WO2023217052A1 - 一种测量工业辐照剂量二维分布的方法和胶片 - Google Patents
一种测量工业辐照剂量二维分布的方法和胶片 Download PDFInfo
- Publication number
- WO2023217052A1 WO2023217052A1 PCT/CN2023/092619 CN2023092619W WO2023217052A1 WO 2023217052 A1 WO2023217052 A1 WO 2023217052A1 CN 2023092619 W CN2023092619 W CN 2023092619W WO 2023217052 A1 WO2023217052 A1 WO 2023217052A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- spore
- germination
- irradiation
- pixel
- film
- Prior art date
Links
- 238000009826 distribution Methods 0.000 title claims abstract description 34
- 238000000034 method Methods 0.000 title claims abstract description 31
- 230000035784 germination Effects 0.000 claims abstract description 112
- 238000011088 calibration curve Methods 0.000 claims abstract description 49
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 40
- 239000011521 glass Substances 0.000 claims abstract description 22
- 239000000725 suspension Substances 0.000 claims abstract description 19
- 239000007788 liquid Substances 0.000 claims abstract description 13
- 238000004519 manufacturing process Methods 0.000 claims abstract description 9
- 239000002904 solvent Substances 0.000 claims abstract description 7
- 230000005855 radiation Effects 0.000 claims description 42
- 229920001817 Agar Polymers 0.000 claims description 23
- 239000008272 agar Substances 0.000 claims description 23
- UGQMRVRMYYASKQ-KQYNXXCUSA-N Inosine Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C2=NC=NC(O)=C2N=C1 UGQMRVRMYYASKQ-KQYNXXCUSA-N 0.000 claims description 2
- 229930010555 Inosine Natural products 0.000 claims description 2
- 229960003786 inosine Drugs 0.000 claims description 2
- MKLSLVKLQOIPCY-BXRBKJIMSA-N l-alanin-l-alanin Chemical group C[C@H](N)C(O)=O.C[C@H](N)C(O)=O MKLSLVKLQOIPCY-BXRBKJIMSA-N 0.000 claims 1
- ZPEZUAAEBBHXBT-RZVRUWJTSA-N l-valine l-valine Chemical compound CC(C)[C@H](N)C(O)=O.CC(C)[C@H](N)C(O)=O ZPEZUAAEBBHXBT-RZVRUWJTSA-N 0.000 claims 1
- 238000005259 measurement Methods 0.000 abstract description 12
- 230000004763 spore germination Effects 0.000 abstract description 9
- 238000001704 evaporation Methods 0.000 abstract 1
- WJJMNDUMQPNECX-UHFFFAOYSA-N dipicolinic acid Chemical compound OC(=O)C1=CC=CC(C(O)=O)=N1 WJJMNDUMQPNECX-UHFFFAOYSA-N 0.000 description 12
- 241000894006 Bacteria Species 0.000 description 9
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 6
- 230000005865 ionizing radiation Effects 0.000 description 6
- KZSNJWFQEVHDMF-BYPYZUCNSA-N L-valine Chemical compound CC(C)[C@H](N)C(O)=O KZSNJWFQEVHDMF-BYPYZUCNSA-N 0.000 description 4
- 108090000404 Cyclin G1 Proteins 0.000 description 3
- 102000004012 Cyclin G1 Human genes 0.000 description 3
- QNAYBMKLOCPYGJ-UHFFFAOYSA-N D-alpha-Ala Natural products CC([NH3+])C([O-])=O QNAYBMKLOCPYGJ-UHFFFAOYSA-N 0.000 description 3
- 239000005715 Fructose Substances 0.000 description 3
- 229930091371 Fructose Natural products 0.000 description 3
- RFSUNEUAIZKAJO-ARQDHWQXSA-N Fructose Chemical compound OC[C@H]1O[C@](O)(CO)[C@@H](O)[C@@H]1O RFSUNEUAIZKAJO-ARQDHWQXSA-N 0.000 description 3
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 3
- QNAYBMKLOCPYGJ-UWTATZPHSA-N L-Alanine Natural products C[C@@H](N)C(O)=O QNAYBMKLOCPYGJ-UWTATZPHSA-N 0.000 description 3
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 3
- 229960003767 alanine Drugs 0.000 description 3
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 230000007613 environmental effect Effects 0.000 description 3
- 239000008103 glucose Substances 0.000 description 3
- 239000001103 potassium chloride Substances 0.000 description 3
- 235000011164 potassium chloride Nutrition 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 101150065209 CCNG1 gene Proteins 0.000 description 2
- DCXYFEDJOCDNAF-REOHCLBHSA-N L-asparagine Chemical compound OC(=O)[C@@H](N)CC(N)=O DCXYFEDJOCDNAF-REOHCLBHSA-N 0.000 description 2
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 2
- 235000003704 aspartic acid Nutrition 0.000 description 2
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- 230000014509 gene expression Effects 0.000 description 2
- 238000000691 measurement method Methods 0.000 description 2
- 235000015097 nutrients Nutrition 0.000 description 2
- 238000003892 spreading Methods 0.000 description 2
- 229960004295 valine Drugs 0.000 description 2
- -1 AGFK Chemical compound 0.000 description 1
- IGXWBGJHJZYPQS-SSDOTTSWSA-N D-Luciferin Chemical compound OC(=O)[C@H]1CSC(C=2SC3=CC=C(O)C=C3N=2)=N1 IGXWBGJHJZYPQS-SSDOTTSWSA-N 0.000 description 1
- CYCGRDQQIOGCKX-UHFFFAOYSA-N Dehydro-luciferin Natural products OC(=O)C1=CSC(C=2SC3=CC(O)=CC=C3N=2)=N1 CYCGRDQQIOGCKX-UHFFFAOYSA-N 0.000 description 1
- BJGNCJDXODQBOB-UHFFFAOYSA-N Fivefly Luciferin Natural products OC(=O)C1CSC(C=2SC3=CC(O)=CC=C3N=2)=N1 BJGNCJDXODQBOB-UHFFFAOYSA-N 0.000 description 1
- 108060001084 Luciferase Proteins 0.000 description 1
- 239000005089 Luciferase Substances 0.000 description 1
- DDWFXDSYGUXRAY-UHFFFAOYSA-N Luciferin Natural products CCc1c(C)c(CC2NC(=O)C(=C2C=C)C)[nH]c1Cc3[nH]c4C(=C5/NC(CC(=O)O)C(C)C5CC(=O)O)CC(=O)c4c3C DDWFXDSYGUXRAY-UHFFFAOYSA-N 0.000 description 1
- 241000124008 Mammalia Species 0.000 description 1
- 231100000987 absorbed dose Toxicity 0.000 description 1
- 229960001230 asparagine Drugs 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 210000004027 cell Anatomy 0.000 description 1
- 239000013522 chelant Substances 0.000 description 1
- 238000000295 emission spectrum Methods 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 238000004020 luminiscence type Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 108020004999 messenger RNA Proteins 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 244000052769 pathogen Species 0.000 description 1
- 210000005105 peripheral blood lymphocyte Anatomy 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 238000004445 quantitative analysis Methods 0.000 description 1
- 238000003753 real-time PCR Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01T—MEASUREMENT OF NUCLEAR OR X-RADIATION
- G01T1/00—Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
- G01T1/02—Dosimeters
- G01T1/10—Luminescent dosimeters
Definitions
- the present application relates to the technical field of radiation dose measurement, and more specifically, to a method and film for measuring two-dimensional distribution of industrial radiation dose.
- the dose of industrial radiation is generally thousands of Gray (Gy), and a chemical meter is usually used as the radiation measurement device.
- Gray Gray
- the principle is that certain chemicals will change after absorbing the energy of ionizing radiation. This change corresponds to the absorbed dose and can be measured.
- Common industrial radiation measurement systems are shown in the table below.
- Chinese invention patent CN104215993A discloses a method for low-dose radiation biological early warning using luminescent bacteria.
- the sensitivity to low-dose radiation can establish a dose-effect relationship between the radiation dose received by bacteria and the luminous intensity.
- the luminous intensity of bacteria is positively related to the activity of luciferin, luciferase, ATP and other luminescent elements in the bacteria. Therefore, by calculating the luminescence intensity inhibition rate of luminescent bacteria, the comprehensive toxicity of low-dose radiation to luminescent bacteria can be evaluated and a biological early warning method can be established.
- CCNG1 cyclin G1
- Chinese invention patent CN103642904A Another example is the application of the cyclin G1 (CCNG1) gene as an ionizing radiation biological dosimeter disclosed in Chinese invention patent CN103642904A.
- CCNG1 gene mRNA levels increases in direct proportion to the dose of ionizing radiation.
- the real-time fluorescence quantitative PCR method can be used for quick and easy quantitative detection at 48 hours. Therefore, CCNG1 can be used as a biological dosimeter in the low-dose ionizing radiation range.
- the CCNG1 gene expression quantitative analysis method can be used to determine the dose of low-dose ionizing radiation to humans and mammals. Assess size.
- the above-mentioned detection of radiation dose using biological principles is mainly used in low-dose measurement. Industrial radiation measurement methods based on biological principles have not yet been reported.
- the technical problem to be solved by the embodiments of the present application is to provide a method for measuring the two-dimensional distribution of industrial radiation dose based on the lag time of spore germination, and to provide a film for measuring the distribution of industrial radiation dose.
- a method for measuring two-dimensional distribution of industrial radiation dose which includes the following steps:
- the carrier is a tray with an agar layer, and the spore suspension is spread flatly on the agar layer.
- the germination agent may be one of L-alanine, AGFK, L-valine and inosine, but is not limited thereto.
- AGFK refers to L -A combination of L-asparagine, Glucose, Fructose and KCl.
- the concentration of germination agent in the germination solution is 1 ⁇ 100mM.
- the germination solution is stored in a container, and a pipe with a valve is provided on the edge of the container, and the pipe is connected to the liquid inlet.
- the vessel is placed above the glass cover and is irradiated together with the film.
- the dose of irradiation is 10 to 100 kGy.
- a film used for measuring the two-dimensional distribution of industrial radiation dose which includes a carrier and a spore pixel surface fixed on the carrier plane.
- the spore pixel surface is composed of several tiled spore pixel points.
- the film further includes a glass cover, which is placed on the carrier to form a germination chamber.
- the glass cover is provided with a liquid adding port for adding germination agent.
- the carrier is a tray with an agar layer, and the spore suspension is spread flatly on the agar layer.
- industrial irradiation has a larger dose (above 10kGy).
- the lag time of spore germination corresponds to the dose, and the lag can be utilized.
- the spores, carriers, and germination agent solutions required for making films based on spore pixels are easy to obtain and relatively cheap. They can be purchased directly from the market. The production cost is low, they are disposable products, and they can be produced in large quantities. The method is simple to operate, low in cost, accurate and has low environmental risk.
- the present invention can measure the two-dimensional distribution of industrial radiation dose through the spore pixel plane, and realizes the measurement of dose information of the entire irradiation surface. Compared with the traditional fixed-point measurement of dose information of the irradiation center, it is more targeted.
- Figure 1 is a diagram showing the relationship between the lag time of germination and fluorescence intensity of spores of the present invention after they are irradiated;
- Figure 2 is an exploded schematic diagram of the structure of the film of the present invention.
- an embodiment means that a particular feature, structure or characteristic described in connection with the embodiment can be included in at least one embodiment of the present application.
- the appearances of this phrase in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive of other embodiments. Those skilled in the art understand, both explicitly and implicitly, that the embodiments described herein may be combined with other embodiments.
- the invention provides a method for measuring the two-dimensional distribution of industrial radiation dose, which includes the following steps:
- the spore suspension Before spreading the spore suspension, it needs to be thoroughly mixed (it can be mixed by shaking, ultrasonic mixing, or a combination of both) to prevent the spores from forming clumps. Mix thoroughly before spreading it flat to ensure that the spores can be evenly and randomly distributed on the surface of the carrier.
- the spores are uniformly, single-layered, and densely distributed on the carrier plane. If the spores are stacked, no fluorescent points can be observed (only a large area of overlapping fluorescence can be observed). If the spores are too thin, only the dose at a small number of points in the plane can be measured, which affects the detection effect.
- the calibration curve is obtained by plotting the average germination lag time and the corresponding irradiation intensity; the above irradiation has been Known intensity can include but is not limited to 10kGy, 20kGy, 30kGy, 40kGy, 50kGy, 60kGy, 70kGy, 80kGy, 90kGy, 100kGy.
- a known irradiation intensity corresponds to a calibration curve.
- Some spore-forming bacteria will produce spores under harsh environmental conditions (such as extreme lack of nutrients). Spores are special dormant bodies of bacteria. They have no new metabolism inside and are stable in nature. They are very resistant to harsh environments and are not easy to die. Under suitable conditions (such as the supply of nutrients is restored and the environment is suitable for growth), the spores can germinate quickly and eventually grow into bacteria.
- the interior of the spore contains a large amount of dipicolinic acid (DPA), which is released into the surrounding environment during germination. If Tb 3+ exists in the external environment, the released DPA will chelate with Tb 3+ to form highly fluorescent Tb-DPA.
- DPA dipicolinic acid
- the emission spectrum of Tb-DPA has a significant peak in the range of 532nm to 557nm, and the intensity of the peak is proportional to the content of DPA. Therefore, the process of spore germination can be indirectly monitored by monitoring the increase in fluorescence intensity over time.
- dried spores are stable and easy to store for a long time, while spores are non-pathogens and pose no biological hazard.
- industrial irradiation has a larger dose (above 10kGy).
- the lag time of spore germination corresponds to the dose, and the lag can be utilized.
- the spores, carriers, and germination agent solutions required for making films based on spore pixels are easy to obtain and relatively cheap. They can be purchased directly from the market. The production cost is low and can be produced in large quantities. The method is simple to operate, low in cost, accurate and has low environmental risk.
- the present invention can measure the two-dimensional distribution of industrial radiation dose through the spore pixel plane, and realizes the measurement of dose information of the entire irradiation surface. Compared with the traditional fixed-point measurement of dose information of the irradiation center, it is more targeted.
- the invention provides a method for measuring the two-dimensional distribution of industrial radiation dose, which includes the following steps:
- the tray with a glass cover to form a germination cavity to cover the spores in the germination cavity;
- the glass cover is provided with a liquid adding port for adding germination agent;
- the germination lag time corresponding to each spore pixel is calculated and the average germination lag time is calculated.
- the 10kGy calibration is obtained by plotting the average germination lag time and the corresponding irradiation intensity. Curve; use the same method to obtain 20kGy calibration curve, 30kGy calibration curve, 40kGy calibration curve, 50kGy calibration curve, 60kGy calibration curve, 70kGy calibration curve, 80kGy calibration curve, 90kGy calibration curve, 100kGy calibration curve;
- the invention provides a method for measuring the two-dimensional distribution of industrial radiation dose, which includes the following steps:
- the tray with a glass cover to form a germination cavity to cover the spores in the germination cavity;
- the glass cover is provided with a liquid adding port for adding germination agent;
- the parallel beam can be understood as irradiation everywhere in the cross-section of the irradiation beam.
- the intensity is consistent; after the irradiation is completed, the germination solution containing germination agent (aspartic acid, glucose, fructose, potassium chloride, all 50mM) is added into the germination cavity, and the germination agent fully contacts the spore pixel surface.
- germination agent aspartic acid, glucose, fructose, potassium chloride, all 50mM
- the invention provides a method for measuring the two-dimensional distribution of industrial radiation dose, which includes the following steps:
- Film production Provide a circular tray as a carrier, pour hot agar (containing 1.5% agar and 100 ⁇ M TbCl 3 ), wait until it solidifies to form an agar layer, and spread a layer of spore suspension on the agar layer. Evaporate the suspension solvent to fix a layer of spore pixels on the agar layer plane, which is composed of several spore pixels;
- the tray with a glass cover to form a germination cavity to cover the spores in the germination cavity;
- the glass cover is provided with a liquid adding port for adding germination agent;
- the germination solution containing 15mM germination agent L-valine is stored in a container, and a pipe with a valve is provided on the edge of the container, and the pipe is connected to the liquid inlet.
- the vessel is arranged above the glass cover, as shown in Figure 3;
- the 50kGy calibration curve is obtained by plotting the average germination lag time and the corresponding irradiation intensity; using the same The method obtains 55kGy calibration curve, 60kGy calibration curve, 65kGy calibration curve, 70kGy calibration curve, 75kGy calibration curve, 80kGy calibration curve, 85kGy calibration curve, 90kGy calibration curve, 95kGy calibration curve, and 100kGy calibration curve;
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Physics & Mathematics (AREA)
- High Energy & Nuclear Physics (AREA)
- Molecular Biology (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Measurement Of Radiation (AREA)
Abstract
一种基于芽孢萌发滞后时间测量工业辐照剂量二维分布的方法以及用于测量工业辐照剂量二维分布的胶片,方法包括以下步骤:(1)胶片制作:在载体平面上平铺一层芽孢(3)悬液,蒸发悬液溶剂,以在载体平面上固定一层芽孢像素面(2);在载体上盖上玻璃盖(4)形成萌发腔,以将芽孢像素面(2)覆盖在萌发腔内;玻璃盖(4)上设置有加液口(6),用于加入萌发剂(7);(2)获得校准曲线:根据每个芽孢像素点平均萌发滞后时间与对应的辐照强度作图得到校准曲线;(3)测量辐照剂量:根据步骤(2)获得的校准曲线反推每个芽孢像素点的辐照剂量,即得工业辐照剂量二维分布。通过芽孢像素面(2)能够进行工业辐照剂量二维分布测量,实现了整个辐照面的剂量信息的测量,相较于传统的辐照中心剂量信息的定点测量,更具有针对性。
Description
本申请涉及辐照剂量测量技术领域,更具体地,涉及了一种测量工业辐照剂量二维分布的方法和胶片。
工业辐照的照射剂量一般为上千戈瑞(Gy),通常使用化学计量计作为辐照测量装置。其原理是某些化学物质吸收电离辐射的能量后会发生变化,这种变化与吸收的剂量大小呈对应关系且可以被测量。常见的工业辐照测量系统见下表。
目前的辐照测量设备主要基于物理或化学的原理,也有基于生物原理的辐照测量方法及设备,如中国发明专利CN104215993A公开的一种利用发光细菌进行低剂量辐射生物预警的方法,利用发光细菌对低剂量辐射的敏感性,可建立细菌接受的辐射剂量与发光强度之间的剂量-效应关系,而细菌的发光强度与菌体内的荧光素、荧光酶、ATP等发光要素的活性成正相关,因此通过计算发光细菌的发光强度抑制率,可以评估低剂量辐射对发光细菌的综合毒性,建立生物预警方法。又如中国发明专利CN103642904A公开的细胞周期蛋白G1(cyclin G1,CCNG1)基因作为电离辐射生物剂量计的应用。人淋巴母细胞受到低剂量电离辐射后,以及哺乳动物辐射后外周血淋巴细胞的CCNG1基因mRNA水平表达的增加与受到的电离辐射剂量成正比,存在一定的剂量-效应关系,于照射后24h和48h采用实时荧光定量PCR法即可快速简便地定量检测,因此,CCNG1可作为低剂量电离辐射范围的生物剂量计,可以采用CCNG1基因表达定量分析法对人体和哺乳动物受到低剂量电离辐射的剂量大小进行评估。上述采用生物学原理检测辐照剂量,主要是应用在低剂量测量,基于生物原理的工业辐照测量方法还未见有报道。
本申请实施例所要解决的技术问题是,提供了一种基于芽孢萌发滞后时间测量工业辐照剂量二维分布的方法,以及提供了一种用于测量工业辐照剂量分布的胶片。
为了解决上述技术问题,本申请采用了如下所述的技术方案:
一种测量工业辐照剂量二维分布的方法,其包括以下步骤:
(1)胶片制作:在载体平面上平铺一层芽孢悬液,蒸发悬液溶剂以在所述载体平面上固定一层芽孢像素面;在所述载体上盖上玻璃盖形成萌发腔,以将所述芽孢像素面覆盖在所述萌发腔内;所述玻璃盖上设置有加液口,用于加入萌发剂;
(2)获得校准曲线:将所述胶片放置于辐照设备下,将已知强度的辐照以平行光束射向所述胶片;辐照完毕后将含萌发剂的萌发溶液加入到所述萌发腔内,待萌发剂充分接触所述芽孢像素面后,将胶片移至荧光显微镜下,监测所述芽孢像素面的每个芽孢像素点的荧光变化,计算每个芽孢像素点对应的萌发滞后时间且计算得到平均萌发滞后时间,根据平均萌发滞后时间与对应的辐照强度作图得到校准曲线;
(3)测量辐照剂量:将所述胶片放置于辐照设备下接受辐照;辐照完毕后将含萌发剂的萌发溶液加入到所述萌发腔内,待萌发剂充分接触所述芽孢像素面后,将胶片移至荧光显微镜下,监测每个芽孢像素点的荧光变化曲线,计算每个芽孢像素点对应的萌发滞后时间,根据步骤(2)获得的多条已知强度校准曲线反推每个芽孢像素点的辐照剂量,即得工业辐照剂量二维分布。
进一步地,所述载体为具有琼脂层的托盘,所述芽孢悬液平铺在所述琼脂层上。
进一步地,所述萌发剂可以是L-丙氨酸、AGFK、L-缬氨酸(L-valine)和肌苷(inosine)中的一种,但不局限于此,所述AGFK 是指L-天冬氨酸(L-asparagine)、葡萄糖(Glucose)、果糖(Fructose)和氯化钾(KCl)的组合。
进一步地,所述萌发溶液中萌发剂浓度为1~100mM。
进一步地,所述萌发溶液储存在器皿中,所述器皿边缘设有具有阀门的管道,所述管道与所述加液口连通。
进一步地,所述器皿设置在所述玻璃盖上方,与所述胶片一同接受辐照。
进一步地,所述辐照的剂量为10~100kGy。
一种测量工业辐照剂量二维分布用的胶片,其包括载体,固设在所述载体平面上的芽孢像素面,所述芽孢像素面由平铺的若干芽孢像素点组成。
进一步地,所述胶片还包括玻璃盖,其盖设在所述载体上以形成一萌发腔,所述玻璃盖上设置有加液口,用于加入萌发剂。
进一步地,所述载体为具有琼脂层的托盘,所述芽孢悬液平铺在所述琼脂层上。
与现有技术相比,本申请实施例主要有以下有益效果:
本发明基于芽孢萌发滞后时间测量工业辐照剂量二维分布的方法中,工业辐照则剂量较大(10kGy以上),在这个剂量段芽孢萌发的滞后时间与剂量成对应关系,正好可以利用滞后时间反推所受辐照剂量。基于芽孢像素面的胶片制作所需的芽孢和载体、萌发剂溶液,取材方便且均较为廉价,可直接从市场购买,制作成本较低,一次性用品,且可大批量制作。该方法操作简便、成本低廉、准确性好、环境风险小。本发明通过芽孢像素面能够进行工业辐照剂量二维分布测量,实现了整个辐照面的剂量信息的测量,相较与传统的辐照中心剂量信息的定点测量,更具有针对性。
图1为本发明芽孢受辐照后其萌发的滞后时间与荧光强度的关系图;
图2为本发明胶片的结构分解示意图;
图中,1-托盘,2-芽孢像素面,3-芽孢,4-玻璃盖,6-加液口,7-萌发溶液,8-器皿,9-管道。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请技术领域的技术人员通常理解的含义相同;本文中在申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。本申请的说明书和权利要求书或上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
本发明提供了一种测量工业辐照剂量二维分布的方法,其包括以下步骤:
(1)胶片制作:在载体平面上平铺一层芽孢悬液,蒸发悬液溶剂以在所述载体平面上固定一层芽孢像素面;在所述载体上盖上玻璃盖形成萌发腔,以将所述芽孢像素面覆盖在所述萌发腔内;所述玻璃盖上设置有加液口,用于加入萌发剂。
芽孢悬液平铺前,需要充分混匀(可以震荡混匀,可以超声混匀,或两者联用),避免芽孢结成团块。充分混匀后再平铺,保证芽孢可以较为均匀地、随机地分布在载体平面上,即可。优选地,芽孢是均匀地、单层地、紧密地分布在载体平面上。如果芽孢出现堆叠则无法观测到荧光点(只能观察到一大片重叠的荧光),若太稀则只能测到平面内少量点上的剂量,影响检测效果。
(2)获得校准曲线:将所述胶片放置于辐照设备下,将已知强度的辐照以平行光束射向所述胶片,所述平行光束可以理解为辐照光束的横截面各处辐照强度一致;辐照完毕后将含萌发剂的萌发溶液加入到所述萌发腔内,待萌发剂充分接触所述芽孢像素面后,将胶片移至荧光显微镜下,监测所述芽孢像素面的每个芽孢像素点的荧光变化,计算每个芽孢像素点对应的萌发滞后时间且计算得到平均萌发滞后时间,根据平均萌发滞后时间与对应的辐照强度作图得到校准曲线;上述辐照的已知强度可以包括但不限于10kGy、20kGy、30kGy、40kGy、50kGy、60kGy、70kGy、80kGy、90kGy、100kGy,一个已知辐照强度对应一条校准曲线。
(3)测量辐照剂量:将所述胶片放置于辐照设备下接受辐照,实际辐照光束的横截面各处的强度不一致;辐照完毕后将含萌发剂的萌发溶液加入到所述萌发腔内,待萌发剂充分接触所述芽孢像素面后,将胶片移至荧光显微镜下,监测每个芽孢像素点的荧光变化曲线,计算每个芽孢像素点对应的萌发滞后时间,根据步骤(2)获得的多条已知强度校准曲线反推每个芽孢像素点的辐照剂量,即得工业辐照剂量二维分布。
部分产孢细菌在恶劣的环境条件下(如极度缺乏营养物质)会产生芽孢。芽孢是细菌的一种特殊的休眠体,其内部无新产代谢,性质稳定,对恶劣环境的抵抗力非常强,不易死亡。在合适的条件下(如营养物质恢复供给,环境适合生长),芽孢可以迅速萌发,生长最终长成菌体。芽孢内部含有大量的吡啶二羧酸(dipicolinic acid,DPA),在萌发时DPA候释放到周围环境中。外界环境如有Tb
3+存在,释放出来的DPA与Tb
3+螯合成强荧光的Tb-DPA。在合适的激发光下(激发波长约为278nm),Tb-DPA的发射光谱在532nm到557nm范围内有显著的峰,且峰的强度与DPA的含量成正比。于是可以通过监测荧光强度随时间的增强来间接监测芽孢萌发的过程。
芽孢在萌发时并非立刻释放DPA,而是有一段滞后时间(tlag),如图1所示。用荧光显微镜观察芽孢萌发时候的荧光曲线,此曲线对应DPA释放过程(—DPA)。如数据点较为离散可用Sigmoid函数拟合。画1-DPA的曲线(—1-DPA)。在1-DPA曲线斜率最大处作其切线(-----Tangent line),此切线在y=1(-----y=1)上的截距即为tlag。
本发明人发现,在千Gy的范围内,芽孢所受辐照剂量(D)越多,其萌发的滞后时间越长,两者呈对应关系,主要原因是由于芽孢内膜上部分的萌发剂受体(Germinant Receptors)被辐照所破坏,使得芽孢对萌发剂的反应变迟钝。于是本发明人可以用芽孢萌发的滞后时间反推芽孢受到辐照的剂量,并依据此原理进行工业辐照剂量的测量。另一方面,干燥的芽孢性质稳定,易于长期保存,而芽孢为非病原体,无生物危险。
本发明基于芽孢萌发滞后时间测量工业辐照剂量二维分布的方法中,工业辐照则剂量较大(10kGy以上),在这个剂量段芽孢萌发的滞后时间与剂量成对应关系,正好可以利用滞后时间反推所受辐照剂量。基于芽孢像素面的胶片制作所需的芽孢和载体、萌发剂溶液,取材方便且均较为廉价,可直接从市场购买,制作成本较低,可大批量制作。该方法操作简便、成本低廉、准确性好、环境风险小。本发明通过芽孢像素面能够进行工业辐照剂量二维分布测量,实现了整个辐照面的剂量信息的测量,相较与传统的辐照中心剂量信息的定点测量,更具有针对性。
下面结合实施例对本发明进行详细的说明,实施例仅是本发明的优选实施方式,不是对本发明的限定。
本发明提供了一种测量工业辐照剂量二维分布的方法,其包括以下步骤:
(1)胶片制作:提供一长方形托盘作为载体,倒入热琼脂(含1.5%的琼脂和100µM的TbCl
3),待其凝固形成琼脂层,在琼脂层上平铺一层芽孢悬液,蒸发悬液溶剂以在所述琼脂层平面上固定一层芽孢像素面,其由若干个芽孢像素点组成;
在所述托盘上盖上玻璃盖形成一个萌发腔,以将所述芽孢像素面覆盖在所述萌发腔内;所述玻璃盖上设置有加液口,用于加入萌发剂;
(2)获得校准曲线:将所述胶片放置于辐照设备下,将10kGy强度的辐照以平行光束射向所述胶片,所述平行光束可以理解为辐照光束的横截面各处辐照强度一致;辐照完毕后将含20mM的萌发剂L-丙氨酸的萌发溶液加入到所述萌发腔内,待萌发剂充分接触所述芽孢像素面后,将胶片移至荧光显微镜下,监测所述芽孢像素面的每个芽孢像素点的荧光变化,计算每个芽孢像素点对应的萌发滞后时间且计算得到平均萌发滞后时间,根据平均萌发滞后时间与对应的辐照强度作图得到10kGy校准曲线;采用同样的方法获得20kGy校准曲线、30kGy校准曲线、40kGy校准曲线、50kGy校准曲线、60kGy校准曲线、70kGy校准曲线、80kGy校准曲线、90kGy校准曲线、100kGy校准曲线;
(3)测量辐照剂量:将所述胶片放置于辐照设备下接受辐照;辐照完毕后将含20mM的萌发剂L-丙氨酸的萌发溶液加入到所述萌发腔内,待萌发剂充分接触所述芽孢像素面后,将胶片移至荧光显微镜下,监测每个芽孢像素点的荧光变化曲线,计算每个芽孢像素点对应的萌发滞后时间,根据步骤(2)获得的多条已知强度校准曲线反推每个芽孢像素点的辐照剂量,即得工业辐照剂量二维分布。
本发明提供了一种测量工业辐照剂量二维分布的方法,其包括以下步骤:
(1)胶片制作:提供一椭圆形托盘作为载体,倒入热琼脂(含1.5%的琼脂和100µM的TbCl
3),待其凝固形成琼脂层,在琼脂层上平铺一层芽孢悬液,蒸发悬液溶剂以在所述琼脂层平面上固定一层芽孢像素面,其由若干个芽孢像素点组成;
在所述托盘上盖上玻璃盖形成一个萌发腔,以将所述芽孢像素面覆盖在所述萌发腔内;所述玻璃盖上设置有加液口,用于加入萌发剂;
(2)获得校准曲线:将所述胶片放置于辐照设备下,将10kGy强度的辐照以平行光束射向所述胶片,所述平行光束可以理解为辐照光束的横截面各处辐照强度一致;辐照完毕后将含萌发剂(天冬氨酸、葡萄糖、果糖、氯化钾,均为50mM)的萌发溶液加入到所述萌发腔内,待萌发剂充分接触所述芽孢像素面后,将胶片移至荧光显微镜下,监测所述芽孢像素面的每个芽孢像素点的荧光变化,计算每个芽孢像素点对应的萌发滞后时间且计算得到平均萌发滞后时间,根据平均萌发滞后时间与对应的辐照强度作图得到10kGy校准曲线;采用同样的方法获得15kGy校准曲线、20kGy校准曲线、25kGy校准曲线、30kGy校准曲线、35kGy校准曲线、40kGy校准曲线、45kGy校准曲线、50kGy校准曲线、60kGy校准曲线;
(3)测量辐照剂量:将所述胶片放置于辐照设备下接受辐照;辐照完毕后将含萌发剂(天冬氨酸、葡萄糖、果糖、氯化钾,均为50mM)的萌发溶液加入到所述萌发腔内,待萌发剂充分接触所述芽孢像素面后,将胶片移至荧光显微镜下,监测每个芽孢像素点的荧光变化曲线,计算每个芽孢像素点对应的萌发滞后时间,根据步骤(2)获得的多条已知强度校准曲线反推每个芽孢像素点的辐照剂量,即得工业辐照剂量二维分布。
本发明提供了一种测量工业辐照剂量二维分布的方法,其包括以下步骤:
(1)胶片制作:提供一圆形托盘作为载体,倒入热琼脂(含1.5%的琼脂和100µM的TbCl
3),待其凝固形成琼脂层,在琼脂层上平铺一层芽孢悬液,蒸发悬液溶剂以在所述琼脂层平面上固定一层芽孢像素面,其由若干个芽孢像素点组成;
在所述托盘上盖上玻璃盖形成一个萌发腔,以将所述芽孢像素面覆盖在所述萌发腔内;所述玻璃盖上设置有加液口,用于加入萌发剂;
含15mM的萌发剂L-缬氨酸萌发溶液储存在器皿中,所述器皿边缘设有具有阀门的管道,所述管道与所述加液口连通。所述器皿设置在所述玻璃盖上方,如图3所示;
(2)获得校准曲线:将所述胶片和器皿一同放置于辐照设备下,将50kGy强度的辐照以平行光束射向所述胶片,所述平行光束可以理解为辐照光束的横截面各处辐照强度一致;辐照完毕后打开阀门将萌发溶液通过管道加入到所述萌发腔内,待萌发剂充分接触所述芽孢像素面后,将胶片移至荧光显微镜下,监测所述芽孢像素面的每个芽孢像素点的荧光变化,计算每个芽孢像素点对应的萌发滞后时间且计算得到平均萌发滞后时间,根据平均萌发滞后时间与对应的辐照强度作图得到50kGy校准曲线;采用同样的方法获得55kGy校准曲线、60kGy校准曲线、65kGy校准曲线、70kGy校准曲线、75kGy校准曲线、80kGy校准曲线、85kGy校准曲线、90kGy校准曲线、95kGy校准曲线、100kGy校准曲线;
(3)测量辐照剂量:将所述胶片放置于辐照设备下接受辐照;辐照完毕后打开阀门将萌发溶液通过管道加入到所述萌发腔内,待萌发剂充分接触所述芽孢像素面后,先将器皿及管道移走,然后将胶片移至荧光显微镜下,监测每个芽孢像素点的荧光变化曲线,计算每个芽孢像素点对应的萌发滞后时间,根据步骤(2)获得的多条已知强度校准曲线反推每个芽孢像素点的辐照剂量,即得工业辐照剂量二维分布。
显然,以上所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例,附图中给出了本申请的较佳实施例,但并不限制本申请的专利范围。本申请可以以许多不同的形式来实现,相反地,提供这些实施例的目的是使对本申请的公开内容的理解更加透彻全面。尽管参照前述实施例对本申请进行了详细的说明,对于本领域的技术人员来而言,其依然可以对前述各具体实施方式所记载的技术方案进行修改,或者对其中部分技术特征进行等效替换。凡是利用本申请说明书及附图内容所做的等效结构,直接或间接运用在其他相关的技术领域,均同理在本申请专利保护范围之内。
Claims (10)
- 一种测量工业辐照剂量二维分布的方法,其特征在于,其包括以下步骤:(1)胶片制作:在载体平面上平铺一层芽孢悬液,蒸发悬液溶剂以在所述载体平面上固定一层芽孢像素面;在所述载体上盖上玻璃盖形成萌发腔,以将所述芽孢像素面覆盖在所述萌发腔内;所述玻璃盖上设置有加液口,用于加入萌发剂;(2)获得校准曲线:将所述胶片放置于辐照设备下,将已知强度的辐照以平行光束射向所述胶片;辐照完毕后将含萌发剂的萌发溶液加入到所述萌发腔内,待萌发剂充分接触所述芽孢像素面后,将胶片移至荧光显微镜下,监测所述芽孢像素面的每个芽孢像素点的荧光变化,计算每个芽孢像素点对应的萌发滞后时间且计算得到平均萌发滞后时间每个芽孢像素点每个芽孢像素点,根据每个芽孢像素点平均萌发滞后时间与对应的辐照强度作图得到校准曲线;(3)测量辐照剂量:将所述胶片放置于辐照设备下接受辐照;辐照完毕后将含萌发剂的萌发溶液加入到所述萌发腔内,待萌发剂充分接触所述芽孢像素面后,将胶片移至荧光显微镜下,监测每个芽孢像素点的荧光变化曲线,计算每个芽孢像素点对应的萌发滞后时间,根据步骤(2)获得的多条已知强度校准曲线反推每个芽孢像素点的辐照剂量,即得工业辐照剂量二维分布。
- 根据权利要求1所述的测量工业辐照剂量二维分布的方法,其特征在于,所述载体为具有琼脂层的托盘,所述芽孢悬液平铺在所述琼脂层上。
- 根据权利要求1所述的测量工业辐照剂量二维分布的方法,其特征在于,所述萌发剂为L-丙氨酸(L-alanine)、AGFK、L-缬氨酸(L-valine)和肌苷(inosine)中的一种。
- 根据权利要求1所述的测量工业辐照剂量二维分布的方法,其特征在于,所述萌发溶液中萌发剂浓度为1~100mM。
- 根据权利要求1所述的测量工业辐照剂量二维分布的方法,其特征在于,所述萌发溶液储存在器皿中,所述器皿边缘设有具有阀门的管道,所述管道与所述加液口连通。
- 根据权利要求1所述的测量工业辐照剂量二维分布的方法,其特征在于,所述器皿设置在所述玻璃盖上方,与所述胶片一同接受辐照。
- 根据权利要求1所述的测量工业辐照剂量二维分布的方法,其特征在于,,所述辐照的剂量为10~100kGy。
- 一种测量工业辐照剂量二维分布用的胶片,其特征在于,其包括载体,固设在所述载体平面上的芽孢像素面,所述芽孢像素面由平铺的若干芽孢像素点组成。
- 根据权利要求8所述的测量工业辐照剂量二维分布用的胶片,其特征在于,所述胶片还包括玻璃盖,其盖设在所述载体上以形成一萌发腔,所述玻璃盖上设置有加液口,用于加入萌发剂。
- 根据权利要求8所述的测量工业辐照剂量二维分布用的胶片,其特征在于,所述载体为具有琼脂层的托盘,所述芽孢悬液平铺在所述琼脂层上。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210499681.5A CN115343746A (zh) | 2022-05-09 | 2022-05-09 | 一种测量工业辐照剂量二维分布的方法和胶片 |
CN202210499681.5 | 2022-05-09 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023217052A1 true WO2023217052A1 (zh) | 2023-11-16 |
Family
ID=83948277
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2023/092619 WO2023217052A1 (zh) | 2022-05-09 | 2023-05-06 | 一种测量工业辐照剂量二维分布的方法和胶片 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN115343746A (zh) |
WO (1) | WO2023217052A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115343746A (zh) * | 2022-05-09 | 2022-11-15 | 浙江省肿瘤医院 | 一种测量工业辐照剂量二维分布的方法和胶片 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5371004A (en) * | 1990-12-06 | 1994-12-06 | Deutsch Forschungsanstalt Fur Luft- Und Raumfahrt E.V. | Biological detection of radiation |
US20030174810A1 (en) * | 2002-03-12 | 2003-09-18 | Steris Inc. | Method and apparatus for destroying microbial contamination of mail |
CN105628663A (zh) * | 2016-01-08 | 2016-06-01 | 中国农业科学院农产品加工研究所 | 高水分食品杀菌效果的快速检验方法 |
CN106442453A (zh) * | 2016-11-17 | 2017-02-22 | 中南民族大学 | 一种快速定量测定芽孢浓度的方法 |
CN109527060A (zh) * | 2018-11-16 | 2019-03-29 | 黑龙江省科学院技术物理研究所 | 无防腐剂香肠辐照保鲜方法 |
CN110988957A (zh) * | 2019-12-24 | 2020-04-10 | 深圳大学 | 一种基于质子辐照源的深度剂量分布的测量装置及方法 |
CN115343746A (zh) * | 2022-05-09 | 2022-11-15 | 浙江省肿瘤医院 | 一种测量工业辐照剂量二维分布的方法和胶片 |
-
2022
- 2022-05-09 CN CN202210499681.5A patent/CN115343746A/zh not_active Withdrawn
-
2023
- 2023-05-06 WO PCT/CN2023/092619 patent/WO2023217052A1/zh active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5371004A (en) * | 1990-12-06 | 1994-12-06 | Deutsch Forschungsanstalt Fur Luft- Und Raumfahrt E.V. | Biological detection of radiation |
US20030174810A1 (en) * | 2002-03-12 | 2003-09-18 | Steris Inc. | Method and apparatus for destroying microbial contamination of mail |
CN105628663A (zh) * | 2016-01-08 | 2016-06-01 | 中国农业科学院农产品加工研究所 | 高水分食品杀菌效果的快速检验方法 |
CN106442453A (zh) * | 2016-11-17 | 2017-02-22 | 中南民族大学 | 一种快速定量测定芽孢浓度的方法 |
CN109527060A (zh) * | 2018-11-16 | 2019-03-29 | 黑龙江省科学院技术物理研究所 | 无防腐剂香肠辐照保鲜方法 |
CN110988957A (zh) * | 2019-12-24 | 2020-04-10 | 深圳大学 | 一种基于质子辐照源的深度剂量分布的测量装置及方法 |
CN115343746A (zh) * | 2022-05-09 | 2022-11-15 | 浙江省肿瘤医院 | 一种测量工业辐照剂量二维分布的方法和胶片 |
Non-Patent Citations (1)
Title |
---|
XIAOMING CHEN, TAN BISHENG, ZHANG JIANGUO, ZHENG CHUN, LUO JUAN, SUN YING: "Study on the sterilizing effects of fast neutron radiation on Bacillus subtilis", JOURNAL OF RADIATION RESEARCH AND RADIATION PROCESSING, vol. 25, no. 3, 20 June 2007 (2007-06-20), pages 166 - 167, XP093106820 * |
Also Published As
Publication number | Publication date |
---|---|
CN115343746A (zh) | 2022-11-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2023217052A1 (zh) | 一种测量工业辐照剂量二维分布的方法和胶片 | |
KR101376495B1 (ko) | 수중의 살아 있는 식물성 플랑크톤 세포 검출 방법 및 이의검출 장치 | |
Pedersen et al. | Lateral roots, in addition to adventitious roots, form a barrier to radial oxygen loss in Zea nicaraguensis and a chromosome segment introgression line in maize | |
Hartley et al. | Some factors that contribute to poor survival of rhizobia on preinoculated legume seed | |
JPH0611236B2 (ja) | 細胞培養装置における細胞毒性の分析 | |
AU2014257584B2 (en) | Method for a cell-based drug screening assay and the use thereof | |
CN1122147A (zh) | 快速大肠杆菌类检测系统 | |
Yung et al. | Fast sterility assessment by germinable-endospore biodosimetry | |
JP2016533727A (ja) | 内蔵型嫌気性環境生成培養デバイス及び使用方法 | |
US20130196365A1 (en) | Antibiofilm nanoporous nanostructures and method to produce same | |
US6900028B2 (en) | Reflective disc assay devices, systems and methods | |
JP2001512031A (ja) | 微生物の検知および計数の方法および器具 | |
Li et al. | Vertical gold nanowires-based surface-enhanced Raman scattering for direct detection of ocular bacteria | |
DE69521202T2 (de) | Schnell ablesbarer biologischer sterilisations-indikator | |
Johnson et al. | A rapid high throughput bioprinted colorectal cancer spheroid platform for in vitro drug-and radiation-response | |
Liu et al. | Chlorine stress mediates microbial surface attachment in drinking water systems | |
JP2001526883A (ja) | ディスク分析装置およびその使用法 | |
CN109628571A (zh) | 放射性肺炎潜伏期敏感基因定量检测方法 | |
Yabuki et al. | Micro/nano particle-based oxygen sensing film for monitoring respiration of cells cultured in a microfluidic device | |
JP2006230219A (ja) | 微生物の計数検査方法及び該方法に用いる微生物検査用粘着シート | |
Kim et al. | Determination of the dose–depth distribution of proton beam using resazurin assay in vitro and diode laser-induced fluorescence detection | |
Béchet et al. | The colorimetric assay of viability for algae (CAVA): a fast and accurate technique | |
Hassan et al. | The Use of Seed Vigour Tests for Predicting Field Emergence | |
Kramer et al. | Impact of pulsed light on cellular activity of Salmonella enterica | |
Yurudu | Study of biofilm associated bacteria on polyvinyl chloride, stainless steel and glass surfaces in a model cooling tower system with different microbiological methods |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23802824 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 18689863 Country of ref document: US |