WO2023216953A1 - 一种微波强化碳还原废硫酸的方法 - Google Patents

一种微波强化碳还原废硫酸的方法 Download PDF

Info

Publication number
WO2023216953A1
WO2023216953A1 PCT/CN2023/091987 CN2023091987W WO2023216953A1 WO 2023216953 A1 WO2023216953 A1 WO 2023216953A1 CN 2023091987 W CN2023091987 W CN 2023091987W WO 2023216953 A1 WO2023216953 A1 WO 2023216953A1
Authority
WO
WIPO (PCT)
Prior art keywords
sulfuric acid
waste sulfuric
optionally
carbon
stage
Prior art date
Application number
PCT/CN2023/091987
Other languages
English (en)
French (fr)
Inventor
周志茂
李世飞
Original Assignee
中国科学院过程工程研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院过程工程研究所 filed Critical 中国科学院过程工程研究所
Publication of WO2023216953A1 publication Critical patent/WO2023216953A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/12Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
    • B01J19/122Incoherent waves
    • B01J19/126Microwaves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/002Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by condensation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/005Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/007Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by irradiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • B01D53/50Sulfur oxides
    • B01D53/507Sulfur oxides by treating the gases with other liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/77Liquid phase processes
    • B01D53/78Liquid phase processes with gas-liquid contact
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0006Controlling or regulating processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3202Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the carrier, support or substrate used for impregnation or coating
    • B01J20/3204Inorganic carriers, supports or substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3234Inorganic material layers
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/02Preparation of sulfur; Purification
    • C01B17/04Preparation of sulfur; Purification from gaseous sulfur compounds including gaseous sulfides
    • C01B17/0473Preparation of sulfur; Purification from gaseous sulfur compounds including gaseous sulfides by reaction of sulfur dioxide or sulfur trioxide containing gases with reducing agents other than hydrogen sulfide
    • C01B17/0482Preparation of sulfur; Purification from gaseous sulfur compounds including gaseous sulfides by reaction of sulfur dioxide or sulfur trioxide containing gases with reducing agents other than hydrogen sulfide with carbon or solid carbonaceous materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/48Sulfur dioxide; Sulfurous acid
    • C01B17/50Preparation of sulfur dioxide
    • C01B17/501Preparation of sulfur dioxide by reduction of sulfur compounds
    • C01B17/503Preparation of sulfur dioxide by reduction of sulfur compounds of sulfuric acid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/102Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/80Employing electric, magnetic, electromagnetic or wave energy, or particle radiation
    • B01D2259/806Microwaves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00162Controlling or regulating processes controlling the pressure

Definitions

  • the present application belongs to the field of waste resource utilization, such as a method of carbon reduction of waste sulfuric acid, specifically a method of microwave-enhanced carbon reduction of waste sulfuric acid.
  • sulfuric acid As an important basic chemical product, sulfuric acid is consumed in huge quantities and is widely used in industrial and agricultural production and other fields. Except for a small amount of sulfur transferred to products such as ammonium sulfate, magnesium sulfate or aluminum sulfate, most of the sulfur is produced in the form of industrial waste gypsum, sodium sulfate or waste sulfuric acid. Waste sulfuric acid is not only a hazardous waste that is difficult to handle, but also a potential sulfur resource. Converting it into sulfur dioxide or sulfur is the main way to realize the resource utilization of waste sulfuric acid.
  • CN 106315520A discloses an improved cracking process for waste sulfuric acid, which uses waste sulfuric acid, air, fuel that provides the heat required for cracking, etc. as raw materials to cause the waste sulfuric acid to undergo a cracking reaction in the cracking furnace to generate sulfur dioxide and sulfur trioxide. , carbon dioxide, water vapor, nitrogen, smoke, etc., the furnace gas enters the subsequent acid making system to produce finished sulfuric acid after heat exchange.
  • the temperature in the cracking furnace is above 600°C, the reaction temperature is high, and external fuel is required to provide heat, resulting in high operating costs.
  • CN 109052335A discloses a method for reducing waste sulfuric acid with sulfur gas to produce liquid sulfur dioxide and sulfuric acid.
  • the sulfur is gasified into high-temperature sulfur gas, the raw material waste sulfuric acid is washed, evaporated, concentrated and cracked into gas.
  • the two gases react in the reduction furnace to generate sulfur dioxide. Gas, and at the same time, organic impurities in waste sulfuric acid can be removed.
  • Part of the sulfur dioxide is liquefied to produce high-purity liquid sulfur dioxide products.
  • Part of the sulfur dioxide can be converted and absorbed into concentrated sulfuric acid.
  • CN 109437118A discloses a method and device for processing industrial waste sulfuric acid to recover sulfur, including a pyrolysis furnace, a reaction gas heat exchange device, a carbothermal reduction tower, a spent gas cooling device and a desulfurization tower, which realizes the recycling of waste sulfuric acid to obtain sulfur. Realize full utilization of heat energy and products, reduce Reduced recycling costs.
  • the above invention has complex operation methods and numerous processes for treating waste sulfuric acid, and the cracking temperature is still high.
  • CN 101200288A discloses a method for regenerating waste sulfuric acid.
  • the method includes decomposing waste sulfuric acid into sulfur dioxide in the presence of a hydrocarbon reducing agent.
  • the reducing agent is a hydrocarbon pollutant, preferably a film on a solid surface.
  • the sulfur dioxide produced in the decomposition step is converted into sulfur trioxide and concentrated sulfuric acid is condensed.
  • the process of reacting sulfuric acid and carbon to produce sulfur dioxide is complex and accompanied by multiple side reactions. This invention does not control the side reactions, which will have a negative impact on the utilization of sulfur resources.
  • This application provides a method for microwave-enhanced carbon reduction of waste sulfuric acid.
  • the reaction temperature of carbon and waste sulfuric acid is controlled through indirect heating by microwave radiation, thereby effectively improving the reaction efficiency, with fewer reaction steps, low energy consumption and high reaction product yield, and ultimately achieves Low-cost resource utilization of waste sulfuric acid.
  • the embodiments of the present application provide a method for microwave-enhanced carbon reduction of waste sulfuric acid, which method includes the following steps:
  • step (2) The mixture described in step (1) is heated by microwave to react to obtain sulfur dioxide gas and sulfonated carbon.
  • the carbon material and waste sulfuric acid are fully mixed, and the waste sulfuric acid is evenly distributed on the surface of the carbon material.
  • the carbon material absorbs microwaves, and the temperature rises uniformly to promote The reaction proceeds; at the same time, the waste sulfuric acid also absorbs microwaves, accelerating the decomposition of sulfuric acid molecules.
  • the carbon material in step (1) includes any one or a combination of at least two of coal, biomass, activated carbon, resin, sulfonated carbon, biomass carbon, waste activated carbon or waste resin.
  • non-limiting combinations include the combination of coal and biomass, the combination of activated carbon and resin, the combination of sulfonated carbon and biomass carbon, the combination of waste activated carbon and waste resin, the combination of coal, biomass and activated carbon, resin, sulfonate Combination of chemical carbon and biomass carbon, combination of coal, biomass, activated carbon and resin, combination of resin, sulfonated carbon, biomass carbon, waste activated carbon and waste resin, combination of coal, biomass, activated carbon, resin, sulfonated carbon Combination with biomass carbon, combination of biomass, activated carbon, resin, sulfonated carbon, biomass carbon, waste activated carbon and waste resin, or coal, biomass, activated carbon, resin, sulfonated carbon, biomass carbon, waste activated carbon Combination with waste resin.
  • the biomass includes date pits, walnut shells, walnut shells, waste tea leaves, corn cobs, coconut shells, beetroots, peanut shells, rice husks, cotton shells, banana peels, bamboo waste, olive pits, cherry pits, orange peels, Any one or a combination of at least two of coffee pods, corn stalks, reed stalks, vegetable stalks or cassava peels.
  • the waste sulfuric acid in step (1) includes any one or a combination of at least two of alkylation waste sulfuric acid, sulfonation waste sulfuric acid, nitrating waste sulfuric acid or fluorine-containing waste sulfuric acid, typically but not limiting.
  • Specific combinations include the combination of alkylation waste sulfuric acid and sulfonation waste sulfuric acid, the combination of nitrification waste sulfuric acid and fluorine-containing waste sulfuric acid, the combination of alkylation waste sulfuric acid, sulfonation waste sulfuric acid and nitration waste sulfuric acid, or the combination of alkylation waste sulfuric acid and nitration waste sulfuric acid.
  • the carbon material in step (1) is a carbon material that has been pretreated with a mixture of alkali and carbonate.
  • Carbon materials are pretreated to remove surface impurities and change their specific surface area and pore structure, thereby improving the reaction effect with waste sulfuric acid.
  • the mixture of alkali and carbonate includes a mixture of sodium hydroxide and sodium carbonate.
  • the mass fraction of sodium hydroxide in the mixed solution is 1.5-2.5wt%, for example, it can be 1.5wt%, 2wt% or 2.5wt%, but is not limited to the listed values, other values within the range The same applies to non-enumerated values.
  • the mass fraction of sodium carbonate in the mixed solution is 0.5-1.5wt%, for example, it can be 0.5wt%, 1wt% or 1.5wt%, but is not limited to the listed values. Other values within the range are not limited to The same applies to the listed values.
  • the solvent in the mixed solution includes deionized water.
  • the pretreatment time is 0.1-9h, for example, it can be 0.1h, 1h, 2h, 3h, 4h, 5h, 6h, 7h, 8h or 9h, but is not limited to the listed values. The same applies to other values within the range not listed.
  • the pretreatment temperature is 30-90°C, for example, it can be 30°C, 40°C, 50°C, 60°C, 70°C, 80°C or 90°C, but is not limited to the listed values. The same applies to other values within the numerical range that are not listed.
  • the mass concentration of sulfuric acid in the waste sulfuric acid in step (1) is ⁇ 50wt%, for example, it can be 50wt%, 60wt%, 70wt%, 80wt%, 90wt% or 95wt%, but is not limited to those listed Values, other unlisted values within the value range are also applicable.
  • the mass concentration of sulfuric acid in the alkylated waste sulfuric acid is ⁇ 85wt%, for example, it can be 85wt%, 88wt%, 91wt%, 92wt% or 95wt %, but not limited to the listed values, other unlisted values within the numerical range are also applicable.
  • the mass concentration of sulfuric acid in the sulfonated waste sulfuric acid is ⁇ 85wt%, for example, it can be 85wt%, 88wt%, 91wt%, 92wt% or 95wt%, but Not limited to the numerical values listed, other unlisted values within the numerical range are also applicable.
  • the mass ratio of waste sulfuric acid to carbon material in step (1) is (2-20):1, for example, it can be 2:1, 3:1, 5:1, 8:1, 10: 1, 12:1, 15:1, 18:1 or 20:1, but not limited to the listed values, other unlisted values within the value range are also applicable.
  • the particle size of the carbon material in step (1) is ⁇ 80mm, for example, it can be 80mm, 70mm, 60mm, 50mm, 40mm, 30mm, 20mm, 10mm or 5mm, but is not limited to the listed values and ranges. Other values not listed within are also applicable.
  • the mixture in step (1) further includes a ceramic absorbing material. Introducing a ceramic absorbing material with both absorbing and heat storage properties can further improve the efficiency of the reduction reaction.
  • the mixture further includes a ceramic absorbing material” mentioned in the embodiment of this application means that waste sulfuric acid is used to soak the carbon material and the ceramic absorbing material to obtain a mixture including the ceramic absorbing material.
  • the ceramic absorbing material includes any one or a combination of at least two of silicon carbide, alumina, silicon dioxide, silicon nitride or iron oxide composite ceramics, a typical but non-limiting combination. Including the combination of silicon carbide and silicon nitride, the combination of silicon nitride and iron oxide composite ceramics, the combination of alumina and silicon dioxide, the combination of silicon carbide and iron oxide composite ceramics, the combination of silicon carbide, alumina and silicon dioxide Combination, combination of silicon dioxide, silicon nitride and iron oxide composite ceramics, combination of silicon carbide, aluminum oxide, silicon dioxide and silicon nitride, or silicon carbide, aluminum oxide, silicon dioxide, silicon nitride and iron oxide A combination of composite ceramics.
  • the mass ratio of the ceramic absorbing material to the carbon material is (0.1-10):1, for example, it can be 0.1:1, 1:1, 2:1, 3:1, 4:1, 5:1, 6:1, 7:1, 8:1, 9:1 or 10:1, but not limited to the listed values, other unlisted values within the value range are also applicable.
  • the mixture in step (1) is a mixture obtained by separating excess waste sulfuric acid.
  • Waste sulfuric acid is fully wrapped on the surface of carbon materials and ceramic absorbing materials, and excess waste sulfuric acid can be separated and Reduce resource waste by reusing.
  • the microwave heating in step (2) includes a first stage, a second stage and a third stage in which the temperature is sequentially increased.
  • the temperature of the first stage is 90-150°C and the time is 0.5-3h.
  • the temperature of the first stage is 90-150°C, for example, it can be 90°C, 105°C, 110°C, 120°C, 135°C, 140°C or 150°C, but is not limited to the listed values. , other unlisted values within the value range are also applicable.
  • the time of the first stage is 0.5-3h, for example, it can be 0.5h, 1h, 1.5h, 2h, 2.5h or 3h, but is not limited to the listed values, and other values within the range are not listed. The same applies to the values of .
  • the temperature of the second stage is 160-220°C and the time is 0.5-3h.
  • the temperature of the second stage is 160-220°C, for example, it can be 160°C, 170°C, 180°C, 190°C, 200°C, 210°C or 220°C, but is not limited to the listed values. , other unlisted values within the value range are also applicable.
  • the time of the second stage is 0.5-3h, for example, it can be 0.5h, 1h, 1.5h, 2h, 2.5h or 3h, but is not limited to the listed values, and other values within the range are not listed. The same applies to the values of .
  • the temperature of the third stage is 230-300°C and the time is 0.3-2h.
  • the temperature of the third stage is 230-300°C, for example, it can be 230°C, 240°C, 250°C, 260°C, 270°C, 280°C, 290°C or 300°C, but is not limited to the above. For listed values, other non-listed values within the value range are also applicable.
  • the time of the third stage is 0.3-2h, for example, it can be 0.3h, 0.5h, 0.7h, 1h, 1.2h, 1.5h, 1.8h or 2h, but is not limited to the listed values. , other values within the range are not The same applies to the listed values.
  • the microwave heating described in the embodiments of this application is divided into three stages in which the temperature rises sequentially. Since the sulfuric acid reduction reaction is greatly affected by temperature, and the microwave heating speed is fast, the temperature control accuracy is difficult to grasp. Therefore, by segmenting the temperature, it can effectively Control reaction speed.
  • the microwave heating power in step (2) is 20-500W/Kg, for example, it can be 20W/Kg, 50W/Kg, 80W/Kg, 100W/Kg, 150W/Kg, 200W/Kg, 300W/Kg, 400W/Kg or 500W/Kg, but not limited to the listed values, other unlisted values within the value range are also applicable.
  • the setting of the microwave heating power is related to the amount of reaction raw materials. As the amount of raw materials increases, the microwave heating power increases accordingly.
  • the absolute pressure of the reaction in step (2) is ⁇ 99KPa, for example, it can be 99KPa, 95KPa, 90KPa, 85KPa, 80KPa, 70KPa, 50KPa, 30KPa, 20KPa or 10KPa, but is not limited to the listed values, The same applies to other values within the numerical range that are not listed.
  • the reaction in step (2) is carried out in a closed environment or a protective atmosphere.
  • the gas used in the protective atmosphere includes any one or a combination of at least two of inert gases, nitrogen or carbon dioxide.
  • inert gases include combinations of inert gases and nitrogen, nitrogen and carbon dioxide, inert gases and carbon dioxide, or combinations of inert gases, nitrogen and carbon dioxide.
  • the sulfur dioxide gas obtained in step (2) is sent to a purification device through a fan to obtain purified sulfur dioxide.
  • the prepared sulfur dioxide is extracted by a fan and sent to a purification device for purification, and purified sulfur dioxide can be obtained; the obtained purified sulfur dioxide can be further prepared to obtain sulfur trioxide or sulfuric acid.
  • the purification device includes an absorption purification tower.
  • the sulfur dioxide gas obtained in step (2) flows through the carbon material and is heated together by the second microwave to obtain a mixed gas.
  • the mixed gas is condensed and washed with water to obtain liquid sulfur.
  • the second microwave-heated reactor is provided with ceramic absorbing material.
  • the prepared sulfur dioxide can also enter the second microwave reactor, and further react with carbon materials under microwave heating conditions to prepare sulfur.
  • the temperature of the second microwave heating is 600-700°C, for example, it can be 600°C, 620°C, 650°C, 680°C or 700°C, but is not limited to the listed values, other values within the range The same applies to non-enumerated values.
  • the temperature of the second microwave heating has a certain influence on the reaction of reducing sulfur dioxide to sulfur. If the heating temperature is too low, the reaction speed of reducing sulfur dioxide to sulfur will be very slow and the efficiency is low; if the heating temperature is too high, the reaction will The speed is faster, but the amount of side reaction products such as CS 2 increases, and the sulfur output decreases. Therefore, the temperature of the second microwave heating is controlled within a preferred range.
  • the second microwave heated gas space velocity is 100-5000h -1 , for example, it can be 100h -1 , 300h -1 , 500h -1 , 800h -1 , 1000h -1 , 1500h -1 , 2000h -1 , 2500h -1 , 3000h -1 , 3500h -1 , 4000h -1 , 4500h -1 or 5000h -1 , but not limited to the listed values, other unlisted values within the value range are also applicable.
  • the non-condensable gas in the mixed gas enters the tail gas incineration device.
  • the non-condensable gas includes any one or a combination of at least two of COS, CS 2 , H 2 S or CO.
  • Typical but non-limiting combinations include a combination of COS and CS 2 , H The combination of 2 S and CO, the combination of COS, CS 2 and H 2 S, the combination of CS 2 , H 2 S and CO, or the combination of COS, CS 2 , H 2 S and CO.
  • the sulfonated carbon obtained in step (2) can be repeatedly used as a reaction raw material to reduce waste sulfuric acid to achieve resource recycling.
  • the method includes the following steps:
  • the mass concentration of sulfuric acid in the waste sulfuric acid is ⁇ 50wt%; when the waste sulfuric acid is alkylated waste sulfuric acid, the mass concentration of sulfuric acid in the alkylated waste sulfuric acid is ⁇ 85wt%; the waste sulfuric acid is sulfonated waste sulfuric acid.
  • the mass concentration of sulfuric acid in the sulfonated waste sulfuric acid is ⁇ 85wt%; the mass ratio of the waste sulfuric acid to the carbon material is (2-20):1; the particle size of the carbon material is ⁇ 80mm;
  • step (1) The mixture in step (1) is heated by microwaves with a power of 20-500W/Kg under an absolute pressure of ⁇ 99KPa to react to obtain sulfur dioxide gas and sulfonated carbon; the microwave heating includes the first stage of sequentially increasing temperatures, Phase II and Phase III;
  • the temperature of the first stage is 90-150°C and the time is 0.5-3h; the temperature of the second stage is 160-220°C and the time is 0.5-3h; the temperature of the third stage is 230-300°C , time is 0.3-2h;
  • step (2) The sulfur dioxide gas in step (2) is sent to the purification device through a fan to obtain purified sulfur dioxide; or the sulfur dioxide gas obtained in step (2) flows through the carbon material at an air velocity of 100-5000h -1 and is passed through the carbon material at 600-700°C
  • the second microwave heating obtains a mixed gas, which is condensed and washed with water to obtain liquid sulfur.
  • the microwave-enhanced carbon reduction method for waste sulfuric acid uses microwave radiation to indirectly heat to control the reaction temperature of carbon and waste sulfuric acid, with a reasonable ratio of carbon materials to waste sulfuric acid, thereby effectively improving the reaction efficiency.
  • This application The method provided has fewer reaction steps and low energy consumption, and can realize low-cost resource utilization of waste sulfuric acid, and the resulting sulfonated carbon can also be reused as a reaction raw material;
  • This application can prepare purified sulfur dioxide by carbon reduction of waste sulfuric acid, and can also further react to obtain liquid sulfur.
  • the yield of sulfur dioxide can reach 97%, and the yield of sulfur can reach 95%, realizing the waste sulfuric acid of multipolar recycling.
  • This embodiment provides a method for microwave-enhanced carbon reduction of waste sulfuric acid, which method includes the following steps:
  • the mixture was pretreated by soaking in a mixture of sodium hydroxide and sodium carbonate for 5 hours at a temperature of 60°C; the mass concentration of sulfuric acid in the alkylated waste sulfuric acid was 91 wt%; the alkylated waste sulfuric acid and The mass ratio of activated carbon is 10:1; the particle size of the activated carbon is ⁇ 80mm;
  • step (1) The mixture in step (1) is heated by microwaves with a power of 50W/Kg under an absolute pressure of 90KPa to react to obtain sulfur dioxide gas and sulfonated carbon; the microwave heating includes a first stage and a second stage in which the temperature is sequentially increased. and the third stage;
  • the temperature of the first stage is 120°C and the time is 1.5h; the temperature of the second stage is 200°C and the time is 1.5h; the temperature of the third stage is 280°C and the time is 1.2h;
  • step (3) The sulfur dioxide gas described in step (2) is sent to the purification tower through a fan to obtain purified sulfur dioxide.
  • the sulfur dioxide is absorbed by alkali and the sulfite content in the absorption liquid is measured.
  • the obtained sulfur dioxide is The yield is 96%.
  • This embodiment provides a method for microwave-enhanced carbon reduction of waste sulfuric acid, which method includes the following steps:
  • the mixture was soaked in a mixture of sodium hydroxide and sodium carbonate for 3 hours and the temperature was 75°C; the mass concentration of sulfuric acid in the alkylated waste sulfuric acid was 90wt%; the alkylated waste sulfuric acid and The mass ratio of activated carbon is 5:1; the particle size of the activated carbon is ⁇ 80mm;
  • step (1) The mixture in step (1) is heated by microwaves with a power of 50W/Kg under an absolute pressure of 95KPa to react to obtain sulfur dioxide gas and sulfonated carbon; the microwave heating includes a first stage and a second stage in which the temperature is sequentially increased. and the third stage;
  • the temperature of the first stage is 135°C and the time is 1h; the temperature of the second stage is 210°C and the time is 1h; the temperature of the third stage is 260°C and the time is 1.5h;
  • step (3) The sulfur dioxide gas described in step (2) is sent to the purification tower through a fan to obtain purified sulfur dioxide.
  • the sulfur dioxide was absorbed by alkali and the sulfite content in the absorption liquid was measured.
  • the yield of the sulfur dioxide obtained was 87%.
  • This embodiment provides a method for microwave-enhanced carbon reduction of waste sulfuric acid, which method includes the following steps:
  • the mixture was soaked in a mixture of sodium hydroxide and sodium carbonate for 7 hours and the temperature was 45°C; the mass concentration of sulfuric acid in the alkylated waste sulfuric acid is 88wt%; the mass ratio of the alkylated waste sulfuric acid to activated carbon is 15:1; the particle size of the activated carbon is ⁇ 80mm;
  • step (1) The mixture in step (1) is heated by microwaves with a power of 50W/Kg under an absolute pressure of 85KPa to react to obtain sulfur dioxide gas and sulfonated carbon; the microwave heating includes a first stage and a second stage in which the temperature is sequentially increased. and the third stage;
  • the temperature of the first stage is 105°C and the time is 2h; the temperature of the second stage is 180°C and the time is 2h; the temperature of the third stage is 290°C and the time is 0.7h;
  • step (3) The sulfur dioxide gas described in step (2) is sent to the purification tower through a fan to obtain purified sulfur dioxide.
  • the sulfur dioxide is absorbed by an alkali and the sulfite content in the absorption liquid is measured.
  • the yield of the sulfur dioxide obtained is 90%.
  • This embodiment provides a method for microwave-enhanced carbon reduction of waste sulfuric acid, which method includes the following steps:
  • the mixture was soaked in a mixture of sodium hydroxide and sodium carbonate for 1 hour and the temperature was 90°C; the mass concentration of sulfuric acid in the alkylated waste sulfuric acid was 95wt%; the alkylated waste sulfuric acid and The mass ratio of activated carbon is 20:1; the particle size of the activated carbon is ⁇ 80mm;
  • step (1) The mixture in step (1) is heated by microwaves with a power of 50W/Kg under an absolute pressure of 80KPa to react to obtain sulfur dioxide gas and sulfonated carbon; the microwave heating includes a first stage and a second stage in which the temperature is sequentially increased. and the third stage;
  • the temperature of the first stage is 150°C and the time is 0.5h; the temperature of the second stage is 220°C and the time is 0.5h. The time is 0.5h; the temperature of the third stage is 300°C and the time is 0.3h;
  • step (3) The sulfur dioxide gas described in step (2) is sent to the purification tower through a fan to obtain purified sulfur dioxide.
  • the sulfur dioxide was absorbed by alkali and the sulfite content in the absorption liquid was measured.
  • the yield of the sulfur dioxide obtained was 92%.
  • This embodiment provides a method for microwave-enhanced carbon reduction of waste sulfuric acid, which method includes the following steps:
  • the mixture was pretreated by soaking in a mixture of sodium hydroxide and sodium carbonate for 9 hours at a temperature of 30°C; the mass concentration of sulfuric acid in the alkylated waste sulfuric acid was 85 wt%; the alkylated waste sulfuric acid and The mass ratio of activated carbon is 2:1; the particle size of the activated carbon is ⁇ 80mm;
  • step (1) The mixture in step (1) is heated by microwaves with a power of 50W/Kg under an absolute pressure of 99KPa to react to obtain sulfur dioxide gas and sulfonated carbon; the microwave heating includes a first stage and a second stage in which the temperature is sequentially increased. and the third stage;
  • the temperature of the first stage is 90°C and the time is 3h; the temperature of the second stage is 160°C and the time is 3h; the temperature of the third stage is 230°C and the time is 2h;
  • step (3) The sulfur dioxide gas described in step (2) is sent to the purification tower through a fan to obtain purified sulfur dioxide.
  • the sulfur dioxide was absorbed by alkali and the sulfite content in the absorption liquid was measured.
  • the yield of the sulfur dioxide obtained was 74%.
  • This embodiment provides a method for microwave-enhanced carbon reduction of waste sulfuric acid.
  • the difference from Example 1 is that the equivalent mass of activated carbon is replaced by biomass (rice husk), and the rest is the same as Example 1.
  • the sulfur dioxide is absorbed by alkali and the sulfite content in the absorption liquid is measured.
  • the yield of the sulfur dioxide obtained is 95%.
  • This embodiment provides a method for microwave-enhanced carbon reduction of waste sulfuric acid.
  • the difference from Example 1 is that in step (1), alkylated waste sulfuric acid is used to soak a mixture of activated carbon and silicon carbide, and the silicon carbide and The mass ratio of activated carbon is 0.1:1, and the rest are the same as in Example 1.
  • the sulfur dioxide was absorbed by alkali and the sulfite content in the absorption liquid was measured.
  • the yield of the sulfur dioxide obtained was 96.5%.
  • This embodiment provides a method for microwave-enhanced carbon reduction of waste sulfuric acid.
  • the difference from Example 1 is that in step (1), alkylated waste sulfuric acid is used to soak a mixture of activated carbon and silicon carbide, and the silicon carbide and The mass ratio of activated carbon is 10:1, and the rest are the same as in Example 1.
  • the sulfur dioxide was absorbed by alkali and the sulfite content in the absorption liquid was measured.
  • the yield of the sulfur dioxide obtained was 97%.
  • This embodiment provides a method for microwave-enhanced carbon reduction of waste sulfuric acid.
  • the difference from Example 1 is that the microwave heating is set to continuously increase the temperature to 280°C within 4.2 hours.
  • the rest are the same as Example 1.
  • the sulfur dioxide was absorbed by alkali and the sulfite content in the absorption liquid was measured.
  • the yield of the sulfur dioxide obtained was 86%.
  • This embodiment adopts a continuous heating method. Compared with segmented heating, the temperature rise of the reaction material after absorbing waves lags behind, thus affecting the temperature control. At the same time, the microwave control starts and stops frequently, which shortens the life of the microwave reactor. reduce.
  • This embodiment provides a method for microwave-enhanced carbon reduction of waste sulfuric acid.
  • the microwave heating in this embodiment includes a first stage and a second stage.
  • the temperature of the first stage is 120°C and the time is 2.1h; the temperature of the second stage is 200°C and the time is 2.1h; the rest are the same as Example 1.
  • the sulfur dioxide was absorbed by alkali and the sulfite content in the absorption liquid was measured.
  • the yield of the sulfur dioxide obtained was 91%.
  • the end temperature of microwave heating is 200°C, the reaction efficiency of the carbon reduction of waste sulfuric acid decreases, and the yield of sulfur dioxide decreases.
  • This embodiment provides a method for microwave-enhanced carbon reduction of waste sulfuric acid.
  • the difference from Example 1 is that the mixture is not pretreated, and the rest are the same as Example 1.
  • the sulfur dioxide was absorbed by alkali and the sulfite content in the absorption liquid was measured.
  • the yield of the sulfur dioxide obtained was 93%.
  • the activated carbon in this embodiment has not been pretreated, and the effect of reacting with waste sulfuric acid is relatively reduced.
  • step (3) is: the sulfur dioxide gas obtained in step (2) flows through activated carbon and silicon carbide at a space speed of 1000h -1 , The mixed gas is obtained through a second microwave heating at 700°C, and the mixed gas is condensed and washed with water to obtain liquid sulfur. The rest are the same as Example 1.
  • the yield of liquid sulfur was 95%.
  • This embodiment provides a method for microwave-enhanced carbon reduction of waste sulfuric acid.
  • the difference from Example 12 is that the temperature of the second microwave heating is 650°C, and the rest are the same as Example 12.
  • This embodiment provides a method for microwave-enhanced carbon reduction of waste sulfuric acid.
  • the difference from Example 12 is that the temperature of the second microwave heating is 600°C, and the rest are the same as Example 12.
  • This embodiment provides a method for microwave-enhanced carbon reduction of waste sulfuric acid.
  • the difference from Example 12 is that the space velocity is 100 h -1 , and the rest are the same as Example 12.
  • the yield of liquid sulfur was 91%.
  • the material residence time will be longer, which will affect the processing capacity and have an adverse effect on the reactants, so the airspeed should not be too low.
  • This embodiment provides a method for microwave-enhanced carbon reduction of waste sulfuric acid.
  • the difference from Example 12 is that the space velocity is 5000h -1 , and the rest are the same as Example 12.
  • the yield of liquid sulfur was 81%.
  • the space velocity is high, the residence time of the material is short and the reaction proceeds insufficiently, so the yield of the product is reduced.
  • This embodiment provides a method for microwave-enhanced carbon reduction of waste sulfuric acid.
  • the difference from Example 12 is that the temperature of the second microwave heating is 550°C, and the rest are the same as Example 12.
  • the yield of liquid sulfur was 74%. If the heating temperature is too low, the reaction speed of sulfur dioxide reduction to sulfur will be very slow and the efficiency will be reduced.
  • This embodiment provides a method for microwave-enhanced carbon reduction of waste sulfuric acid.
  • the difference from Embodiment 12 is that Finally, the temperature of the second microwave heating was 750°C, and the rest were the same as in Example 12.
  • the yield of liquid sulfur was 85%. If the heating temperature is too high, the reaction speed will be faster, but the amount of side reaction products such as CS 2 will increase, and the sulfur output will decrease.
  • This comparative example provides a method for microwave-enhanced carbon reduction of waste sulfuric acid.
  • the difference from Example 1 is that microwave heating is replaced by oil bath heating.
  • the rest are the same as Example 1.
  • the yield of sulfur dioxide obtained was 78%.
  • the reaction interface temperature of activated carbon and waste sulfuric acid increases, which is conducive to the reaction.
  • the heating speed of oil bath is slower and less efficient, and the yield of the obtained product decreases.
  • the microwave-enhanced carbon reduction method for waste sulfuric acid uses microwave radiation to indirectly heat to control the reaction temperature of carbon and waste sulfuric acid, and with a reasonable ratio of carbon materials to waste sulfuric acid, effectively improves the reaction efficiency.
  • the method provided by this application has fewer reaction steps and low energy consumption, and can realize low-cost resource utilization of waste sulfuric acid; it adopts a three-stage temperature-controlled microwave heating system to promote the full progress of the reactions in each stage, and at the same time, it is combined with pretreated carbon materials As well as ceramic absorbing materials with both absorbing and heat storage properties, the yield of the reaction product is significantly improved; in this application, purified sulfur dioxide can be prepared by carbon reduction of waste sulfuric acid, and liquid sulfur can also be obtained through further reaction. The sulfur dioxide The yield of sulfur can reach 97%, and the yield of sulfur can reach 95%, realizing multi-polar recycling of waste sulfuric acid.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Biomedical Technology (AREA)
  • Physics & Mathematics (AREA)
  • Toxicology (AREA)
  • Electromagnetism (AREA)
  • Materials Engineering (AREA)
  • General Health & Medical Sciences (AREA)
  • Thermal Sciences (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

一种微波强化碳还原废硫酸的方法,包括如下步骤:(1)使用废硫酸浸泡炭材料,得到混合物;(2)混合物经微波加热,反应得到二氧化硫气体与磺化炭。

Description

一种微波强化碳还原废硫酸的方法 技术领域
本申请属于废弃物资源化利用领域,例如一种碳还原废硫酸的方法,具体例如一种微波强化碳还原废硫酸的方法。
背景技术
硫酸作为重要的基础化工产品,消耗量巨大,且广泛应用于工农业生产等领域。除少部分硫元素转移到硫酸铵、硫酸镁或硫酸铝等产品中,大多数硫以工业废石膏、硫酸钠或废硫酸的形态产出。废硫酸既是难以处理的危险废弃物,也是潜在的硫资源,将其转化为二氧化硫或硫磺是实现废硫酸资源化利用的主要途径。
CN 106315520A公开了一种改进的废硫酸的裂解工艺,是以废硫酸、空气、提供裂解所需热量的燃料等为原料,使废硫酸在裂解炉中发生裂解反应,生成含二氧化硫、三氧化硫、二氧化碳、水蒸汽、氮气、烟尘等的混合炉气,炉气经换热后进入后续制酸系统制取成品硫酸。但裂解炉内温度在600℃以上,反应温度高,且需外加燃料提供热量,运行成本较高。
CN 109052335A公开了一种硫磺气体还原废硫酸制液体二氧化硫和硫酸的方法,将硫磺气化为高温硫磺气体,将原料废硫酸洗涤蒸发浓缩、裂解为气体,两股气体在还原炉内反应生成二氧化硫气体,同时还可以去除废硫酸中的有机杂质,部分二氧化硫液化制得高纯度液体二氧化硫产品,部分二氧化硫经转化吸收可制成浓硫酸。CN 109437118A公开了一种处理工业废硫酸回收硫磺的方法及装置,包括高温分解炉、反应气换热装置、碳热还原塔、乏气冷却装置和脱硫塔,实现了废硫酸回收利用得到硫磺,实现了热能和产物的充分利用,降 低了再生利用成本。以上发明处理废硫酸的操作方法复杂、工序繁多,且裂解温度仍然较高。
CN 101200288A公开了一种再生废硫酸的方法,该方法包括在烃还原剂存在下,将废硫酸分解为二氧化硫,还原剂是烃污染物,优选为固体表面上的薄膜。在水存在下,分解步骤产生的二氧化硫转化三氧化硫,并冷凝出浓硫酸。但硫酸和碳反应产生二氧化硫的过程复杂且伴随多种副反应,该发明并未对副反应加以控制,这会对硫的资源化利用带来不利影响。
针对相关技术的不足,需要提供一种操作简便、低能耗且产物收率高的处理废硫酸的方法。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本申请提供一种微波强化碳还原废硫酸的方法,通过微波辐射间接加热控制碳和废硫酸的反应温度,从而有效提高反应效率,反应步骤少、能量消耗低以及反应产物收率高,最终实现废硫酸的低成本资源化利用。
本申请采用以下技术方案:
本申请实施例提供了一种微波强化碳还原废硫酸的方法,所述方法包括如下步骤:
(1)使用废硫酸浸泡炭材料,得到混合物;
(2)步骤(1)所述混合物经微波加热,反应得到二氧化硫气体与磺化炭。
本申请实施例提供的微波强化碳还原废硫酸的方法中,炭材料和废硫酸充分混合,废硫酸均匀分布在炭材料的表面,在微波辐射加热下,炭材料吸收微波,温度均匀升高促进反应进行;同时废硫酸也吸收微波,加快硫酸分子的分 解,相比常规加热,微波辐照加热可明显提高反应速率,且反应产物的收率增加。
在一个实施例中,步骤(1)所述炭材料包括煤、生物质、活性炭、树脂、磺化炭、生物质炭、废活性炭或废树脂中的任意一种或至少两种的组合,典型但非限制性的组合包括煤与生物质的组合,活性炭与树脂的组合,磺化炭与生物质炭的组合,废活性炭与废树脂的组合,煤、生物质与活性炭的组合,树脂、磺化炭与生物质炭的组合,煤、生物质、活性炭与树脂的组合,树脂、磺化炭、生物质炭、废活性炭与废树脂的组合,煤、生物质、活性炭、树脂、磺化炭与生物质炭的组合,生物质、活性炭、树脂、磺化炭、生物质炭、废活性炭与废树脂的组合,或煤、生物质、活性炭、树脂、磺化炭、生物质炭、废活性炭与废树脂的组合。
所述生物质包括枣核、核桃壳、胡桃壳、废茶叶、玉米芯、椰子壳、甜菜根、花生壳、稻谷壳、棉花壳、香蕉皮、竹废料、橄榄核、樱桃核、桔子皮、咖啡豆荚、玉米秸秆、芦苇杆、蔬菜杆或木薯皮中的任意一种或至少两种的组合。
在一个实施例中,步骤(1)所述废硫酸包括烷基化废硫酸、磺化废硫酸、硝化废硫酸或含氟废硫酸中的任意一种或至少两种的组合,典型但非限制性的组合包括烷基化废硫酸与磺化废硫酸的组合,硝化废硫酸与含氟废硫酸的组合,烷基化废硫酸、磺化废硫酸与硝化废硫酸的组合,或烷基化废硫酸、磺化废硫酸、硝化废硫酸与含氟废硫酸的组合。
在一个实施例中,步骤(1)所述炭材料为经过碱与碳酸盐混合液预处理的炭材料。
炭材料经过预处理,可以去除表面杂质,在一定程度上改变其比表面积和 孔隙结构,从而提高与废硫酸的反应效果。
在一个实施例中,所述碱与碳酸盐混合液包括氢氧化钠与碳酸钠的混合液。
在一个实施例中,所述混合液中氢氧化钠的质量分数为1.5-2.5wt%,例如可以是1.5wt%、2wt%或2.5wt%,但不限于所列举的数值,数值范围内其它未列举的数值同样适用。
在一个实施例中,所述混合液中碳酸钠的质量分数为0.5-1.5wt%,例如可以是0.5wt%、1wt%或1.5wt%,但不限于所列举的数值,数值范围内其它未列举的数值同样适用。
在一个实施例中,所述混合液中的溶剂包括去离子水。
在一个实施例中,所述预处理的时间为0.1-9h,例如可以是0.1h、1h、2h、3h、4h、5h、6h、7h、8h或9h,但不限于所列举的数值,数值范围内其它未列举的数值同样适用。
在一个实施例中,所述预处理的温度为30-90℃,例如可以是30℃、40℃、50℃、60℃、70℃、80℃或90℃,但不限于所列举的数值,数值范围内其它未列举的数值同样适用。
在一个实施例中,步骤(1)所述废硫酸中硫酸的质量浓度≥50wt%,例如可以是50wt%、60wt%、70wt%、80wt%、90wt%或95wt%,但不限于所列举的数值,数值范围内其它未列举的数值同样适用。
在一个实施例中,所述废硫酸为烷基化废硫酸时,所述烷基化废硫酸中硫酸的质量浓度≥85wt%,例如可以是85wt%、88wt%、91wt%、92wt%或95wt%,但不限于所列举的数值,数值范围内其它未列举的数值同样适用。
在一个实施例中,所述废硫酸为磺化废硫酸时,所述磺化废硫酸中硫酸的质量浓度≥85wt%,例如可以是85wt%、88wt%、91wt%、92wt%或95wt%,但 不限于所列举的数值,数值范围内其它未列举的数值同样适用。
在一个实施例中,步骤(1)所述废硫酸与炭材料的质量比为(2-20):1,例如可以是2:1、3:1、5:1、8:1、10:1、12:1、15:1、18:1或20:1,但不限于所列举的数值,数值范围内其它未列举的数值同样适用。
在一个实施例中,步骤(1)所述炭材料的粒度≤80mm,例如可以是80mm、70mm、60mm、50mm、40mm、30mm、20mm、10mm或5mm,但不限于所列举的数值,数值范围内其它未列举的数值同样适用。
在一个实施例中,步骤(1)所述混合物进一步包括陶瓷吸波材料,引入兼具吸波与蓄热特性的陶瓷吸波材料,可以进一步提高还原反应的效率。
本申请实施例所述“混合物进一步包括陶瓷吸波材料”是指,使用废硫酸浸泡炭材料与陶瓷吸波材料,得到包括陶瓷吸波材料的混合物。
在一个实施例中,所述陶瓷吸波材料包括碳化硅、氧化铝、二氧化硅、氮化硅或氧化铁复合陶瓷中的任意一种或至少两种的组合,典型但非限制性的组合包括碳化硅与氮化硅的组合,氮化硅与氧化铁复合陶瓷的组合,氧化铝与二氧化硅的组合,碳化硅与氧化铁复合陶瓷的组合,碳化硅、氧化铝与二氧化硅的组合,二氧化硅、氮化硅与氧化铁复合陶瓷的组合,碳化硅、氧化铝、二氧化硅与氮化硅的组合,或碳化硅、氧化铝、二氧化硅、氮化硅与氧化铁复合陶瓷的组合。
在一个实施例中,所述陶瓷吸波材料与炭材料的质量比为(0.1-10):1,例如可以是0.1:1、1:1、2:1、3:1、4:1、5:1、6:1、7:1、8:1、9:1或10:1,但不限于所列举的数值,数值范围内其它未列举的数值同样适用。
在一个实施例中,步骤(1)所述混合物为分离多余废硫酸得到的混合物。
废硫酸充分包裹在炭材料以及陶瓷吸波材料表面,多余的废硫酸经分离可 以重复利用,降低资源浪费。
在一个实施例中,步骤(2)所述微波加热包括温度依次升高的第一阶段、第二阶段以及第三阶段。
在一个实施例中,所述第一阶段的温度为90-150℃,时间为0.5-3h。
在一个实施例中,所述第一阶段的温度为90-150℃,例如可以是90℃、105℃、110℃、120℃、135℃、140℃或150℃,但不限于所列举的数值,数值范围内其它未列举的数值同样适用。
在一个实施例中,所述第一阶段的时间为0.5-3h,例如可以是0.5h、1h、1.5h、2h、2.5h或3h,但不限于所列举的数值,数值范围内其它未列举的数值同样适用。
在一个实施例中,所述第二阶段的温度为160-220℃,时间为0.5-3h。
在一个实施例中,所述第二阶段的温度为160-220℃,例如可以是160℃、170℃、180℃、190℃、200℃、210℃或220℃,但不限于所列举的数值,数值范围内其它未列举的数值同样适用。
在一个实施例中,所述第二阶段的时间为0.5-3h,例如可以是0.5h、1h、1.5h、2h、2.5h或3h,但不限于所列举的数值,数值范围内其它未列举的数值同样适用。
在一个实施例中,所述第三阶段的温度为230-300℃,时间为0.3-2h。
在一个实施例中,所述第三阶段的温度为230-300℃,例如可以是230℃、240℃、250℃、260℃、270℃、280℃、290℃或300℃,但不限于所列举的数值,数值范围内其它未列举的数值同样适用。
在一个实施例中,所述第三阶段的时间为0.3-2h,例如可以是0.3h、0.5h、0.7h、1h、1.2h、1.5h、1.8h或2h,但不限于所列举的数值,数值范围内其它未 列举的数值同样适用。
本申请实施例所述微波加热分为温度依次升高的三个阶段,由于硫酸还原反应受温度影响较大,而微波升温速度较快,控温精度不易把握,因此通过分段升温,可以有效控制反应速度。
在一个实施例中,步骤(2)所述微波加热的功率为20-500W/Kg,例如可以是20W/Kg、50W/Kg、80W/Kg、100W/Kg、150W/Kg、200W/Kg、300W/Kg、400W/Kg或500W/Kg,但不限于所列举的数值,数值范围内其它未列举的数值同样适用。
所述微波加热的功率的设置与反应原料的用量相关,原料的用量增加,微波加热的功率相应提高。
在一个实施例中,步骤(2)所述反应的绝对压力≤99KPa,例如可以是99KPa、95KPa、90KPa、85KPa、80KPa、70KPa、50KPa、30KPa、20KPa或10KPa,但不限于所列举的数值,数值范围内其它未列举的数值同样适用。
在一个实施例中,步骤(2)所述反应在密闭环境或保护性气氛中进行,所述保护性气氛所用气体包括惰性气体、氮气或二氧化碳中的任意一种或至少两种的组合,典型但非限制性的组合包括惰性气体与氮气的组合,氮气与二氧化碳的组合,惰性气体与二氧化碳的组合,或惰性气体、氮气与二氧化碳的组合。
在一个实施例中,步骤(2)所得二氧化硫气体经风机送入净化装置,得到纯化的二氧化硫。
采用本申请实施例提供的碳还原废硫酸的方法,制备得到的二氧化硫经风机抽出送入净化装置净化,可得到纯化的二氧化硫;所得纯化的二氧化硫进一步制备可得到三氧化硫或硫酸。
在一个实施例中,所述净化装置包括吸收净化塔。
在一个实施例中,步骤(2)所得二氧化硫气体流过炭材料,共同经第二微波加热得到混合气体,所述混合气体经冷凝与水洗,得到液体硫磺。
在一个实施例中,所述第二微波加热的反应器中设置有陶瓷吸波材料。
采用本申请实施例提供的碳还原废硫酸的方法,制备得到的二氧化硫还可进入第二微波反应器,在微波加热条件下进一步与炭材料反应制备硫磺。
在一个实施例中,所述第二微波加热的温度为600-700℃,例如可以是600℃、620℃、650℃、680℃或700℃,但不限于所列举的数值,数值范围内其它未列举的数值同样适用。
在一个实施例中,所述第二微波加热的温度对二氧化硫还原为硫磺的反应具有一定影响,加热温度过低,二氧化硫还原为硫磺的反应速度很慢,效率较低;加热温度过高,反应速度较快,但是生成CS2等副反应产物的量增加,硫磺的产量有所降低。因此将第二微波加热的温度控制在优选范围内。
在一个实施例中,所述第二微波加热的气体空速为100-5000h-1,例如可以是100h-1、300h-1、500h-1、800h-1、1000h-1、1500h-1、2000h-1、2500h-1、3000h-1、3500h-1、4000h-1、4500h-1或5000h-1,但不限于所列举的数值,数值范围内其它未列举的数值同样适用。
在一个实施例中,所述混合气体中的不凝气进入尾气焚烧装置。
在一个实施例中,所述不凝气包括COS、CS2、H2S或CO中的任意一种或至少两种的组合,典型但非限制性的组合包括COS与CS2的组合,H2S与CO的组合,COS、CS2与H2S的组合,CS2、H2S与CO的组合,或COS、CS2、H2S与CO的组合。
步骤(2)所得磺化炭可作为反应原料重复用于还原废硫酸,实现资源化循环利用。
作为本申请实施例所述方法的可选技术方案,所述方法包括如下步骤:
(1)使用废硫酸浸泡炭材料,得到混合物;
所述废硫酸中硫酸的质量浓度≥50wt%;所述废硫酸为烷基化废硫酸时,所述烷基化废硫酸中硫酸的质量浓度≥85wt%;所述废硫酸为磺化废硫酸时,所述磺化废硫酸中硫酸的质量浓度≥85wt%;所述废硫酸与炭材料的质量比为(2-20):1;所述炭材料的粒度≤80mm;
(2)步骤(1)所述混合物在绝对压力≤99KPa下经20-500W/Kg功率的微波加热,反应得到二氧化硫气体与磺化炭;所述微波加热包括温度依次升高的第一阶段、第二阶段以及第三阶段;
所述第一阶段的温度为90-150℃,时间为0.5-3h;所述第二阶段的温度为160-220℃,时间为0.5-3h;所述第三阶段的温度为230-300℃,时间为0.3-2h;
(3)步骤(2)所述二氧化硫气体经风机送入净化装置,得到纯化的二氧化硫;或步骤(2)所得二氧化硫气体在空速100-5000h-1下流过炭材料,共同经600-700℃第二微波加热得到混合气体,所述混合气体经冷凝与水洗,得到液体硫磺。
本申请具有以下有益效果:
(1)本申请提供的微波强化碳还原废硫酸的方法,通过微波辐射间接加热控制碳和废硫酸的反应温度,搭配合理的炭材料与废硫酸的配比,从而有效提高反应效率,本申请提供的方法反应步骤少、能量消耗低,能够实现废硫酸的低成本资源化利用,所得磺化炭也可作为反应原料重复使用;
(2)本申请采用三段控温的微波加热制度,可以促进各阶段反应充分进行,同时配合经过预处理的炭材料以及兼具吸波和蓄热功能的陶瓷吸波材料,所得反应产物的收率显著提高;
(3)本申请通过碳还原废硫酸,可以制备得到纯化的二氧化硫,也可进一步反应得到液体硫磺,所述二氧化硫的收率可达97%,硫磺的收率可达95%,实现了废硫酸的多极化回收利用。
在阅读并理解了详细描述后,可以明白其他方面。
具体实施方式
下面通过具体实施方式来进一步说明本申请的技术方案。本领域技术人员应该明了,所述实施例仅仅是帮助理解本申请,不应视为对本申请的具体限制。
实施例1
本实施例提供了一种微波强化碳还原废硫酸的方法,所述方法包括如下步骤:
(1)使用烷基化废硫酸浸泡活性炭,得到混合物;
所述混合物经氢氧化钠与碳酸钠的混合液浸泡预处理的时间为5h,温度为60℃;所述烷基化废硫酸中硫酸的质量浓度为91wt%;所述烷基化废硫酸与活性炭的质量比为10:1;所述活性炭的粒度≤80mm;
(2)步骤(1)所述混合物在绝对压力90KPa下经50W/Kg功率的微波加热,反应得到二氧化硫气体与磺化炭;所述微波加热包括温度依次升高的第一阶段、第二阶段以及第三阶段;
所述第一阶段的温度为120℃,时间为1.5h;第二阶段的温度为200℃,时间为1.5h;第三阶段的温度为280℃,时间为1.2h;
(3)步骤(2)所述二氧化硫气体经风机送入净化塔,得到纯化的二氧化硫。
所述二氧化硫经碱吸收并测定吸收液中的亚硫酸根含量,所得二氧化硫的 收率为96%。
实施例2
本实施例提供了一种微波强化碳还原废硫酸的方法,所述方法包括如下步骤:
(1)使用烷基化废硫酸浸泡活性炭,得到混合物;
所述混合物经氢氧化钠与碳酸钠的混合液浸泡预处理的时间为3h,温度为75℃;所述烷基化废硫酸中硫酸的质量浓度为90wt%;所述烷基化废硫酸与活性炭的质量比为5:1;所述活性炭的粒度≤80mm;
(2)步骤(1)所述混合物在绝对压力95KPa下经50W/Kg功率的微波加热,反应得到二氧化硫气体与磺化炭;所述微波加热包括温度依次升高的第一阶段、第二阶段以及第三阶段;
所述第一阶段的温度为135℃,时间为1h;第二阶段的温度为210℃,时间为1h;第三阶段的温度为260℃,时间为1.5h;
(3)步骤(2)所述二氧化硫气体经风机送入净化塔,得到纯化的二氧化硫。
所述二氧化硫经碱吸收并测定吸收液中的亚硫酸根含量,所得二氧化硫的收率为87%。
实施例3
本实施例提供了一种微波强化碳还原废硫酸的方法,所述方法包括如下步骤:
(1)使用烷基化废硫酸浸泡活性炭,得到混合物;
所述混合物经氢氧化钠与碳酸钠的混合液浸泡预处理的时间为7h,温度为 45℃;所述烷基化废硫酸中硫酸的质量浓度为88wt%;所述烷基化废硫酸与活性炭的质量比为15:1;所述活性炭的粒度≤80mm;
(2)步骤(1)所述混合物在绝对压力85KPa下经50W/Kg功率的微波加热,反应得到二氧化硫气体与磺化炭;所述微波加热包括温度依次升高的第一阶段、第二阶段以及第三阶段;
所述第一阶段的温度为105℃,时间为2h;第二阶段的温度为180℃,时间为2h;第三阶段的温度为290℃,时间为0.7h;
(3)步骤(2)所述二氧化硫气体经风机送入净化塔,得到纯化的二氧化硫。
所述二氧化硫经碱吸收并测定吸收液中的亚硫酸根含量,所得二氧化硫的收率为90%。
实施例4
本实施例提供了一种微波强化碳还原废硫酸的方法,所述方法包括如下步骤:
(1)使用烷基化废硫酸浸泡活性炭,得到混合物;
所述混合物经氢氧化钠与碳酸钠的混合液浸泡预处理的时间为1h,温度为90℃;所述烷基化废硫酸中硫酸的质量浓度为95wt%;所述烷基化废硫酸与活性炭的质量比为20:1;所述活性炭的粒度≤80mm;
(2)步骤(1)所述混合物在绝对压力80KPa下经50W/Kg功率的微波加热,反应得到二氧化硫气体与磺化炭;所述微波加热包括温度依次升高的第一阶段、第二阶段以及第三阶段;
所述第一阶段的温度为150℃,时间为0.5h;第二阶段的温度为220℃,时 间为0.5h;第三阶段的温度为300℃,时间为0.3h;
(3)步骤(2)所述二氧化硫气体经风机送入净化塔,得到纯化的二氧化硫。
所述二氧化硫经碱吸收并测定吸收液中的亚硫酸根含量,所得二氧化硫的收率为92%。
实施例5
本实施例提供了一种微波强化碳还原废硫酸的方法,所述方法包括如下步骤:
(1)使用烷基化废硫酸浸泡活性炭,得到混合物;
所述混合物经氢氧化钠与碳酸钠的混合液浸泡预处理的时间为9h,温度为30℃;所述烷基化废硫酸中硫酸的质量浓度为85wt%;所述烷基化废硫酸与活性炭的质量比为2:1;所述活性炭的粒度≤80mm;
(2)步骤(1)所述混合物在绝对压力99KPa下经50W/Kg功率的微波加热,反应得到二氧化硫气体与磺化炭;所述微波加热包括温度依次升高的第一阶段、第二阶段以及第三阶段;
所述第一阶段的温度为90℃,时间为3h;第二阶段的温度为160℃,时间为3h;第三阶段的温度为230℃,时间为2h;
(3)步骤(2)所述二氧化硫气体经风机送入净化塔,得到纯化的二氧化硫。
所述二氧化硫经碱吸收并测定吸收液中的亚硫酸根含量,所得二氧化硫的收率为74%。
实施例6
本实施例提供了一种微波强化碳还原废硫酸的方法,与实施例1的区别在于,将所述活性炭等质量替换为生物质(稻谷壳),其余均与实施例1相同。
所述二氧化硫经碱吸收并测定吸收液中的亚硫酸根含量,所得二氧化硫的收率为95%。
实施例7
本实施例提供了一种微波强化碳还原废硫酸的方法,与实施例1的区别在于,步骤(1)中使用烷基化废硫酸浸泡活性炭与碳化硅组成的混合料,所述碳化硅与活性炭的质量比为0.1:1,其余均与实施例1相同。
所述二氧化硫经碱吸收并测定吸收液中的亚硫酸根含量,所得二氧化硫的收率为96.5%。
实施例8
本实施例提供了一种微波强化碳还原废硫酸的方法,与实施例1的区别在于,步骤(1)中使用烷基化废硫酸浸泡活性炭与碳化硅组成的混合料,所述碳化硅与活性炭的质量比为10:1,其余均与实施例1相同。
所述二氧化硫经碱吸收并测定吸收液中的亚硫酸根含量,所得二氧化硫的收率为97%。
实施例9
本实施例提供了一种微波强化碳还原废硫酸的方法,与实施例1的区别在于,所述微波加热设置为4.2h内持续升温至280℃,其余均与实施例1相同。
所述二氧化硫经碱吸收并测定吸收液中的亚硫酸根含量,所得二氧化硫的收率为86%。本实施例采用持续加热方式,相比分段加热,反应物料吸波后温升存在滞后,从而影响温度控制,同时微波控制开停频繁,微波反应器的寿命 降低。
实施例10
本实施例提供了一种微波强化碳还原废硫酸的方法,与实施例1的区别在于,本实施例的微波加热包括第一阶段与第二阶段,第一阶段的温度为120℃,时间为2.1h;第二阶段的温度为200℃,时间为2.1h;其余均与实施例1相同。
所述二氧化硫经碱吸收并测定吸收液中的亚硫酸根含量,所得二氧化硫的收率为91%。微波加热的终点温度为200℃时,所述碳还原废硫酸的反应效率下降,二氧化硫的收率有所降低。
实施例11
本实施例提供了一种微波强化碳还原废硫酸的方法,与实施例1的区别在于,所述混合物未经预处理,其余均与实施例1相同。
所述二氧化硫经碱吸收并测定吸收液中的亚硫酸根含量,所得二氧化硫的收率为93%。本实施例中的活性炭未经预处理,与废硫酸反应的效果相对下降。
实施例12
本实施例提供了一种微波强化碳还原废硫酸的方法,与实施例1的区别在于,步骤(3)为:步骤(2)所得二氧化硫气体在空速1000h-1下流过活性炭与碳化硅,共同经700℃第二微波加热得到混合气体,所述混合气体经冷凝与水洗,得到液体硫磺。其余均与实施例1相同。
所得液体硫磺的收率为95%。
实施例13
本实施例提供了一种微波强化碳还原废硫酸的方法,与实施例12的区别在于,所述第二微波加热的温度为650℃,其余均与实施例12相同。
所得液体硫磺的收率为88%。
实施例14
本实施例提供了一种微波强化碳还原废硫酸的方法,与实施例12的区别在于,所述第二微波加热的温度为600℃,其余均与实施例12相同。
所得液体硫磺的收率为84%。
实施例15
本实施例提供了一种微波强化碳还原废硫酸的方法,与实施例12的区别在于,所述空速为100h-1,其余均与实施例12相同。
所得液体硫磺的收率为91%。当空速过低时,物料停留时间较长,会影响处理量,且对反应物带来不利影响,因此空速不宜过低。
实施例16
本实施例提供了一种微波强化碳还原废硫酸的方法,与实施例12的区别在于,所述空速为5000h-1,其余均与实施例12相同。
所得液体硫磺的收率为81%。当空速较高时,物料停留时间较短,反应进行不够不充分,因此所得产物收率有所降低。
实施例17
本实施例提供了一种微波强化碳还原废硫酸的方法,与实施例12的区别在于,所述第二微波加热的温度为550℃,其余均与实施例12相同。
所得液体硫磺的收率为74%。加热温度过低,二氧化硫还原为硫磺的反应速度很慢,效率降低。
实施例18
本实施例提供了一种微波强化碳还原废硫酸的方法,与实施例12的区别在 于,所述第二微波加热的温度为750℃,其余均与实施例12相同。
所得液体硫磺的收率为85%。加热温度过高,反应速度较快,但是生成CS2等副反应产物的量增加,硫磺的产量有所降低。
对比例1
本对比例提供了一种微波强化碳还原废硫酸的方法,与实施例1的区别在于,将微波加热替换为油浴加热,其余均与实施例1相同。
所得二氧化硫的收率为78%。微波加热条件下,活性炭和废硫酸的反应界面温度升高,有利于反应进行,而油浴相较于微波的加热速度慢,效率较低,所得产物的收率下降。
综上所述,本申请提供的微波强化碳还原废硫酸的方法,通过微波辐射间接加热控制碳和废硫酸的反应温度,搭配合理的炭材料与废硫酸的配比,有效了提高反应效率,本申请提供的方法反应步骤少、能量消耗低,能够实现废硫酸的低成本资源化利用;采用三段控温的微波加热制度,可以促进各阶段反应充分进行,同时配合经过预处理的炭材料以及兼具吸波与蓄热特性的陶瓷吸波材料,所得反应产物的收率显著提高;本申请通过碳还原废硫酸,可以制备得到纯化的二氧化硫,也可进一步反应得到液体硫磺,所述二氧化硫的收率可达97%,硫磺的收率可达95%,实现了废硫酸的多极化回收利用。
以上所述仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,所属技术领域的技术人员应该明了,任何属于本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到的变化或替换,均落在本申请的保护范围和公开范围之内。

Claims (10)

  1. 一种微波强化碳还原废硫酸的方法,所述方法包括如下步骤:
    (1)使用废硫酸浸泡炭材料,得到混合物;
    (2)步骤(1)所述混合物经微波加热,反应得到二氧化硫气体与磺化炭。
  2. 根据权利要求1所述的方法,其中,步骤(1)所述炭材料包括煤、生物质、活性炭、树脂、磺化炭、生物质炭、废活性炭或废树脂中的任意一种或至少两种的组合;
    可选地,步骤(1)所述废硫酸包括烷基化废硫酸、磺化废硫酸、硝化废硫酸或含氟废硫酸中的任意一种或至少两种的组合。
  3. 根据权利要求1或2所述的方法,其中,步骤(1)所述炭材料为经过碱与碳酸盐混合液预处理的炭材料;
    可选地,所述碱与碳酸盐混合液包括氢氧化钠与碳酸钠的混合液;
    可选地,所述预处理的时间为0.1-9h;
    可选地,所述预处理的温度为30-90℃。
  4. 根据权利要求1-3任一项所述的方法,其中,步骤(1)所述废硫酸中硫酸的质量浓度≥50wt%;
    可选地,所述废硫酸为烷基化废硫酸时,所述烷基化废硫酸中硫酸的质量浓度≥85wt%;
    可选地,所述废硫酸为磺化废硫酸时,所述磺化废硫酸中硫酸的质量浓度≥85wt%;
    可选地,步骤(1)所述废硫酸与炭材料的质量比为(2-20):1;
    可选地,步骤(1)所述炭材料的粒度≤80mm。
  5. 根据权利要求1-4任一项所述的方法,其中,步骤(1)所述混合物进一步包括陶瓷吸波材料;
    可选地,所述陶瓷吸波材料包括碳化硅、氧化铝、二氧化硅、氮化硅或氧化铁复合陶瓷中的任意一种或至少两种的组合;
    可选地,所述陶瓷吸波材料与炭材料的质量比为(0.1-10):1;
    可选地,步骤(1)所述混合物为分离多余废硫酸得到的混合物。
  6. 根据权利要求1-5任一项所述的方法,其中,步骤(2)所述微波加热包括温度依次升高的第一阶段、第二阶段以及第三阶段;
    可选地,所述第一阶段的温度为90-150℃,时间为0.5-3h;
    可选地,所述第二阶段的温度为160-220℃,时间为0.5-3h;
    可选地,所述第三阶段的温度为230-300℃,时间为0.3-2h;
    可选地,步骤(2)所述微波加热的功率为20-500W/Kg。
  7. 根据权利要求1-6任一项所述的方法,其中,步骤(2)所述反应的绝对压力≤99KPa;
    可选地,步骤(2)所述反应在密闭环境或保护性气氛中进行,所述保护性气氛所用气体包括惰性气体、氮气或二氧化碳中的任意一种或至少两种的组合。
  8. 根据权利要求1-7任一项所述的方法,其中,步骤(2)所得二氧化硫气体经风机送入净化装置,得到纯化的二氧化硫;
    可选地,所述净化装置包括吸收净化塔;
    可选地,步骤(2)所得二氧化硫气体流过炭材料,共同经第二微波加热得到混合气体,所述混合气体经冷凝与水洗,得到液体硫磺;
    可选地,所述第二微波加热的反应器中设置有陶瓷吸波材料。
  9. 根据权利要求8所述的方法,其中,所述第二微波加热的温度为600-700℃;
    可选地,所述第二微波加热的气体空速为100-5000h-1
    可选地,所述混合气体中的不凝气进入尾气焚烧装置。
  10. 根据权利要求1-9任一项所述的方法,其中,所述方法包括如下步骤:
    (1)使用废硫酸浸泡炭材料,得到混合物;
    所述废硫酸中硫酸的质量浓度≥50wt%;所述废硫酸为烷基化废硫酸时,所述烷基化废硫酸中硫酸的质量浓度≥85wt%;所述废硫酸为磺化废硫酸时,所述磺化废硫酸中硫酸的质量浓度≥85wt%;所述废硫酸与炭材料的质量比为(2-20):1;所述炭材料的粒度≤80mm;
    (2)步骤(1)所述混合物在绝对压力≤99KPa下经20-500W/Kg功率的微波加热,反应得到二氧化硫气体与磺化炭;所述微波加热包括温度依次升高的第一阶段、第二阶段以及第三阶段;
    所述第一阶段的温度为90-150℃,时间为0.5-3h;所述第二阶段的温度为160-220℃,时间为0.5-3h;所述第三阶段的温度为230-300℃,时间为0.3-2h;
    (3)步骤(2)所述二氧化硫气体经风机送入净化装置,得到纯化的二氧化硫;或步骤(2)所得二氧化硫气体在空速100-5000h-1下流过炭材料,共同经600-700℃第二微波加热得到混合气体,所述混合气体经冷凝与水洗,得到液体硫磺。
PCT/CN2023/091987 2022-05-13 2023-05-04 一种微波强化碳还原废硫酸的方法 WO2023216953A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210522237.0 2022-05-13
CN202210522237.0A CN114797713B (zh) 2022-05-13 2022-05-13 一种微波强化碳还原废硫酸的方法

Publications (1)

Publication Number Publication Date
WO2023216953A1 true WO2023216953A1 (zh) 2023-11-16

Family

ID=82515590

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/091987 WO2023216953A1 (zh) 2022-05-13 2023-05-04 一种微波强化碳还原废硫酸的方法

Country Status (2)

Country Link
CN (1) CN114797713B (zh)
WO (1) WO2023216953A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114797713B (zh) * 2022-05-13 2023-05-12 中国科学院过程工程研究所 一种微波强化碳还原废硫酸的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030206855A1 (en) * 2001-01-31 2003-11-06 Cha Chang Yul Process for efficient microwave hydrogen production
CN103539119A (zh) * 2013-10-30 2014-01-29 中国第一汽车股份有限公司 一种用于电化学储能器件的活性炭制备方法
CN111333905A (zh) * 2020-04-20 2020-06-26 中国科学院过程工程研究所 一种纤维增强复合材料的回收方法
CN111484863A (zh) * 2020-04-20 2020-08-04 中国科学院过程工程研究所 一种微波强化生物质炭化的处理方法
CN114797713A (zh) * 2022-05-13 2022-07-29 中国科学院过程工程研究所 一种微波强化碳还原废硫酸的方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53136731A (en) * 1977-05-02 1978-11-29 Foster Wheeler Corp Method of heating and recovering charcoal* coke and coal utilizing micro wave energy
KR101482057B1 (ko) * 2007-07-06 2015-01-13 엠. 테크닉 가부시키가이샤 유체 처리 장치 및 처리 방법
CN101624650B (zh) * 2009-08-04 2011-04-27 长沙达华矿业技术开发有限公司 一种含钒石煤微波辐照—酸浸提钒工艺
CN101948126B (zh) * 2009-09-08 2013-06-05 华东理工大学 一种利用高温微波活化粉煤灰的方法
US20110179701A1 (en) * 2010-01-27 2011-07-28 G-Energy Technologies, Llc Torrefaction of ligno-cellulosic biomasses and mixtures
CN102580650B (zh) * 2012-02-10 2013-06-05 中国石油大学(北京) 一种微波生物质热解连续反应装置及方法
CN105214457B (zh) * 2014-06-05 2018-04-17 魏雄辉 一种烟道气脱硫脱硝工艺及设备
CN106925195A (zh) * 2015-12-31 2017-07-07 中国石油天然气股份有限公司 一种水热法制备粉体材料的装置
CN108311066B (zh) * 2017-01-18 2021-04-13 四川大学 微波处理多相流化床反应器及处理磷石膏的工艺
CN109181643A (zh) * 2017-03-03 2019-01-11 侯英翔 金属矿、非金属矿及煤矿掘巷,露天矿开采时,降尘方法
CN108913185A (zh) * 2018-05-31 2018-11-30 镇江虎瑞生物科技有限公司 一种微波辅助高效裂解生物质制备生物油的方法
CN109163960B (zh) * 2018-11-08 2021-05-14 华北电力大学(保定) 一种微波辅助顺序提取粉煤灰中不同形态砷硒的方法
CN214243819U (zh) * 2020-12-21 2021-09-21 斯瑞尔环境科技股份有限公司 一种烷基化废硫酸连续微波碳化装置
CN113336196A (zh) * 2021-07-06 2021-09-03 上海三夫工程技术有限公司 基于微波加热的气化裂解装置及快速制备硫磺气体的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030206855A1 (en) * 2001-01-31 2003-11-06 Cha Chang Yul Process for efficient microwave hydrogen production
CN103539119A (zh) * 2013-10-30 2014-01-29 中国第一汽车股份有限公司 一种用于电化学储能器件的活性炭制备方法
CN111333905A (zh) * 2020-04-20 2020-06-26 中国科学院过程工程研究所 一种纤维增强复合材料的回收方法
CN111484863A (zh) * 2020-04-20 2020-08-04 中国科学院过程工程研究所 一种微波强化生物质炭化的处理方法
CN114797713A (zh) * 2022-05-13 2022-07-29 中国科学院过程工程研究所 一种微波强化碳还原废硫酸的方法

Also Published As

Publication number Publication date
CN114797713B (zh) 2023-05-12
CN114797713A (zh) 2022-07-29

Similar Documents

Publication Publication Date Title
Guo et al. An overview of the comprehensive utilization of silicon-based solid waste related to PV industry
WO2023216953A1 (zh) 一种微波强化碳还原废硫酸的方法
CN113149825B (zh) 一种聚对苯二甲酸乙二醇酯催化降解的方法
WO2014194790A1 (zh) 一种从焦炉煤气脱硫含盐废液中提取两种副盐的方法
CN107185580A (zh) 一种g‑C3N4/ZnO纳米片多级异质结构光催化剂及其制备方法
CN106315568A (zh) 一种石墨烯的制备方法及石墨烯
CN104357071A (zh) 一种利用微波催化热解生物质定向生产生物质炭、生物质油和生物质气的方法
CN111250092B (zh) 一种生物质蜂窝状半焦负载镍-铁纳米颗粒催化剂的制备方法及应用
CN110721726A (zh) 一种CdS-g-C3N4负载纳米TiO2的光催化产氢复合催化剂及其制法
CN115716716B (zh) 一种从退役风机叶片中热解回收优质玻璃纤维的方法
CN116409777A (zh) 一种生物炭、制备方法及其催化重整制富氢气体的应用
CN111484863B (zh) 一种微波强化生物质炭化的处理方法
CN211972228U (zh) 一种橡胶热循环加热的微负压裂解系统
CN113663723A (zh) 氮化碳复合材料及其制备方法与人工光合作用中的应用
CN113697783A (zh) 一种多孔g-C3N4纳米薄片的制备方法及其应用
CN114106592A (zh) 一种废旧轮胎裂解炭黑高温等离子体纯化处理方法
CN112569768A (zh) 一种黄磷尾气净化吸收方法
CN105755294B (zh) 一种铜冶炼的生物质炭复合还原剂
CN110357047B (zh) 一种立方氮化硼提纯处理方法
CN105802656B (zh) 一种利用高炉渣余热催化裂解废旧轮胎油气联产技术
WO2024130775A1 (zh) 一种变频微波节能共热解含油污泥与沼渣原位裂解去除焦油的方法
CN108622892B (zh) 一种低温制备氟化石墨的方法
CN108439408A (zh) 一种利用废弃线路基板制备碳化硅粉体材料的方法
CN113244927B (zh) 一种dbd等离子体协同催化剂净化cs2并回收硫的方法
CN220098567U (zh) 一种热化学循环制氢系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23802725

Country of ref document: EP

Kind code of ref document: A1