accordance with the vehicle situation. That is, it is assumed that the controller automatically moves the HUD area to a position within a movable range in the left-right direction without any user operation.
  • the position of the HUD area is dynamically changed while the vehicle is driving. For example, conditions and triggers for moving the HUD area in the horizontal direction are determined, and when and when the conditions/trigger are met, the controller moves the HUD area in the horizontal direction.
  • FIG. 20 shows a basic control flow for automatically moving the position of the HUD area 5 in the left-right direction 5b (FIG. 6) by the controller (control unit 101 in FIG. 7, etc.) of the HUD device 1 according to the first embodiment.
  • the flow in FIG. 20 corresponds to the configurations in FIGS. 7 and 10.
  • step S1 the HUD device 1 is activated.
  • step S2 the HUD device 1 performs HUD display preparation processing.
  • This preparation process is a process for making the HUD area 5 ready to display a virtual image.
  • This preparation process includes at least a motor drive process for determining the position of the HUD area 5 in the vertical direction 5a.
  • the controller of the HUD device 1 controls the motors 61, 62, etc. of the first mirror drive section 111 and the second mirror drive section 112 of the mirror mechanism M1 to maintain the position of the HUD area 5 at a predetermined position immediately after activation. state.
  • the predetermined state immediately after startup is a predetermined initial position in both the vertical direction 5a and the horizontal direction 5b, or a position that has been adjusted and saved according to user settings.
  • the latter state is a state in which the state of the position saved when the HUD device 1 was started last time is reproduced when it is started this time.
  • the vertical position 5a of the HUD area 5 is set to a predetermined state
  • the horizontal position 5b is first set to the above-mentioned initial position and center position (HUD area 5A in FIG. 6).
  • step S3 the controller of the HUD device 1 performs processing to start displaying the virtual image 9 on the HUD area 5 based on the activation.
  • step S4 the controller of the HUD device 1 drives the motor 62 of the second mirror drive unit 112 when a predetermined condition regarding movement of the HUD area 5 in the left-right direction 5b is satisfied or when a predetermined trigger is received. Take control. Thereby, the controller moves the HUD area 5 toward the left and right positions in the left and right direction 5b.
  • step S4 the position of the HUD area 5 is in the middle of movement or transition. In this example, it is assumed that the virtual image 9 is not displayed within the HUD area 5 during the movement in step S4.
  • step S5 the drive in step S4 is performed to the target, so that the position of the HUD area 5 is changed to a desired controlled position in the left-right direction 5b, that is, the left position of the HUD area 5L in FIG. 6, or the right position.
  • the state of HUD area 5R is reached.
  • the controller displays a virtual image 9 corresponding to the left and right positions of the HUD area 5.
  • step S6 the controller of the HUD device 1 controls the mirror when a predetermined condition is satisfied or when a predetermined trigger is received regarding cancellation of the movement of the HUD area 5 in the left and right direction 5b, in other words, movement to the center position.
  • Control is performed to drive the motor 62 of the second drive unit 112.
  • the controller of the HUD device 1 moves the HUD area 5 toward the center position in the left-right direction 5b.
  • the center position here is the original position before movement to the left and right positions, and the original position is also stored for control purposes.
  • the position of the HUD area 5 is in the middle of movement or transition. In this example, it is assumed that the virtual image 9 is not displayed within the HUD area 5 during the movement in step S6.
  • step S7 the drive in step S6 is performed to the target, so that the position of the HUD area 5 returns to the initial position in the left-right direction 5b, the original central position, and returns to the state of the HUD area 5A in FIG. Become.
  • the controller displays a virtual image 9 corresponding to the state at the center of the HUD area 5.
  • step S8 the controller of the HUD device 1 performs processing to end the display of the virtual image 9 on the HUD area 5 based on a predetermined condition or trigger (for example, the end of driving).
  • step S9 the controller of the HUD device 1 drives and controls the motor 61 of the first mirror drive unit 111 to rotate the concave mirror M1 around the first rotation axis J1 as a protection mode control when the HUD is not in use. It is rotated until it reaches a predetermined angle state (state s2 in FIG. 3).
  • a protection mode a state s2 in which external light does not enter or hardly enters the concave mirror M1 is established, and panel burnout of the LCD 12 is prevented.
  • step S10 the HUD device 1 finishes starting up the HUD device 1.
  • the above control flow example is based on the center position (HUD area 5A) as the position of the HUD area 5, and when a predetermined condition (for example, the first condition) is satisfied, the position of the HUD area 5 is temporarily set to the left and right positions (HUD areas 5L, 5R). ), and if the predetermined condition is not met, or if the condition for cancellation (for example, the second condition) is met, the left and right positions are canceled and the center position (HUD area 5A) is changed/transitioned to the center position (HUD area 5A). It is control based on the concept of returning to the state. Control is not limited to this kind of thinking.
  • the position of the HUD area 5 can be moved to any position within the maximum movable range according to predetermined conditions, triggers, etc.
  • FIG. 21 shows a control flow in a modified example.
  • the flow in FIG. 21 corresponds to the configurations in FIGS. 15 and 16.
  • the position of the HUD area 5 is moved only in the left-right direction 5b.
  • the position (height position) of the HUD area 5 in the vertical direction 5a is set to a predetermined state in advance and is fixed.
  • control regarding the above-mentioned protection mode using the vertical direction 5a is not performed.
  • the HUD area 5 is not moved in the vertical direction 5a when the HUD device 1 is activated and terminated.
  • the controller does not control the movement of the HUD area 5 in the vertical direction 5a, but the position and orientation of the HUD area 5 in the vertical direction 5a is controlled using other hardware or manual operation by the user. Fine adjustments may be made.
  • step S11 the HUD device 1 is activated.
  • step S12 the controller of the HUD device 1 performs processing to start displaying the virtual image 9 on the HUD area 5 based on the activation.
  • steps S13 to S17 are the same as steps S4 to S8 in FIG. 20.
  • step S18 the HUD device 1 finishes starting up the HUD device 1.
  • FIG. 22 shows an example of a flow related to controlling the motor 61 and the like of the first mirror drive unit 111 for moving the HUD area 5 in the vertical direction 5a.
  • step S21 the HUD device 1 is activated. In other words, the HUD device 1 is turned on.
  • step S22 the HUD device 1 performs processing to start displaying a virtual image in the HUD area 5.
  • step S23 the controller of the HUD device 1 determines whether to adjust the display height of the HUD area 5. For example, if the user inputs an operation for the adjustment, the result is Yes in step S23, and the process proceeds to step S24. If adjustment is not necessary, the answer is No, and the process advances to step S26.
  • step S24 the controller of the HUD device 1 determines the amount of adjustment regarding the position (display height) of the HUD area 5 in the vertical direction 5a.
  • step S25 the controller drives the motor 61 to move the concave mirror M1 around the rotation axis J1 in accordance with the adjustment amount by controlling the drive of the first mirror drive unit 111 based on the determined adjustment amount. Rotate it at the specified angle. Thereby, the position and orientation of the HUD area 5 in the vertical direction 5a is adjusted according to the user's viewpoint.
  • step S26 the HUD device 1 determines whether there is an instruction to terminate the HUD device 1, and if there is, the process proceeds to step S27, and if there is not, the process returns to step S23.
  • step S27 the HUD device 1 performs a process of terminating the display of the virtual image 9 in the HUD area 5, and in step S28, the HUD device 1 terminates the startup of the HUD device 1. In other words, the HUD device 1 is turned off.
  • FIG. 23 shows an example of a flow related to controlling the motor 62 and the like of the second mirror drive unit 112 for moving the HUD area 5 in the left-right direction 5b.
  • the HUD device 1 is in a state where the virtual image 9 can be displayed in the HUD area 5.
  • the vehicle 2 is traveling and the user (driver) is driving.
  • step S32 the controller of the HUD device 1 checks the control flag.
  • This flag is a flag for checking and controlling the current state of control regarding the position of the HUD area 5.
  • This flag is an example of a means used in information processing to realize a function. The information is not limited to this, and information representing a mode or the like related to the position of the HUD area 5, information directly representing the position of the HUD area 5, etc. may be used.
  • this flag has an on/off value, for example, 1 for on and 0 for off. When this flag is OFF and has a value of 0, it indicates that the position of the HUD area 5 is the reference position, initial position, central position, etc.
  • HUD area 5A When this flag is on and has a value of 1, This represents a state in which the position of the HUD area 5 is at a predetermined left position (HUD area 5L) or right position (HUD area 5R). Also, to explain the correspondence between flags and modes, when the flag is off (value 0), it represents a mode in which the HUD area 5 is in the center position, and when the flag is on (value 1) represents a mode in which the HUD area 5 is in a predetermined left and right position.
  • step S32 if the flag is off with a value of 0 (center position mode), the process proceeds to step S33, and if the flag is on with a value of 1 (left and right position mode), the process proceeds to step S38.
  • step S33 the controller of the HUD device 1 displays, in the HUD area 5 at the center position, the virtual image 9 with content tailored to the center position.
  • step S33 the controller determines whether a predetermined condition/trigger regarding movement of the HUD area 5 to the left-right position in the left-right direction 5b is satisfied. If the condition/trigger is satisfied, the process proceeds to step S34; if not, the process remains in step S33, and the virtual image 9 is displayed in the HUD area 5 at the central position.
  • the predetermined conditions/trigger etc. will be described later.
  • step S34 the controller of the HUD device 1 determines the moving direction, moving amount, etc. for moving the HUD area 5 from the center position to predetermined left and right positions.
  • the moving direction, moving amount, etc. are determined according to the conditions/trigger, etc. of step S33. For example, when moving from the HUD area 5A at the center position to the HUD area 5R at the right position in FIG.
  • the amount corresponds to
  • the amount of movement has a correspondence relationship with an amount such as the rotation angle of the rotation axis J2, and can be converted into each other.
  • step S35 the controller of the HUD device 1 drives and controls the motor 62 and the like of the second mirror drive unit 112 based on the movement direction and movement amount determined in step S34, thereby moving the concave mirror M1 to the rotation axis J2. Rotate around. Thereby, the HUD area 5 moves in the direction and amount controlled in the left-right direction 5b.
  • step S36 the left and right movement by the amount of movement in step S35 is completed, and the HUD area 5 is at the specified left and right position.
  • step S37 since the HUD area 5 has been set to the left and right positions in step S36, the controller changes the flag from off to on, a value of 1 (representing the left and right position mode).
  • step S38 the controller displays the virtual image 9 in the HUD area 5 at the left and right positions, the content of which matches the left and right positions.
  • step S38 the controller determines whether a predetermined condition/trigger regarding movement of the HUD area 5 to the center position in the left-right direction 5b (in other words, cancellation of left-right movement) is satisfied. In other words, in step S38, the controller determines whether the condition/trigger regarding the movement to the left or right position in step S33 is not satisfied. If the condition/trigger in step S38 is satisfied, the process proceeds to step S39; if not, the process remains in step S38, and the virtual image 9 is displayed in the HUD area 5 at the left and right positions.
  • step S39 the controller determines the movement direction, movement amount, etc. for returning the HUD area 5 from the left and right positions to the center position. For example, when returning from the right position to the center position, the moving direction, moving amount, etc. are determined according to the conditions/trigger, etc. in step S38. For example, when moving the HUD area 5R at the right position in FIG. 6 back to the HUD area 5A at the center position, the moving direction is to the left, and the amount of movement is the same as the amount of movement 1200 in FIG. It's the amount.
  • step S40 the controller of the HUD device 1 drives and controls the motor 62, etc. of the second mirror drive unit 112 based on the movement direction and movement amount determined in step S39, thereby moving the concave mirror M1 to the rotation axis J2. Rotate around. Thereby, the HUD area 5 moves in the direction and amount controlled in the left-right direction 5b.
  • step S41 the left and right movement by the amount of movement in step S40 is completed, and the HUD area 5 is at the specified center position.
  • step S42 the controller changes the flag from on to off to a value of 0 (representing the center position mode), since the HUD area 5 has reached the center position in step S41.
  • FIG. 24 shows an explanatory diagram of management of states and modes regarding the position of the HUD area 5, particularly the position in the left-right direction 5b.
  • the controller of the HUD device 1 manages the state regarding the position of the HUD area 5 using flags/modes. In other words, the controller always grasps and manages whether or not the HUD area 5 is moving in the left-right direction 5b with respect to a predetermined reference position/center position.
  • each mode regarding the state of the left and right positions of the HUD area 5 is defined and shown as modes S0, SL, SR, etc.
  • the mode starts from mode S0 in the reference position/center position state corresponding to the off value 0 described above.
  • the HUD device 1 starts up, it starts from mode S0, and when the HUD device 1 ends, it returns to mode S0 and then ends.
  • Table (A) shows an example of basic management, and has three modes: modes S0, SL, and SR.
  • modes S0, SL, and SR the possible positions of the HUD area 5 are the center position (HUD area 5A), the left position (HUD area 5L), and the right position (HUD area 5R).
  • mode S0 the HUD area 5 is in the initial state and at the center position.
  • mode SL the HUD area 5 is moved to the left and is at the left position.
  • mode SR the HUD area 5 is moved to the right and is in the right position.
  • mode S0 can transition to mode SL or mode SR.
  • the HUD area 5A at the center position is the HUD area 5L at the left position or the HUD area at the right position. It is possible to move to area 5R.
  • Mode SL can be changed only to mode S0, in other words, movement can be made from the left HUD area 5L to the center HUD area 5A.
  • Mode SR can be changed only to mode S0, in other words, movement can be made from the right HUD area 5R to the center HUD area 5A.
  • the table in (B) shows, as another control example, an example of mode management in a case where the position of the HUD area 5 is allowed to move stepwise in the left-right direction 5b.
  • the possible positions of the HUD area 5 are the center position (HUD area 5A), the left position of the first stage, the left position of the second stage, and the stationary position excluding the state in the middle of movement.
  • the HUD area 5 In mode SL1, the HUD area 5 is in the first stage leftward movement state, and the position is the first left position. In mode SL2, the HUD area 5 is in the second stage left movement state, and the position is the second left position. In mode SR1, the HUD area 5 is in a first stage rightward movement state, and the position is the first right position. In mode SR2, the HUD area 5 is in the second stage rightward movement state, and the position is the second right position. In this example, the second left position of mode SL2 is the most left position, and the second right position of mode SR2 is the most right position.
  • mode S0 can transition to mode SL1 or mode SR1.
  • Mode SL1 can transition to mode S0 or mode SL2.
  • Mode SL2 can transition only to mode SL1.
  • Mode SR1 can transition to mode S0 or mode SR2.
  • Mode SR2 can transition only to mode SR1.
  • the above transition destinations only indicate the relationship between transitions to adjacent positions, and in terms of control, it is also possible to move, for example, from the center position of mode S0 to the second left position of mode SL2 all at once.
  • the above example (B) is an example in which two-stage movement is defined in one direction, but the invention is of course not limited to this, and multi-stage movement can be defined.
  • FIG. 25 shows an example of the position of the HUD area 5 when the horizontal movement position is provided in two stages as shown in FIG. 24(B).
  • the HUD area 5 at the left position includes a HUD area 5L1 at the first left position at the first stage and a HUD area 5L2 at the second left position at the second stage.
  • the HUD area 5 at the right position includes a HUD area 5R1 at the first right position at the first stage and a HUD area 5R2 at the second right position at the second stage.
  • the rotational state of the rotational axis J2 of the concave mirror M1 is in the state L2, the HUD region 5L2 at the second left position is formed.
  • FIG. 26 similarly shows a case where the HUD area 5 is provided with stepwise moving positions in a modified example.
  • the HUD area 5A at the reference position is configured to be able to move only to the right, and for example, there are four right positions in the right direction.
  • the HUD areas 5 at the right position include a HUD area 5R1 at the first right position in the first stage, a HUD area 5R2 at the second right position in the second stage, and a HUD area 5R2 at the third right position in the third stage.
  • FIGS. 27 and 28 summarize the main conditions/trigger related to the movement of the position of the HUD area 5.
  • FIG. 27 shows start conditions corresponding to step S33
  • FIG. 28 shows end conditions corresponding to step S38.
  • the table in FIG. 27 shows classifications and start conditions for a plurality of conditions/triggers.
  • the table in FIG. 28 similarly shows classifications and termination conditions.
  • the classification includes navigation information, operation information, driver's line of sight information, obstacle detection information, driving lane information, automatic driving information, and others.
  • the start condition is a condition for moving the HUD area 5 from the center position, which is the reference position, to the left and right positions.
  • the end condition is a condition for moving the HUD area 5 at the left and right positions back to the center position as a result of satisfying the start condition, in other words, a condition for canceling the state at the left and right positions.
  • “navigation information” is a classification of conditions using navigation information obtained based on the aforementioned vehicle information 4, etc.
  • the starting conditions for left/right movement using “navigation information” are determined based on, for example, the planned left/right turn that can be determined from the navigation information, the distance from the current position to the point of the right/left turn, and the estimated time to reach the point. It is a condition. This condition is, for example, that the distance to the right or left turn point is within 50 meters, or that the predicted arrival time is within 10 seconds.
  • the HUD area 5 is moved to the left and right positions (in the case of a right turn, to the right position).
  • the traveling direction and route of the vehicle 2 are recalculated based on the navigation information at each point in time, and the traveling direction and route are updated.
  • the HUD device 1 makes a determination regarding the movement of the position of the HUD area 5 at each update timing, and moves the position of the HUD area 5 according to the determination result. For example, initially, the traveling direction of the vehicle 2 is straight ahead (for example, north), and the HUD area 5 is at the center position.
  • a right turn schedule at the intersection ahead is obtained based on the navigation information, or in other words, a schedule for the vehicle 2 to change its traveling direction from north to east, and the vehicle 2 has arrived just before the right turn intersection.
  • the HUD device 1 moves the HUD area 5 to the right position using the schedule as a starting condition. Vehicle 2 turns right at the intersection, and its direction changes from north to east.
  • the HUD device 1 returns the HUD area 5 to the center position when the right turn is completed and the direction of travel changes from north to east.
  • “Operation information” is a classification of conditions using a predetermined manual operation by the user.
  • the manual operation is an input operation using a device installed in the vehicle 2.
  • the start conditions in “operation information” are conditions according to the user's manual operation, such as the driver's operation of the turn signal, the operation of the steering wheel 8, the left/right movement button installed in the vehicle 2, etc. This is a condition linked to the operation of a key, etc.
  • the start condition is, for example, that the direction indicator is operated in response to a right or left turn.
  • Driver's line of sight information is a classification of conditions according to the driver's line of sight movement.
  • the starting conditions for using the “driver's line of sight information” include a condition that the driver's line of sight movement has increased relative to the reference, and a condition that the direction of the driver's line of sight is largely directed to the left or right with respect to the front.
  • an in-vehicle camera is used as the camera 90 in FIG. 2 to monitor the driver's eye position and line of sight.
  • An example of the start condition is when the amount of movement of the driver's line of sight becomes equal to or greater than a reference value.
  • start condition is whether the driver's line of sight is tilted in the left-right direction 5b (X-axis direction) with respect to the front of the vehicle (Y-axis direction) or the HUD area 5A in the center position in FIG. can be mentioned.
  • “Obstacle detection information” is a classification of conditions using detection information about obstacles to the movement of the vehicle 2 and objects to be careful of (including pedestrians, for example) obtained based on the vehicle information 4 etc. .
  • the starting conditions for "obstacle detection information” are conditions according to the direction in which the detected object is located and the distance between the object and the host vehicle.
  • the starting condition for "obstacle detection information” is, for example, that a target object such as another vehicle or pedestrian is detected in the left and right directions in front of the own vehicle, and the distance to the target object is at least a predetermined distance. There are conditions.
  • this starting condition includes a condition that a target object exists outside the HUD area 5A at the central position.
  • the traveling direction of the vehicle 2 is straight forward, and the HUD area 5 is at the center position.
  • a pedestrian is detected on the right side in front of the vehicle's own lane based on the obstacle detection information.
  • the HUD device 1 moves the HUD area 5 to the right position and displays an alert regarding the pedestrian.
  • the HUD device 1 detects a state in which the vehicle 2 is moving forward and the pedestrian detected on the right side in front of the own lane is out of the sensor detection range (in other words, not detected) or in the HUD area on the right.
  • the HUD area 5 is returned to the center position with the termination condition being that the HUD area 5 is out of the area.
  • Movement control using the conditions of "obstacle detection information" is performed when the display range is narrower than the detection range due to the relationship between the detection range of the target object by the sensor of the vehicle 2 and the display range of the HUD area 5.
  • Traffic lane information is a classification of conditions using information regarding the traveling lane of the traveling vehicle 2, which is obtained based on the vehicle information 4 and the like.
  • the starting condition for "driving lane information” is, for example, a condition depending on whether the own vehicle is traveling in the left lane, center lane, or right lane when there are three lanes on each side.
  • the starting conditions are conditions responsive to those lane changes. For example, if the condition that the vehicle is traveling in the right lane of the three lanes on each side is met, or if the condition is that the vehicle has been changed from the center lane to the right lane, be careful of the sidewalk on the left side, etc.
  • the position of the HUD area 5 is moved to the left so that it is easier to view.
  • “Automatic driving information” is a classification of conditions using information related to automatic driving when the vehicle 2 has an automatic driving function and supports automatic driving.
  • the starting condition for "automatic driving information” is, for example, a condition in which automatic driving is enabled and using action schedule information such as turning left or right or changing lanes by automatic driving.
  • the control unit 100 having an automatic driving function determines a right turn in automatic driving, right turn schedule information is obtained as vehicle information 4, and predetermined conditions regarding the right turn (for example, similar to the above-mentioned "navigation information”) are obtained from the right turn schedule information. If the following conditions are satisfied, for example, the HUD area 5 is moved to the right position.
  • the conditions for the various items described above may be used not only singly but also in combination.
  • the movement control content such as how far and in which direction the HUD area 5 should be moved, can be determined with higher precision, increasing the reliability of the HUD device 1. be able to.
  • Combination condition 1 is a condition that combines the above-mentioned navigation information condition and the above-mentioned operation information condition, and is, for example, a condition that combines these two conditions by logical product (AND). For example, there may be a condition that a right turn schedule is obtained from the navigation information, and the driver operates a turn signal indicating a right turn.
  • combination condition 2 is a condition in which the condition of the obstacle detection information and the condition of the driver's line of sight information are combined by AND. For example, the following conditions may be mentioned: a pedestrian or the like is detected on the right side of the vehicle's own lane based on the obstacle detection information, and the driver's line of sight is directed to the right side of the road ahead.
  • a relationship such as priority may be defined in advance between a plurality of conditions or triggers (between a plurality of corresponding movement controls).
  • the movement control to be executed may be determined according to their priority. For example, traffic safety is given the highest priority, and conditions such as "obstacle detection information" are given a high priority, whereas conditions such as "navigation information” are given a relatively low priority.
  • the movement control corresponding to the condition of "obstacle detection information” will be more effective than the movement control corresponding to the condition of "navigation information.” will also be executed with priority.
  • termination conditions regarding left and right movement are as follows.
  • the termination conditions using "navigation information" are, for example, conditions based on information such as the completion of a right or left turn, a change in the road on which the vehicle is traveling, or a change in the direction of travel of the vehicle.
  • the termination conditions include a condition that the elapsed time from the time of switching to such a state has become a predetermined time or more, a condition that a schedule for the next right or left turn, etc. has been obtained.
  • the termination condition using "operation information" is, for example, as a manual operation by the user, after the user operates the direction indicator to the right turn position in time for a right turn as described above, the state of the direction indicator is determined according to the completion of the right turn. There is a condition that the vehicle returns to the neutral position from the right turn position. Further, the termination condition is that the steering angle of the steering wheel 8 returns to neutral upon completion of the right turn.
  • Termination conditions include, for example, when a right or left turn is completed and the user starts going straight again, so that the amount of movement of the line of sight becomes less than a reference value, or when the line of sight changes to the direction of going straight.
  • Termination conditions using "obstacle detection information” include conditions such as the detected obstacles and objects that require attention have disappeared, and the vehicle has passed them.
  • Termination conditions using "driving lane information" include conditions such as when the vehicle's traveling lane changes from multiple lanes to one lane (the number of lanes decreases) and when a lane change is completed.
  • Examples of termination conditions using "automatic driving information” include the completion of a right/left turn or lane change while automatic driving is on.
  • the end condition may also be a combination of conditions of multiple items.
  • An example of a combination condition related to the end condition is a condition in which a condition of driver's line of sight information and a condition of obstacle detection information are combined by AND. For example, a pedestrian that was detected on the right side of the own lane based on the obstacle detection information is no longer detected, in other words, vehicle 2 has passed the pedestrian and the driver's line of sight is now forward. Conditions include returning.
  • a combination condition may be a combination condition in which multiple conditions are sequentially connected on the time axis.
  • the control may be performed first using the conditions of the navigation information and then using the conditions of the operation information.
  • the HUD device 1 satisfies the start condition and moves the HUD area 5 to the right position. At this point, we are still just before the right turn point. Thereafter, the HUD device 1 determines whether or not the driver steers the steering wheel 8 to the right, for example, as a manual operation by the driver within a predetermined period of time.
  • the HUD device 1 satisfies the termination condition and moves the HUD area 5 from the right position back to the center position.
  • the HUD device 1 may always set the state in which the HUD area 5 is moved to either the left or right position as the default setting (in other words, the reference position, etc.).
  • This modification can meet the needs of, for example, a person who drives a right-hand drive car with a strong awareness of the sidewalk on the right side and wants to drive with the HUD area 5 always moved to the right position.
  • the default position is to be fixed at either the left or right position and not to be moved from that position.
  • FIG. 29 shows an example of setting the position of the HUD area 5 in this modification.
  • the HUD area 5 is configured to be movable, for example, to the left position (point pL) or right position (point pR) with respect to the center position (point pA),
  • a case is shown in which the user sets the HUD area 5R at the right position (point pR) as the default or initial position.
  • the virtual image 9 is always displayed within the HUD area 5R at this right position.
  • the HUD device 1 provides the user with a menu, a graphical user interface (GUI), etc. for setting the position of the HUD area 5 as described above, and the user uses the GUI to set the default position, conditions, etc. It may be possible to select and set.
  • GUI graphical user interface
  • FIG. 30 shows an example of a GUI using the HUD area 5, and an image of the GUI is displayed in the HUD area 5.
  • an item 3001 that allows the user to set the default position as the left and right positions of the HUD display area
  • an item 3001 that allows the user to set the default position as the left and right positions of the HUD display area, and a function that dynamically changes the left and right positions of the HUD display area as in the first embodiment.
  • It also has an item 3002 that allows the user to set on/off.
  • Item 3001 shows a case where the default position can be selected from three types, for example, a left-side position, a center position, and a right-side position. Further, as with a slide bar 3003 shown below, the default position of the HUD area 5 may be selected in detail within the maximum range.
  • the GUI of the HUD area 5 can be operated using, for example, the control unit 100 or the remote control of the HUD device 1.
  • the user may be able to set the initial position and destination position for that function as detailed settings. .
  • the initial position may be the center position and the movement destination position to be only the right position.
  • the destination position may be selectable from several positions as shown in FIGS. 25 and 26.
  • the above user settings are not limited to the GUI or man-machine interface using the HUD area 5, but may be an interface using other means such as a control panel of an in-vehicle system.
  • the default position of the HUD area 5 is set to either the left or right position, for example, the right position, and during use, depending on predetermined conditions/trigger, it can be set to the center position or the opposite left and right position. It is also possible to move the For example, in normal times, the default position is the right position (HUD area 5R of point pR in FIG. 29), and depending on the event that occurs, if a predetermined starting condition is met, the right position is changed to the center position or the left position. position, and if a predetermined termination condition is met, it is returned to the default right position.
  • the position of the HUD area 5 may be changed depending on the road on which the vehicle 2 is traveling, such as a city area or a highway.
  • the position of the HUD area 5 is fixed to the left and right positions.
  • the HUD area 5 can be set to be automatically moved to the right position on that road so that it is easier to pay attention to children on the sidewalk.
  • the controller of the HUD device 1 determines a specific road or area based on the location information of the vehicle 2, etc., and if the road on which the vehicle is traveling corresponds to a specific road, the controller of the HUD device 1 is configured to move to position.
  • FIG. 31 shows how the HUD area 5 looks without any measures regarding movement.
  • (A) of FIG. 31 shows an example of an image that the HUD device 1 displays on the display surface 1200 of the LCD 12 of the image display device 10 of FIG. 7 etc. in order to display the virtual image 9 in the HUD area 5.
  • the display screen 1200 displays an image 3101 representing the vehicle speed (for example, a text image of "25 km/h"), an image 3102 representing left turn navigation (for example, an arrow image for turning left), and an image representing an alert for an object. 3103 (for example, a ring-shaped image) is displayed.
  • FIG. (B) shows how the virtual image 9 displayed in the HUD area 5 with respect to the windshield 3 appears from the driver's viewpoint, based on the original video like (A).
  • the HUD area 5A is at the center position, which is the reference position.
  • a non-AR vehicle speed virtual image 3111 is displayed at a predetermined position within the HUD area 5, for example, on the right side of the lower side area.
  • a non-AR left turn virtual image 3112 is similarly displayed, for example, on the left side of the lower area.
  • an alert virtual image 3113 that is an AR is displayed in a superimposed manner within the HUD area 5 in accordance with the position of the target object (for example, the preceding vehicle 3114).
  • the display position of the image on the display surface 1200 of the LCD 12 as shown in (A) can be left and right as it is. It is also conceivable to move it in the direction. This allows the virtual image 9 within the HUD area 5 to be moved in the left-right direction.
  • FIG. 32(A) shows a case where the image shown in FIG. 31(A) is shifted to the right and displayed on the display surface 1200 of the LCD 12. Moreover, (B) shows the virtual image 9 displayed on the HUD area 5A based on the image of (A). However, since the display surface 1200 is limited, the vehicle speed image 3201 that was originally on the right side ends up outside the display surface 1200 (the broken line frame is the part that cannot be displayed). Therefore, the virtual image 3111 of the vehicle speed cannot be appropriately displayed in the HUD area 5A.
  • the alert image 3203 which is AR in the HUD area 5A, it is displayed as a virtual image 3113 at a position shifted to the right with respect to the position of the preceding vehicle 3114 which is the target object, and the appropriate three-dimensional display is , AR display is not possible. That is, such a prior art example does not meet the requirements for an AR-HUD.
  • FIG. 33 shows the position of the HUD area 5 using the image of the LCD 12 as shown in FIG.
  • the HUD area 5R is moved to the right position and the virtual image 9 is displayed within the HUD area 5R.
  • the broken line frame indicates the HUD area 5A at the center position before movement
  • the solid line frame indicates the HUD area 5A at the right position after movement.
  • An arrow 3300 indicates a movement amount 3300 to the right.
  • the virtual image 3313 based on the alert image 3103 is displayed at a position shifted to the right with respect to the preceding vehicle 3314, which is the target object, and appropriate three-dimensional display or AR display cannot be performed.
  • the requirements for an AR-HUD are not met. Therefore, further improvements are required regarding the left-right movement control of the HUD area 5.
  • non-AR vehicle speed virtual images and left turn navigation virtual images are conventionally displayed at predetermined positions, but in the above example, the virtual image 9 in the HUD area 5 is displayed on the right depending on the starting condition.
  • the state shown in FIG. 31(B) changes to the state shown in FIG. 33(A).
  • the virtual image 3111 etc. of the vehicle speed appears to have moved to the right.
  • the virtual image 3311 of the vehicle speed in the HUD area 5 similarly appears to have moved to the left.
  • Such movement of the non-AR virtual image 9 may make the driver feel uncomfortable, depending on the driver and the situation. Further, depending on the driver and the situation, even if the non-AR virtual image 9 temporarily moves left and right, the driver may not feel any discomfort.
  • FIG. 33(B) shows an example in which the appearance of the virtual image 9 in the HUD region 5R after rightward movement is adjusted in consideration of the above-mentioned problem.
  • the controller adjusts the display position of the image on the display surface 1200 of the LCD 12, etc.
  • the alert virtual image 3313b is displayed superimposed in the right HUD region 5R in accordance with the position of the preceding vehicle 3314, which is the target object. This satisfies the requirements for an AR-HUD.
  • non-AR vehicle speed virtual image 3111 is displayed as a virtual image 3311b at a position corresponding to the position in the HUD area 5A before movement in FIG. 31(B), and no movement to the right occurs. Not yet. This example assumes that it is desirable for the driver not to move the non-AR virtual image.
  • the left turn navigation virtual image 3112 since it has been moved to the right HUD area 5R, its position within the HUD area 5R corresponds to the position within the HUD area 5A before the movement in (B) of FIG. (shown as a dotted line virtual image 3312a). Therefore, one idea for the virtual image 3112 is to leave the display position on the LCD 12 unchanged and display it at a position moved to the right from the original position (shown as virtual image 3112b). In this case, virtual image 3112 appears to move to the right. Alternatively, if the movement to the right is undesirable, the image 3102 may be temporarily erased so that it is not displayed in the HUD area 5A. If even if the virtual image 3112 moves to the right, it is preferable to disappearing and becoming invisible, the former response is selected.
  • the display of the virtual image 9 as shown in FIG. 33 (B) is adjusted, it is at least more suitable than the display shown in (A), and is easier for the driver to understand and less likely to cause a sense of discomfort. can.
  • the area 501 near the right side that does not overlap with the HUD area 5A at the center position is not used for displaying the virtual image 9. . Since the apparent FOV is expanded by the HUD area 5R after the right movement, the virtual image 9 is displayed by effectively utilizing such an area 501. That is, when an object (for example, pedestrian 1303 in FIG. 13) is detected in such area 15, the conventional technology cannot appropriately display an alert virtual image, but according to the first embodiment, an alert virtual image cannot be appropriately displayed. It becomes possible to display.
  • FIG. 34 shows an example of the response when a pedestrian 3401 is detected near the front right side of the vehicle 2, although the situation is similar to the above-described FIG. 13.
  • (A) is an example of the prior art and shows a case where a virtual image 9 is displayed in the HUD area 5A at the central position.
  • a virtual image 9a for right-turn navigation is displayed in the HUD area 5A, but the pedestrian 3401, which is the detected object, is It is outside area 5A. Therefore, within the HUD area 5A, a virtual image of an alert for the pedestrian 3401 cannot be displayed as an AR.
  • HUD area 5 is moved from the center position in the same way as in (B) of FIG. 33.
  • a case is shown in which a virtual image 9c of an alert for a pedestrian 3401 is displayed as an AR in the HUD area 5R, particularly in the area 501 near the right side.
  • the controller of the HUD device 1 of the first embodiment controls whether or not to move the display of various virtual images 9 in the HUD area 5 to the left and right in accordance with the control of the horizontal movement of the HUD area 5 as described above. etc., and adjust the display on the LCD 12.
  • the controller comprehensively determines the type of virtual image 9, the situation of the vehicle 2 and the driver, the object, user settings, etc.
  • the controller determines and adjusts the display position of the AR such as the navigation virtual image 9a and the alert virtual image 9c so as to match the position of the object before and after moving the HUD area 5.
  • the controller considers aspects such as whether they can be displayed in the HUD area 5 after left and right movement and whether the driver allows the virtual image 9 to move. Determine and adjust the display position with comprehensive consideration.
  • the display position of the non-AR virtual image 9 will not be changed as much as possible, assuming that the driver does not like the movement of the non-AR virtual image 9, but this is not limited to the above-mentioned Depending on the driver, the situation, etc., the non-AR virtual image 9 may be displayed moving left and right. Further, whether or not the driver allows the movement of the non-AR virtual image 9, in other words, whether or not to move the non-AR virtual image 9 as the HUD area 5 moves left and right, etc., is determined similarly to FIG. 30. User settings may be made possible using a GUI.
  • FIG. 35 shows an example of ideas and countermeasures regarding the above problem in the first embodiment.
  • the example in FIG. 35 shows a case where the controller adjusts the display position so that the image of the AR object does not deviate from the target object.
  • (A) shows the display before adjustment
  • (B) shows the display after adjustment.
  • the lower part shows an example of displaying an image on the display surface 1200 of the LCD 12
  • the upper part shows an example of displaying the virtual image 9 in the HUD area 5A at the central position.
  • an alert virtual image 3502 is displayed aligned with the preceding vehicle 3501.
  • a virtual image 3503 of vehicle speed is displayed near the lower right in the HUD area 5A.
  • Images 3512 and 3513 are displayed at controlled positions on the display surface 1200 of the LCD 12 so as to form such a virtual image 9.
  • the HUD area 5 has been moved to the right position based on the start condition.
  • the controller adjusts the display on the LCD 12 based on calculations that take into account the amount of movement 3504 of the HUD area 5 to the right in order to display the virtual alert image 3502 in line with the preceding vehicle 3501 in the HUD area 5R at the right position.
  • the display position of the alert video 3512 on the screen 1200 is moved to the left.
  • the image 3512 after the movement is shown as an image 3512b.
  • the controller moves the AR object (for example, video 3512) on the display surface 1200 of the LCD 12 in the opposite direction (for example, to the left) with respect to the moving direction (for example, to the right) of the position of the HUD area 5. It is moved by an amount 3505 that corresponds to the movement amount 3504 (the same amount or a similar amount).
  • the controller determines whether to display the vehicle speed virtual image 3503 at the same display position before and after the movement of the HUD area 5, or whether to move it together with the movement of the HUD area 5.
  • the virtual image 3503 of the vehicle speed is moved along with the movement of the HUD area 5, and becomes a virtual image 3503b. Details will be described later.
  • FIG. 36 shows a method for adjusting the display position of an AR virtual image.
  • FIG. 36 shows an example of countermeasures in that case. If the position of the virtual image shifts with respect to the object due to left-right movement of the HUD area 5, one possible countermeasure is to temporarily erase the display of the virtual image ((B) in FIG. 33). ). Another idea is to adjust the display position so that the positional deviation between the object and the virtual image is as small as possible, even if it cannot be completely eliminated.
  • the HUD area 5A is located at the center position, and a motorcycle 3601 (schematically shown as an oval) is detected as an object on the left side in front of the vehicle 2, and the image 3603 on the LCD 12 is Based on this, a virtual image 3602 of an alert for the motorcycle 3601 is displayed in the HUD area 5A at the central position.
  • a motorcycle 3601 is detected as an object on the left side of the vehicle 2
  • a pedestrian 3605 is detected on the right side.
  • the controller determines that priority is given to alerting the pedestrian 3605 based on the start condition, and the HUD area 5A is moved to the right position.
  • a virtual image 3606 of an alert to the pedestrian 3605 can be suitably displayed based on the image 3607 of the LCD 12, as described above.
  • the motorcycle 3601 goes outside the HUD area 5R, it becomes difficult to display the virtual image 3602 of the alert to the motorcycle 3601. Before the movement, the alert virtual image 3602 could be displayed superimposed on the motorcycle 3601, but such a display cannot be continued within the HUD area 5R.
  • the virtual image 3602 is moved to the right as the HUD area 5 is moved to the right, the position of the virtual image 3602 with respect to the bike 3601 is shifted.
  • one possible countermeasure for the controller is for the controller to adjust the display position of the virtual image 3602 so that the presence of the alert is conveyed even if some deviation remains.
  • the controller adjusts the display position of the image 3603 on the LCD 12 so that more than half of the alert virtual image 3602 (ring in this example) is displayed. It is displayed near the left side in the HUD area 5R.
  • An image 3603 after adjustment is shown as an image 3603b
  • a virtual image 3602 after adjustment is shown as a virtual image 3602b.
  • This virtual image 3602b has a deviation from the position of the bike 3601, and only about the right half is displayed, but the deviation is smaller than if it were simply moved, and the driver is alerted to the bike 3601. is conveyed.
  • the virtual image of the vehicle speed is adjusted so that it is displayed at the same position before and after the movement of the HUD area 5.
  • the controller determines that it has become difficult to continue displaying the alert virtual image 3602 on the bike 3601 due to the size of the shift and positional relationship as a result of the rightward movement of the HUD area 5 (for example, the amount of shift is greater than a threshold ), you may give up on displaying the virtual image 3602 and temporarily erase it.
  • the controller determines that the position of the HUD area 5 returns to the center according to the end condition and that the virtual image 3602 of the alert to the motorcycle 3601 can be displayed again, the controller displays the virtual image 3602 again.
  • FIG. 37 shows a display example of the countermeasure plan.
  • FIG. 37 shows a situation similar to, for example, FIG. 36(B).
  • the controller displays a virtual image 3702 to warn against the bike 3601 near the left side in the HUD area 5R at the right position based on the image 3701 on the LCD 12.
  • This virtual image 3702 is, for example, a virtual image of an object with a leftward arrow, and represents that there is an object to be noted outside the HUD area 5 in the direction indicated by the arrow of the virtual image 3702.
  • This virtual image 3702 can inform the user that there is an object on the left side.
  • This virtual image 3702 is not limited to an arrow image, but may also be an icon representing "motorcycle" or the like, a character image, an alert mark, or the like.
  • FIG. 38 shows an example of adjusting the display position of a non-AR virtual image.
  • the virtual image representing the vehicle speed displayed two-dimensionally in the HUD area 5 is adjusted so that its position does not change as seen from the driver before and after the HUD area 5 moves left and right.
  • (A) shows an example before adjustment, in which virtual images 3801 and 3802 are displayed in the HUD area 5A at the center position.
  • (B) shows an example after adjustment, in which virtual images 3801, 3802, and 3803 are displayed within the HUD area 5R at the right position.
  • the controller moves the HUD area 5A in (A) to the right HUD area 5R in (B) in accordance with the start condition, and displays a virtual image 3803 based on the image 3813 on the LCD 12.
  • a predetermined virtual image 3803 for example, a balloon image
  • the controller adjusts so that when the position of the HUD area 5 changes from (A) to (B), the positions of the virtual images 3801 and 3802 do not change as seen from the driver.
  • the controller causes the images 3811 and 3812 to be moved and displayed on the display surface 1200 of the LCD 12 by an amount corresponding to the amount of movement of the HUD area 5 in the left direction, which is opposite to the moving direction of the HUD area 5. .
  • After adjustment is shown in images 3811b and 3812b.
  • FIG. 39 shows an example of adjustment when returning the HUD area 5 from the right position to the center position with respect to FIG. 38.
  • the controller may perform the adjustment opposite to the adjustment in FIG. 38.
  • FIG. 39(A) is a display example during adjustment in the right HUD area 5R. From this state, the controller returns the HUD area 5R to the central HUD area 5A as shown in (B) according to the termination condition. At this time, the virtual image 3803 formed by, for example, a balloon image is erased.
  • the controller adjusts so that when the position of the HUD area 5 changes from (B) to (A), the positions of the virtual images 3801 and 3802 do not change as seen from the driver.
  • the controller moves and displays the images 3811b and 3812b on the display surface 1200 of the LCD 12 in the right direction, which is the opposite direction of movement of the HUD area 5, by an amount corresponding to the amount of movement of the HUD area 5. .
  • After adjustment is shown in images 3811c and 3812c.
  • FIG. 40 shows another example of adjusting the display position of a non-AR virtual image.
  • This example shows a case where the display position of the non-AR virtual image viewed from the driver is changed as the HUD area 5 moves.
  • a virtual image 4001 representing the vehicle speed and a virtual image 4002 representing the distance to the destination are displayed as non-AR virtual images in the lower area of the HUD area 5A at the center position.
  • Virtual image 4002 is an example of a combination of an arrow image and a character image.
  • a virtual image 4001 is placed closer to the right side, and a virtual image 4002 is placed closer to the left side.
  • the controller moves the HUD area 5A to the right position, for example, according to the start condition.
  • the virtual image 4003 in order to display a virtual image 4003 in the form of a balloon image on the right side, it is assumed that the virtual image 4003 is moved to the HUD area 5A at the right position.
  • (B) shows the display state in the HUD area 5R at the right position, and a virtual image 4003 as a balloon image is displayed near the right side of the HUD area 5R.
  • the non-AR virtual image is allowed to change its position before and after the movement of the HUD area 5.
  • the controller makes the display positions of the vehicle speed image 4001 and the distance to the destination image 4002 the same on the display surface 1200 of the LCD 12 before and after the movement of the HUD area 5.
  • the virtual image 4001 and the virtual image 4002 are displayed at positions shifted to the right in accordance with the amount of movement of the HUD area 5 to the right.
  • control for displaying the virtual image 9 during the movement of the HUD area 5 may be added and applied.
  • the virtual image 4001 of the non-AR vehicle speed in FIG. 40 is displayed as moving rightward at a predetermined speed from the position of the virtual image 4001 in (A) to the position of the virtual image 4001 in (B). becomes.
  • FIG. 41 shows a control example and a display example for displaying the virtual image 9 while the HUD area 5 is moving in this way.
  • the virtual image 9 is basically not displayed in the HUD area 5 during movement between predetermined positions in the HUD area 5, but in the control example shown in FIG. A virtual image 9 is displayed in the HUD area 5 during movement between positions.
  • the state of the HUD area 5 during movement is changed to positions q0, q1, q2, q3, q4, etc. It shows.
  • the controller displays a virtual image 9 (for example, a star mark) in the HUD area 5 at each position and at a corresponding point in time during the movement from the HUD area 5A to the HUD area 5R.
  • the display position of the virtual image 9 changes as shown in the figure, and the driver visually perceives the virtual image 9 to move to the right.
  • the display interval during the movement may be controlled, for example, in consideration of load reduction.
  • FIG. 42 shows, as another countermeasure example, a control example in which, when the HUD area 5 is moved from side to side, the AR virtual image and the non-AR virtual image are hidden once at the start of the movement and redisplayed after the movement is completed.
  • (A) shows a situation in which the vehicle 2 is scheduled to turn right, and a virtual image a1 of the right turn navigation is displayed as an AR in the HUD area 5A at the center position, and a virtual image 4201 of the vehicle speed and a virtual image a1 of the right turn navigation are displayed as non-AR.
  • a virtual image 4202 of the distance to the point is displayed.
  • a case is shown in which a pedestrian 4203 is detected as an object to be careful of near the right turn point ahead.
  • the controller moves the HUD area 5A to the right position based on the start condition regarding the alert to the pedestrian 4203.
  • (B) shows the state when the movement starts from the HUD area 5A at the center position to the right, and the controller hides the virtual image 9 in the HUD area 5A from this start.
  • virtual images a1, 4201, and 4202 are hidden.
  • the controller hides the virtual image 9 in the HUD area 5 until the HUD area 5 moves to the right position.
  • it is assumed that moving the HUD area 5 to the right requires a predetermined time corresponding to rotational driving of the concave mirror M1 using the motor 62, and the virtual image 9 is hidden during this time.
  • FIG. (C) shows the HUD area 5R after moving to the right position.
  • the controller completes the movement to the right position, it displays the virtual image 9 again in the HUD area 5R.
  • necessary adjustments will also be made.
  • an alert virtual image 4204 is displayed in accordance with the position of the pedestrian 4203 within the HUD region 5R.
  • the display position of the right-turn navigation virtual image a1 on the LCD 12 is adjusted so that it is displayed at the same position as before the movement.
  • the display position on the LCD 12 is adjusted so that the virtual image 4201 of the vehicle speed is also displayed at the same position as before the movement.
  • the distance virtual image 4202 cannot be displayed at the same position as the original position, so in this example it is displayed at a position moved to the right.
  • the controller hides the virtual image 9 from the start of movement from the HUD area 5R, and redisplays the virtual image 9 in the HUD area 5A after the movement is completed.
  • a predetermined virtual image 9 indicating that the HUD area 5 is in the middle of movement may be displayed at a time during the movement as shown in (B).
  • the virtual image 9 may be, for example, an image of a message such as "Moving" or "Please wait.”
  • FIG. 43 shows an example of the arrangement of non-AR virtual images within the HUD area 5 as another example of countermeasures.
  • the non-AR virtual image is placed in the HUD area 5 at a position that does not significantly affect the horizontal movement of the HUD area 5, that is, at a position closer to the center.
  • the display position of the virtual image 9 changes before and after the movement.
  • the position of the non-AR virtual image within the HUD area 5 is set in advance so as to be closer to the center of the HUD area 5 than the left side or the right side. Thereby, as the HUD area 5 moves horizontally, the display position of the virtual image can be easily adjusted.
  • a virtual image 4301 of vehicle speed and a virtual image 4302 of left turn navigation are included as non-AR virtual images 9 in the HUD area 5A at the central position.
  • a range 4320 indicates the maximum range between the left side and the right side regarding horizontal movement of the HUD area 5, and it is assumed that movement is possible within this range.
  • the distance 4321 is, for example, the distance between the right side of the HUD area 5A and the right side of the HUD area 5R.
  • the distance 4322 is, for example, the distance between the left side of the HUD area 5A and the left side of the HUD area 5L.
  • the controller previously sets the placement position of the virtual image 4301 of the vehicle speed within the HUD area 5A to a position that is centered at a distance corresponding to a distance 4321 from the right side of the HUD area 5A, as shown. Thereby, when the HUD area 5 is moved to the left and right positions, even if the display position of the image of the virtual image 4301 on the LCD 12 is not adjusted, the virtual image 01 will fit within the HUD area 5 after the left and right movement.
  • (B) is an example of moving to the right HUD area 5R.
  • the virtual image 4301 of the vehicle speed can be adjusted to various positions.
  • the virtual image 4301 of the vehicle speed is adjusted so that the display position of the image on the display surface 1200 of the LCD 12 is shifted to the left in (B) compared to (A) (only the area is shown as the image 4311b).
  • ) may be displayed at the same display position as in (A), such as a virtual image 4301b (shown only by a frame line) within the HUD region 5R.
  • a virtual image 4301b shown only by a frame line
  • the virtual image 4301 of the vehicle speed is adjusted so that the display position of the image on the display surface 1200 of the LCD 12 is shifted to the right in (B) compared to (A) (only the area is shown as the image 4311c).
  • the placement position of the left turn navigation virtual image 4302 within the HUD area 5A is set in advance to a position that is centered at a distance corresponding to the distance 4322 from the left side of the HUD area 5A, as shown in the figure. You may.
  • FIG. 44 is a schematic explanatory diagram showing an example of control when moving the HUD area 5 from the center position to the right position when the vehicle 2 is scheduled to turn right.
  • FIG. 44 shows an XY plane view looking down on the vehicle 2 and the road.
  • a road in other words, a lane
  • the controller decides to move the HUD area 5 from the center position to the right position. In this example, when the controller reaches a point 4411 before the right turn point 4402, the controller moves it to the HUD area 5R at the right position.
  • the controller determines to move the HUD area 5 from the right position to the center position based on the termination conditions described above. In this example, immediately after the vehicle 2 turns right at point 4402, for example, when it reaches point 4412, the controller returns it to the HUD area 5A at the central position.
  • the controller of the HUD device 1 grasps the traveling speed of the vehicle 2 based on the vehicle information 4, and changes the position of the HUD area 5 in the left-right direction 5b according to the traveling speed. For example, when the current traveling speed is within a predetermined first range, the controller sets the HUD area 5 to the center position, which is the reference position. The controller changes the HUD area 5 to the left and right positions when the current traveling speed is within a second range different from the first range.
  • the position of the HUD area 5 may be moved further in the left and right direction, making it relatively easy for the driver's eyes to follow the vehicle. Therefore, it is valid.
  • the vehicle is traveling at a relatively high speed, such as when traveling on an expressway, the driver's line of sight is often farther away, so the position of the HUD area 5 is moved in the left and right direction more slightly.
  • the controller determines the destination position by calculating the amount of movement when moving the HUD area 5 left and right according to the value of the traveling speed. For example, it is determined that the lower the speed, the greater the amount of left and right movement. In the example of FIG.
  • the traveling speed decreases to a relatively low speed in response to applying the brakes for a right turn from near point 4411, so the controller controls the HUD at the right position according to the traveling speed at that time. Determine the amount of movement to area 5R.
  • the controller controls the operation of the HUD area 5 during movement when moving the position of the HUD area 5 to the left and right positions.
  • the transition speed, etc. may also be determined. For example, in the case of a right turn in Fig. 44, when moving from the HUD area 5A at the center position to the HUD area 5R at the right position, the movement is not performed steeply in a short period of time, but rather over a period of time depending on the traveling speed. It may also be controlled to move slowly.
  • the controller determines the movement start time, transition time, speed, etc. during the movement according to the traveling speed, and moves the HUD area 5 at the determined movement start time and speed. Further, during the movement at that time, display control of the virtual image 9 during the movement as shown in FIG. 41 may also be applied.
  • the speed during movement may be controlled depending on the traveling speed at that time. For example, immediately after a right turn, the traveling speed increases to a relatively high speed in response to the accelerator from near point 4412, so the controller moves to return to the central HUD area 5A according to the traveling speed at that time. The intermediate transition time and speed are determined, and the HUD area 5 is moved at the determined speed. As a result, the HUD area 5 returns sharply to the central position, for example.
  • FIG. 45 shows an explanatory diagram regarding distortion correction.
  • FIG. 45 schematically shows the curved surface of the windshield 3 in an XY plane view.
  • the HUD region 5 formed by the image light (the optical axis is indicated by a dashed line) from the concave mirror M1 of the HUD device 1 is schematically shown as a broken triangle.
  • a schematic image of the HUD area 5R (broken line) at the center position, which is the initial position, and the HUD area 5R (solid line) at the right position is shown.
  • Images are projected at locations with different curvatures on the curved surface of the windshield 3 (for example, points p1 and p2) in the HUD region 5A at the initial position and the HUD region 5R at the right position.
  • the curvature at point p1 and the curvature at point p2 are different.
  • the controller of the HUD device uses the distortion correction unit 802 to perform distortion correction processing on the video data to be displayed on the LCD 12.
  • the distortion correction unit 802 applies distortion correction processing according to the position of the target HUD area 5, based on the mode/state regarding the position of the HUD area 5 in the left-right direction 5b.
  • the distortion correction process includes determining parameter values such as the degree of distortion correction depending on the curvature.
  • the controller refers to a distortion correction table held in the memory 810, for example. In the distortion correction table, the curvature and characteristics of the optical system according to the position on the windshield 3 are set in advance, and the parameter values for distortion correction are set in association with the position, curvature, etc.
  • the controller refers to the distortion correction table when adjusting the vertical position 5a of the HUD area 5, and when adjusting the horizontal position 5b of the HUD area 5, and adjusts the position according to the position of the HUD area 5.
  • Determine parameter values for distortion correction The distortion correction unit 802 uses the parameter values to perform distortion correction processing on the video data for displaying the video on the LCD 12 according to the position of the HUD area 5.
  • FIG. 46 shows an example of displaying the results of distortion correction according to the position of the HUD area 5.
  • (A) of FIG. 46 shows an example of display on the HUD area 5A and LCD 12 at the center position
  • (B) shows an example of display on the HUD area 5R and LCD 12 at the right position.
  • a vehicle speed image 4611 and a right turn navigation image 4612 are displayed on the display surface 1200 of the LCD 12. Based on this image, a virtual image 4601 of vehicle speed and a virtual image 4602 of right-turn navigation are displayed in the HUD area 5A.
  • the controller moves the HUD area 5 to the right based on the start condition, makes the contents of the virtual images 4601 and 4602 the same before and after the movement, and displays the display positions of the virtual images 4601 and 4602 as seen from the driver. In this case, the values are set to remain the same.
  • the controller adjusts the display positions of the images 4611 and 4612 on the display surface 1200 of the LCD 12 as the HUD area 5 moves to the right. Specifically, images 4611 and 4612 are each displayed moved to the left.
  • the controller performs distortion correction so that the shape of the virtual images 4601 and 4602 as seen from the driver before and after the movement maintains the same shape without distortion, or so that the shape is as close as possible before and after the movement. .
  • the controller determines parameter values such as the degree of distortion correction for each pixel position of the object within the display surface 1200 of the LCD 12 that is associated with the position within the HUD area 5. For example, in the left and right arrangement of the characters in the virtual image 4601 and the left and right arrangement of the triangular arrows in the virtual image 4602, the degree of distortion correction to be applied is determined to be stronger and larger as the position moves to the right in the X direction. The degree of distortion correction is preferably determined for each pixel, but may be made more rough and determined for each object or area block. As a result of such distortion correction, the apparent shape of each virtual image 9 is maintained the same before and after the movement between (A) and (B).
  • FIG. 47 shows another display example of the results of distortion correction according to the position of the HUD area 5.
  • the controller adjusts the display content of the right turn navigation virtual image 4702 when the HUD area 5 is moved from the center position to the right position.
  • the virtual image 4702 is composed of, for example, five triangular arrow objects.
  • the display content of the virtual image 4702b has been changed so that it is composed of seven triangular arrow objects.
  • the position of the triangular arrow at the starting point is the same as the position before movement in (A), and the position of the triangular arrow at the end point representing the right turn destination is a position extending into the area 501.
  • the controller changes the display content of the virtual image 4702 to the virtual image 4702b so that the display content uses the expanded area 501. Adjust as follows. On the display surface 1200 of the LCD 12, the controller creates a video 4712b by moving the display position to the left, adding a triangular arrow, etc., based on the original video 4712. Then, the controller applies distortion correction processing to the image 4712b, similar to the example of FIG.
  • a virtual image 4702b is displayed in the HUD area 5R. From the perspective of the driver, the end point representing the right turn destination of the virtual image 4702 appears to extend to the right before and after the movement. This virtual image 4702b allows the driver to navigate right turns more effectively. Not limited to this example, it is possible to change the display content of the virtual image 9 by using an area that is enlarged as the HUD area 5 moves left and right.
  • FIGS. 48 to 51 show examples of control processing flows of the controller of the HUD device 1, which can realize the various control examples described above.
  • the flow shown in FIG. 48 and the like corresponds to the flow shown in FIGS. 20 to 23 combined with more detailed contents.
  • the flow shown in FIG. 48 and the like includes processing steps of controlling the movement of the HUD area 5 and adjusting the position of the object of the virtual image 9.
  • step S101 of FIG. 48 the HUD device 1 is activated.
  • step S102 communication such as CAN is established between the controller of the HUD device 1 as shown in FIG. 7 and the control unit 100.
  • step S103 the movement of the HUD area 5 in the vertical direction 5a is started based on the rotation of the concave mirror M1 in the vertical direction.
  • step S104 the movement of the HUD region 5 in the vertical direction 5a is completed based on the driving of the rotation of the concave mirror M1 in the vertical direction, and the HUD region 5 is in the state of the adjusted and controlled position in the vertical direction 5a. become.
  • step S105 the controller starts display preparation processing for the HUD area 5, and completes the processing. This allows the virtual image 9 to be displayed in the HUD area 5.
  • step S106 the controller determines the display content of the virtual image 9 to be displayed on the HUD area 5.
  • the display contents here include the type, number, and position of objects.
  • the types include the aforementioned AR or non-AR, vehicle speed, distance, navigation, alert, and GUI.
  • step S107 the controller checks the control flag or mode described above, and if the flag is OFF, that is, the center position mode (Yes), the controller proceeds to flow A, and if the flag is ON, that is, the left and right position mode. If it is the mode (No), the process proceeds to flow B.
  • step SA1 the controller determines whether a start condition/trigger regarding left/right movement is satisfied. If the conditions are satisfied (Yes), the process proceeds to step SA2, and if the conditions are not satisfied (No), the process proceeds to step SA7.
  • step SA2 the controller changes the flag from OFF to ON (representing the left/right position mode).
  • step SA3 the controller starts moving the HUD area 5 in the control-specified direction (left or right) in the left-right direction 5b based on driving the rotation of the concave mirror M1 in the left-right direction.
  • step SA4 the controller performs adjustment processing such as the display position of the image on the LCD 12, as adjustment for displaying the virtual image 9 within the HUD area 5 to which the virtual image 9 is to be moved left and right.
  • step SA5 the controller performs the distortion correction process as described above on the video signal to be displayed on the LCD 12, and obtains a video signal after distortion correction.
  • the HUD area before movement for example, HUD area 5A at the center position
  • the HUD area after movement for example, HUD area 5R at the right position
  • One possible method is to prepare a distortion correction table in advance and change the distortion correction table to be referred to depending on the destination.
  • step SA6 the controller completes movement of the HUD area 5 in the control-specified direction (left or right) in the left-right direction 5b based on driving the rotation of the concave mirror M1 in the left-right direction.
  • the process such as step SA4 is performed during the horizontal movement of the HUD area 5, but the process is not limited to this, and the process may be performed before or after the movement.
  • step SA7 the controller updates the display content of the virtual image 9 in the HUD area 5 before or after the horizontal movement or after the horizontal movement at that time, based on the video signal sent to the LCD 12.
  • the virtual image 9 corresponding to the pre-movement or post-movement mode an image on which adjustments such as step SA6 are reflected
  • the virtual image 9 for the right position is displayed within the HUD area 5 after moving to the right.
  • step SB1 the controller determines whether a termination condition/trigger regarding left/right movement is satisfied. If the conditions are satisfied (Yes), the process proceeds to step SB2; if the conditions are not satisfied (No), the process proceeds to step SB7.
  • step SB2 the controller changes the flag from ON to OFF (representing the center position mode).
  • step SB3 the controller starts moving the HUD area 5 from the left-right position to the initial position, which is the center position, in the left-right direction 5b based on driving the rotation of the concave mirror M1 in the left-right direction.
  • step SB4 the controller performs adjustment processing such as the display position of the image on the LCD 12 described above as adjustment for displaying the virtual image 9 in the HUD area 5 at the center position of the movement destination. Further, in step SB5, the controller performs the above-described distortion correction processing on the video signal to be displayed on the LCD 12 to obtain a distortion-corrected video signal.
  • step SB6 the controller completes the movement of the HUD area 5 to the center position in the left-right direction 5b based on driving the rotation of the concave mirror M1 in the left-right direction.
  • step SB7 the controller updates the display content of the virtual image 9 in the HUD area 5 before or after the movement to the central position at that time, based on the video signal sent to the LCD 12.
  • the virtual image 9 corresponding to the pre-movement or post-movement mode is displayed within the HUD area 5 at that time.
  • the virtual image 9 for the central position is displayed within the HUD area 5 after moving to the central position.
  • step SC1 the controller determines whether the termination condition of the HUD device 1 is satisfied, and if it is satisfied (Yes), the process proceeds to step SC2, and if not satisfied (No), the controller determines whether the termination condition of the HUD device 1 is satisfied. Proceed to step SC6.
  • step SC2 the controller starts a display end process for the HUD area 5, and ends the process.
  • step SC3 the controller starts moving the HUD area 5 in the vertical direction 5a based on driving the rotation of the concave mirror M1 in the vertical direction.
  • step SC4 the controller completes the movement of the HUD area 5 in the vertical direction 5a based on driving the rotation of the concave mirror M1 in the vertical direction.
  • the position after completion here is the initial position in the vertical direction 5a or the position set by the user.
  • step SC5 the controller ends the activation of the HUD device 1.
  • step SC6 the controller obtains display update information and updates the display in the HUD area 5 based on the display update information.
  • Step SC6 and subsequent steps are the same as steps S107 and subsequent steps in FIG. 48.
  • HUD device 1... HUD device, 2... Vehicle, 3... Windshield, 4... Vehicle information, 5... HUD area (display area), 6... View point, 7... Opening, 8... Handle, 9... Virtual image, 10... Image display device , 11... Light source device, 12... LCD (display device), M1... Image projection unit (concave mirror), M2... Mirror, J1... Rotation axis, J2... Rotation axis, 51... Mirror holder, 52... Concave mirror body, 61 ...Motor, 62...Motor, 63...Support member.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Instrument Panels (AREA)

Abstract

より好適なHUD領域を形成できる技術を提供する。本発明によれば、持続可能な開発目標の「3すべての人に健康と福祉を」に貢献する。HUD装置は、映像表示装置と、映像投射部とを備える。映像投射部から反射された映像光に基づいてHUD領域が形成される。HUD領域における水平方向に対応した横方向を第1方向、垂直方向に対応した縦方向を第2方向とする。HUD領域の形成の左右方向での位置として、初期位置である第1位置と、左右位置である第2位置とを有する。所定条件を満たした場合には、映像投射部を駆動することで、HUD領域の位置を第1位置から第2位置に移動させ、第2位置のHUD領域に虚像を表示させる。

Description

ヘッドアップディスプレイ装置
 本開示は、ヘッドアップディスプレイ装置(Head-Up Display:HUDと記載する場合がある)の技術に関する。
 先行技術例としては、特開2010-70066号公報(特許文献1)が挙げられる。特許文献1には、「単眼ヘッドアップディスプレイ(HUD)において投影する映像の投影位置が、車両の振動や運転者の姿勢の変化により一方の目(単眼)の視線上からずれることを低減し、表示される情報の視認性を高める」旨が記載されている。特許文献1には、「1つの実施の形態は、投影情報を発生する表示情報発生手段32と、表示情報発生手段により発生された表示すべき情報を運転者の視線に沿ってフロントシールド上で重ね合わせるコンバイナ11と、車両の振動を検出するために運転者の視線に入る風景を取り込む前方カメラ3と、運転者と車両の相対位置の変化を取り込むドライバーカメラ5とを有し、前方カメラとドライバーカメラにより取得した情報に基づいて、コンバイナに投影する情報の位置を変化する」旨が記載されている。
特開2010-70066号公報
 車両に搭載されるHUD装置は、実際の風景の対象物とは別に車速などの情報に対応した虚像(言い換えると非ARの虚像)を所定の位置に表示させる機能の他に、実際の風景の対象物に対し位置を合わせるようにして虚像を重畳表示する機能であるAR(Augmented Reality)機能を有するものがある。AR機能を有するHUD装置をAR-HUDと記載する場合がある。AR-HUDは、運転席の運転者の視点から見える対象物に対し、アラート情報やナビゲート情報などのARの虚像を重ね合わせて表示させることができる。これにより、AR-HUDは、運転者による安全運転を支援できる。
 より好適なARまたは非ARに対応した虚像を表示させるために、HUD装置には、より広い視野(FOV:Field of View)に対応したHUD領域が求められる。なお、HUD装置において、ウィンドシールドやコンバイナ(専用の表示板)等の透明部材の透明領域に対して虚像を表示できる領域や範囲を、HUD領域(ヘッドアップディスプレイ領域)、HUD表示領域、表示範囲、あるいは表示エリアなどと記載する場合がある。
 HUD領域に運転支援などのための虚像を表示するHUD装置は、運転者の視点(ここでは車両内の目の位置ではなく、視線の先の注視点などの点)の移動をなるべく少なくさせることが望ましい。しかしながら、一般的なHUD領域の位置およびサイズは固定的であるため、運転者の視点(視線先)は、状況に応じて、例えばHUD領域内の虚像とHUD領域外の対象物との間での移動が大きくなってしまう場合がある。
 例えば、車両が右折する際、一般的に、運転者の視線先の点は、右折先の方向へ移動してその方向を注視する。その場合、HUD領域内に表示されている虚像と、視線の移動先の注視点とで、距離の差が大きくなってしまい、望ましくない。HUD領域内に虚像を表示している時に、視線の先がHUD領域外に移動した場合、運転者はHUD領域内の虚像を良好に視認することはできない。また、右折などの状況に応じて、HUD領域外に、アラートなどのARの虚像を表示させたい対象物があったとしても、HUD領域によるFOVが限られているので、HUD領域内にそのARの虚像を表示させることはできない。
 本開示の目的は、HUD装置の技術に関して、より好適なHUD領域を形成できる技術を提供することである。
 本開示のうち代表的な実施の形態は以下に示す構成を有する。実施の形態のヘッドアップディスプレイ装置は、映像表示装置と、前記映像表示装置からの映像光を反射する映像投射部と、を備え、前記映像投射部から反射された映像光に基づいて、虚像が表示可能な表示エリアであるヘッドアップディスプレイ領域が形成され、前記ヘッドアップディスプレイ領域における画面内水平方向に対応した横方向を第1方向、画面内垂直方向に対応した縦方向を第2方向とした場合に、前記ヘッドアップディスプレイ領域の形成の位置である、前記第1方向に対応する左右方向での位置として、少なくとも、初期位置である第1位置と、前記第1位置に対し左または右の位置である第2位置とを有し、前記ヘッドアップディスプレイ領域の位置を前記第1位置から前記第2位置に移動させるための所定条件を判断し、前記所定条件を満たした場合には、前記映像投射部を駆動することで、前記ヘッドアップディスプレイ領域の位置を前記第1位置から前記第2位置に移動させ、前記第2位置の前記ヘッドアップディスプレイ領域に前記虚像を表示させる。
 本開示のうち代表的な実施の形態によれば、HUD装置の技術に関して、より好適なHUD領域を形成できる。上記した以外の課題、構成および効果等については、発明を実施するための形態において示される。
実施の形態1のHUD装置を搭載する車両の構成例を示す。 図1の車両における実施の形態1のHUD装置の搭載例を示す。 図2の実施の形態1のHUD装置の構成例を示す。 車両の制御ユニットにおける車両情報を取得するためのセンサ等の構成例を示す。 実施の形態1のHUD装置における、凹面ミラー機構の第1回転軸の回転による、HUD領域の上下方向の移動の例を示す模式説明図である。 実施の形態1のHUD装置における、凹面ミラー機構の第2回転軸の回転による、HUD領域の左右方向の移動の例を示す模式説明図である。 実施の形態1のHUD装置における、機能ブロックの第1構成例を示す。 実施の形態1のHUD装置における、機能ブロックの第2構成例を示す。 実施の形態1のHUD装置における、機能ブロックの第3構成例を示す。 図3の実施の形態1のHUD装置の実装例を示す。 実施の形態1のHUD装置における、凹面ミラー機構の構成例の斜視図を示す。 図10の凹面ミラー機構の、各方向からみた平面図を示す。 図10の凹面ミラー機構の、第2回転軸の周りの回転とHUD領域の左右方向の移動との関係を示す模式説明図である。 実施の形態1のHUD装置における、HUD領域の左右方向の移動例、および虚像表示例を示す。 実施の形態1の変形例のHUD装置における、凹面ミラー機構を各方向からみた平面図を示す。 実施の形態1の変形例のHUD装置における、機能ブロックの構成例を示す。 他の変形例のHUD装置として、右寄りに第2回転軸を設ける場合の凹面ミラー機構を各方向からみた平面図を示す。 他の変形例のHUD装置として、左寄りに第2回転軸を設ける場合の凹面ミラー機構を各方向からみた平面図を示す。 他の変形例のHUD装置として、スライド機構を設ける場合の凹面ミラー機構を各方向からみた平面図を示す。 他の変形例のHUD装置における、他のHUD領域の構成例を示す。 実施の形態1のHUD装置における、基本制御フローを示す。 実施の形態1のHUD装置で、HUD領域の左右移動制御に関するフローを示す。 実施の形態1のHUD装置で、HUD領域の上下移動制御に関するフローを示す。 実施の形態1のHUD装置で、HUD領域の左右移動制御に関する詳細フローを示す。 実施の形態1のHUD装置で、制御上のモード(状態)の例を示す。 実施の形態1のHUD装置で、HUD領域の多段階の左右移動位置の例を示す。 実施の形態1の変形例のHUD装置で、HUD領域の多段階の右移動位置の例を示す。 実施の形態1のHUD装置で、HUD領域の左右移動の開始の条件/トリガの例を示す。 実施の形態1のHUD装置で、HUD領域の左右移動の終了の条件/トリガの例を示す。 実施の形態1の変形例のHUD装置で、HUD領域の左右位置の固定的な設定の例を示す。 実施の形態1のHUD装置で、HUD領域の左右位置の設定に関するGUI例を示す。 実施の形態1のHUD装置で、中央位置のHUD領域での表示例を示す。 比較例として、元映像を右に移動して表示した場合のHUD領域での表示例を示す。 実施の形態1のHUD装置で、HUD領域を右位置に移動した場合の表示例を示す。 実施の形態1のHUD装置で、右位置に移動したHUD領域内にアラートの虚像を表示する例を示す。 実施の形態1のHUD装置で、ARの虚像についての調整の例を示す。 実施の形態1のHUD装置で、ARの虚像についての調整の他の例を示す。 実施の形態1のHUD装置で、ARの虚像についての調整の他の例を示す。 実施の形態1のHUD装置で、非ARの虚像についての調整の例を示す。 実施の形態1のHUD装置で、非ARの虚像についての調整の例を示す。 実施の形態1のHUD装置で、非ARの虚像についての調整の例を示す。 実施の形態1のHUD装置で、HUD領域の移動途中の制御例を示す。 実施の形態1のHUD装置で、HUD領域の移動途中の他の制御例を示す。 実施の形態1のHUD装置で、HUD領域内での非ARの虚像の配置例を示す。 実施の形態1のHUD装置で、右折の予定に対応した制御例を示す。 実施の形態1のHUD装置で、歪み補正に関する説明図を示す。 実施の形態1のHUD装置で、歪み補正の結果に応じた表示例を示す。 実施の形態1のHUD装置で、歪み補正の結果に応じた他の表示例を示す。 実施の形態1のHUD装置で、詳細な制御処理フロー例(その1)を示す。 実施の形態1のHUD装置で、詳細な制御処理フロー例(その2)を示す。 実施の形態1のHUD装置で、詳細な制御処理フロー例(その3)を示す。 実施の形態1のHUD装置で、詳細な制御処理フロー例(その4)を示す。
 以下、図面を参照しながら本開示の実施の形態を詳細に説明する。図面において、同一部には原則として同一符号を付し、繰り返しの説明を省略する。図面において、構成要素の表現は、発明の理解を容易にするために、実際の位置、大きさ、形状、範囲等を表していない場合がある。
 説明上、プログラムによる処理について説明する場合に、プログラムや機能や処理部等を主体として説明する場合があるが、それらについてのハードウェアとしての主体は、プロセッサ、あるいはそのプロセッサ等で構成されるコントローラ、装置、計算機、システム等である。計算機は、プロセッサによって、適宜にメモリや通信インタフェース等の資源を用いながら、メモリ上に読み出されたプログラムに従った処理を実行する。これにより、所定の機能や処理部等が実現される。プロセッサは、例えばCPU/MPUやGPU等の半導体デバイス等で構成される。処理は、ソフトウェアプログラム処理に限らず、専用回路でも実装可能である。専用回路は、FPGA、ASIC、CPLD等が適用可能である。
 プログラムは、対象計算機に予めデータとしてインストールされていてもよいし、プログラムソースから対象計算機にデータとして配布されてもよい。プログラムソースは、通信網上のプログラム配布サーバでもよいし、非一過性のコンピュータ読み取り可能な記憶媒体、例えばメモリカードやディスクでもよい。プログラムは、複数のモジュールから構成されてもよい。コンピュータシステムは、複数台の装置によって構成されてもよい。コンピュータシステムは、クライアントサーバシステム、クラウドコンピューティングシステム、IoTシステム等で構成されてもよい。各種のデータや情報は、例えばテーブルやリスト等の構造で構成されるが、これに限定されない。識別情報、識別子、ID、名前、番号等の表現は互いに置換可能である。
 本実施の形態では、まず、HUD領域の位置を制御するための前提となるハードウェア構成例について説明し、その後、特徴として、HUD領域の位置を制御するためのソフトウェアや制御の構成について説明する。
 [解決手段等]
 実施の形態のHUD装置は、AR機能を有するAR-HUDである。実施の形態のHUD装置は、少なくとも映像表示装置および映像投射部を備え、映像表示装置からの映像光に基づいて、映像投射部で反射された映像光を、車両のウィンドシールドまたはコンバイナ等の透明部材の透明領域に対し投射する。透明部材は、運転者が前方の風景を透過して視認できる領域を構成する部材である。これにより、実施の形態のHUD装置は、運転者の視点(目の位置)から見てウィンドシールド等の面またはそれに対し前方にHUD領域を形成し、HUD領域内に実像として虚像を表示する。
 そして、そのような前提の上で、実施の形態のHUD装置は、HUD領域の形成の位置を変更・移動・調整する機構を有する。実施の形態のHUD装置は、駆動機構によって映像投射部を回転させることで、映像投射部の反射面からの反射映像光の投射の向きを変更する。これにより、ウィンドシールド等に対するHUD領域の形成の位置が変更される。本実施の形態では、映像投射部は凹面ミラーを用いて説明しており、駆動機構は凹面ミラーを駆動させる凹面ミラー機構である。
 特に、実施の形態のHUD装置は、上記凹面ミラー機構として、凹面ミラーの向きを、車両および運転者に対し左右方向(言い換えると、横方向、水平方向など)に変更する機構を有する。言い換えると、この機構は、凹面ミラーを、上下方向(言い換えると、縦方向、鉛直方向など)に延在する回転軸を中心としてその周りに回転させることで、反射映像光の方向を左右方向に変更する機構である。これにより、ウィンドシールド等に対するHUD領域の形成の位置が、左右方向に変更、言い換えると移動などされる。
 上記凹面ミラー機構は、例えば凹面ミラーの長手方向である左右方向に対し、短手方向である上下方向に延在する回転軸(縦軸、Z軸、第2回転軸などと記載する場合がある)を設ける。上記凹面ミラー機構は、その第2回転軸の周りに凹面ミラーを回転させるモータ等の駆動系を設ける。
 実施の形態のHUD装置は、上記駆動系を駆動制御することで、上記凹面ミラー機構の回転を制御することにより、HUD領域の位置を制御する。
 実施の形態のHUD装置は、上記凹面ミラー機構を備えることで、HUD領域を例えば初期位置(言い換えると基準位置、デフォルト位置、中央位置、第1位置)に対し左右の位置(言い換えると第2位置、移動後位置)に移動・変更できる。これにより、運転者から見たHUD領域による見かけ上のFOVを大きくすることができる。実施の形態のHUD装置は、上記凹面ミラー機構を備えることで、HUD領域の位置に応じて虚像を表示できる。
 実施の形態のHUD装置は、HUD領域内に虚像を表示する際に、例えば車両のナビゲーション情報やアラート情報に基づいて、実景内の対象物の位置に合わせて、虚像を重ね合わせてARとして表示する。その際に、実施の形態のHUD装置は、上記凹面ミラー機構を利用して、広いFOVに対応させた、中央または左右の好適な位置のHUD領域でのAR表示が可能となる。
 実施の形態のHUD装置は、車両や運転者などの状況に応じて、例えば車両進行方向に合わせて、HUD領域を初期位置に対し左右の位置に移動させることができる。これにより、運転者の視点(視線先)の移動として、HUD領域内の虚像と、実景内の対象物との間での視点(視線先)の移動をなるべく少なくすることができる。これにより、安全運転に寄与できる。
 また、実施の形態のHUD装置は、移動前のHUD領域では良好に表示できなかった虚像についても、HUD領域を左右の位置に移動させることで、良好に表示することができる。例えば、車両の右折の際に、HUD領域外において右前方にいる歩行者などの対象に対しアラート情報のARを表示させたい場合でも、HUD領域を右位置に移動させることで、その右位置のHUD領域内において、対象に合わせたアラート情報のARが良好に表示可能となる。これにより、安全運転に寄与できる。
 実施の形態のHUD装置は、例えば車両のADAS(Advanced driver-assistance systems:先進運転支援システム)からADAS情報を取得・入力し、そのADAS情報に応じて、例えば車両進行方向に合わせて、上記凹面ミラー機構により、HUD領域を左右に移動させることができる。
 例えば、実施の形態のHUD装置は、ADAS情報から車両進行方向情報を取得し、車両進行方向が例えば右折を表している場合には、凹面ミラーを所定の角度で一方向に回転させることで、HUD領域を初期位置から右方向に所定の距離にある所定の右位置まで移動させる。他の例では、車両進行方向が例えば左折を表している場合には、凹面ミラーを所定の角度で逆方向に回転させることで、HUD領域を初期位置から左方向に所定の距離にある所定の左位置まで移動させる。
 なお、凹面ミラー機構に基づいてHUD領域を移動させるための機器や情報は上記例には限定されない。
 <実施の形態1>
 図1~図13を用いて、実施の形態1のHUD装置について説明する。実施の形態1のHUD装置1は、図10等に示される凹面ミラー機構を備え、回転により凹面ミラーの向きを左右方向に変更可能であり、これにより図6等に示されるようにHUD領域5の位置を左右方向に変更可能である。
 [車両]
 図1は、実施の形態1のHUD装置1が搭載された車両2の概要構成を示す。車両2は、車両コントローラである制御ユニット100を備えている。制御ユニット100は、車両2の走行などを制御する。HUD装置1は、CANまたはLINなどのインタフェースを通じて、制御ユニット100と通信する。制御ユニット100およびHUD装置1は、車両2の車載システムを構成する。HUD装置1は、映像光を生成してウィンドシールド3の透明領域に投射する。これにより、ウィンドシールド3の透明領域に対し、HUD領域5が形成され、HUD領域5内に虚像が表示される。
 制御ユニット100は、CAN信号等を通じて、HUD装置1を制御することで、HUD領域5に映像情報を虚像として表示させることができる。制御ユニット100は、後述の図4のような各種のセンサ、計測デバイス、通信デバイス等を用いて、車両情報4を取得する。HUD装置1は、CAN信号等を通じて、制御ユニット100から車両情報4を入力・取得する。
 なお、図1等において、説明上の座標系や方向として、(X,Y,Z)を用いている。図1等では車両2および運転者に対する空間座標系を示している。Z軸、Z方向は、鉛直方向であり、言い換えると上下方向、縦方向である。X軸、X方向は、第1水平方向であり、言い換えると、左右方向、車両の横方向または車両の幅方向である。Y軸、Y方向は、X軸に対し直交する第2水平方向であり、言い換えると、車両の前後方向または車両の進行方向である。
 [HUD装置]
 図2は、図1の車両2における実施の形態1のHUD装置1の搭載例を示す。図2では、図1の車両2をX軸方向から見たY-Z面での模式図を示す。図2では、車両2のダッシュボード70内にHUD装置1の特に映像表示ユニット200が搭載されている。HUD装置1の映像表示ユニット200は、筐体内に、映像表示装置10と、ミラーM2および凹面ミラーM1とを備える。ミラーM2は、複数配置されてよいし、または、配置されてなくてもよい。映像表示装置10、ミラーM2および凹面ミラーM1等の光学系は、筐体内に、所定の位置関係で配置・固定されている。また、映像表示装置10は筐体外に配置・固定されてもよい。
 映像表示ユニット200の筐体の一部、およびダッシュボード70の一部には、HUD装置1の映像光が出射する開口部7が設けられている。開口部7には、透明部材による防塵カバーなどが設けられている。
 映像表示装置10は、映像光を出射する。ミラーM2は、例えば平面ミラーであり、折り返しミラーである。ミラーM2は、映像表示装置10からの映像光を、凹面ミラーM1へ向けて反射する。凹面ミラーM1は、ミラーM2からの映像光を、設定された角度の方向または所定方向へ向けて拡大して反射する映像投射部として機能する。凹面ミラーM1は、例えば自由曲面ミラーや光軸非対称の形状を有するミラー等により構成される。実施の形態1では、凹面ミラーM1は、凹面の反射面を有するミラーにより構成される。
 凹面ミラーM1には、図示のように、回転軸J1およびモータ61等の駆動系が設けられている。この駆動系により、凹面ミラーM1の向きが変更可能となっている。なお、図2および図3では、凹面ミラーM1の第1回転軸J1の回転機構、すなわちHUD領域5を上下方向に変更する機構のみを図示している。後述するが(図6,図10等)、凹面ミラーM1は、さらに、第2回転軸J2の回転機構、すなわちHUD領域5を左右方向に変更する機構を有する。
 図示のように、映像表示装置10からの映像光は、ミラーM2および凹面ミラーM1で反射され、反射映像光が開口部7から出射されて、ウィンドシールド3の面に投射され、ウィンドシールド3で反射されて、運転者の視点6に向かう。これにより、運転者の視点6から前方(Y軸前方)を見ると、ウィンドシールド3に対しHUD領域5が形成され、HUD領域5内に虚像9が視認できる。HUD領域5内では、前方の実景に対し、映像光により形成された虚像6が重畳された状態で表示される。虚像9は、非ARの場合には、所定の位置に独立に表示される映像情報である。虚像9は、ARの場合には、対象物の位置に合わせて重畳表示される映像情報である。虚像9となる映像情報の例は、車速などの情報、ナビゲーション情報、アラート情報など、様々なものがある。
 車両2には、カメラ90も設置されている。カメラ90は、例えばバックミラー付近に設置されているが、これに限定されない。カメラ90は、車外を撮影する車外カメラや、車内を撮影する車内カメラがある。
 [HUD装置の映像表示ユニット]
 図3は、図2のHUD装置1の映像表示ユニット200の構成例をY-Z面で示す。映像表示ユニット200は、筐体60内に、映像表示装置10と、凹面ミラーM1と、ミラーM2とを有し、それらの構成要素が所定の位置関係で配置・固定されている。
 なお、映像表示装置10は、図示のように筐体60内に取り付けられてもよいし、筐体60外に取り付けられてもよい。また、後述するが(図7等)、HUD装置1のコントローラである制御部101などの他の構成要素は、筐体60内に実装されてもよいし、筐体60外に実装されてもよい。
 映像表示装置10は、光源装置11と、表示パネルまたは液晶表示パネル(LCD:Liquid Crystal Display)12とを有して構成されている。映像表示装置10は、言い換えると、画像を形成する画像形成ユニットである。映像表示装置10は、映像光a1を生成して出射する。
 光源装置11は、光源として例えば半導体光源素子を用いて構成され、所定の光源光を生成してLCD12に供給する。光源装置11は、LCD12のバックライト光源として機能する。半導体光源素子は、代表的にはLED(Light Emitting Diode)素子が用いられる。
 LCD12は、表示デバイスの例である。LCD12は、入力の映像信号に基づいて、表示面に映像ないし画像を形成し、表示面から映像光a1を出射する。LCD12は、映像信号に応じて、光源装置11からの光の透過率を画素毎に変調することで、映像を形成し、映像光a1として出射する。なお、映像光a1等は、一点鎖線で光軸のみ図示している。
 映像表示装置10からの映像光a1は、ミラーM2に投射されてミラーM2によって凹面ミラーM1の方へ折り返されるように反射される。反射光をミラーM2からの映像光a2として示す。ミラーM2からの映像光a2は、凹面ミラーM1の反射面に投射されて、凹面ミラーM1によって、開口部7を介してウィンドシールド3の方へ反射される。凹面ミラーM1からの反射された映像光を映像光a3として示す。凹面ミラーM1からの映像光a3は、開口部7を透過して、ウィンドシールド3の面に投射されて、図2のHUD領域5を形成する。
 なお、図3では、図2と同様に、凹面ミラーM1について、第1回転軸J1およびモータ61のみを示している。凹面ミラーM1は、モータ61の駆動に基づいて、第1回転軸J1の周りに回転可能である。第1回転軸J1での回転により、凹面ミラーM1の反射面からの映像光a3の投射の方向は、矢印で示すように変化する。これにより、図2のHUD領域5の形成の位置が、上下方向5aで変更される。また、第1回転軸J1での回転により、凹面ミラーM1のON/OFFを調整することができる。
 なお、従来技術例のHUD装置としては、図3と同様に、凹面ミラーM1においてX軸方向に延在する回転軸J1に設置されたモータ61等の駆動系を備えるものがある。従来技術例のHUD装置は、モータ61等の駆動によって、凹面ミラーM1をX軸中心に回転させることにより、HUD領域5の位置を上下方向5aに調整することができる。
 実施の形態1のHUD装置は、従来技術例と同様に、凹面ミラーM1の回転軸J1の周りの回転により、HUD領域5の位置を上下方向5aに調整する機能を有している。この上下方向5aの調整機能は、主に以下の2つに利用される。第1は、車両2内の運転席の運転者の視点6を含むアイボックスの位置に合わせて、HUD領域5の位置を上下に調整する機能、いわゆるキャリブレーションとしての機能である。第2は、太陽光などの外光を遮断する機能、言い換えると筐体60内に外光が入射することを防止して、映像表示装置10のパネル焼け等を防止する機能(外光遮断機能、外光入射防止機能などと記載する)、いわゆる凹面ミラーのON/OFFを調整する機能である。
 図3では、凹面ミラーM1の回転状態として2種類の状態を図示している。破線で示す状態s1は、通常表示時の凹面ミラーM1の回転状態を示し、反射光である映像光a3は、図示の方向d1へ進む。実線で示す状態s2は、外光入射防止時の凹面ミラーM1の回転状態を示し、反射光である映像光a3は、図示の方向d2へ進む。凹面ミラーM1は、状態s2では、反射面がY軸方向(車両前後方向)において例えば後ろに傾いている。反射面からの映像光a3の方向d2は、方向d1よりも後ろに傾いている。
 HUD装置1は、外光入射防止時には、このように、凹面ミラーM1を回転軸J1の周りに回転させて、状態s2のようにする。状態s2では、例えば方向d1の逆向きに沿って太陽光などの外光が入射した場合にも、その外光は凹面ミラーM1の反射面には入射しないか、もしくは、入射するとしても、その入射外光の反射光の方向は、ミラーM2および映像表示装置10の表示面には入射しないように外される。これにより、映像表示装置10の特にLCD12のパネル焼け等が防止できる。
 HUD装置1は、例えば、HUD領域5での表示の非利用時などには、外光入射防止モードとして、凹面ミラーM1を状態s2にする。HUD装置1は、通常表示時には、通常表示モードとして、凹面ミラーM1を状態s1にする。
 実施の形態1のHUD装置1は、このようなHUD領域5の上下方向5aの調整機能を従来技術例と同様に有し、その上でさらに、凹面ミラーM1をZ軸方向に延在する第2回転軸J2の周りに回転させることにより、HUD領域5の位置を左右方向に移動する機能を有する(図6,図10等)。
 なお、図2では、HUD領域5は、ウィンドシールド3の斜面に合わせて形成された領域と、ウィンドシールド5を超えて前方に所定の距離に形成された領域との2つを図示している。HUD領域5は、運転者の視点6から見て前方に形成される領域であり、概念としてこれらの領域を含んでいる。
 [車両情報およびセンサ]
 図4は、図1の車両情報4に係わるセンサ等の構成例を示す。図4では、車両2の制御ユニット100に対し接続されている各種のセンサ、言い換えると情報取得デバイス、計測デバイス、通信デバイス等の構成例を示している。制御ユニット100は、車両2の各部に設置されたセンサ等から、車両情報4を取得する。各種のセンサは、車両2の内部や外部における走行状況などの状況に係わるパラメータ値を例えば定期的に検出する。また、制御ユニット100は、センサの検出情報に基づいて、車両2に係わる各種のイベントを判断・検出する。
 車両情報4は、車両2の走行などの状況に係わる情報の総称である。車両情報4は、ADAS情報等を含む。車両情報4は、例えば、車両2の速度情報やギア情報、ハンドル操舵角情報、ランプ点灯情報、外光情報、距離情報、赤外線情報、エンジンON/OFF情報、カメラ映像情報、加速度ジャイロ情報、GPS(Global Positioning System)情報、ナビゲーション情報、車車間通信情報、および路車間通信情報などが含まれる。カメラ映像情報は、車内カメラ映像情報や車外カメラ映像情報がある。GPS情報には、現在時刻情報、緯度および経度情報が含まれる。
 図4では、車両2に設置されている各種センサの一例を示している。なお、同様に、HUD装置1に各種センサが設置されてもよい。各種センサとして、車速センサ401、シフトポジションセンサ402、ハンドル操舵角センサ403、ヘッドライトセンサ404、照度センサ405、色度センサ406、測距センサ407、赤外線センサ408、エンジン始動センサ409、加速度センサ410、ジャイロセンサ411、温度センサ412、路車間通信用無線送受信機413、車車間通信用無線送受信機414、車内カメラ415、車外カメラ416、GPS受信機417、VICS(Vehicle Information and Communication System、登録商標)受信機418などがある。各種センサは、これらに限らず、追加、削除、置換などが可能である。
 車速センサ401は、車両2の速度(車速とも記載)を検出し、検出結果となる速度情報を生成する。シフトポジションセンサ402は、現在のギアを検出し、検出結果となるギア情報を生成する。ハンドル操舵角センサ403は、現在のハンドル操舵角を検出し、検出結果となるハンドル操舵角情報を生成する。ヘッドライトセンサ404は、ヘッドライトのON/OFF等を検出し、検出結果となるランプ点灯情報を生成する。照度センサ405および色度センサ406は、外光を検出し、検出結果となる外光情報を生成する。
 測距センサ407は、車両2と外部の物体との間の距離を検出し、検出結果となる距離情報を生成する。赤外線センサ408は、車両2の近距離における物体の有無や距離などを検出し、検出結果となる赤外線情報を生成する。エンジン始動センサ409は、エンジンのON/OFFを検出し、検出結果となるON/OFF情報を生成する。加速度センサ410およびジャイロセンサ411は、車両2の加速度および角速度を検出し、検出結果として、車両2の姿勢や挙動を表す加速度ジャイロ情報を生成する。温度センサ412は、車両2の内外の温度を検出し、検出結果となる温度情報を生成する。
 車内カメラ415は、車両2内を撮影することで、車内カメラ映像情報を生成する。車外カメラ416は、車両2外を撮影することで、車外カメラ映像情報を生成する。具体例では、図2のカメラ90は、車内カメラ415および車外カメラ416に相当する。車内カメラ415は、例えば運転者の姿勢、眼の位置、動きなどを撮影し、DMS(Driver Monitoring System)を構成する。車内カメラ映像情報を解析することで、運転者の疲労状況や視線などが把握可能である。また、車外カメラ416は、例えば車両2の前方などの周囲の状況を撮影する。車外カメラ映像情報を解析することで、車両2の周辺に存在する他車両や人などの有無、建物や地形、雨や積雪、凍結、凹凸などといった路面状況、および道路標識などを把握可能である。また、車外カメラ416は、走行中の状況を映像で記録するドライブレコーダなども含まれる。
 路車間通信用無線送受信機413は、車両2と、道路、標識、信号機等との間の路車間通信によって、路車間通信情報を生成する。車車間通信用無線送受信機414は、車両2と周辺の他車両との間の車車間通信によって、車車間通信情報を生成する。GPS受信機417は、GPS衛星からのGPS信号を受信することでGPS情報を生成する。例えばGPS情報として現在時刻、緯度および経度を取得可能である。VICS受信機418は、VICS信号を受信することで得られるVICS情報を生成する。GPS受信機417やVICS受信機418は、ナビゲーションシステムの一部として設けられてもよい。
 [HUD領域-上下移動]
 図5は、車両2の左右方向(X軸方向または車両の幅方向)と上下方向(Z軸方向)とのX-Z面で、運転者の視点6から前方にウィンドシールド3(図5では模式的に矩形で示す)を見た場合に、凹面ミラーM1の回転状態に応じた、ウィンドシールド3に対するHUD領域5の形成の位置の構成例を示す模式説明図である。図5では、特に、凹面ミラーM1の第1回転軸J1の回転状態に応じた上下方向(Z軸方向)でのHUD領域5の移動の例を示す。図5等では、右ハンドル車に対応したステアリング8を有する場合を模式で示す。図5等では、ウィンドシールド3の透明領域のうちX軸方向での中央付近に、初期位置でのHUD領域5Aが形成される場合を示しているが、模式的な図示であって、これに限定されない。
 例えば、運転席に着座した運転者の視点6の状態に合わせた設定、言い換えるとキャリブレーションとして、HUD領域5の位置が上下方向5aに調節される。また、図5の例では、HUD領域5内に、虚像9の例として、ナビゲーション用の矢印画像や、目的地までの距離を表す画像などが表示されている。
 凹面ミラーM1の回転軸J1に係わる回転状態が、所定の基準状態である状態Aである場合、凹面ミラーM1からの反射光は、実線矢印で示す方向に進み、図示する位置にHUD領域5Aが形成される。このHUD領域5Aの位置を、説明上、初期位置、基準位置、デフォルト位置、中央位置、第1位置などと記載する場合がある。
 一方、凹面ミラーM1の回転軸J1の回転状態が、モータ61の駆動によって、点線で示すように、所定の状態Uとされた場合、凹面ミラーM1からの反射光は、状態Aの場合よりも上方向に進み、図示する位置(上位置と記載する場合がある)にHUD領域5Uが形成される。同様に、凹面ミラーM1の回転軸J1の回転状態が、モータ62の駆動によって、破線で示すように、所定の状態Dとされた場合、凹面ミラーM1からの反射光は、状態Aの場合よりも下方向に進み、図示する位置(下位置と記載する場合がある)にHUD領域5Dが形成される。
 [HUD領域-左右移動]
 図6は、図5と同様に、運転者の視点6から前方にウィンドシールド3を見た場合に、凹面ミラーM1の回転状態に応じた、ウィンドシールド3に対するHUD領域5の形成の位置の構成例として、特に、凹面ミラーM1の第2回転軸J2の回転に応じた左右方向(X軸方向)でのHUD領域5の移動の例を示す。なお、図6では、図5のような上下方向5aの位置については基準位置であるとして考える。
 凹面ミラーM1の回転軸J2に係わる回転状態が、所定の基準状態である状態Aである場合、凹面ミラーM1からの反射光は、実線矢印で示す方向に進み、図示する位置にHUD領域5Aが形成される。一方、凹面ミラーM1の回転軸J2に係わる回転状態が、モータ62の駆動によって、点線で示すように、所定の状態Lとされた場合、凹面ミラーM1からの反射光は、点線矢印で示すように、状態Aの場合よりも左方向に進み、図示する位置にHUD領域5Lが形成される。このHUD領域5Lの位置を、説明上、左位置、第2位置などと記載する場合がある。
 同様に、凹面ミラーM1の回転軸J2に係わる回転状態が、モータ62の駆動によって、破線で示すように、所定の状態Rとされた場合、凹面ミラーM1からの反射光は、破線矢印で示すように、状態Aの場合よりも右方向に進み、図示する位置にHUD領域5Rが形成される。このHUD領域5Rの位置を、説明上、右位置、第2位置などと記載する場合がある。左位置と右位置とを区別しない場合には、左右位置や第2位置と総称する場合がある。
 図示のように、実施の形態1では、凹面ミラーM1を縦方向に延在する回転軸J2の周りに左右に傾けて回転させる機構を備えることで、HUD領域5を所定の移動範囲内で左右方向5bに移動させることができる。なお、図6では、各HUD領域5(5L,5A,5R)の位置は、矩形の領域の中央の点として図示しているが、これに限定されない。また、図6では、HUD装置1の設計として、HUD領域5の左右方向5bの移動量が、図5の上下方向5aの移動量よりも大きい場合を示しているが、これに限定されない。
 図6等のように、HUD領域5が左右方向5bに移動可能であるため、運転者の視点6から見ると、HUD領域5による見かけ上のFOVは、各位置のHUD領域5L,5A,5Rを合成した大きな範囲となる。
 [機能ブロック-第1構成例]
 図7は、実施の形態1のHUD装置1の機能ブロックの第1構成例を示す。図7で、HUD装置1は、コントローラである制御部101と、通信部103と、表示装置駆動部105と、ミラー機構M1とを有する。ミラー機構M1は、前述の凹面ミラーであり、ミラー第1駆動部111およびミラー第2駆動部112を有する。また、本実施の形態でのHUD装置1は、記憶部102と、音声入力装置106と、音声出力装置107とを有しており、これに限定されない。これらの各部は、バス109などを介して相互に接続され、相互に入出力や通信が可能である。
 制御部101は、言い換えるとコントローラ、または、制御装置である。制御部101は、プロセッサによる処理に基づいて、制御機能などを実現する。制御機能は、HUD装置1の全体および各部を制御する機能であり、HUD領域5の位置を制御する機能を含む。制御部101は、ソフトウェアプログラム処理または専用回路によって機能を実現する。これに限らずに、本発明のHUD装置1は、制御部101を有さなくてもよい。HUD装置1は、制御部101を有さない場合、車両の制御部はHUD装置1の制御部101として機能することができる。このような場合、車両の制御部によりHUD装置1の全体および各部を制御する方法がHUD装置1の制御部101と同じである。
 記憶部102は、記憶装置などを用いて構成される。記憶部102は、例えば、不揮発性メモリ102A、および揮発性メモリ102Bを有して構成される。記憶部102には、コンピュータプログラムを含め、制御部101等が扱う各種のデータ・情報が格納される。
 通信部103は、通信インタフェースが実装された装置である。通信部103は、通信インタフェースとして、車両2のCAN(Controller Area Network)やLIN(Local Interconnect Network)等のインタフェースを介して、制御ユニット100(例えば電子制御ユニット:ECU)と接続され、通信可能である。
 表示装置駆動部105は、制御部101からの制御に基づいて、映像表示装置10の光源装置11およびLCD12を駆動する装置であり、駆動回路等を含む。
 ミラー第1駆動部111およびミラー第2駆動部112は、ミラー機構である凹面ミラーM1を駆動する装置である。ミラー第1駆動部111は、図2等の第1回転軸J1のモータ61等を含む機構である。ミラー第2駆動部111は、図6等の第2回転軸J2のモータ62等を含む機構である。
 音声入力装置106は、マイクおよび回路等で構成される。音声出力装置107は、スピーカおよび回路等で構成される。なお、HUD装置1に音声入力装置106や音声出力装置107を備える場合を示しているが、これに限らず、HUD装置1は、外部で車両2内に接続される音声入力装置106や音声出力装置107を利用してもよい。
 図7での制御部101は、通信部103を通じて、制御ユニット100から、CAN信号701として、車両情報4(図1)やADAS情報やイベント情報などの入力情報を取得する。入力情報は、各種センサの検出信号、あるいはそれを制御ユニット100が処理した結果の情報などを含む。入力情報は、例えばカメラ90の画像などに基づいて検出された、実景内の対象物の情報や、その対象物に対して重畳するためのアラート情報やナビゲーション情報も含む。制御部101は、制御機能により、そのような入力情報に基づいて、必要に応じて、HUD領域5に虚像として表示させるための映像情報を生成する。制御部101は、その映像情報に基づいて、表示装置駆動部105を制御するための映像信号などを生成する。
 また、制御部101は、HUD装置1による音声出力を行う場合には、音声出力情報を生成し、音声出力装置107を制御する。また、制御部101は、運転者などのユーザの音声を入力する場合には、音声入力装置106の入力音声に基づいて音声認識を行い、所定の指示などを受け付ける。
 図7の構成例に限定されず、HUD装置1に例えば各種のセンサなどを備えてもよい。制御部101は、そのセンサの検出情報を利用して、HUD装置1の状態やHUD装置1の近傍の状態を判断・検出して、所定の制御を行ってもよい。
 [機能ブロック-第2構成例]
 図8Aは、実施の形態1のHUD装置1の機能ブロックの第2構成例を示す。第2構成例は、第1構成例に対し、より詳細な構成例を示す。HUD装置1の制御部101は、MCU(Micro Controller Unit)800、メモリ810、車両情報取得部815、表示用ドライバ820、操作入力部825等を有する。映像表示ユニット200は、前述と同様の構成要素の他に、日射センサ66等を有する。
 図8Aでは、制御部101は、MCU800を有して構成される。MCU800は、プロセッサ、メモリ、周辺機能等を備える。メモリ810は、図7の不揮発性メモリ102Aや揮発性メモリ102Bに相当する。車両情報取得部815は、車両2の車両情報4を取得する装置であり、図7の通信部103などを用いて実装できる。表示用ドライバ820は、LCD12を駆動するドライバである。操作入力部825は、省略可能であるが、運転者などのユーザによるHUD装置1に対する操作入力情報を入力・取得する部分であり、例えば、タッチパネル付きのコントロールパネルやリモコンを用いて実装できる。操作入力部825は、車両2の制御ユニット100からCANの通信を介して操作入力情報を受信するものとしてもよい。例えば、制御ユニット100は、車両2のハンドル8等に設けられたボタン等のデバイスを用いて運転者により入力された操作入力情報を取得し、HUD装置1に送信する。制御部101は、その操作入力情報に応じて、所定の制御を行ってもよい。
 日射センサ66は、後述の図9に示すが、例えば凹面ミラーM1または開口部7の近くに設置されている。日射センサ66は、太陽光などの外光の入射を検出する。HUD装置1は、日射センサ66の他に、温度センサ412(図4)などを同様に用いてもよい。なお、日射センサ66を図4のセンサ類の一部としてもよく、HUD装置1は、制御ユニット100から日射センサ66の検出情報などを受け取るものとしてもよい。
 MCU800は、プロセッサによる処理に基づいて実現される機能ブロックとして、映像データ生成部801、歪み補正部802、光源調整部803、HUD領域位置変更部804、ミラー変更部805、保護処理部806等を有する。
 映像データ生成部801は、車両情報4等の入力情報に基づいて、HUD領域5に表示する虚像9に係わる映像データを生成する。歪み補正部802は、その映像データに基づいて、ウィンドシールド3の曲率を考慮して、HUD領域5に表示される虚像9が、歪みが無い好適な形状の映像となるように補正する、歪み補正処理を行い、歪み補正後の映像データを出力する。
 光源調整部803は、映像データなどに合わせて、光源装置12の光源の発光のオン/オフや光量などを調整する。
 HUD領域位置変更部804は、車両情報4やADAS情報やナビゲーション情報など、あるいはユーザによる操作入力情報などに基づいて、HUD領域5の位置を変更・調整するための制御処理を行う。具体例としては、HUD領域位置変更部804は、ADAS情報やナビゲーション情報に基づいて、所定の条件を満たす場合には、HUD領域5の位置を変更・調整すると決定する。そして、HUD領域位置変更部804は、その決定されたHUD領域5の位置に移動させるために、凹面ミラーM1の回転を制御する。
 図8Aの第2構成例では、HUD領域位置変更部804およびミラー変更部805は、図5のような上下方向5aの変更機能と、図6のような左右方向5bの変更機能との両方の制御を含む部分である。
 ミラー変更部805は、HUD領域位置変更部804からの制御に従って、凹面ミラーM1の回転を駆動制御する部分である。ミラー変更部805は、図5のような上下方向5aでの変更の場合には、第1駆動信号によって、ミラー第1駆動部111を駆動制御する。ミラー第1駆動部111は、前述の第1回転軸J1およびモータ61を含む機構である。ミラー変更部805は、図6のような左右方向5bの変更の場合には、第2駆動信号によって、ミラー第2駆動部112を駆動制御する。ミラー第2駆動部112は、前述の第2回転軸J2およびモータ62を含む機構である。
 保護処理部806は、日射センサ66の検出情報に基づいて、HUD装置1の筐体60内への外光の入射を遮断して、表示デバイスであるLCD12のパネル焼け等を防止するための保護処理を行う部分である。保護処理部806は、日射センサ66の検出情報に基づいて、図3や後述の図9のような、開口部7からの太陽光などの外光の入射を検出した場合に、保護のために、前述の外光入射防止モード(言い換えると保護モード)へと遷移させるように制御する。その際、保護処理部806は、HUD領域位置変更部804に連携し、保護モードに対応させた凹面ミラーM1の回転状態(図3での状態s2)にするように制御する。
 なお、図示しないが、制御部100は、その他の構成要素として、音声データ生成部および音声用ドライバなどを備えてもよく、その場合、図7の音声出力装置107、または車両2の音声出力装置から、音声出力を行わせてもよい。音声出力の例は、虚像9の表示に対応させたナビゲーションやアラートの音声出力が挙げられる。
 [機能ブロック-第3構成例]
 図8Bは、図8Aの第2構成例に対する変形例である第3構成例を示す。図8Bの構成例は、図8Aに対し異なる点として、HUD領域位置変更部804は、HUD領域位置上下調整部804Aと、HUD領域位置左右移動部804Bとの2つに分けて設けられている。また、ミラー変更部805は、ミラー上下調整部805Aと、ミラー左右移動部805Bとの2つに分けて設けられている。すなわち、図8Bの構成例では、HUD領域5を上下方向5aに調整する制御および駆動と、HUD領域5を左右方向5bに移動する制御および駆動とが、2つに分けて独立的・並列的に設けられている。
 HUD領域位置上下調整部804Aは、例えば操作入力情報に基づいて、凹面ミラーM1を回転軸J1の周りに回転させることで、HUD領域5の位置を上下方向5aに調整する制御を行う。その際、ミラー上下調整部805Aは、HUD領域位置上下調整部804Aからの制御に従って、ミラー第1駆動部111を駆動する。
 HUD領域位置左右移動部804Bは、例えば車両情報4やADAS情報に基づいて、自動的に、凹面ミラーM1を回転軸J2の周りに回転させることで、HUD領域5の位置を左右方向5bに移動する制御を行う。その際、ミラー左右移動部805Bは、HUD領域位置左右移動部804Bからの制御に従って、ミラー第2駆動部112を駆動する。
 図示を省略するが、図8Bでも、図8Aと同様に、日射センサ66および保護処理部806を用いて、保護モードの制御が適用可能である。その場合、保護処理部806からHUD領域位置上下調整部304Aに連携される。
 [映像表示ユニットの実装例]
 図9は、図3のHUD装置1の映像表示ユニット200の実装例を示す斜視図であり、筐体60、映像表示装置10、ミラーM2、凹面ミラーM1、開口部7、日射センサ66等の実装一例を示している。筐体60には、映像表示装置10のモジュール、ミラーM2や凹面ミラーM1等の光学系、開口部7の防塵カバー等が固定されている。ミラーM2からの映像光は、一点鎖線で光軸を示すように、凹面ミラーM1で反射され、開口部7の防塵カバーを透過して、外部へ出射する。また、図9では、そのような映像光の光軸に対し、逆向きとして、太陽光のような外光の入射の光軸を実線矢印で図示している。
 図9の例では、開口部7の防塵カバーの一箇所に、日射センサ66が設置されている。日射センサ66は、例えば円錐で示すような範囲66aで、防塵カバーおよび凹面ミラーM1に対する太陽光などの外光の入射を検出し、検出情報を出力する。太陽光などの外光の入射の方向は、図示のように、映像光の光軸の方向に対する逆方向が想定される。
 光源装置11は、実装例としては、LED基板、ヒートシンク、コリメータ、偏光変換素子、導光体、拡散板などを有したモジュールとして構成される。この光源装置11は、特定の偏光に制御された、狭発散角での指向性を有する光源光を生成する。LCD12による表示デバイス12は、その光源光をバックライトとして、指向性を有する映像光を生成し出射する。HUD領域5の虚像9は、このような映像光に基づいて、指向性を有する虚像9として形成される。
 LED基板は、半導体光源素子として複数のLED素子を有する基板である。ヒートシンクは、LED基板を放熱する。LED基板の各LED素子から発する光の出射側には、コリメータが設けられている。コリメータは、光の進行方向を制御する素子であり、LED素子からの光を略平行光に変換して出射する。コリメータからの光の出射側には、偏光変換素子が設けられている。偏光変換素子は、偏光特性を揃える素子であり、コリメータからの略平行光としてランダム偏光を有する光を、直線偏光を有する光に変換する。偏光変換素子は、偏光変換プリズムと波長板とを組み合わせて構成されている。
 偏光変換素子からの光の出射側には、導光体が設けられている。導光体は、偏光変換素子からの直線偏光の光を入射し、反射部によって、入射方向とは異なる出射方向、すなわちLCD12がある方向へ向けて反射させながら配光制御を行って出射する。導光体は、反射および配光制御を行う反射部を備えている。反射部は、複数の反射面の各々と複数の連接面の各々とが交互に繰り返して形成されており、各々の反射面が異なる向きを持つように設定されている。
 導光体から出射した光は、拡散板に入射して拡散され、LCD12の背面側に入射する。LCD12は、この入射光をバックライトとして映像光を生成する。このLCD12の表示面から出射する映像光は、指向性を有する映像光となる。
 [凹面ミラー機構]
 次に、図10~図12等を用いて、凹面ミラー機構である凹面ミラーM1について説明する。図10は、凹面ミラーM1の実装構成例の斜視図を示す。図10では、凹面ミラーM1の主面である反射面がよく見えるように主にX-Z面を示している。また、図11は、凹面ミラーM1の平面図として各軸方向から見た平面面を示す。また、図12は、凹面ミラーM1を上(Z軸)から見たX-Y平面図とHUD領域5との関係を示す。なお、説明上の(X,Y,Z)の座標系や方向について、図10等では、図1等とは異なり、凹面ミラーM1に合わせた座標系として記載している。凹面ミラーM1の反射面は、図10等ではX-Z面に配置されているが、図2や図9等ではX-Z面に対し斜面として配置されている。
 実施の形態1のHUD装置1での凹面ミラーM1の機構の構成は以下の通りである。凹面ミラーM1は、ミラーホルダー51、凹面ミラー本体52、第1回転軸J1、モータ61、支持部材63、第2回転軸J2、モータ62等を備える。
 実施の形態1では、HUD領域5は、図6等のように、縦方向(画面内垂直方向)のサイズよりも横方向(画面内水平方向)のサイズの方が大きい横長の画面として構成される。そのため、対応して、映像表示装置10のLCD12も横長の表示面を有し、凹面ミラーM1および反射面や有効エリアも横長の形状を有する。
 凹面ミラーM1の長手方向である横方向に延在する軸をX軸とし、短手方向である縦方向に延在する軸をZ軸とする。X軸とZ軸とにそれぞれ回転軸が設けられる。X軸を第1回転軸J1、Z軸を第2回転軸J2とする。
 X軸である回転軸J1の周りの凹面ミラーM1(ミラーホルダー51および凹面ミラー本体52)の回転により、凹面ミラーM1で反射された映像光の投射の方向は前述(図5等)のように上下方向5aに変更され、これにより、HUD領域5は上下方向5aに移動する。X軸である回転軸J1の周りの回転の角度をθとし、回転の方向として一方向をra、逆方向をrbとする。方向raは、図5の状態UおよびHUD領域5Uのように上方向への移動と対応し、方向rbは、図5の状態DおよびHUD領域5Dのように下方向への移動と対応する。
 Z軸である回転軸J2の周りの凹面ミラーM1の凹面ミラー本体52の回転により、凹面ミラーM1の反射映像光の投射の方向は前述(図6等)のように左右方向5bに変更され、これにより、HUD領域5は左右方向5bに移動する。Z軸である回転軸J2の周りの回転の角度をφとし、回転の方向として一方向をrc、逆方向をrdとする。方向rcは、図6の状態LおよびHUD領域5Lのように左方向への移動と対応し、方向rdは、図6の状態RおよびHUD領域5Rのように右方向への移動と対応する。
 第1回転軸J1およびモータ61は、支持部材63によって支持されている。支持部材63は筐体60(図9)に固定される。凹面ミラー本体52の図示する主面である反射面は、凹型の曲面を有する。また、この曲面は、例えば収差補正や拡大などの光学特性の設計に対応させた自由曲面形状あるいは非軸対称形状などを有してもよい。
 凹面ミラーM1のミラーホルダー51は、概略的に額縁形状を有し、長手方向に延在するX軸において第1回転軸J1としてのミラーホルダー軸が設けられている。具体的には、ミラーホルダー51の左右辺のそれぞれで上下中心位置に第1回転軸J1としてミラーホルダー軸が設けられている。ミラーホルダー軸にミラーホルダー51が固定されている。第1回転軸J1には、第1駆動系、第1駆動装置として、第1モータであるモータ61が接続されている。モータ61は、前述の駆動制御に基づいて駆動されて、第1回転軸J1を回転させる。
 一方、凹面ミラーM1のミラーホルダー51の額縁の内側に凹面ミラー本体52が設けられている。ミラーホルダー51における短手方向に延在するZ軸に第2回転軸J2としてのミラー軸が設けられている。具体的には、ミラーホルダー51の上下辺のそれぞれで左右中心位置に、ミラー軸が設けられている。詳しくは、ミラーホルダー51の左右中心位置に設けられた軸受けに、凹面ミラー本体52の左右中心位置に設けられた第2回転軸J2が、回転可能に接続されている。ミラー軸に凹面ミラー本体52が固定されている。第2回転軸J2には、第2駆動系、第2駆動装置として、第2モータであるモータ62が接続されている。モータ62は、前述の駆動制御に基づいて駆動されて、第2回転軸J2を回転させる。
 図5等のようにHUD領域5を上下方向5aに移動させる場合には、モータ61の駆動により、第1回転軸J1の周りにミラーホルダー51が回転させられる。ミラーホルダー51の回転に追従して、ミラーホルダー51と一体的に、凹面ミラー本体52やモータ62等も、第1回転軸J1の周りに回転させられる。この回転に伴い、凹面ミラーM1からの反射映像光の投射方向が上下方向5aに変更されるので、HUD領域5の位置は上下方向5aに移動する。
 一方、図6等のようにHUD領域5を左右方向5bに移動させる場合には、モータ62の駆動により、第2回転軸J2の周りに凹面ミラー本体52が回転させられる。この際、ミラーホルダー51は回転せずに不動であり、ミラーホルダー51に対し凹面ミラー本体52のみが回転させられる。これに伴い、凹面ミラーM1からの反射映像光の投射方向が左右方向5bに変更されるので、HUD領域5の位置は左右方向5bに移動する。
 図11で、(A)はX-Z平面図、(B)は矢印A方向から見たY-Z平面図、(C)は矢印B方向から見たX-Y平面図を示している。図11の実装例では、ミラーホルダー51の左辺にモータ61が設置されており、ミラーホルダー51の下辺にモータ62が内蔵されている。
 (A)で、ミラーホルダー51および凹面ミラー本体52は、初期位置の状態Aであり、凹面ミラー本体52は、ミラーホルダー51の額縁の4辺に沿って、X-Z面に配置されている。
 凹面ミラーM1の駆動系として第1駆動系および第2駆動系の実装としては、例えばギアとモータとを別に設けるとよい。駆動系のモータ等の位置は、本例に限定されず、上下、左右ともに、どちらの位置でもよい。
 (B)で、ミラーホルダー51および凹面ミラー本体52は、実線が初期位置の状態Aを示しており、破線が例えば方向rbに回転した状態Dを示している。状態Aから、凹面ミラーM1が回転軸J1の周りにある角度θで方向rbに回転することで、状態Dとなっている。状態Dでは、凹面ミラー本体52およびミラーホルダー51の上辺側が、Y軸方向で前側に傾いている。凹面ミラーM1からの映像光の方向は、Y軸方向でより前側、Z軸方向でより下側となっている。これにより、HUD領域5の位置は、上下方向5aにおいてより下方向に移動する。
 (C)で、初期状態のミラーホルダー51に対し、凹面ミラー本体52は、破線が例えば左に傾けて回転した状態Lを示しており、実線が例えば右に傾けて回転した状態Rを示している。状態Aから、凹面ミラー本体52が回転軸J2の周りにある角度φで方向rcに回転することで、状態Rとなる。また、状態Aから、凹面ミラー本体52が回転軸J2の周りにある角度φで方向rdに回転することで、状態Lとなる。状態Lでは、凹面ミラー本体52の右辺側が、Y軸方向で後方に出るように傾いている。これにより、HUD領域5の位置は、左右方向5bにおいてより左方向に移動する。状態Rでは、凹面ミラー本体52の左辺側が、Y軸方向で後方に出るように傾いている。これにより、HUD領域5の位置は、左右方向5bにおいてより右方向に移動する。
 [ミラー回転とHUD領域の位置]
 図12では、図11の(C)や図6とも対応して、凹面ミラーM1の第2回転軸J2を中心とした凹面ミラー本体52の回転方向と、その回転方向に対応したHUD領域5の移動方向との関係を表している。図12での下側には、凹面ミラーM1を図11の(C)と同様にX-Y平面図として図示しており、図12での上側には運転者から見たX-Z面でのHUD領域5の位置の移動を図示している。凹面ミラー本体52の状態として、破線は、初期位置に対応する状態Aを示しており、実線は、右側に傾いた場合の状態Rを示している。対応して、HUD領域5の状態としては、破線が、状態Aに対応した初期位置・中央位置等でのHUD領域5Aを示しており、実線が、状態Rに対応した右位置でのHUD領域5Rを示している。
 凹面ミラー本体52の状態Aから状態Rへの回転は、回転軸J2の周りでの方向rdでのある角度φでの回転である。最大の角度φに応じて、最も右側のHUD領域5Rの位置が定まる。図示しないが、状態Aから状態Lへの回転についても同様である。一点鎖線矢印は、凹面ミラー本体52の反射面の中央点から、右位置のHUD領域5Rの中央点への光軸を示す。
 HUD領域5の位置を例えば矩形の中央点で表すとする。初期状態である状態AのHUD領域5Aの位置は位置1201で表され、右に移動した状態Rの位置は位置1202で表される。X軸に対応した左右方向5bでの位置は、位置1211や位置1212で表される。中央の位置1211から右の位置1212への移動1200の量ないし距離は、回転の角度φに応じた量ないし距離である。
 なお、HUD領域5の位置は、矩形の左上の点や右下の点の位置座標などで表されてもよい。また、移動前後において、HUD領域5の矩形のサイズは殆ど変わらない。また、凹面ミラーの回転方向は、車両に対する凹面ミラーの配置位置に応じて異なるので、本実施の形態に限定されない。
 [モータ]
 モータ61およびモータ62は、それぞれ、同軸同回転となるものであればよく、モータの設置位置や種類など、実装の詳細は限定されない。モータ61およびモータ62は、HUD装置1の設計に応じて、例えばステッピングモータのような回転量を細かく制御可能であるモータを適用してもよいし、回転量をそれよりも粗く段階的に制御可能なモータを適用してもよい。前者の場合には、HUD領域5の位置を細かく移動制御可能であり、後者の場合には、HUD領域5の位置をそれよりも粗く段階的に移動制御可能である。モータ61およびモータ62は、DCモータ、ACモータ、PMモータ、超音波モータ、誘導モータ、ステッピングモータなど、各種のモータを適用できる。
 [HUD領域の虚像表示例]
 次に、図13は、運転者の視点6から前方を見たX-Z面において、実景の例や、HUD領域5内に表示される虚像9の表示コンテンツなどの表示例を示す模式説明図である。破線枠で示すHUD領域5Aは、初期状態、中央位置のHUD領域5を示す。本例では、HUD装置1は、車両2のナビゲーション情報などに基づいて、車両進行方向の情報を取得する。車両進行方向は、例えば前方の交差点での右折に対応した方向であり、最初時の右折前では自車線に沿った前方向(Y方向)、右折後では右方向(X方向)に対応する。
 そして、HUD装置1は、その車両進行方向に合わせて、凹面ミラーM1を、第2回転軸J2の周りに回転させる。その車両進行方向に合わせた回転方向は、図12での方向rdに対応する。この回転に伴い、HUD領域5は、図示のように、初期位置のHUD領域5Aから、右位置のHUD領域5Rに移動する。移動1300は、右移動として、HUD領域5Aの位置1301から、HUD領域5Rの位置1302への移動を示す。実線の矩形枠は、移動後の右位置のHUD領域5Rを示す。
 なお、通常、HUD領域5の最大範囲である矩形の枠は、虚像としては表示されない。
 虚像9aは、移動前の初期位置のHUD領域5A内に表示されている虚像9の例として、右折をナビゲーションするナビゲーション画像(言い換えるとナビゲーション表示)の例である。虚像9aは、車両2のナビゲーション情報に基づいて生成される。HUD装置1の制御部101は、車両2の制御ユニット100からのナビゲーション情報に基づいて、虚像9aを生成する。この虚像9aは、路面などに合わせたARの画像である。この虚像9aの例は、複数の三角形の画像から構成されており、複数の三角形が、前方に直進する道路の路面から右折先の路面に沿って曲がるように配置されている。同様に、虚像9bは、移動後の右位置のHUD領域5R内に表示されている虚像9の例として、虚像9aが移動した後のナビゲーション画像である。HUD領域5の右移動に伴い、虚像9aも虚像9bのように右側へ移動している。なお、移動前後においてHUD領域5内での虚像9a,9bの配置位置が同じ場合である。
 他の虚像9の例として、虚像9cは、アラート画像(言い換えるとアラート表示)の例である。この虚像9cは、車両2のADAS情報に含まれるアラート情報に基づいて生成される。HUD装置1の制御部101は、車両2の制御ユニット100からのADAS情報のアラート情報に基づいて、虚像9cを生成する。このアラート画像は、例えば、車両2に対し右側の歩道において、右折先に対応して、車両2からみて右斜め前付近の位置に、歩行者1303がいることが検出された場合に、その歩行者1303を対象として、その歩行者1303への注意を促すアラート表示である。このアラート画像は、対象である歩行者1301の位置に合わせたARの画像である。このアラート画像である虚像9cは、例えば路面に沿ったリング状の画像であるが、これに限らず、枠画像やアラートマーク画像などとすることもできる。
 また、虚像9dや虚像9eは、HUD領域5内の所定の位置に表示される非ARの画像の例である。虚像9dは、現在の車速を表示する画像の例である。虚像9eは、目的地(例えば右折する交差点)までの距離を表示する画像の例である。虚像9dや虚像9eは、予め決められた位置、例えばHUD領域5内の下辺領域に表示される。
 実施の形態1のHUD装置1は、例えば車両進行方向の変化に合わせて、HUD領域5の位置を移動・変更する。HUD装置1は、車両進行方向が前方向(Y方向)である時には、初期位置、中央位置にHUD5Aを形成する。HUD装置1は、車両進行方向が例えば右折に応じて前方向から右方向に変化する場合には、詳しくは、例えば右折の直前から右折の直後までの時間では、右位置にHUD領域5Rを形成する。
 初期位置のHUD領域5Aから右位置のHUD領域5Rまでの移動1300の量、およびそれに対応付けられる凹面ミラーM1の回転の角度φは、HUD装置1において予め設定しておいてもよいし、制御に応じて最大範囲内で可変してもよい。
 実施の形態1のHUD装置1では、制御により、自動的に、HUD領域5がHUD領域5AからHUD領域5Rに移動する。これにより、車両2の右折の間に、運転者の視線の先の点(注視点)の移動を少なくすることができる。運転者は、HUD領域5内の虚像9と、HUD領域5外の対象物(例えば右折先の付近)との間で、視線の移動を少なくすることができる。これにより、安全運転に寄与できる。
 運転者の視点6から見て、移動後のHUD領域5R内の虚像9bは、移動前のHUD領域5A内の虚像9aよりも、右側の位置に変化している。そのため、右折に伴い、運転者の視線の先の注視点が、より右側に移動している場合、例えば歩行者1303の方を見る場合でも、運転者から移動後のHUD領域5R内の虚像9bを視認しやすい。運転者の視線の注視点の移動距離の例を挙げれば、移動前では、HUD領域5A内の虚像9aと歩行者1303との距離が挙げられ、移動後では、HUD領域5R内の虚像9bと歩行者1303との距離が挙げられる。後者の移動後の方が、注視点間の移動距離が小さくなっている。
 また、移動前のHUD領域5A内には、アラートの対象となる歩行者1303は入っていない。そのため、従来では、移動前のHUD領域5A内に、虚像9cのようなアラート画像を表示することはできない。移動前のHUD領域5A内に虚像9cのようなアラート画像を表示させるとしても、対象の歩行者1303の位置に合わせた好適な表示はできない。一方、右位置に移動後のHUD領域5R内には、右辺付近に、アラートの対象となる歩行者1303が入っている。そのため、HUD装置1は、移動後のHUD領域5R内に、虚像9cのようなアラート画像を、歩行者1303の位置に合わせた好適なARの虚像として表示できる。このように、実施の形態1によれば、HUD領域5の移動前では表示できなかった虚像も、移動後に表示可能となる。
 同様に、実施の形態1のHUD装置1は、車両進行方向の変化などに基づいて、HUD領域5の位置を、例えば右位置のHUD領域5Rから初期位置のHUD領域5Aに戻すように移動させる。そして、HUD装置1は、移動後のHUD領域5Aに合わせて虚像9を表示させる。
 [実施の形態1のハードウェア構成による効果など]
 実施の形態1のHUD装置1のハードウェア構成によれば、より好適なHUD領域5を形成できる。実施の形態1でのハードウェア構成によれば、凹面ミラーM1を回転軸J2の周りに左右に傾けて回転させる機構を備えることで、HUD領域5の位置を、左右方向5bに移動、変更、調整することができる。これにより、HUD領域5内に表示される虚像9の位置を左右方向5bに移動、変更、調整することができ、運転者から見た見かけ上のFOVを大きくすることができる。実施の形態1によれば、例えば車両進行方向などに合わせて、HUD領域5を左右位置に移動させることができ、対象物へのアラートなどのARの虚像9を好適に表示させることができる。これにより、HUD領域5の虚像9と、実景の対象物との間での、運転者の視線先の位置の差、視点移動量を小さくすることができ、安全運転などに寄与できる。
 実施の形態1のHUD装置1は、凹面ミラーM1の機構を利用することで、HUD領域5の位置を左右方向5bに変更・移動可能である。なお、具体的にどのような入力や条件でHUD領域5の位置を変更・移動するかの制御について、前述の例では車両進行方向情報を用いる場合を説明したが、これについて限定するものではなく、後述のように、様々に可能である。
 実施の形態1では、HUD装置1の制御部101(図7等)が、車両2の制御ユニット100からの情報に応じて、凹面ミラーM1の回転により、HUD領域5の位置を左右方向5bに変更・移動する制御を行う場合を説明した。これに限らず、HUD装置1の制御部101以外の部分や、HUD装置1に対する外部装置、例えば車両2の制御ユニット100が、HUD装置1の凹面ミラーM1の機構を利用してそのような制御を同様に行うようにしてもよい。
 変形例では、HUD装置1は、運転者による図2のハンドル8の操作に応じて、即ちそれに対応した前述のハンドル操舵角情報などに応じて、HUD領域5の位置を左右に変更するように制御してもよい。また、HUD装置1は、運転者による操作入力情報に応じて、例えばハンドル8に設けられたボタンの操作などに応じて、HUD領域5の位置を左右に変更するように制御してもよい。
 なお、実施の形態1等において、凹面ミラーM1の第1回転軸J1の周りの回転量や回転角度範囲と、第2回転軸J2の周りの回転量や回転角度範囲とは、例えば車両に対する凹面ミラーM1の配置位置に応じて異なり、必要な機能に応じて定められ、それらが異なっていてもよい。
 <実施の形態1の変形例のハードウェア構成>
 図14以降を用いて、実施の形態1のHUD装置1に関する変形例のハードウェア構成について説明する。この変形例は、実施の形態1(図10等)に対し主に異なる構成点として以下を有する。変形例では、凹面ミラーM1に係わる機構は、前述の第1回転軸J1の周りに回転してHUD領域5の位置を上下方向5aに調整する機構部分を備えず、第2回転軸J2の周りに回転してHUD領域5の位置を左右方向5bに移動させる機構部分のみを備える。変形例のHUD装置1は、車両情報4等に応じて、実施の形態1と同様に、凹面ミラーM1を回転軸J2の周りに回転させることで、HUD領域5(表示エリア)の位置を左右方向5bに移動させる。
 [凹面ミラー機構]
 図14は、変形例のHUD装置1での凹面ミラーM1の機構の構成例を示す。図14の(A),(B),(C)では、図11と同様に、各方向からみた平面図を示している。本構成例では、凹面ミラーM1は、前述のミラーホルダー51や回転軸J1やモータ61が不要であり、凹面ミラー本体52を有する。凹面ミラー本体52は、回転軸J2と、回転軸J2に接続されたモータ62とを有する。回転軸J2は、凹面ミラーM1の座標系でのZ軸、短手方向に延在する縦軸に相当する。
 HUD装置1は、実施の形態1と同様に、モータ62を駆動制御することで、凹面ミラー本体52を回転軸J2の周りに回転させる。これにより、凹面ミラー本体52の反射面からの映像光の方向は、図6と同様に、ウィンドシールド3に対し、左右方向5bに変更されるので、HUD領域5の位置は、左右方向5bに移動する。
 図14の(A)および(B)では、凹面ミラー本体52の初期状態として状態Aを示しており、回転軸J2の回転角度φは初期角度である。図14の(C)では、図11の(C)と同様に、凹面ミラー本体52が左側に傾いた状態L、および右側に傾いた状態Rを示している。それぞれの状態に応じて、図6と同様に、左位置のHUD領域5Lや右位置のHUD領域5Rが形成される。
 [機能ブロック]
 図15は、変形例のHUD装置1での機能ブロックの構成例を図7と同様に示す。図15の構成は、図7に対し異なる構成点として、ミラー第1駆動部111を有さない。また、制御部101および制御機能は、ミラー第1駆動部111を駆動制御する部分を有さない。
 同様に、変形例で、前述の図8Aに対応する構成例を考えた場合、図8Aのうち、ミラー第1駆動部111を削除し、HUD領域位置変更部804は、HUD領域5の位置を左右方向5bに変更する制御のみ行えばよく、ミラー変更部805は、ミラー第2駆動部112のみを駆動制御する。
 同様に、変形例で、前述の図8Bに対応する構成例を考えた場合、図8Bのうち、HUD領域位置上下調整部804A、ミラー上下調整部805A、およびミラー第1駆動部111を削除する。HUD領域位置左右移動部804Bは、HUD領域5の位置を左右方向5bに変更する制御のみ行えばよく、ミラー左右移動部805Bは、ミラー第2駆動部112のみを駆動制御する。
 以上のように、変形例のHUD装置1によれば、実施の形態1のうちのHUD領域5を左右方向5bに移動する機能部分による効果が得られる。また、変形例によれば、凹面ミラーM1において、第1回転軸J1、モータ61、ミラーホルダー51等を設ける必要が無いので、実装構成が簡易化できる。
 <他の変形例のハードウェア構成>
 図16は、実施の形態1のHUD装置1に対する他の変形例のHUD装置1における、凹面ミラーM1の機構の構成例を示す。この変形例では、凹面ミラーM1は、第2回転軸J2について、前述のようなX軸方向での中心位置に設けるのではなく、左右のいずれかに寄った位置に設けられる。図16の例では、凹面ミラーM1における第2回転軸J2は、(A)に示すように、反射面を平面視したX-Z面でみた場合に、右辺に寄った位置に設けられている。
 図16の(C)では、凹面ミラー本体52は、破線が、初期状態に対応した状態Aを示しており、実線が、右側に傾いた状態Rを示している。状態Rに応じて、図6や図12と同様に、右位置のHUD領域5Rが形成される。
 HUD装置1は、モータ62の駆動に基づいて、ミラーホルダー51に対し、回転軸J2の周りに、凹面ミラー本体52を回転させる。図16の(C)の例では、凹面ミラー本体52は、回転軸J2の周りに方向rdに回転させた場合に、状態Aから、凹面ミラー本体52の左辺側がY軸方向で後方に出るように回転する。これにより、HUD領域5は、図6や図12と同様に、右位置に移動する。同様に、凹面ミラー本体52は、回転軸J2の周りに、方向rcに回転させた場合には、初期の状態Aから、凹面ミラー本体52の左辺側がY軸方向で前側に出るように回転する。これにより、HUD領域5は、図6や図12と同様に、左位置に移動する。
 図17は、同様に、他の変形例における凹面ミラーM1の機構の構成例を示す。図17の変形例では、図16とは逆に、凹面ミラーM1における第2回転軸J2は、(A)のように、反射面を平面視したX-Z面でみた場合に、左辺に寄った位置に設けられている。図17の(C)の例では、凹面ミラー本体52は、回転軸J2の周りに方向rcに回転させた場合に、初期の状態Aから、凹面ミラー本体52の右辺側がY軸方向で後側に出るように回転する。これにより、HUD領域5は、図6や図12と同様に、左位置に移動する。同様に、凹面ミラー本体52は、回転軸J2の周りに、方向rdに回転させた場合には、初期の状態Aから、凹面ミラー本体52の右辺側がY軸方向で後側に出るように回転する。これにより、HUD領域5は、図6や図12と同様に、右位置に移動する。
 図16や図17の変形例のいずれも採用可能である。また、これらの変形例は、図14の変形例に対しても同様に適用可能であり、第1回転軸J1に係わる機構部分を省略した構成とすればよい。凹面ミラーM1のX軸方向において第2回転軸J2等を設ける位置は、上述した例に限らずに、設計に応じて選択可能である。
 <他の変形例のハードウェア構成>
 図18は、実施の形態1のHUD装置1に対するさらに他の変形例のHUD装置1における、凹面ミラーM1の機構の構成例を示す。この変形例では、凹面ミラーM1は、回転軸を用いた回転機構ではなく、スライド機構として実装されている。この変形例での凹面ミラーM1の機構は、ミラーホルダー51a、凹面ミラー本体52、回転軸J1、モータ61等を備え、前述の回転軸J2を備えない。ミラーホルダー51aには回転軸J1およびモータ61が設けられている。
 ミラーホルダー51aは、凹面ミラー本体52を収容する部分において凹部51bが設けられている。凹部51b内に凹面ミラー本体52がセットされており、凹面ミラー本体52は、凹部51bの凹面に沿ってX軸方向でスライドが可能となっている。このスライドは、凹面に沿った方向での3次元的な移動である。図示しないが、凹部51bには、凹面ミラー本体52をX軸方向での凹面の方向でスライドさせるための溝やスライド駆動機構が搭載されている。スライド駆動機構は、例えばモータ等で実装可能である。
 図18の(B)に示すように、凹面ミラーM1を回転軸J1の周りに回転させる場合、ミラーホルダー51aと凹面ミラー本体52との位置関係が保持されたまま一体的に回転する。これにより、HUD領域5の位置が上下方向5aに調整される。
 図18の(C)の例では、ミラーホルダー51aに対し、凹面ミラー本体52は、実線が初期の状態Aを示し、破線が、X軸方向で凹面に沿って左側にスライド移動された状態Rを示している。このスライド移動後の状態Rでは、凹面ミラー本体52の反射面からの映像光の方向は、より右側に変化するので、HUD領域5は、初期位置から右位置に移動する。
 この変形例によれば、回転機構ではなくスライド機構を用いて、実施の形態1等と同様にHUD領域5の位置を左右方向5bに移動する機能を実現できる。
 また、他の変形例としては、図18の構成において、第1回転軸J1およびモータ61を省略した構成としてもよい。その場合のHUD装置1は、HUD領域5の位置を左右方向5bに移動する機能のみを有する。
 また、他の変形例としては、図18の構成において、ミラーホルダー51aは、凹部51bではなく、実施の形態1と同様に開口部とし、その開口部に凹面ミラー本体52のスライド機構を設けてもよい。
 <HUD領域に係わる変形例>
 図19には、HUD領域5の構成に係わる変形例として、HUD装置1の詳細構成に応じたHUD領域5の他の構成例を示している。図19では、車両2内の運転者であるユーザU1からウィンドシールド3を介して前方(Y軸の前側)に、HUD領域5の虚像9を見る場合を図示している。図19のように、HUD領域5は、複数の領域に分けて形成されてもよい。図19の例では、HUD領域5は、車両2の前後方向に対応するY軸方向で、運転者から見てより遠方の位置で上側に形成されているHUD領域5Fと、運転者から見てより近方の位置で下側に形成されているHUD領域5Nとの2つのHUD領域を有する。これらのHUD領域5F,5Nは、運転者から見て分離されて配置されていてもよいし、一部重畳して配置されていてもよい。また、これらのHUD領域5F,5Nは、運転者から見て斜面として形成されていてもよい。
 また、これらのHUD領域5F,5Nは、虚像9の内容に応じて使い分けられてもよい。例えば、HUD領域5FにはARの虚像9が表示され、HUD領域5Nには非ARの虚像9が表示されてもよい。例えば、HUD領域5Fには、実景内の歩行者1901等の対象に合わせて、アラート等のARの虚像9が表示される。HUD領域5Nには車速などの虚像9が表示される。
 図19のような複数のHUD領域5は、HUD装置1の詳細構成に応じて形成可能である。例えば、映像表示ユニット200内において、ミラーM2や凹面ミラーM1の他に、光学距離を変更するための光学素子を挿入してもよい。図19のようなHUD領域5の場合でも、実施の形態1等の凹面ミラーM1の機構を同様に適用可能である。
 <実施の形態1のHUD装置のソフトウェア構成>
 次に、実施の形態1のHUD装置1のハードウェア構成に基づいて、HUD領域5の位置をより好適に制御するための、実施の形態1のHUD装置1のソフトウェアや制御の構成について説明する。
 実施の形態1のHUD装置1は、上記凹面ミラーM1を含むハードウェア構成に基づいて、コントローラによって、HUD領域5の位置を制御する機能を有する。この機能は、HUD装置1の一部であるコントローラ(例えば図7の制御部101)により実現される機能である。なお、これに限らずに、この機能は、図1のHUD装置1を制御する制御ユニット100により実現される機能としてもよい。すなわち、この機能は、車両2の車載システムにより実現される機能であればよい。
 [HUD領域の位置の制御に関する課題等]
 前述の凹面ミラーM1の機構を含むハードウェア構成に基づいて、HUD領域5を左右方向に移動させることで、見かけ上のFOVを従来よりも拡大できる。このHUD領域5によるFOVを利用することで、効果的なARまたは非ARの虚像を提供できる。前述の凹面ミラーM1の機構を用いてHUD領域5を左右方向に移動させる際の好適な制御を実現するためには、以下のような観点の考慮が必要である。(1)回転軸J2のモータ62(図6や図10)の駆動制御、(2)HUD領域5の位置に関するモード/状態管理、(3)HUD領域5の移動タイミング、(4)虚像9の映像コンテンツの表示位置の調整や歪み補正など。
 [モータ制御について]
 従来技術例のHUD装置は、HUD領域を上下方向に調節するために、凹面ミラーの傾きを上下方向で調整するように(図5)、長手方向の回転軸J1に対しモータ61を搭載し、コントローラによってそのモータ61を駆動制御していた。実施の形態1では、前述のハードウェア構成のように、HUD領域を左右方向に調節するために、凹面ミラーM1の傾きを左右方向で調整するように(図6)、短手方向の回転軸J2に対しモータ62を搭載し、コントローラ(図7の制御部101)によってそのモータ62を駆動制御する。コントローラは、モータ61とともにそのモータ62を適切に駆動制御する必要がある。
 2種類のモータ61,62は、個別に制御される(図7のミラー第1駆動部111、ミラー第2駆動部112)。2種類のモータ61,62は、同じ型式などのモータである場合と、異なる型式などのモータである場合とのいずれも可能である。HUD領域5の上下方向の移動(図5)は、細かな調整ができることが望ましいため、第1回転軸J1のモータ61としては、細かな調整できるステッピングモータ等のタイプが適用されることが望ましい。それに対し、HUD領域5の左右方向の移動(図6)は、上下方向ほどの細かな調整が必ずしも必要とは限らない。そのため、第2回転軸J2のモータ62としては、細かい調整ができるステッピングモータ等のタイプでもよいが、より安価なモータを適用して、固定量でしか移動させないようにしてもよい。
 HUD領域の上下方向の移動は、運転中に動かすことも可能であるが、多くの場合には、運転開始時に運転者の視点に合わせたキャリブレーションとして設定される。その場合、HUD領域の上下方向の位置は、まず自動でおおよその好適な位置まで動かされたあと、ユーザのマニュアル操作(例えばハンドルやリモコンのボタン操作)によって最適な位置・高さへ微調整がされる。それに対し、HUD領域の左右方向の移動は、ユーザのマニュアル操作を受け付けてもよいが、車両状況などに合わせてHUD装置が自動で制御することが想定される。すなわち、ユーザ操作によらずに、コントローラが、HUD領域を左右方向で移動可能な範囲内の位置まで、自動で移動させることが想定される。また、車両の運転中にHUD領域の位置を動的に変化させることが想定される。例えば、HUD領域を左右方向に動かすための条件やトリガを決めておき、その条件/トリガを満たした場合および時に、コントローラがHUD領域を左右方向に移動させる。
 [制御フロー(1)]
 図20は、実施の形態1のHUD装置1のコントローラ(図7等の制御部101)によって自動的にHUD領域5の位置を左右方向5b(図6)に移動させる基本制御フローを示す。図20のフローは、図7や図10の構成と対応している。ステップS1で、HUD装置1が起動される。
 ステップS2では、HUD装置1は、HUD表示準備処理を行う。この準備処理は、HUD領域5に虚像を表示可能な状態にする処理である。この準備処理は、少なくとも、HUD領域5の位置を上下方向5aで定めるためのモータ駆動処理を含む。HUD装置1のコントローラは、ミラー機構M1のミラー第1駆動部111およびミラー第2駆動部112の各モータ61,62等の制御を行うことにより、HUD領域5の位置を、起動直後の所定の状態にする。起動直後の所定の状態は、上下方向5aおよび左右方向5bともに、予め定められた初期位置の状態か、もしくは、ユーザ設定で調整・保存済みの位置の状態である。後者の状態は、HUD装置1を前回起動終了した時に保存した位置の状態を今回の起動時に再現する場合の状態である。本例では、ステップS2では、HUD領域5の上下方向5aの位置が所定の状態にされ、左右方向5bの位置についてはまず前述の初期位置、中央位置(図6でのHUD領域5A)の状態にされる。
 ステップS3で、HUD装置1のコントローラは、起動に基づいて、HUD領域5への虚像9の表示を開始する処理を行う。ステップS4で、HUD装置1のコントローラは、HUD領域5の左右方向5bの移動に関する所定の条件を満たした場合または所定のトリガを受けた場合に、ミラー第2駆動部112のモータ62を駆動する制御を行う。これにより、コントローラは、HUD領域5を左右方向5bにおいて左右位置へ向けて移動させる。ステップS4では、HUD領域5の位置は移動途中、遷移中である。なお、本例では、ステップS4の移動途中には、HUD領域5内での虚像9の表示をしないとする。
 ステップS5では、ステップS4の駆動が目標まで行われることによって、HUD領域5の位置が、左右方向5bでの所望の制御された位置、すなわち図6での左位置のHUD領域5L、あるいは右位置のHUD領域5Rの状態になる。コントローラは、そのHUD領域5の左右位置の状態で、その状態に合わせた虚像9を表示させる。
 ステップS6では、HUD装置1のコントローラは、HUD領域5の左右方向5bの移動の解除、言い換えると中央位置への移動に関する、所定の条件を満たした場合または所定のトリガを受けた場合に、ミラー第2駆動部112のモータ62を駆動する制御を行う。これにより、HUD装置1のコントローラは、HUD領域5を左右方向5bで中央位置へ向けて移動させる。ここでの中央位置は、言い換えると、左右位置への移動が行われる前の、元位置であり、制御上、元位置も記憶されている。ステップS6では、HUD領域5の位置は移動途中、遷移中である。なお、本例では、ステップS6の移動途中には、HUD領域5内での虚像9の表示をしないとする。
 ステップS7では、ステップS6の駆動が目標まで行われることによって、HUD領域5の位置が、左右方向5bでの初期位置、元位置である中央位置に戻り、図6でのHUD領域5Aの状態になる。コントローラは、そのHUD領域5の中央位置の状態で、その状態に合わせた虚像9を表示させる。
 ステップS8では、HUD装置1のコントローラは、所定の条件やトリガ(例えば運転終了)に基づいて、HUD領域5への虚像9の表示を終了する処理を行う。ステップS9では、HUD装置1のコントローラは、HUDの非利用時の保護モードの制御として、ミラー第1駆動部111のモータ61を駆動制御して、凹面ミラーM1を第1回転軸J1の周りに所定の角度の状態(図3での状態s2)になるまで回転させる。これにより、保護モードとして、凹面ミラーM1に外光が入射しないまたは入射しにくい状態s2になり、LCD12のパネル焼けが防止される。ステップS10で、HUD装置1は、HUD装置1を起動終了する。
 上記制御フロー例は、HUD領域5の位置として、中央位置(HUD領域5A)を基本とし、所定条件(例えば、第1条件)を満たす場合に、一時的に、左右位置(HUD領域5L,5R)の状態に変更・遷移し、所定条件を満たさない場合、あるいは解除のための条件(例えば、第2条件)を満たす場合に、左右位置の状態を解除して中央位置(HUD領域5A)の状態に戻す、という考え方の制御である。このような考え方の制御に限らずに可能である。HUD領域5の位置は、移動可能な最大の範囲内で、所定の条件やトリガ等に応じて、任意の位置に移動させることができる。
 [制御フロー(2)]
 図21は、変形例での制御フローを示す。図21のフローは、図15や図16の構成と対応している。変形例では、前述のように、HUD領域5の位置は左右方向5bのみで移動される。HUD領域5の上下方向5aの位置(高さ位置)については、予め所定の状態に設定されており、固定である。変形例では、上下方向5aを用いた前述の保護モードに関する制御は行われない。変形例では、HUD装置1の起動時と終了時とに、HUD領域5の上下方向5aでの移動は行われない。なお、この変形例では、コントローラによるHUD領域5の上下方向5aの移動の制御は行われないが、別のハードウェアやユーザのマニュアル操作を用いて、HUD領域5の上下方向5aの位置・向きの微調整が行われてもよい。
 図21のフローは、図20に対し異なる点として、ステップS2やステップS9の処理は無い。ステップS11で、HUD装置1が起動される。図21のフローでは、凹面ミラーM1の回転などの準備処理は無く、起動から表示開始までを簡略化できる。ステップS12では、HUD装置1のコントローラは、起動に基づいて、HUD領域5への虚像9の表示を開始する処理を行う。ステップS13からステップS17までは、図20のステップS4~S8までと同様である。ステップS18で、HUD装置1は、HUD装置1を起動終了する。
 [制御フロー(3)]
 図22と図23は、2つのモータ61,62の制御に関する違いを示す。まず、図22は、HUD領域5の上下方向5aの移動のための、ミラー第1駆動部111のモータ61等の制御に関するフロー例を示す。ステップS21で、HUD装置1が起動される。言い換えると、HUD装置1がオン状態になる。ステップS22で、HUD装置1は、HUD領域5での虚像の表示を開始する処理を行う。ステップS23で、HUD装置1のコントローラは、HUD領域5の表示高さを調整するかどうかを判断する。例えば、ユーザがその調整のための操作入力をした場合には、ステップS23でYesとなり、ステップS24へ進む。調整が不要の場合には、Noとなり、ステップS26へ進む。
 ステップS24で、HUD装置1のコントローラは、HUD領域5の上下方向5aの位置(表示高さ)に関する調整量を決定する。ステップS25で、コントローラは、決定した調整量に基づいて、ミラー第1駆動部111を駆動制御することで、モータ61を駆動して、凹面ミラーM1を回転軸J1の周りに、調整量に対応した角度で回転させる。これにより、HUD領域5の上下方向5aでの位置・向きが、ユーザの視点に合わせて調整される。
 ステップS26では、HUD装置1は、HUD装置1の終了の指示などがあるかを判断し、ある場合にはステップS27へ進み、無い場合にはステップS23へ戻る。ステップS27では、HUD装置1は、HUD領域5の虚像9の表示を終了する処理を行い、ステップS28で、HUD装置1は、HUD装置1を起動終了する。言い換えると、HUD装置1がオフ状態になる。
 [制御フロー(4)]
 図23は、HUD領域5の左右方向5bの移動のための、ミラー第2駆動部112のモータ62等の制御に関するフロー例を示す。ステップS31で、HUD装置1は、HUD領域5に虚像9が表示可能な状態である。例えば、ステップS31では、車両2が走行中で、ユーザである運転者が運転中の状況であるとする。
 ステップS32で、HUD装置1のコントローラは、制御上のフラグを確認する。このフラグは、HUD領域5の位置に関する制御上の現在の状態を確認・制御するためのフラグである。このフラグは、機能の実現のために情報処理上で用いる手段の一例である。これに限らず、HUD領域5の位置に関するモード等を表す情報や、HUD領域5の位置等を直接的に表す情報等を用いてもよい。本例では、このフラグは、オン/オフの値を持ち、例えばオンが1、オフが0である。このフラグがオフの値0である場合は、HUD領域5の位置が基準位置、初期位置、中央位置など(HUD領域5A)である状態を表し、このフラグがオンの値1である場合は、HUD領域5の位置が所定の左位置(HUD領域5L)または右位置(HUD領域5R)である状態を表す。また、フラグとモードとを対応付けて説明すると、フラグがオフの値0である場合は、モードとして、HUD領域5が中央位置の状態にあるモードを表し、フラグがオンの値1である場合は、HUD領域5が所定の左右位置の状態にあるモードを表す。
 ステップS32で、フラグがオフの値0(中央位置のモード)である場合には、ステップS33へ進み、フラグがオンの値1(左右位置のモード)である場合には、ステップS38へ進む。
 ステップS33では、HUD装置1のコントローラは、中央位置のHUD領域5に、中央位置に合わせた内容の虚像9を表示する。ステップS33では、コントローラは、HUD領域5の左右方向5bでの左右位置への移動に関する所定の条件/トリガを満たしたかを判断する。その条件/トリガを満たした場合には、ステップS34へ進み、満たさない場合には、ステップS33に留まり、中央位置のHUD領域5に虚像9が表示される。所定の条件/トリガ等については後述する。
 ステップS34では、HUD装置1のコントローラは、HUD領域5を中央位置から所定の左右位置まで移動させるための移動方向と移動量などを決定する。この移動方向および移動量等は、ステップS33の条件/トリガ等に応じて決められる。例えば、図6での中央位置のHUD領域5Aから右位置のHUD領域5Rまで移動させる場合には、移動方向が右であり、移動量は、図12での位置1211から位置1212までの移動1200に対応した量である。移動量は、回転軸J2の回転角度などの量と対応関係を有し、相互に換算可能である。
 ステップS35では、HUD装置1のコントローラは、ステップS34で決定した移動方向および移動量等に基づいて、ミラー第2駆動部112のモータ62等を駆動制御することで、凹面ミラーM1を回転軸J2の周りに回転させる。これにより、HUD領域5が左右方向5bで制御された方向および量で移動する。ステップS36では、ステップS35の移動量等での左右移動が完了し、HUD領域5は指定された左右位置の状態となる。ステップS37では、コントローラは、ステップS36でHUD領域5が左右位置になったので、フラグをオフからオンの値1(左右位置のモードを表す)にする。
 ステップS38以降では、コントローラは、左右位置のHUD領域5に、左右位置に合わせた内容の虚像9を表示する。ステップS38では、コントローラは、HUD領域5の左右方向5bでの中央位置への移動(言い換えると左右移動の解除)に関する所定の条件/トリガを満たしたかを判断する。言い換えると、ステップS38では、コントローラは、ステップS33の左右位置への移動に関する条件/トリガを満たさない状態になったかどうかを判断する。ステップS38の条件/トリガを満たした場合には、ステップS39へ進み、満たさない場合には、ステップS38に留まり、左右位置のHUD領域5に虚像9が表示される。
 ステップS39では、コントローラは、HUD領域5を左右位置から中央位置に戻すための移動方向および移動量等を決定する。例えば、右位置から中央位置に戻す場合には、この移動方向および移動量等は、ステップS38の条件/トリガ等に応じて決められる。例えば、図6での右位置のHUD領域5Rから中央位置のHUD領域5Aまで戻すように移動させる場合には、移動方向が左であり、移動量は、図12での移動1200の量と同じ量である。
 ステップS40では、HUD装置1のコントローラは、ステップS39で決定した移動方向および移動量等に基づいて、ミラー第2駆動部112のモータ62等を駆動制御することで、凹面ミラーM1を回転軸J2の周りに回転させる。これにより、HUD領域5が左右方向5bで制御された方向および量で移動する。ステップS41では、ステップS40の移動量等での左右移動が完了し、HUD領域5は指定された中央位置の状態となる。ステップS42では、コントローラは、ステップS41でHUD領域5が中央位置になったので、フラグをオンからオフの値0(中央位置のモードを表す)にする。
 上述のように、HUD領域5の上下方向5aの移動の制御に関しては、HUD装置1の起動時および終了時に保護モードに関する制御があるととともに、ユーザの視点に合わせた表示高さの調整の制御がある。それに対し、HUD領域5の左右方向5bの移動の制御に関しては、図23のように、主に走行中・運転中の状況、条件やトリガに応じた制御がある。
 [HUD領域の位置に関する状態/モード管理]
 図24は、HUD領域5の位置、特に左右方向5bでの位置に関する、状態やモードの管理についての説明図を示す。HUD装置1のコントローラは、図23でも示した通り、HUD領域5の位置に関する状態をフラグ/モードを用いて管理する。言い換えると、コントローラは、常時に、HUD領域5が所定の基準位置・中央位置に対し左右方向5bに移動しているかいないか等を把握・管理する。図24の表では、HUD領域5の左右の位置の状態に関する各モードを、モードS0,SL,SRなどで定義して示している。モードは、前述のオフの値0に対応する基準位置・中央位置の状態のモードS0から開始する。HUD装置1の起動時には、モードS0から開始され、HUD装置1の終了時には、モードS0に戻されてから終了する。
 (A)の表は、基本的な管理の例を示しており、モードは、モードS0,SL,SRの3つを有する。(A)の例では、HUD領域5のとり得る位置として、移動途中状態を除く静止した位置としては、中央位置(HUD領域5A)、左位置(HUD領域5L)、右位置(HUD領域5R)の3つの位置の状態がある。各モードの説明としては、モードS0は、HUD領域5が初期状態、中央位置である。モードSLは、HUD領域5が左移動状態、左位置である。モードSRは、HUD領域5が右移動状態、右位置である。また、各モードの遷移先の規定としては、モードS0は、モードSLまたはモードSRに遷移が可能であり、言い換えると、中央位置のHUD領域5Aは、左位置のHUD領域5Lまたは右位置のHUD領域5Rへ移動が可能である。モードSLは、モードS0のみに遷移が可能であり、言い換えると、左位置のHUD領域5Lから中央位置のHUD領域5Aに戻る移動が可能である。モードSRは、モードS0のみに遷移が可能であり、言い換えると、右位置のHUD領域5Rから中央位置のHUD領域5Aに戻る移動が可能である。
 (B)の表は、他の制御例として、HUD領域5の位置に関して左右方向5bでの段階的な移動を可能とする場合の、モードの管理の例を示す。本例では、モードは、モードS0,SL1,SL2,SR1,SR2の5つを有する。(B)の例では、HUD領域5のとり得る位置として、移動途中状態を除く静止した位置としては、中央位置(HUD領域5A)、第1段階の左位置、第2段階の左位置、第1段階の右位置、第2段階の右位置の5つの位置の状態がある。各モードの説明としては、モードS0は、HUD領域5が初期状態、中央位置である。モードSL1は、HUD領域5が第1段階左移動状態であり、位置としては第1左位置である。モードSL2は、HUD領域5が第2段階左移動状態であり、位置としては第2左位置である。モードSR1は、HUD領域5が第1段階右移動状態、位置としては第1右位置である。モードSR2は、HUD領域5が第2段階右移動状態、位置としては第2右位置である。本例では、モードSL2の第2左位置が最大に左の位置であり、モードSR2の第2右位置が最大に右の位置である。
 また、各モードの遷移先の規定としては、モードS0は、モードSL1またはモードSR1に遷移が可能である。モードSL1は、モードS0またはモードSL2に遷移が可能である。モードSL2は、モードSL1のみに遷移が可能である。モードSR1は、モードS0またはモードSR2に遷移が可能である。モードSR2は、モードSR1のみに遷移が可能である。なお、上記遷移先は隣り合う位置への遷移の関係のみを示しており、制御上は、例えばモードS0の中央位置から一挙にモードSL2の第2左位置まで移動させることも可能である。
 上記(B)の例は、一方向において2段階の移動を規定する例であるが、勿論これに限らずに、多段階の移動を規定可能である。最も細かい多段階の制御例としては、駆動機構の構成に基づいて、左右方向5bにおいて所定の最大の範囲内でHUD領域5を自由な位置に位置付ける制御も可能である。
 図25には、図24の(B)のように2段階での左右移動位置を設ける場合のHUD領域5の位置の例を示す。図25では、左位置のHUD領域5としては、第1段階の第1左位置のHUD領域5L1と、最大の第2段階の第2左位置のHUD領域5L2とがある。右位置のHUD領域5としては、第1段階の第1右位置のHUD領域5R1と、最大の第2段階の第2右位置のHUD領域5R2とがある。例えば、凹面ミラーM1の回転軸J2の回転状態が、状態L2の時には、第2左位置のHUD領域5L2が形成される。
 また、図26には、変形例におけるHUD領域5の段階的な移動位置を設ける場合を同様に示している。図26の変形例では、基準位置のHUD領域5Aに対し、右方向への移動のみが可能な構成とし、例えば右方向で4段階での右位置を設ける場合を示している。図26では、右位置のHUD領域5としては、第1段階の第1右位置のHUD領域5R1と、第2段階の第2右位置のHUD領域5R2と、第3段階の第3右位置のHUD領域5R3と、最大である第4段階の第4右位置のHUD領域5R4とがある。
 [左右移動に関する条件]
 図23のステップS33等の、HUD領域5の左右方向5bでの位置の移動に関する、所定の条件やトリガ等について説明する。実施の形態1のHUD装置1では、予め、複数の条件やトリガが規定されており、コントローラは、それらの条件やトリガをそれぞれ判断する。そして、コントローラは、ある条件やトリガを満たす場合には、その条件やトリガに対応して規定されている移動制御を実行する。
 図27および図28の表には、HUD領域5の位置の移動に関する、主な条件/トリガについてまとめたものを示している。図27は、ステップS33に対応した開始条件を示し、図28は、ステップS38に対応した終了条件を示す。図27の表では、複数の条件/トリガについて、分類と開始条件とを示している。図28の表では、同様に、分類と終了条件とを示している。分類としては、ナビ情報、操作情報、ドライバ目線情報、障害物検知情報、走行車線情報、自動運転情報、その他がある。開始条件とは、HUD領域5を基準位置である中央位置から左右位置へ移動させるための条件である。終了条件とは、開始条件を満たした結果で左右位置にあるHUD領域5を中央位置へ戻すように移動させるための条件、言い換えると、左右位置にある状態を解除するための条件である。
 まず図27で、「ナビ情報」は、前述の車両情報4等に基づいて得られるナビゲーション情報を用いた条件の分類である。「ナビ情報」での左右移動の開始条件は、例えば、そのナビゲーション情報からわかる右左折の予定と、現在位置からその右左折の地点までの距離や到達までの予測時間とに応じて決められた条件である。この条件は、例えば、右左折の地点までの距離が50m以内になった、もしくは、到達予測時間が10秒以内になった、といった条件である。当該条件を満たした場合に、HUD領域5が左右位置(右折の場合には右位置)に移動される。
 「ナビ情報」の条件を用いた移動制御の具体例としては以下が挙げられる。車両2および車載システムでは、各時点でナビ情報に基づいて車両2の進行方向や経路が再計算され、進行方向や経路が更新される。その場合に、HUD装置1は、その更新のタイミングごとに、HUD領域5の位置の移動に関する判定を行い、判定結果に従ってHUD領域5の位置の移動を行う。例えば、最初、車両2の進行方向が前方(例えば北)に直進であり、HUD領域5が中央位置にある。ナビ情報等に基づいて、前方の交差点での右折の予定が得られ、言い換えると車両2の進行方向が北から東へ変わる予定が得られ、右折の交差点の手前まで来たとする。HUD装置1は、その予定などを開始条件として、HUD領域5を右位置へ移動させる。車両2がその交差点を右折し、進行方向が北から東へ変わる。HUD装置1は、右折が完了し、進行方向が北から東へ変わったことを終了条件として、HUD領域5を中央位置へ戻す。
 「操作情報」は、ユーザによる所定のマニュアル操作を用いた条件の分類である。マニュアル操作は、車両2内に設置されたデバイスを利用した入力操作である。「操作情報」での開始条件は、ユーザのマニュアル操作に応じた条件であり、例えば、運転者による方向指示器の操作や、ハンドル8の操作や、車両2内に設置された左右移動ボタンやキーなどの操作に連動した条件である。この開始条件は、例えば、右左折に対応して方向指示器が操作されたという条件である。
 「ドライバ目線情報」は、運転者の目線移動に応じた条件の分類である。「ドライバ目線情報」を用いた開始条件は、運転者の目線の移動が基準に対し増加したという条件や、視線の先が前方に対し左右に向いている度合いが大きいといった条件が挙げられる。例えば、図2でのカメラ90として車内カメラを用いて、運手者の目の位置や視線の状態がモニタされる。開始条件は、例えば、運転者の目線の移動量が基準値以上になった場合が挙げられる。また、開始条件は、運転者の視線の先が、図6での車両前方(Y軸方向)や中央位置のHUD領域5Aに対し、左右方向5b(X軸方向)に傾いているかどうかといった条件が挙げられる。
 「障害物検知情報」は、車両情報4等に基づいて得られる、車両2の走行に対する障害物や注意すべき対象物(例えば歩行者を含む)についての検知情報を用いた条件の分類である。「障害物検知情報」での開始条件は、検知した物体のある方向やいる方向と、その物体と自車両との距離とに応じた条件である。「障害物検知情報」での開始条件は、例えば、自車両の前方に対し左右方向に他車両や歩行者などの対象物体を検知し、その対象物体との距離が所定の距離以上であるといった条件が挙げられる。また、この開始条件は、中央位置のHUD領域5Aの外に対象物体があるといった条件が挙げられる。
 具体例としては、最初、車両2の進行方向が前方に直進であり、HUD領域5が中央位置にある。障害物検知情報に基づいて、自車線に対し前方右側に歩行者が検知されたとする。HUD装置1は、その検知を開始条件として、HUD領域5を右位置へ移動させ、その歩行者についてのアラートを表示させる。HUD装置1は、車両2が進行して、自車線に対し前方右側に検知されていた歩行者が、センサ検知範囲から外れた状態(言い換えると検知されていない状態)、もしくは右位置のHUD領域5の外に出た状態になったことを終了条件として、HUD領域5を中央位置へ戻す。
 「障害物検知情報」の条件を用いた移動制御は、車両2のセンサによる対象物体の検知範囲と、HUD領域5の表示範囲との関係で、検知範囲よりも表示範囲の方が狭い場合には、特に有効である。例えば、自車両に対し左側にバイクが検知され、中央位置のHUD領域5A内にはそのバイクに対するアラートのARを表示できない場合に、HUD領域5を左側にシフトさせるように移動させることで、その左位置のHUD領域5L内に、バイクの位置に重畳させてアラートのARが表示可能となる。また、例えば、自車両に対し右側に歩行者が検知され、中央位置のHUD領域5A内にはその歩行者に対するアラートのARを表示できない場合に、HUD領域5を右側にシフトさせるように移動させることで、その右位置のHUD領域5R内に、歩行者の位置に重畳させてアラートのARが表示可能となる。
 「走行車線情報」は、車両情報4等に基づいて得られる、走行中の車両2の走行車線に関する情報を用いた条件の分類である。「走行車線情報」での開始条件は、例えば、片側3車線がある場合に、自車両が左車線、中央車線、右車線のいずれを走行中かに応じた条件である。あるいは、開始条件は、それらの車線の変更に応じた条件である。例えば、自車両の走行車線が片側3車線のうち右車線にあるという条件を満たす場合、あるいは、中央車線から右車線に変更されたという条件を満たす場合には、例えば左側の歩道などへの注意がしやすくなるように、HUD領域5の位置が左へ移動される。
 「自動運転情報」は、車両2が自動運転機能を有し自動運転に対応している場合に、自動運転に関する情報を用いた条件の分類である。「自動運転情報」での開始条件は、例えば、自動運転が有効な状況で、自動運転による右左折や車線変更などの行動予定情報を用いた条件である。例えば、自動運転機能を有する制御ユニット100が自動運転での右折を決定し、車両情報4として右折予定情報が得られ、右折予定情報から右折に関する所定の条件(例えば前述の「ナビ情報」と同様の条件)を満たす場合に、例えばHUD領域5が右位置へ移動される。
 上記のような各種の項目の条件は、単体のみならず、複数を組み合わせて用いてもよい。複数の項目の条件を組み合わせた条件とした場合、HUD領域5をいま、どちらの方向にどれだけ移動すべきかといった移動制御内容を、より高精度に決定でき、HUD装置1の信頼性などを高めることができる。
 図27の表の下側には、複数の条件を組み合わせた条件の例を示す。組み合わせ条件1は、上記ナビ情報の条件と上記操作情報の条件とを組み合わせた条件であり、例えばそれらの2つの条件を論理積(AND)で組み合わせた条件である。例えば、ナビ情報によって右折の予定が得られ、かつ、運転者の操作として右折を表す方向指示器の操作がされたという条件が挙げられる。また、組み合わせ条件2は、上記障害物検知情報の条件と上記ドライバ目線情報の条件とをANDで組み合わせた条件である。例えば、障害物検知情報によって自車線に対し右側に歩行者などが検知され、かつ、運転者の視線の先が前方に対し右側に向いているといった条件が挙げられる。
 また、上記図27のような各種の条件/トリガがある場合に、同時に複数の条件やトリガを満たす場合もあり得る。この場合にも対応できるように、複数の条件やトリガの間(対応する複数の移動制御の間)には、予め、優先度などの関係が規定されてもよい。同時に複数の条件やトリガを満たす場合には、その優先度などに従って、実行する移動制御が決定されてもよい。例えば、交通安全が最も優先され、「障害物検知情報」の条件は、高い優先度とされ、それに対し、「ナビ情報」などの条件は相対的に低い優先度とされる。条件として「障害物検知情報」と「ナビ情報」とが殆ど同時に満たされた場合には、「障害物検知情報」の条件に対応した移動制御が「ナビ情報」の条件に対応した移動制御よりも優先して実行される。
 図28で、左右移動に関する終了条件の例としては以下の通りである。「ナビ情報」を用いた終了条件は、例えば、右左折の完了、走行中の道路が変わったこと、車両の進行方向が変わったこと等の情報に基づいた条件である。また、終了条件は、そのような状態に切り替わった時点からの経過時間が所定の時間以上となったという条件や、次の右左折の予定などが得られたという条件がある。
 「操作情報」を用いた終了条件は、ユーザのマニュアル操作として、例えば前述のように右折に合わせて方向指示器を右折位置にする操作がされた後に、右折完了に応じて方向指示器の状態が右折位置からニュートラル位置に戻ったという条件がある。また、終了条件は、右折完了に応じてハンドル8の操舵角の状態がニュートラルに戻ったという条件がある。
 「ドライバ目線情報」を用いた終了条件は、運転者の目線の移動が基準に対し減少したという条件が挙げられる。終了条件は、例えば、右左折が完了して再び直進になったことで、目線の移動量が基準値以下になった場合や、視線の先が直進の方向になった場合が挙げられる。
 「障害物検知情報」を用いた終了条件は、検知した障害物や注意すべき物体が無くなった、それらを車両が通り過ぎた、といった条件が挙げられる。
 「走行車線情報」を用いた終了条件は、自車両の走行車線が複数車線から一車線になった場合(車線が減った場合)や、車線変更が完了した場合といった条件が挙げられる。
 「自動運転情報」を用いた終了条件は、自動運転のオン状態の時に、右左折や車線変更などが完了したという条件が挙げられる。
 終了条件についても、開始条件と同様に、複数の項目の条件を組み合わせた条件としてもよい。終了条件に関する組み合わせ条件の例は、ドライバ目線情報の条件と障害物検知情報の条件とをANDで組み合わせた条件である。例えば、障害物検知情報に基づいて自車線に対し右側に検知されていた歩行者が検知されなくなった、言い換えると車両2がその歩行者を通り過ぎた、かつ、運転者の視線の先が前方に戻ったといった条件が挙げられる。
 他の組み合わせ条件の例としては、複数の条件を時間軸上で順次につなげた組み合わせ条件としてもよい。例えば、最初にナビ情報の条件を用いて制御し、次に操作情報の条件を用いて制御するといったものでもよい。例えば、HUD装置1は、ナビ情報に基づいて右折の予定が得られた場合に、開始条件を満たし、HUD領域5を右位置に移動させる。この時点ではまだ右折の地点の手前である。その後、HUD装置1は、所定の時間内に、運転者によるマニュアル操作として例えばハンドル8の右への操舵があるかを判断する。例えば、運転者は、自身の都合で行き先を変更し、右折をやめて直進すると決め、右への操舵をしなかったとする。HUD装置1は、所定の時間内にその操作が無い場合には、終了条件を満たし、HUD領域5を右位置から中央位置に戻すように移動させる。
 [変形例(1-1)]
 変形例として以下も可能である。HUD装置1は、常時、HUD領域5が前述の左右のどちらかの位置に移動した状態を、デフォルト設定(言い換えると基準位置など)としてもよい。この変形例は、例えば右ハンドル車で右側の歩道側などを強く意識して運転したい人が、HUD領域5を常に右の位置に移動した状態で運転したい、というニーズに応えることができる。この変形例では、デフォルト位置として左右のどちらかの位置に移動した状態で固定し、その位置から動かさないことを基本とする。
 図29には、この変形例でのHUD領域5の位置の設定例について示す。図29では、前述の凹面ミラーM1の機構に基づいて、HUD領域5を例えば中央位置(点pA)に対し左位置(点pL)や右位置(点pR)に移動可能な構成を有し、ユーザが設定で右位置(点pR)のHUD領域5Rをデフォルト、初期位置として設定した場合を示す。使用中は、常にこの右位置のHUD領域5R内に虚像9が表示される。
 [ユーザ設定]
 HUD装置1は、ユーザに対し、上記のようなHUD領域5の位置に関する設定のためのメニュー、グラフィカル・ユーザ・インタフェース(GUI)などを提供し、ユーザがそのGUIを用いてデフォルト位置や条件などを選択して設定できるようにしてもよい。
 図30には、HUD領域5を用いたGUI例を示し、HUD領域5にそのGUIの映像が表示されている。本GUI例では、HUD表示領域の左右の位置としてデフォルト位置についてのユーザ設定を可能とする項目3001と、実施の形態1のようなHUD表示領域の左右の位置を動的に変更する機能についてのオン/オフのユーザ設定を可能とする項目3002とを有する。項目3001では、デフォルト位置を、例えば左寄りの位置、中央位置、右寄りの位置の3種類から選択できる場合を示している。また、下側に示すスライドバー3003のように、HUD領域5のデフォルト位置を最大範囲内で詳細に選択できるようにしてもよい。HUD領域5のGUIに対する操作は、例えば制御ユニット100またはHUD装置1のリモコン等を用いて可能である。
 また、項目3002で当該機能を使用する(オン)と設定した場合には、詳細設定として、その機能の中での、初期位置と、移動先の位置とを、ユーザ設定できるようにしてもよい。例えば、初期位置を中央位置とし、移動先の位置を右位置のみにする、といった設定が可能である。あるいは、移動先の位置を、図25や図26のような何段階かの位置から選択可能としてもよい。また、詳細設定の1つとして、初期位置と移動先の位置との間での移動の仕方についても、瞬時に移動させる方式、ゆっくりと滑らかに移動させる方式(例えば後述の図41)などから選択可能としてもよい。
 上記ユーザ設定は、HUD領域5を用いたGUIやマン・マシン・インタフェースに限らず、車載システムのコントロールパネルなどの他の手段を用いたインタフェースとしてもよい。
 [変形例(1-2)]
 他の変形例としては、HUD領域5のデフォルト位置として左右のいずれかの位置、例えば右位置に設定しておき、使用中は所定の条件/トリガに応じて中央位置や左右の反対側の位置に移動させるといった形態も可能である。例えば、通常時には、デフォルト位置である右位置(図29での点pRのHUD領域5R)とされ、発生イベント等に応じて、所定の開始条件を満たす場合には、右位置から中央位置または左位置に移動し、所定の終了条件を満たす場合には、デフォルトの右位置に戻される。
 [変形例(1-3)]
 他の変形例として、例えば市街地や高速道路などの、車両2が走行している道路に応じて、HUD領域5の位置を変えることもできる。例えば、ユーザが設定した特定の道路(個別の道路でもよいし、道路の種類でもよい)あるいは地域については、HUD領域5の位置を左右位置に固定する。例えば、子供が多く通るとわかっている道路については、歩道の子供に注意しやすいように、その道路では自動的にHUD領域5を右位置に移動するように設定できる。HUD装置1のコントローラは、車両2の位置情報などに基づいて、特定の道路や地域を判断し、走行道路が特定の道路に該当する場合には、HUD領域1の位置を設定された例えば右位置へ移動させる。
 [HUD領域の位置の移動に関する課題と工夫]
 HUD領域5の位置の移動に関する工夫について説明する。上述のようにHUD領域5を左右方向5bに移動させた場合に、運転者の視点から見て、なるべく違和感などが生じないようにすることが好ましい。
 まず、図31は、HUD領域5の移動に関する工夫が無い場合の見え方について示す。図31の(A)は、HUD装置1が、HUD領域5に虚像9を表示するために、図7等の映像表示装置10のLCD12の表示面1200に表示する映像の例を示す。本例では、表示面1200に、車速を表す映像3101(例えば「25km/h」という文字画像),左折のナビゲーションを表す映像3102(例えば左に曲がる矢印画像)、対象物へのアラートを表す映像3103(例えばリング状の画像)が表示されている。
 (B)は、(A)のような元映像に基づいて、ウィンドシールド3に対しHUD領域5に表示される虚像9についての運転者の視点からの見え方を示す。(B)の状態では、HUD領域5Aは、基準位置である中央位置にある。車速の映像3101に基づいて、非ARである車速の虚像3111は、HUD領域5内の所定の位置として、例えば下辺領域の右部に表示されている。また、左折の映像3102に基づいて、非ARである左折の虚像3112は、同様に、例えば下辺領域の左部に表示されている。また、アラートの映像3103に基づいて、ARであるアラートの虚像3113は、HUD領域5内で、対象物(例えば先行車両3114)の位置に合わせて重畳表示されている。
 ここで、従来技術例として、実施の形態1のような凹面ミラーM1の機構が無いハードウェア構成の場合に、(A)のようなLCD12の表示面1200上の映像の表示位置をそのままに左右方向に移動させることも考えられる。これにより、見かけ上、HUD領域5内の虚像9を左右方向に移動できる。
 図32の(A)は、LCD12の表示面1200において上記図31の(A)の映像をそのまま右にシフト移動して表示した場合を示す。また、(B)は、(A)の映像に基づいてHUD領域5Aに表示される虚像9を示す。しかしながら、表示面1200は限られているので、もともと右部にあった車速の画像3201は表示面1200の外に出てしまう(破線枠は表示できない部分)。このため、HUD領域5Aでは、車速の虚像3111を適切に表示できない。また、特に、ARであるアラートの映像3203については、HUD領域5Aでは、対象物である先行車両3114の位置に対し、右側にずれた位置に虚像3113として表示されてしまい、適切な3次元表示、AR表示はできない。すなわち、このような従来技術例では、AR-HUDとしての要件を満たさない。
 また、図33は、実施の形態1のような凹面ミラーM1の機構があるハードウェア構成の場合に、図31の(A)のようなLCD12の映像をそのまま用いて、HUD領域5の位置を例えば右位置に移動したHUD領域5Rの状態とし、そのHUD領域5R内に虚像9として表示する例を示す。破線枠は移動前の中央位置のHUD領域5Aを示し、実線枠は移動後の右位置のHUD領域5Aを示す。矢印3300は右方向への移動量3300を示す。この場合も、アラートの映像3103に基づいた虚像3313は、対象物である先行車両3314に対し、右側にずれた位置に表示されてしまい、適切な3次元表示、AR表示はできない。この場合も、AR-HUDとしての要件を満たさない。そのため、HUD領域5の左右移動制御に関して、さらに工夫が必要である。
 また、非ARである車速の虚像や左折のナビゲーションの虚像については、従来、所定の位置に表示されているが、上記例では、HUD領域5の虚像9の表示は、開始条件に応じた右移動に伴い、図31の(B)のような状態から図33の(A)のような状態に変わる。運転者の視点から見ると、車速の虚像3111等が右に動いたように見える。また、終了条件に応じてHUD領域5が右位置から元の中央位置に戻された場合にも、同様に、HUD領域5内の車速の虚像3311等が左に動いたように見える。このような非ARの虚像9の動きは、運転者や状況等によっては、運転者に違和感を生じさせる可能性がある。また、運転者や状況等によっては、非ARの虚像9が一時的に左右に動いたとしても、運転者に違和感を生じさせない場合もある。
 図33の(B)は、上記課題を考慮して、右移動後のHUD領域5Rでの虚像9の見え方を調整した一例を示す。コントローラはLCD12の表示面1200での映像の表示位置などを調整する。本例では、調整の結果、右位置のHUD領域5R内で、アラートの虚像3313bは、対象物である先行車両3314の位置に合わせて重畳表示されている。これにより、AR-HUDとしての要件を満たす。
 また、非ARである車速の虚像3111は、図31の(B)の移動前のHUD領域5A内での位置に対応させた位置に虚像3311bとして表示されており、右への動きは発生していない。この例は、運転者にとって非ARの虚像については動かない方が望ましい場合を想定した例である。
 また、左折のナビゲーションの虚像3112については、右位置のHUD領域5Rに移動したことで、そのHUD領域5R内では、図31の(B)の移動前のHUD領域5A内での位置に対応させた位置(点線の虚像3312aとして示す)には表示できなくなる。そのため、虚像3112については、一案としては、LCD12での表示位置をそのままとすることで、元位置から右に移動した位置(虚像3112bとして示す)に表示することが挙げられる。この場合、虚像3112は右への動きとして見える。あるいは、右への動きが望ましくない場合には、映像3102を一時的に消去することで、HUD領域5A内に表示されない状態とすることが挙げられる。虚像3112が右へ動いたとしても、消えて見えなくなるよりは好ましいという場合には、前者の対応が選択される。
 例えば上記図33の(B)のような虚像9の表示の調整が行われた場合、少なくとも(A)のような表示よりも好適となり、運転者にとってわかりやすく、違和感を生じさせにくくすることができる。
 また、上記(B)の例では、右移動後のHUD領域5R内において、右辺付近の領域501として、中央位置のHUD領域5Aとは重ならない部分は、虚像9の表示には使用されていない。右移動後のHUD領域5Rによって、見かけ上のFOVが拡大しているので、このような領域501を有効利用して虚像9が表示される。すなわち、このような領域15に例えば対象物(例えば図13での歩行者1303)が検知された場合に、従来技術ではアラートの虚像を適切に表示できないが、実施の形態1によれば適切に表示可能となる。
 図34は、前述の図13と類似の状況であるが、車両2の前方右側付近に歩行者3401が検知された場合の対応例を示す。(A)は、従来技術例で、中央位置のHUD領域5Aに虚像9を表示させる場合を示す。(A)では、HUD領域5A内に、右折のナビゲーションの虚像9aなどが表示されているが、検知された対象物である歩行者3401は、HUD領域5Aを含む平面で考えた場合に、HUD領域5Aの外にある。そのため、HUD領域5A内では、ARとして歩行者3401に対するアラートの虚像を表示させることはできない。それに対し、(B)は、(A)と同じ状況の場合に、実施の形態1での凹面ミラーM1の機構に基づいて、図33の(B)と同様に、HUD領域5を中央位置から右位置に移動し、そのHUD領域5R内に、特に右辺付近の領域501内に、ARとして歩行者3401に対するアラートの虚像9cを表示する場合を示す。
 実施の形態1のHUD装置1のコントローラは、上記のようなHUD領域5の左右の移動の制御に伴い、HUD領域5内の各種の虚像9の表示について、左右に移動させるべきか移動させないか等を決定し、LCD12での表示を調整する。その際に、コントローラは、虚像9の種類、車両2や運転者の状況、対象物、ユーザ設定などを考慮して、総合的に決定する。上記例のように、コントローラは、ナビゲーションの虚像9aやアラートの虚像9cなどのARについては、HUD領域5の移動前後で、対象物の位置に合わせるように、表示位置を決定し調整する。コントローラは、車速の虚像9dや距離の虚像9eなどの非ARについては、左右移動後のHUD領域5内に表示可能であるかや、運転者が虚像9の移動を許容するか等の観点を総合的に考慮して、表示位置を決定し調整する。
 以下では、非ARの虚像9については、運転者が非ARの虚像9の移動を好まない場合を想定して、なるべく表示位置を変えないことを基本とするが、これに限らず、前述のように、運転者や状況等によっては非ARの虚像9が左右に移動して表示されてもよい。また、運転者が非ARの虚像9の移動を許容するか否か、言い換えると、HUD領域5の左右移動に伴い非ARの虚像9を移動させるか否か等についても、図30と同様にGUIを用いてユーザ設定を可能としてもよい。
 [ARの虚像の調整(1)]
 図35は、実施の形態1での上記課題に関する工夫・対策の一例を示す。図35の例は、ARのオブジェクトの画像が、対象物から位置がずれないように、コントローラが表示位置を調整する場合を示す。(A)は、調整前の表示を示し、(B)は、調整後の表示を示す。(A)で、下側にはLCD12の表示面1200での映像の表示例を示し、上側には中央位置のHUD領域5Aでの虚像9の表示例を示す。本例では、対象物として先行車両3501が検知された場合に、その先行車両3501に対し、位置を合わせて、アラートの虚像3502が表示されている。車速の虚像3503は、HUD領域5A内の右下付近に表示されている。そのような虚像9を形成するように、LCD12の表示面1200で、制御された位置に、映像3512,3513が表示されている。
 (B)では、開始条件に基づいて、HUD領域5が右位置に移動されている。コントローラは、右位置のHUD領域5R内で、先行車両3501に合わせてアラートの虚像3502を表示させるために、HUD領域5の右への移動量3504などを考慮した計算に基づいて、LCD12の表示面1200でのアラートの映像3512の表示位置を、左に移動させている。移動後の映像3512を映像3512bで示す。この際、コントローラは、LCD12の表示面1200上で、ARのオブジェクト(例えば映像3512)を、HUD領域5の位置の移動方向(例えば右)に対し逆方向(例えば左)に、HUD領域5の移動量3504と対応させた量3505(同じ量または近い量)で移動させる。
 また、非ARである車速の虚像3503については、運転者にとって、HUD領域5の移動前後で表示位置が移動しても移動しなくてもどちらでもよい場合とする。コントローラは、車速の虚像3503については、HUD領域5の移動前後で表示位置を同じにするか、または、HUD領域5の移動とともに移動させるか等を決定する。本例では車速の虚像3503は、HUD領域5の移動とともに移動されて、虚像3503bとなっている。詳細は後述する。
 [ARの虚像の調整(2)]
 図36は、ARの虚像の表示位置の調整に関する工夫について示す。例えば車両2や対象物などの状況およびHUD領域5の位置の状態によっては、図35のようなアラートの虚像についての適切な表示位置の調整ができない場合も想定される。図36は、その場合の対策例を示す。HUD領域5の左右移動に伴い、対象物に対し虚像の位置がずれてしまう場合に、対策としては、一時的にその虚像の表示を消去することが一案である(図33の(B))。他には、対象物と虚像との位置のずれが完全に解消できなくても、位置のずれがなるべく小さくなるように表示位置を調整することが一案である。
 図36の(A)の例では、中央位置にHUD領域5Aがあり、車両2に対し前方左側に対象物としてバイク3601(模式的に楕円で図示)が検知されており、LCD12の映像3603に基づいて、中央位置のHUD領域5A内で、バイク3601へのアラートの虚像3602が表示されている。次に、(B)の例では、車両2に対し左側には対象物としてバイク3601が検知されており、かつ、右側には歩行者3605が検知されたとする。ここでは、開始条件に基づいて、コントローラが、歩行者3605へのアラートを優先と判断し、HUD領域5Aが右位置へ移動されるとする。この結果、右へ移動したHUD領域5R内において、前述と同様に、LCD12の映像3607に基づいて、歩行者3605へのアラートの虚像3606が好適に表示できる。
 しかしその一方で、バイク3601がHUD領域5R外に出るので、バイク3601へのアラートの虚像3602の表示は難しくなる。移動前にはバイク3601に位置を合わせてアラートの虚像3602が重畳表示できていたが、HUD領域5R内ではそのような表示は継続できない。HUD領域5の右移動とともに虚像3602を右移動させる場合、バイク3601に対し虚像3602の位置がずれてしまう。
 この場合に、コントローラは、対策としては、多少のずれが残っても、アラートの存在が伝わるように、虚像3602の表示位置を調整することが一案である。例えば、(B)のように、コントローラは、LCD12での映像3603の表示位置を調整することで、アラートの虚像3602(本例ではリング)を、全体のうち半分以上が表示されるように、HUD領域5R内の左辺付近に表示する。調整後の映像3603を映像3603bで示し、調整後の虚像3602を虚像3602bで示す。この虚像3602bは、バイク3601の位置に対しずれがあり、右半分程度しか表示されていないが、単純にそのまま移動させた場合のずれよりは小さく、運転者にはバイク3601へのアラートがあることが伝わる。また、本例では、車速の虚像については、HUD領域5の移動前後で同じ位置に表示されるように調整されている。
 また、コントローラは、HUD領域5の右移動の結果、ずれの大きさや位置関係などから、バイク3601へのアラートの虚像3602の表示の継続が困難になったと判断した場合(例えばずれ量が閾値以上となる等)には、その虚像3602の表示を諦めて一時的に消去してもよい。コントローラは、終了条件に応じてHUD領域5の位置が中央に戻り、再びバイク3601へのアラートの虚像3602の表示が可能になったと判断した場合には、再度、その虚像3602を表示させる。
 [ARの虚像の調整(3)]
 また、他の対策案としては、上記のようにアラートの虚像3602の表示位置を調整する場合に、元のオブジェクト(例えばリング)とは異なる態様のオブジェクトの虚像9として表示させてもよい。
 図37は、その対策案の場合の表示例を示す。図37は、例えば図36の(B)と同様の状況である。コントローラは、HUD領域5の右移動に伴い、LCD12の映像3701に基づいて、右位置のHUD領域5R内で、左辺付近に、バイク3601に対する注意のための虚像3702を表示させる。この虚像3702は、例えば左向き矢印のオブジェクトによる虚像であり、HUD領域5外の、その虚像3702の矢印で示す方向に、注意すべき対象物などがあることを表している。この虚像3702によって、左側に対象物があることをユーザに伝えることができる。この虚像3702は、矢印画像に限らず、「バイク」等を表すアイコンや文字画像、アラートマークなどとしてもよい。
 [非ARの虚像の調整(1)]
 図38は、非ARの虚像についての表示位置の調整の例を示す。例えば、HUD領域5で2次元的に表示される車速を表す虚像について、HUD領域5の左右移動の前後で、運転者から見て位置が変わらないように表示を調整する場合などを説明する。(A)は、調整前の例を示し、中央位置のHUD領域5A内に、虚像3801,3802が表示されている。(B)は、調整後の例を示し、右位置のHUD領域5R内に、虚像3801,3802,3803が表示されている。コントローラは、開始条件に応じて、(A)のHUD領域5Aを(B)の右位置のHUD領域5Rへ移動し、LCD12の映像3813に基づいて虚像3803を表示させる。本例では、開始条件に応じた所定の虚像3803(例えば吹き出し画像)を表示するために、右位置のHUD領域5Rへ移動されるとする。
 本例では、コントローラは、HUD領域5の位置が(A)から(B)へ変化した場合に、運転者から見て虚像3801,3802の位置が変わらないように調整する。この調整として、コントローラは、LCD12の表示面1200で、映像3811,3812を、HUD領域5の移動方向とは逆である左方向にHUD領域5の移動量と対応した量で移動して表示させる。調整後を映像3811b,3812bで示す。
 また、図39は、図38に対し、HUD領域5を右位置から中央位置に戻す場合の調整の例を示す。この場合も同様に、コントローラは、図38での調整とは逆の調整を行えばよい。図39の(A)は、図38の(B)と同様に、右位置のHUD領域5Rでの調整中の表示例である。この状態から、コントローラは、終了条件に応じて、HUD領域5Rを(B)のように中央位置のHUD領域5Aへ戻す。この際、例えば吹き出し画像による虚像3803は消去される。
 本例では、コントローラは、HUD領域5の位置が(B)から(A)へ変化する場合に、運転者から見て虚像3801,3802の位置が変わらないように調整する。この調整として、コントローラは、LCD12の表示面1200での映像3811b,3812bを、HUD領域5の移動方向の逆である右方向に、HUD領域5の移動量に対応した量で移動して表示させる。調整後を映像3811c,3812cで示す。
 [非ARの虚像の調整(2)]
 図40は、非ARの虚像についての表示位置の調整の他の例を示す。本例では、HUD領域5の移動に伴い、運転者から見た非ARの虚像の表示位置を変える場合を示す。(A)では、中央位置のHUD領域5Aにおける下辺領域に、非ARの虚像として、車速を表す虚像4001と、目的地までの距離を表す虚像4002とが表示されている。虚像4002は矢印画像と文字画像との組み合わせの例である。下辺領域(破線枠で示す)において、右辺寄りの位置に虚像4001が配置され、左辺寄りの位置に虚像4002が配置されている。
 コントローラは、開始条件に応じて、HUD領域5Aを例えば右位置へ移動させる。本例では、右側に吹き出し画像による虚像4003を表示させるために、右位置のHUD領域5Aへ移動されるとする。(B)は、右位置のHUD領域5Rでの表示状態を示し、HUD領域5R内の右辺付近には吹き出し画像による虚像4003が表示されている。
 本例では、非ARの虚像については、HUD領域5の移動前後で位置の変化が許容される場合とする。コントローラは、車速の映像4001および目的地までの距離の映像4002については、HUD領域5の移動前後で、LCD12の表示面1200での表示位置を同じとする。これにより、右位置のHUD領域5R内では、虚像4001および虚像4002については、HUD領域5の右への移動量に対応して、右に移動した位置に表示されている。
 (A)から(B)の状態への変化では、HUD領域5の移動途中の時間に虚像9を表示しない場合、非ARの虚像4001,4002は、それぞれ右に飛んで移動したように表示されるが、運転者がこのような虚像9の動きを許容する場合には、このような表示としても構わない。また、HUD領域5の右移動に伴う状況としては、運転者の視線が前方に対し右寄りになっている場合などが想定される。そのため、例えば車速の虚像4001がHUD領域5の右移動に伴いこのように右に動くように表示された場合に、状況や運転者によっては、車速の虚像4001が見やすくなる可能性もある。
 [HUD領域の移動途中の制御例(1)]
 また、上記のようなHUD領域5の左右移動に関する各種の制御例に関して、HUD領域5の移動途中に虚像9を表示する制御を加えて適用してもよい。その場合、例えば図40での非ARの車速の虚像4001は、(A)での虚像4001の位置から(B)での虚像4001の位置まで、右方向へ所定の速度で移動するような表示となる。
 図41には、そのようにHUD領域5の移動途中に虚像9を表示する制御例および表示例を示す。前述の制御例では、HUD領域5の所定の位置間の移動途中には基本的にHUD領域5内に虚像9を表示しないものとしたが、図41の制御例では、HUD領域5の所定の位置間の移動途中にHUD領域5内に虚像9を表示させる。移動途中の時間にも虚像9を表示させることで、運転者には、HUD領域5や虚像9が移動していること、移動途中であることが伝わる。図41の例では、例えば中央位置のHUD領域5Aから最大の右位置のHUD領域5Rまで移動させる際に、HUD領域5の移動途中の状態を、位置q0,q1,q2,q3,q4などで示している。コントローラは、HUD領域5AからHUD領域5Rへ移動させる途中の時間において、各位置および対応する時点でのHUD領域5内に、虚像9(例えば星マーク)を表示させる。この場合、移動途中、その虚像9の表示位置は図示のように遷移し、運転者にはその虚像9が右へ移動するように視認される。また、この移動途中の際の表示の間隔は、例えば負荷低減を考慮した間隔として制御されてもよい。
 [HUD領域の移動途中の制御例(2)]
 図42は、他の対策例として、HUD領域5の左右移動の際に、ARの虚像および非ARの虚像について、移動開始時に1回非表示にし、移動完了後に再表示する制御例を示す。(A)は、車両2が右折する予定がある状況であり、中央位置のHUD領域5A内に、ARとして右折のナビゲーションの虚像a1が表示されており、非ARとして車速の虚像4201および右折の地点までの距離の虚像4202が表示されている。また、前方の右折の地点の付近に、注意すべき対象物として歩行者4203が検知された場合を示している。
 コントローラは、歩行者4203へのアラートに関する開始条件に基づいて、HUD領域5Aを右位置へ移動させる。(B)は、中央位置のHUD領域5Aから右へ移動を開始する時の状態を示し、コントローラは、この開始時から、HUD領域5A内の虚像9を非表示にする。本例では、虚像a1,4201,4202が非表示にされている。コントローラは、HUD領域5が右位置に移動するまでの途中では、HUD領域5内の虚像9を非表示にする。本例では、このHUD領域5の右移動には、モータ62を用いた凹面ミラーM1の回転駆動と対応した所定の時間を要するものとし、この時間に虚像9が非表示にされる。
 (C)は、右位置に移動した後のHUD領域5Rを示す。コントローラは、右位置までの移動が完了すると、そのHUD領域5R内に虚像9を再度表示する。その際に、必要な調整も行われる。本例では、HUD領域5R内で、歩行者4203の位置に合わせてアラートの虚像4204が表示されている。また、右折のナビゲーションの虚像a1は、移動前と同じ位置に表示されるように、LCD12での表示位置が調整されている。また、車速の虚像4201も、移動前と同じ位置に表示されるように、LCD12での表示位置が調整されている。距離の虚像4202については、元位置と同じ位置には表示できないので、本例では右へ移動した位置に表示されている。
 HUD領域5を右位置から中央位置に戻す際にも、同様の制御が可能である。コントローラは、HUD領域5Rからの移動開始時から、虚像9を非表示にし、移動完了後にHUD領域5A内に虚像9を再表示する。
 図42に関する他の制御例としては、(B)のような移動途中の時間に、HUD領域5が移動途中であることを表す所定の虚像9を表示させてもよい。その虚像9は、例えば、「移動中」「お待ちください」といったメッセージの画像でもよい。
 [非ARの虚像の配置]
 図43は、他の対策例として、HUD領域5内の非ARの虚像についての配置の例を示す。この対策例では、HUD領域5内での非ARの虚像の配置について、HUD領域5の左右移動にあまり影響しない位置、すなわち中央寄りの位置に配置される。例えば前述の各例のように、HUD領域5内で左辺や右辺に近い位置に虚像9が配置されている場合、HUD領域5の左右移動に伴い、その移動前後で、その虚像9の表示位置を変更しなければならない場合が生じ得る。運転者がHUD領域5の移動前後での虚像9の表示位置の変化を許容する場合にはその変更も構わないが、許容しない場合にはその変更は望ましくない。そこで、予め、HUD領域5内での非ARの虚像についての配置の位置を、HUD領域5の左辺や右辺よりは中央に寄せた位置として設定しておく。これにより、HUD領域5の左右移動に伴い、その虚像については、表示位置に関する調整が容易となる。
 図43の(A)では、中央位置のHUD領域5A内に、非ARの虚像9として、車速の虚像4301や左折のナビゲーションの虚像4302を有する。また、範囲4320は、HUD領域5の左右移動に関する、左辺と右辺との間の最大の範囲を示し、この範囲内で移動可能であるとする。距離4321は、例えばHUD領域5Aの右辺とHUD領域5Rの右辺との距離である。距離4322は、例えばHUD領域5Aの左辺とHUD領域5Lの左辺との距離である。コントローラは、予め、HUD領域5A内での車速の虚像4301の配置位置を、図示のように、HUD領域5Aの右辺から距離4321に対応した距離をあけて中央に寄せた位置に設定する。これにより、HUD領域5を左右位置に移動した場合に、LCD12での虚像4301の映像の表示位置を調整しない場合でも、その虚像01は左右移動後のHUD領域5内に収まることとなる。
 (B)は、右位置のHUD領域5Rに移動した例である。この場合、例えば車速の虚像4301について、様々な位置に調整可能である。まず第1例として、車速の虚像4301について、(A)と(B)でLCD12の表示面1200での車速の映像の表示位置を同じとし、映像4311aとした場合には、HUD領域5R内で虚像4301aのような表示位置となる。また、第2例として、車速の虚像4301について、(A)に対し(B)でLCD12の表示面1200での映像の表示位置を左に寄せるように調整した場合(映像4311bとして領域のみを示す)には、HUD領域5R内で虚像4301b(枠線のみで示す)のように、(A)と変わらない表示位置とすることもできる。また、第3例として、車速の虚像4301について、(A)に対し(B)でLCD12の表示面1200での映像の表示位置を右に寄せるように調整した場合(映像4311cとして領域のみを示す)には、HUD領域5R内で虚像4301c(枠線のみで示す)のように右辺に近い表示位置とすることもできる。
 同様に、予め、HUD領域5A内での左折のナビゲーションの虚像4302について、配置位置を、図示のように、HUD領域5Aの左辺から距離4322に対応した距離をあけて中央に寄せた位置に設定してもよい。
 [制御例:右折]
 図44は、車両2が右折する予定がある場合に、HUD領域5を中央位置から右位置へ移動させる場合の制御例を示す模式説明図である。図44では車両2および道路を俯瞰したX-Y面図を示している。車両2が走行している道路(言い換えると車線)4401の前方に、右折の予定の地点(例えば交差点)4402がある。前述の開始条件に基づいて、コントローラは、HUD領域5を中央位置から右位置へ移動すると決定する。本例では、右折の地点4402の手前の地点4411に達した時点で、コントローラは、右位置のHUD領域5Rへ移動させる。これにより、右折の地点4402の付近に歩行者4405がいる場合にも、HUD領域5R内に前述のアラートの虚像を表示できる。コントローラは、前述の終了条件に基づいて、HUD領域5を右位置から中央位置へ移動すると決定する。本例では、車両2が地点4402を右折した直後、例えば地点4412に達した時点で、コントローラは、中央位置のHUD領域5Aに戻す。
 [制御例:走行速度]
 HUD領域5の左右方向5bでの位置の変更に関する制御例として、以下も可能である。HUD装置1のコントローラは、車両情報4に基づいて、車両2の走行速度を把握し、その走行速度に応じて、HUD領域5の左右方向5bでの位置を変更する。例えば、コントローラは、現在の走行速度が、所定の第1範囲内にある場合には、HUD領域5を基準位置である中央位置にする。コントローラは、現在の走行速度が、第1範囲とは異なる第2範囲内にある場合には、HUD領域5を左右位置に変更する。
 例えば、図13や図44のような右折時などに、走行速度が比較的遅い場合、HUD領域5の位置を左右方向により大きく移動してもよく、運転者の目による追従が比較的容易であるため、有効である。例えば高速道路走行時など、走行速度が比較的速い場合、運転者の視線の先はより遠方にある場合が多いので、HUD領域5の位置を左右方向にはより小さく移動させるようにする。コントローラは、走行速度の値に応じて、HUD領域5を左右へ移動させる際の移動量を計算して移動先の位置を決定する。例えば低速であるほど左右の移動量が大きくなるように決定される。図44の例でいえば、例えば地点4411付近から右折のためのブレーキに応じて走行速度が比較的低速になるように減少するので、コントローラは、その際の走行速度に応じて右位置のHUD領域5Rへの移動量を決定する。
 さらに、コントローラは、車両2の走行中に走行速度に関する所定の条件を満たす場合に、例えば走行速度が比較的低速である場合に、HUD領域5の位置を左右位置に移動させる際の移動途中の遷移速度などを決定してもよい。例えば図44の右折の場合で、中央位置のHUD領域5Aから右位置のHUD領域5Rへ移動させる際に、その移動を短い時間で急峻に行うのではなく、走行速度に応じてある程度時間をかけてゆっくりと移動させるように制御してもよい。コントローラは、例えばその左右移動の判断の際に、走行速度に応じて、移動開始時点、移動途中の遷移時間および速度などを決定し、決定した移動開始時点や速度でHUD領域5を移動させる。また、その際の移動途中には、図41のような移動途中の虚像9の表示の制御をあわせて適用してもよい。
 同様に、HUD領域5を右位置から中央位置に戻す際に、その時の走行速度に応じて、移動途中の速度などが制御されてもよい。例えば右折の直後に地点4412付近からアクセルに応じて走行速度が比較的高速になるように増加するので、コントローラは、その際の走行速度に応じて、中央位置のHUD領域5Aへ戻すための移動途中の遷移時間および速度などを決定し、決定した速度でHUD領域5を移動させる。これにより、HUD領域5は例えば中央位置へ急峻に戻る。
 [歪み補正の調整]
 車両2のウィンドシールド3は曲率を有するため、ウィンドシールド3の曲面に対し映像光が投射されてHUD領域5が形成される位置および領域に応じて、虚像9には歪みが生じ得る。そのため、HUD領域5の左右位置に応じて、その歪みを解消するための制御などが必要である。
 図45は、歪み補正についての説明図を示す。図45では、X-Y面図で、ウィンドシール3の曲面を模式で示している。また、右ハンドル車の場合に、HUD装置1の凹面ミラーM1からの映像光(一点鎖線で光軸を示す)により形成されるHUD領域5を、破線の三角形などで模式として示している。例えば、初期位置である中央位置のHUD領域5R(破線)と、右位置のHUD領域5R(実線)との概略的なイメージが示されている。
 初期位置のHUD領域5Aと、右位置のHUD領域5Rとでは、ウィンドシールド3の曲面上での曲率が異なる箇所(例えば点p1,p2)に映像が投映される。点p1での曲率と点p2での曲率とは異なる。
 例えば中央位置のHUD領域5Aから右位置のHUD領域5Rに移動させる場合に、移動前の中央位置のHUD領域5A内に表示する虚像9の歪み補正と、移動後の右位置のHUD領域5R内に表示する虚像9の歪み補正とでは、曲率の違いに応じて、歪み補正の度合いなどを異ならせる必要がある。
 図45の例では、左右方向5bであるX方向において、左右端に近くなるほど、ウィンドシールド3の曲率がより強い、大きいとする。この場合、例えば、右位置のHUD領域5Rでは、中央位置のHUD領域5Aに比べて、曲率がより大きい領域に投影する必要があるため、歪み補正の度合いをより強く、大きくする必要がある。
 HUD装置1のコントローラ、例えば図8Aの制御部101のMCU800は、歪み補正部802により、LCD12に表示するための映像データに対し、歪み補正処理を行う。その際に、歪み補正部802は、HUD領域5の左右方向5bの位置に関するモード/状態に基づいて、対象のHUD領域5の位置に応じた歪み補正処理を適用する。その歪み補正処理は、曲率に応じた歪み補正度合い等のパラメータ値の決定を含む。コントローラは、例えばメモリ810に保持されている歪み補正テーブルを参照する。歪み補正テーブルには、予め、ウィンドシールド3における位置に応じた曲率や光学系の特性などが設定されており、その位置や曲率などに対応付けて、歪み補正のパラメータ値が設定されている。コントローラは、HUD領域5の上下方向5aの位置の調整時、およびHUD領域5の左右方向5bの位置の調整時のいずれにも、歪み補正テーブルを参照して、HUD領域5の位置に応じた歪み補正のパラメータ値を決定する。歪み補正部802は、そのパラメータ値を用いて、HUD領域5の位置に応じてLCD12に映像を表示するための映像データに対し歪み補正処理を行う。これにより、各位置でのHUD領域5に同じ虚像9を表示する場合に、各虚像9は歪みが解消された同様の表示となる。
 図46は、HUD領域5の位置に応じた歪み補正の結果についての表示例を示す。図46の(A)は、中央位置のHUD領域5AおよびLCD12での表示例を示し、(B)は、右位置のHUD領域5RおよびLCD12での表示例を示す。(A)で、LCD12の表示面1200には、車速の映像4611、右折のナビゲーションの映像4612が表示されている。この映像に基づいて、HUD領域5A内には、車速の虚像4601、右折のナビゲーションの虚像4602が表示されている。
 本例では、コントローラは、開始条件に基づいて、HUD領域5を右に移動させ、その移動前後で、虚像4601,4602の内容をそれぞれ同じとし、運転者から見て虚像4601,4602の表示位置もそれぞれ変わらないようにする場合とする。コントローラは、HUD領域5の右移動に伴い、LCD12の表示面1200での映像4611,4612の表示位置を調整する。具体的には、映像4611,4612は、それぞれ、左に移動して表示されている。この場合に、移動前後で運転者から見て虚像4601,4602の形状に歪みが無くそれぞれ同じ形状が維持されるように、もしくは移動前後でなるべく近い形状となるように、コントローラは歪み補正を行う。
 コントローラは、HUD領域5内の位置に対応付けられた、LCD12の表示面1200内のオブジェクトの画素の位置ごとに、歪み補正度合いなどのパラメータ値を決定する。例えば、虚像4601の文字の左右の並びや、虚像4602の三角矢印の左右の並びにおいて、X方向で右になるほど、適用する歪み補正度合いは強く、大きくなるように決定される。歪み補正度合いは、画素ごとに決定されるとよいが、より荒くして、オブジェクトごとやエリアブロックごとに決定されてもよい。このような歪み補正がされた結果、(A)と(B)との移動前後では、それぞれの虚像9の見た目の形状が同じに維持される。
 図47は、HUD領域5の位置に応じた歪み補正の結果についての他の表示例を示す。この例では、HUD領域5の左右移動に伴い、歪み補正とともに、虚像の表示内容を変化させる工夫を示している。この例では、コントローラは、HUD領域5を中央位置から右位置に移動させた場合に、右折のナビゲーションの虚像4702について、表示内容を調整する。具体的には、(A)の移動前では、虚像4702は、例えば5個の三角矢印のオブジェクトから構成されているとする。(B)の移動後では、虚像4702bは、7個の三角矢印のオブジェクトから構成されるように、表示内容が変更されている。虚像4702bは、起点の三角矢印の位置は、(A)の移動前の位置と同じであり、右折先を表す終点の三角矢印の位置は、領域501内まで延びた位置となっている。HUD領域5の右位置への移動に伴い、見かけ上のFOVが拡大されるので、コントローラは、その拡大された領域501を用いた表示内容となるように、虚像4702の表示内容を虚像4702bのように調整する。コントローラは、LCD12の表示面1200では、元の映像4712に基づいて、表示位置を左に移動させ、三角矢印を追加する等加工して、映像4712bを作成する。そして、コントローラは、その映像4712bについて、図46の例と同様に、歪み補正処理を適用する。この結果、HUD領域5Rでは虚像4702bが表示される。運転者から見ると、移動前後で、虚像4702の右折先を表す終点が右へ延びたように視認される。この虚像4702bにより、運転者に対し、右折をより効果的にナビゲーション可能となる。この例に限らず、HUD領域5の左右移動に伴い拡大される領域を用いて、虚像9の表示内容を変化させることが可能である。
 [制御処理フロー例]
 図48~図51は、補足として、上述した各種の制御例を実現できる、HUD装置1のコントローラの制御処理フロー例を示す。図48等のフローは、図20~図23のフローを併合するとともにより詳細な内容にしたものに相当する。図48等のフローは、HUD領域5の移動の制御と、虚像9のオブジェクトの位置調整との処理ステップを含んで構成されている。
 まず、図48のステップS101で、HUD装置1が起動される。ステップS102では、図7等のようなHUD装置1のコントローラと制御ユニット100との間でのCANなどの通信が確立される。ステップS103では、凹面ミラーM1の上下方向での回転の駆動に基づいて、HUD領域5の上下方向5aでの移動が開始される。ステップS104では、凹面ミラーM1の上下方向での回転の駆動に基づいて、HUD領域5の上下方向5aでの移動が完了し、HUD領域5は、上下方向5aで調整・制御された位置の状態になる。
 ステップS105で、コントローラは、HUD領域5の表示準備処理を開始し、その処理を完了する。これにより、HUD領域5に虚像9が表示可能な状態になる。ステップS106で、コントローラは、HUD領域5に表示する虚像9についての表示内容を確定する。ここでの表示内容は、オブジェクトの種類、数、位置などである。種類は、前述のARか非ARか、車速、距離、ナビゲーション、アラート、GUIといったものが挙げられる。
 ステップS107で、コントローラは、前述の制御上のフラグまたはモードを確認し、フラグがOFF、すなわち中央位置のモードである場合(Yes)にはAのフローに進み、フラグがON、すなわち左右位置のモードである場合(No)にはBのフローに進む。
 図49に示すAのフローにおいて、ステップSA1で、コントローラは、左右移動に関する開始の条件/トリガを満たしたかを判断する。満たした場合(Yes)にはステップSA2に進み、満たさない場合(No)にはステップSA7に進む。
 ステップSA2では、コントローラは、フラグをOFFからON(左右位置のモードを表す)の状態にする。ステップSA3では、コントローラは、凹面ミラーM1の左右方向での回転の駆動に基づいて、HUD領域5を左右方向5bにおいて制御上で指定された方向(左または右)への移動を開始させる。ステップSA4では、コントローラは、左右移動先のHUD領域5内に虚像9を表示させるための調整として、前述のLCD12での映像の表示位置などの調整処理を行う。
 また、ステップSA5では、コントローラは、LCD12に表示するための映像信号に対し、前述のような歪み補正処理を行い、歪み補正後の映像信号を得る。ここでの歪み補正処理の詳細例としては、移動前のHUD領域(例えば中央位置のHUD領域5A)と移動後のHUD領域(例えば右位置のHUD領域5R)とで、それぞれ、参照するための歪み補正テーブルを予め用意しておき、移動先に応じて参照する歪み補正テーブルを変えることが挙げられる。
 ステップSA6では、コントローラは、凹面ミラーM1の左右方向での回転の駆動に基づいて、HUD領域5を左右方向5bにおいて制御上で指定された方向(左または右)への移動を完了させる。本例では、HUD領域5の左右移動の途中にステップSA4等の処理を行う場合を示したが、これに限らず、移動前や移動後に処理が行われてもよい。
 ステップSA7で、コントローラは、LCD12への映像信号に基づいて、その時点の左右移動後前または左右移動後のHUD領域5における虚像9の表示内容を更新する。言い換えると、その時点のHUD領域5内に、移動前または移動後のモードに対応させた虚像9(ステップSA6等の調整が反映された映像)が表示される。ステップSA6からSA7に遷移した場合には、例えば右移動後のHUD領域5内に右位置用の虚像9が表示される。ステップSA7の後、Cのフローに進む。
 図50に示すBのフローでは、ステップSB1で、コントローラは、左右移動に関する終了の条件/トリガを満たしたかを判断する。満たした場合(Yes)にはステップSB2に進み、満たさない場合(No)にはステップSB7に進む。
 ステップSB2では、コントローラは、フラグをONからOFF(中央位置のモードを表す)の状態にする。ステップSB3では、コントローラは、凹面ミラーM1の左右方向での回転の駆動に基づいて、HUD領域5を左右方向5bにおいて左右位置から初期位置である中央位置への移動を開始させる。ステップSB4では、コントローラは、移動先の中央位置のHUD領域5内に虚像9を表示させるための調整として、前述のLCD12での映像の表示位置などの調整処理を行う。また、ステップSB5では、コントローラは、LCD12に表示するための映像信号に対し、前述のような歪み補正処理を行い、歪み補正後の映像信号を得る。ステップSB6では、コントローラは、凹面ミラーM1の左右方向での回転の駆動に基づいて、HUD領域5を左右方向5bにおいて中央位置への移動を完了させる。
 ステップSB7で、コントローラは、LCD12への映像信号に基づいて、その時点の中央位置への移動前または移動後のHUD領域5における虚像9の表示内容を更新する。言い換えると、その時点のHUD領域5内に、移動前または移動後のモードに対応させた虚像9が表示される。ステップSB6からSB7に遷移した場合には、例えば中央位置へ移動後のHUD領域5内に中央位置用の虚像9が表示される。ステップSB7の後、Cのフローに進む。
 図51に示すCのフローでは、ステップSC1で、コントローラは、HUD装置1の終了条件を満たしたかを判断し、満たした場合(Yes)にはステップSC2へ進み、満たさない場合(No)にはステップSC6へ進む。ステップSC2では、コントローラは、HUD領域5の表示終了処理を開始し、その処理を終了する。ステップSC3で、コントローラは、凹面ミラーM1の上下方向での回転の駆動に基づいて、HUD領域5の上下方向5aでの移動を開始させる。ステップSC4で、コントローラは、凹面ミラーM1の上下方向での回転の駆動に基づいて、HUD領域5の上下方向5aでの移動を完了させる。ここでの完了後の位置は、上下方向5aでの初期位置、あるいはユーザ設定された位置である。ステップSC5で、コントローラは、HUD装置1の起動を終了させる。
 一方、ステップSC6では、コントローラは、表示更新情報を取得し、表示更新情報に基づいてHUD領域5の表示を更新する。ステップSC6以降は、図48のステップS107以降と同様である。
 上述した各種のソフトウェア構成および制御例などは、実施の形態1の図10のような2軸の凹面ミラーM1を備えるハードウェア構成に限らずに、図14等の変形例の1軸の凹面ミラーM1を備えるハードウェア構成にも同様に適用可能である。
 以上、本開示の実施の形態を具体的に説明したが、前述の実施の形態に限定されず、要旨を逸脱しない範囲で種々変更可能である。各実施の形態は、必須構成要素を除き、構成要素の追加・削除・置換などが可能である。特に限定しない場合、各構成要素は、単数でも複数でもよい。各実施の形態を組み合わせた形態も可能である。
 実施の形態に係る技術を用いると、前述したように、ヘッドアップディスプレイ表示領域内に表示される虚像の位置を左右方向に移動、変更、調整することができ、運転者から見た見かけ上のFOVを大きくすることができる。これにより、ヘッドアップディスプレイ表示領域の虚像と、実景の対象物との間での、運転者の視線先の位置の差、視点移動量を小さくすることができ、安全運転などに寄与する情報表示装置(ヘッドアップディスプレイ装置)を提供できる。これにより、交通事故を防止することが可能となる。さらに、国連の提唱する持続可能な開発目標(SDGs:Sustainable Development Goals)の「3.すべての人に健康と福祉を」に貢献することが可能になる。
 1…HUD装置、2…車両、3…ウィンドシールド、4…車両情報、5…HUD領域(表示エリア)、6…視点、7…開口部、8…ハンドル、9…虚像、10…映像表示装置、11…光源装置、12…LCD(表示デバイス)、M1…映像投射部(凹面ミラー)、M2…ミラー、J1…回転軸、J2…回転軸、51…ミラーホルダー、52…凹面ミラー本体、61…モータ、62…モータ、63…支持部材。

Claims (25)

  1.  映像表示装置と、
     前記映像表示装置からの映像光を反射する映像投射部と、を備え、
     前記映像投射部から反射された映像光に基づいて、虚像が表示可能な表示エリアであるヘッドアップディスプレイ領域が形成され、
     前記ヘッドアップディスプレイ領域における水平方向に対応した横方向を第1方向、垂直方向に対応した縦方向を第2方向とした場合に、
     前記ヘッドアップディスプレイ領域の形成の位置である、前記第1方向に対応する左右方向での位置として、少なくとも、初期位置である第1位置と、前記第1位置に対し左または右の位置である第2位置とを有し、
     前記ヘッドアップディスプレイ領域の位置を前記第1位置から前記第2位置に移動させるための所定条件を満たした場合には、前記映像投射部を駆動することで、前記ヘッドアップディスプレイ領域の位置を前記第1位置から前記第2位置に移動させ、前記第2位置の前記ヘッドアップディスプレイ領域に前記虚像を表示させる、
     ヘッドアップディスプレイ装置。
  2.  請求項1記載のヘッドアップディスプレイ装置において、
     前記ヘッドアップディスプレイ装置は、コントローラを備え、
     前記コントローラは、前記ヘッドアップディスプレイ領域の位置を前記第1位置から前記第2位置に移動させるための所定条件を判断する、
     ヘッドアップディスプレイ装置。
  3.  請求項1記載のヘッドアップディスプレイ装置において、
     前記ヘッドアップディスプレイ領域における水平方向に対応した横方向を第1方向、垂直方向に対応した縦方向を第2方向とした場合に、
     前記映像投射部は、
     前記第1方向に延在する第1回転軸と、
     前記第1回転軸に設けられた第1駆動機構と、
     前記第2方向に延在する第2回転軸と、
     前記第2回転軸に設けられた第2駆動機構と、
     を有し、
     前記映像投射部を前記第2駆動機構によって前記第2回転軸の周りに回転させることで、前記ヘッドアップディスプレイ領域の位置を前記左右方向で移動させる、
     ヘッドアップディスプレイ装置。
  4.  請求項1記載のヘッドアップディスプレイ装置において、
     前記ヘッドアップディスプレイ領域における水平方向に対応した横方向を第1方向、垂直方向に対応した縦方向を第2方向とした場合に、
     前記映像投射部は、
     前記第2方向に延在する回転軸と、
     前記回転軸に設けられた駆動機構と、
     を有し、
     前記映像投射部を前記駆動機構によって前記回転軸の周りに回転させることで、前記ヘッドアップディスプレイ領域の位置を前記左右方向で移動させる、
     ヘッドアップディスプレイ装置。
  5.  請求項1記載のヘッドアップディスプレイ装置において、
     前記ヘッドアップディスプレイ領域の位置を前記第2位置から前記第1位置に移動させるための条件を判断し、
     前記条件を満たした場合には、前記映像投射部を前記回転軸の周りに回転させるように駆動制御することで、前記ヘッドアップディスプレイ領域の位置を前記第2位置から前記第1位置に移動させ、前記第1位置の前記ヘッドアップディスプレイ領域に前記虚像を表示させる、
     ヘッドアップディスプレイ装置。
  6.  請求項1記載のヘッドアップディスプレイ装置において、
     前記ヘッドアップディスプレイ領域の前記左右方向での位置として、前記第1位置と前記第2位置との間に複数の段階の位置を有し、
     前記所定条件に応じて、前記ヘッドアップディスプレイ領域の位置を前記第1位置から前記第2位置までの間の指定された段階の位置に移動させる、
     ヘッドアップディスプレイ装置。
  7.  請求項1記載のヘッドアップディスプレイ装置において、
     前記所定条件は、前記ヘッドアップディスプレイ装置が搭載される車両の走行に関するナビゲーション情報または走行方向情報と、前記車両の運転者によるマニュアル操作の操作情報と、前記運転者の目線情報と、前記車両に対する対象物の検知情報またはアラート情報と、前記車両の走行車線情報または道路情報と、前記車両の自動運転情報と、のうちの少なくとも1つの情報の内容に関する条件である、
     ヘッドアップディスプレイ装置。
  8.  請求項1記載のヘッドアップディスプレイ装置において、
     前記ヘッドアップディスプレイ領域の位置を前記第1位置と前記第2位置との間で選択された位置に固定して設定するためのユーザ・インタフェースを提供し、
     前記ユーザ・インタフェースでの設定に基づいて、前記ヘッドアップディスプレイ領域の位置を前記選択された位置に移動させ、前記選択された位置の前記ヘッドアップディスプレイ領域に前記虚像を表示させる、
     ヘッドアップディスプレイ装置。
  9.  請求項1記載のヘッドアップディスプレイ装置において、
     前記ヘッドアップディスプレイ領域に、対象物の位置に合わせて前記虚像を表示させるARの機能を有し、
     前記ヘッドアップディスプレイ領域の位置を前記左右方向に移動させる際に、前記ヘッドアップディスプレイ領域に表示される前記虚像が前記ARの虚像である場合には、前記左右方向の移動の前後で前記ARの虚像の見た目上の位置が変化しないように、前記映像表示装置での映像の表示を調整する、
     ヘッドアップディスプレイ装置。
  10.  請求項1記載のヘッドアップディスプレイ装置において、
     前記ヘッドアップディスプレイ領域内の所定の位置に前記虚像を表示させる非ARの機能を有し、
     前記ヘッドアップディスプレイ領域の位置を前記左右方向に移動させる際に、前記ヘッドアップディスプレイ領域に表示される前記虚像が前記非ARの虚像である場合には、前記左右方向の移動の前後で前記非ARの虚像の見た目上の位置が変化しないように、前記映像表示装置での映像の表示を調整する、
     ヘッドアップディスプレイ装置。
  11.  請求項1記載のヘッドアップディスプレイ装置において、
     前記ヘッドアップディスプレイ領域内の所定の位置に前記虚像を表示させる非ARの機能を有し、
     前記ヘッドアップディスプレイ領域の位置を前記左右方向に移動させる際に、前記ヘッドアップディスプレイ領域に表示される前記虚像が前記非ARの虚像である場合には、前記左右方向の移動に伴い前記非ARの虚像の見た目上の位置を移動させる、
     ヘッドアップディスプレイ装置。
  12.  請求項1記載のヘッドアップディスプレイ装置において、
     前記左右方向で前記第1位置の前記ヘッドアップディスプレイ領域の外側に前記虚像を表示させたい場合に、前記ヘッドアップディスプレイ領域の位置を前記第1位置から前記第2位置へ移動させ、前記第2位置の前記ヘッドアップディスプレイ領域のうち前記第1位置の前記ヘッドアップディスプレイ領域とは重ならない領域に前記虚像を表示させる、
     ヘッドアップディスプレイ装置。
  13.  請求項1記載のヘッドアップディスプレイ装置において、
     前記ヘッドアップディスプレイ装置が搭載される車両が右左折する際に、前記ヘッドアップディスプレイ領域の位置を前記第1位置から前記第2位置へ移動させ、前記第2位置の前記ヘッドアップディスプレイ領域に前記虚像を表示させる、
     ヘッドアップディスプレイ装置。
  14.  請求項1記載のヘッドアップディスプレイ装置において、
     前記ヘッドアップディスプレイ装置が搭載される車両の走行速度に応じて、前記ヘッドアップディスプレイ領域の位置を前記第1位置から前記第2位置へ移動させる際の前記第1位置から前記第2位置までの移動量を決定する、
     ヘッドアップディスプレイ装置。
  15.  請求項1記載のヘッドアップディスプレイ装置において、
     前記ヘッドアップディスプレイ装置が搭載される車両の走行速度に応じて、前記ヘッドアップディスプレイ領域の位置を前記第1位置から前記第2位置へ移動させる際の前記第1位置から前記第2位置までの移動途中の時間または速度を決定する、
     ヘッドアップディスプレイ装置。
  16.  請求項1記載のヘッドアップディスプレイ装置において、
     前記ヘッドアップディスプレイ領域の位置を前記第1位置から前記第2位置へ移動させる際に、前記第1位置の前記ヘッドアップディスプレイ領域内に表示されていた第1虚像が前記第2位置の前記ヘッドアップディスプレイ領域内から外れる場合には、前記第1虚像の一部のみを表示させる、または、前記第1虚像を一時的に消去する、または、前記第2位置の前記ヘッドアップディスプレイ領域の外側を指し示す虚像を表示させる、
     ヘッドアップディスプレイ装置。
  17.  請求項1記載のヘッドアップディスプレイ装置において、
     前記ヘッドアップディスプレイ領域の位置を前記第1位置から前記第2位置へ移動させる際に、前記第1位置から前記第2位置までの移動途中で、前記ヘッドアップディスプレイ領域内に前記虚像を表示しないように制御する、
     ヘッドアップディスプレイ装置。
  18.  請求項1記載のヘッドアップディスプレイ装置において、
     前記ヘッドアップディスプレイ領域の位置を前記第1位置から前記第2位置へ移動させる際に、前記第1位置から前記第2位置までの移動途中で、前記ヘッドアップディスプレイ領域内に前記虚像を表示するように制御する、
     ヘッドアップディスプレイ装置。
  19.  請求項1記載のヘッドアップディスプレイ装置において、
     前記ヘッドアップディスプレイ領域に前記虚像を歪み無く表示するための歪み補正を行い、前記第1位置の前記ヘッドアップディスプレイ領域に表示する虚像の歪み補正と、前記第2位置の前記ヘッドアップディスプレイ領域に表示する虚像の歪み補正とでは、歪み補正のパラメータ値が異なる、
     ヘッドアップディスプレイ装置。
  20.  映像表示装置と、
     前記映像表示装置からの映像光を反射する凹面ミラーと、
     を備え、
     前記凹面ミラーから反射された映像光に基づいて、虚像が表示可能な表示エリアであるヘッドアップディスプレイ領域が形成され、
     前記ヘッドアップディスプレイ領域における画面内水平方向に対応した方向を第1方向、画面内鉛直方向に対応した方向を第2方向とした場合に、
     前記凹面ミラーは、
     前記第1方向に対応する縦方向に延在する第1回転軸と、
     前記第1回転軸に設けられた第1駆動機構と、
     前記第2方向に対応する横方向に延在する第2回転軸と、
     前記第2回転軸に設けられた第2駆動機構と、
     を有し、
     前記凹面ミラーを前記第2駆動機構によって前記第2回転軸の周りに回転させることで、前記HUD領域の形成の位置を、前記第1方向に対応する左右方向で移動させる、
     ヘッドアップディスプレイ装置。
  21.  映像表示装置と、
     前記映像表示装置からの映像光を反射する凹面ミラーと、
     を備え、
     前記凹面ミラーから反射された映像光に基づいて、虚像が表示可能な表示エリアであるヘッドアップディスプレイ領域が形成され、
     前記ヘッドアップディスプレイ領域における画面内水平方向に対応した方向を第1方向、画面内鉛直方向に対応した方向を第2方向とした場合に、
     前記凹面ミラーは、
     前記第2方向に対応する横方向に延在する回転軸と、
     前記回転軸に設けられた駆動機構と、
     を有し、
     前記凹面ミラーを前記駆動機構によって前記回転軸の周りに回転させることで、前記ヘッドアップディスプレイ領域の形成の位置を、前記第1方向に対応する左右方向で移動させる、
     ヘッドアップディスプレイ装置。
  22.  請求項20記載のヘッドアップディスプレイ装置において、
     前記凹面ミラーは、
     前記第1回転軸および前記第1駆動機構が設けられたミラーホルダーと、
     前記ミラーホルダーの内側に配置されて前記第2回転軸および前記第2駆動機構が設けられた凹面ミラー本体と、
     を有する、ヘッドアップディスプレイ装置。
  23.  請求項22記載のヘッドアップディスプレイ装置において、
     前記凹面ミラーは、
     前記ミラーホルダーの額縁形状の左右辺の上下中央付近に前記第1回転軸が設けられ、
     前記ミラーホルダーの額縁形状の上下辺の左右中央付近および前記凹面ミラー本体の左右中央付近に前記第2回転軸が設けられている、
     ヘッドアップディスプレイ装置。
  24.  請求項22記載のヘッドアップディスプレイ装置において、
     前記凹面ミラーは、
     前記ミラーホルダーの額縁形状の左辺または右辺に近接した位置に前記凹面ミラー本体の前記第2回転軸が設けられている、
     ヘッドアップディスプレイ装置。
  25.  映像表示装置と、
     前記映像表示装置からの映像光を反射する凹面ミラーと、
     を備え、
     前記凹面ミラーから反射された映像光に基づいて、虚像が表示可能な表示エリアであるヘッドアップディスプレイ領域が形成され、
     前記ヘッドアップディスプレイ領域における画面内水平方向に対応した方向を第1方向、画面内鉛直方向に対応した方向を第2方向とした場合に、
     前記凹面ミラーは、
     ミラーホルダーと、
     前記ミラーホルダーの内側に配置されてスライド機構が設けられた凹面ミラー本体と、
     を有し、
     前記凹面ミラーを前記スライド機構によってスライドさせることで、前記ヘッドアップディスプレイ領域の形成の位置を、前記第1方向に対応する左右方向で移動させる、
     ヘッドアップディスプレイ装置。
PCT/JP2023/012131 2022-05-09 2023-03-27 ヘッドアップディスプレイ装置 WO2023218773A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2022077076 2022-05-09
JP2022-077076 2022-05-09
JP2022101909 2022-06-24
JP2022-101909 2022-06-24

Publications (1)

Publication Number Publication Date
WO2023218773A1 true WO2023218773A1 (ja) 2023-11-16

Family

ID=88730051

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/012131 WO2023218773A1 (ja) 2022-05-09 2023-03-27 ヘッドアップディスプレイ装置

Country Status (1)

Country Link
WO (1) WO2023218773A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015225119A (ja) * 2014-05-26 2015-12-14 株式会社デンソー ヘッドアップディスプレイ装置
WO2017138242A1 (ja) * 2016-02-12 2017-08-17 日立マクセル株式会社 車両用映像表示装置
WO2018043513A1 (ja) * 2016-09-05 2018-03-08 マクセル株式会社 車両用映像表示装置
JP2019069685A (ja) * 2017-10-10 2019-05-09 マクセル株式会社 情報表示装置
JP2019073272A (ja) * 2017-10-13 2019-05-16 株式会社リコー 表示装置、プログラム、映像処理方法、表示システム、移動体
WO2019097918A1 (ja) * 2017-11-14 2019-05-23 マクセル株式会社 ヘッドアップディスプレイ装置およびその表示制御方法
WO2019207965A1 (ja) * 2018-04-27 2019-10-31 株式会社デンソー ヘッドアップディスプレイ装置
WO2021015171A1 (ja) * 2019-07-25 2021-01-28 株式会社小糸製作所 ヘッドアップディスプレイ

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015225119A (ja) * 2014-05-26 2015-12-14 株式会社デンソー ヘッドアップディスプレイ装置
WO2017138242A1 (ja) * 2016-02-12 2017-08-17 日立マクセル株式会社 車両用映像表示装置
WO2018043513A1 (ja) * 2016-09-05 2018-03-08 マクセル株式会社 車両用映像表示装置
JP2019069685A (ja) * 2017-10-10 2019-05-09 マクセル株式会社 情報表示装置
JP2019073272A (ja) * 2017-10-13 2019-05-16 株式会社リコー 表示装置、プログラム、映像処理方法、表示システム、移動体
WO2019097918A1 (ja) * 2017-11-14 2019-05-23 マクセル株式会社 ヘッドアップディスプレイ装置およびその表示制御方法
WO2019207965A1 (ja) * 2018-04-27 2019-10-31 株式会社デンソー ヘッドアップディスプレイ装置
WO2021015171A1 (ja) * 2019-07-25 2021-01-28 株式会社小糸製作所 ヘッドアップディスプレイ

Similar Documents

Publication Publication Date Title
JP6870109B2 (ja) ヘッドアップディスプレイ装置およびその表示制御方法
CN110573369B (zh) 平视显示器装置及其显示控制方法
JP7121583B2 (ja) 表示装置、表示制御方法、およびプログラム
JP7111582B2 (ja) ヘッドアップディスプレイシステム
JP2017211366A (ja) 移動体システム、情報表示装置
US20200333608A1 (en) Display device, program, image processing method, display system, and moving body
JP6883759B2 (ja) 表示システム、表示システムの制御方法、プログラム、及び移動体
JP2019049505A (ja) 車両用表示装置および表示制御方法
US20190258057A1 (en) Head-up display
JP2019113809A (ja) ヘッドアップディスプレイ装置
JP7310560B2 (ja) 表示制御装置及び表示制御プログラム
US10971116B2 (en) Display device, control method for placement of a virtual image on a projection surface of a vehicle, and storage medium
JP2018165098A (ja) ヘッドアップディスプレイ装置
US20080258888A1 (en) Driving support method and driving support system
WO2018168531A1 (ja) ヘッドアップディスプレイ装置
JP2018144554A (ja) 車両用ヘッドアップディスプレイ装置
CN110816409A (zh) 显示装置、显示控制方法及存储介质
JP2022084266A (ja) 表示制御装置、表示装置、及び画像の表示制御方法
WO2023218773A1 (ja) ヘッドアップディスプレイ装置
WO2020090187A1 (ja) 虚像表示装置、およびヘッドアップディスプレイ装置
WO2014109030A1 (ja) 虚像表示装置、制御方法、プログラム、及び記憶媒体
JP2020024141A (ja) 表示装置、表示制御方法、およびプログラム
WO2021039579A1 (ja) ヘッドアップディスプレイ装置
JP2019032362A (ja) ヘッドアップディスプレイ装置、ナビゲーション装置
WO2019074114A1 (en) DISPLAY DEVICE, PROGRAM, IMAGE PROCESSING METHOD, DISPLAY SYSTEM, AND MOBILE BODY

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23803256

Country of ref document: EP

Kind code of ref document: A1