WO2023217196A1 - 一种晶体生长设备 - Google Patents

一种晶体生长设备 Download PDF

Info

Publication number
WO2023217196A1
WO2023217196A1 PCT/CN2023/093337 CN2023093337W WO2023217196A1 WO 2023217196 A1 WO2023217196 A1 WO 2023217196A1 CN 2023093337 W CN2023093337 W CN 2023093337W WO 2023217196 A1 WO2023217196 A1 WO 2023217196A1
Authority
WO
WIPO (PCT)
Prior art keywords
crystal growth
thickness
flow guide
chamber
temperature measurement
Prior art date
Application number
PCT/CN2023/093337
Other languages
English (en)
French (fr)
Inventor
王宇
雷沛
付君
Original Assignee
眉山博雅新材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202210511620.6A external-priority patent/CN114754586B/zh
Priority claimed from CN202210584487.7A external-priority patent/CN114959885A/zh
Application filed by 眉山博雅新材料股份有限公司 filed Critical 眉山博雅新材料股份有限公司
Priority to TW112117742A priority Critical patent/TWI849903B/zh
Publication of WO2023217196A1 publication Critical patent/WO2023217196A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/36Carbides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B14/00Crucible or pot furnaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B17/00Furnaces of a kind not covered by any preceding group

Definitions

  • the present application relates to the field of crystal growth technology, and in particular to a crystal growth equipment.
  • a crystal growth equipment which includes: a crucible, the crucible includes a raw material chamber for placing raw materials and a growth chamber for crystal growth; a heat preservation device arranged outside the crucible At least one side.
  • the crucible includes an upper cover
  • the upper cover includes a cover body and a seed crystal holder
  • the seed crystal holder is detachably connected to the cover body.
  • the seed crystal holder includes a connection structure, and the connection structure is disposed in a central area of a side of the seed crystal holder close to the cover.
  • the thickness of the seed crystal support is 2 mm-10 mm.
  • two surfaces of the seed crystal holder in contact with the cover include concave and convex structures that cooperate with each other.
  • the seed crystal holder includes a separation groove for separating the seed crystals on the seed crystal holder.
  • the separation groove is a circumferential groove, and the circumferential groove is disposed on the outer periphery of a side away from the cover.
  • the ratio of the depth of the circumferential groove along the radial direction to the radius of the seed holder ranges from 0.028 to 0.042.
  • the depth of the circumferential groove along the radial direction is 2mm-4mm, and the height of the circumferential groove along the axial direction is 0.5mm-1.5mm.
  • the crucible includes a flow guide device disposed between the raw material chamber and the growth chamber, and the flow guide device includes a first flow guide surface that is inclined toward the bottom surface of the raw material chamber.
  • the flow guide device includes a flow guide groove, and the flow guide groove is a groove provided on the outer periphery of the flow guide device.
  • the flow guide groove includes a second flow guide surface that is parallel or substantially parallel to the first flow guide surface, and a guide surface is formed between the first flow guide surface and the second flow guide surface. flow wall.
  • the flow guide device further includes a support wall that radially connects the flow guide wall and the peripheral wall of the crucible.
  • the thickness of the flow guide wall is 10mm-60mm.
  • the height of the guide groove ranges from 20 mm to 40 mm.
  • the ratio of the thickness of the guide wall to the height of the guide groove ranges from 0.2 to 1.5.
  • the thickness of the support wall ranges from 10 mm to 60 mm.
  • the ratio of the thickness of the guide wall to the thickness of the support wall ranges from 0.8 to 1.2.
  • the crystal growth equipment further includes a furnace cavity and a temperature measurement structure.
  • the crucible is disposed in the furnace cavity.
  • the temperature measurement structure includes a temperature measurement cavity and a temperature measurement window.
  • the temperature measurement structure includes a first cavity section, a main body part and a second cavity section, the temperature measurement window is provided in the first cavity section, and the second cavity section is connected with the furnace cavity.
  • the diameter of the body portion is smaller than the diameter of the oven cavity.
  • the diameter of the first lumen segment and/or the second lumen segment is smaller than the diameter of the body portion.
  • the temperature measurement structure further includes an air inlet and an air outlet.
  • the air inlet is connected to the first cavity section, and the air outlet is connected to the second cavity section.
  • the diameter of the air outlet is smaller than the diameter of the air inlet.
  • the temperature measurement structure further includes a cooler, and the cooler is disposed in the second cavity section.
  • the temperature measurement structure further includes a deposition chamber, and the deposition chamber is connected with the furnace chamber.
  • the temperature in the deposition chamber is lower than the temperature in the furnace chamber.
  • the temperature measurement structure further includes a deposition chamber, and the deposition chamber is connected to the second chamber section.
  • the temperature in the deposition chamber is lower than the temperature in the furnace chamber and the temperature in the temperature measuring chamber, and the pressure in the deposition chamber is lower than the pressure in the temperature measuring chamber.
  • the heat preservation device includes a first heat preservation component, and the first heat preservation component includes: an inner layer, the thickness of the inner layer meets a preset condition; and an outer layer, the material of the outer layer is the same as the material of the outer layer.
  • the inner layer is made of different materials; the middle layer is located between the inner layer and the outer layer.
  • the first heat preservation component is disposed at least on a peripheral side of the crucible.
  • the thickness of the inner layer ranges from 4mm to 57mm.
  • the thickness of the middle layer ranges from 28 mm to 143 mm.
  • the thickness of the middle layer is greater than the thickness of the inner layer and the thickness of the outer layer.
  • the thickness ratio of the inner layer to the middle layer is between 1:2-1:10.
  • the thickness ratio of the middle layer to the outer layer is between 2:0.5-10:3.
  • the thickness ratio of the inner layer to the outer layer is between 1:0.5-1:3.
  • the inner layer includes at least two insulation segments stacked one on top of the other.
  • the inner layer has different thicknesses along the axial direction.
  • the inner layer is made of graphite felt.
  • the material of the outer layer includes at least one of zirconium oxide, aluminum oxide, carbon material or carbon fiber material.
  • graphite paper is filled between the middle layer and the outer layer.
  • the heat preservation device further includes a second heat preservation component, and the second heat preservation component is disposed on the top of the crystal growth equipment.
  • the second thermal insulation layer includes a laminate structure, and the laminate structures are made of the same material.
  • the heat preservation device further includes a third heat preservation component, and the third heat preservation component includes an annular structure or a circular structure.
  • the inner diameter of the annular structure ranges from 10 mm to 90 mm.
  • the ratio of the outer diameter of the annular structure to the radius of the crucible is 0.6-1.2.
  • the ratio of the inner diameter to the outer diameter of the annular structure ranges from 0.1 to 0.8.
  • the ratio of the inner diameter of the annular structure to the radius of the crucible ranges from 0.1 to 0.9.
  • Figure 1 is a schematic structural diagram of a crystal growth device according to some embodiments of this specification.
  • Figure 2 is a schematic structural diagram of an upper cover according to some embodiments of this specification.
  • Figure 3 is a schematic structural diagram of a crystal growth device according to some embodiments of this specification.
  • Figure 4 is a partial enlarged schematic diagram of the seed crystal holder shown in Figure 2;
  • Figure 5 is a schematic structural diagram of an upper cover according to some embodiments of this specification.
  • Figure 6 is a schematic structural diagram of a seed crystal holder according to some embodiments of this specification.
  • Figure 7 is a schematic structural diagram of a crystal growth device according to some embodiments of this specification.
  • Figure 8 is a schematic structural diagram of a flow guide device according to some embodiments of this specification.
  • Figure 9A is a schematic cross-sectional view of a crystal growth apparatus according to some embodiments of the present specification.
  • Figure 9B is a schematic structural diagram of a crystal growth device according to some embodiments of this specification.
  • Figure 10 is a schematic structural diagram of a temperature measurement structure according to some embodiments of this specification.
  • Figure 11 is a schematic structural diagram of a temperature measurement structure according to some embodiments of this specification.
  • Figure 12 is a schematic structural diagram of a temperature measurement structure according to some embodiments of this specification.
  • Figure 13 is a schematic structural diagram of a temperature measurement structure according to some embodiments of this specification.
  • Figure 14 is a schematic structural diagram of a temperature measurement structure according to some embodiments of this specification.
  • Figure 15 is a schematic structural diagram of a temperature measurement structure according to some embodiments of this specification.
  • Figure 16 is a schematic structural diagram of a crystal growth device according to some embodiments of this specification.
  • Figure 17A is a schematic structural diagram of the inner layer of the first insulation component according to some embodiments of this specification.
  • Figure 17B is a schematic structural diagram of an insulation section according to some embodiments of this specification.
  • Figure 17C is a schematic structural diagram of the inner layer of the first insulation component according to some embodiments of this specification.
  • Figure 17D is a schematic structural diagram of the inner layer of the first insulation component according to some embodiments of this specification.
  • Figure 18 is a schematic structural diagram of a first thermal insulation component according to some embodiments of this specification.
  • Figure 19 is a schematic structural diagram of a first thermal insulation component according to some embodiments of this specification.
  • Figure 20 is a schematic structural diagram of a crystal growth device according to some embodiments of this specification.
  • Figure 21 is a schematic structural diagram of a crystal growth device according to some embodiments of this specification.
  • FIG. 1 is a schematic structural diagram of a crystal growth device according to some embodiments of this specification.
  • the crystal growth equipment will be described in detail below with reference to Figure 1.
  • the crystal growth apparatus 10 may prepare crystals (eg, semiconductor crystals, eg, silicon carbide crystals, aluminum nitride crystals, zinc oxide crystals, zinc antimonide crystals, etc.) based on a physical vapor transport method.
  • the crystal growth apparatus 10 may include a crucible 100 , a heating assembly (not shown in FIG. 1 ), and a heat preservation device 200 .
  • the heat preservation device 200 is disposed on at least one side outside the crucible 100 .
  • the crucible 100 can be used as a container for storing materials required for growing crystals, and for growing crystals in a high-temperature environment.
  • the crucible 100 may include a raw material chamber 102 for placing raw materials and a growth chamber 101 for crystal growth.
  • the raw material chamber 102 is located below the growth chamber 101, and the raw material chamber 102 is in gas communication with the growth chamber 101.
  • the raw material chamber 102 can be used to store raw materials such as silicon carbide, aluminum nitride, zinc oxide, or zinc antimonide.
  • the raw materials can be sublimated into gas phase components under high temperature (for example, taking the preparation of silicon carbide crystals as an example).
  • the gas phase components may include Si 2 C, SiC 2 , Si).
  • a seed crystal 303 may be disposed in the growth chamber 101 , and the gas phase component contacts the seed crystal in the growth chamber 101 and then crystallizes to form a crystal.
  • the seed crystal 303 may be fixedly bonded to the inner side (eg, at the center of the inner side) of the top (eg, upper cover) of the crucible 100 .
  • the heating component may be disposed (for example, disposed around) outside the crucible 100 for heating the crucible 100 .
  • the heating parameters of the heating component can be controlled to form an axial temperature gradient between the raw material and the seed crystal 303 .
  • the raw material can be decomposed and sublimated into gas phase components when heated (for example, taking the preparation of silicon carbide crystals as an example, the gas phase components can include Si2C, SiC2, Si).
  • the gas phase components are transported from the surface of the raw material to On the surface of the seed crystal 303, due to the relatively low temperature at the seed crystal 303, the gas phase components crystallize on the surface of the seed crystal 303 to form crystals.
  • the heating component may include an inductive heating component, a resistive heating component, or the like.
  • the heat preservation device 200 can reduce the heat exchange between the inside of the crucible 100 and the outside of the crucible 100, thereby maintaining a stable temperature within the crucible 100.
  • the thermal insulation device 200 may adopt a single-layer structure or a multi-layer structure.
  • the heat preservation device 200 may completely cover the side walls and/or bottom of the crucible 100 . For more information about the heat preservation device 200, please refer to the description elsewhere in this specification.
  • the silicon carbide raw material is loaded into the raw material chamber 102 .
  • the seed crystal 303 is loaded into the growth chamber 101 with the seed crystal 303 facing downward.
  • the heating component is used to heat the crucible 100 so that the silicon carbide in the raw material chamber 102 sublimates to generate gas phase components.
  • the gas phase components rise into the growth chamber 101 and contact the seed crystal 303, and crystallize on the surface of the seed crystal 303 to grow a crystal.
  • the heat preservation device 200 is arranged outside the crucible 100 to heat the crucible 100 so that the temperature inside the crucible 100 is maintained within the temperature range required for crystal growth.
  • FIGS. 1 and 2 are schematic structural diagram of an upper cover according to some embodiments of this specification.
  • the upper cover will be described in detail below with reference to Figure 2.
  • the crucible 100 includes an upper cover 300 .
  • the top of the crucible 100 is open, and the upper cover 300 is disposed at the opening of the crucible 100 .
  • the upper cover 300 includes a cover body 301 and a seed crystal holder 302 .
  • the cover 301 and the seed crystal holder 302 are detachably connected.
  • the upper cover 300 can be connected with the opening of the crucible 100 to close the opening so that the gas phase components are mainly collected in the growth chamber.
  • the upper cover 300 matches the shape of the opening.
  • the upper cover 300 may be a disc-shaped structure.
  • the cover 301 may be a structure in the upper cover 300 that is mainly used to close the opening.
  • the cover 301 can also be used as a mounting base for installing the seed crystal holder 302 , and the upper cover 300 is connected to the opening of the crucible 100 through the cover 301 .
  • the seed crystal holder 302 can be used to carry and fix the seed crystal 303.
  • the seed crystal 303 can be disposed on the lower surface of the seed crystal holder 302 by bonding.
  • the seed crystal holder 302 is installed on the lower surface of the upper cover 300 . After the upper cover 300 is installed in place, the seed crystal 303 is located in the growth chamber 101 .
  • the seed crystal holder 302 and the cover 301 are detachably connected.
  • the seed crystal holder 302 is installed on the cover 301 .
  • the seed crystal holder 302 can be removed from the cover 301 .
  • the seed crystal holder 302 can be destroyed or specially treated, while the cover 301 can continue to be used, which is beneficial to reducing production costs.
  • Figure 3 is a schematic structural diagram of a crystal growth device according to some embodiments of this specification. The following is a detailed description of the cover body in conjunction with Figure 3. Step by step instructions.
  • the cover 301 is provided with a first stepped surface 304
  • the opening of the crucible 100 is provided with a second stepped surface.
  • the first step surface 304 and the second step surface can be installed together.
  • the first stepped surface 304 is provided on the peripheral side of the cover 301 .
  • the gap can be used to ventilate the inside and outside of the crucible 100 to prevent the internal air pressure of the crucible 100 from being too high.
  • a tiny protruding structure may be provided on the first stepped surface 304.
  • the protruding structure can be used to adjust the first stepped surface 304 and the second stepped surface. The size of the gap formed.
  • the seed holder 302 includes a connection structure 305 .
  • the connection structure 305 and the seed crystal 303 are respectively arranged on opposite sides of the seed crystal holder 302.
  • the seed crystal holder 302 can be detachably connected to the cover 301 through the connection structure 305.
  • the connection structure 305 may include one of a snap-in structure and a threaded connection structure.
  • the connection structure 305 may include a screw rod with external threads, and the cover 301 is provided with an internal threaded hole connected to the external threads.
  • the connection structure 305 may include a threaded hole with internal threads, and the cover 301 is provided with a screw rod connected to the threaded hole.
  • the connection structure 305 may be a slider, and the cover 301 is provided with a groove connected to the slider.
  • the slider may be a T-shaped slider and the groove may be a T-shaped groove.
  • connection structure 305 is disposed in a central area of the side of the seed crystal holder 302 close to the cover 301 .
  • the geometric center of the seed crystal holder 302 coincides with the center of gravity
  • the central area may be the area where the geometric center of the seed crystal holder 302 is located.
  • the central area may be a circular area with the geometric center of the seed crystal holder 302 as the center and a radius within a preset range.
  • the seed crystal holder 302 can be separated from the cover 301 after the crystal growth is completed. It is only necessary to complete the crystal removal operation on the seed crystal holder 302 without destroying the cover 301, so that the cover 301 Can be reused.
  • FIG. 4 is a partially enlarged schematic view of the seed crystal holder shown in FIG. 2 .
  • the seed crystal holder will be described in detail below in conjunction with Figure 4.
  • the seed crystal holder 302 can be polished during the crystal harvesting process. After the material of the seed crystal holder 302 is consumed, the crystal can be taken out. In this way, crystal harvesting can effectively Reduce the mechanical stress caused during the crystal extraction process and avoid crystal damage.
  • the thickness of the seed crystal holder 302 may affect the efficiency and reliability of the crystal fetching operation. The smaller the thickness of the seed crystal holder 302, the higher the efficiency of crystal fetching. However, the thickness of the seed crystal holder 302 cannot be too small to avoid affecting the structural strength of the seed crystal holder 302 .
  • the thickness a of the seed crystal support may be 2 mm-10 mm. In some embodiments, the thickness a of the seed crystal support may be 3 mm-9 mm. In some embodiments, the thickness a of the seed crystal support may be 4mm-8mm.
  • FIG. 5 is a schematic structural diagram of an upper cover according to some embodiments of this specification.
  • the upper cover will be described in detail below with reference to Figure 5 .
  • the two surfaces of the seed crystal holder 302 in contact with the cover 301 include concave and convex structures that cooperate with each other.
  • the mutually matching concave and convex structures can be used to increase the contact area and connection strength between the seed crystal holder 302 and the cover 301.
  • it is also more conducive to the seed crystal holder 302 to transfer heat to Cover 301 passes.
  • the concave-convex structure may include a protruding structure 306 provided on the seed crystal holder 302 and a groove structure 307 provided on the cover 301.
  • the protruding structure 306 and the groove structure 307 may be cooperatively installed.
  • the protruding structure 306 may be provided on the cover 301 and the groove structure 307 may be provided on the seed crystal holder 302 .
  • the protruding structure 306 and the groove structure 307 can fit on three sides.
  • multiple protruding structures 306 may be provided, and the protruding structures 306 are arranged parallel to each other, and the groove structures 307 and the protruding structures 306 are arranged in one-to-one correspondence.
  • the cross-section of the protruding structure 306 (the cross-section is parallel to the axis direction of the crucible 100) may be one of a rectangle, a triangle, a semicircle, and a semi-oval, and the cross-section of the groove structure 307 It is provided correspondingly to the protruding structure 306 .
  • connection structure 305 can be set according to the connection method of the seed crystal holder 302 and the cover 301 .
  • the seed crystal holder 302 and the cover 301 can be detachably connected by snapping.
  • the connection structure 305 can be a slider.
  • the cover 301 is provided with a groove connected to the slider.
  • the cover 301 The seed crystal holder 302 can slide relative to each other through the cooperation between the slider and the groove.
  • the seed crystal holder 302 and the cover 301 can be detachably connected by snapping or threading, and the protruding structure 306 can be an annular protrusion, with multiple protrusions coaxially arranged, and the concave protrusions 306 can be recessed.
  • the groove structure 307 can be an annular groove, and the groove structure 307 and the protruding structure 306 are arranged in one-to-one correspondence.
  • seed holder 302 may include separation grooves 308 .
  • the separation tank 308 may be a structure that facilitates crystal collection. By providing the separation groove 308, the seed crystal 303 on the seed crystal holder 302 can be more conveniently separated.
  • the separation tank 308 can be configured in different structural forms according to different crystal harvesting methods.
  • separation groove 308 may include a breakable structure that facilitates breakage of seed holder 302 .
  • the seed crystal holder 302 can be destroyed during crystal extraction, thereby reducing the amount of seed crystal holder material bonded to the seed crystal 303, and facilitating crystal extraction through polishing or other methods.
  • the separation groove 308 is provided on the circumferential side of the seed crystal holder 302 .
  • the separation groove 308 is a groove structure or a crack structure that is inwardly concave from the circumferential side of the seed crystal holder 302 . Applying force nearby will facilitate the seed crystal holder 302 to crack from the separation groove 308 and make the seed crystal holder 302 easier to be damaged, thereby facilitating the removal of the crystal from the seed crystal holder 302.
  • multiple separation grooves 308 may be provided along the circumference of the seed crystal holder 302, and the plurality of separation grooves 308 may be equidistantly or unequally distributed.
  • the separation groove 308 may also be provided as an annular fragile structure (or referred to as a fragile annulus) surrounding the peripheral side of the seed crystal holder 302 .
  • the cross-section of separation groove 308 may be rectangular, triangular, or semicircular.
  • the separation groove 308 may include an auxiliary separation structure to facilitate separation of the seed crystal 303 from the seed crystal holder 302 .
  • the auxiliary separation structure can be provided in the area near the connection surface between the seed crystal holder 302 and the seed crystal 303. Since the seed crystal 303 can be connected to the seed crystal holder 302 in an adhesive manner, during crystal removal, through the auxiliary The separation structure can infiltrate the bonding separation liquid to the bonding surface of the seed crystal holder 302 and the seed crystal 303 to facilitate the separation of the seed crystal holder 302 and the seed crystal 303.
  • Figure 6 is a schematic structural diagram of a seed crystal holder according to some embodiments of this specification.
  • the separation tank will be described in detail below with reference to Figure 6 .
  • the separation groove 308 is a circumferential groove (ie, an auxiliary separation structure), and the circumferential groove is provided on the outer periphery of the side of the seed crystal holder 302 away from the cover 301 .
  • the circumferential groove is provided in the edge area of the bottom surface of the seed crystal holder 302 (ie, the side connected to the seed crystal).
  • the circumferential groove may be in the shape of a concave platform that is concave toward the cover 301 .
  • the depth M of the circumferential groove may affect the wetting effect of the bonding separation liquid on the connection surface between the seed crystal holder 302 and the seed crystal 303 . If the depth M is too small, the bonding separation liquid cannot be maintained in the circumferential groove for a long time and easily flows out of the circumferential groove, thus weakening the wetting effect of the bonding separation liquid on the connection surface between the seed crystal holder 302 and the seed crystal 303 .
  • the depth M is too large, the contact area between the seed crystal holder 302 and the seed crystal 303 will be excessively reduced, and the connection strength between the seed crystal holder 302 and the seed crystal 303 will be reduced, and the connection stability between the seed crystal 303 and the seed crystal holder 302 will be reduced. sex. If the contact area is too small, the heat transfer between the seed crystal holder 302 and the seed crystal 303 will also be affected, and the heat transfer efficiency from the edge of the seed crystal 303 to the seed crystal holder 302 will be reduced, resulting in uneven temperature distribution of the seed crystal 303 , which may affect the growth of seed crystals. In order to ensure the wetting effect of the circumferential groove, the depth M should be set within a reasonable range.
  • the ratio of the depth M of the circumferential groove along the radial direction to the radius of the seed holder ranges from 0.02 to 0.05. In some embodiments, the ratio of the depth M of the circumferential groove along the radial direction to the radius of the seed holder ranges from 0.028 to 0.042. In some embodiments, the ratio of the depth M of the circumferential groove along the radial direction to the radius of the seed holder ranges from 0.03 to 0.04.
  • the height L of the circumferential groove along the axial direction should also be set within a reasonable range.
  • the depth M of the circumferential groove along the radial direction is 2 mm to 4 mm
  • the height L of the circumferential groove along the axial direction is 0.5 mm to 1.5 mm.
  • the depth M of the circumferential groove along the radial direction is 2.5mm-3.5mm
  • the height L along the axial direction of the circumferential groove is 0.8mm-1.2mm.
  • Figure 7 is a structural block diagram of an exemplary crystal growth apparatus shown in accordance with some embodiments of the present specification.
  • the crucible includes a flow guide 103 disposed between the raw material chamber and the growth chamber.
  • the flow guide device 103 may be a device that controls and guides the direction of gas inside and/or outside the crucible. In some embodiments, the flow guide device 103 may be disposed between the raw material chamber and the growth chamber. In some embodiments, the flow guiding device 103 may be disposed in the raw material chamber. In some embodiments, the flow guide device 103 includes a flow guide channel 104 connecting the raw material chamber 102 and the growth chamber 101 . In some embodiments, the inlet of the flow guide device 103 faces the raw material chamber, and the closing opening of the flow guiding device 103 faces the growth chamber 101. The size (such as diameter) of the closing opening is smaller than the size of the inlet, that is, one end of the flow guiding channel 104 is close to the raw material chamber 102.
  • the size i.e., the inlet
  • the size of the end close to the growth chamber 101 i.e., the closing end
  • the size (eg, diameter) of one end of the flow guide channel 104 close to the growth chamber 101 is smaller than the size of the raw material chamber 102 .
  • the shape of the flow guiding device 103 may be a hollow frustum shape. In some embodiments, the shape of the flow guide device 103 can also be a variety of other shapes, including but not limited to hollow arc-shaped platforms.
  • FIG. 8 is a partial structural block diagram of a flow guiding device of an exemplary crystal growth apparatus according to some embodiments of this specification.
  • the flow guide device 103 includes a first flow guide surface 1031 that is inclined toward the bottom surface of the raw material chamber 102 .
  • the first flow guide surface 1031 is located on the outer wall of the raw material chamber and below the growth chamber 101 .
  • the bottom of the first flow guide surface 1031 is connected to the inner wall of the raw material chamber 102 , and the top of the first flow guide surface 1031 extends obliquely toward the growth chamber 101 .
  • the temperature is usually slightly higher than that of the central area.
  • the gas phase components can flow from the raw material chamber 102 to the growth chamber 101 toward the center. Convergence increases the temperature in the center area of the growth chamber 101 and the concentration of gas phase components, reduces the difference between the center temperature and the edge temperature on the seed crystal, and improves the quality of crystal growth.
  • the flow direction of the high-temperature airflow flowing from the raw material chamber to the growth chamber can be changed to adjust The temperature distribution of the crystal growth area (for example, at the seed crystal) in the growth chamber and the distribution of gas phase components in the growth chamber.
  • a smaller tilt angle ⁇ is conducive to the convergence of high-temperature airflow to the center of the crystal growth area, reducing the temperature gradient between the center and the edge, and is conducive to uniform crystal growth.
  • the tilt angle ⁇ should not be set too small.
  • the inclination angle ⁇ of the first flow guide surface may range from 20° to 80°. In some embodiments, the inclination angle ⁇ of the first flow guide surface may range from 30° to 70°. In some embodiments, the inclination angle ⁇ of the first flow guide surface may range from 40° to 60°.
  • the radius of the closing opening of the flow guide device 103 can also be set to achieve the above-mentioned effect of reducing the temperature gradient between the center and the edge.
  • the radius of the closing opening of the flow guide device 103 may be 50 mm-110 mm.
  • the radius of the closing opening of the flow guide device 103 may be 55mm-100mm.
  • the radius of the closing opening of the flow guide device 103 may be 60 mm-90 mm.
  • the flow guide device 103 includes a flow guide groove 1032, which is a groove provided on the outer periphery of the flow guide device 103. Since the size (such as diameter) of the end of the flow guide channel 104 close to the growth chamber is smaller than the size of the raw material cavity, the thickness of the flow guide 103 close to the growth cavity in the radial direction is larger, and the larger thickness will affect the effect to a certain extent. The thermal conductivity of the flow guide device 103. Therefore, by providing a flow guide groove, the thickness of the flow guide device 103 can be reduced, making the thickness of the flow guide device 103 more uniform, and improving the thermal conductivity of the flow guide device 103 .
  • the flow guide groove 1032 is provided on the outer periphery of the flow guide device 103, located on the outer wall of the crucible, and below the growth chamber 101.
  • a circle of concave guide grooves 1032 is provided on the outer wall of the crucible in the upper part of the raw material chamber 102 .
  • the shape of the guide groove 1032 may be a tapered annular groove.
  • the shape of the guide groove 1032 can also be a variety of other shapes, including but not limited to arc-shaped annular grooves, etc.
  • the flow guide groove 1032 includes a second flow guide surface 1033 that is parallel or substantially parallel to the first flow guide surface 1031 .
  • “Substantially parallel” as mentioned in the embodiments of this specification means that the minimum angle between two mutually referenced surfaces or two lines does not exceed 10°.
  • the second flow guide surface 1033 faces the outside of the crucible 100 and is located below the growth chamber 101 . In some embodiments, as shown in FIG. 8 , the bottom of the second flow guide surface 1033 is located on the outer wall of the crucible 100 , and the top of the second flow guide surface 1033 extends toward the growth chamber 101 .
  • a flow guide wall 1034 is formed between the first flow guide surface 1031 and the second flow guide surface 1033 .
  • the flow guide wall 1034 may be a crucible wall between the first flow guide surface 1031 and the second flow guide surface 1033 outside the raw material chamber 102 .
  • the inner side of the flow guide wall 1034 is the first flow guide surface 1031
  • the outer side of the flow guide wall 1034 is the second flow guide surface 1033.
  • the distance between 1033 may be the thickness of the flow guide wall 1034. It should be noted that when the first flow guide surface 1031 and the second flow guide surface 1033 are not parallel, the thickness of the flow guide wall may be the average distance between the first flow guide surface 1031 and the second flow guide surface 1033. The average distance can be found by taking the average of the maximum distance and the minimum distance.
  • the thickness of the flow guide wall 1034 By setting the thickness of the flow guide wall 1034, the heat conduction capability of the flow guide device 103 can be changed, thereby affecting the temperature field distribution inside the crucible 100. In some embodiments, taking into account the temperature field distribution inside the crucible 100, the thickness of the guide wall 1034 can be set within a certain thickness range. In some embodiments, the thickness of the flow guide wall 1034 is 10 mm-60 mm. In some embodiments, the thickness of the flow guide wall 1034 is 10 mm-40 mm. In some embodiments, the thickness of the flow guide wall 1034 is 10 mm-30 mm.
  • the flow guide device 103 further includes a support wall 1035 , which radially connects the flow guide wall 1034 and the peripheral wall of the growth chamber 101 .
  • the support wall 1035 may be disposed in a horizontal direction. In some embodiments, there may also be a certain angle between the support wall 1035 and the horizontal direction. In some embodiments, the angle between the support wall 1035 and the horizontal direction is no greater than 30°.
  • the thickness of the support wall 1035 By setting the thickness of the support wall 1035, the heat conduction capability of the flow guide 103 to the growth chamber 101 can be changed, thereby affecting the temperature field distribution inside the growth chamber 101.
  • the thickness of the support wall 1035 can be set within a certain thickness range, where the thickness of the support wall 1035 can be determined by the inner side of the support wall 1035 (facing the growth chamber 101 is represented by the distance between the side surface (side surface) and the outer side surface (the side surface facing the guide groove 1032).
  • the thickness of support wall 1035 ranges from 10 mm to 60 mm. In some embodiments, the thickness of support wall 1035 ranges from 15 mm to 50 mm. In some embodiments, the thickness of support wall 1035 ranges from 20 mm to 40 mm.
  • the thickness and length of the guide wall 1034 can be changed simultaneously by setting the height h of the guide groove 1032, thereby changing the thermal conductivity of the guide device 103, thereby affecting the crucible 100 Internal temperature field distribution.
  • the height h of the guide groove 1032 ranges from 20 mm to 40 mm. In some embodiments, the height h of the guide groove 1032 ranges from 22 mm to 38 mm. In some embodiments, the height h of the guide groove 1032 ranges from 25 mm to 35 mm.
  • the ratio of the thickness of the guide wall 1034 to the height h of the guide groove 1032 can represent the degree of inclination (eg, inclination angle) of the first guide surface 1031 and the second guide surface 1033.
  • the degree of inclination It can further affect the flow of gas phase components in the flow guide channel 104, thereby affecting the temperature field distribution of the growth chamber 101.
  • the ratio of the thickness of the guide wall 1034 to the height h of the guide groove 1032 can be set within a certain range. In some embodiments, the ratio of the thickness of the guide wall 1034 to the height h of the guide groove 1032 ranges from 0.2 to 1.5.
  • the ratio of the thickness of the guide wall 1034 to the height h of the guide groove 1032 ranges from 0.5 to 1. In some embodiments, the ratio of the thickness of the guide wall 1034 to the height h of the guide groove 1032 ranges from 0.2 to 0.8.
  • the thickness of the support wall 1035 mainly affects the heat conduction ability of the flow guide device 103 to the edge area of the growth chamber 101, it mainly affects the edge temperature of crystal growth; the thickness of the flow guide wall 1034 mainly affects the heat conduction ability of the flow guide device 103 to the closing area. , thereby mainly affecting the temperature of the central area of the growth chamber 101 .
  • the ratio of the thickness of the guide wall 1034 to the thickness of the support wall 1035 can be set within a certain range.
  • the ratio of the thickness of the guide wall 1034 to the thickness of the support wall 1035 ranges from 0.8 to 1.2. In some embodiments, the ratio of the thickness of the guide wall 1034 to the thickness of the support wall 1035 ranges from 0.6 to 1.5. In some embodiments, the ratio of the thickness of the guide wall 1034 to the thickness of the support wall 1035 ranges from 0.9 to 1.
  • Figure 9A is a schematic cross-sectional view of a crystal growth apparatus according to some embodiments of the present specification.
  • Figure 9B is a schematic structural diagram of a crystal growth device according to some embodiments of this specification.
  • the crystal growth equipment will be described in detail below with reference to FIGS. 9A and 9B.
  • the crystal growth equipment also includes a temperature measurement structure 500.
  • the temperature measurement structure 500 includes a temperature measurement cavity 501 and a temperature measurement window 502 .
  • the temperature measurement structure 500 can be used to measure the temperature inside the crystal growth equipment to determine whether the crystal growth is within a suitable temperature range. When the measured temperature is not within a threshold range, timely measures can be taken.
  • the crystal growth equipment further includes a furnace cavity 400, and the crucible 100 and the heat preservation device 200 may be disposed inside the furnace cavity 400.
  • An opening 401 is provided on the top of the furnace cavity 400, and the temperature measurement structure 500 can be disposed at the opening 401 and communicate with the opening 401.
  • the furnace cavity 400 is in a high-temperature environment (for example, 1200°C-2000°C or 800°C-1600°C) during operation. Using traditional contact temperature measurement will affect the accuracy of temperature measurement, so it can Measure the temperature of the high-temperature furnace through non-contact temperature measurement. In some embodiments, temperature detection can be achieved through infrared thermometry.
  • the temperature measurement window 502 can be used as a temperature detection window.
  • the temperature in the furnace cavity 400 or the crucible 100 can be collected through an infrared thermometer.
  • the temperature measurement structure 500 is connected to the opening 401.
  • the infrared thermometer can collect the infrared rays emitted in the furnace cavity 400 through the temperature measurement window 502, thereby achieving Take temperature.
  • the material of the temperature measurement window 502 may include infrared temperature measurement glass (for example, barium fluoride crystal glass).
  • FIG 10 is a schematic structural diagram of a temperature measurement structure according to some embodiments of this specification. The temperature measurement structure will be described in detail below in conjunction with Figure 10.
  • the temperature measurement chamber 501 includes a first cavity section 5011, a main body part 5012 and a second cavity section 5013, and the temperature measurement window 502 is provided in the first cavity section 5011, and the The second cavity section 5013 is connected with the furnace cavity 400 to realize temperature monitoring in the furnace cavity 400 .
  • the growth chamber 101 can be gas-to-gas connected with the furnace chamber 400 through the gap near the cover 300 of the crucible 100, and further to be gas-to-gas connected with the second chamber section 5013.
  • the second chamber section 5013 can also be directly connected to the growth chamber 101 through the temperature measurement hole opened on the cover 300, thereby realizing temperature monitoring in the growth chamber.
  • the first cavity section 5011 may refer to the top portion of the temperature measurement cavity 501 .
  • the temperature measurement window 502 may be disposed in the first cavity section 5011. In some embodiments, the temperature measurement window 502 may be disposed on the upper end surface of the first cavity section 5011.
  • the temperature measurement window 502 may be parallel or substantially parallel to the upper end surface of the first cavity section 5011. In some embodiments, “substantially parallel” may mean that the angle between the temperature measurement window 502 and the upper end surface of the first cavity section 5011 is within the first preset range.
  • the first preset range may be -10° ⁇ 10°. In some embodiments, the first preset range may be -8° ⁇ 8°. In some embodiments, the first preset range may be -6° ⁇ 6°. In some embodiments, the first preset range may be -5° ⁇ 5°. In some embodiments, the first preset range may be -2° ⁇ 2°. In some embodiments, the first preset range may be 0° ⁇ 1°. In some embodiments, the first preset range may be 1° ⁇ 2°.
  • the temperature measurement window 502 may be non-parallel to the upper end surface of the first cavity section 5011, and the angle between the two is within the second preset range.
  • the second preset range may be 10° ⁇ 60°. In some embodiments, the second preset range may be 15 ⁇ 55°. In some embodiments, the second preset range may be 20° ⁇ 50°. In some embodiments, the second preset range may be 25° ⁇ 45°. In some embodiments, the second preset range may be 30° ⁇ 40°. In some embodiments, the second preset range may be 10° ⁇ 20°. In some embodiments, the second preset range may be 20° ⁇ 30°. In some embodiments, the second preset range may be 50° ⁇ 60°.
  • the main body portion 5012 may refer to the portion between the first cavity section 5011 and the second cavity section 5013.
  • the second cavity section 5013 may refer to the bottom end portion of the temperature measurement cavity 501 .
  • the second cavity section 5013 may be connected to the oven cavity 400.
  • the main body part 5012 may be a rotary cavity structure, and the diameter of the main body part 5012 is smaller than the diameter of the furnace cavity 400 .
  • the diameter of body portion 5012 is much smaller than the diameter of oven cavity 400 .
  • the ratio of the diameter of the body portion 5012 to the diameter of the oven cavity 400 may be within a second preset ratio range.
  • the second preset ratio range may be 1:5 ⁇ 1:25.
  • the second preset ratio range may be 1:8 ⁇ 1:22.
  • the second preset ratio range may be 1:11 ⁇ 1:19.
  • the second preset ratio range may be 1:14 ⁇ 1:16.
  • the second preset ratio range may be 1:5 ⁇ 1:20.
  • the second preset ratio range may be 1:10 ⁇ 1:25.
  • the second preset ratio range may be 1:5 ⁇ 1:15.
  • the second preset ratio range may be 1:15 ⁇ 1:25.
  • the diameter of the main body part 5012 By setting the diameter of the main body part 5012 to be smaller than the diameter of the furnace cavity 400, the overall size of the temperature measurement cavity 501 can be made smaller than the size of the furnace cavity 400, and the impact of the temperature measurement cavity 501 on the crystal growth environment in the furnace cavity 400 can be reduced. Impact.
  • the main body portion 5012 can be a gradual section, that is, the diameter of the main body portion 5012 gradually decreases from an end connected to the first cavity section 5011 to an end connected to the second cavity section 5013 . That is, the shape of the entire temperature measurement cavity 501 is similar to a shape that gradually decreases from the upper end to the lower end.
  • the diameter of the first lumen segment 5011 and the diameter of the second lumen segment 5013 may each be smaller than the diameter of the body portion 5012 . That is, the shape of the entire temperature measurement cavity 501 is similar to a shape with small ends at both ends and a large middle.
  • the diameter of the second lumen segment 5013 may be smaller than the diameter of the body portion 5012 , while the diameter of the first lumen segment 5011 may be greater than or equal to the diameter of the body portion 5012 . That is, the shape of the entire temperature measurement cavity 501 is similar to a shape with a larger upper end and a smaller lower end.
  • the gas concentration in the temperature measurement cavity 501 can be made greater than the gas concentration in the furnace cavity 400 (
  • the gas pressure in the temperature measurement cavity 501 is greater than the gas pressure in the furnace cavity 400).
  • the existence of this pressure difference makes it difficult for the dust generated in the furnace cavity 400 to enter the temperature measurement cavity 501 and then reach the temperature measurement window 502, so that it can The cleanliness of the temperature measurement window 502 is ensured, thereby helping to improve the stability and accuracy of temperature measurement.
  • the temperature measurement structure may also include an air inlet 5014 and an air outlet 5015.
  • the air inlet 5014 can be used to introduce gas into the temperature measurement chamber 501 .
  • the air inlet 5014 may be disposed in the first cavity section 5011.
  • the air inlet 5014 may be disposed on the side wall of the first cavity section 5011.
  • the air inlet 5014 can be provided on the furnace cavity 400 independently of the temperature measurement cavity 501 .
  • the gas introduced into the temperature measurement chamber 501 through the air inlet 5014 may be a gas required for crystal growth, such as oxygen and/or an inert gas.
  • Inert gases may include nitrogen, helium, neon, xenon, radon, etc. or any combination thereof.
  • the air inlet 5014 may be disposed near the temperature measurement window 502 .
  • “nearby” may mean that the distance between the air inlet 5014 and the temperature measurement window 502 is within a preset distance range.
  • the preset distance range may be 1 cm to 10 cm. In some embodiments, the preset distance range may be 3cm ⁇ 8cm. In some embodiments, the preset distance range may be 5cm ⁇ 6cm. In some embodiments, the preset distance range may be 1 cm to 3 cm. In some embodiments, the preset distance range may be 3cm ⁇ 5cm. In some embodiments, the preset distance range may be 5cm ⁇ 8cm. In some embodiments, the preset distance range may be 8cm ⁇ 10cm.
  • the distance between the air inlet 5014 and the temperature measurement window 502 may be determined based on the air inlet flow rate of the air inlet 5014 and/or the air inlet direction of the air inlet 5014 . For example, the greater the air inlet flow rate of the air inlet 5014, the greater the distance between the air inlet 5014 and the temperature measurement window 502; the smaller the air inlet flow rate, the greater the distance between the air inlet 5014 and the temperature measurement window 502. The smaller.
  • the air inlet flow rate of the air inlet 5014 can be set according to actual needs on the premise that the crystal growth needs are met and the gas can purge the inner surface of the temperature measurement window 502 .
  • the air inlet direction of the air inlet 5014 may be set toward (eg, tilted toward) the temperature measurement window 502 .
  • the angle between the air inlet direction of the air inlet 5014 and the plane of the temperature measurement window 502 may be within a preset angle range.
  • the preset angle range may be 5° ⁇ 60°. In some embodiments, the preset angle range may be 10° ⁇ 55°. In some embodiments, the preset angle range may be 15° ⁇ 50°. In some embodiments, the preset angle range may be 20° ⁇ 45°. In some embodiments, the preset angle range may be 25° ⁇ 40°. In some embodiments, the preset angle range may be 30° ⁇ 35°. In some embodiments, the preset angle range may be 5° ⁇ 20°. In some embodiments, the preset angle range may be 5° ⁇ 40°. In some embodiments, the preset angle range may be 25° ⁇ 60°.
  • the angle between the air inlet direction of the air inlet 5014 and the plane of the temperature measurement window 502 may be based on the size of the temperature measurement window 502 and/or the distance between the air inlet 5014 and the temperature measurement window 502 Sure.
  • the larger the size of the temperature measurement window 502 the larger the angle between the air inlet direction of the air inlet 5014 and the plane of the temperature measurement window 502; The angle between the air direction and the plane of the temperature measurement window 502 can be smaller.
  • the gas entering the temperature measurement cavity 501 from the air inlet 5014 can purge at least the inner surface of the temperature measurement window 502. A part of the dust is used to purge and clean the temperature measurement window 502, thereby improving the stability and accuracy of the temperature measurement results.
  • the gas outlet 5015 may be used to pass gas into the furnace cavity 400 .
  • the air outlet 5015 may be provided in the second cavity section 5013.
  • the air outlet 5015 may be disposed on the bottom end surface of the second cavity section 5013.
  • the air outlet 5015 may be connected with the air inlet 5014 of the furnace cavity 400.
  • the air outlet 5015 can be directly disposed on the furnace cavity 400 and communicate with the second cavity section 5013.
  • the two ends of the small diameter second cavity section 5013 are connected to the larger diameter main part 5012 and the furnace cavity 400, respectively. It forms a structure similar to a "Venturi tube". Since the direction of the air flow is from the first cavity section 5011 to the second cavity section 5012 and outflow from the second cavity section 5012, the pressure at the end of the second cavity section 5013 close to the main body part 5012 is greater than the pressure at the end of the second cavity section 5013 close to the furnace cavity 400. The existence of this pressure difference makes it difficult for dust generated in the furnace cavity 400 to Entering the temperature measurement cavity 501 and then reaching the temperature measurement window 502 can ensure the cleanliness of the temperature measurement window 502, which is beneficial to improving the stability and accuracy of temperature measurement.
  • the adjustment can be made by setting the proportional relationship between the diameter of the second cavity section 5012 or the air outlet 5015 and the diameter of other parts of the temperature measurement structure (such as the air inlet 5014, the main part 5012, the furnace cavity 400, etc.)
  • the pressure difference between the main part 5012 and the furnace cavity 400 can achieve a better effect of ensuring the cleanliness of the temperature measurement window 502.
  • the diameter of the air outlet 5015 is smaller than the diameter of the body portion 5012 . In some embodiments, the diameter of the air outlet 5015 is much smaller than the diameter of the body portion 5012. In some embodiments, the ratio of the diameter of the air outlet 5015 to the diameter of the main body portion 5012 may be within a first preset ratio range.
  • the first preset ratio range may be 1:5 ⁇ 1:20. In some embodiments, the first preset ratio range may be 1:8 ⁇ 1:17. In some embodiments, the first preset ratio range may be 1:11 ⁇ 1:14. In some embodiments, the first preset ratio range may be 1:5 ⁇ 1:15. In some embodiments, the first preset ratio range may be 1:10 ⁇ 1:20.
  • the gas pressure in the temperature measurement cavity 501 can be greater than the gas pressure in the furnace cavity 400. This can The existence of this pressure difference makes it difficult for dust generated in the furnace cavity 400 to enter the temperature measurement cavity 501 and then reach the temperature measurement window 502, thereby ensuring the cleanliness of the temperature measurement window 502 and improving the stability and accuracy of temperature measurement.
  • the diameter of body portion 5012 is smaller than the diameter of oven cavity 400 . In some embodiments, the diameter of body portion 5012 is much smaller than the diameter of oven cavity 400 . In some embodiments, the ratio of the diameter of the body portion 5012 to the diameter of the oven cavity 400 may be within a second preset ratio range. In some embodiments, the second preset ratio range may be 1:5 ⁇ 1:25. In some embodiments, the second preset ratio range may be 1:8 ⁇ 1:22. In some embodiments, the second preset ratio range may be 1:11 ⁇ 1:19. In some embodiments, the second preset ratio range may be 1:14 ⁇ 1:16. In some embodiments, the second preset ratio range may be 1:5 ⁇ 1:20.
  • the second preset ratio range may be 1:10 ⁇ 1:25. In some embodiments, the second preset ratio range may be 1:5 ⁇ 1:15. In some embodiments, the second preset ratio range may be 1:15 ⁇ 1:25.
  • the diameter of the air outlet 5015 may be smaller than the diameter of the air inlet 5014.
  • the ratio of the diameter of the air outlet 5015 to the diameter of the air inlet 5014 may be within a third preset ratio range.
  • the third preset ratio range may be 1:1.5 ⁇ 1:5.
  • the third preset ratio range may be 1:2 ⁇ 1:4.5.
  • the third preset ratio range may be 1:2.5 ⁇ 1:4.
  • the third preset ratio range may be 1:3 ⁇ 1:3.5.
  • the third preset ratio range may be 1:1.5 ⁇ 1:3.5.
  • the third preset ratio range may be 1:3 ⁇ 1:5.
  • the gas concentration in the temperature measurement cavity 501 can be greater than the gas concentration in the furnace cavity 400 (the gas pressure in the temperature measurement cavity 501 is greater than the furnace cavity 400 The existence of this pressure difference makes it difficult for the dust generated in the furnace cavity 400 to enter the temperature measurement cavity 501 and then reach the temperature measurement window 502, thereby ensuring the cleanliness of the temperature measurement window 502, which is conducive to improving The stability and accuracy of temperature measurement.
  • FIG 12 is a schematic structural diagram of a temperature measurement structure according to some embodiments of this specification.
  • the temperature measurement structure will be described in detail below in conjunction with Figure 9.
  • the temperature measurement structure may also include a heater 5016.
  • Heater 5016 may be used to heat body portion 5012.
  • the heater 5016 may be wrapped or surrounded in the outer surface of the main body portion 5012 or in the peripheral space of the outer surface to uniformly heat the main body portion 5012.
  • heater 5016 may include a resistive heating component, an inductive heating component, or the like.
  • the gas temperature in the temperature measurement cavity 501 can be made higher than the gas temperature in the furnace cavity 400, and thus the gas pressure in the temperature measurement cavity 501 can be higher than the gas pressure in the furnace cavity 400.
  • This The existence of the pressure difference makes it difficult for the dust generated in the furnace cavity 400 to enter the temperature measurement cavity 501 and then reach the temperature measurement window 502, thereby ensuring the cleanliness of the temperature measurement window 502, which is beneficial to improving the stability and accuracy of temperature measurement. .
  • FIG 13 is a schematic structural diagram of a temperature measurement structure according to some embodiments of this specification.
  • the temperature measurement structure will be described in detail below in conjunction with Figure 10.
  • the temperature measurement structure may also include a cooler 5017. Cooler 5017 may be used to cool the second cavity section 5013.
  • the cooling method of the cooler 5017 may include water cooling, air cooling and other cooling methods.
  • the cooler 5017 may be disposed (eg, wrapped) on the outer surface of the second cavity section 5013 or in the peripheral space of the outer surface to uniformly cool the second cavity section 5013 .
  • the temperature of the second cavity section 5013 can be made lower than the temperature of the main body part 5012 to further increase the pressure difference between the main body part 5012 and the second cavity section 5013, and the furnace cavity
  • the dust generated in 400 encounters cold condensation when it reaches the vicinity of the second chamber section 5013, making it difficult for the dust to enter the temperature measurement cavity 501 and then reach the temperature measurement window 502, thereby effectively preventing dust from depositing inside the temperature measurement window 502.
  • FIG. 14 is a schematic structural diagram of a temperature measurement structure according to some embodiments of this specification.
  • the temperature measurement structure is described below in conjunction with Figure 11. Detailed description.
  • the temperature measurement structure may further include a deposition chamber 600 .
  • the deposition chamber 600 may be connected with the furnace chamber 400 and used to deposit dust generated in the furnace chamber 400 .
  • the deposition chamber 600 may be closed at one end and connected to the furnace chamber 400 at the other end.
  • two or more communication holes may be opened in the deposition chamber 600, and each communication hole is connected to the furnace chamber 400 through an independent channel. The gas in the furnace chamber 400 can enter the deposition chamber 600 through the channels.
  • the number of deposition chambers 600 may be two, which are symmetrically arranged on both sides of the furnace chamber 400 so that the impact on the environment in the furnace chamber 400 is as balanced as possible. In some embodiments, the number of deposition chambers 600 may be one, three or more, which is not limited in this specification.
  • the fluidity of the gas in the deposition chamber 600 is poorer than the fluidity of the gas in the furnace chamber 400, by setting the deposition chamber 600, the dust generated in the furnace chamber 400 can be deposited in the deposition chamber, thereby reducing the amount of dust entering the temperature measurement chamber.
  • the dust in the cavity 501 effectively prevents dust from depositing inside the temperature measurement window 502.
  • the temperature within deposition chamber 600 may be lower than the temperature within furnace chamber 400 . In some embodiments, the temperature within the deposition chamber 600 may be controlled by cooling the deposition chamber 600 with a cooler. The arrangement of the cooler may be similar to the arrangement of the aforementioned cooler 5017 and will not be described again.
  • the dust in the furnace chamber 400 can be more easily cooled and deposited into the deposition chamber 600 , thereby reducing dust deposition inside the temperature measurement window 502 .
  • FIG. 15 is a schematic structural diagram of a temperature measurement structure according to some embodiments of this specification.
  • the temperature measurement structure will be described in detail below in conjunction with Figure 12.
  • the temperature measurement structure may further include a deposition chamber 600 .
  • the deposition chamber 600 may be connected to the second chamber section 5013 for depositing dust generated in the furnace chamber 400 and moving to the vicinity of the second chamber section 5013.
  • the deposition chamber 600 may be closed at one end and connected to the second chamber section 5013 at the other end.
  • two or more communication holes are provided in the deposition chamber 600 , and each communication hole is connected to the second chamber section 5013 through an independent channel.
  • the number of deposition chambers 600 may be two, which are symmetrically arranged on both sides of the second chamber section 5013 so that the impact on the environment in the furnace chamber 400 is as balanced as possible. In some embodiments, the number of deposition chambers 600 may be one, three or more, which is not limited in this specification.
  • the fluidity of the gas in the deposition chamber 600 is poor compared to the fluidity of the gas in the temperature measurement chamber 501 and the furnace chamber 400, by setting the deposition chamber 600, the dust generated in the furnace chamber 400 can be moved to the second chamber.
  • it is easy to deposit in the deposition chamber thereby reducing the dust entering the temperature measurement chamber 501 and effectively preventing dust from depositing inside the temperature measurement window 502.
  • the temperature in the deposition chamber 600 is lower than the temperature in the furnace chamber 400 and the temperature in the temperature measuring chamber 501 , and the pressure in the deposition chamber 600 is lower than the pressure in the temperature measuring chamber 501 .
  • the temperature within the deposition chamber 600 may be controlled by cooling the deposition chamber 600 with a cooler.
  • the arrangement of the cooler may be similar to the arrangement of the aforementioned cooler 5017 and will not be described again.
  • the furnace can be made The dust in the chamber 400 is more likely to be cooled and deposited into the deposition chamber 600 , thereby reducing dust deposition inside the temperature measurement window 502 .
  • Figure 16 is a schematic structural diagram of an exemplary crystal growth apparatus according to some embodiments of this specification.
  • the heat preservation device 200 may include a first heat preservation component 201 .
  • the first heat preservation component 201 is disposed at least on the peripheral side of the crucible 100 .
  • the first heat preservation component 201 may be disposed only on the peripheral side of the crucible 100 .
  • the first heat preservation component 201 can also be disposed on both the peripheral side and the bottom side of the crucible 100 .
  • the first heat preservation component 201 can also be disposed on both the peripheral side and the top side of the crucible 100 .
  • the first heat preservation component 201 can also be disposed on the peripheral side, top side and bottom side of the crucible 100 at the same time.
  • the first insulation component 201 includes an inner layer 2011, an outer layer 2012 and a middle layer 2013, wherein the middle layer 2013 is located between the inner layer 2011 and the outer layer 2012.
  • the middle layer can still maintain a good thermal insulation effect and be independent of each other.
  • the structure can make it easier to replace the inner layer and/or outer layer, reduce the maintenance cost of the insulation device and improve the efficiency of the maintenance of the insulation device.
  • the thickness of the inner layer 2011 needs to meet preset conditions to avoid high replacement frequency due to too thin thickness, too high cost due to too thick thickness, etc.
  • the thickness of the inner layer 2011 can also be set as an independent structure along the axial direction, which can maintain a good thermal insulation effect at different axial positions and facilitate targeted maintenance and replacement according to the loss conditions at different positions. This will be described in detail below.
  • the thickness of the inner layer 2011 can be set within a certain thickness range.
  • the thickness of inner layer 2011 may range from 4 mm to 57 mm.
  • the thickness of inner layer 2011 may be in the range of 5mm-55mm.
  • the thickness of inner layer 2011 may range from 7 mm to 52 mm.
  • the thickness of inner layer 2011 may range from 10 mm to 50 mm.
  • the thickness of inner layer 2011 may be In the range of 13mm-47mm.
  • the thickness of inner layer 2011 may range from 15 mm to 45 mm.
  • the thickness of inner layer 2011 may range from 17 mm to 43 mm.
  • the thickness of inner layer 2011 may be in the range of 20mm-40mm. In some embodiments, the thickness of inner layer 2011 may range from 22 mm to 37 mm. In some embodiments, the thickness of inner layer 2011 may be in the range of 25mm-35mm. In some embodiments, the thickness of inner layer 2011 may be in the range of 27mm-32mm. In some embodiments, the thickness of inner layer 2011 may be in the range of 28mm-30mm.
  • the initial cost of the inner layer can be reduced, the frequency and cost of replacement of the inner layer can be reduced, the service life of the inner layer can be improved, and the process stability of the crystal growth process can be maintained.
  • the thickness of the middle layer 2013 in order to ensure that the middle layer 2013 can maintain a good and stable thermal insulation effect when the inner layer 2011 and the outer layer 2012 are worn out, and at the same time considering the cost, the thickness of the middle layer 2013 needs to be set within a certain range.
  • the thickness of the middle layer 2013 may range from 28 mm to 143 mm.
  • the thickness of the middle layer 2013 may be in the range of 30mm-140mm.
  • the thickness of the middle layer 2013 may be in the range of 35mm-135mm.
  • the thickness of the middle layer 2013 may be in the range of 40mm-130mm.
  • the thickness of the middle layer 2013 may be in the range of 45mm-135mm.
  • the thickness of the middle layer 2013 may be in the range of 50mm-130mm. In some embodiments, the thickness of the middle layer 2013 may be in the range of 55mm-125mm. In some embodiments, the thickness of the middle layer 2013 may be in the range of 60mm-120mm. In some embodiments, the thickness of the middle layer 2013 may be in the range of 65mm-115mm. In some embodiments, the thickness of the middle layer 2013 may be in the range of 70mm-110mm. In some embodiments, the thickness of the middle layer 2013 may be in the range of 75mm-105mm. In some embodiments, the thickness of the middle layer 2013 may be in the range of 80mm-100mm. In some embodiments, the thickness of the middle layer 2013 may be in the range of 85mm-95mm. In some embodiments, the thickness of the middle layer 2013 may be in the range of 88mm-90mm.
  • the middle layer By setting the thickness of the middle layer within a certain range, the crucible and the impurities produced by the volatilization of the inner layer when heated can be evaporated to the outer layer as much as possible without staying in the middle layer. Therefore, the thermal insulation effect of the middle layer will not be affected, and the corresponding heat preservation effect can be guaranteed.
  • the middle layer can maintain a good and stable thermal insulation effect, so there is basically no need to replace the middle layer during the production process, saving production costs.
  • the total thickness of the middle layer 2013 and the inner layer 2011 needs to meet certain conditions.
  • the total thickness of the middle layer 2013 and the inner layer 2011 may be greater than 50 mm.
  • the total thickness of the middle layer 2013 and the inner layer 2011 may be greater than 55 mm.
  • the total thickness of the middle layer 2013 and the inner layer 2011 may be greater than 60 mm.
  • the total thickness of the middle layer 2013 and the inner layer 2011 may be greater than 65 mm.
  • the total thickness of the middle layer 2013 and the inner layer 2011 may be greater than 70 mm.
  • the total thickness of the middle layer 2013 and the inner layer 2011 may be greater than 75 mm.
  • the total thickness of the middle layer 2013 and the inner layer 2011 may be greater than 80 mm.
  • the temperature outside the middle layer can be made higher than the temperature at which volatiles are deposited or crystallized, so that the volatiles are deposited on the outer layer instead of the middle layer, thereby maintaining a good thermal insulation effect of the middle layer.
  • the thickness of the middle layer 2013 is greater than the thickness of the inner layer 2011 and the thickness of the outer layer 2012 .
  • the middle layer can maintain a good and stable thermal insulation effect, reducing the loss of the inner layer and the The impact of impurity deposition in the outer layer on the insulation performance of the entire insulation device improves the stability of the insulation performance.
  • the middle layer can play a supporting role and improve the structural stability of the insulation device.
  • the thickness of the outer layer 2012 needs to be set within a certain thickness range.
  • the thickness of outer layer 2012 may range from 7 mm to 42 mm. In some embodiments, the thickness of outer layer 2012 may range from 10 mm to 40 mm. In some embodiments, the thickness of outer layer 2012 may range from 12 mm to 38 mm. In some embodiments, the thickness of outer layer 2012 may range from 15 mm to 35 mm. In some embodiments, the thickness of outer layer 2012 may range from 17 mm to 33 mm. In some embodiments, the thickness of outer layer 2012 may be in the range of 20mm-30mm. In some embodiments, outer layer 2012 may have a thickness in the range of 22mm-28mm. In some embodiments, outer layer 2012 may have a thickness in the range of 25mm-27mm.
  • the total thickness of the inner layer 2011, the middle layer 2013 and the outer layer 2012 needs to be set within a certain range.
  • the total thickness of the inner layer 2011, the middle layer 2013, and the outer layer 2012 may be in the range of 50mm-200mm.
  • the total thickness of the inner layer 2011, the middle layer 2013, and the outer layer 2012 may range from 60 mm to 190 mm.
  • the total thickness of the inner layer 2011, the middle layer 2013, and the outer layer 2012 may be in the range of 70mm-180mm.
  • the total thickness of the inner layer 2011, the middle layer 2013, and the outer layer 2012 may range from 80 mm to 170 mm.
  • the total thickness of the inner layer 2011, the middle layer 2013, and the outer layer 2012 may be in the range of 90mm-160mm. In some embodiments, the total thickness of the inner layer 2011, the middle layer 2013, and the outer layer 2012 may be in the range of 100mm-150mm. In some embodiments, the total thickness of the inner layer 2011, the middle layer 2013, and the outer layer 2012 may be in the range of 110 mm-140 mm. In some embodiments, the total thickness of the inner layer 2011, the middle layer 2013, and the outer layer 2012 may be in the range of 120mm-130mm.
  • the inner layer 2011 and the middle layer The thickness ratio of 2013 needs to be set within a certain range.
  • the thickness ratio of the inner layer 2011 to the middle layer 2013 may be in the range of 1:2-1:10.
  • the thickness ratio of the inner layer 2011 to the middle layer 2013 may be in the range of 1:3-1:9.
  • the thickness ratio of the inner layer 2011 to the middle layer 2013 may be in the range of 1:4-1:8.
  • the thickness ratio of the inner layer 2011 to the middle layer 2013 may be in the range of 1:5-1:7.
  • the thickness ratio of the inner layer 2011 to the middle layer 2013 may be in the range of 1:6-1:6.
  • the thickness ratio of the middle layer 2013 and the outer layer 2012 needs to be set within a certain range.
  • the thickness ratio of the middle layer 2013 to the outer layer 2012 may be in the range of 2:0.5-10:3.
  • the thickness ratio of the middle layer 2013 to the outer layer 2012 may be in the range of 3:0.5-9:3.
  • the thickness ratio of the middle layer 2013 to the outer layer 2012 may be in the range of 4:0.5-8:3.
  • the thickness ratio of the middle layer 2013 to the outer layer 2012 may be in the range of 5:0.5-7:3.
  • the thickness ratio of the middle layer 2013 to the outer layer 2012 may be in the range of 6:0.5-6:3. In some embodiments, the thickness ratio of the middle layer 2013 to the outer layer 2012 may be in the range of 2:1-10:2.5. In some embodiments, the thickness ratio of the middle layer 2013 to the outer layer 2012 may be in the range of 2:1.5-10:2. In some embodiments, the thickness ratio of the middle layer 2013 to the outer layer 2012 may be in the range of 2:2-10:1.5. In some embodiments, the thickness ratio of the middle layer 2013 to the outer layer 2012 may be in the range of 2:3-10:1.
  • the thickness ratio of the inner layer 2011 and the outer layer 2012 needs to be set within a certain range.
  • the thickness ratio of the inner layer 2011 to the outer layer 2012 may be in the range of 1:0.5-1:3.
  • the thickness ratio of the inner layer 2011 to the outer layer 2012 may be in the range of 1:1-1:2.5.
  • the thickness ratio of the inner layer 2011 to the outer layer 2012 may be in the range of 1:1.5-1:2.
  • the thickness ratio of the inner layer 2011 to the outer layer 2012 may be in the range of 1:2-1:1.5.
  • the thickness ratio of the inner layer 2011 to the outer layer 2012 may be in the range of 1:3-1:1.
  • the thickness ratio of the inner layer 2011, the middle layer 2013, and the outer layer 2012 needs to be set within a certain range.
  • the thickness ratio of the inner layer 2011, the middle layer 2013 and the outer layer 2012 may be in the range of 1:2:0.5-1:10:3.
  • the thickness ratio of the inner layer 2011, the middle layer 2013 and the outer layer 2012 may be in the range of 1:2:1-1:10:2.5.
  • the thickness ratio of the inner layer 2011, the middle layer 2013 and the outer layer 2012 may be in the range of 1:2:1.5-1:10:2.
  • the thickness ratio of the inner layer 2011, the middle layer 2013 and the outer layer 2012 may be in the range of 1:2:2-1:10:1.5. In some embodiments, the thickness ratio of the inner layer 2011, the middle layer 2013 and the outer layer 2012 may be in the range of 1:2:3-1:10:1. In some embodiments, the thickness ratio of the inner layer 2011, the middle layer 2013 and the outer layer 2012 may be in the range of 1:3:0.5-1:9:3. In some embodiments, the thickness ratio of the inner layer 2011, the middle layer 2013 and the outer layer 2012 may be in the range of 1:4:0.5-1:8:3. In some embodiments, the thickness ratio of the inner layer 2011, the middle layer 2013 and the outer layer 2012 may be in the range of 1:5:0.5-1:7:3. In some embodiments, the thickness ratio of the inner layer 2011, the middle layer 2013 and the outer layer 2012 may be in the range of 1:6:0.5-1:6:3.
  • the material of the inner layer 2011 may include graphite felt. By making the inner layer made of graphite felt, the thermal insulation performance can be guaranteed to be stable and easy to replace.
  • the material of the outer layer 2012 may be different from the material of the inner layer 2011 . In some embodiments, outer layer 2012 is denser than inner layer 2011 . In some embodiments, the material of the outer layer 2012 may include at least one of zirconium oxide, aluminum oxide, carbon material, or carbon fiber material.
  • the material of the middle layer 2013 can be the same as or different from the inner layer 2011, and can be set based on actual needs or costs.
  • the material of the middle layer 2013 may include graphite felt, ceramics, etc.
  • the impurity rate of the inner layer, middle layer and/or outer layer material needs to be set below a certain level. quantity.
  • the impurity rate of the material of the inner layer 2011 may be less than 100 ppm. In some embodiments, the impurity rate of the material of the inner layer 2011 may be less than 90 ppm. In some embodiments, the impurity rate of the material of the inner layer 2011 may be less than 80 ppm. In some embodiments, the impurity rate of the material of the inner layer 2011 may be less than 70 ppm. In some embodiments, the impurity rate of the material of the inner layer 2011 may be less than 60 ppm. In some embodiments, the impurity rate of the material of the inner layer 2011 may be less than 50 ppm.
  • the impurity rate of the material of the middle layer 2013 may be less than 100 ppm. In some embodiments, the impurity rate of the material of the middle layer 2013 may be less than 90 ppm. In some embodiments, the impurity rate of the material of the middle layer 2013 may be less than 80 ppm. In some embodiments, the impurity rate of the material of the middle layer 2013 may be less than 70 ppm. In some embodiments, the impurity rate of the material of the middle layer 2013 may be less than 60 ppm. In some embodiments, the impurity rate of the material of the middle layer 2013 may be less than 50 ppm.
  • the impurity rate of the outer layer 2012 material may be less than 100 ppm. In some embodiments, the impurity rate of the outer layer 2012 material may be less than 90 ppm. In some embodiments, the impurity rate of the outer layer 2012 material may be less than 80 ppm. In some embodiments, The impurity rate of the outer layer 2012 material can be less than 70ppm. In some embodiments, the impurity rate of the outer layer 2012 material may be less than 60 ppm. In some embodiments, the impurity rate of the outer layer 2012 material may be less than 50 ppm.
  • the transport of impurities in the inner, middle and/or outer layers is affected by two factors: temperature gradient and concentration. Most of the impurities will be transported outside the insulation device driven by the temperature gradient, while a small amount of impurities will be transported outside the insulation device due to the concentration. Diffused inward to the crucible driven by factors. Therefore, in order to ensure that as few impurities as possible enter the crucible and cause crystal defects during the crystal growth process, it is necessary to set the impurity rate of the inner layer, middle layer or/or outer layer material (especially the inner layer) to meet a certain relationship.
  • inner layer 2011 has the lowest impurity rate.
  • the impurity rate of the outer layer 2012 material is greater than the impurity rate of the middle layer 2013 material.
  • the impurity rate of the material of the middle layer 2013 is greater than the impurity rate of the material of the inner layer 2011 .
  • the impurity rate of the material of the outer layer 2012 ⁇ the impurity rate of the material of the middle layer 2013 ⁇ the impurity rate of the material of the inner layer 2011 .
  • the inner layer 2011 can be designed as an independent replaceable structure to facilitate subsequent replacement.
  • the inner layer 2011 can be designed to have structures with different thicknesses along the axial direction according to the temperature gradient, which can maintain a good thermal insulation effect at different axial positions and facilitate targeted maintenance and/or replacement according to the loss conditions at different positions. .
  • the specific structure of the inner layer 2011 will be described in detail below with reference to Figures 17A-17D.
  • the inner layer 2011 may include at least two insulation sections 111.
  • at least two insulation sections 111 may be stacked one on top of the other.
  • the heat preservation section 111 can be an annular heat preservation section, and at least two annular heat preservation sections can be stacked on top of each other to form a cylindrical structure.
  • the upper and lower contact surfaces of two adjacent insulation sections 111 can be made into a nested structure.
  • the lower surface of the upper insulation section 111 is provided with protrusions, and the upper surface of the lower insulation section 111 is provided with corresponding grooves, so that after the two adjacent insulation sections are stacked up and down, they are attached.
  • the joint is closer and firmer.
  • each insulation section 111 may include at least two insulation blocks 112 .
  • at least two insulation blocks 112 can be block-jointed along the circumferential direction to form an annular structure.
  • the two contact surfaces of two adjacent insulation blocks 112 can be made into a nested structure. For example, for two adjacent thermal insulation blocks 112, the contact surface of one thermal insulation block 112 is provided with protrusions, and the contact surface of the other thermal insulation block 112 is provided with corresponding grooves, so that the two adjacent thermal insulation blocks are arranged along the circumferential direction. After the blocks are spliced, the fit is tighter and stronger.
  • the inner layer 2011 may have different thicknesses along the axial direction.
  • the thickness of the inner layer 2011 along the axial direction may be designed based on the temperature field distribution (or temperature gradient).
  • the thickness of the inner layer By setting the thickness of the inner layer to be different along the axial direction (for example, designing the thickness of the inner layer along the axial direction based on the temperature field distribution), the thickness of the inner layer can be adjusted according to the actual temperature field distribution, and can be targeted at different positions of the inner layer. Targeted replacement (for example, only replacing one or more insulation sections, insulation blocks, etc.) at a time can maintain good insulation effects while saving production costs.
  • the inner layer 2011 has different thicknesses along the axial direction and is configured as at least two insulation sections 111 stacked one on top of the other.
  • the middle layer 2013 can be an integral structure (for example, an integral thermal insulation cylinder), which facilitates the installation of the middle layer and maintains a good thermal insulation effect. At the same time, it can also play a supporting role when replacing the inner layer and improve the structural stability of the insulation device.
  • an integral structure for example, an integral thermal insulation cylinder
  • the inner layer 2011 and the middle layer 2013 can be arranged in close contact with each other. In some embodiments, the middle layer 2013 and the outer layer 2012 can be arranged in close contact with each other.
  • a gap may be provided between the inner layer 2011 and the middle layer 2013. In some embodiments, a gap may be provided between the middle layer 2013 and the outer layer 2012. In some embodiments, the size of the gap between the inner layer 2011 and the middle layer 2013 and the size of the gap between the middle layer 2013 and the outer layer 2012 may be the same or different. In some embodiments, the size of the gap between the inner layer 2011 and the middle layer 2013 may be the shortest distance between the outer side of the inner layer 2011 and the inner side of the middle layer 2013 . In some embodiments, the size of the gap between the middle layer 2013 and the outer layer 2012 may be the shortest distance between the outer side of the middle layer 2013 and the inner side of the outer layer 2012 .
  • the size of the gap may be in the range of 0mm-10mm. In some embodiments, the size of the gap may range from 1 mm to 9 mm. In some embodiments, the size of the gap may be in the range of 2mm-8mm. In some embodiments, the size of the gap may be in the range of 3mm-7mm. In some embodiments, the size of the gap may be in the range of 4mm-6mm. In some embodiments, the size of the gap may be in the range of 4mm-5mm.
  • the gap between the inner layer 2011 and the middle layer 2013 may not be filled with insulation material. In some embodiments, as shown in Figure 18, the gap between the middle layer 2013 and the outer layer 2012 may not be filled with insulation material.
  • the air in the gap can act as an insulation layer and play the role of heat preservation; at the same time, because there are gaps between the inner layer, the middle layer and the outer layer, it is convenient to Later replace the inner layer.
  • the gap between the inner layer 2011 and the middle layer 2013 may be filled with insulation material.
  • the gap between the middle layer 2013 and the outer layer 2012 may be filled with insulation material.
  • the insulation material may include one or more of particles, felts, or bricks.
  • the insulation material may be made of one or more of silicon oxide, alumina, zirconium oxide, graphite, carbon fiber or ceramics.
  • the gap between the inner layer 2011 and the middle layer 2013 may be filled with graphite soft felt.
  • the gap between the inner layer 2011 and the middle layer 2013 may be filled with insulation material, and the gap between the middle layer 2013 and the outer layer 2012 may not be filled with insulation material. In some embodiments, the gap between the inner layer 2011 and the middle layer 2013 may not be filled with thermal insulation material, and the gap between the middle layer 2013 and the outer layer 2012 may be filled with thermal insulation material.
  • the insulation performance of the insulation device can be improved, which helps to regulate the temperature of the outer layer so that the temperature of the outer layer reaches the preset temperature (for example, the temperature set before crystal growth).
  • the insulation material for example, graphite soft felt
  • the insulation material is easy to take out, it is easy to replace the inner layer, and after the inner layer is replaced, the insulation material can be refilled into the gap for reuse, saving production costs.
  • graphite paper 2014 can be filled between the middle layer 2013 and the outer layer 2012. Since the porosity of graphite paper is low, it is difficult for volatiles to pass through and be deposited on its surface. Therefore, graphite paper can be used as a pre-deposition layer for volatiles, which can accordingly reduce the volatiles deposited on the outer layer and reduce the loss of the outer layer. At the same time, graphite paper is easy to replace and low-cost, which can improve the stability of thermal insulation performance and reduce production costs.
  • other materials with lower porosity can be filled between the middle layer 2013 and the outer layer 2012, which is not limited in this specification.
  • the heat preservation device 200 further includes a second heat preservation component 202 , and the second heat preservation component 202 is disposed on the top of the crystal growth equipment 10 .
  • the second insulation component 202 may be a top insulation layer.
  • the second insulation component 202 includes a laminated structure, and the materials of the laminated structures are the same.
  • the material of the laminated structure may be at least one of graphite felt, zirconia, alumina, carbon materials or carbon fiber materials.
  • the number of layers of the laminate structure of the second insulation component 202 may be 0-15 layers. In some embodiments, the number of layers of the laminate structure of the second insulation component 202 may be 0-10 layers. In some embodiments, the number of layers of the laminate structure of the second insulation component 202 may be 0-6 layers.
  • the second insulation component 202 may include multiple insulation segments.
  • the insulation sections of the second insulation component 202 may be annular structures, each insulation section may have a different diameter, and multiple insulation sections may be stacked in a radial direction.
  • adjacent thermal insulation segments in a plurality of radially stacked thermal insulation segments abut each other to form the second thermal insulation component 202 .
  • the finer degree of control of the radial temperature distribution within the growth device 10 can be increased by setting the number of heat preservation sections distributed along the radial direction.
  • the number of heat preservation sections distributed along the radial direction may be 2-10.
  • the number of heat preservation sections distributed along the radial direction may be 2-6.
  • the number of heat preservation sections distributed along the radial direction may be 2-15.
  • the heat preservation device further includes a third heat preservation component 203 , and the second heat preservation component 202 is disposed outside the top of the crucible 100 .
  • the third heat preservation component 203 may be a pot top heat preservation layer.
  • the third insulation component 203 includes an annular structure or a circular structure.
  • the material of the third thermal insulation component 203 may include one or more of graphite felt, zirconia, alumina, carbon materials or carbon fiber materials.
  • the heat preservation effect of the third heat preservation component 203 can be changed by setting parameters of the annular structure.
  • the parameters of the annular structure may include an inner diameter (also called an inner radius) of the annular structure and an outer diameter (also called an outer radius) of the annular structure. As shown in FIG.
  • the inner diameter of the annular structure may refer to the distance between the inner side of the annular structure and the axis of the crucible 100
  • the outer diameter of the annular structure may refer to the distance between the outer side of the annular structure and the axis of the crucible 100 .
  • the inner diameter r i of the annular structure may range from 10 mm to 90 mm. In some embodiments, the inner diameter r i of the annular structure may range from 30 mm to 90 mm. In some embodiments, the inner diameter r i of the annular structure may range from 30 mm to 60 mm. In some embodiments, the inner diameter r i of the annular structure may range from 60 mm to 90 mm.
  • the outer diameter r o of the annular structure may range from 90 mm to 200 mm. In some embodiments, the outer diameter r o of the annular structure may range from 90 mm to 150 mm. In some embodiments, the outer diameter r o of the annular structure may range from 90 mm to 120 mm.
  • the outer diameter r o of the annular structure is related to the dimensions of the crucible 100 .
  • the outer diameter of the annular structure The ratio of r o to the radius of the crucible 100 can be 0.6-1.2.
  • the ratio of the outer diameter r o of the annular structure to the radius of the crucible 100 may be 0.8-1.2.
  • the ratio of the outer diameter r o of the annular structure to the radius of the crucible 100 may be 0.6-1.
  • the ratio of the outer diameter r o of the annular structure to the radius of the crucible 100 may be 0.6-0.8.
  • the ratio of the inner diameter r i to the outer diameter of the annular structure may range from 0.1 to 0.8. In some embodiments, the ratio of the inner diameter r i to the outer diameter r o of the annular structure may range from 0.3 to 0.8. In some embodiments, the ratio of the inner diameter r i to the outer diameter r o of the annular structure may range from 0.5 to 0.8.
  • the ratio of the inner diameter of the annular structure to the radius of the crucible 100 may range from 0.1 to 0.9. In some embodiments, the ratio of the inner diameter of the annular structure to the radius of the crucible 100 may range from 0.1 to 0.8. In some embodiments, the ratio of the inner diameter of the annular structure to the radius of the crucible 100 may range from 0.3 to 0.8.
  • this application uses specific words to describe the embodiments of the application.
  • “one embodiment”, “an embodiment”, and/or “some embodiments” means a certain feature, structure or characteristic related to at least one embodiment of the present application. Therefore, it should be emphasized and noted that “one embodiment” or “an embodiment” or “an alternative embodiment” mentioned twice or more at different places in this specification does not necessarily refer to the same embodiment. .
  • certain features, structures or characteristics in one or more embodiments of the present application may be appropriately combined.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本说明书实施例提供一种晶体生长设备,包括:坩埚,所述坩埚包括用于放置原料的原料腔和用于晶体生长的生长腔;保温装置,设置于所述坩埚外的至少一个侧面。

Description

一种晶体生长设备
交叉引用
本申请要求于2022年05月12日提交的申请号为202210511620.6的中国申请的优先权,于2022年05月27日提交的申请号为202210584487.7的中国申请的优先权,其全部内容通过引用并入本文。
技术领域
本申请涉及晶体生长技术领域,特别涉及一种晶体生长设备。
背景技术
在使用物理气相传输法(Physical Vapor Transport,PVT)进行晶体(例如,半导体晶体)生长时,需要对坩埚进行加热,并在坩埚外部设置保温层。籽晶设置于坩埚的上盖内侧,晶体可以在籽晶上生长。
发明内容
本说明书一个或多个实施例提供一种晶体生长设备,其中包括:坩埚,所述坩埚包括用于放置原料的原料腔和用于晶体生长的生长腔;保温装置,设置于所述坩埚外的至少一个侧面。
在一些实施例中,所述坩埚包括上盖,所述上盖包括盖体和籽晶托,所述籽晶托与所述盖体可拆卸连接。
在一些实施例中,所述籽晶托包括连接结构,所述连接结构设置于所述籽晶托靠近所述盖体的一侧的中心区域。
在一些实施例中,所述籽晶托的厚度为2mm-10mm。
在一些实施例中,所述籽晶托与所述盖体相接触的两个表面包括相互配合的凹凸结构。
在一些实施例中,所述籽晶托包括分离槽,用于分离所述籽晶托上的籽晶。
在一些实施例中,所述分离槽为圆周槽,所述圆周槽设置于远离所述盖体的一侧的外周。
在一些实施例中,所述圆周槽沿径向的深度与所述籽晶托的半径的比值范围为0.028-0.042。
在一些实施例中,所述圆周槽沿径向的深度为2mm-4mm,所述圆周槽沿轴向的高度为0.5mm-1.5mm。
在一些实施例中,所述坩埚包括设置于所述原料腔和所述生长腔之间的导流装置,所述导流装置包括朝向所述原料腔的底面倾斜的第一导流面。
在一些实施例中,所述导流装置包括导流槽,所述导流槽为设置于所述导流装置外周的凹槽。
在一些实施例中,所述导流槽包括与所述第一导流面平行或基本平行的第二导流面,所述第一导流面与所述第二导流面之间构成导流壁。
在一些实施例中,所述导流装置还包括支撑壁,所述支撑壁沿径向连接所述导流壁和所述坩埚的外周壁。
在一些实施例中,所述导流壁的厚度为10mm-60mm。
在一些实施例中,所述导流槽的高度范围为20mm-40mm。
在一些实施例中,所述导流壁的厚度与所述导流槽的高度的比值范围为0.2-1.5。
在一些实施例中,所述支撑壁的厚度范围为10mm-60mm。
在一些实施例中,所述导流壁的厚度与所述支撑壁的厚度的比值范围为0.8-1.2。
在一些实施例中,所述晶体生长设备还包括炉腔和测温结构,所述坩埚设置于所述炉腔内,所述测温结构包括测温腔体和测温窗,所述测温腔体包括第一腔段、主体部分和第二腔段,所述测温窗设置于所述第一腔段,所述第二腔段与所述炉腔连通。
在一些实施例中,所述主体部分的直径小于所述炉腔的直径。
在一些实施例中,所述第一腔段和/或所述第二腔段的直径小于所述主体部分的直径。
在一些实施例中,所述测温结构还包括进气口和出气口,所述进气口与所述第一腔段导通,所述出气口与所述第二腔段导通。
在一些实施例中,所述出气口的直径小于所述进气口的直径。
在一些实施例中,所述测温结构还包括冷却器,所述冷却器设置于所述第二腔段。
在一些实施例中,所述测温结构还包括沉积腔,所述沉积腔与所述炉腔连通。
在一些实施例中,所述沉积腔内的温度低于所述炉腔内的温度。
在一些实施例中,所述测温结构还包括沉积腔,所述沉积腔与所述第二腔段连通。
在一些实施例中,所述沉积腔内的温度低于所述炉腔内的温度和所述测温腔体内的温度,并且所述沉积腔内的压力低于所述测温腔体内的压力。
在一些实施例中,所述保温装置包括第一保温组件,所述第一保温组件包括:内层,所述内层的厚度满足预设条件;外层,所述外层的材质与所述内层的材质不同;中层,所述中层位于所述内层和所述外层之间。
在一些实施例中,所述第一保温组件至少设置于所述坩埚的周侧。
在一些实施例中,所述内层的厚度范围为4mm-57mm。
在一些实施例中,所述中层的厚度范围为28mm-143mm。
在一些实施例中,所述中层的厚度大于所述内层的厚度和所述外层的厚度。
在一些实施例中,所述内层与所述中层的厚度比值在1:2-1:10之间。
在一些实施例中,所述中层与所述外层的厚度比值在2:0.5-10:3之间。
在一些实施例中,所述内层与所述外层的厚度比值在1:0.5-1:3之间。
在一些实施例中,所述内层包括至少两个保温段,所述至少两个保温段上下堆叠。
在一些实施例中,所述内层沿轴向的厚度不同。
在一些实施例中,所述内层的材质包括石墨毡。
在一些实施例中,所述外层的材质包括氧化锆、氧化铝、碳材料或碳纤维材料中的至少一种。
在一些实施例中,所述中层和所述外层之间填充石墨纸。
在一些实施例中,所述保温装置还包括第二保温组件,所述第二保温组件设置于所述晶体生长设备的顶部。
在一些实施例中,所述第二保温层包括层叠结构,所述层叠结构的材质相同。
在一些实施例中,所述保温装置还包括第三保温组件,所述第三保温组件包括环形结构或圆形结构。
在一些实施例中,所述环形结构的内径范围为10mm-90mm。
在一些实施例中,所述环形结构的外径与所述坩埚的半径的比值为0.6-1.2。
在一些实施例中,所述环形结构的内径与外径的比值范围为0.1-0.8。
在一些实施例中,所述环形结构的内径与所述坩埚的半径的比值范围为0.1-0.9。
附图说明
本申请将以示例性实施例的方式进一步说明,这些示例性实施例将通过附图进行详细描述。这些实施例并非限制性的,在这些实施例中,相同的编号表示相同的结构,其中:
图1是根据本说明书一些实施例所示的晶体生长设备的结构示意图;
图2是根据本说明书一些实施例所示的上盖的结构示意图;
图3是根据本说明书一些实施例所示的晶体生长设备的结构示意图;
图4是图2所示的籽晶托的局部放大示意图;
图5是根据本说明书一些实施例所示的上盖的结构示意图;
图6是根据本说明书一些实施例所示的籽晶托的结构示意图;
图7是根据本说明书一些实施例所示的晶体生长设备的结构示意图;
图8是根据本说明书一些实施例所示的导流装置的结构示意图;
图9A是根据本说明书一些实施例所示的晶体生长设备的剖面示意图;
图9B是根据本说明书一些实施例所示的晶体生长设备的结构示意图;
图10是根据本说明书一些实施例所示的测温结构的结构示意图;
图11是根据本说明书一些实施例所示的测温结构的结构示意图;
图12是根据本说明书一些实施例所示的测温结构的结构示意图;
图13是根据本说明书一些实施例所示的测温结构的结构示意图;
图14是根据本说明书一些实施例所示的测温结构的结构示意图;
图15是根据本说明书一些实施例所示的测温结构的结构示意图;
图16是根据本说明书一些实施例所示的晶体生长设备的结构示意图;
图17A是根据本说明书一些实施例所示的第一保温组件的内层的结构示意图;
图17B是根据本说明书一些实施例所示的保温段的结构示意图;
图17C是根据本说明书一些实施例所示的第一保温组件的内层的结构示意图;
图17D是根据本说明书一些实施例所示的第一保温组件的内层的结构示意图;
图18是根据本说明书一些实施例所示的第一保温组件的结构示意图;
图19是根据本说明书一些实施例所示的第一保温组件的结构示意图;
图20是根据本说明书一些实施例所示的晶体生长设备的结构示意图;
图21是根据本说明书一些实施例所示的晶体生长设备的结构示意图。
具体实施方式
为了更清楚地说明本申请实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单的介绍。显而易见地,下面描述中的附图仅仅是本申请的一些示例或实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图将本申请应用于其它类似情景。除非从语言环境中显而易见或另做说明,图中相同标号代表相同结构或操作。
图1是根据本说明书一些实施例所示的晶体生长设备的结构示意图。以下结合图1对晶体生长设备进行详细说明。在一些实施例中,晶体生长设备10可以基于物理气相传输法制备晶体(例如,半导体晶体,例如,碳化硅晶体、氮化铝晶体、氧化锌晶体、锑化锌晶体等)。在一些实施例中,如图1所示,晶体生长设备10可以包括坩埚100、加热组件(图1未示出)和保温装置200。保温装置200设置于坩埚100外的至少一个侧面。
坩埚100可以作为容器用于存放生长晶体所需的材料,并在高温的环境下用于生长晶体。在一些实施例中,坩埚100可以包括用于放置原料的原料腔102和用于晶体生长的生长腔101。在一些实施例中,原料腔102位于生长腔101下方,原料腔102与生长腔101气相连通。
在一些实施例中,原料腔102可以用于存放碳化硅、氮化铝、氧化锌或锑化锌等原材料,原材料可以在高温作用下升华为气相组分(例如,以制备碳化硅晶体为例,气相组分可以包括Si2C、SiC2、Si)。
在一些实施例中,生长腔101内可以设置籽晶303,气相组分在生长腔101内与籽晶接触后结晶而生成晶体。在一些实施例中,籽晶303可以固定粘接于坩埚100顶部(例如,上盖)的内侧面(例如,内侧面中心位置处)。
加热组件可以设置于(例如,环绕设置于)坩埚100外部,用于加热坩埚100。在晶体生长过程中,可以通过控制加热组件的加热参数,使得原料和籽晶303之间形成轴向温度梯度。原料受热可以分解升华为气相组分(例如,以制备碳化硅晶体为例,气相组分可以包括Si2C、SiC2、Si),在轴向温度梯度的驱动作用下,气相组分从原料表面传输至籽晶303表面,由于籽晶303处温度相对较低,气相组分在籽晶303表面结晶进而生成晶体。在一些实施例中,加热组件可以包括感应加热组件、电阻加热组件等。
保温装置200可以减少坩埚100内与坩埚100外部的热交换,从而维持坩埚100内的温度稳定。在一些实施例中,保温装置200可以采用单层结构或多层结构。在一些实施例中,保温装置200可以全覆盖在坩埚100的侧壁和/或底部。关于保温装置200的更多内容可以参见本说明书其它地方的描述。
在一些实施例中,以制备碳化硅晶体为例,将碳化硅原材料装入原料腔102内。将籽晶303装入生长腔101内,籽晶303朝下设置。利用加热组件对坩埚100进行加热,使原料腔102内的碳化硅升华产生气相组分。气相组分上升到生长腔101内与籽晶303接触,在籽晶303表面结晶而生长出晶体。保温装置200设置在坩埚100外侧对坩埚100进行保温,使坩埚100内的温度维持在生长晶体所需的温度范围内。
下文将对晶体生长设备10的各个部件及其详细结构进行说明。
图2是根据本说明书一些实施例所示的上盖的结构示意图。以下结合图2对上盖进行详细说明。如图1、图2所示,坩埚100包括上盖300。在一些实施例中,坩埚100的顶部开口,上盖300设置于坩埚100的开口处。上盖300包括盖体301和籽晶托302。在一些实施例中,盖体301和籽晶托302可拆卸连接。
上盖300可以与坩埚100的开口连接,以关闭开口,使气相成分主要聚集于生长腔内。在一些实施例中,上盖300与开口的形状相适配。在一些实施例中,上盖300可以是圆盘型结构。
盖体301可以是上盖300中主要用于关闭开口的结构。盖体301还可以作为安装基础用于安装籽晶托302,上盖300通过盖体301与坩埚100的开口连接。
籽晶托302可以用于承载和固定籽晶303。在一些实施例中,籽晶303可以通过粘接的方式设置在籽晶托302的下表面。籽晶托302安装于上盖300的下表面。上盖300安装到位之后,籽晶303位于生长腔101内。
在一些实施例中,籽晶托302与盖体301可拆卸连接。在长晶时,将籽晶托302安装于盖体301上。完成长晶后,可以将籽晶托302从盖体301上取下。需要取下晶体时,可以破坏籽晶托302或对籽晶托302进行特殊处理,而盖体301还可以继续使用,有利于降低生产成本。
图3是根据本说明书一些实施例所示的晶体生长设备的结构示意图。以下结合图3对盖体进行进 一步说明。如图2、图3所示,在一些实施例中,盖体301上设置有第一阶梯面304,坩埚100的开口处设置有的第二阶梯面。第一阶梯面304与第二阶梯面可以配合安装。在一些实施例中,第一阶梯面304设置在盖体301的周侧。
在一些实施例中,第一阶梯面304与第二阶梯面之间可以有缝隙。利用缝隙能够实现坩埚100内外进行换气,避免坩埚100内部气压过高。
在一些实施例中,第一阶梯面304上可以设置微小的凸起结构,第一阶梯面304与第二阶梯面配合安装时,利用凸起结构能够调整第一阶梯面304与第二阶梯面形成的缝隙的大小。
在一些实施例中,如图2所示,籽晶托302包括连接结构305。连接结构305与籽晶303分别设置在籽晶托302相对的两侧。
在一些实施例中,籽晶托302可以通过连接结构305与盖体301可拆卸连接。在一些实施例中,连接结构305可以包括卡接结构、螺纹连接结构中的一种。在一些实施例中,连接结构305可以包括具有外螺纹的螺杆,盖体301上设置有与外螺纹连接的内螺纹孔。在一些实施例中,连接结构305可以包括具有内螺纹的螺纹孔,盖体301上设置有与螺纹孔连接的螺杆。在一些实施例中,连接结构305可以是滑块,盖体301上设置有与滑块连接的凹槽。在一些实施例中,滑块可以是T型滑块,凹槽可以是T型凹槽。
在一些实施例中,连接结构305设置于籽晶托302靠近盖体301的一侧的中心区域。在一些实施例中,籽晶托302的几何中心与重心重合,中心区域可以是籽晶托302的几何中心所在的区域。例如,中心区域可以是以籽晶托302的几何中心为圆心、半径在预设范围内的圆形区域。
通过设置可拆卸的籽晶托302,可以在晶体生长完成后将籽晶托302与盖体301分离,只需在籽晶托302上完成取晶操作而不必破坏盖体301,使盖体301可以重复利用。
图4是图2所示的籽晶托的局部放大示意图。以下结合图4对籽晶托进行详细说明。
在一些实施例中,当晶体生长完成后,在取晶过程中,可以对籽晶托302进行打磨,消耗掉籽晶托302的材料后即可取出晶体,通过这种方式取晶,可以有效减小取晶过程中带来的机械应力,避免晶体受损。在一些实施例中,籽晶托302的厚度可以影响取晶操作的效率和可靠性,籽晶托302的厚度越小,取晶时的效率越高。但是,籽晶托302的厚度也不能过小,以免影响籽晶托302的结构强度。
在一些实施例中,籽晶托的厚度a可以为2mm-10mm。在一些实施例中,籽晶托的厚度a可以为3mm-9mm。在一些实施例中,籽晶托的厚度a可以为4mm-8mm。
图5是根据本说明书一些实施例所示的上盖的结构示意图。以下结合图5对上盖进行详细说明。如图5所示,籽晶托302与盖体301相接触的两个表面包括相互配合的凹凸结构。籽晶托302与盖体301相连接时,可以利用相互配合的凹凸结构增加籽晶托302与盖体301之间的接触面积和连接强度,同时也可以更有利于籽晶托302将热量向盖体301传递。
在一些实施例中,凹凸结构可以包括设置在籽晶托302上的凸起结构306和设置在盖体301上的凹槽结构307,凸起结构306与凹槽结构307可以配合安装。
在另一些实施例中,凸起结构306可以设置在盖体301上,凹槽结构307可以设置在籽晶托302上。
在一些实施例中,凸起结构306与凹槽结构307能够三面贴合。在一些实施例中,凸起结构306可以设置有多个,且凸起结构306互相平行设置,凹槽结构307与凸起结构306一一对应设置。在一些实施例中,凸起结构306的横截面(其截切面与坩埚100的轴线方向平行)可以是长方形、三角形、半圆形、半椭圆形中的一种,凹槽结构307的横截面与凸起结构306对应设置。在一些实施例中,连接结构305的具体结构形状可以根据籽晶托302和盖体301的连接方式设置。在一些实施例中,籽晶托302和盖体301可以通过卡接的方式实现可拆卸连接,连接结构305可以是滑块,盖体301上设置有与滑块连接的凹槽,盖体301与籽晶托302可以通过滑块与凹槽的配合相对滑动。在一些实施例中,籽晶托302和盖体301可以通过卡接或螺纹连接的方式实现可拆卸连接,凸起结构306可以是圆环形的凸起,多个凸起同轴设置,凹槽结构307可以圆环形凹槽,凹槽结构307与凸起结构306一一对应设置。
在一些实施例中,籽晶托302可以包括分离槽308。分离槽308可以是便于取晶的结构。通过设置分离槽308可以更加方便的分离籽晶托302上的籽晶303。在一些实施例中,根据取晶方式的不同,分离槽308可以设置为不同的结构形式。
在一些实施例中,分离槽308可以包括便于破坏籽晶托302的易破坏结构。通过在籽晶托302上预先设置易破坏结构可以在取晶时对籽晶托302进行破坏,减少与籽晶303粘接的籽晶托材料,便于通过打磨等方式取晶。在一些实施例中,分离槽308设置在籽晶托302周向的侧面上,分离槽308为从籽晶托302周向的侧面向内凹的凹槽结构或裂纹结构,通过在分离槽308附近施加作用力,方便籽晶托302从分离槽308处开裂而使得籽晶托302更容易被破坏,从而方便从籽晶托302上取出晶体。
在一些实施例中,分离槽308(如,易破坏结构)可以沿着籽晶托302的周向设置多个,多个分离槽308可以等距或不等距分布。在一些实施例中,分离槽308也可以环绕籽晶托302的周侧设置为环形易破坏结构(或称为易破坏环带)。
在一些实施例中,分离槽308的横截面可以是矩形、三角形或半圆形。
在一些实施例中,分离槽308可以包括便于使籽晶303与籽晶托302分离的辅助分离结构。在一些实施例中,辅助分离结构可以设置在籽晶托302与籽晶303的连接面附近区域,由于籽晶303可以采用粘接的方式连接至籽晶托302,在取晶时,通过辅助分离结构可以将粘接分离液浸润至籽晶托302与籽晶303的粘接面,便于籽晶托302与籽晶303分离。
图6是根据本说明书一些实施例所示的籽晶托的结构示意图。以下结合图6对分离槽进行详细说明。如图6所示,分离槽308为圆周槽(即辅助分离结构),圆周槽设置于籽晶托302远离盖体301的一侧的外周。
在一些实施例中,圆周槽设置在籽晶托302底面(即连接籽晶的一面)的边缘区域。在一些实施例中,圆周槽可以为向盖体301方向凹陷的凹台形状。通过设置圆周槽能够减小籽晶托302与籽晶303的接触面积,在籽晶303粘接至籽晶托302后预留出可以容纳分离液的空间,使粘接分离液能够直接浸润到籽晶托302与籽晶303的连接面,从而方便破坏籽晶托302与籽晶303的粘接连接,使籽晶更容易分离。
在一些实施例中,圆周槽的深度M可以影响粘接分离液对籽晶托302与籽晶303的连接面的浸润效果。如果深度M太小,粘接分离液难以长时间维持在圆周槽内,容易流出圆周槽,从而减弱粘接分离液对籽晶托302与籽晶303的连接面的浸润效果。如果深度M太大,籽晶托302与籽晶303的接触面积会过度减小,并且会减小籽晶托302与籽晶303的连接强度,降低籽晶303与籽晶托302的连接稳定性。如果接触面积过小,籽晶托302与籽晶303之间的传热也会受到影响,籽晶303边缘处向籽晶托302的传热效率会降低,导致籽晶303的温度分布不均匀,从而可能会影响籽晶的生长。为了保障圆周槽的浸润效果,深度M应设置在合理的范围内。在一些实施例中,圆周槽沿径向的深度M与籽晶托的半径的比值范围为0.02-0.05。在一些实施例中,圆周槽沿径向的深度M与籽晶托的半径的比值范围为0.028-0.042。在一些实施例中,圆周槽沿径向的深度M与籽晶托的半径的比值范围为0.03-0.04。
为了进一步保障圆周槽的浸润效果,相类似的,圆周槽沿轴向的高度L也应设置在合理的范围内。在一些实施例中,如图6所示,圆周槽沿径向的深度M为2mm-4mm,圆周槽沿轴向的高度L为0.5mm-1.5mm。在一些实施例中,圆周槽沿径向的深度M为2.5mm-3.5mm,圆周槽沿轴向的高度L为0.8mm-1.2mm。
图7是根据本说明书一些实施例所示的示例性晶体生长设备的结构框图。
在一些实施例中,参见图1和图7,坩埚包括设置于原料腔和生长腔之间的导流装置103。
导流装置103可以是控制引导坩埚内和/或坩埚外的气体方向的装置。在一些实施例中,导流装置103可以设置在原料腔和生长腔之间。在一些实施例中,导流装置103可以设置在原料腔中。在一些实施例中,导流装置103包括连通原料腔102和生长腔101的导流通道104。在一些实施例中,导流装置103的入口朝向原料腔,导流装置103的收口朝向生长腔101,收口的尺寸(如直径)小于入口的尺寸,即导流通道104靠近原料腔102的一端(即入口)的尺寸大于靠近生长腔101一端(即收口)的尺寸。在一些实施例中,导流通道104靠近生长腔101的一端的尺寸(如直径)小于原料腔102的尺寸。在一些实施例中,导流装置103的形状可以为空心锥台形。在一些实施例中,导流装置103的形状还可以是其他多种形状,包括但不限于空心弧形台等。
图8是根据本说明书一些实施例所示的示例性晶体生长设备的导流装置的局部结构框图。
在一些实施例中,导流装置103包括朝向原料腔102的底面倾斜的第一导流面1031。第一导流面1031位于原料腔的外壁,且位于生长腔101的下方。例如,如图8所示,第一导流面1031的底部连接原料腔102的内侧壁,第一导流面1031的顶部朝向生长腔101倾斜延伸。
由于籽晶的边缘区域离加热组件更近,通常温度略高于中心区域,通过设置具有第一导流面1031的导流装置103,可以使得由原料腔102流向生长腔101气相组分向中心汇聚,增加生长腔101中心区域的温度以及气相组分的浓度,降低籽晶上中心温度与边缘温度的差异,提高晶体生长质量。
在一些实施例中,通过设置第一导流面1031的倾斜角度α(即第一导流面1031与水平方向的夹角),可以改变由原料腔流向生长腔的高温气流的流动方向,调节生长腔中晶体生长区域(如,籽晶处)的温度分布和气相组分在生长腔中的分布情况。较小的倾斜角度α有利于高温气流向晶体生长区域的中心处汇聚,减小中心与边缘的温度梯度,利于晶体均匀生长。但倾斜角度α也不宜设置得过小,过小的倾斜角度α可能导致气相组分过度向中心汇聚,反而不利于晶体均匀生长。由此,在一些实施例中,第一导流面的倾斜角度α范围可以为20°-80°。在一些实施例中,第一导流面的倾斜角度α范围可以为30°-70°。在一些实施例中,第一导流面的倾斜角度α范围可以为40°-60°。
在一些实施例中,也可以设置导流装置103的收口的半径,以达到上述减小中心与边缘的温度梯度的效果。在一些实施例中,导流装置103的收口的半径可以为50mm-110mm。在一些实施例中,导流装置103的收口的半径可以为55mm-100mm。在一些实施例中,导流装置103的收口的半径可以为60mm-90mm。
在一些实施例中,导流装置103包括导流槽1032,导流槽1032为设置于导流装置103外周的凹槽。由于导流通道104靠近生长腔的一端的尺寸(如直径)小于原料腔的尺寸,使得导流装置103靠近生长腔的一端沿径向的厚度较大,较大的厚度在一定程度上会影响导流装置103的导热能力。因此,通过设置导流槽可以减小导流装置103的厚度,使导流装置103的厚度更均匀,改善导流装置103的导热能力。
导流槽1032设置在导流装置103外周,位于坩埚的外壁,且位于生长腔101的下方。例如,如图8所示,在原料腔102上部的坩埚的外壁设置有一圈内凹的导流槽1032。在一些实施例中,导流槽1032的形状可以为锥形环状凹槽。在一些实施例中,导流槽1032的形状还可以是其他多种形状,包括但不限于弧形环状凹槽等。
在一些实施例中,导流槽1032包括与第一导流面1031平行或基本平行的第二导流面1033。本说明书实施例所述的“基本平行”是指相互参照的两个面或两条线之间的最小夹角不超过10°。
在一些实施例中,第二导流面1033朝向坩埚100的外侧,且位于生长腔101的下方。在一些实施例中,如图8所示,第二导流面1033的底部位于坩埚100的外壁,第二导流面1033的顶部朝向生长腔101延伸。
在一些实施例中,第一导流面1031与第二导流面1033之间构成导流壁1034。
导流壁1034可以是原料腔102外侧的第一导流面1031与第二导流面1033之间的坩埚壁。例如,如图8所示,导流壁1034的内侧面为第一导流面1031,导流壁1034的外侧面为第二导流面1033,第一导流面1031与第二导流面1033之间的距离可以是导流壁1034的厚度。需要说明的是,当第一导流面1031和第二导流面1033不平行时,导流壁的厚度可以是第一导流面1031和第二导流面1033之间的平均距离,该平均距离可以由最大距离和最小距离的平均值求得。
通过设置导流壁1034的厚度,可以改变导流装置103的导热能力,从而影响坩埚100内部的温场分布。在一些实施例中,综合考虑坩埚100内部的温场分布,可以将导流壁1034的厚度设置在一定厚度范围内。在一些实施例中,导流壁1034的厚度为10mm-60mm。在一些实施例中,导流壁1034的厚度为10mm-40mm。在一些实施例中,导流壁1034的厚度为10mm-30mm。
在一些实施例中,参见图8,导流装置103还包括支撑壁1035,支撑壁1035沿径向连接导流壁1034和生长腔101的外周壁。在一些实施例中,支撑壁1035可以沿水平方向设置。在一些实施例中,支撑壁1035与水平方向之间也可以存在一定的夹角。在一些实施例中,支撑壁1035与水平方向之间的夹角不大于30°。
通过设置支撑壁1035的厚度,可以改变导流装置103向生长腔101的导热能力,从而影响生长腔101内部的温场分布。在一些实施例中,综合考虑生长腔101内部的温场分布,可以将支撑壁1035的厚度设置在一定厚度范围内,其中支撑壁1035的厚度可以由支撑壁1035的内侧面(朝向生长腔101的侧面)与外侧面(朝向导流槽1032的侧面)之间的距离表示。
在一些实施例中,支撑壁1035的厚度范围为10mm-60mm。在一些实施例中,支撑壁1035的厚度范围为15mm-50mm。在一些实施例中,支撑壁1035的厚度范围为20mm-40mm。
在一些实施例中,当支撑壁1035的厚度一定时,通过设置导流槽1032的高度h可以同时改变导流壁1034的厚度和长度,从而改变导流装置103的导热能力,进而影响坩埚100内部的温场分布。在一些实施例中,导流槽1032的高度h范围为20mm-40mm。在一些实施例中,导流槽1032的高度h范围为22mm-38mm。在一些实施例中,导流槽1032的高度h范围为25mm-35mm。
在一些实施例中,导流壁1034的厚度与导流槽1032的高度h的比值可以表征第一导流面1031和第二导流面1033的倾斜程度(如,倾斜角度),该倾斜程度可以进一步影响导流通道104内气相组分的流动情况,从而影响生长腔101的温场分布。在一些实施例中,综合考虑生长腔101内部的温场分布,可以将导流壁1034的厚度与导流槽1032的高度h的比值设置在一定范围内。在一些实施例中,导流壁1034的厚度与导流槽1032的高度h的比值范围为0.2-1.5。在一些实施例中,导流壁1034的厚度与导流槽1032的高度h的比值范围为0.5-1。在一些实施例中,导流壁1034的厚度与导流槽1032的高度h的比值范围为0.2-0.8。
由于支撑壁1035的厚度主要影响导流装置103向生长腔101的边缘区域的导热能力,从而主要影响晶体生长的边缘温度;导流壁1034的厚度主要影响导流装置103向收口区域的导热能力,从而主要影响生长腔101的中心区域的温度。在一些实施例中,为了使晶体生长的中心温度与边缘温度的差值较小,可以将导流壁1034的厚度与支撑壁1035的厚度的比值设置在一定范围内。
在一些实施例中,导流壁1034的厚度与支撑壁1035的厚度的比值范围为0.8-1.2。在一些实施例中,导流壁1034的厚度与支撑壁1035的厚度的比值范围为0.6-1.5。在一些实施例中,导流壁1034的厚度与支撑壁1035的厚度的比值范围为0.9-1。
图9A是根据本说明书一些实施例所示的晶体生长设备的剖面示意图。图9B是根据本说明书一些实施例所示的晶体生长设备的结构示意图。以下结合图9A、图9B对晶体生长设备进行详细说明。如图9A、图9B所示,晶体生长设备还包括测温结构500。在一些实施例中,测温结构500包括测温腔体501和测温窗502。
测温结构500可以用于测量晶体生长设备内部的温度,从而判断晶体生长是否处在合适的温度范围内,当测量的温度不在阈值范围内时,能够及时采取措施。
在一些实施例中,晶体生长设备还包括炉腔400,坩埚100和保温装置200可以设于炉腔400内部。炉腔400的顶部设置有开口401,测温结构500可以设于开口401处并与开口401连通。在一些实施例中,炉腔400内在工作过程中处于高温环境(例如,1200℃-2000℃或800℃-1600℃)中,采用传统的接触式测温会影响温度测量的准确性,因此可以通过非接触式的测温方式测量高温炉的温度。在一些实施例中,可以通过红外测温方式实现温度检测。
测温窗502可以作为温度检测的窗口。例如,可以通过红外测温仪采集炉腔400内或坩埚100内的温度,测温结构500与开口401连通,红外测温仪能够通过测温窗502采集炉腔400内发出的红外线,从而实现测温。在一些实施例中,测温窗502的材质可以包括红外测温玻璃(例如,氟化钡晶体玻璃)。
图10是根据本说明书一些实施例所示的测温结构的结构示意图。以下结合图10对测温结构进行详细说明。
在一些实施例中,参见图10,测温腔体501包括第一腔段5011、主体部分5012和第二腔段5013,所述测温窗502设置于所述第一腔段5011,所述第二腔段5013与炉腔400内连通,以实现炉腔400内的温度监测。在一些实施例中,生长腔101可以通过坩埚100的盖体300附近的缝隙与炉腔400气相连通,进而与第二腔段5013气相连通。在一些实施例中,第二腔段5013也可以通过盖体300上开设的测温孔直接与生长腔101连通,从而实现生长腔内的温度监测。
第一腔段5011可以指测温腔体501的顶端部分。在一些实施例中,测温窗502可以设置于第一腔段5011。在一些实施例中,测温窗502可以设置于第一腔段5011的上端面。
在一些实施例中,测温窗502可以与第一腔段5011的上端面平行或基本平行。在一些实施例中,“基本平行”可以指测温窗502与第一腔段5011的上端面之间的夹角在第一预设范围内。
在一些实施例中,第一预设范围可以是-10°~10°。在一些实施例中,第一预设范围可以是-8°~8°。在一些实施例中,第一预设范围可以是-6°~6°。在一些实施例中,第一预设范围可以是-5°~5°。在一些实施例中,第一预设范围可以是-2°~2°。在一些实施例中,第一预设范围可以是0°~1°。在一些实施例中,第一预设范围可以是1°~2°。
在一些实施例中,测温窗502可以与第一腔段5011的上端面不平行,二者夹角在第二预设范围内。在一些实施例中,第二预设范围可以是10°~60°。在一些实施例中,第二预设范围可以是15~55°。在一些实施例中,第二预设范围可以是20°~50°。在一些实施例中,第二预设范围可以是25°~45°。在一些实施例中,第二预设范围可以是30°~40°。在一些实施例中,第二预设范围可以是10°~20°。在一些实施例中,第二预设范围可以是20°~30°。在一些实施例中,第二预设范围可以是50°~60°。
主体部分5012可以指第一腔段5011和第二腔段5013之间的部分。第二腔段5013可以指测温腔体501的底端部分。在一些实施例中,第二腔段5013可以与炉腔400连接。
在一些实施例中,主体部分5012可以是回转体型的腔体结构,主体部分5012的直径小于炉腔400的直径。
在一些实施例中,主体部分5012的直径远小于炉腔400的直径。在一些实施例中,主体部分5012的直径与炉腔400的直径的比值可以在第二预设比值范围内。在一些实施例中,第二预设比值范围可以是1:5~1:25。在一些实施例中,第二预设比值范围可以是1:8~1:22。在一些实施例中,第二预设比值范围可以是1:11~1:19。在一些实施例中,第二预设比值范围可以是1:14~1:16。在一些实施例中,第二预设比值范围可以是1:5~1:20。在一些实施例中,第二预设比值范围可以是1:10~1:25。在一些实施例中,第二预设比值范围可以是1:5~1:15。在一些实施例中,第二预设比值范围可以是1:15~1:25。
通过将主体部分5012的直径设置为小于炉腔400的直径,可以使测温腔体501的尺寸整体小于炉腔400的尺寸,可以减小测温腔体501对炉腔400内的晶体生长环境的影响。
在一些实施例中,主体部分5012可以为渐变段,即主体部分5012的直径从与第一腔段5011连接的一端到与第二腔段5013连接的一端逐渐减小。即整个测温腔体501的形状类似于从上端至下端逐渐减小的形状。
在一些实施例中,第一腔段5011的直径和第二腔段5013的直径可以均小于主体部分5012的直径。即整个测温腔体501的形状类似为两端小中间大的形状。
在一些实施例中,参见图11,第二腔段5013的直径可以小于主体部分5012的直径,而第一腔段5011的直径可以大于或等于主体部分5012的直径。即整个测温腔体501的形状类似于上端大下端小的形状。
通过将测温腔体501设置为两端小中间大、一端大一端小或从上端至下端逐渐减小的形状,可以使得测温腔体501内的气体浓度大于炉腔400内的气体浓度(测温腔体501内的气体压力大于炉腔400内的气体压力),这种压差的存在使得炉腔400内产生的粉尘不容易进入测温腔体501进而到达测温窗502,从而可以保证测温窗502的洁净度,从而有利于提高测温的稳定性和准确度。
如图10所示,在一些实施例中,测温结构还可以包括进气口5014和出气口5015。
进气口5014可以用于向测温腔体501内通入气体。在一些实施例中,进气口5014可以设置于第一腔段5011。在一些实施例中,进气口5014可以设置于第一腔段5011的侧壁。在一些实施例中,进气口5014可以独立于测温腔体501而设置在炉腔400上。在一些实施例中,以晶体生长为例,通过进气口5014向测温腔体501内通入的气体可以为晶体生长所需的气体,例如,氧气和/或惰性气体。惰性气体可以包括氮气、氦气、氖气、氙气、氡气等或其任意组合。
在一些实施例中,进气口5014可以设置于测温窗502附近。在一些实施例中,“附近”可以指进气口5014与测温窗502之间的距离在预设距离范围内。
在一些实施例中,预设距离范围可以是1cm~10cm。在一些实施例中,预设距离范围可以是3cm~8cm。在一些实施例中,预设距离范围可以是5cm~6cm。在一些实施例中,预设距离范围可以是1cm~3cm。在一些实施例中,预设距离范围可以是3cm~5cm。在一些实施例中,预设距离范围可以是5cm~8cm。在一些实施例中,预设距离范围可以是8cm~10cm。
在一些实施例中,进气口5014与测温窗502之间的距离可以根据进气口5014的进气流量和/或进气口5014的进气方向确定。例如,进气口5014的进气流量越大,进气口5014与测温窗502之间的距离可以越大;进气流量越小,进气口5014与测温窗502之间的距离可以越小。又例如,进气口5014的进气方向与测温窗502的内侧面的法线之间的夹角越小,进气口5014与测温窗502之间的距离可以越大;进气口5014的进气方向与测温窗502的内侧面的法线之间的夹角越大,进气口5014与测温窗502之间的距离可以越小。在一些实施例中,进气口5014的进气流量可以在满足晶体生长需求且气体能够吹扫测温窗502的内侧面的前提下根据实际需求设定。
在一些实施例中,进气口5014的进气方向可以设置为朝向(例如,倾斜朝向)测温窗502。在一些实施例中,进气口5014的进气方向与测温窗502的平面之间的夹角可以在预设角度范围内。
在一些实施例中,预设角度范围可以是5°~60°。在一些实施例中,预设角度范围可以是10°~55°。在一些实施例中,预设角度范围可以是15°~50°。在一些实施例中,预设角度范围可以是20°~45°。在一些实施例中,预设角度范围可以是25°~40°。在一些实施例中,预设角度范围可以是30°~35°。在一些实施例中,预设角度范围可以是5°~20°。在一些实施例中,预设角度范围可以是5°~40°。在一些实施例中,预设角度范围可以是25°~60°。
在一些实施例中,进气口5014的进气方向与测温窗502的平面之间的夹角可以根据测温窗502的尺寸和/或进气口5014与测温窗502之间的距离确定。例如,测温窗502的尺寸越大,进气口5014的进气方向与测温窗502的平面之间的夹角可以越大;测温窗502的尺寸越小,进气口5014的进气方向与测温窗502的平面之间的夹角可以越小。又例如,进气口5014与测温窗502之间的距离越小,进气口5014的进气方向与测温窗502的平面之间的夹角可以越大;进气口5014与测温窗502之间的距离越大,进气口5014的进气方向与测温窗502的平面之间的夹角可以越小。
通过将进气口5014设置于测温窗502附近且进气方向朝向测温窗502,从进气口5014进入测温腔体501内的气体可以吹扫测温窗502的内侧面上的至少一部分粉尘,实现对测温窗502的吹扫清洁,进而提高温度测量结果的稳定性和准确性。
在一些实施例中,出气口5015可以用于将气体通入炉腔400内。在一些实施例中,出气口5015可以设置于第二腔段5013。在一些实施例中,出气口5015可以设置于第二腔段5013底部端面。在一些实施例中,出气口5015可以与炉腔400的进气口5014相连通。在一些实施例中,出气口5015可以直接设置在炉腔400上,并与第二腔段5013导通。
通过将进气口5014设置于第一腔段5011、出气口5015设置于第二腔段5012,小直径的第二腔段5013两端分别连接较大直径的主体部分5012和炉腔400,可以构成类似“文丘里管”的结构。由于气流的方向是由第一腔段5011流入且由第二腔段5012流出,因此,第二腔段5013靠近主体部分5012的一端的压力大于第二腔段5013靠近炉腔400一端的压力,这种压差的存在使得炉腔400内产生的粉尘不容易 进入测温腔体501进而到达测温窗502,从而可以保证测温窗502的洁净度,从而有利于提高测温的稳定性和准确度。
在一些实施例中,通过设置第二腔段5012或出气口5015的直径与测温结构其他部分(如,进气口5014、主体部分5012、炉腔400等)的直径的比例关系即可调整主体部分5012与炉腔400之间的压差,从而实现较好的保证测温窗502的洁净度的效果。
在一些实施例中,出气口5015的直径小于主体部分5012的直径。在一些实施例中,出气口5015的直径远小于主体部分5012的直径。在一些实施例中,出气口5015的直径与主体部分5012的直径的比值可以在第一预设比值范围内。
在一些实施例中,第一预设比值范围可以是1:5~1:20。在一些实施例中,第一预设比值范围可以是1:8~1:17。在一些实施例中,第一预设比值范围可以是1:11~1:14。在一些实施例中,第一预设比值范围可以是1:5~1:15。在一些实施例中,第一预设比值范围可以是1:10~1:20。
通过将出气口5015的直径设置为小于主体部分5012的直径(或二者直径的比值在预设范围内),可以使得测温腔体501内的气体压力大于炉腔400内的气体压力,这种压差的存在使得炉腔400内产生的粉尘不容易进入测温腔体501进而到达测温窗502,从而可以保证测温窗502的洁净度,从而提高测温的稳定性和准确度。
在一些实施例中,主体部分5012的直径小于炉腔400的直径。在一些实施例中,主体部分5012的直径远小于炉腔400的直径。在一些实施例中,主体部分5012的直径与炉腔400的直径的比值可以在第二预设比值范围内。在一些实施例中,第二预设比值范围可以是1:5~1:25。在一些实施例中,第二预设比值范围可以是1:8~1:22。在一些实施例中,第二预设比值范围可以是1:11~1:19。在一些实施例中,第二预设比值范围可以是1:14~1:16。在一些实施例中,第二预设比值范围可以是1:5~1:20。在一些实施例中,第二预设比值范围可以是1:10~1:25。在一些实施例中,第二预设比值范围可以是1:5~1:15。在一些实施例中,第二预设比值范围可以是1:15~1:25。
在一些实施例中,出气口5015的直径可以小于进气口5014的直径。
在一些实施例中,出气口5015的直径与进气口5014的直径的比例可以在第三预设比值范围内。在一些实施例中,第三预设比值范围可以是1:1.5~1:5。在一些实施例中,第三预设比值范围可以是1:2~1:4.5。在一些实施例中,第三预设比值范围可以是1:2.5~1:4。在一些实施例中,第三预设比值范围可以是1:3~1:3.5。在一些实施例中,第三预设比值范围可以是1:1.5~1:3.5。在一些实施例中,第三预设比值范围可以是1:3~1:5。
通过将出气口5015的直径设置为小于进气口5014的直径,可以使得测温腔体501内的气体浓度大于炉腔400内的气体浓度(测温腔体501内的气体压力大于炉腔400内的气体压力),这种压差的存在使得炉腔400内产生的粉尘不容易进入测温腔体501进而到达测温窗502,从而可以保证测温窗502的洁净度,从而有利于提高测温的稳定性和准确度。
图12是根据本说明书一些实施例所示的测温结构的结构示意图。以下结合图9对测温结构进行详细说明。如图12所示,在一些实施例中,测温结构还可以包括加热器5016。
加热器5016可以用于加热主体部分5012。在一些实施例中,加热器5016可以包覆或环绕在主体部分5012外表面或外表面的外围空间中,以均匀加热主体部分5012。
在一些实施例中,加热器5016可以包括电阻加热组件、感应加热组件等。
通过加热主体部分5012,可以使得测温腔体501内的气体温度高于炉腔400内的气体温度,进而使得测温腔体501内的气体压力高于炉腔400内的气体压力,这种压差的存在使得炉腔400内产生的粉尘不容易进入测温腔体501进而到达测温窗502,从而可以保证测温窗502的洁净度,从而有利于提高测温的稳定性和准确度。
图13是根据本说明书一些实施例所示的测温结构的结构示意图。以下结合图10对测温结构进行详细说明。如图13所示,在一些实施例中,测温结构还可以包括冷却器5017。冷却器5017可以用于冷却第二腔段5013。
在一些实施例中,冷却器5017的冷却方式可以包括水冷、气冷等冷却方式。在一些实施例中,冷却器5017可以设置(如,包覆)在第二腔段5013的外表面或外表面的外围空间中,以均匀冷却第二腔段5013。
通过在第二腔段5013外表面设置冷却器5017,可以使得第二腔段5013的温度低于主体部分5012的温度以进一步增大主体部分5012与第二腔段5013的压差,且炉腔400内产生的粉尘在到达第二腔段5013附近时遇冷凝结,使得粉尘不容易进入测温腔体501进而到达测温窗502,从而有效防止粉尘在测温窗502内侧的沉积。
图14是根据本说明书一些实施例所示的测温结构的结构示意图。以下结合图11对测温结构进行 详细说明。如图14所示,在一些实施例中,测温结构还可以包括沉积腔600。沉积腔600可以与炉腔400连通,用于沉积炉腔400内产生的粉尘。
在一些实施例中,沉积腔600可以一端封闭,另一端与炉腔400连通。在一些实施例中,沉积腔600上可以开设两个或以上连通孔,各个连通孔分别通过独立的通道与炉腔400连通,炉腔400内的气体可以通过通道进入到沉积腔600内。
在一些实施例中,沉积腔600的数量可以为两个,对称设置于炉腔400的两侧,使得对炉腔400内的环境的影响尽可量均衡。在一些实施例中,沉积腔600的数量可以为一个、三个或更多,本说明书对此不作限制。
由于沉积腔600内的气体的流动性相对炉腔400内的气体的流动性较差,因此通过设置沉积腔600,可以使炉腔400内产生的粉尘沉积于沉积腔内,从而减少进入测温腔体501内的粉尘,有效防止粉尘在测温窗502内侧的沉积。
在一些实施例中,沉积腔600内的温度可以低于炉腔400内的温度。在一些实施例中,可以通过冷却器冷却沉积腔600来控制沉积腔600内的温度。冷却器的设置可以与前述冷却器5017的设置类似,在此不再赘述。
通过将沉积腔600内的温度控制为低于炉腔400内的温度,可以使炉腔400内的粉尘更容易冷却沉积到沉积腔600内,从而减少粉尘在测温窗502内侧的沉积。
图15是根据本说明书一些实施例所示的测温结构的结构示意图。以下结合图12对测温结构进行详细说明。如图15所示,在一些实施例中,测温结构还可以包括沉积腔600。沉积腔600可以与第二腔段5013连通,用于沉积炉腔400内产生到并运动到第二腔段5013附近的粉尘。
在一些实施例中,沉积腔600可以一端为封闭,另一端与第二腔段5013连通。在一些实施例中,沉积腔600上开设两个或以上连通孔,各个连通孔分别通过独立的通道与第二腔段5013连通。
在一些实施例中,沉积腔600的数量可以为两个,对称设置于第二腔段5013的两侧,使得对炉腔400内的环境的影响尽可能均衡。在一些实施例中,沉积腔600的数量可以为一个、三个或更多,本说明书对此不作限制。
由于沉积腔600内的气体的流动性相对测温腔体501和炉腔400内的气体的流动性较差,因此通过设置沉积腔600,可以使炉腔400内产生的粉尘运动到第二腔段5013附近时容易沉积于沉积腔内,从而减少进入测温腔体501内的粉尘,有效防止粉尘在测温窗502内侧的沉积。
在一些实施例中,沉积腔600内的温度低于炉腔400内的温度和测温腔体501内的温度,并且沉积腔600内的压力低于测温腔体501内的压力。
在一些实施例中,可以通过冷却器冷却沉积腔600来控制沉积腔600内的温度。该冷却器的设置可以与前述冷却器5017的设置类似,在此不再赘述。
通过将沉积腔600内的温度控制为低于炉腔400内的温度和测温腔体501内的温度以及沉积腔600内的压力控制为低于测温腔体501内的压力,可以使炉腔400内的粉尘更容易冷却沉积到沉积腔600内,从而减少粉尘在测温窗502内侧的沉积。
图16是根据本说明书一些实施例所示的示例性晶体生长设备的结构示意图。
在一些实施例中,保温装置200可以包括第一保温组件201。在一些实施例中,第一保温组件201至少设置于坩埚100的周侧。在一些实施例中,第一保温组件201可以仅设置于坩埚100的周侧。在一些实施例中,第一保温组件201也可以同时设置于坩埚100的周侧和底侧。在一些实施例中,第一保温组件201也可以同时设置于坩埚100的周侧和顶侧。在一些实施例中,第一保温组件201也可以同时设置于坩埚100的周侧、顶侧和底侧。在一些实施例中,第一保温组件201包括内层2011、外层2012和中层2013,其中,中层2013位于内层2011和外层2012之间。通过设置内层、外层和中层结合的多层保温结构,可以使得内层因受热挥发变薄及外层因杂质沉积导致保温性能变差时,中层仍然能维持良好的保温效果,且彼此独立的结构可以更方便更换内层和/或外层,降低保温装置维护的成本及提高保温装置维护的效率。
在一些实施例中,内层2011的厚度需满足预设条件,避免因厚度太薄导致更换频次太高,厚度太厚导致成本太高等。此外,内层2011的厚度还可以设置为沿轴向的独立结构,可以维持轴向不同位置处的良好的保温效果,同时方便针对不同位置的损耗情况进行针对性的维护和更换。下文将进行详细描述。
在一些实施例中,综合考虑内层2011的成本和更换频次,可以将内层2011的厚度设置在一定厚度范围内。在一些实施例中,内层2011的厚度可以在4mm-57mm的范围内。在一些实施例中,内层2011的厚度可以在5mm-55mm的范围内。在一些实施例中,内层2011的厚度可以在7mm-52mm的范围内。在一些实施例中,内层2011的厚度可以在10mm-50mm的范围内。在一些实施例中,内层2011的厚度可 以在13mm-47mm的范围内。在一些实施例中,内层2011的厚度可以在15mm-45mm的范围内。在一些实施例中,内层2011的厚度可以在17mm-43mm的范围内。在一些实施例中,内层2011的厚度可以在20mm-40mm的范围内。在一些实施例中,内层2011的厚度可以在22mm-37mm的范围内。在一些实施例中,内层2011的厚度可以在25mm-35mm的范围内。在一些实施例中,内层2011的厚度可以在27mm-32mm的范围内。在一些实施例中,内层2011的厚度可以在28mm-30mm的范围内。
通过设置内层的厚度在一定厚度范围内,可以降低内层的初始成本,降低内层的更换频次及更换成本,提高内层的使用寿命,以及维持晶体生长过程的工艺稳定性。
在一些实施例中,为了保证内层2011及外层2012损耗时,中层2013可以维持良好稳定的保温效果,且同时考虑成本,中层2013的厚度需设置在一定范围内。在一些实施例中,中层2013的厚度可以在28mm-143mm的范围内。在一些实施例中,中层2013的厚度可以在30mm-140mm的范围内。在一些实施例中,中层2013的厚度可以在35mm-135mm的范围内。在一些实施例中,中层2013的厚度可以在40mm-130mm的范围内。在一些实施例中,中层2013的厚度可以在45mm-135mm的范围内。在一些实施例中,中层2013的厚度可以在50mm-130mm的范围内。在一些实施例中,中层2013的厚度可以在55mm-125mm的范围内。在一些实施例中,中层2013的厚度可以在60mm-120mm的范围内。在一些实施例中,中层2013的厚度可以在65mm-115mm的范围内。在一些实施例中,中层2013的厚度可以在70mm-110mm的范围内。在一些实施例中,中层2013的厚度可以在75mm-105mm的范围内。在一些实施例中,中层2013的厚度可以在80mm-100mm的范围内。在一些实施例中,中层2013的厚度可以在85mm-95mm的范围内。在一些实施例中,中层2013的厚度可以在88mm-90mm的范围内。
通过将中层的厚度设置在一定范围内,可以使得坩埚以及内层受热挥发产生的杂质尽量刚好挥发到外层,而不会停留在中层,因此不会影响中层的保温效果,相应可以保证在内层由于损耗变薄以及外层有杂质沉积时,中层可以维持良好稳定的保温效果,则生产过程中基本无需更换中层,节约生产成本。
在一些实施例中,为了尽量使得挥发物沉积于外层而非中层,中层2013和内层2011的总厚度需满足一定条件。在一些实施例中,中层2013和内层2011的总厚度可以大于50mm。在一些实施例中,中层2013和内层2011的总厚度可以大于55mm。在一些实施例中,中层2013和内层2011的总厚度可以大于60mm。在一些实施例中,中层2013和内层2011的总厚度可以大于65mm。在一些实施例中,中层2013和内层2011的总厚度可以大于70mm。在一些实施例中,中层2013和内层2011的总厚度可以大于75mm。在一些实施例中,中层2013和内层2011的总厚度可以大于80mm。
通过设置中层和内层的总厚度大于一定值,可以使得中层外侧的温度尽量高于挥发物沉积或结晶的温度,以使挥发物尽量沉积于外层而非中层,从而维持中层良好的保温效果。
在一些实施例中,中层2013的厚度大于内层2011的厚度和外层2012的厚度。通过设置中层的厚度大于内层的厚度和外层的厚度,可以保证在内层损耗以及外层上有杂质沉积而导致保温效果变化时,中层可以维持良好稳定的保温效果,降低内层损耗及外层杂质沉积对整个保温装置保温性能的影响,提升保温性能的稳定性,并且在内层由于损耗变薄需要更换时,中层可以起到支撑作用,提高保温装置的结构稳定性。
在一些实施例中,综合考虑实际生产过程中的更换成本和实际保温效果,外层2012的厚度需要设置在一定厚度范围内。在一些实施例中,外层2012的厚度可以在7mm-42mm的范围内。在一些实施例中,外层2012的厚度可以10mm-40mm的范围内。在一些实施例中,外层2012的厚度可以12mm-38mm的范围内。在一些实施例中,外层2012的厚度可以15mm-35mm的范围内。在一些实施例中,外层2012的厚度可以17mm-33mm的范围内。在一些实施例中,外层2012的厚度可以20mm-30mm的范围内。在一些实施例中,外层2012的厚度可以22mm-28mm的范围内。在一些实施例中,外层2012的厚度可以25mm-27mm的范围内。
在一些实施例中,结合上文,综合考虑保温装置整体的维护成本及保温效果,内层2011、中层2013和外层2012的总厚度需设定在一定范围内。在一些实施例中,内层2011、中层2013和外层2012的总厚度可以在50mm-200mm的范围内。在一些实施例中,内层2011、中层2013和外层2012的总厚度可以在60mm-190mm的范围内。在一些实施例中,内层2011、中层2013和外层2012的总厚度可以在70mm-180mm的范围内。在一些实施例中,内层2011、中层2013和外层2012的总厚度可以在80mm-170mm的范围内。在一些实施例中,内层2011、中层2013和外层2012的总厚度可以在90mm-160mm的范围内。在一些实施例中,内层2011、中层2013和外层2012的总厚度可以在100mm-150mm的范围内。在一些实施例中,内层2011、中层2013和外层2012的总厚度可以在110mm-140mm的范围内。在一些实施例中,内层2011、中层2013和外层2012的总厚度可以在120mm-130mm的范围内。
在一些实施例中,结合上文,综合考虑保温装置整体的维护成本及保温效果,内层2011与中层 2013的厚度比值需设定在一定范围内。在一些实施例中,内层2011与中层2013的厚度比值可以在1:2-1:10的范围内。在一些实施例中,内层2011与中层2013的厚度比值可以在1:3-1:9的范围内。在一些实施例中,内层2011与中层2013的厚度比值可以在1:4-1:8的范围内。在一些实施例中,内层2011与中层2013的厚度比值可以在1:5-1:7的范围内。在一些实施例中,内层2011与中层2013的厚度比值可以在1:6-1:6的范围内。
在一些实施例中,结合上文,综合考虑保温装置整体的维护成本及保温效果,中层2013与外层2012的厚度比值需设定在一定范围内。在一些实施例中,中层2013与外层2012的厚度比值可以在2:0.5-10:3的范围内。在一些实施例中,中层2013与外层2012的厚度比值可以在3:0.5-9:3的范围内。在一些实施例中,中层2013与外层2012的厚度比值可以在4:0.5-8:3的范围内。在一些实施例中,中层2013与外层2012的厚度比值可以在5:0.5-7:3的范围内。在一些实施例中,中层2013与外层2012的厚度比值可以在6:0.5-6:3的范围内。在一些实施例中,中层2013与外层2012的厚度比值可以在2:1-10:2.5的范围内。在一些实施例中,中层2013与外层2012的厚度比值可以在2:1.5-10:2的范围内。在一些实施例中,中层2013与外层2012的厚度比值可以在2:2-10:1.5的范围内。在一些实施例中,中层2013与外层2012的厚度比值可以在2:3-10:1的范围内。
在一些实施例中,结合上文,综合考虑保温装置整体的维护成本及保温效果,内层2011与外层2012的厚度比值需设定在一定范围内。在一些实施例中,内层2011与外层2012的厚度比值可以在1:0.5-1:3的范围内。在一些实施例中,内层2011与外层2012的厚度比值可以在1:1-1:2.5的范围内。在一些实施例中,内层2011与外层2012的厚度比值可以在1:1.5-1:2的范围内。在一些实施例中,内层2011与外层2012的厚度比值可以在1:2-1:1.5的范围内。在一些实施例中,内层2011与外层2012的厚度比值可以在1:3-1:1的范围内。
在一些实施例中,结合上文,综合考虑保温装置整体的维护成本及保温效果,内层2011、中层2013与外层2012的厚度比值需设定在一定范围内。在一些实施例中,内层2011、中层2013与外层2012的厚度比值可以在1:2:0.5-1:10:3的范围内。在一些实施例中,内层2011、中层2013与外层2012的厚度比值可以在1:2:1-1:10:2.5的范围内。在一些实施例中,内层2011、中层2013与外层2012的厚度比值可以在1:2:1.5-1:10:2的范围内。在一些实施例中,内层2011、中层2013与外层2012的厚度比值可以在1:2:2-1:10:1.5的范围内。在一些实施例中,内层2011、中层2013与外层2012的厚度比值可以在1:2:3-1:10:1的范围内。在一些实施例中,内层2011、中层2013与外层2012的厚度比值可以在1:3:0.5-1:9:3的范围内。在一些实施例中,内层2011、中层2013与外层2012的厚度比值可以在1:4:0.5-1:8:3的范围内。在一些实施例中,内层2011、中层2013与外层2012的厚度比值可以在1:5:0.5-1:7:3的范围内。在一些实施例中,内层2011、中层2013与外层2012的厚度比值可以在1:6:0.5-1:6:3的范围内。
在一些实施例中,内层2011的材质可以包括石墨毡。通过将内层设置为石墨毡材质,可以保证保温性能稳定、便于更换。
在一些实施例中,外层2012的材质可以与内层2011的材质可以不同。在一些实施例中,外层2012的致密度大于内层2011的致密度。在一些实施例中,外层2012的材质可以包括氧化锆、氧化铝、碳材料或碳纤维材料中的至少一种。
通过设置相对致密、热导率相对小的外层材质,可以使得受热挥发的杂质沉积在外层上时对外层的保温性能影响较小,从而使得保温装置的保温性能较为稳定。同时,外层材质比内层材质的成本更低,可以从整体上降低成本。
在一些实施例中,中层2013的材质可以与内层2011相同或不同,可以结合实际需求或成本设定。例如,中层2013的材质可以包括石墨毡、陶瓷等。
在一些实施例中,为了防止在晶体生长过程中,内层、中层和/或外层的杂质进入坩埚中造成晶体缺陷,需要设置内层、中层和/或外层材质的杂质率低于一定量。
在一些实施例中,内层2011材质的杂质率可以小于100ppm。在一些实施例中,内层2011材质的杂质率可以小于90ppm。在一些实施例中,内层2011材质的杂质率可以小于80ppm。在一些实施例中,内层2011材质的杂质率可以小于70ppm。在一些实施例中,内层2011材质的杂质率可以小于60ppm。在一些实施例中,内层2011材质的杂质率可以小于50ppm。
在一些实施例中,中层2013材质的杂质率可以小于100ppm。在一些实施例中,在一些实施例中,中层2013材质的杂质率可以小于90ppm。在一些实施例中,中层2013材质的杂质率可以小于80ppm。在一些实施例中,中层2013材质的杂质率可以小于70ppm。在一些实施例中,中层2013材质的杂质率可以小于60ppm。在一些实施例中,中层2013材质的杂质率可以小于50ppm。
在一些实施例中,外层2012材质的杂质率可以小于100ppm。在一些实施例中,外层2012材质的杂质率可以小于90ppm。在一些实施例中,外层2012材质的杂质率可以小于80ppm。在一些实施例中, 外层2012材质的杂质率可以小于70ppm。在一些实施例中,外层2012材质的杂质率可以小于60ppm。在一些实施例中,外层2012材质的杂质率可以小于50ppm。
通常情况下,内层、中层和/或外层的杂质输运受温度梯度和浓度两个因素影响,绝大部分杂质会在温度梯度的驱动下往保温装置外输运,少量杂质会在浓度因素的驱动下向内扩散到坩埚处。因此,为了保证在晶体生长过程中尽量少的杂质进入坩埚中造成晶体缺陷,需要设置内层、中层或/或外层材质(尤其是内层)的杂质率满足一定关系。
在一些实施例中,内层2011的杂质率最低。在一些实施例中,外层2012材质的杂质率≥中层2013材质的杂质率。在一些实施例中,中层2013材质的杂质率≥内层2011材质的杂质率。在一些实施例中,外层2012材质的杂质率≥中层2013材质的杂质率≥内层2011材质的杂质率。
在一些实施例中,在实际晶体生长过程中,由于内层2011设置在紧邻坩埚外部,所处温度较高,内层2011中的杂质受热挥发会导致内层损耗变薄、保温性能降低。因此,可以将内层2011设计为独立的可更换结构,方便后续更换。此外,结合前文,由于晶体生长过程中需存在轴向温度梯度,相应地,轴向不同位置处的温度不同,其所需的保温性能也会有所不同。因此,可以根据温度梯度将内层2011设计沿轴向厚度不同的结构,相应可以维持轴向不同位置处的良好的保温效果,同时方便针对不同位置的损耗情况进行针对性的维护和/或更换。下面将结合图17A-17D,对内层2011的具体结构进行详细阐述。
在一些实施例中,如图17A所示,内层2011可以包括至少两个保温段111。在一些实施例中,至少两个保温段111可以上下堆叠。在一些实施例中,保温段111可以为圆环形保温段,至少两个圆环形保温段可以上下堆叠,形成圆筒形结构。在一些实施例中,为了保证上下堆叠形成的内层2011的稳定性,可以将相邻两个保温段111的上下接触面制作为嵌套结构。例如,对于相邻的两个保温段111,上方保温段111的下表面设置凸起、下方保温段111的上表面设置与其对应的凹槽,使得相邻的两个保温段上下堆叠后,贴合地更加紧密、牢固。
在一些实施例中,如图17B所示,每一个保温段111可以包括至少两块保温块112。在一些实施例中,至少两块保温块112可以沿周向块状拼接,形成圆环形结构。在一些实施例中,为了保证沿周向块状拼接形成的保温段111的稳定性,可以将相邻的两块保温块112的两个接触面制作为嵌套结构。例如,对于相邻的两个保温块112,一个保温块112的接触面设置凸起、另一个保温块上与其接触的接触面设置对应的凹槽,使得相邻的两个保温块沿周向块状拼接后,贴合地更加紧密、牢固。
在一些实施例中,如图17C所示,内层2011沿轴向的厚度可以不同。在一些实施例中,内层2011沿轴向方向的厚度可以基于温场分布(或温度梯度)设计。
通过设置内层的厚度沿轴向不同(例如,基于温场分布设计内层沿轴向方向的厚度),可以使得内层的厚度可以根据实际温场分布进行调整,并且可以针对内层不同位置处的损耗情况进行针对性更换(例如,一次仅更换一个或多个保温段、保温块等),相应可以维持良好的保温效果,同时节约生产成本。
在一些实施例中,如图17D所示,内层2011沿轴向的厚度不同,且设置为上下堆叠的至少两个保温段111。
在一些实施例中,由于中层2013的结构和保温性能随使用时间的变化较小,中层2013可以为整体结构(例如,整体保温筒),方便中层的安装,且维持良好的保温效果。同时在更换内层时还可以起到支撑作用,提高保温装置的结构稳定性。
在一些实施例中,内层2011和中层2013之间可以紧密贴合设置。在一些实施例中,中层2013和外层2012之间可以紧密贴合设置。
在一些实施例中,如图18所示,内层2011和中层2013之间可以设置间隙。在一些实施例中,中层2013和外层2012之间可以设置间隙。在一些实施例中,内层2011和中层2013之间的间隙与中层2013和外层2012之间的间隙的尺寸可以相同,也可以不同。在一些实施例中,内层2011和中层2013之间的间隙的尺寸可以是内层2011的外侧面与中层2013的内侧面的最短距离。在一些实施例中,中层2013和外层2012之间的间隙的尺寸可以是中层2013的外侧面与外层2012的内侧面的最短距离。
在一些实施例中,间隙的尺寸可以在0mm-10mm的范围内。在一些实施例中,间隙的尺寸可以在1mm-9mm的范围内。在一些实施例中,间隙的尺寸可以在2mm-8mm的范围内。在一些实施例中,间隙的尺寸可以在3mm-7mm的范围内。在一些实施例中,间隙的尺寸可以在4mm-6mm的范围内。在一些实施例中,间隙的尺寸可以在4mm-5mm的范围内。
在一些实施例中,如图18所示,内层2011和中层2013之间的间隙可以不填充保温材料。在一些实施例中,如图18所示,中层2013和外层2012之间的间隙可以不填充保温材料。
由于间隙内的空气热导率低于固体的热导率,因此间隙内的空气可以充当一层保温层,起到保温的作用;同时,由于内层、中层和外层之间存在间隙,便于后期更换内层。
在一些实施例中,内层2011和中层2013之间的间隙可以填充保温材料。在一些实施例中,中层2013和外层2012之间的间隙可以填充保温材料。在一些实施例中,保温材料可以包括颗粒物、毡状物或砖状物中的一种或多种。在一些实施例中,保温材料的材质可以包括氧化硅、氧化铝、氧化锆、石墨、碳纤维或陶瓷中的一种或多种。在一些实施例中,内层2011和中层2013之间的间隙可以填充石墨软毡。
在一些实施例中,内层2011和中层2013之间的间隙可以填充保温材料,中层2013和外层2012之间的间隙可以不填充保温材料。在一些实施例中,内层2011和中层2013之间的间隙可以不填充保温材料,中层2013和外层2012之间的间隙可以填充保温材料。
通过在内层和中层之间的间隙以及中层和外层之间的间隙填充保温材料,可以提升保温装置的保温性能,有助于调控外层的温度,使得外层的温度达到预设温度(例如,晶体生长前设置的温度)。此外,由于保温材料(例如,石墨软毡)便于取出,便于更换内层,并且在更换内层后保温材料可以再装入间隙中重复使用,节约生产成本。
在一些实施例中,如图19所示,中层2013和外层2012之间可以填充石墨纸2014。由于石墨纸的孔隙率低,挥发物难以穿过而在其表面沉积,因此石墨纸可以作为挥发物的预沉积层,相应可以减少沉积在外层上的挥发物,降低外层损耗。同时,石墨纸易于更换且成本低,可以提高保温性能的稳定性,降低生产成本。
在一些实施例中,中层2013和外层2012之间可以填充其他孔隙率较低的材质,本说明书对此不作限制。
在一些实施例中,保温装置200还包括第二保温组件202,第二保温组件202设置于晶体生长设备10的顶部。例如,如图20所示,第二保温组件202可以是顶保温层。
在一些实施例中,第二保温组件202包括层叠结构,层叠结构的材质相同。例如,层叠结构的材质可以是石墨毡、氧化锆、氧化铝、碳材料或碳纤维材料中的至少一种。通过设置层叠结构,可以使得第二保温组件的厚度随着层叠结构的层数而改变,使得第二保温组件的厚度可以根据实际温场分布进行调整,方便保温装置维持良好稳定的保温效果,同时节约生产成本。例如,当需要增加第二保温组件202的厚度时,可以增加层叠结构的层数即可实现厚度增加,类似的,当需要减小第二保温组件202的厚度时,可以减少层叠结构的层数即可实现厚度减小。
在一些实施例中,第二保温组件202的层叠结构的层数可以是0-15层。在一些实施例中,第二保温组件202的层叠结构的层数可以是0-10层。在一些实施例中,第二保温组件202的层叠结构的层数可以是0-6层。
在一些实施例中,第二保温组件202可以包括多个保温段。在一些实施例中,第二保温组件202的保温段可以是环形结构,每个保温段的直径不同,且多个保温段可以沿径向套叠。在一些实施例中,径向套叠的多个保温段中相邻保温段彼此抵接,以组成第二保温组件202。通过设置多个沿径向分布的保温段,可以为每个保温段单独设置厚度(如层数),以调控晶体生长设备10内径向温度分布。在一些实施例中,通过设置沿径向分布的保温段的数量可以增加生长设备10内径向温度分布的调控精细程度。在一些实施例中,沿径向分布的保温段的数量可以为2-10个。在一些实施例中,沿径向分布的保温段的数量可以为2-6个。在一些实施例中,沿径向分布的保温段的数量可以为2-15个。
在一些实施例中,保温装置还包括第三保温组件203,第二保温组件202设置于坩埚100的顶部外侧。例如,如图21所示,第三保温组件203可以是锅顶保温层。
在一些实施例中,第三保温组件203包括环形结构或圆形结构。例如,第三保温组件203的材质可以包括石墨毡、氧化锆、氧化铝、碳材料或碳纤维材料中的一种或多种。在一些实施例中,通过设置环形结构的参数可以改变第三保温组件203的保温效果。在一些实施例中,环形结构的参数可以包括环形结构的内径(也称为内半径)、环形结构的外径(也称为外半径)。如图6所示,环形结构的内径可以指环形结构的内侧距离坩埚100的轴线的距离,环形结构的外径可以指环形结构的外侧距离坩埚100的轴线的距离。通过设置环形结构的参数,可以使得第三保温组件的保温效果随着环形结构的内径、外径范围而改变,使得第三保温组件的保温效果可以根据实际温场分布需求进行调整,方便保温装置维持良好稳定的保温效果,同时节约生产成本。例如,通过增大环形结构的外径可以增加坩埚100内边缘区域的温度,通过减小环形结构的内径可以增加坩埚100内中心区域的温度。
在一些实施例中,环形结构的内径ri范围可以为10mm-90mm。在一些实施例中,环形结构的内径ri范围可以为30mm-90mm。在一些实施例中,环形结构的内径ri范围可以为30mm-60mm。在一些实施例中,环形结构的内径ri范围可以为60mm-90mm。
在一些实施例中,环形结构的外径ro范围可以为90mm-200mm。在一些实施例中,环形结构的外径ro范围可以为90mm-150mm。在一些实施例中,环形结构的外径ro范围可以为90mm-120mm。
在一些实施例中,环形结构的外径ro与坩埚100的尺寸相关。在一些实施例中,环形结构的外径 ro与坩埚100的半径的比值可以为0.6-1.2。在一些实施例中,环形结构的外径ro与坩埚100的半径的比值可以为0.8-1.2。在一些实施例中,环形结构的外径ro与坩埚100的半径的比值可以为0.6-1。在一些实施例中,环形结构的外径ro与坩埚100的半径的比值可以为0.6-0.8。
在一些实施例中,环形结构的内径ri与外径的比值范围可以为0.1-0.8。在一些实施例中,环形结构的内径ri与外径ro的比值范围可以为0.3-0.8。在一些实施例中,环形结构的内径ri与外径ro的比值范围可以为0.5-0.8。
在一些实施例中,环形结构的内径与坩埚100的半径的比值范围可以为0.1-0.9。在一些实施例中,环形结构的内径与坩埚100的半径的比值范围可以为0.1-0.8。在一些实施例中,环形结构的内径与坩埚100的半径的比值范围可以为0.3-0.8。
上文已对基本概念做了描述,显然,对于本领域技术人员来说,上述详细披露仅仅作为示例,而并不构成对本申请的限定。虽然此处并没有明确说明,本领域技术人员可能会对本申请进行各种修改、改进和修正。该类修改、改进和修正在本申请中被建议,所以该类修改、改进、修正仍属于本申请示范实施例的精神和范围。
同时,本申请使用了特定词语来描述本申请的实施例。如“一个实施例”、“一实施例”、和/或“一些实施例”意指与本申请至少一个实施例相关的某一特征、结构或特点。因此,应强调并注意的是,本说明书中在不同位置两次或多次提及的“一实施例”或“一个实施例”或“一个替代性实施例”并不一定是指同一实施例。此外,本申请的一个或多个实施例中的某些特征、结构或特点可以进行适当的组合。
同理,应当注意的是,为了简化本申请披露的表述,从而帮助对一个或多个发明实施例的理解,前文对本申请实施例的描述中,有时会将多种特征归并至一个实施例、附图或对其的描述中。但是,这种披露方法并不意味着本申请对象所需要的特征比权利要求中提及的特征多。实际上,实施例的特征要少于上述披露的单个实施例的全部特征。
最后,应当理解的是,本申请中所述实施例仅用以说明本申请实施例的原则。其他的变形也可能属于本申请的范围。因此,作为示例而非限制,本申请实施例的替代配置可视为与本申请的教导一致。相应地,本申请的实施例不仅限于本申请明确介绍和描述的实施例。

Claims (48)

  1. 一种晶体生长设备,包括:
    坩埚,所述坩埚包括用于放置原料的原料腔和用于晶体生长的生长腔;
    保温装置,设置于所述坩埚外的至少一个侧面。
  2. 根据权利要求1所述的晶体生长设备,其中,所述坩埚包括上盖,所述上盖包括盖体和籽晶托,所述籽晶托与所述盖体可拆卸连接。
  3. 根据权利要求2所述的晶体生长设备,其中,所述籽晶托包括连接结构,所述连接结构设置于所述籽晶托靠近所述盖体的一侧的中心区域。
  4. 根据权利要求2所述的晶体生长设备,其中,所述籽晶托的厚度为2mm-10mm。
  5. 根据权利要求2所述的晶体生长设备,其中,所述籽晶托与所述盖体相接触的两个表面包括相互配合的凹凸结构。
  6. 根据权利要求2所述的晶体生长设备,其中,所述籽晶托包括分离槽,用于分离所述籽晶托上的籽晶。
  7. 根据权利要求6所述的晶体生长设备,其中,所述分离槽为圆周槽,所述圆周槽设置于远离所述盖体的一侧的外周。
  8. 根据权利要求7所述的晶体生长设备,其中,所述圆周槽沿径向的深度与所述籽晶托的半径的比值范围为0.028-0.042。
  9. 根据权利要求7所述的晶体生长设备,其中,所述圆周槽沿径向的深度为2mm-4mm,所述圆周槽沿轴向的高度为0.5mm-1.5mm。
  10. 根据权利要求1所述的晶体生长设备,其中,所述坩埚包括设置于所述原料腔和所述生长腔之间的导流装置,所述导流装置包括朝向所述原料腔的底面倾斜的第一导流面。
  11. 根据权利要求10所述的晶体生长设备,其中,所述导流装置包括导流槽,所述导流槽为设置于所述导流装置外周的凹槽。
  12. 根据权利要求11所述的晶体生长设备,其中,所述导流槽包括与所述第一导流面平行或基本平行的第二导流面,所述第一导流面与所述第二导流面之间构成导流壁。
  13. 根据权利要求12所述的晶体生长设备,其中,所述导流装置还包括支撑壁,所述支撑壁沿径向连接所述导流壁和所述坩埚的外周壁。
  14. 根据权利要求12所述的晶体生长设备,其中,所述导流壁的厚度为10mm-60mm。
  15. 根据权利要求12所述的晶体生长设备,其中,所述导流槽的高度范围为20mm-40mm。
  16. 根据权利要求12所述的晶体生长设备,其中,所述导流壁的厚度与所述导流槽的高度的比值范围为0.2-1.5。
  17. 根据权利要求13所述的晶体生长设备,其中,所述支撑壁的厚度范围为10mm-60mm。
  18. 根据权利要求13所述的晶体生长设备,其中,所述导流壁的厚度与所述支撑壁的厚度的比值范围为0.8-1.2。
  19. 根据权利要求1所述的晶体生长设备,其中,所述晶体生长设备还包括炉腔和测温结构,所述坩 埚设置于所述炉腔内,所述测温结构包括测温腔体和测温窗,所述测温腔体包括第一腔段、主体部分和第二腔段,所述测温窗设置于所述第一腔段,所述第二腔段与所述炉腔连通。
  20. 根据权利要求19所述的晶体生长设备,其中,所述主体部分的直径小于所述炉腔的直径。
  21. 根据权利要求19所述的晶体生长设备,其中,所述第一腔段和/或所述第二腔段的直径小于所述主体部分的直径。
  22. 根据权利要求19所述的晶体生长设备,其中,所述测温结构还包括进气口和出气口,所述进气口与所述第一腔段导通,所述出气口与所述第二腔段导通。
  23. 根据权利要求22所述的晶体生长设备,其中,所述出气口的直径小于所述进气口的直径。
  24. 根据权利要求19所述的晶体生长设备,其中,所述测温结构还包括冷却器,所述冷却器设置于所述第二腔段。
  25. 根据权利要求19所述的晶体生长设备,其中,所述测温结构还包括沉积腔,所述沉积腔与所述炉腔连通。
  26. 根据权利要求25所述的晶体生长设备,其中,所述沉积腔内的温度低于所述炉腔内的温度。
  27. 根据权利要求19所述的晶体生长设备,其中,所述测温结构还包括沉积腔,所述沉积腔与所述第二腔段连通。
  28. 根据权利要求27所述的晶体生长设备,其中,所述沉积腔内的温度低于所述炉腔内的温度和所述测温腔体内的温度,并且所述沉积腔内的压力低于所述测温腔体内的压力。
  29. 根据权利要求1所述的晶体生长设备,其中,所述保温装置包括第一保温组件,所述第一保温组件包括:
    内层,所述内层的厚度满足预设条件;
    外层,所述外层的材质与所述内层的材质不同;
    中层,所述中层位于所述内层和所述外层之间。
  30. 根据权利要求29所述的晶体生长设备,其中,所述第一保温组件至少设置于所述坩埚的周侧。
  31. 根据权利要求29所述的晶体生长设备,其中,所述内层的厚度范围为4mm-57mm。
  32. 根据权利要求29所述的晶体生长设备,其中,所述中层的厚度范围为28mm-143mm。
  33. 根据权利要求29所述的晶体生长设备,其中,所述中层的厚度大于所述内层的厚度和所述外层的厚度。
  34. 根据权利要求29所述的晶体生长设备,其中,所述内层与所述中层的厚度比值在1:2-1:10之间。
  35. 根据权利要求29所述的晶体生长设备,其中,所述中层与所述外层的厚度比值在2:0.5-10:3之间。
  36. 根据权利要求29所述的晶体生长设备,其中,所述内层与所述外层的厚度比值在1:0.5-1:3之间。
  37. 根据权利要求30所述的晶体生长设备,其中,所述内层包括至少两个保温段,所述至少两个保温段上下堆叠。
  38. 根据权利要求30所述的晶体生长设备,其中,所述内层沿轴向的厚度不同。
  39. 根据权利要求29所述的晶体生长设备,其中,所述内层的材质包括石墨毡。
  40. 根据权利要求29所述的晶体生长设备,其中,所述外层的材质包括氧化锆、氧化铝、碳材料或碳纤维材料中的至少一种。
  41. 根据权利要求29所述的晶体生长设备,其中,所述中层和所述外层之间填充石墨纸。
  42. 根据权利要求29所述的晶体生长设备,其中,所述保温装置还包括第二保温组件,所述第二保温组件设置于所述晶体生长设备的顶部。
  43. 根据权利要求42所述的晶体生长设备,其中,所述第二保温层包括层叠结构,所述层叠结构的材质相同。
  44. 根据权利要求42所述的晶体生长设备,其中,所述保温装置还包括第三保温组件,所述第三保温组件包括环形结构或圆形结构。
  45. 根据权利要求44所述的晶体生长设备,其中,所述环形结构的内径范围为10mm-90mm。
  46. 根据权利要求44所述的晶体生长设备,其中,所述环形结构的外径与所述坩埚的半径的比值为0.6-1.2。
  47. 根据权利要求44所述的晶体生长设备,其中,所述环形结构的内径与外径的比值范围为0.1-0.8。
  48. 根据权利要求44所述的晶体生长设备,其中,所述环形结构的内径与所述坩埚的半径的比值范围为0.1-0.9。
PCT/CN2023/093337 2022-05-12 2023-05-10 一种晶体生长设备 WO2023217196A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW112117742A TWI849903B (zh) 2022-05-12 2023-05-12 一種晶體生長設備

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202210511620.6A CN114754586B (zh) 2022-05-12 2022-05-12 一种高温炉
CN202210511620.6 2022-05-12
CN202210584487.7 2022-05-27
CN202210584487.7A CN114959885A (zh) 2022-05-27 2022-05-27 一种保温装置

Publications (1)

Publication Number Publication Date
WO2023217196A1 true WO2023217196A1 (zh) 2023-11-16

Family

ID=88729726

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/093337 WO2023217196A1 (zh) 2022-05-12 2023-05-10 一种晶体生长设备

Country Status (2)

Country Link
TW (1) TWI849903B (zh)
WO (1) WO2023217196A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007204309A (ja) * 2006-02-01 2007-08-16 Matsushita Electric Ind Co Ltd 単結晶成長装置及び単結晶成長方法
JP2014012640A (ja) * 2013-10-21 2014-01-23 Showa Denko Kk 炭化珪素単結晶の製造装置
CN106929919A (zh) * 2015-12-29 2017-07-07 中国科学院上海硅酸盐研究所 一种碳化硅晶体生长用坩埚
CN107250444A (zh) * 2014-12-30 2017-10-13 斯泰克有限责任公司 晶体制造系统和方法
CN207659559U (zh) * 2017-09-06 2018-07-27 中科钢研节能科技有限公司 坩埚盖和坩埚
CN111118598A (zh) * 2019-12-26 2020-05-08 山东天岳先进材料科技有限公司 一种高质量碳化硅单晶、衬底及其高效制备方法
CN211471633U (zh) * 2020-03-04 2020-09-11 山东伟基炭科技有限公司 一种用于单晶生长炉的保温筒预制体

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN214327970U (zh) * 2021-03-26 2021-10-01 江苏星特亮科技有限公司 一种碳化硅单晶炉顶部测温结构

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007204309A (ja) * 2006-02-01 2007-08-16 Matsushita Electric Ind Co Ltd 単結晶成長装置及び単結晶成長方法
JP2014012640A (ja) * 2013-10-21 2014-01-23 Showa Denko Kk 炭化珪素単結晶の製造装置
CN107250444A (zh) * 2014-12-30 2017-10-13 斯泰克有限责任公司 晶体制造系统和方法
CN106929919A (zh) * 2015-12-29 2017-07-07 中国科学院上海硅酸盐研究所 一种碳化硅晶体生长用坩埚
CN207659559U (zh) * 2017-09-06 2018-07-27 中科钢研节能科技有限公司 坩埚盖和坩埚
CN111118598A (zh) * 2019-12-26 2020-05-08 山东天岳先进材料科技有限公司 一种高质量碳化硅单晶、衬底及其高效制备方法
CN211471633U (zh) * 2020-03-04 2020-09-11 山东伟基炭科技有限公司 一种用于单晶生长炉的保温筒预制体

Also Published As

Publication number Publication date
TWI849903B (zh) 2024-07-21
TW202403123A (zh) 2024-01-16

Similar Documents

Publication Publication Date Title
US20140360430A1 (en) Wafer carrier having thermal uniformity-enhancing features
CN211112314U (zh) 导流筒
JP7175766B2 (ja) サセプタ支持体
WO2020088233A1 (zh) 无需粘结籽晶的碳化硅单晶生长装置
WO2018196215A1 (zh) 一种硅片水平生长设备和方法
KR20100048836A (ko) 다층 구조를 갖는 석영 유리 도가니
JP2021011423A (ja) 高品質半導体単結晶の水平成長のためのシステム、およびそれを製造する方法
WO2020155669A1 (zh) 碳化硅单晶生长装置及碳化硅单晶制备设备
WO2023217196A1 (zh) 一种晶体生长设备
CN102531350B (zh) 氧化硅玻璃坩埚的制造方法
TW201447057A (zh) 用於控制氧氣的坩堝總成及相關方法
US10066315B2 (en) Single crystal growing apparatus
JP5314009B2 (ja) リボン結晶引き上げ炉のための取り外し可能熱制御
CN217173945U (zh) 碳化硅长晶装置
KR20130006841A (ko) 잉곳 제조 장치
WO2021223557A1 (zh) 一种晶体制备装置及生长方法
CN110904501B (zh) 晶体生长用籽晶下置式装置
US20230383432A1 (en) Enclosed crystal growth
JP2014084240A (ja) 窒化アルミニウム単結晶の製造装置
CN219260264U (zh) 一种用于晶体拉制时的晶体冷却装置
CN221797742U (zh) 外延机台的进气装置
JP6128646B2 (ja) 単結晶成長装置
TWI795968B (zh) 基片托盤及其所在的mocvd反應器
TWI739699B (zh) 一種用於單晶矽生長爐的複合隔熱結構及單晶矽生長爐
WO2023236025A1 (zh) 一种晶体制备装置及晶体制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23802965

Country of ref document: EP

Kind code of ref document: A1