WO2023217001A1 - 一种ecmo 设备系统电源异常自动切换供电方法及系统 - Google Patents

一种ecmo 设备系统电源异常自动切换供电方法及系统 Download PDF

Info

Publication number
WO2023217001A1
WO2023217001A1 PCT/CN2023/092366 CN2023092366W WO2023217001A1 WO 2023217001 A1 WO2023217001 A1 WO 2023217001A1 CN 2023092366 W CN2023092366 W CN 2023092366W WO 2023217001 A1 WO2023217001 A1 WO 2023217001A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
voltage
switch
mos tube
module
Prior art date
Application number
PCT/CN2023/092366
Other languages
English (en)
French (fr)
Inventor
李轶江
Original Assignee
深圳汉诺医疗科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳汉诺医疗科技有限公司 filed Critical 深圳汉诺医疗科技有限公司
Publication of WO2023217001A1 publication Critical patent/WO2023217001A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/36Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
    • A61M1/3621Extra-corporeal blood circuits
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/18General characteristics of the apparatus with alarm
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/82Internal energy supply devices
    • A61M2205/8206Internal energy supply devices battery-operated
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/82Internal energy supply devices
    • A61M2205/8237Charging means

Definitions

  • Embodiments of the present invention relate to the technical field of ECMO equipment power supply, and specifically relate to an ECMO equipment power supply method and system.
  • ECMO Extracorporeal Membrane Oxygenation
  • embodiments of the present invention provide an ECMO device power supply method and system to solve the technical problem of how to achieve safe and reliable power supply for ECMO devices.
  • embodiments of the present application provide a power supply method for ECMO equipment, the method includes:
  • the adapter output end is connected to the DC-DC buck-boost module through the first diode switch;
  • the output end of the DC-DC buck-boost module stabilizes the power supply voltage to a second preset voltage through the first voltage stabilizing module, and uses the second preset voltage to power the MCU;
  • the MCU is started, and the MCU controls the first MOS tube switch, and uses the first preset voltage to provide normal power supply to the motor.
  • the method also includes:
  • the adapter output terminal charges the battery through the charging management module
  • the battery output terminal is connected to the second diode switch through the second MOS transistor switch;
  • the second MOS transistor switch realizes the charge/discharge switching of the battery
  • the battery output terminal is connected to the DC-DC buck-boost module through the second diode switch;
  • the output end of the DC-DC buck-boost module stabilizes the power supply voltage to a second preset voltage through the first voltage stabilizing module, and uses the first preset voltage to power the MCU;
  • the MCU is started, and the MCU controls the first MOS tube switch, and uses the second preset voltage to provide normal power supply to the motor.
  • the charge/discharge switching of the battery is implemented by the second MOS transistor switch, including:
  • the charging management module When the adapter is in place and connected to the AC power supply, the charging management module inputs a high-level signal to the enable input end of the second MOS transistor switch through the internal second voltage stabilizing module.
  • the second MOS The voltage at the power supply output end of the tube switch is 0, and the second MOS tube switch is turned off;
  • the charging management module When the adapter is not in place or not connected to the AC power supply, the charging management module inputs a low level signal to the enable input end of the second MOS transistor switch through the internal second voltage stabilizing module.
  • the voltages at the power supply input terminal and the power supply output terminal of the MOS tube switch are the same, and the second MOS tube switch is turned on.
  • the method also includes:
  • the adapter output terminal charges each battery through the corresponding charging management module
  • Each battery output end is connected to the corresponding second diode switch through the corresponding second MOS transistor switch;
  • Each battery output end is connected to the DC-DC buck-boost module through the corresponding second diode switch;
  • the output end of the DC-DC buck-boost module stabilizes the power supply voltage to a second preset voltage through the first voltage stabilizing module, and uses the first preset voltage to power the MCU;
  • the MCU is started, and the MCU controls the first MOS tube switch, and uses the second preset voltage to provide normal power supply to the motor.
  • the MCU is started, the MCU controls the first MOS tube switch, and the first preset voltage is used to provide normal power supply to the motor, including:
  • the MCU controls the input of a control signal to the first MOS transistor switch through the enable input terminal;
  • the method also includes:
  • the output terminals of the first diode switch and the second diode switch are connected to the power supply input terminal of the third MOS tube switch;
  • the third MOS transistor switch including:
  • the first voltage stabilizing module When the voltage of the power supply output terminal of the first voltage stabilizing module is the second preset voltage, the first voltage stabilizing module inputs a high level signal to the enable input terminal of the third MOS transistor switch, The voltage of the power supply output terminal of the third MOS tube switch is 0, and the third MOS tube switch is turned off;
  • the first voltage stabilizing module When the voltage of the power supply output terminal of the first voltage stabilizing module is 0, the first voltage stabilizing module inputs a low-level signal to the enable input terminal of the third MOS transistor switch, and the third MOS transistor The voltage of the power supply input terminal and the power supply output terminal of the switch is the same, the third MOS tube switch is turned on, and the voltage of the power supply output terminal of the third MOS tube switch is used to supply power to the motor.
  • the method also includes:
  • the voltage of the power supply output terminal of the third MOS tube switch is used to supply power to the alarm device, and the alarm device implements an alarm.
  • the embodiment of the present application provides an ECMO device power supply system and an adapter, and the adapter is powered by an AC power supply;
  • the DC-DC step-up and step-down module is connected to the DC-DC step-up and step-down module from the adapter output end through the first diode switch; the power supply voltage is stabilized to the first preset voltage through the DC-DC step-up and step-down module;
  • the first voltage stabilizing module stabilizes the power supply voltage to the second preset voltage from the output end of the DC-DC voltage boosting and bucking module through the first voltage stabilizing module;
  • the MCU uses the second preset voltage to power the MCU; the MCU is started, the MCU controls the first MOS tube switch, and the first preset voltage is used to provide normal power supply to the motor.
  • system further includes: a charging management module and a battery; the adapter output terminal charges the battery through the charging management module;
  • the battery output terminal is connected to the second diode switch through the second MOS tube switch;
  • the enable input terminal of the second MOS tube switch is connected to the second voltage stabilizing module embedded inside the charging management module;
  • the second MOS transistor switch realizes the charge/discharge switching of the battery;
  • the battery output end is connected to the DC-DC buck-boost module through the second diode switch; the power supply voltage is stabilized to the first preset voltage through the DC-DC buck-boost module; the DC-DC voltage boost module The output end of the buck-boost module stabilizes the supply voltage to a second preset voltage through the first voltage stabilizing module, and uses the first preset voltage to power the MCU;
  • the MCU is started, and the MCU controls the first MOS tube switch, and uses the second preset voltage to provide normal power supply to the motor.
  • the charge/discharge switching of the battery is implemented by the second MOS transistor switch, including:
  • the charging management module When the adapter is in place and connected to the AC power supply, the charging management module inputs a high-level signal to the enable input end of the second MOS transistor switch through the internal second voltage stabilizing module.
  • the second MOS The voltage at the power supply output end of the tube switch is 0, and the second MOS tube switch is turned off;
  • the charging management module When the adapter is not in place or not connected to the AC power supply, the charging management module inputs a low level signal to the enable input end of the second MOS transistor switch through the internal second voltage stabilizing module.
  • the voltages at the power supply input terminal and the power supply output terminal of the MOS tube switch are the same, and the second MOS tube switch is turned on.
  • a charging management module a second MOS transistor switch, and a second diode switch are provided corresponding to each battery;
  • the adapter output terminal charges each battery through the corresponding charging management module
  • Each battery output end is connected to the corresponding second diode switch through the corresponding second MOS transistor switch;
  • Each battery output end is connected to the DC-DC buck-boost module through the corresponding second diode switch;
  • the output end of the DC-DC buck-boost module stabilizes the power supply voltage to a second preset voltage through the first voltage stabilizing module, and uses the first preset voltage to power the MCU;
  • the MCU is started, and the MCU controls the first MOS tube switch, and uses the second preset voltage to provide normal power supply to the motor.
  • the MCU is started, the MCU controls the first MOS tube switch, and the first preset voltage is used to provide normal power supply to the motor, including:
  • the MCU controls the input of a control signal to the first MOS transistor switch through the enable input terminal;
  • the output terminals of the first diode switch and the second diode switch are connected to the power supply input terminal of the third MOS tube switch;
  • the third MOS transistor switch including:
  • the first voltage stabilizing module When the voltage of the power supply output terminal of the first voltage stabilizing module is the second preset voltage, the first voltage stabilizing module inputs a high level signal to the enable input terminal of the third MOS transistor switch, The voltage of the power supply output terminal of the third MOS tube switch is 0, and the third MOS tube switch is turned off;
  • the first voltage stabilizing module When the voltage of the power supply output terminal of the first voltage stabilizing module is 0, the first voltage stabilizing module inputs a low-level signal to the enable input terminal of the third MOS transistor switch, and the third MOS transistor The voltage of the power supply input terminal and the power supply output terminal of the switch is the same, the third MOS tube switch is turned on, and the voltage of the power supply output terminal of the third MOS tube switch is used to supply power to the motor.
  • the voltage of the power supply output terminal of the third MOS tube switch is used to supply power to the alarm device, and the alarm device implements an alarm.
  • the embodiments of the present application provide an ECMO device power supply method and system.
  • the AC power supply supplies power to the DC-DC step-up and step-down module through the adapter, and the DC-DC step-up and step-down module stabilizes the power supply voltage to The first preset voltage; at the same time, the output end of the DC-DC buck-boost module stabilizes the power supply voltage to the second preset voltage through the first voltage stabilizing module, and uses the second preset voltage to power the MCU; the MCU is started, and the MCU Control the first MOS tube switch and use the first preset voltage to provide normal power supply to the motor.
  • the embodiment of the present invention uses the MCU to control the switching tube to realize switching power supply control of the ECMO device through software, and has the characteristics of high output accuracy, high efficiency, reliable performance and other characteristics.
  • Figure 1 is a schematic diagram of an ECMO equipment power supply system provided by an embodiment of the present invention
  • Figure 2 is a schematic diagram of power supply switching of an ECMO device power supply method provided by an embodiment of the present invention.
  • the purpose of the embodiments of the present invention is to provide a safe and reliable power supply solution for ECMO equipment.
  • an embodiment of the present application provides an ECMO device power supply system, which specifically includes: an adapter 1, a DC-DC voltage boosting and bucking module 2, a first voltage stabilizing module 3, and an MCU 4.
  • the adapter 1 is powered by the AC power supply; the output end of the adapter 1 is connected to the DC-DC buck-boost module 2 through the first diode switch 7; the power supply voltage is stabilized to the third voltage through the DC-DC buck-boost module 2.
  • the first preset voltage is selected as 24V
  • the first voltage stabilizing module 3 is selected as LDO (low dropout regulator, which is a low dropout linear voltage regulator.
  • LDO low dropout regulator
  • Traditional linear voltage regulators such as the 78XX series of chips, require the input voltage to be at least 2V to 3V higher than the output voltage, otherwise they will not work properly. But in some cases, such conditions are obviously too harsh. For example, if 5V is converted to 3.3V, the voltage difference between the input and output is only 1.7v. Obviously, this does not meet the working conditions of traditional linear regulators.
  • chip manufacturers have developed the LDO type voltage conversion chip)
  • the second preset voltage is selected as 3.3V.
  • the first MOS tube switch 5 is selected as a three-state gate circuit.
  • An ECMO device power supply system uses an AC power supply to power a DC-DC step-up and step-down module through an adapter, and the DC-DC step-up and step-down module stabilizes the power supply voltage to a first preset voltage; at the same time, the DC -The output end of the DC step-up and step-down module stabilizes the power supply voltage to the second preset voltage through the first voltage stabilizing module, and uses the second preset voltage to power the MCU; the MCU is started, and the MCU controls the first MOS tube switch, using the second preset voltage.
  • a preset voltage provides normal power supply to the motor.
  • the embodiment of the present invention uses the MCU to control the switching tube to realize switching power supply control of the ECMO device through software, and has the characteristics of high output accuracy, high efficiency, reliable performance and other characteristics.
  • an ECMO device power supply system provided by an embodiment of the present application also includes: a charging management module 8 and a battery 9; the output end of the adapter 1 charges the battery 9 through the charging management module 8; the output end of the battery 9 passes through a second
  • the MOS tube switch 10 is connected to the second diode switch 11; the enable input end of the second MOS tube switch 10 is connected to the second voltage stabilizing module 15 embedded inside the charging management module 8; the second MOS tube switch 10 realizes the charge/discharge switching of the battery 9; the output end of the battery 9 is connected to the DC-DC step-up and step-down module 2 through the second diode switch 11; the power supply voltage is stabilized to the first level through the DC-DC step-up and step-down module 2.
  • Preset voltage the output end of the DC-DC step-up and step-down module 2 stabilizes the power supply voltage to the second preset voltage through the first voltage stabilizing module 3, and uses the first preset voltage to power the MCU 4; start the MCU 4, and MCU 4 controls the first MOS tube switch 5 and uses the second preset voltage to provide normal power supply to the motor 6.
  • the second voltage stabilizing module 15 is also selected as an LDO (low dropout regulator, a low dropout linear voltage regulator), and the second MOS tube switch 10 is selected as a NOT gate plus an AND gate circuit.
  • LDO low dropout regulator, a low dropout linear voltage regulator
  • the charging management module controls the second MOS tube switch to charge the battery, and at the same time, the adapter controls the first MOS tube switch through the MCU to charge the motor. Provide power.
  • the charging management module controls the second MOS tube switch, and the battery controls the first MOS tube switch through the MCU to power the motor. In this way, when the adapter is not in place or not connected to the AC power supply, the second MOS transistor switch switches from battery charging to battery discharging to ensure power supply to the motor.
  • a charging management module 8 a second MOS transistor switch 10, and a second diode switch 11 are provided corresponding to each battery; as shown in Figure 1 , taking two batteries 9 as an example in Figure 1, the output end of the adapter 1 charges each battery 9 respectively through the corresponding charging management module 8; the output end of each battery 9 is connected to the Corresponding to the second diode switch 11; connect the enable input end of each second MOS tube switch 10 to the second voltage stabilizing module 15 embedded in the corresponding charging management module 8; from each second MOS tube switch 10 Realize the charge/discharge switching of the corresponding battery 9; the output end of each battery 9 is connected to the DC-DC step-up and step-down module 2 through the corresponding second diode switch 11; the power supply voltage is supplied through the DC-DC step-up and step-down module 2 Stabilize to the first preset voltage; the output end of the DC-DC buck-boost module 2 stabilizes the power supply voltage to the second
  • the motor is connected to a battery as a backup pump drive power supply, which also creates the risk of the motor stalling if the battery dies.
  • a battery as a backup pump drive power supply
  • the output terminals of the first diode switch 7 and each of the above-mentioned second diode switches 11 are connected to the power supply input terminal of the third MOS tube switch 12; the power supply output terminal of the third MOS tube switch 12 and The enable input end is connected to the motor 6 and the first voltage stabilizing module 3 respectively; when the first voltage stabilizing module 3 is abnormal and cannot supply power to the MCU 4, the power supply switching is realized through the third MOS tube switch 12.
  • the third MOS transistor switch 12 is also selected as a NOT gate plus an AND gate circuit.
  • the hardware automatically switches the power supply mode through the third MOS tube switch to ensure that the motor can operate normally.
  • an ECMO device power supply system provided by a real-time example of the present invention also includes: an alarm circuit 13 and an alarm device 14 .
  • the power supply output end of the third MOS tube switch 12 is connected to the alarm device 14 through the alarm circuit 13; when the voltages of the power supply input end and the power supply output end of the third MOS tube switch 12 are the same, the third MOS tube switch 12 is used.
  • the voltage of the power supply output terminal supplies power to the alarm device 14, and the alarm device 14 implements the alarm.
  • the alarm device 14 may be selected as a buzzer.
  • the normal power supply of the motor can be ensured under different conditions.
  • an alarm prompt is activated through the hardware to alert the clinician or nurse.
  • embodiments of the present invention also disclose a power supply method for ECMO equipment.
  • An ECMO device power supply method disclosed in the embodiment of the present invention will be introduced in detail below in conjunction with the above-described ECMO device power supply system.
  • the adapter 1 is powered by the AC power supply; the output end of the adapter 1 is connected to the DC-DC buck-boost module 2 through the first diode switch 7; the power supply voltage is stabilized to the first preset value through the DC-DC buck-boost module 2.
  • voltage; the output end of the DC-DC step-up and step-down module 2 stabilizes the power supply voltage to the second preset voltage through the first voltage stabilizing module 3; uses the second preset voltage to power the MCU 4; starts the MCU 4, and the MCU 4. Control the first MOS tube switch 5 to use the first preset voltage to provide normal power supply to the motor 6.
  • the first preset voltage is selected as 24V
  • the first voltage stabilizing module 3 is selected as LDO (low dropout regulator, which is a low dropout linear voltage regulator.
  • LDO low dropout regulator
  • Traditional linear voltage regulators such as the 78XX series of chips, require the input voltage to be at least 2V to 3V higher than the output voltage, otherwise they will not work properly. But in some cases, such conditions are obviously too harsh. For example, if 5V is converted to 3.3V, the voltage difference between the input and output is only 1.7v. Obviously, this does not meet the working conditions of traditional linear regulators.
  • chip manufacturers have developed the LDO type voltage conversion chip)
  • the second preset voltage is selected as 3.3V.
  • the first MOS tube switch 5 is selected as a three-state gate circuit.
  • the MCU is started, and the MCU controls the first MOS tube switch, and uses the first preset voltage to provide normal power supply to the motor, including: the MCU 4 controls the input of a control signal to the first MOS tube switch 5 through the enable input terminal. ;
  • the control signal at the enable input terminal is a high-level signal, the voltages at the power supply input terminal and the power supply output terminal of the first MOS tube switch 5 are the same, and the first MOS tube switch 5 is turned on; when the control signal at the enable input terminal is low level signal, the voltage at the power supply output terminal of the first MOS tube switch 5 is 0, and the first MOS tube switch 5 is turned off.
  • An ECMO device power supply method uses an AC power supply to power a DC-DC step-up and step-down module through an adapter, and the DC-DC step-up and step-down module stabilizes the power supply voltage to a first preset voltage; at the same time, the DC -The output end of the DC step-up and step-down module stabilizes the power supply voltage to the second preset voltage through the first voltage stabilizing module, and uses the second preset voltage to power the MCU; the MCU is started, and the MCU controls the first MOS tube switch, using the second preset voltage.
  • a preset voltage provides normal power supply to the motor.
  • the embodiment of the present invention uses the MCU to control the switching tube to realize switching power supply control of the ECMO device through software, and has the characteristics of high output accuracy, high efficiency, reliable performance and other characteristics.
  • an ECMO device power supply system provided by a real-time example of the present invention also includes: connecting the output end of the first diode switch 7 to the power supply input end of the third MOS tube switch 12;
  • the power supply output and enable input of the three MOS tube switch 12 are connected to the motor 6 and the first voltage stabilizing module 3 respectively; when the first voltage stabilizing module 3 is abnormal and cannot power the MCU 4, the third MOS tube switch 12 Realize power supply switching.
  • the third MOS transistor switch 10 is selected as a NOT gate plus an AND gate circuit.
  • power supply switching is implemented through the third MOS transistor switch, including: when the voltage of the power supply output terminal of the first voltage stabilizing module 3 is the second preset voltage, The first voltage stabilizing module 3 inputs a high level signal to the enable input terminal of the third MOS tube switch 12, the voltage of the power supply output terminal of the third MOS tube switch 12 is 0, and the third MOS tube switch 12 is turned off; when the third MOS tube switch 12 When the voltage of the power supply output terminal of a voltage stabilizing module 3 is 0, the first voltage stabilizing module 3 inputs a low-level signal to the enable input terminal of the third MOS tube switch 12, and the power supply input terminal of the third MOS tube switch 12 and The voltages at the power supply output terminals are the same, the third MOS tube switch 12 is turned on, and the voltage at the power supply output terminal of the third MOS tube switch 12 is used to supply power to the motor 6 .
  • the hardware automatically switches the power supply mode through the third MOS tube switch to ensure that the motor can operate normally.
  • the ECMO device power supply method disclosed in the embodiment of the present invention also includes: connecting the power supply output end of the third MOS tube switch 12 to the alarm device 14 through the alarm circuit 13; when the power supply input end of the third MOS tube switch 12 When the voltage of the power supply output terminal is the same, the voltage of the power supply output terminal of the third MOS tube switch 12 is used to supply power to the alarm device 14, and the alarm device 14 implements an alarm.
  • the alarm device 14 may be selected as a buzzer.
  • the normal power supply of the motor can be ensured under different conditions.
  • an alarm prompt is activated through the hardware to alert the clinician or nurse.
  • the output end of the adapter 1 is also connected to the battery 9 through the charging management module 8.
  • the output end of the adapter 1 is also connected to the battery 9.
  • the battery 9 is charged through the charging management module 8 .
  • the charge/discharge switching of the battery is realized by the second MOS transistor switch, which specifically includes: when the adapter 1 is in place and connected to the AC power supply, the charging management module 8 passes the internal second voltage stabilizing module 15 to The enable input terminal of the second MOS tube switch 10 inputs a high-level signal, the voltage of the power supply output terminal of the second MOS tube switch 10 is 0, and the second MOS tube switch 10 is disconnected; when the adapter 1 is not in place or is not connected to the AC power supply When turned on, the charging management module 8 inputs a low-level signal to the enable input terminal of the second MOS tube switch 10 through the internal second voltage stabilizing module 15.
  • the power supply input terminal and power supply output terminal of the second MOS tube switch 10 are The voltages are the same, and the second MOS transistor switch 10 is turned on.
  • the second voltage stabilizing module 15 is also selected as an LDO (low dropout regulator, a low dropout linear voltage regulator), and the second MOS tube switch 10 is also selected as a NOT gate plus an AND gate circuit.
  • LDO low dropout regulator, a low dropout linear voltage regulator
  • the output terminal of the battery 9 is connected to the second diode switch 11 through the second MOS transistor switch 10; the enable of the second MOS transistor switch 10 is The input end is connected to the second voltage stabilizing module 15 embedded inside the charging management module 8; the second MOS tube switch 10 realizes the charge/discharge switching of the battery 9; the output end of the battery 9 is connected to DC through the second diode switch 11 -DC step-up and step-down module 2; the power supply voltage is stabilized to the first preset voltage through the DC-DC step-up and step-down module 2; the output end of the DC-DC step-up and step-down module 2 stabilizes the power supply voltage through the first voltage stabilizing module 3 to the second preset voltage, the first preset voltage is used to power the MCU 4; the MCU 4 is started, the MCU 4 controls the first MOS tube switch 5, and the second preset voltage is used to provide normal power supply to the motor 6.
  • the charging management module controls the second MOS tube switch to charge the battery, and at the same time, the adapter controls the first MOS tube switch through the MCU to charge the motor. Provide power.
  • the charging management module controls the second MOS tube switch, and the battery controls the first MOS tube switch through the MCU to power the motor. In this way, when the adapter is not in place or not connected to the AC power supply, the second MOS transistor switch switches from battery charging to battery discharging to ensure power supply to the motor.
  • a charging management module 8 a second MOS transistor switch 10, and a second diode switch 11 are provided corresponding to each battery; as shown in Figure 1 , taking two batteries 9 as an example in Figure 1, the output end of the adapter 1 charges each battery 9 respectively through the corresponding charging management module 8; the output end of each battery 9 is connected to the Corresponding to the second diode switch 11; connect the enable input end of each second MOS tube switch 10 to the second voltage stabilizing module 15 embedded in the corresponding charging management module 8; from each second MOS tube switch 10 Realize the charge/discharge switching of the corresponding battery 9; the output end of each battery 9 is connected to the DC-DC step-up and step-down module 2 through the corresponding second diode switch 11; the power supply voltage is supplied through the DC-DC step-up and step-down module 2 Stabilize to the first preset voltage; the output end of the DC-DC buck-boost module 2 stabilizes the power supply voltage to the second
  • the motor is connected to a battery as a backup pump drive power supply, which also creates the risk of the motor stalling if the battery dies.
  • a battery as a backup pump drive power supply
  • the MCU is started, and the MCU controls the first MOS tube switch, and uses the first preset voltage to provide normal power supply to the motor, including: the MCU 4 controls the input of a control signal to the first MOS tube switch 5 through the enable input terminal. ;
  • the control signal at the enable input terminal is a high-level signal, the voltages at the power supply input terminal and the power supply output terminal of the first MOS tube switch 5 are the same, and the first MOS tube switch 5 is turned on; when the control signal at the enable input terminal is low level signal, the voltage at the power supply output terminal of the first MOS tube switch 5 is 0, and the first MOS tube switch 5 is turned off.
  • An embodiment of the present application provides a power supply method for ECMO equipment.
  • the AC power supply supplies power to a DC-DC step-up and step-down module through an adapter.
  • the DC-DC step-up and step-down module stabilizes the power supply voltage to a first preset voltage; at the same time, the DC-DC step-up and step-down module stabilizes the power supply voltage to a first preset voltage.
  • the output end of the DC step-up and step-down module stabilizes the power supply voltage to the second preset voltage through the first voltage stabilizing module, and uses the second preset voltage to power the MCU; the MCU is started, and the MCU controls the first MOS tube switch, using the second preset voltage.
  • a preset voltage provides normal power supply to the motor.
  • the embodiment of the present invention uses the MCU to control the switching tube to realize switching power supply control of the ECMO device through software, and has the characteristics of high output accuracy, high efficiency, reliable performance and other characteristics.
  • an ECMO device power supply method provided by a real-time example of the present invention also includes: connecting the output end of the first diode switch 7 to the power supply input end of the third MOS tube switch 12;
  • the power supply output and enable input of the three MOS tube switch 12 are connected to the motor 6 and the first voltage stabilizing module 3 respectively; when the first voltage stabilizing module 3 is abnormal and cannot power the MCU 4, the third MOS tube switch 12 Realize power supply switching.
  • the third MOS transistor switch when the first voltage stabilizing module is abnormal and cannot power the MCU, power supply switching is implemented through the third MOS transistor switch, specifically including: when the voltage of the power supply output terminal of the first voltage stabilizing module 3 is the second preset voltage. , the first voltage stabilizing module 3 inputs a high level signal to the enable input terminal of the third MOS tube switch 12, the voltage of the power supply output terminal of the third MOS tube switch 12 is 0, and the third MOS tube switch 12 is turned off; when When the voltage of the power supply output terminal of the first voltage stabilizing module 3 is 0, the first voltage stabilizing module 3 inputs a low-level signal to the enable input terminal of the third MOS tube switch 12, and the power supply input terminal of the third MOS tube switch 12 The voltage at the power supply output terminal is the same, the third MOS tube switch 12 is turned on, and the voltage at the power supply output terminal of the third MOS tube switch 12 is used to supply power to the motor 6 .
  • the hardware automatically switches the power supply mode through the third MOS tube switch to ensure that the motor can operate normally.
  • the ECMO device power supply method disclosed in the embodiment of the present invention also includes: connecting the power supply output end of the third MOS tube switch 12 to the alarm device 14 through the alarm circuit 13; when the power supply input end of the third MOS tube switch 12 When the voltage of the power supply output terminal is the same, the voltage of the power supply output terminal of the third MOS tube switch 12 is used to supply power to the alarm device 14, and the alarm device 14 implements an alarm.
  • the alarm device 14 may be selected as a buzzer.
  • the normal power supply of the motor can be ensured under different conditions.
  • an alarm prompt is activated through the hardware to alert the clinician or nurse.

Landscapes

  • Health & Medical Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Biomedical Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Anesthesiology (AREA)
  • Cardiology (AREA)
  • Hematology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Direct Current Feeding And Distribution (AREA)

Abstract

一种ECMO设备供电方法及系统,由交流电源通过适配器(1)为DC-DC升降压模块(2)供电,经DC-DC升降压模块(2)将供电电压稳定至第一预设电压;同时由DC-DC升降压模块(2)输出端经过第一稳压模块(3)将供电电压稳定至第二预设电压,利用第二预设电压为MCU(4)供电;该MCU(4)启动,由MCU(4)控制第一MOS管开关(5),利用第一预设电压为电机(6)正常供电。该供电方法通过MCU(4)控制第一MOS管开关(5)来实现通过软件对ECMO设备的切换供电控制,具有高输出精度、高效率、性能可靠等特点。

Description

[根据细则26改正 18.05.2023]一种ECMO设备系统电源异常自动切换供电方法及系统 技术领域
本发明实施例涉及ECMO设备供电技术领域,具体涉及一种ECMO设备供电方法及系统。
背景技术
ECMO(Extracorporeal Membrane Oxygenation,体外膜肺氧合)主要用于对重症心肺功能衰竭患者提供持续的体外呼吸与循环,以维持患者生命。临床上使用ECMO设备时,泵驱动(电机)工作中途不能停电机,除非人为操作关闭,此时就需要保证泵驱动供电要稳定和可靠。
发明内容
为此,本发明实施例提供一种ECMO设备供电方法及系统,以解决如何对ECMO设备实现安全可靠供电的技术问题。
为了实现上述目的,本发明实施例提供如下技术方案:
根据本发明实施例的第一方面,本申请实施例提供了一种ECMO设备供电方法,所述方法包括:
由交流电源为适配器通电;
由适配器输出端经过第一二极管开关连接至DC-DC升降压模块;
经所述DC-DC升降压模块将供电电压稳定至第一预设电压;
由DC-DC升降压模块输出端经过第一稳压模块将供电电压稳定至第二预设电压,利用所述第二预设电压为MCU供电;
将所述MCU启动,由所述MCU控制第一MOS管开关,利用所述第一预设电压为电机正常供电。
进一步地,所述方法还包括:
由所述适配器输出端经过充电管理模块为电池充电;
由所述电池输出端经过第二MOS管开关连接至第二二极管开关;
将所述第二MOS管开关的使能输入端连接至嵌入所述充电管理模块内部的第二稳压模块;
由第二MOS管开关实现所述电池的充/放电切换;
由所述电池输出端经过第二二极管开关连接至DC-DC升降压模块;
经所述DC-DC升降压模块将供电电压稳定至第一预设电压;
由所述DC-DC升降压模块输出端经过第一稳压模块将供电电压稳定至第二预设电压,利用所述第一预设电压为MCU供电;
将所述MCU启动,由所述MCU控制第一MOS管开关,利用所述第二预设电压为电机正常供电。
进一步地,由第二MOS管开关实现所述电池的充/放电切换,包括:
当所述适配器在位并与交流电源接通时,由所述充电管理模块通过内部的第二稳压模块向第二MOS管开关的使能输入端输入高电平信号,所述第二MOS管开关的供电输出端的电压为0,所述第二MOS管开关断开;
当所述适配器不在位或未与交流电源接通时,由所述充电管理模块通过内部的第二稳压模块向第二MOS管开关的使能输入端输入低电平信号,所述第二MOS管开关的供电输入端和供电输出端的电压相同,所述第二MOS管开关接通。
进一步地,所述方法还包括:
所述电池为多个,与各个电池相对应设置有一个充电管理模块、一个第二MOS管开关、第二二极管开关;
由所述适配器输出端经过相对应的充电管理模块分别为各个电池充电;
由各个电池输出端经过相对应的第二MOS管开关连接至相对应第二二极管开关;
将各个第二MOS管开关的使能输入端连接至嵌入相对应的充电管理模块内部的第二稳压模块;
由各个第二MOS管开关实现相对应电池的充/放电切换;
由各个电池输出端经过相对应第二二极管开关连接至DC-DC升降压模块;
经所述DC-DC升降压模块将供电电压稳定至第一预设电压;
由所述DC-DC升降压模块输出端经过第一稳压模块将供电电压稳定至第二预设电压,利用所述第一预设电压为MCU供电;
将所述MCU启动,由所述MCU控制第一MOS管开关,利用所述第二预设电压为电机正常供电。
进一步地,将所述MCU启动,由所述MCU控制第一MOS管开关,利用所述第一预设电压为电机正常供电,包括:
由所述MCU控制通过使能输入端向所述第一MOS管开关输入控制信号;
当所述使能输入端的控制信号为高电平信号时,所述第一MOS管开关的供电输入端和供电输出端的电压相同,所述第一MOS管开关接通;
当所述使能输入端的控制信号为低电平信号时,所述第一MOS管开关的供电输出端的电压为0,所述第一MOS管开关断开。
进一步地,所述方法还包括:
由所述第一二极管开关和所述第二极管开关输出端连接至第三MOS管开关的供电输入端;
将所述第三MOS管开关的供电输出端和使能输入端分别连接至所述电机和所述第一稳压模块;
当所述第一稳压模块出现异常,无法为MCU供电时,通过所述第三MOS管开关实现供电切换。
进一步地,当所述第一稳压模块出现异常,无法为MCU供电时,通过所述第三MOS管开关实现供电切换,包括:
当所述第一稳压模块的供电输出端的电压为所述第二预设电压时,由所述第一稳压模块向所述第三MOS管开关的使能输入端输入高电平信号,所述第三MOS管开关的供电输出端的电压为0,所述第三MOS管开关断开;
当所述第一稳压模块的供电输出端的电压为0时,由所述第一稳压模块向所述第三MOS管开关的使能输入端输入低电平信号,所述第三MOS管开关的供电输入端和供电输出端的电压相同,所述第三MOS管开关接通,利用所述第三MOS管开关的供电输出端的电压为所述电机供电。
进一步地,所述方法还包括:
将所述第三MOS管开关的供电输出端经报警电路连接至报警设备;
当所述第三MOS管开关的供电输入端和供电输出端的电压相同时,利用所述第三MOS管开关的供电输出端的电压为所述报警设备供电,由所述报警设备实现报警。
根据本发明实施例的第二方面,本申请实施例提供了一种ECMO设备供电系统,适配器,由交流电源为所述适配器通电;
DC-DC升降压模块,由适配器输出端经过第一二极管开关连接至DC-DC升降压模块;经所述DC-DC升降压模块将供电电压稳定至第一预设电压;
第一稳压模块,由DC-DC升降压模块输出端经过第一稳压模块将供电电压稳定至第二预设电压;
MCU,利用所述第二预设电压为MCU供电;将所述MCU启动,由所述MCU控制第一MOS管开关,利用所述第一预设电压为电机正常供电。
进一步地,所述系统还包括:充电管理模块和电池;由所述适配器输出端经过充电管理模块为电池充电;
由所述电池输出端经过第二MOS管开关连接至第二二极管开关;将所述第二MOS管开关的使能输入端连接至嵌入所述充电管理模块内部的第二稳压模块;由第二MOS管开关实现所述电池的充/放电切换;
由所述电池输出端经过第二二极管开关连接至DC-DC升降压模块;经所述DC-DC升降压模块将供电电压稳定至第一预设电压;由所述DC-DC升降压模块输出端经过第一稳压模块将供电电压稳定至第二预设电压,利用所述第一预设电压为MCU供电;
将所述MCU启动,由所述MCU控制第一MOS管开关,利用所述第二预设电压为电机正常供电。
进一步地,由第二MOS管开关实现所述电池的充/放电切换,包括:
当所述适配器在位并与交流电源接通时,由所述充电管理模块通过内部的第二稳压模块向第二MOS管开关的使能输入端输入高电平信号,所述第二MOS管开关的供电输出端的电压为0,所述第二MOS管开关断开;
当所述适配器不在位或未与交流电源接通时,由所述充电管理模块通过内部的第二稳压模块向第二MOS管开关的使能输入端输入低电平信号,所述第二MOS管开关的供电输入端和供电输出端的电压相同,所述第二MOS管开关接通。
进一步地,所述电池为多个,与各个电池相对应设置有一个充电管理模块、一个第二MOS管开关、第二二极管开关;
由所述适配器输出端经过相对应的充电管理模块分别为各个电池充电;
由各个电池输出端经过相对应的第二MOS管开关连接至相对应第二二极管开关;
将各个第二MOS管开关的使能输入端连接至嵌入相对应的充电管理模块内部的第二稳压模块;
由各个第二MOS管开关实现相对应电池的充/放电切换;
由各个电池输出端经过相对应第二二极管开关连接至DC-DC升降压模块;
经所述DC-DC升降压模块将供电电压稳定至第一预设电压;
由所述DC-DC升降压模块输出端经过第一稳压模块将供电电压稳定至第二预设电压,利用所述第一预设电压为MCU供电;
将所述MCU启动,由所述MCU控制第一MOS管开关,利用所述第二预设电压为电机正常供电。
进一步地,将所述MCU启动,由所述MCU控制第一MOS管开关,利用所述第一预设电压为电机正常供电,包括:
由所述MCU控制通过使能输入端向所述第一MOS管开关输入控制信号;
当所述使能输入端的控制信号为高电平信号时,所述第一MOS管开关的供电输入端和供电输出端的电压相同,所述第一MOS管开关接通;
当所述使能输入端的控制信号为低电平信号时,所述第一MOS管开关的供电输出端的电压为0,所述第一MOS管开关断开。
进一步地,由所述第一二极管开关和所述第二极管开关输出端连接至第三MOS管开关的供电输入端;
将所述第三MOS管开关的供电输出端和使能输入端分别连接至所述电机和所述第一稳压模块;
当所述第一稳压模块出现异常,无法为MCU供电时,通过所述第三MOS管开关实现供电切换。
进一步地,当所述第一稳压模块出现异常,无法为MCU供电时,通过所述第三MOS管开关实现供电切换,包括:
当所述第一稳压模块的供电输出端的电压为所述第二预设电压时,由所述第一稳压模块向所述第三MOS管开关的使能输入端输入高电平信号,所述第三MOS管开关的供电输出端的电压为0,所述第三MOS管开关断开;
当所述第一稳压模块的供电输出端的电压为0时,由所述第一稳压模块向所述第三MOS管开关的使能输入端输入低电平信号,所述第三MOS管开关的供电输入端和供电输出端的电压相同,所述第三MOS管开关接通,利用所述第三MOS管开关的供电输出端的电压为所述电机供电。
进一步地,将所述第三MOS管开关的供电输出端经报警电路连接至报警设备;
当所述第三MOS管开关的供电输入端和供电输出端的电压相同时,利用所述第三MOS管开关的供电输出端的电压为所述报警设备供电,由所述报警设备实现报警。
与现有技术相比,本申请实施例提供的一种ECMO设备供电方法及系统,由交流电源通过适配器为DC-DC升降压模块供电,经DC-DC升降压模块将供电电压稳定至第一预设电压;同时由DC-DC升降压模块输出端经过第一稳压模块将供电电压稳定至第二预设电压,利用第二预设电压为MCU供电;述MCU启动,由MCU控制第一MOS管开关,利用第一预设电压为电机正常供电。本发明实施例通过MCU控制开关管来实现通过软件对ECMO设备的切换供电控制,具有高输出精度、高效率、性能可靠等特点。
附图说明
为了更清楚地说明本发明的实施方式或现有技术中的技术方案,下面将对实施方式或现有技术描述中所需要使用的附图作简单地介绍。显而易见地,下面描述中的附图仅仅是示例性的,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图引伸获得其它的实施附图。
本说明书所绘示的结构、比例、大小等,均仅用以配合说明书所揭示的内容,以供熟悉此技术的人士了解与阅读,并非用以限定本发明可实施的限定条件,故不具技术上的实质意义,任何结构的修饰、比例关系的改变或大小的调整,在不影响本发明所能产生的功效及所能达成的目的下,均应仍落在本发明所揭示的技术内容得能涵盖的范围内。
图1为本发明实施例提供的一种ECMO设备供电系统示意图;
图2为本发明实施例提供的一种ECMO设备供电方法的供电切换示意图。
具体实施方式
以下由特定的具体实施例说明本发明的实施方式,熟悉此技术的人士可由本说明书所揭露的内容轻易地了解本发明的其他优点及功效,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明实施例的目的在于针对ECMO设备提供一套安全、可靠的供电方案。
为了解决上述技术问题,如图1所示,本申请实施例提供了一种ECMO设备供电系统,其具体包括:适配器1、DC-DC升降压模块2、第一稳压模块3、MCU4。
进一步地,由交流电源为适配器1通电;由适配器1输出端经过第一二极管开关7连接至DC-DC升降压模块2;经DC-DC升降压模块2将供电电压稳定至第一预设电压;由DC-DC升降压模块2输出端经过第一稳压模块3将供电电压稳定至第二预设电压;利用所第二预设电压为MCU 4供电;将MCU 4启动,由MCU 4控制第一MOS管开关5,利用第一预设电压为电机6正常供电。
在本发明实施例中,第一预设电压选为24V,第一稳压模块3选为LDO(low dropout regulator,是一种低压差线性稳压器。这是相对于传统的线性稳压器来说的。传统的线性稳压器,如78XX系列的芯片都要求输入电压要比输出电压至少高出2V~3V,否则就不能正常工作。但是在一些情况下,这样的条件显然是太苛刻了,如5V转3.3V,输入与输出之间的压差只有1.7v,显然这是不满足传统线性稳压器的工作条件的。针对这种情况,芯片制造商们才研发出了LDO类的电压转换芯片),第二预设电压选为3.3V。第一MOS管开关5选为三态门电路。
本申请实施例提供的一种ECMO设备供电系统,由交流电源通过适配器为DC-DC升降压模块供电,经DC-DC升降压模块将供电电压稳定至第一预设电压;同时由DC-DC升降压模块输出端经过第一稳压模块将供电电压稳定至第二预设电压,利用第二预设电压为MCU供电;述MCU启动,由MCU控制第一MOS管开关,利用第一预设电压为电机正常供电。本发明实施例通过MCU控制开关管来实现通过软件对ECMO设备的切换供电控制,具有高输出精度、高效率、性能可靠等特点。
参考图1,本申请实施例提供的一种ECMO设备供电系统还包括:充电管理模块8和电池9;由适配器1输出端经过充电管理模块8为电池9充电;由电池9输出端经过第二MOS管开关10连接至第二二极管开关11;将所述第二MOS管开关10的使能输入端连接至嵌入充电管理模块8内部的第二稳压模块15;由第二MOS管开关10实现电池9的充/放电切换;由电池9输出端经过第二二极管开关11连接至DC-DC升降压模块2;经DC-DC升降压模块2将供电电压稳定至第一预设电压;由DC-DC升降压模块2输出端经过第一稳压模块3将供电电压稳定至第二预设电压,利用第一预设电压为MCU 4供电;将MCU 4启动,由MCU 4控制第一MOS管开关5,利用第二预设电压为电机6正常供电。
在本发明实施例中,第二稳压模块15同样选为LDO(low dropout regulator,是一种低压差线性稳压器),第二MOS管开关10选为非门加与门电路。
在本发明实施例中,当适配器在位并与交流电源接通时,由充电管理模块通过第二MOS管开关控制,对电池进行充电,同时由适配器通过MCU控制第一MOS管开关,对电机进行供电。当适配器不在位或未与交流电源接通时,由充电管理模块通过第二MOS管开关控制,由电池通过MCU控制第一MOS管开关,对电机进行供电。这样,在适配器不在位或未与交流电源接通的情况下,由第二MOS管开关实现由对电池充电切换至电池放电,保证电机的供电。
优选地,在本发明实施例中,电池9为多个,与各个电池相对应设置有一个充电管理模块8、一个第二MOS管开关10、第二二极管开关11;如图1所示,图1中以两个电池9为例,由适配器1输出端经过相对应的充电管理模块8分别为各个电池9充电;由各个电池9输出端经过相对应的第二MOS管开关10连接至相对应第二二极管开关11;将各个第二MOS管开关10的使能输入端连接至嵌入相对应的充电管理模块8内部的第二稳压模块15;由各个第二MOS管开关10实现相对应电池9的充/放电切换;由各个电池9输出端经过相对应第二二极管开关11连接至DC-DC升降压模块2;经DC-DC升降压模块2将供电电压稳定至第一预设电压;由DC-DC升降压模块2输出端经过第一稳压模块3将供电电压稳定至第二预设电压,利用第一预设电压为MCU 4供电;将MCU 4启动,由MCU 4控制第一MOS管开关5,利用第二预设电压为电机6正常供电。
电机连接一块电池作为备用泵驱动供电的方式,如果电池耗尽了也会造成电机停止风险。在本发明实施例中,电池为多个,与各个电池相对应设置有一个充电管理模块、一个第二MOS管开关、第二二极管开关;这样每个电池均形成了独立的备用供电单元,当其中一块电池电量快耗尽时,可以移去该电池并换为另外一块满电的备用电池,在电池更换过程中,并不会影响电机正常供电。
更优选地,参考图1,由第一二极管开关7和上述各个第二极管开关11输出端连接至第三MOS管开关12的供电输入端;将第三MOS管开关12的供电输出端和使能输入端分别连接至电机6和第一稳压模块3;当第一稳压模块3出现异常,无法为MCU 4供电时,通过第三MOS管开关12实现供电切换。
在本发明实施例中,第三MOS管开关12也选为非门加与门电路。
在本发明实施例中,在MCU供电电源(第一稳压模块)出现异常时,软件不能控制的条件下,通过第三MOS管开关实现硬件自动切换供电方式,保证电机可以正常运行。
更优选地,参考图1,本发明实时例提供的一种ECMO设备供电系统还包括:报警电路13和报警设备14。具体地,将第三MOS管开关12的供电输出端经报警电路13连接至报警设备14;当第三MOS管开关12的供电输入端和供电输出端的电压相同时,利用第三MOS管开关12的供电输出端的电压为报警设备14供电,由报警设备14实现报警。
在本发明实施例中,报警设备14可以选为蜂鸣器。
在本发明实施例中,在不同的状况下都能保证电机供电正常,当通过硬件自动切换供电时,同时通过硬件启动报警提示,警示临床医生或者护士。
与上述公开的一种ECMO设备供电系统相对应,本发明实施例还公开了一种ECMO设备供电方法。以下结合上述描述的一种ECMO设备供电系统详细介绍本发明实施例中公开的一种ECMO设备供电方法。
在本发明一个实施例中,如图1所示,当适配器在位并与交流电源接通时,以下对本申请实施例提供的在上述情况下的一种ECMO设备供电方法具体步骤进行详细描述。
由交流电源为适配器1通电;由适配器1输出端经过第一二极管开关7连接至DC-DC升降压模块2;经DC-DC升降压模块2将供电电压稳定至第一预设电压;由DC-DC升降压模块2输出端经过第一稳压模块3将供电电压稳定至第二预设电压;利用所第二预设电压为MCU 4供电;将MCU 4启动,由MCU 4控制第一MOS管开关5,利用第一预设电压为电机6正常供电。
在本发明实施例中,第一预设电压选为24V,第一稳压模块3选为LDO(low dropout regulator,是一种低压差线性稳压器。这是相对于传统的线性稳压器来说的。传统的线性稳压器,如78XX系列的芯片都要求输入电压要比输出电压至少高出2V~3V,否则就不能正常工作。但是在一些情况下,这样的条件显然是太苛刻了,如5V转3.3V,输入与输出之间的压差只有1.7v,显然这是不满足传统线性稳压器的工作条件的。针对这种情况,芯片制造商们才研发出了LDO类的电压转换芯片),第二预设电压选为3.3V。第一MOS管开关5选为三态门电路。
进一步地,将MCU启动,由MCU控制第一MOS管开关,利用所述第一预设电压为电机正常供电,包括:由MCU 4控制通过使能输入端向第一MOS管开关5输入控制信号;当使能输入端的控制信号为高电平信号时,第一MOS管开关5的供电输入端和供电输出端的电压相同,第一MOS管开关5接通;当使能输入端的控制信号为低电平信号时,第一MOS管开关5的供电输出端的电压为0,第一MOS管开关5断开。
本申请实施例提供的一种ECMO设备供电方法,由交流电源通过适配器为DC-DC升降压模块供电,经DC-DC升降压模块将供电电压稳定至第一预设电压;同时由DC-DC升降压模块输出端经过第一稳压模块将供电电压稳定至第二预设电压,利用第二预设电压为MCU供电;述MCU启动,由MCU控制第一MOS管开关,利用第一预设电压为电机正常供电。本发明实施例通过MCU控制开关管来实现通过软件对ECMO设备的切换供电控制,具有高输出精度、高效率、性能可靠等特点。
优选地,参考图1和图2,本发明实时例提供的一种ECMO设备供电系统还包括:由第一二极管开关7输出端连接至第三MOS管开关12的供电输入端;将第三MOS管开关12的供电输出端和使能输入端分别连接至电机6和第一稳压模块3;当第一稳压模块3出现异常,无法为MCU 4供电时,通过第三MOS管开关12实现供电切换。
在本发明实施例中,第三MOS管开关10选为非门加与门电路。
进一步地,当第一稳压模块出现异常,无法为MCU供电时,通过第三MOS管开关实现供电切换,包括:当第一稳压模块3的供电输出端的电压为第二预设电压时,由第一稳压模块3向第三MOS管开关12的使能输入端输入高电平信号,第三MOS管开关12的供电输出端的电压为0,第三MOS管开关12断开;当第一稳压模块3的供电输出端的电压为0时,由第一稳压模块3向第三MOS管开关12的使能输入端输入低电平信号,第三MOS管开关12的供电输入端和供电输出端的电压相同,第三MOS管开关12接通,利用第三MOS管开关12的供电输出端的电压为电机6供电。
在本发明实施例中,在MCU供电电源(第一稳压模块)出现异常时,软件不能控制的条件下,通过第三MOS管开关实现硬件自动切换供电方式,保证电机可以正常运行。
优选地,本发明实施例公开的一种ECMO设备供电方法还包括:将第三MOS管开关12的供电输出端经报警电路13连接至报警设备14;当第三MOS管开关12的供电输入端和供电输出端的电压相同时,利用第三MOS管开关12的供电输出端的电压为报警设备14供电,由报警设备14实现报警。
在本发明实施例中,报警设备14可以选为蜂鸣器。
在本发明实施例中,在不同的状况下都能保证电机供电正常,当通过硬件自动切换供电时,同时通过硬件启动报警提示,警示临床医生或者护士。
在本发明一个实施例中,如图1所示,当适配器不在位或未与交流电源接通时,以下对本申请实施例提供的一种ECMO设备供电方法在上述情况下的具体步骤进行详细描述。
如上所述,参考图1,在本申请实施例中,适配器1输出端还经过充电管理模块8连接有电池9,在当适配器1在位并与交流电源接通时,由适配器1输出端还经过充电管理模块8为电池9充电。
进一步地,由第二MOS管开关实现所述电池的充/放电切换,具体包括:当适配器1在位并与交流电源接通时,由充电管理模块8通过内部的第二稳压模块15向第二MOS管开关10的使能输入端输入高电平信号,第二MOS管开关10的供电输出端的电压为0,第二MOS管开关10断开;当适配器1不在位或未与交流电源接通时,由充电管理模块8通过内部的第二稳压模块15向第二MOS管开关10的使能输入端输入低电平信号,第二MOS管开关10的供电输入端和供电输出端的电压相同,第二MOS管开关10接通。
在本发明实施例中,第二稳压模块15同样选为LDO(low dropout regulator,是一种低压差线性稳压器),第二MOS管开关10也选为非门加与门电路。
进一步地,在适配器1不在位或未与交流电源接通情况下,由电池9输出端经过第二MOS管开关10连接至第二二极管开关11;将第二MOS管开关10的使能输入端连接至嵌入充电管理模块8内部的第二稳压模块15;由第二MOS管开关10实现电池9的充/放电切换;由电池9输出端经过第二二极管开关11连接至DC-DC升降压模块2;经DC-DC升降压模块2将供电电压稳定至第一预设电压;由DC-DC升降压模块2输出端经过第一稳压模块3将供电电压稳定至第二预设电压,利用第一预设电压为MCU 4供电;将MCU 4启动,由MCU 4控制第一MOS管开关5,利用第二预设电压为电机6正常供电。
在本发明实施例中,当适配器在位并与交流电源接通时,由充电管理模块通过第二MOS管开关控制,对电池进行充电,同时由适配器通过MCU控制第一MOS管开关,对电机进行供电。当适配器不在位或未与交流电源接通时,由充电管理模块通过第二MOS管开关控制,由电池通过MCU控制第一MOS管开关,对电机进行供电。这样,在适配器不在位或未与交流电源接通的情况下,由第二MOS管开关实现由对电池充电切换至电池放电,保证电机的供电。
优选地,在本发明实施例中,电池9为多个,与各个电池相对应设置有一个充电管理模块8、一个第二MOS管开关10、第二二极管开关11;如图1所示,图1中以两个电池9为例,由适配器1输出端经过相对应的充电管理模块8分别为各个电池9充电;由各个电池9输出端经过相对应的第二MOS管开关10连接至相对应第二二极管开关11;将各个第二MOS管开关10的使能输入端连接至嵌入相对应的充电管理模块8内部的第二稳压模块15;由各个第二MOS管开关10实现相对应电池9的充/放电切换;由各个电池9输出端经过相对应第二二极管开关11连接至DC-DC升降压模块2;经DC-DC升降压模块2将供电电压稳定至第一预设电压;由DC-DC升降压模块2输出端经过第一稳压模块3将供电电压稳定至第二预设电压,利用第一预设电压为MCU 4供电;将MCU 4启动,由MCU 4控制第一MOS管开关5,利用第二预设电压为电机6正常供电。
电机连接一块电池作为备用泵驱动供电的方式,如果电池耗尽了也会造成电机停止风险。在本发明实施例中,电池为多个,与各个电池相对应设置有一个充电管理模块、一个第二MOS管开关、第二二极管开关;这样每个电池均形成了独立的备用供电单元,当其中一块电池电量快耗尽时,可以移去该电池并换为另外一块满电的备用电池,在电池更换过程中,并不会影响电机正常供电。
进一步地,将MCU启动,由MCU控制第一MOS管开关,利用所述第一预设电压为电机正常供电,包括:由MCU 4控制通过使能输入端向第一MOS管开关5输入控制信号;当使能输入端的控制信号为高电平信号时,第一MOS管开关5的供电输入端和供电输出端的电压相同,第一MOS管开关5接通;当使能输入端的控制信号为低电平信号时,第一MOS管开关5的供电输出端的电压为0,第一MOS管开关5断开。
本申请实施例提供的一种ECMO设备供电方法,由交流电源通过适配器为DC-DC升降压模块供电,经DC-DC升降压模块将供电电压稳定至第一预设电压;同时由DC-DC升降压模块输出端经过第一稳压模块将供电电压稳定至第二预设电压,利用第二预设电压为MCU供电;述MCU启动,由MCU控制第一MOS管开关,利用第一预设电压为电机正常供电。本发明实施例通过MCU控制开关管来实现通过软件对ECMO设备的切换供电控制,具有高输出精度、高效率、性能可靠等特点。
优选地,参考图1和图2,本发明实时例提供的一种ECMO设备供电方法还包括:由第一二极管开关7输出端连接至第三MOS管开关12的供电输入端;将第三MOS管开关12的供电输出端和使能输入端分别连接至电机6和第一稳压模块3;当第一稳压模块3出现异常,无法为MCU 4供电时,通过第三MOS管开关12实现供电切换。
进一步地,当第一稳压模块出现异常,无法为MCU供电时,通过第三MOS管开关实现供电切换,具体包括:当第一稳压模块3的供电输出端的电压为第二预设电压时,由第一稳压模块3向第三MOS管开关12的使能输入端输入高电平信号,第三MOS管开关12的供电输出端的电压为0,第三MOS管开关12断开;当第一稳压模块3的供电输出端的电压为0时,由第一稳压模块3向第三MOS管开关12的使能输入端输入低电平信号,第三MOS管开关12的供电输入端和供电输出端的电压相同,第三MOS管开关12接通,利用第三MOS管开关12的供电输出端的电压为电机6供电。
在本发明实施例中,在MCU供电电源(第一稳压模块)出现异常时,软件不能控制的条件下,通过第三MOS管开关实现硬件自动切换供电方式,保证电机可以正常运行。
优选地,本发明实施例公开的一种ECMO设备供电方法还包括:将第三MOS管开关12的供电输出端经报警电路13连接至报警设备14;当第三MOS管开关12的供电输入端和供电输出端的电压相同时,利用第三MOS管开关12的供电输出端的电压为报警设备14供电,由报警设备14实现报警。
在本发明实施例中,报警设备14可以选为蜂鸣器。
在本发明实施例中,在不同的状况下都能保证电机供电正常,当通过硬件自动切换供电时,同时通过硬件启动报警提示,警示临床医生或者护士。
虽然,上文中已经用一般性说明及具体实施例对本发明作了详尽的描述,但在本发明基础上,可以对之作一些修改或改进,这对本领域技术人员而言是显而易见的。因此,在不偏离本发明精神的基础上所做的这些修改或改进,均属于本发明要求保护的范围。

Claims (10)

  1. 一种ECMO设备供电方法,其特征在于,所述方法包括:
    由交流电源为适配器通电;
    由适配器输出端经过第一二极管开关连接至DC-DC升降压模块;
    经所述DC-DC升降压模块将供电电压稳定至第一预设电压;
    由DC-DC升降压模块输出端经过第一稳压模块将供电电压稳定至第二预设电压,利用所述第二预设电压为MCU供电;
    将所述MCU启动,由所述MCU控制第一MOS管开关,利用所述第一预设电压为电机正常供电。
  2. 如权利要求1所述的一种ECMO设备供电方法,其特征在于,所述方法还包括:
    由所述适配器输出端经过充电管理模块为电池充电;
    由所述电池输出端经过第二MOS管开关连接至第二二极管开关;
    将所述第二MOS管开关的使能输入端连接至嵌入所述充电管理模块内部的第二稳压模块;
    由第二MOS管开关实现所述电池的充/放电切换;
    由所述电池输出端经过第二二极管开关连接至DC-DC升降压模块;
    经所述DC-DC升降压模块将供电电压稳定至第一预设电压;
    由所述DC-DC升降压模块输出端经过第一稳压模块将供电电压稳定至第二预设电压,利用所述第一预设电压为MCU供电;
    将所述MCU启动,由所述MCU控制第一MOS管开关,利用所述第二预设电压为电机正常供电。
  3. 如权利要求2所述的一种ECMO设备供电方法,其特征在于,由第二MOS管开关实现所述电池的充/放电切换,包括:
    当所述适配器在位并与交流电源接通时,由所述充电管理模块通过内部的第二稳压模块向第二MOS管开关的使能输入端输入高电平信号,所述第二MOS管开关的供电输出端的电压为0,所述第二MOS管开关断开;
    当所述适配器不在位或未与交流电源接通时,由所述充电管理模块通过内部的第二稳压模块向第二MOS管开关的使能输入端输入低电平信号,所述第二MOS管开关的供电输入端和供电输出端的电压相同,所述第二MOS管开关接通。
  4. 如权利要求3所述的一种ECMO设备供电方法,其特征在于,所述方法还包括:
    所述电池为多个,与各个电池相对应设置有一个充电管理模块、一个第二MOS管开关、第二二极管开关;
    由所述适配器输出端经过相对应的充电管理模块分别为各个电池充电;
    由各个电池输出端经过相对应的第二MOS管开关连接至相对应第二二极管开关;
    将各个第二MOS管开关的使能输入端连接至嵌入相对应的充电管理模块内部的第二稳压模块;
    由各个第二MOS管开关实现相对应电池的充/放电切换;
    由各个电池输出端经过相对应第二二极管开关连接至DC-DC升降压模块;
    经所述DC-DC升降压模块将供电电压稳定至第一预设电压;
    由所述DC-DC升降压模块输出端经过第一稳压模块将供电电压稳定至第二预设电压,利用所述第一预设电压为MCU供电;
    将所述MCU启动,由所述MCU控制第一MOS管开关,利用所述第二预设电压为电机正常供电。
  5. 如权利要求1至4中任一项所述的一种ECMO设备供电方法,其特征在于,将所述MCU启动,由所述MCU控制第一MOS管开关,利用所述第一预设电压为电机正常供电,包括:
    由所述MCU控制通过使能输入端向所述第一MOS管开关输入控制信号;
    当所述使能输入端的控制信号为高电平信号时,所述第一MOS管开关的供电输入端和供电输出端的电压相同,所述第一MOS管开关接通;
    当所述使能输入端的控制信号为低电平信号时,所述第一MOS管开关的供电输出端的电压为0,所述第一MOS管开关断开。
  6. 如权利要求5所述的一种ECMO设备供电方法,其特征在于,所述方法还包括:
    由所述第一二极管开关和所述第二极管开关输出端连接至第三MOS管开关的供电输入端;
    将所述第三MOS管开关的供电输出端和使能输入端分别连接至所述电机和所述第一稳压模块;
    当所述第一稳压模块出现异常,无法为MCU供电时,通过所述第三MOS管开关实现供电切换。
  7. 如权利要求6中所述的一种ECMO设备供电方法,其特征在于,当所述第一稳压模块出现异常,无法为MCU供电时,通过所述第三MOS管开关实现供电切换,包括:
    当所述第一稳压模块的供电输出端的电压为所述第二预设电压时,由所述第一稳压模块向所述第三MOS管开关的使能输入端输入高电平信号,所述第三MOS管开关的供电输出端的电压为0,所述第三MOS管开关断开;
    当所述第一稳压模块的供电输出端的电压为0时,由所述第一稳压模块向所述第三MOS管开关的使能输入端输入低电平信号,所述第三MOS管开关的供电输入端和供电输出端的电压相同,所述第三MOS管开关接通,利用所述第三MOS管开关的供电输出端的电压为所述电机供电。
  8. 如权利要求6或7所述的一种ECMO设备供电方法,其特征在于,所述方法还包括:
    将所述第三MOS管开关的供电输出端经报警电路连接至报警设备;
    当所述第三MOS管开关的供电输入端和供电输出端的电压相同时,利用所述第三MOS管开关的供电输出端的电压为所述报警设备供电,由所述报警设备实现报警。
  9. 一种ECMO设备供电系统,其特征在于,所述系统包括:
    适配器,由交流电源为所述适配器通电;
    DC-DC升降压模块,由适配器输出端经过第一二极管开关连接至DC-DC升降压模块;经所述DC-DC升降压模块将供电电压稳定至第一预设电压;
    第一稳压模块,由DC-DC升降压模块输出端经过第一稳压模块将供电电压稳定至第二预设电压;
    MCU,利用所述第二预设电压为MCU供电;将所述MCU启动,由所述MCU控制第一MOS管开关,利用所述第一预设电压为电机正常供电。
  10. 如权利要求9所述的一种ECMO设备供电系统,所述系统还包括:充电管理模块和电池;由所述适配器输出端经过充电管理模块为电池充电;
    由所述电池输出端经过第二MOS管开关连接至第二二极管开关;将所述第二MOS管开关的使能输入端连接至嵌入所述充电管理模块内部的第二稳压模块;由第二MOS管开关实现所述电池的充/放电切换;
    由所述电池输出端经过第二二极管开关连接至DC-DC升降压模块;经所述DC-DC升降压模块将供电电压稳定至第一预设电压;由所述DC-DC升降压模块输出端经过第一稳压模块将供电电压稳定至第二预设电压,利用所述第一预设电压为MCU供电;
    将所述MCU启动,由所述MCU控制第一MOS管开关,利用所述第二预设电压为电机正常供电。
PCT/CN2023/092366 2022-05-08 2023-05-05 一种ecmo 设备系统电源异常自动切换供电方法及系统 WO2023217001A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210493811.4A CN114949414B (zh) 2022-05-08 2022-05-08 一种ecmo设备供电方法及系统
CN202210493811.4 2022-05-08

Publications (1)

Publication Number Publication Date
WO2023217001A1 true WO2023217001A1 (zh) 2023-11-16

Family

ID=82980332

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/092366 WO2023217001A1 (zh) 2022-05-08 2023-05-05 一种ecmo 设备系统电源异常自动切换供电方法及系统

Country Status (2)

Country Link
CN (1) CN114949414B (zh)
WO (1) WO2023217001A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114949414B (zh) * 2022-05-08 2023-10-27 深圳汉诺医疗科技有限公司 一种ecmo设备供电方法及系统

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003309937A (ja) * 2002-04-16 2003-10-31 Hitachi Ltd 電源装置
US20070097572A1 (en) * 2005-10-28 2007-05-03 Caretta Integrated Circuits Protective circuit
US20160141907A1 (en) * 2014-11-13 2016-05-19 Servato Corporation Battery management circuit and related techniques using mosfet power switch with intelligent switch control
JP2019051024A (ja) * 2017-09-14 2019-04-04 株式会社ジェイ・エム・エス 人工心肺装置
CN109921658A (zh) * 2019-03-12 2019-06-21 中山市心电电子科技有限公司 一种智能电源适配器
CN111588931A (zh) * 2020-04-08 2020-08-28 山西海之亚科技有限公司 一种医疗急救技术体外膜肺氧合设备
CN112271806A (zh) * 2020-11-10 2021-01-26 深圳市赛恒尔医疗科技有限公司 用于体外循环机的冗余供电保险方法、装置和系统
CN113541263A (zh) * 2021-07-27 2021-10-22 电信科学技术第五研究所有限公司 一种便携式设备外接电源和电池供电自动切换电路
CN114204788A (zh) * 2022-02-17 2022-03-18 苏州浪潮智能科技有限公司 一种供电电路
CN114949414A (zh) * 2022-05-08 2022-08-30 深圳汉诺医疗科技有限公司 一种ecmo设备系统电源异常自动切换供电方法及系统

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2825874B2 (ja) * 1989-09-29 1998-11-18 株式会社 ピーエフユー 電源装置のバッテリー充放電回路
JPH1063351A (ja) * 1996-08-22 1998-03-06 Nec Home Electron Ltd 電源装置
JP2005160210A (ja) * 2003-11-26 2005-06-16 Matsushita Electric Ind Co Ltd バックアップ用直流電源装置
CN201146395Y (zh) * 2008-01-30 2008-11-05 北京无线电计量测试研究所 一种在线式不间断开关电源
CN102540938A (zh) * 2010-12-17 2012-07-04 上海市长宁区少年科技指导站 电器待机节能装置及方法
TW201238205A (en) * 2011-03-09 2012-09-16 Hon Hai Prec Ind Co Ltd Power switch system
CN202075580U (zh) * 2011-05-25 2011-12-14 温州泰家宝智能控制系统有限公司 一种智能开关
US20150214770A1 (en) * 2014-01-29 2015-07-30 Mediatek Inc. System and method supporting hybrid power/battery scheme
CN105762854B (zh) * 2014-12-16 2019-11-05 厦门雅迅网络股份有限公司 一种电池供电电路及供电方法
CN106602701A (zh) * 2016-11-16 2017-04-26 北京圣福伦科技有限公司 一种金融设备不间断供电电路以及供电方法
CN207053245U (zh) * 2017-07-11 2018-02-27 西南大学 供电装置和系统
CN207753497U (zh) * 2018-01-10 2018-08-21 无锡北方湖光光电有限公司 支持内外电切换的锂电池组电源装置
CN208190338U (zh) * 2018-05-23 2018-12-04 深圳市鼎阳科技有限公司 一种低损耗的供电切换电路
CN108704172A (zh) * 2018-06-19 2018-10-26 广东顺德工业设计研究院(广东顺德创新设计研究院) 一种体外生命支持控制装置及控制方法
CN111327107A (zh) * 2020-02-27 2020-06-23 深圳市斯康达电子有限公司 一种智能ups供电管理系统
CN212462838U (zh) * 2020-06-30 2021-02-02 深圳市欧瑞博科技股份有限公司 电源切换电路及智能门锁系统
CN112968512A (zh) * 2021-03-17 2021-06-15 深圳友讯达科技股份有限公司 后备电源充放电管理模块、充放电装置及电子产品

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003309937A (ja) * 2002-04-16 2003-10-31 Hitachi Ltd 電源装置
US20070097572A1 (en) * 2005-10-28 2007-05-03 Caretta Integrated Circuits Protective circuit
US20160141907A1 (en) * 2014-11-13 2016-05-19 Servato Corporation Battery management circuit and related techniques using mosfet power switch with intelligent switch control
JP2019051024A (ja) * 2017-09-14 2019-04-04 株式会社ジェイ・エム・エス 人工心肺装置
CN109921658A (zh) * 2019-03-12 2019-06-21 中山市心电电子科技有限公司 一种智能电源适配器
CN111588931A (zh) * 2020-04-08 2020-08-28 山西海之亚科技有限公司 一种医疗急救技术体外膜肺氧合设备
CN112271806A (zh) * 2020-11-10 2021-01-26 深圳市赛恒尔医疗科技有限公司 用于体外循环机的冗余供电保险方法、装置和系统
CN113541263A (zh) * 2021-07-27 2021-10-22 电信科学技术第五研究所有限公司 一种便携式设备外接电源和电池供电自动切换电路
CN114204788A (zh) * 2022-02-17 2022-03-18 苏州浪潮智能科技有限公司 一种供电电路
CN114949414A (zh) * 2022-05-08 2022-08-30 深圳汉诺医疗科技有限公司 一种ecmo设备系统电源异常自动切换供电方法及系统

Also Published As

Publication number Publication date
CN114949414B (zh) 2023-10-27
CN114949414A (zh) 2022-08-30

Similar Documents

Publication Publication Date Title
US9735600B2 (en) Method for limiting battery discharging current in battery charger and discharger circuit
JP3747381B2 (ja) 電池内蔵の電子装置の電源制御回路
US6414403B2 (en) Power unit
US6157168A (en) Secondary power supply for an uninterruptible power system
WO2023217001A1 (zh) 一种ecmo 设备系统电源异常自动切换供电方法及系统
US8450980B2 (en) Providing resilient power to a system
US9153987B2 (en) Battery charger voltage control method for instant boot-up
US11387667B2 (en) Combo buck boost battery charger architecture with reverse boost mode
JP2002062952A (ja) 電源供給装置、電気機器、コンピュータ装置、および電源供給方法
US20200067335A1 (en) System and method for providing reverse boost mode in battery charger application
US11251639B2 (en) Adapter power add-up feature for multiport systems
CN106025412B (zh) 设置有usb接口的锂离子二次电池及其充放电控制方法
US20210194366A1 (en) Systems and methods for reducing power consumption of a power supply during a load's sleep mode
CN211018308U (zh) 基于充电管理芯片的锂电池充电电路
CN113328496B (zh) 适应野外环境的便携式通用生命支持系统双电池切换结构
CN203103993U (zh) 一种车载电源管理系统
US11916426B2 (en) Integrated battery charge regulation circuit based on power FET conductivity modulation
CN218733908U (zh) 一种智能双向dc-dc切换电路及不间断电源
CN220544740U (zh) 一种分时供电装置
CN210007434U (zh) 一种用于Type-C端口的负载开关结构
CN210573746U (zh) 一种掉电保护电路系统
CN214959289U (zh) 一种mcu电源管理电路、mcu以及便携式设备
CN113364077B (zh) 一种后备电源的充电功率控制电路及充电电路
CN116707078A (zh) 生命支持一体机的电源系统
JP2003274574A (ja) 安定化直流電源装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23802773

Country of ref document: EP

Kind code of ref document: A1