WO2018196215A1 - 一种硅片水平生长设备和方法 - Google Patents

一种硅片水平生长设备和方法 Download PDF

Info

Publication number
WO2018196215A1
WO2018196215A1 PCT/CN2017/095869 CN2017095869W WO2018196215A1 WO 2018196215 A1 WO2018196215 A1 WO 2018196215A1 CN 2017095869 W CN2017095869 W CN 2017095869W WO 2018196215 A1 WO2018196215 A1 WO 2018196215A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon
jet
silicon wafer
horizontal growth
overflow surface
Prior art date
Application number
PCT/CN2017/095869
Other languages
English (en)
French (fr)
Inventor
丁建宁
袁宁一
徐嘉伟
沈达鹏
徐晓东
孙涛
王书博
Original Assignee
常州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 常州大学 filed Critical 常州大学
Priority to EP17907677.3A priority Critical patent/EP3617351B1/en
Publication of WO2018196215A1 publication Critical patent/WO2018196215A1/zh
Priority to US16/600,859 priority patent/US20200040481A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/14Heating of the melt or the crystallised materials
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/06Non-vertical pulling
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/002Continuous growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/02Single-crystal growth by pulling from a melt, e.g. Czochralski method adding crystallising materials or reactants forming it in situ to the melt
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon

Definitions

  • the invention relates to the technical field of silicon material preparation, and in particular to a silicon wafer horizontal growth device and method.
  • Silicon is widely used as a non-metal in the semiconductor field as well as in the photovoltaic field.
  • a single crystal silicon ingot is usually produced by a Czochralski method (CZ method) or a zone melting method (HZ method), and a polycrystalline silicon ingot is produced by a casting technique.
  • the prior art is to obtain a certain thickness of silicon wafer by wire cutting, polishing and the like, and a large amount of raw materials are wasted in the process of post-processing, thereby causing a substantial increase in the production cost of the silicon wafer.
  • various methods for direct fabrication of silicon wafers such as guided mold (EFG) and wire draw silicon (SR), have been developed, but mass production has not yet been achieved.
  • EFG guided mold
  • SR wire draw silicon
  • HRG horizontal growth of striped silicon
  • Clarkson University proposed a method for growing silicon wafers by the horizontal floating silicon method, and carried out numerical simulations and experiments, which are described in Non-Patent Document 1.
  • the shape of the silicon wafer grown by the horizontal floating silicon method has obvious shape defects and a large thickness, which requires subsequent cutting processing.
  • the invention discloses a thickness-controllable silicon wafer horizontal continuous growth apparatus and method.
  • the upper and lower radiant heating and jet cooling methods are used to control the temperature field and the flow field to control the thickness of the silicon wafer.
  • the multi-stage melting region and the two-stage overflow surface are utilized, and the temperature field is smoothed by using the external pumping gas to ensure the silicon.
  • the sheet thickness is uniform and the upper and lower surfaces are flat.
  • the silicon wafer horizontal growth apparatus of the present invention comprises: a casing forming a cavity; a crucible in the cavity, having a melt zone, an overflow port, a first overflow surface and a second overflow surface; and a feeding assembly, Adding silicon raw material to the melt zone, and feeding rate is adjustable; heating component comprises two movable heaters, and the two movable heaters are arranged at a certain interval on upper and lower sides of the crucible; a component for maintaining a temperature of the cavity; a gas flow component comprising a jet, a gas-conducting graphite member, a quartz exhaust pipe, and a quartz cooling pipe, wherein the fluidizer is located above the second overflow surface
  • the gas guiding graphite member is mounted on the bottom of the crucible, the quartz cooling tube is nested outside the quartz exhaust pipe, the quartz exhaust pipe is connected to the gas guiding graphite member; and the heat insulating baffle is located at the Above the second overflow surface, the heating assembly and the jet are
  • the utility model further comprises a receiving weir located below the edge of the second overflow surface of the weir.
  • a heat conductive graphite plate is disposed between the heater and the crucible.
  • the distance between the heater and the crucible is between 1 and 5 mm.
  • the distance between the jet and the second overflow surface is greater than 7 mm.
  • the heat insulating baffle has a thickness of between 1 and 3 cm.
  • the distance of the heat insulating baffle from the second overflow surface is between 2 and 6 mm.
  • the jet includes a gas incident tube, a jet tube and a support tube, wherein two ends of the jet tube are respectively connected to the incident tube and the support tube through a connecting member, and the jet tube is
  • the double-layer structure adopts an isostatically pressed graphite material on the outer layer, ceramic or high-density graphite material on the inner layer, and the jet tube is provided with a row of holes or slits.
  • the method for horizontal growth of a silicon wafer of the present invention comprises the steps of: a step of melting a silicon raw material, adding a silicon raw material to a melt region of the crucible through a feeding assembly, and introducing a reducing gas into the cavity through a quartz cooling tube to make the cavity In a reducing atmosphere, and then heated by a heater, when the temperature is stabilized at a set temperature and the silicon material is completely melted, a new silicon material is slowly added from the feed port, so that the molten silicon material flows from the overflow port into the first Overflow surface, as the silicon material gradually increases, the molten silicon gradually increases, the silicon material overflows to the second overflow surface in a gentle state; and the horizontal drawing of the silicon wafer step, when the silicon material is about to reach the cold and hot zone At the boundary, the seed plate is inserted into the cavity, and the rate of the feed is slowed down, so that the melt flows slowly to the seed plate in a thin layer. When the melt contacts the seed block, the seed plate is
  • the average temperature of the hot zone is 1500 to 1600 ° C
  • the average temperature of the cold zone is 800 to 1000 ° C.
  • Figure 1 is a functional block diagram of a silicon wafer horizontal growth device.
  • Figure 2 is a front elevational view of the wafer level growth apparatus.
  • Figure 3 is an oblique biaxial view of a wafer horizontal growth apparatus.
  • Figure 4 is an oblique biaxial view of the assembly diagram of the crucible and gas-conducting graphite members of the wafer horizontal growth apparatus.
  • Figure 5 is an oblique biaxial view of a jet assembly drawing of a silicon wafer horizontal growth apparatus.
  • Figure 6 is a flow chart of a method of horizontal growth of a silicon wafer.
  • FIG. 1 is a functional block diagram of a silicon wafer horizontal growth apparatus of the present invention.
  • the crucible 10 of the silicon wafer horizontal growth apparatus of the present invention has a melt zone 1, an overflow port 2, a first overflow face 3, and a second overflow face 4.
  • the design of the multi-stage melting zone and the two-stage overflow surface ensures uniform thickness of the silicon wafer and flattening of the upper and lower surfaces.
  • the cavity is divided by the heat insulating baffle 17 into two temperature zones of the hot zone 8 and the cold zone 9, and the upper heater 11 and the lower heater 12 are disposed above and below the crucible 10 of the hot zone 8, and the crucible 10 in the cold zone
  • a jet port 35 is provided above the second overflow surface 4.
  • the upper and lower radiant heating and jet cooling are used to control the temperature field and the flow field, thereby controlling the thickness of the silicon wafer.
  • the provision of the suction ports 40, 41 ensures that a large amount of gas generated by the jet does not have too much influence on the pressure inside the chamber.
  • FIG. 2 is a front view of the silicon wafer horizontal growth apparatus of the present invention
  • FIG. 3 is an oblique biaxial view of the silicon wafer horizontal growth apparatus
  • FIG. 4 is a diagonal view of the silicon wafer horizontal growth apparatus of the crucible and the gas guide graphite assembly. Axonometric drawing.
  • the specific structure of the silicon wafer horizontal growth apparatus of the present invention will be described in detail below with reference to Figs.
  • the silicon wafer horizontal growth apparatus of the present invention comprises an aluminum casing (not shown), a casing cooling water cooling device (not shown), a crucible 10, and an upper heating.
  • the thermal insulation assembly includes a bottom insulation member 32, a right inner insulation member 30, and a right outer insulation member 29.
  • the thermal insulation component is made of insulating graphite felt to isolate heat from the thermal field and dissipate outward from the bottom outer casing and the crystal pulling opening.
  • the silicon material enters from the feed port 5 of the incoming graphite assembly 27, and is drawn out from the outlet 37 after the silicon wafer is formed.
  • the upper heater 11 and the lower heater 12 are supported by graphite heater guides 18, 19, 20, 21, and the two heaters can be moved on the guide rails. This design allows the upper and lower heaters to be combined into the thermal field environment required for different processes.
  • the quartz cooling pipe 14 may be nested outside the quartz exhaust pipe 13. The quartz cooling pipe 14 also cools the quartz exhaust pipe 13 while introducing a reducing gas into the cavity, thereby ensuring that the quartz pipe does not deform due to high temperature during the preparation process.
  • the crucible 10 is supported by the heat insulating member and is not in direct contact with the upper heater 11 and the lower heater 12.
  • the heater should be as close as possible to the upper heating zone and the lower heating zone boundary, and the spacing can be controlled in the range of 1 to 5 mm.
  • the height of the jet 15 from the second overflow surface 4 i.e., the working surface
  • the flow rate of the jet is adjustable, and different temperature gradients are formed between the hot zone 8 and the cold zone 9 through different flow rates, and silicon bodies of different thicknesses can be prepared at a constant pulling speed.
  • the jet 15 is semi-wrapped by the heat insulating baffle 17 and the heat insulating members on both sides, and the lower end of the heat insulating baffle 17 is 2 to 6 mm away from the second overflow surface 4, so that the design can ensure the smooth flow of the melt.
  • the flow field change caused by the strong convection of the jet 15 is reduced to affect the hot zone 8 and the thermal field of the hot zone 8 is uneven.
  • the thickness of the heat insulating baffle 17 is between 1 and 3 cm, and a sufficient thickness ensures that an excessive temperature ladder is not formed between the hot zone 8 and the cold zone 9. degree. Such a design can effectively improve the thermal field stability of the hot zone 8, thereby making it easier to obtain a flat silicon wafer.
  • the silicon wafer horizontal growth apparatus of the present invention may further include a thermally conductive graphite plate 26.
  • both the upper heater 11 and the lower heater 12 are ⁇ -type graphite heaters, and are made of static pressure graphite such as G430. Since the heater is of a ⁇ type, it causes radiation unevenness. Therefore, a high thermal conductivity graphite plate 26 is added between the upper heater 11 and the surface of the crucible 10, and the surface of the melt is heated by the heat conductive graphite. Effectively solve the problem of uneven thermal field due to uneven radiation.
  • the silicon wafer horizontal growth apparatus of the present invention further includes a receiving crucible 28.
  • a receiving crucible 28 As shown in FIG. 3, due to the presence of the upper heater 11 and the lower heater 12 during the preparation process, the heat supplied causes the crucible 10 to be in an "overheated" state, between the formed silicon wafer and the second overflow surface 4, There will be a thin liquid film, so a receiving weir 28 is placed under the crucible edge 31 to prevent the outflowing solution from contaminating the insulating layer.
  • the edge 31 of the crucible the edge is machined at an oblique angle of 20° to 90°. This design allows a stable meniscus to be formed at the edge when the silicone fluid flows out.
  • the air-conducting graphite member 16 is fitted to the bottom of the crucible 10.
  • the crucible 10 includes a melt zone 1, an overflow port 2, a first overflow face 3, and a second overflow face 4.
  • the gas guiding graphite member 16 is provided with quartz suction pipe connection ports 33, 34, air guiding grooves 38, 39 and intake ports 40, 41.
  • the quartz exhaust pipe connection ports 33, 34 are connected to the quartz exhaust pipe 13.
  • the silicon material melted in the melt zone 1 flows out from the overflow port 2, and is buffered by the first overflow surface to weaken the liquid level fluctuation caused by the feed, and then flows into the second overflow surface 4 to contact the seed crystal. The drawing process of the chip.
  • the infrared thermometer detects the hot zone temperature measurement point 6 and the cold zone temperature measurement point 7 (as shown in Fig. 3) and feeds back the system.
  • the gas jetted from the jet 15 is sucked through the intake ports 40, 41, and flows out through the air guiding grooves 38, 39 from the connecting ports 33, 34.
  • the quartz exhaust pipe 13 continues outward. Pumping ensures that a large amount of gas generated by the jet does not have too much influence on the pressure in the furnace chamber.
  • the tension formed by the pumping will make the connection between the gas-conducting graphite member 16 and the crucible 10 closer, and at the same time, the thermal field of the second overflow surface 4 will be smoother, and the design allows the silicon wafer to be pulled.
  • the process is grown in a stable state to form a silicon wafer having a smooth surface topography.
  • FIG. 5 is an oblique biaxial view of a jet assembly drawing of a silicon wafer horizontal growth apparatus.
  • the jet 15 includes a gas incident tube 151, a jet tube 152, a support tube 153, and two connecting members 154.
  • the overall material of the jet 15 is isostatically pressed graphite.
  • the presence of the support tube 153 ensures that the jet will not be damaged by vibration during the large flow gas jet, and the life of the jet can be effectively improved.
  • the high-temperature gas required for the jet cooling is introduced from the jet gas introduction port 36 of the gas incident tube 151.
  • the jet tube 152 of the jet 15 has a two-layer structure, the outside is isostatically pressed graphite, the inner nested ceramic tube or high-density graphite, and the nested structure prevents thermal stress caused by a large temperature gradient formed by the passage of the jet gas. Destroy the graphite structure.
  • the jet port 35 may adopt a row of holes or a slit structure, and the jet 15 shown in Fig. 5 employs a jet port of a slit jet type. The design of the jet port can ensure the heat exchange amount without causing obvious appearance defects of the drawn silicon wafer.
  • FIG. 6 is a flow chart of a method of horizontal growth of a silicon wafer.
  • the powdery silicon material is first filled in the solvent region 1, and the silicon material is added in an amount of 100 to 180 g; after the assembly is completed, the reducing gas is continuously supplied from the quartz cooling tube 14.
  • helium gas or argon gas is used to make the furnace cavity in a reducing atmosphere; after 5 to 10 minutes of ventilation, the graphite resistance heating system is turned on, and the heat field setting temperature is set to 1500 to 1600 ° C, and the upper heater 11 and the lower The heater 12 heats the overall thermal field and the silicon raw material to provide sufficient heat for the thermal field to rapidly melt the added silicon material; slowly add new from the inlet port 5 when the temperature stabilizes at the set temperature and the silicon material is completely melted.
  • the silicon material causes the molten silicon material to flow from the overflow port 2 to the first overflow surface 3; as the silicon material gradually increases, the molten silicon gradually increases, and the silicon material flows from the slope to the second overflow surface 4 Overflow, the silicon at this time is buffered by the first overflow surface, and will flow into the long crystal region in a relatively gentle state.
  • the entire thermal field is divided into a hot zone 8 and a cold zone 9, and the hot zone 8 is averaged.
  • the temperature is 1500 to 1600 ° C
  • the average temperature of the cold zone 9 is 800 to 1000 ° C.
  • the flow rate of the jet 15 is set to, for example, 0 to 3 m 3 /min, and the gas of the jet is 600.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

一种硅片水平生长设备和方法,该硅片水平生长设备包括外壳,形成腔体;坩埚(10),位于所述腔体中,具有熔料区(1)、溢流口(2)、第一溢流面(3)和第二溢流面(4);入料组件,向所述熔料区加入硅原料,且加料速率可调;加热组件,包括两个可移动的加热器(11、12),以一定间距配置于所述坩埚(10)的上下两侧;保温组件,对所述腔体的温度进行保持;气体流通组件,包括射流器(15)、导气石墨件(16)、石英抽气管(13)和石英冷却管(14),其中,所述射流器(15)位于所述第二溢流面(4)上方,所述导气石墨件(16)装配于所述坩埚(10)的底部,所述石英冷却管(14)嵌套在所述石英抽气管(13)外,所述石英抽气管(13)与所述导气石墨件(16)相连;以及隔热挡板(17),位于所述第二溢流面(4)上方,将所述加热组件和所述射流器(15)相隔离,使所述腔体分为冷热两个温度区域。

Description

一种硅片水平生长设备和方法 技术领域
本发明涉及硅材料制备技术领域,尤其涉及一种硅片水平生长设备和方法。
背景技术
硅作为非金属在半导体领域以及光伏领域有广泛的应用。现有技术中,通常采用直拉法(CZ法)或区熔法(HZ法)生产单晶硅锭,利用铸造技术生产多晶硅锭。
现有技术是通过线切割、打磨抛光等技术来获得一定厚度的硅片,在后处理的过程中大量的原料被浪费,从而导致硅片生产成本大幅度增加。为了减少材料的损耗,人们开发了多种硅片直接制造方法,如导模法(EFG)、线拉带硅法(SR),但是至今未能实现批量生产。1950年,人们提出了另一种硅片直接生长方法即水平生长条带状硅(HRG)的方法。基于该方法,1960年设计了实验制备装置,但是无法实现硅带的水平生长。2016年克拉克森大学提出了一种利用水平浮硅法生长硅片的方法,并进行了数值模拟和实验,记载于非专利文献1中。但是利用水平浮硅法生长出的硅片外形有很明显的形状缺陷,并且厚度较大,需要进行后续的切割加工。
非专利文献1
Helenbrook B T,Kellerman P,Carlson F,et al.Experimental and numerical investigation of the horizontal ribbon growth process[J].Journal of Crystal Growth,2016,453:163-172.
发明内容
针对现有水平生长硅片领域所存在的诸如生长不稳定、形状缺陷较大、 厚度过厚等问题,本发明公开一种厚度可控的硅片水平连续生长设备和方法。利用上下辐射加热、射流冷却方式实现温度场和流场的调控,从而控制硅片的厚度;利用多段熔融区域和两段溢流面,并利用外抽气体使温度场平顺的设计,从而保证硅片厚度均匀、上下表面平整。
本发明的硅片水平生长设备包括:外壳,形成腔体;坩埚,位于所述腔体中,具有熔料区、溢流口、第一溢流面和第二溢流面;入料组件,向所述熔料区加入硅原料,且加料速率可调;加热组件,包括两个可移动的加热器,该两个可移动的加热器以一定间距配置于所述坩埚的上下两侧;保温组件,对所述腔体的温度进行保持;气体流通组件,包括射流器、导气石墨件、石英抽气管和石英冷却管,其中,所述射流器位于所述第二溢流面上方,所述导气石墨件装配于所述坩埚的底部,所述石英冷却管嵌套在所述石英抽气管外,所述石英抽气管与所述导气石墨件相连;以及隔热挡板,位于所述第二溢流面上方,将所述加热组件和所述射流器相隔离,使所述腔体分为冷热两个温度区域。
优选为,还包括承接坩埚,位于所述坩埚第二溢流面的边缘的下方。
优选为,所述加热器与所述坩埚间设置有导热石墨板。
优选为,所述加热器与所述坩埚间的距离在1~5mm之间。
优选为,所述射流器与所述第二溢流面的距离大于7mm。
优选为,所述隔热挡板的厚度在1~3cm之间。
优选为,所述隔热挡板距所述第二溢流面的距离在2~6mm之间。
优选为,所述射流器包括气体入射管、射流管和支撑管,其中所述射流管的两端分别通过连接件与所述入射管和所述支撑管相连接,所述射流管为 双层结构,外层采用等静压石墨材料,内层采用陶瓷或高密度石墨材料,所述射流管设有排孔或狭缝。
本发明的硅片水平生长方法,包括以下步骤:熔融硅原料步骤,通过入料组件向所述坩埚的熔料区加入硅原料,通过石英冷却管向腔体内通入还原性气体,使腔体处于还原气氛中,然后通过加热器进行加热,当温度稳定在设定温度且硅料完全熔化后开始自入料口缓慢加入新的硅料,使熔融态的硅料从溢流口流入第一溢流面,当硅料逐渐增加,熔融态的硅随之逐渐增多,硅料以平缓的状态向第二溢流面溢出;以及水平拉制硅片步骤,当硅料即将到达冷热区的边界时,将籽晶板伸入腔体中,同时减缓加料的速率,使熔体以薄层形式缓慢向籽晶板流去,当熔体与籽晶块接触时,反向拉动籽晶板,同时打开射流器和抽气泵,通过石英抽气管向外抽气,石英冷却管始终保持通气状态。
优选为,所述热区的平均温度为1500~1600℃,所述冷区的平均温度为800~1000℃。
附图说明
图1是硅片水平生长设备的功能框图。
图2是硅片水平生长设备的主视图。
图3是硅片水平生长设备的斜二轴测图。
图4是硅片水平生长设备的坩埚、导气石墨件装配图的斜二轴测图。
图5是硅片水平生长设备的射流器装配图的斜二轴测图。
图6是硅片水平生长方法的流程图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所 获得的所有其它实施例,都属于本发明保护的范围。
在本发明的描述中,需要理解的是,术语"上"、"下"、“底部”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“装配”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
此外,本发明提供了各种特定的工艺和材料的例子,但是正如本领域的技术人员能够理解的那样,可以不按照这些特定的细节来实现本发明。除非在下文中特别指出,器件的各部分均可采用本领域公知的工艺和材料实现。
图1是本发明硅片水平生长设备的功能框图。以下结合图1针对本发明的硅片水平生长设备的基本原理进行说明。如图1所示,本发明的硅片水平生长设备的坩埚10具有熔料区1、溢流口2、第一溢流面3和第二溢流面4。这样具有多段熔融区域和两段溢流面的设计,保证了硅片厚度均匀和上下表面平整。腔体被隔热挡板17分割为了热区8和冷区9两个温度区域,在热区8的坩埚10的上下方配置上加热器11和下加热器12,在冷区的坩埚10的第二溢流面4的上方设置有射流口35。采用这种上下辐射加热、射流冷却的方式实现了温度场和流场的调控,从而控制硅片的厚度。此外,设置抽气口40、41保证了由于射流而产生的大量气体不会对腔体内的压强造成太大的影响。
图2是本发明的硅片水平生长设备的主视图,图3是硅片水平生长设备的斜二轴测图,图4是硅片水平生长设备的坩埚、导气石墨件装配图的斜二轴测图。以下结合图2~4针对本发明的硅片水平生长设备的具体结构进行详细说明。如图2、图3和图4所示,本发明的硅片水平生长设备包括铝制外壳(图中未示出)、外壳冷却用水冷装置(图中未示出)、坩埚10、上加热器11、下加热器12、石墨加热器导轨18,19,20,21、石墨电极22,23,24,25、石英抽气管13、石英冷却管14、射流器15、导气石墨元件16、隔热挡板17、入料石墨组件27以及保温组件。其中,石墨电极22,23,24,25与外部工作电路相连接,通过特定的连接装置与通入电流所用导线相连。保温组件包括底部保温件32、右内侧保温件30和右外侧保温件29。保温组件由隔热石墨毡制成,用来隔绝热场部分热量从底部外壳和拉晶口向外散失。
如图2所示,硅料从入料石墨组件27的入料口5进入,从硅片成型后出口37拉出。上加热器11与下加热器12由石墨加热器导轨18,19,20,21支撑,两个加热器可以在导轨上进行移动。这种设计可以使上下两个加热器组成不同工艺所需要的热场环境。此外,如图2所示,也可以在石英抽气管13的外部嵌套石英冷却管14。石英冷却管14在对腔体内通入还原性气体的同时,也对石英抽气管13进行冷却,从而保证在制备过程中石英管不会因为高温导致变形。
如图3所示,坩埚10被隔热件支承,不与上加热器11、下加热器12直接接触。但是为了保证加热效率,加热器应与上加热区、下加热区边界尽可能靠近,可以将该间距控制在1~5毫米的范围。射流器15距第二溢流面4(即工作面)的高度通常大于7mm,以减小射流对表面平整度的影响。射流器的流速可调,通过不同的流速让热区8和冷区9之间形成不同的温度梯度,可以在拉速一定的情况下,制备不同厚度的硅体。另外,射流器15被隔热挡板17以及两侧隔热部件半包裹,隔热挡板17下端离第二溢流面4的距离为2~6mm,这样设计可以在保证熔体顺利流过的同时减少由于射流器15的强对流引起的流场变化影响到热区8而导致热区8的热场不均匀。隔热挡板17厚度在1~3cm之间,足够的厚度保证热区8和冷区9之间不会形成过大的温度梯 度。这样的设计可以有效的提高热区8的热场稳定性,从而更容易获得外形平整的硅片。
进一步地,本发明的硅片水平生长设备还可以包括导热石墨板26。如图3所示,上加热器11、下加热器12都为蜿蜒型石墨加热器,采用G430等静压石墨制成。由于加热器为蜿蜒型,会造成辐射不均匀问题,所以在上加热器11与坩埚10表面之间加入一块高热导率的导热石墨板26,通过导热石墨对熔体表面进行加热,这样可以有效的解决由于辐射不均匀而导致的热场不均匀问题。
进一步地,本发明的硅片水平生长设备还包括承接坩埚28。如图3所示,制备过程中由于上加热器11、下加热器12的存在,提供的热量让坩埚10处于“过热”的状态,在形成的硅片与第二溢流面4之间,会存在一层薄液膜,所以在坩埚边缘31的下方放置承接坩埚28防止流出的溶液污染隔热层。在坩埚边缘31处,将边缘加工出斜角,角度为20°~90°,这样的设计可以使硅液流出时,在边缘处形成稳定的弯月面。
如图4所示,导气石墨件16装配于坩埚10的底部。坩埚10包括熔料区1、溢流口2、第一溢流面3和第二溢流面4。导气石墨件16设有石英抽气管连接口33,34、导气槽38,39和进气口40,41。石英抽气管连接口33,34连接石英抽气管13。在熔料区1熔化后的硅料从溢流口2流出,经过第一溢流面的缓冲,减弱由于入料导致的液面波动后,流入第二溢流面4与籽晶接触后开始芯片的拉制过程。拉制过程中红外测温仪分别检测热区测温点6和冷区测温点7(如图3所示)并对系统进行反馈。同时,从射流器15中射流的气体通过进气口40,41被吸入,经由导气槽38,39的引导从连接口33,34流出,在拉制过程中,石英抽气管13持续向外抽气,保证由于射流而产生的大量气体不会对炉腔内的压强造成太大的影响。此过程中,由于抽气而形成的张力会让导气石墨件16和坩埚10的连接更加紧密,同时会让第二溢流面4的热场更加平顺,这样的设计可以让硅片在拉制过程中以一种稳定的状态生长,从而形成表面形貌平整的硅片。
图5是硅片水平生长设备的射流器装配图的斜二轴测图。以下结合图5对射流器的具体结构进行说明。如图5所示,射流器15包括一个气体入射管151、一个射流管152、一个支撑管153以及两个连接件154。射流器15整体材料均为等静压石墨。支撑管153的存在保证了射流器在大流量气体射流过程中不会由于震动而造成损坏,可以有效提高射流器的寿命。射流冷却所需的高温气体自气体入射管151的射流气体导入口36导入。射流器15的射流管152采用双层结构,外部为等静压石墨,内部嵌套陶瓷管或者高密度石墨,采用嵌套的结构防止由于射流气体通过时所形成的大温度梯度造成的热应力破坏石墨件结构。射流口35可以采用排孔或者狭缝结构,图5所示的射流器15采用狭缝射流方式的射流口。采用这种射流口的设计方式,可以在保证换热量的同时,不会使所拉制的硅片出现明显的形貌缺陷。
根据本发明的另一方面,还公开一种硅片水平生长方法。以下结合图6进行具体说明。图6是硅片水平生长方法的流程图。首先,在熔融硅原料步骤S1中,先在溶料区1中填入粉末状硅料,硅料加入量在100~180g之间;装配完成后,由石英冷却管14持续通入还原性气体例如氦气或者氩气等,使炉腔内处于还原性气氛中;在通气5~10min之后开启石墨电阻加热系统,热场设定温度设定为1500~1600℃,通过上加热器11、下加热器12对整体热场以及硅原料进行加热,为热场提供足够的热量以使加入硅料快速熔化;当温度稳定在设定温度且硅料完全熔化后开始从入料口5缓慢加入新的硅料,使熔融态的硅料从溢流口2流入到第一溢流面3;随着硅料的逐渐增加,熔融态的硅逐渐增多,硅料从斜坡向第二溢流面4溢出,此时的硅经过第一个溢流面的缓冲,将会以一种相对平缓的状态流入长晶区域。
接下来,在水平拉制硅片步骤S2中,由于在射流器15和加热区域之间放置有隔热挡板17,从而将整个热场分为热区8和冷区9,热区8平均温度为1500~1600℃,冷区9平均温度为800~1000℃。当硅料即将到达冷区(即热区边界)时,将籽晶板伸入炉腔中(根据加料速度的不同,到达时间需要调整),同时减缓加料的速率,保证熔体以薄层形式缓慢向籽晶流去;当熔 体与籽晶块接触时,反向拉动籽晶,同时打开射流器15,射流器15的流速例如设定为0~3m3/min,射流的气体为600~1000℃的纯净惰性气体或者两种惰性气体按比例的混合气体,在开启射流器15同时开启抽气泵,通过石英抽气管13向外吸气,以保证内部压强不会过大,气体不会过多,石英冷却管14始终保持通气状态,连续水平拉制硅片。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。

Claims (10)

  1. 一种硅片水平生长设备,其特征在于,
    包括:
    外壳,形成腔体;
    坩埚,位于所述腔体中,具有熔料区、溢流口、第一溢流面和第二溢流面;
    入料组件,向所述熔料区加入硅原料,且加料速率可调;
    加热组件,包括两个可移动的加热器,该两个可移动的加热器以一定间距配置于所述坩埚的上下两侧;
    保温组件,对所述腔体的温度进行保持;
    气体流通组件,包括射流器、导气石墨件、石英抽气管和石英冷却管,其中,所述射流器位于所述第二溢流面上方,所述导气石墨件装配于所述坩埚的底部,所述石英冷却管嵌套在所述石英抽气管外,所述石英抽气管与所述导气石墨件相连;以及
    隔热挡板,位于所述第二溢流面上方,将所述加热组件和所述射流器相隔离,使所述腔体分为冷热两个温度区域。
  2. 根据权利要求1所述的硅片水平生长设备,其特征在于,
    还包括承接坩埚,位于所述坩埚第二溢流面的边缘的下方。
  3. 根据权利要求1所述的硅片水平生长设备,其特征在于,
    所述加热器与所述坩埚间设置有导热石墨板。
  4. 根据权利要求1~3中任一项所述的硅片水平生长设备,其特征在于,
    所述加热器与所述坩埚间的距离在1~5mm之间。
  5. 根据权利要求1~3中任一项所述的硅片水平生长设备,其特征在于,
    所述射流器与所述第二溢流面的距离大于7mm。
  6. 根据权利要求1~3中任一项所述的硅片水平生长设备,其特征在于,
    所述隔热挡板的厚度在1~3cm之间。
  7. 根据权利要求1~3中任一项所述的硅片水平生长设备,其特征在于,
    所述隔热挡板距所述第二溢流面的距离在2~6mm之间。
  8. 根据权利要求1~3中任一项所述的硅片水平生长设备,其特征在于,
    所述射流器包括气体入射管、射流管和支撑管,其中所述射流管的两端分别通过连接件与所述入射管和所述支撑管相连接,所述射流管为双层结构,外层采用等静压石墨材料,内层采用陶瓷或高密度石墨材料,所述射流管设有排孔或狭缝。
  9. 一种硅片水平生长方法,其特征在于,
    包括以下步骤:
    熔融硅原料步骤,通过入料组件向所述坩埚的熔料区加入硅原料,通过石英冷却管向腔体内通入还原性气体,使腔体处于还原气氛中,然后通过加热器进行加热,当温度稳定在设定温度且硅料完全熔化后开始自入料口缓慢加入新的硅料,使熔融态的硅料从溢流口流入第一溢流面,当硅料逐渐增加,熔融态的硅随之逐渐增多,硅料以平缓的状态向第二溢流面溢出;以及
    水平拉制硅片步骤,当硅料即将到达冷热区的边界时,将籽晶板伸入腔体中,同时减缓加料的速率,使熔体以薄层形式缓慢向籽晶板流去,当熔体与籽晶块接触时,反向拉动籽晶板,同时打开射流器和抽气泵,通过石英抽气管向外抽气,石英冷却管始终保持通气状态。
  10. 根据权利要求9所述的硅片水平生长方法,其特征在于,
    所述热区的平均温度为1500~1600℃,所述冷区的平均温度为800~1000℃。
PCT/CN2017/095869 2017-04-28 2017-08-03 一种硅片水平生长设备和方法 WO2018196215A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP17907677.3A EP3617351B1 (en) 2017-04-28 2017-08-03 Silicon wafer horizontal growth device and method
US16/600,859 US20200040481A1 (en) 2017-04-28 2019-10-14 Silicon wafer horizontal growth apparatus and method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710300122.6A CN107217296B (zh) 2017-04-28 2017-04-28 一种硅片水平生长设备和方法
CN201710300122.6 2017-04-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/600,859 Continuation US20200040481A1 (en) 2017-04-28 2019-10-14 Silicon wafer horizontal growth apparatus and method

Publications (1)

Publication Number Publication Date
WO2018196215A1 true WO2018196215A1 (zh) 2018-11-01

Family

ID=59943734

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/095869 WO2018196215A1 (zh) 2017-04-28 2017-08-03 一种硅片水平生长设备和方法

Country Status (4)

Country Link
US (1) US20200040481A1 (zh)
EP (1) EP3617351B1 (zh)
CN (1) CN107217296B (zh)
WO (1) WO2018196215A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109487330A (zh) * 2019-01-03 2019-03-19 无锡翌波晶体材料有限公司 晶体横向生长设备及晶体横向生长方法
CN114381803A (zh) * 2022-01-12 2022-04-22 洛阳师范学院 一种机器人中控操作系统承载的硅晶拉制装置
CN115930032A (zh) * 2023-01-18 2023-04-07 常州大学 一种用于海底天然气管道的防护装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108486649B (zh) * 2018-03-13 2019-11-08 广州铁路职业技术学院(广州铁路机械学校) 硅片铸造方法及装置
CN108842182A (zh) * 2018-09-27 2018-11-20 宜昌南玻硅材料有限公司 一种多晶硅水冷铸锭炉溢流保护装置
CN110172729B (zh) * 2019-06-19 2020-12-08 江阴市广跃新材料科技有限公司 一种浮法硅片的生产设备及其生产方法
TW202136596A (zh) * 2020-02-19 2021-10-01 美商先鋒設備科技公司 利用表面冷卻和熔體加熱之組合來控制在熔體表面形成之結晶片材的厚度和寬度

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1047541A (zh) * 1989-05-24 1990-12-05 无比太阳能公司 用于连续补给熔料的系统
CN102925986A (zh) * 2008-03-14 2013-02-13 瓦里安半导体设备公司 片材制造装置
CN102959137A (zh) * 2010-05-06 2013-03-06 瓦里安半导体设备公司 使熔化硅流动与纯化的气举式泵
WO2014034028A1 (ja) * 2012-08-28 2014-03-06 信越半導体株式会社 シリコン単結晶の育成方法
CN104011270A (zh) * 2011-11-09 2014-08-27 瓦里安半导体设备公司 使用异向性材料的热负载平衡
JP2016108204A (ja) * 2014-12-10 2016-06-20 信越半導体株式会社 単結晶引上げ装置
CN106350866A (zh) * 2016-08-25 2017-01-25 常州大学 一种超薄黑硅硅片的制作设备及方法
CN106521622A (zh) * 2016-12-20 2017-03-22 常州大学 用于硅片水平提拉的加热装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4289571A (en) * 1979-06-25 1981-09-15 Energy Materials Corporation Method and apparatus for producing crystalline ribbons
US4599132A (en) * 1985-01-18 1986-07-08 Energy Materials Corporation Guidance system for low angle silicon ribbon growth
JPH0741393A (ja) * 1993-07-28 1995-02-10 Kanegafuchi Chem Ind Co Ltd 連続鋳造法によるシリコン板の製造方法
DE19638966A1 (de) * 1995-09-22 1997-03-27 Forschungsverbund Berlin Ev Verfahren und Vorrichtung zur Herstellung von bandförmigen Si-Kristallen in horizontaler Ziehrichtung
AU2007300183B2 (en) * 2006-09-28 2012-03-29 Amg Idealcast Solar Corporation Method and apparatus for the production of crystalline silicon substrates
US7998224B2 (en) * 2008-10-21 2011-08-16 Varian Semiconductor Equipment Associates, Inc. Removal of a sheet from a production apparatus
US8764901B2 (en) * 2010-05-06 2014-07-01 Varian Semiconductor Equipment Associates, Inc. Removing a sheet from the surface of a melt using elasticity and buoyancy
CN102260903B (zh) * 2011-07-11 2013-07-24 浙江碧晶科技有限公司 一种生长薄板硅晶体的方法
US20140096713A1 (en) * 2012-10-09 2014-04-10 Varian Semiconductor Equipment Associates, Inc. Apparatus for float grown crystalline sheets
WO2015021397A1 (en) * 2013-08-08 2015-02-12 Energy Materials Research, LLC System and method for forming a silicon wafer
US9957636B2 (en) * 2014-03-27 2018-05-01 Varian Semiconductor Equipment Associates, Inc. System and method for crystalline sheet growth using a cold block and gas jet
FR3025222A1 (fr) * 2014-09-01 2016-03-04 Guy Baret Procede de fabrication d'un subrat de silicium
CN106521623A (zh) * 2016-12-29 2017-03-22 常州大学 硅片水平提拉成型设备热场结构

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1047541A (zh) * 1989-05-24 1990-12-05 无比太阳能公司 用于连续补给熔料的系统
CN102925986A (zh) * 2008-03-14 2013-02-13 瓦里安半导体设备公司 片材制造装置
CN102959137A (zh) * 2010-05-06 2013-03-06 瓦里安半导体设备公司 使熔化硅流动与纯化的气举式泵
CN104011270A (zh) * 2011-11-09 2014-08-27 瓦里安半导体设备公司 使用异向性材料的热负载平衡
WO2014034028A1 (ja) * 2012-08-28 2014-03-06 信越半導体株式会社 シリコン単結晶の育成方法
JP2016108204A (ja) * 2014-12-10 2016-06-20 信越半導体株式会社 単結晶引上げ装置
CN106350866A (zh) * 2016-08-25 2017-01-25 常州大学 一种超薄黑硅硅片的制作设备及方法
CN106521622A (zh) * 2016-12-20 2017-03-22 常州大学 用于硅片水平提拉的加热装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HELENBROOK B TKELLERMAN PCARLSON F ET AL.: "Experimental and numerical investigation of the horizontal ribbon growth process [J", JOURNAL OF CRYSTAL GROWTH, vol. 453, 2016, pages 163 - 172
See also references of EP3617351A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109487330A (zh) * 2019-01-03 2019-03-19 无锡翌波晶体材料有限公司 晶体横向生长设备及晶体横向生长方法
CN114381803A (zh) * 2022-01-12 2022-04-22 洛阳师范学院 一种机器人中控操作系统承载的硅晶拉制装置
CN114381803B (zh) * 2022-01-12 2022-11-25 洛阳师范学院 一种机器人中控操作系统承载的硅晶拉制装置
CN115930032A (zh) * 2023-01-18 2023-04-07 常州大学 一种用于海底天然气管道的防护装置

Also Published As

Publication number Publication date
EP3617351A4 (en) 2020-12-30
EP3617351B1 (en) 2021-12-22
US20200040481A1 (en) 2020-02-06
CN107217296B (zh) 2019-05-07
CN107217296A (zh) 2017-09-29
EP3617351A1 (en) 2020-03-04

Similar Documents

Publication Publication Date Title
WO2018196215A1 (zh) 一种硅片水平生长设备和方法
US8057598B2 (en) Manufacturing equipment for polysilicon ingot
US7608146B2 (en) Method and apparatus for the production of crystalline silicon substrates
KR20070118945A (ko) 다결정 실리콘 잉곳 제조장치
US8475591B2 (en) Method of controlling a thickness of a sheet formed from a melt
WO2020224186A1 (zh) 一种定向凝固生长晶体硅的铸锭炉及应用
TW202030384A (zh) 一種半導體晶體生長裝置
TWI776210B (zh) 晶體生長裝置
CN112501690A (zh) 一种蓝宝石单晶的生长方法
US20210071314A1 (en) Semiconductor crystal growth apparatus
EP2567003A1 (en) Removing a sheet from the surface of a melt using gas jets
JP2002293526A (ja) 多結晶シリコンの製造装置
TWI832389B (zh) 一種用於單晶生長的熱場調節裝置和方法
TW202246590A (zh) 一種坩堝元件及拉晶爐
CN112481693A (zh) 一种拉晶炉
TWI730527B (zh) 加熱式導流筒
CN219490241U (zh) 一种pecvd多晶硅镀膜腔体循环温控装置
TWI833617B (zh) 晶體生長裝置
TWI449820B (zh) 具有閉鎖熱循環結構之長晶爐
CN105926036A (zh) 一种多晶硅晶体生长炉生长装置及其热源调节方法
JP2006272373A (ja) 鋳型及びこれを用いた鋳造装置並びに多結晶シリコンインゴットの製造方法
TW202136596A (zh) 利用表面冷卻和熔體加熱之組合來控制在熔體表面形成之結晶片材的厚度和寬度
JP4282492B2 (ja) 板状シリコンおよびその製造方法ならびに板状シリコン製造用下地板、ならびに太陽電池
JP2003117638A (ja) 薄板製造装置および太陽電池
JP2013112582A (ja) 多結晶シリコンインゴット製造装置、多結晶シリコンインゴット、多結晶シリコンウエハ、多結晶シリコン太陽電池、多結晶太陽電池モジュール

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17907677

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017907677

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017907677

Country of ref document: EP

Effective date: 20191128