WO2023216923A1 - 一种多用户数据传输的方法和装置 - Google Patents

一种多用户数据传输的方法和装置 Download PDF

Info

Publication number
WO2023216923A1
WO2023216923A1 PCT/CN2023/091615 CN2023091615W WO2023216923A1 WO 2023216923 A1 WO2023216923 A1 WO 2023216923A1 CN 2023091615 W CN2023091615 W CN 2023091615W WO 2023216923 A1 WO2023216923 A1 WO 2023216923A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal device
information
network device
model
interference
Prior art date
Application number
PCT/CN2023/091615
Other languages
English (en)
French (fr)
Inventor
秦城
李雪茹
王四海
杨锐
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023216923A1 publication Critical patent/WO2023216923A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/345Interference values
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0452Multi-user MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • H04W72/232Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal the control data signalling from the physical layer, e.g. DCI signalling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/22Processing or transfer of terminal data, e.g. status or physical capabilities
    • H04W8/24Transfer of terminal data

Definitions

  • the embodiments of the present application relate to the field of communications, and more specifically, to a method and device for multi-user data transmission.
  • MIMO Multiple-input multiple-output
  • LTE long term evolution
  • NR new radio
  • MIMO technology is usually combined in wireless communication systems, such as using single-user multiple-input multiple-output (SU-MIMO) technology to perform multi-stream transmission or multi-stream transmission for a single user.
  • SU-MIMO single-user multiple-input multiple-output
  • MU-MIMO Multi-user multiple-input multiple-output
  • SU-MIMO single-user multiple-input multiple-output
  • MU-MIMO Multi-user multiple-input multiple-output
  • precoding of network equipment needs to be accurately matched with the channel, so that the precoded signal will have less interference after being transmitted through the corresponding channel.
  • the determination of precoding is usually based on measured channel information
  • the user when the user is in a mobile state, there may be a delay between the measured channel information and the actual transmission channel information, causing the precoding to fail to accurately match the channel, especially in MU-MIMO. transmission, may lead to a sharp increase in interference. Therefore, a multi-user data transmission method is urgently needed in order to improve the performance of terminal equipment in detecting and eliminating interference signals.
  • Embodiments of the present application provide a method and device for multi-user data transmission, which can improve the performance of terminal equipment in detecting and eliminating interference signals.
  • a multi-user data transmission method is provided.
  • the method can be executed by a terminal device, or can also be executed by a chip or circuit provided in the terminal device. This application does not limit this.
  • the following The description takes the execution by the first terminal device as an example.
  • the method includes:
  • the first terminal device sends first information to the network device, and the first information is used to indicate the first terminal device's ability to detect interference signals sent to the paired terminal device during multi-user multiple input multiple output MU-MIMO paired transmission; After a terminal device sends the first information to the network device, the first terminal device receives the first instruction information from the network device. The first instruction information is used to instruct the data transmission information of the second terminal device.
  • the second terminal device is the third terminal device.
  • a terminal device is paired with the terminal device.
  • the first terminal device receives the signal from the network device.
  • the first indication information of the device is used by the first terminal device to detect the interference signal sent to the paired terminal device, wherein the first indication information is also used to indicate the terminal paired with the first terminal device.
  • Data transmission information of the device ie, the second terminal device.
  • the network device determines that the first terminal device has the ability to detect interference signals based on the first information, and then sends the first instruction information to the first terminal device, thereby avoiding the network failure when the first terminal device does not have the ability to detect interference signals.
  • the device instructs the first terminal device to detect interference signals.
  • the first terminal device cannot complete better interference detection and elimination, which wastes related control channel resources and power consumption of the terminal device.
  • the second terminal device may be one terminal device or multiple terminal devices, which is not limited in this application.
  • the first terminal device when the first information satisfies a preset condition, the first terminal device receives the first indication information from the network device.
  • the network device when the ability of the first terminal device to detect interference signals meets a preset condition, the network device sends the first indication information to the first terminal device, where the preset condition may be that the network device negotiates with the first terminal device , it may be stipulated in the protocol, or it may be determined by the network device itself according to a certain condition, which is not limited in this application.
  • the first indication information is determined based on the first information.
  • the first terminal device detects multi-user interference signals during MU-MIMO paired transmission according to the first indication information.
  • the first indication information is carried in the first downlink control information DCI field, and the method further includes: the first terminal device determines the first terminal device according to the configuration information.
  • the configuration information includes the first DCI field and/or the identification of the first DCI field.
  • the configuration information includes the first DCI field and/or the identification of the first DCI field determined by the network device, where the first DCI field is an existing DCI field (i.e. protocol) used by the network device to indicate the first terminal device. specified DCI field), the first terminal device directly parses the first indication information on the existing DCI field according to the configuration information, thereby saving resource overhead and reducing the complexity of the first terminal device.
  • the first DCI field is an existing DCI field (i.e. protocol) used by the network device to indicate the first terminal device. specified DCI field
  • the first terminal device directly parses the first indication information on the existing DCI field according to the configuration information, thereby saving resource overhead and reducing the complexity of the first terminal device.
  • the configuration information may be sent by the network device to the first terminal device, or may be specified by the protocol.
  • the first terminal device receives the configuration information from the network device.
  • the method before the first terminal device receives the first indication information from the network device, the method further includes: the first terminal device sends a message to the network device.
  • the network device sends second information, the second information is used to indicate the motion state of the first terminal device, and the motion state includes the following: One or more items: speed, acceleration, motion posture.
  • the first terminal device sends the second information to the network device; or, before the first terminal device receives the first indication information, the first terminal device sends the second information to the network device. After the first information, the first terminal device sends the second information to the network device, which is not limited in this application.
  • the first terminal device can send the second information to the network device according to the motion status reporting trigger condition configured by the network device; the first terminal device can also periodically send the second information to the network device.
  • the method further includes: the first terminal device receives data from the network device. Second indication information of the device, the second indication information is used to instruct the first terminal device to send the motion status of the first terminal device to the network device.
  • the first information includes one or more of the following: whether the first terminal device supports interference detection based on artificial intelligence AI model, whether the first terminal device supports interference detection based on artificial intelligence AI model, The number of signal interference streams that can be detected under the AI model, the signal interference modulation order that the first terminal device can detect based on the AI model, the signal-to-noise ratio SNR or signal interference that the first terminal device adapts based on the AI model The range of noise ratio SINR.
  • the first information includes one or more of the following: whether the first terminal device supports likelihood detection capability, whether the first terminal device supports detectable The number of signal interference streams, the detectable interference signal modulation order supported by the first terminal device, and the maximum complexity of interference detection supported by the first terminal device.
  • the first information includes one or more of the following: the maximum complexity of the AI model supported by the first terminal device, the AI model supported by the first terminal device, The storage upper limit of the model, the operator of the AI model supported by the first terminal device, the number of neural network layers of the AI model supported by the first terminal device, and the neural network type of the AI model supported by the first terminal device.
  • the configuration information also includes an AI network model, and input and output contents and parameters of the AI network model.
  • the configuration information also includes the input and output contents and parameters of the AI network model, including the specific contents of the input and output of the AI network model, and the input and output data sizes. For example, configure the input of the AI model to be a received signal, pilot signal or reference signal, and the output is the result of the detected signal; or configure the input of the AI model to be a matrix of received signals, and the matrix size of the received signal is N *1, the output is the result of signal detection, and the output size of this signal detection is N*T.
  • the first indication information includes at least one of the following: an antenna port of the second terminal device, a number of the second terminal device, The number of interfering data streams, the signal modulation mode of the second terminal device, and the transmission power received by the second terminal device from the network device.
  • a multi-user transmission method is provided.
  • the method can be executed by a network device, or can also be executed by a chip or circuit provided in the network device.
  • This application does not limit this.
  • the following description takes execution by a network device as an example.
  • the method includes:
  • the network device receives first information from the first terminal device, the first information is used to instruct the first terminal device to detect interference from the paired terminal device during multi-user multiple input multiple output MU-MIMO paired transmission. signal capability; after the network device receives the first information, the network device sends first indication information to the first terminal device, and the first indication information is used to instruct the second terminal device to transmit data.
  • Information the second terminal device is a terminal device paired with the first terminal device.
  • the network device receives the first information from the first terminal device, and the first information is used to indicate that the first terminal device detects from when multi-user multiple input multiple output MU-MIMO paired transmission.
  • the ability of the interference signal sent to the paired terminal device the network device sends first indication information to the first terminal device, the first indication information is used by the first terminal device to detect the interference signal sent to the paired terminal device, wherein, The first indication information is also used to indicate data transmission information of a terminal device paired with the first terminal device (ie, the second terminal device).
  • the network device determines that the first terminal device has the ability to detect interference signals based on the first information, and then sends the first instruction information to the first terminal device, thereby avoiding the network failure when the first terminal device does not have the ability to detect interference signals.
  • the device instructs the first terminal device to detect interference signals.
  • the first terminal device cannot complete better interference detection and elimination, which wastes related control channel resources and power consumption of the terminal device.
  • the second terminal device may be one terminal device or multiple terminal devices, which is not limited in this application.
  • the network device when the first information satisfies a preset condition, the network device sends the first indication information to the first terminal device.
  • the network device when the ability of the first terminal device to detect interference signals meets a preset condition, the network device sends the first indication information to the first terminal device, where the preset condition may be that the network device negotiates with the first terminal device , it may be stipulated in the protocol, or it may be determined by the network device itself according to a certain condition, which is not limited in this application.
  • the first indication information is determined based on the first information.
  • the first indication information is carried in the first downlink control information DCI field
  • the method further includes: the network device sends a configuration to the first terminal device Information, the configuration information includes the first DCI field and/or the identification of the first DCI field.
  • the configuration information includes the first DCI field and/or the identification of the first DCI field determined by the network device, where the first DCI field is an existing DCI field (i.e. protocol) used by the network device to indicate the first terminal device. specified DCI field), the first terminal device directly parses the first indication information on the existing DCI field according to the configuration information, thereby saving resource overhead and reducing the complexity of the terminal device.
  • the first DCI field is an existing DCI field (i.e. protocol) used by the network device to indicate the first terminal device. specified DCI field
  • the first terminal device directly parses the first indication information on the existing DCI field according to the configuration information, thereby saving resource overhead and reducing the complexity of the terminal device.
  • the configuration information may be sent by the network device to the first terminal device, or may be specified by the protocol.
  • the method before the network device sends the first indication information to the first terminal device, the method further includes: the network device receives a message from the first terminal device.
  • Second information the second information is used to indicate the motion state of the first terminal device, and the motion state includes one or more of the following: speed, acceleration, motion direction, and motion posture.
  • the first terminal device sends the second information to the network device; or, before the first terminal device receives the first indication information, the first terminal device sends the second information to the network device. After the first information, the first terminal device sends the second information to the network device, which is not limited in this application.
  • the first terminal device can send the second information to the network device according to the motion status reporting trigger condition configured by the network device; the first terminal device can also periodically send the second information to the network device.
  • the method before the network device receives the second information from the first terminal device, the method further includes: the network device sends a message to the first terminal device. Second indication information, the second indication information is used to instruct the first terminal device to send the motion status of the first terminal device to the network device.
  • the method before the network device sends the configuration information to the first terminal device, the method further includes: the network device determines that the second information satisfies the first requirement. One condition.
  • the first condition includes at least one of the following:
  • the movement speed characteristics of the first terminal device meet the preset speed characteristics
  • the movement posture characteristics of the first terminal device satisfy the preset posture characteristics
  • the motion speed characteristics include velocity magnitude, velocity direction, acceleration magnitude, and acceleration direction.
  • the first information includes one or more of the following: whether the first terminal device supports interference detection based on artificial intelligence AI model, whether the first terminal device supports interference detection based on artificial intelligence AI model, The number of signal interference streams that can be detected under the AI model, the signal interference modulation order that the first terminal device can detect based on the AI model, the signal-to-noise ratio SNR or signal interference that the first terminal device adapts based on the AI model The range of noise ratio SINR.
  • the first information further includes one or more of the following: whether the first terminal device supports likelihood detection capability, whether the first terminal device supports a detectable The number of signal interference streams, the detectable interference signal modulation order supported by the first terminal device, and the maximum complexity of interference detection supported by the first terminal device.
  • the first information includes one or more of the following: the maximum complexity of the AI model supported by the first terminal device, the AI model supported by the first terminal device, The storage upper limit of the model, the operator of the AI model supported by the first terminal device, the number of neural network layers of the AI model supported by the first terminal device, and the neural network type of the AI model supported by the first terminal device.
  • the configuration information also includes an AI model, and the input and output contents and parameters of the AI network model.
  • the AI model is configured by the network device according to the first information.
  • the configuration information also includes the input and output contents and parameters of the AI network model, including the specific contents of the input and output of the AI network model, and the input and output data sizes. For example, configure the input of the AI model to be a received signal, pilot signal or reference signal, and the output is the result of the detected signal; or configure the input of the AI model to be a matrix of received signals, and the matrix size of the received signal is N *1, the output is the result of signal detection, and the output size of this signal detection is N*T.
  • the first indication information includes at least one of the following: the antenna port of the second terminal device, the number of the second terminal device, the The number of interfering data streams, the signal modulation mode of the second terminal device, and the transmission power received by the second terminal device from the network device.
  • a multi-user data transmission method is provided.
  • the method can be executed by a terminal device, or can also be executed by a chip or circuit provided in the terminal device. This application does not limit this.
  • the following The description takes the execution by the first terminal device as an example.
  • the method includes:
  • the first terminal device sends first information to the network device, where the first information is used to indicate the first terminal device's ability to detect interference signals sent to the paired terminal device during multi-user multiple input multiple output MU-MIMO paired transmission;
  • the first terminal device receives the first instruction information from the network device.
  • the first instruction information is used to instruct the data transmission information of the second terminal device.
  • the second terminal device For a terminal device paired with the first terminal device, the first indication information is determined based on the first information.
  • the network device determines that the first terminal device has the ability to detect interference signals based on the first information, and sends the first indication information to the first terminal device, thereby avoiding the problem when the first terminal device does not have the ability to detect interference signals. Without the ability to detect interference signals, the network device instructs the first terminal device to detect the interference signal. The first terminal device cannot complete better interference detection and elimination, which wastes related control channel resources and the power consumption of the terminal device.
  • the first indication information is carried in the first downlink control information DCI field, and the method further includes: the first terminal device determines the first terminal device according to the configuration information.
  • the configuration information includes the first DCI field and/or the identification of the first DCI field.
  • the first terminal device receives the configuration information from the network device.
  • the method before the first terminal device receives the first indication information from the network device, the method further includes: the first terminal device transmits a message to the first terminal device.
  • the network device sends second information, where the second information is used to indicate the motion state of the first terminal device, where the motion state includes one or more of the following: speed, acceleration, and motion posture.
  • the first terminal device sends the second information to the network device; or, before the first terminal device receives the first indication information, the first terminal device sends the second information to the network device. After the first information, the first terminal device sends the second information to the network device, which is not limited in this application.
  • the first terminal device can send the second information to the network device according to the motion status reporting trigger condition configured by the network device; the first terminal device can also periodically send the second information to the network device.
  • the method before the first terminal device sends the second information to the network device, the method further includes: the first terminal device receives data from the network device. Second indication information of the device, the second indication information is used to instruct the first terminal device to send the motion status of the first terminal device to the network device.
  • the first information includes one or more of the following: whether the first terminal device supports interference detection based on artificial intelligence AI model, whether the first terminal device supports interference detection based on artificial intelligence AI model, The number of signal interference streams that can be detected under the AI model, the signal interference modulation order that the first terminal device can detect based on the AI model, the signal-to-noise ratio SNR or signal interference that the first terminal device adapts based on the AI model The range of noise ratio SINR.
  • the first information includes one or more of the following: whether the first terminal device supports likelihood detection capability, whether the first terminal device supports detectable The number of signal interference streams, the detectable interference signal modulation order supported by the first terminal device, and the maximum complexity of interference detection supported by the first terminal device.
  • the first information includes one or more of the following: the maximum complexity of the AI model supported by the first terminal device, the AI model supported by the first terminal device, The storage upper limit of the model, the operator of the AI model supported by the first terminal device, the number of neural network layers of the AI model supported by the first terminal device, and the neural network type of the AI model supported by the first terminal device.
  • the configuration information also includes the AI network model, and the input and output contents and parameters of the AI network model.
  • the first indication information includes at least one of the following: the antenna port of the second terminal device, the number of the second terminal device, the The number of interfering data streams, the signal modulation mode of the second terminal device, and the transmission power received by the second terminal device from the network device.
  • a multi-user transmission method is provided.
  • This method can be executed by a network device, or can also be executed by a chip or circuit provided in the network device.
  • This application does not limit this.
  • the following description takes execution by a network device as an example.
  • the method includes:
  • the network device receives first information from the first terminal device, the first information is used to instruct the first terminal device to detect interference from the paired terminal device during multi-user multiple input multiple output MU-MIMO paired transmission. signal capability; when the first information meets the preset conditions, the network device sends first indication information to the first terminal device, and the first indication information is used to indicate the data transmission information of the second terminal device.
  • the second terminal device is a terminal device paired with the first terminal device.
  • the network device determines that the first terminal device has the ability to detect interference signals based on the first information, and sends the first indication information to the first terminal device, thereby avoiding the problem when the first terminal device does not have the ability to detect interference signals. Without the ability to detect interference signals, the network device instructs the first terminal device to detect the interference signal. The first terminal device cannot complete better interference detection and elimination, which wastes related control channel resources and the power consumption of the terminal device.
  • the first indication information is carried in the first downlink control information DCI field
  • the method further includes: the network device sending a configuration to the first terminal device Information, the configuration information includes the first DCI field and/or the identification of the first DCI field.
  • the configuration information includes the first DCI field and/or the identification of the first DCI field determined by the network device, where the first DCI field is an existing DCI field (i.e. protocol) used by the network device to indicate the first terminal device. specified DCI field), the first terminal device directly parses the first indication information on the existing DCI field according to the configuration information, thereby saving resource overhead and reducing the complexity of the terminal device.
  • the first DCI field is an existing DCI field (i.e. protocol) used by the network device to indicate the first terminal device. specified DCI field
  • the first terminal device directly parses the first indication information on the existing DCI field according to the configuration information, thereby saving resource overhead and reducing the complexity of the terminal device.
  • the method before the network device sends the first indication information to the first terminal device, the method further includes: the network device receives a message from the first terminal device.
  • Second information the second information is used to indicate the motion state of the first terminal device, and the motion state includes one or more of the following: speed, acceleration, motion direction, and motion posture.
  • the first terminal device sends the second information to the network device; or, before the first terminal device receives the first indication information, the first terminal device sends the second information to the network device. After the first information, the first terminal device sends the second information to the network device, which is not limited in this application.
  • the first terminal device can send the second information to the network device according to the motion status reporting trigger condition configured by the network device; the first terminal device can also periodically send the second information to the network device.
  • the method before the network device receives the second information from the first terminal device, the method further includes: the network device sends a message to the first terminal device. Second indication information, the second indication information is used to instruct the first terminal device to send the motion status of the first terminal device to the network device.
  • the method before the network device sends the configuration information to the first terminal device, the method further includes: the network device determines that the second information satisfies the first requirement. One condition.
  • the first condition includes at least one of the following:
  • the movement speed characteristics of the first terminal device meet the preset speed characteristics
  • the movement posture characteristics of the first terminal device satisfy the preset posture characteristics
  • the motion speed characteristics include velocity magnitude, velocity direction, acceleration magnitude, and acceleration direction.
  • the first information includes one or more of the following: whether the first terminal device supports interference detection based on artificial intelligence AI model, whether the first terminal device supports interference detection based on artificial intelligence AI model, The number of signal interference streams that can be detected under the AI model, the signal interference modulation order that the first terminal device can detect based on the AI model, the signal-to-noise ratio SNR or signal interference that the first terminal device adapts based on the AI model The range of noise ratio SINR.
  • the first information further includes one or more of the following: whether the first terminal device supports likelihood detection capability, whether the first terminal device supports detectable The number of signal interference streams, the detectable interference signal modulation order supported by the first terminal device, and the maximum complexity of interference detection supported by the first terminal device.
  • the first information includes one or more of the following: the maximum complexity of the AI model supported by the first terminal device, the AI model supported by the first terminal device, The storage upper limit of the model, the operator of the AI model supported by the first terminal device, the number of neural network layers of the AI model supported by the first terminal device, and the neural network type of the AI model supported by the first terminal device.
  • the configuration information also includes an AI model, and input and output contents and parameters of the AI network model.
  • a device for multi-user data transmission includes: a transceiver unit that sends first information to a network device, where the first information is used to instruct the first terminal.
  • the first indication information of the network device is used to indicate data transmission information of a second terminal device, and the second terminal device is a terminal device paired with the first terminal device.
  • the transceiver unit when the first information satisfies a preset condition, is further configured to receive the first indication information.
  • the first indication information is determined based on the first information.
  • the processing unit is configured to detect multi-user interference signals during MU-MIMO paired transmission according to the first indication information.
  • the first indication information is carried in the first downlink control information DCI field
  • the device further includes: the processing unit determines the first DCI according to the configuration information. field, the configuration information includes the first DCI field and/or the identification of the first DCI field.
  • the transceiver unit is further configured to receive the configuration information from the network device.
  • the apparatus before the receiving unit is configured to receive the first indication information from the network device, the apparatus further includes:
  • the transceiver unit is also configured to send second information to the network device.
  • the second information is used to indicate the motion state of the first terminal device.
  • the motion state includes one or more of the following: speed, Acceleration, motion posture.
  • the apparatus before the transceiver unit is used to send the second information to the network device, the apparatus further includes:
  • the transceiver unit is also configured to receive second indication information from the network device, where the second indication information is used to instruct the first terminal device to send the motion status of the first terminal device to the network device. .
  • the first information includes one or more of the following: whether the first terminal device supports interference detection based on an artificial intelligence AI model, whether the first terminal device supports interference detection based on an artificial intelligence AI model, The number of signal interference streams that can be detected under the AI model, the signal interference modulation order that the first terminal device can detect based on the AI model, the signal-to-noise ratio SNR or signal interference that the first terminal device adapts based on the AI model The range of noise ratio SINR.
  • the first information includes one or more of the following: whether the first terminal device supports likelihood detection capability, whether the first terminal device supports detectable The number of signal interference streams, the detectable interference signal modulation order supported by the first terminal device, and the maximum complexity of interference detection supported by the first terminal device.
  • the first information includes one or more of the following: the maximum complexity of the AI model supported by the first terminal device, the AI model supported by the first terminal device, The storage upper limit of the model, the operators of the AI model supported by the first terminal device, and the number of neural network layers of the AI model supported by the first terminal device.
  • the configuration information also includes an AI network model.
  • the first indication information includes at least one of the following: an antenna port of the second terminal device, a number of the second terminal device, The number of interfering data streams, the signal modulation mode of the second terminal device, and the power received by the second terminal device from the network device.
  • a sixth aspect provides a device for multi-user data transmission.
  • the device for multi-user data transmission includes: a transceiver unit configured to receive first information from a first terminal device, where the first information is used to indicate The ability of the first terminal device to detect interference signals during multi-user multiple-input multiple-output MU-MIMO paired transmission; the transceiver unit is used to receive the first information, and the transceiver unit is also used to The first terminal device sends first indication information, the first indication information is used to indicate data transmission information of a second terminal device, and the second terminal device is a terminal device paired with the first terminal device.
  • the transceiver unit when the first information satisfies a preset condition, the transceiver unit is configured to send the first indication information to the first terminal device.
  • the first indication information is determined based on the first information.
  • the first indication information is carried in the first downlink control information DCI field
  • the device further includes: the transceiver unit, configured to send a message to the first terminal
  • the device sends configuration information, where the configuration information includes the first DCI field and/or the identification of the first DCI field.
  • the apparatus before the transceiver unit is used to send the first indication information to the first terminal device, the apparatus further includes: the transceiver unit, which is also used to receive from The second information of the first terminal device, the second information is used to indicate the motion state of the first terminal device, the motion state includes one or more of the following: speed, acceleration, motion direction, motion posture .
  • the device before the transceiver unit is used to receive the second information from the first terminal device, the device further includes: the transceiver unit, which is further configured to send a message to the first terminal device.
  • the first terminal device sends Send second instruction information, where the second instruction information is used to instruct the first terminal device to send the motion status of the first terminal device to the network device.
  • the method before the transceiver unit sends the configuration information to the first terminal device, the method further includes: a processing unit configured to determine that the second information satisfies First condition.
  • the first condition includes at least one of the following:
  • the movement speed characteristics of the first terminal device meet the preset speed characteristics
  • the movement posture characteristics of the first terminal device satisfy the preset posture characteristics
  • the motion speed characteristics include velocity magnitude, velocity direction, acceleration magnitude, and acceleration direction.
  • the first information includes one or more of the following: whether the first terminal device supports interference detection based on an artificial intelligence AI model, whether the first terminal device supports interference detection based on an artificial intelligence AI model, The number of signal interference streams that can be detected under the AI model, the signal interference modulation order that the first terminal device can detect based on the AI model, the signal-to-noise ratio SNR or signal interference that the first terminal device adapts based on the AI model The range of noise ratio SINR.
  • the first information further includes one or more of the following: whether the first terminal device supports likelihood detection capability, whether the first terminal device supports a detectable The number of signal interference streams, the detectable interference signal modulation order supported by the first terminal device, and the maximum complexity of interference detection supported by the first terminal device.
  • the first information includes one or more of the following: the maximum complexity of the AI model supported by the first terminal device, the AI model supported by the first terminal device, The storage upper limit of the model, the operators of the AI model supported by the first terminal device, and the number of neural network layers of the AI model supported by the first terminal device.
  • the configuration information further includes an AI model
  • the AI model is configured by the network device according to the first information.
  • the first indication information includes at least one of the following: an antenna port of the second terminal device, a number of the second terminal device, The number of interfering data streams, the signal modulation mode of the second terminal device, and the power received by the second terminal device from the network device.
  • a communication device including: a processor, the processor is coupled to a memory, the memory is used to store programs or instructions, and when the programs or instructions are executed by the processor, the The communication device performs the method in the first aspect or the second aspect and its various possible implementations, or causes the communication device to perform the method in the third or fourth aspect and its various possible implementations.
  • processors there are one or more processors and one or more memories.
  • the above-mentioned memory may be integrated with the above-mentioned processor, or the above-mentioned memory and processor may be separate devices.
  • the forwarding device also includes a transmitter (transmitter) and a receiver (receiver).
  • An eighth aspect provides a communication system, including: a first terminal device, configured to perform the method in the above-mentioned first aspect and any of its possible implementations, or to perform the above-mentioned third aspect and any of its possible implementations.
  • a method in a possible implementation manner a network device, used to perform the method in the above second aspect and any possible implementation manner thereof, or, used to perform the method in the above fourth aspect and any possible implementation manner thereof .
  • a computer-readable medium stores a computer program (which may also be called a code, or an instruction).
  • a computer program which may also be called a code, or an instruction.
  • the computer program When the computer program is run, it causes the computer to execute the above-mentioned first aspect. Or the method of any possible implementation of the second aspect, or the method of causing the computer to execute any of the possible implementations of the third aspect or the fourth aspect.
  • a chip system including a memory and a processor.
  • the memory is used to store a computer program.
  • the processor is used to store the computer program.
  • the processor is used to call and run the computer program from the memory, so that the computer program is installed.
  • the communication device of the chip system performs the method in any of the above-mentioned first or second aspects and possible implementations thereof, or causes the communication device installed with the chip system to perform the method in the above-mentioned third or fourth aspect. Methods in any aspect and how it might be implemented.
  • the chip system may include an input chip or interface for sending information or data, and an output chip or interface for receiving information or data.
  • Figure 1 is a schematic diagram of a communication system applicable to this application.
  • Figure 2 is a schematic flow chart of a method for transmitting data between multiple users provided by an embodiment of the present application.
  • Figure 3 is a schematic flow chart of another method for transmitting data between multiple users provided by an embodiment of the present application.
  • Figure 4 is a schematic diagram of a UCI field provided by an embodiment of the present application.
  • Figure 5 is a schematic diagram of a MAC-CE field provided by an embodiment of the present application.
  • Figure 6 is a schematic diagram of a data-driven AI model provided by an embodiment of the present application.
  • Figure 7 is a schematic diagram of a multi-module AI model provided by an embodiment of the present application.
  • Figure 8 is a spherical decoding tree diagram provided by an embodiment of the present application.
  • Figure 9 is a schematic block diagram of a multi-user data transmission device 900 provided by an embodiment of the present application.
  • Figure 10 is a schematic block diagram of another multi-user data transmission device 1000 provided by this application.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA broadband code division multiple access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • UMTS Universal Mobile Telecommunication System
  • WiMAX Worldwide Interoperability for Microwave Access
  • the terminal equipment in the embodiment of this application may refer to user equipment, access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication equipment, user agent or User device.
  • the terminal device may also be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop (WLL) station, a Personal Digital Assistant (PDA), or a wireless communication device.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • PLMN Public Land Mobile Networks
  • the terminal device may be a device for realizing the function of the terminal device, or a device that can support the terminal device to realize the function, such as a chip system, and the device may be installed in the terminal.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the network device in the embodiment of the present application may be a device used to communicate with a terminal device.
  • the network device may be a Global System of Mobile communication (GSM) system or a Code Division Multiple Access (CDMA) system.
  • the network equipment (Base Transceiver Station, BTS), it can also be the network equipment (NodeB, NB) in the Wideband Code Division Multiple Access (Wideband Code Division Multiple Access, WCDMA) system, or it can be the evolved network in the LTE system
  • the device (Evolutional NodeB, eNB or eNodeB) can also be a wireless controller in the Cloud Radio Access Network (CRAN) scenario, or the network device can be a relay station, access point, vehicle equipment, wearable Equipment and network equipment in future 5G networks or network equipment in future evolved PLMN networks, etc. This application does not limit this.
  • CRAN Cloud Radio Access Network
  • the network device may be a device used to implement the function of the network device, or may be a device capable of supporting the network device to implement the function, such as a chip system, and the device may be installed in the network device.
  • the embodiments shown below do not specifically limit the specific structure of the execution body of the method provided by the embodiment of the present application, as long as the program that records the code of the method provided by the embodiment of the present application can be run according to the present application. It is sufficient to communicate using the method provided in the embodiment of the application.
  • the execution subject of the method provided in the embodiment of the application may be a terminal device or a network device, or a functional module in the terminal device or network device that can call a program and execute the program.
  • MIMO technology is usually combined, such as using SU-MIMO to perform multi-stream transmission for a single user, or using MU-MIMO to pair multiple terminal devices. Perform simultaneous scheduling on the same time and frequency resources.
  • the network device can obtain channel precoding based on the channel information fed back by the terminal device, for example, through channel state information (CSI) feedback; or through the reciprocity of the uplink and downlink channels, for example, through the terminal device sending
  • the reference signal sounding reference signal (SRS) obtains the channel information of the current downlink channel.
  • the network device can determine the precoding information in subsequent data transmission based on the downlink channel information.
  • network equipment can perform singular value decomposition (SVD) based on the downlink channel matrix and use the feature vector as a precoding matrix to eliminate inter-stream interference existing in the system.
  • SVD singular value decomposition
  • network equipment can perform precoding based on the downlink channel matrices of multiple terminal devices using methods such as zero forcing (ZF) to eliminate interference between terminal devices.
  • ZF zero forcing
  • the quality of MIMO performance is related to whether the precoding can match the channel. If the precoding matrix cannot match the channel well, interference problems may occur.
  • non-orthogonal multiple access non-orthogonal multi access
  • NOMA non-orthogonal multi access
  • terminal equipment in different geographical locations mainly for remote and near-end users
  • NOMA scenario terminal equipment in the NOMA scenario is differentiated in the power domain.
  • MU-MIMO equal power distribution between MUs can be supported.
  • MU-MIMO distinguishes UEs mainly based on spatial distinction. For example, using different precoding makes the precoding between different UEs and the channel between useful UEs have a certain degree of orthogonality.
  • Current LTE R13 supports pairing of two terminal devices for NOMA transmission. Due to the differentiation in the power domain, the network device needs to indicate to the near-end terminal device relevant information about the remote terminal device, including power information and modulation mode information. This allows the near-end terminal device to demodulate the data of the remote terminal device in the power domain, and eliminate the interference signal of the remote terminal device by combining channel decoding and serial interference cancellation. In order to support this mechanism, the network device can provide the modulation mode and transmit power information of the paired terminal device through DCI signaling, which is used to detect and eliminate interference signals from the near-end terminal device.
  • DCI signaling which is used to detect and eliminate interference signals from the near-end terminal device.
  • Figure 1 shows a MU-MIMO system diagram in a mobility scenario provided by this application.
  • the terminal device moves, if the terminal device moves quickly, or the network device obtains channel information at a long interval (such as CSI feedback period, SRS period), it may cause the network device to use different methods in channel precoding.
  • the channel information is out of date. That is, the channel acquired by the network device deviates greatly from the channel during actual transmission, causing the precoding matrix during precoding of the network device to fail to match the real channel.
  • SRS period channel information at a long interval
  • the system In order to eliminate interference between data streams and interference between users in SU-MIMO or MU-MIMO scenarios, the system usually has higher requirements for precoding of network equipment. It is necessary to accurately match the precoding and the channel, so that after precoding After the signal is transmitted through the corresponding channel, the interference is small. Especially for MU-MIMO users and the users are close to each other.
  • MU-MIMO transmission is transparent to terminal devices.
  • DCI downlink control information
  • the terminal device will not obtain the relevant information of the MU paired with the terminal device in the case of MU-MIMO paired transmission.
  • the terminal device since the relevant information of the terminal device paired with it cannot be obtained, it is not conducive for the terminal device to detect and eliminate interference signals.
  • the existing technology proposes that the relevant information of the paired MU is also indicated in the DCI.
  • a DCI in the form of a Group is used to carry the scheduling information of multiple paired terminal devices in one DCI for instructions. These terminal devices share the same wireless network temporary identification (RNTI).
  • RNTI wireless network temporary identification
  • different DCI fields indicate the modulation and coding scheme (MCS) information content of different terminal equipment, which facilitates the terminal equipment to detect and eliminate interference signals.
  • MCS modulation and coding scheme
  • a dedicated DCI format needs to be designed for relevant indications.
  • each paired terminal device needs a dedicated word field for indication, which results in relatively large signaling overhead of the system.
  • the terminal equipment needs to demodulate additional dedicated DCI formats, which increases the demodulation complexity of the terminal equipment.
  • the existing technology only considers information indication on how to perform scheduling in the case of MU, and does not consider issues related to the terminal equipment's ability to detect interference signals.
  • some terminal equipment may not have the ability to detect and eliminate interference signals, in which case even The network equipment provides relevant instructions to the terminal equipment, and the terminal equipment cannot detect and eliminate interference signals well, resulting in a waste of related control channel resources and power consumption of the terminal equipment demodulating DCI.
  • This application is mainly aimed at MU-MIMO in mobility scenarios, which may cause major MU interference problems.
  • a MIMO detection scheme combining receiver capabilities is proposed.
  • the network device determines the first indication information based on the terminal device's ability to detect interference signals, and provides the terminal device with auxiliary information for detecting interference signals, so that the terminal device can detect and eliminate interference signals under lower complexity constraints.
  • the detection algorithm of MIMO used by terminal equipment has a greater impact on system performance.
  • Typical MIMO receiving algorithms such as minimum mean square error (MMSE) and MMSE-IRC algorithms, may not perform satisfactorily in scenarios with severe interference signals.
  • Another type of receiving algorithm is based on the maximum likelihood detection algorithm for reception. This type of algorithm can search within the possible symbol range to determine the symbol to be measured. For scenarios with low signal-to-noise ratio, the effect may be limited, but in areas with high signal-to-noise ratio, including the presence of interference between data streams, the effect is better. Since the complexity of maximum likelihood detection is high, it will increase significantly as the number of transmission streams and signal modulation order increases. Therefore, there are currently many simplified maximum likelihood algorithms.
  • the simplified maximum likelihood detection algorithm can be implemented based on the breadth-first or depth-first methods in tree search, such as the spherical decoding algorithm, etc., which can reduce complexity. System performance is still guaranteed.
  • AI detection can generally reduce the complexity of detection.
  • the application of AI in MIMO detection can be data-driven, that is, an AI network is trained entirely based on training data, and the output of the network is the detection result.
  • Figure 2 shows a schematic block diagram of a multi-user data transmission method provided by an embodiment of the present application.
  • the method includes steps S210 and S220.
  • the first terminal device sends the first information to the network device.
  • the first information is used to indicate the ability of the first terminal device to detect interference signals during multi-user multiple input multiple output MU-MIMO paired transmission.
  • the first information may include one or more of the following: whether the first terminal device supports interference detection based on artificial intelligence AI model, and whether the first terminal device supports detectable signal interference flow under the AI model. number, the detectable signal interference modulation order of the first terminal device based on the AI model, and the range of the signal-to-noise ratio SNR or signal-to-interference-noise ratio SINR adapted by the first terminal device based on the AI model.
  • the first information may include one or more of the following: whether the first terminal device supports likelihood detection capability, the number of detectable signal interference streams supported by the first terminal device, the first The detectable interference signal modulation order supported by the terminal equipment, and the maximum complexity of interference detection supported by the first terminal equipment.
  • the first information may include one or more of the following: the maximum complexity of the AI model supported by the first terminal device, the storage upper limit of the AI model supported by the first terminal device, the first The operator of the AI model supported by the terminal device, the number of neural network layers of the AI model supported by the first terminal device, and the neural network type of the AI model supported by the first terminal device.
  • the first terminal device triggers or periodically sends its own interference detection capability to the network device, That is the first information.
  • the network device determines first indication information based on the first information reported by the first terminal device.
  • the first indication information is used to indicate data transmission information of the second terminal device.
  • the second terminal device is a terminal device paired with the first terminal device.
  • the first indication information is used by the first terminal device to detect interference signals.
  • this application takes into account that the algorithm of the first terminal device to detect and eliminate interference signals generally requires demodulation of the interference signal. Compared with the demodulation of normal signals, the complexity is often doubled. For example, in likelihood detection, the complexity is positively related to the number of streams of interference signals that need to be detected and eliminated. Therefore, this application proposes that the terminal equipment detects and eliminates interference signals based on the detection capability of the receiver, thereby avoiding the introduction of greater complexity and power consumption to the terminal equipment in the process of detecting and eliminating interference signals.
  • the network device may directly or indirectly trigger the reporting of the first terminal device's ability to detect interference signals during multi-user multiple-input multiple-output MU-MIMO paired transmission.
  • the triggering methods can include the following:
  • the first terminal device receives cell broadcast information, and the broadcast information may include capability information supported by the current network device.
  • the current cell is a special cell, and this cell can support interference cancellation of the first terminal device;
  • the first terminal device receives the capability query information of the network device.
  • the capability query information is used to instruct the first terminal device to send its ability to detect and eliminate interference signals to the network device.
  • the first terminal device may initiate a capability change request to the network device and report a new detection Ability to interfere with signals.
  • the detection and elimination of interference signals by terminal equipment under MIMO can be implemented in different ways.
  • the first terminal device uses a likelihood detection algorithm to detect and eliminate interference signals, including using a maximum likelihood (ML) algorithm, or a simplified ML algorithm (such as spherical decoding, QRD decoding, maximum likelihood (Best priority decoding, etc.).
  • the first terminal device can use the artificial intelligence AI detection method to detect and eliminate interference signals.
  • the terminal device's powerful learning ability based on the AI model can further reduce the complexity of interference signal detection compared with advanced receivers.
  • the first terminal device can also use conventional minimum mean square error (MMSE) and other methods to detect and eliminate interference signals.
  • MMSE minimum mean square error
  • the embodiment of the present application takes as an example that the first terminal device detects and eliminates interference signals based on likelihood detection algorithms, AI models, and other methods.
  • the terminal equipment detects and eliminates interference signals based on the MMSE algorithm and other methods, please refer to the existing technology, and the embodiments of this application will not provide a detailed description.
  • S220 After the first terminal device sends the first information to the network device, the network device sends the first instruction information to the first terminal device, or in other words, the first terminal device receives the first instruction information from the network device.
  • the first indication information is used to indicate data transmission information of a second terminal device
  • the second terminal device is a terminal device paired with the first terminal device
  • the first indication information may also be used by the first terminal device to detect interference signals.
  • the first indication information is determined based on the first information.
  • the network device determines whether the first terminal device's ability to detect interference signals satisfies the preset condition based on the first information. Wherein, when the ability of the first terminal device to detect interference signals meets a preset condition, the network device determines the first indication information and sends the first indication information to the first terminal device. The first terminal device detects interference signals according to the first indication information.
  • the preset condition may be determined by the network device according to the network protocol, or may be determined by the network device and the first terminal.
  • the end device determines it through information interaction, or it can also be determined by the network device itself, which is not limited in this application.
  • the first indication information is carried in the first DCI field, and the first terminal device determines the first DCI field according to the configuration information, where the configuration information includes the first DCI field and/or the identification of the first DCI field.
  • the first terminal device receives configuration information from the network device, or in other words, the network device sends the configuration information to the first terminal device.
  • the configuration information includes the first DCI field and/or the identification of the first DCI field determined by the network device, where the first DCI field may be an existing DCI field, and the configuration information is used to indicate that the first terminal device is in the The first indication information is parsed in the existing DCI field.
  • the configuration information includes the first DCI field
  • the configuration information can be statically indicated by the network device.
  • the network device sends the configuration information to the first terminal device, indicating that the first terminal device can parse and obtain the first indication in the first DCI field. information.
  • the network device can also be reconfigured through RRC to restore the original function of the first DCI field.
  • the configuration information includes temporary identification information (ie, RNTI) of the first DCI field.
  • RNTI temporary identification information
  • the network device configures different RNTIs, uses the dedicated identifier RNTI to scramble the DCI when sending the first indication information, and uses the C-RNTI to scramble the DCI in other scenarios.
  • the first terminal device uses different identification information to distinguish the meaning indicated by the current network device on the first DCI field.
  • the first indication information is sent on the existing DCI field or DCI format (ie, the first DCI field). Specific ways to achieve this include:
  • a relevant DCI field is added, and the first indication information carried by the DCI field is used by the first terminal device to detect and eliminate interference signals;
  • the multiplexed DCI field is used by the first terminal device to detect and eliminate interference signals, and the multiplexed DCI field does not use the function of the field itself;
  • the DCI field can use the function of the field itself.
  • the network device sends configuration information to the first terminal device, where the configuration information is used to instruct the first terminal device to parse the first indication information in the multiplexed DCI field (first DCI field).
  • the terminal device parses and obtains the first indication information in the first DCI field, and the first indication information is determined by the network device based on the first information.
  • the configuration information may also include the AI model, as well as the input and/or output content and parameters of the AI model.
  • the AI model is trained by the network device, or the AI model is jointly trained by the network device and the first terminal device.
  • the network device determines that the first information does not meet the preset condition, and the network device determines that the first terminal device cannot detect and eliminate the interference signal. That is, the network device will not send the first indication information to the first terminal device.
  • the network device determines that the first information satisfies the preset condition, determines the first indication information based on the first information, and sends the first indication information to the first terminal device.
  • the first indication information includes one or more of the following: the antenna port of the second terminal device, the number of second terminal devices, the number of interfering data streams of the second terminal device, and the signal modulation method of the second terminal device.
  • the second terminal device receives the transmission power from the network device.
  • the first terminal device triggers or periodically sends the first information to the network device, and the network device determines the first indication information based on the first information of the first terminal device, and the first indication information is used for the
  • the first terminal equipment detects and eliminates interference signals.
  • the technical solutions proposed in the embodiments of this application avoid the situation where the first terminal device is not capable of detecting and eliminating interference signals. Even if the network device instructs the first terminal device to detect and eliminate interference signals, the first terminal device cannot do so. Better detection and elimination of interference signals and waste of related control channel resources.
  • the network device reuses the existing DCI field to instruct the first terminal device to parse the corresponding first indication information in the first DCI field, thereby reducing the demodulation complexity of the first terminal device.
  • the method shown in Figure 2 may further include:
  • the first terminal device sends the second information to the network device, or in other words, the network device receives the second information from the first terminal device.
  • the second information is used to indicate the motion state of the first terminal device, and the motion state includes one or more of the following: speed, acceleration, and motion posture.
  • velocity and acceleration can be scalars or vectors.
  • the movement speed includes the magnitude of the movement velocity and/or the direction of the movement speed
  • the acceleration includes the magnitude of the movement acceleration and/or the direction of the movement acceleration.
  • the second information can be sent in the medium access control element (MAC-CE) or in the uplink control information (Uplink Control Information, UCI), and is transmitted by the physical layer channel (such as PUSCH , or PUCCH) bearer is sent.
  • MAC-CE medium access control element
  • UCI Uplink Control Information
  • the first terminal device can send the second information to the network device according to the motion status reporting triggering condition specified in the protocol.
  • the triggering condition may be that the first terminal device determines that the reporting period meets a predefined period, or the speed of the first terminal device exceeds a certain predefined threshold, and the first terminal device sends the second information to the network device.
  • the first terminal device can send the second information to the network device according to the motion status reporting trigger condition configured by the network device.
  • the triggering condition may be that the first terminal device determines that the reporting period meets the period configured by the network device, or that the speed of the first terminal device exceeds a certain threshold, and the first terminal device sends the second information to the network device.
  • the method shown in Figure 2 may also include:
  • the first terminal device receives second indication information from the network device, and the second indication information is used to instruct the first terminal device to send the motion status of the first terminal device to the network device.
  • the second indication information may include a motion status reporting triggering condition configured by the network device.
  • the second instruction information may include a reporting method of the second information configured by the network device, such as the MAC-CE used for configuration reporting, the format used for UCI configuration reporting, and the time and frequency of physical resources used for configuration reporting. domain location.
  • a reporting method of the second information configured by the network device such as the MAC-CE used for configuration reporting, the format used for UCI configuration reporting, and the time and frequency of physical resources used for configuration reporting. domain location.
  • the first terminal device reports the motion status of the first terminal device according to the motion status configured by the network device.
  • the motion state can be determined according to its own implementation algorithm (for example, determined using a sensor or gyroscope, or determined through channel changes measured by the terminal).
  • the network device determines that the second information satisfies the first condition, and the network device determines and sends the first indication information to the first terminal device.
  • the first condition includes one or more of the following:
  • the movement speed characteristics of the first terminal device meet the preset speed characteristics
  • the movement posture characteristics of the first terminal device satisfy the preset posture characteristics
  • the motion speed characteristics include one or more of the following: velocity magnitude, velocity direction, acceleration magnitude, and acceleration direction.
  • the preset speed characteristic is that the speed of the first terminal device is greater than or equal to the first threshold.
  • the first threshold is 3m/s.
  • the network device sends the first indication information to the first terminal device; when the current speed of the first terminal device is When the speed is 2 m/s, the network device does not send the first indication information to the first terminal device.
  • the preset speed characteristic is that the acceleration of the first terminal device is greater than or equal to the second threshold.
  • the second threshold is 2m/s 2
  • the network device sends the first configuration information to the first terminal device; when the first terminal device When the current speed is 0 m/s, the network device does not send the first configuration information to the first terminal device.
  • the preset speed characteristic is the movement speed direction of the first terminal device.
  • the direction can be the direction under the global coordinate system (that is, the absolute coordinate system, such as the WGS84 coordinate system).
  • the three-dimensional vector (x, y,z) are represented. For example, when the angle between the preset movement direction (x0, y0, z0) and the movement speed direction (x1, y2, z1) reported by the first terminal device is less than the preset value (such as 10 degrees) , the network device sends the first indication information to the first terminal device.
  • the network device When the angle between the preset movement direction (x0, y0, z0) and the movement speed direction (x1, y2, z1) reported by the first terminal device is greater than the preset value (such as 10 degrees), the network device The first instruction information is not sent to the first terminal device.
  • the preset value such as 10 degrees
  • the preset posture characteristic is the posture position of the first terminal device in a global coordinate system (that is, an absolute coordinate system, such as the WGS84 coordinate system), which can be represented by a three-dimensional vector (x, y, z).
  • a global coordinate system that is, an absolute coordinate system, such as the WGS84 coordinate system
  • the preset value such as 10 degrees
  • the network device When the angle between the preset attitude position (x0, y0, z0) and the attitude position (x1, y2, z1) reported by the first terminal device is greater than the preset value (such as 10 degrees), the network device does not Send first instruction information to the first terminal device.
  • the preset value such as 10 degrees
  • the first indication information of the network device can also be determined based on the second information, wherein the status information of the first terminal device indicated by the second information can be used to determine the MU-MIMO transmission related configuration.
  • the network device can measure and estimate the motion state of the first terminal device through sounding reference signal (SRS); or the network device can also measure and estimate the motion state of the first terminal device based on SRS or CSI-reference signal (CSI-RS). ) configure cycle conditions and determine whether to send the first indication information to the first terminal device. When the network device determines that the SRS or CSI-RS period of the first terminal device is shorter, the network device does not send the first indication information to the first terminal device.
  • SRS sounding reference signal
  • CSI-RS CSI-reference signal
  • the network device can refer to the motion state of the first terminal device to determine whether it is necessary to subsequently send the first indication information to the first terminal device when the MU is paired. If the movement speed of the first terminal device reaches or exceeds a certain threshold, the network device The first information and the second information sent determine the first indication information, and send the first indication information to the first terminal device. The first terminal device detects and eliminates interference signals based on the first indication information.
  • the first terminal device sends the first information to the network device, and the network device determines whether the first terminal device has the ability to detect and eliminate interference signals based on the first terminal device's ability to detect interference signals, When the first information of the first terminal device meets the preset condition, the first terminal device receives the first instruction information from the network device, and the first terminal device detects and eliminates interference signals based on the first instruction information.
  • the ability of the first terminal device to detect interference signals during multi-user multiple input multiple output MU-MIMO paired transmission is taken into account.
  • the network device sends the first indication information to the first terminal device, thereby avoiding The first terminal equipment does not have the ability to detect and eliminate interference signals. Even if it sends relevant instructions, the first terminal equipment cannot detect and eliminate interference signals well, which improves the performance of the first terminal equipment in detecting and eliminating interference signals. .
  • the first terminal device sends first information to the network device.
  • the first information may include the ability of the first terminal device to detect interference signals based on a receiver, where the receiver may be an AI model or a likelihood algorithm.
  • Example 1 The ability of the first terminal device to detect interference signals is based on the ability of the AI model to detect interference signals.
  • the first terminal device sends the first information to the network device.
  • the network device receives the first information from the first terminal device.
  • the first information includes one or more of the following: whether the first terminal device supports interference detection based on artificial intelligence AI model, the number of signal interference streams that the first terminal device can detect based on the AI model, the number of signal interference streams that the first terminal device can detect based on the AI model, The range of signal interference modulation order that can be detected under the AI model, and the signal-to-noise ratio SNR or signal-to-interference-noise ratio SINR adapted by the first terminal device based on the AI model.
  • the network device will perform the next step according to the interference detection capability limit of the default AI model.
  • the default limit may be defined in advance.
  • the maximum number of data streams (including useful data streams and interference data streams) that the first terminal device can use for MIMO detection based on the AI network is 6 streams, where the detection and elimination of interference signals can support the detection and elimination of 4 streams at most.
  • the first terminal device can report the maximum number of all data flows that can be detected and/or the interference data flows. For example, the maximum number of all data flows that can be detected is 6, and the maximum number of interference flows that can be detected is 4.
  • the number of data streams detected by the first terminal device based on the AI network is 6 streams of data, detection and elimination of interference data of up to 4 streams are supported. After the network device schedules 1 stream of data for the first terminal device, it can also schedule up to 4 streams of MU data for transmission.
  • the network device schedules 4 streams of useful signal streams for transmission, since it supports detection and elimination of data of up to 6 streams, at this time, the first terminal device can only support detection and elimination of interference data of 2 streams at most.
  • the first terminal device reports a modulation order for detecting and eliminating interference signals based on the AI network.
  • the modulation order that supports detection and elimination of interference may be a specific set (for example, [qpsk, 16qam ]), this set contains all modulation orders that can support detection and cancellation of interference data, or the modulation order can be a supported maximum modulation order (such as 16QAM), which indicates that the modulation order supports detection and interference.
  • the number can be ⁇ BPSK, QPSK, 16QAM ⁇ , or the modulation order can be the index index of a set, each set containing supported modulation orders.
  • the first information may also indicate the interference modulation order supported by each interference data stream.
  • the first terminal device supports the detection and elimination of up to 4 streams of interference based on the AI network, which supports the elimination of interference from two streams [qpsk] and the elimination of interference from two streams [16qam, qpsk]. (Situations listed in Table 2 below)
  • the first terminal device detects and eliminates interference signals based on the AI model, which may be the signal-to-noise ratio (SNR) or signal-to-interference ratio (SNR) of the supported useful signal and interference signal. -plus-noise ratio, SINR) range.
  • the first information may include the maximum value and the minimum value of the SNR or SINR range; it may also include an interval index index of the SNR or SINR value.
  • the interval may be preset by the network device and the first terminal device, or may be a deviation value determined using an SNR or SINR value as a reference interval (for example, an interval that deviates from the reference interval by several dB, etc.).
  • the first terminal device send the first information to the network device, and the ways for the network device to obtain the first information are also naturally different. For example, when the core network queries the first terminal device for its ability to eliminate interference, the first information is forwarded to the network device by the network element of the core network; or in other words, when the network device queries the first terminal device for its ability to eliminate interference. If the network device has the information capability, the network device can directly obtain the first information.
  • S320 The network device sends configuration information to the first terminal device, or in other words, the first terminal device receives the configuration information from the network device.
  • the configuration information includes the first DCI field and/or the identification of the first DCI field.
  • the first DCI field is an existing DCI field between the first terminal device and the network device.
  • the network device uses the existing DCI field according to the static multiplexing method.
  • a part of the TB indication field in DCI1_1 is multiplexed as an indication for the network device to perform auxiliary information for the first terminal device (that is, to carry the first indication information).
  • the current TB indication field can be divided into two parts.
  • the number of streams paired by the first terminal device is generally not too high, so only one TB may be used, and the indication field of TB2 will not be activated.
  • the TB2 field does not carry any bit information, but in this embodiment of the present application, the idle field TB2 will be used to carry the first indication information.
  • the network device needs to inform the first terminal device in advance that the TB2 field is used to carry the first indication information, rather than its original function. Specifically, during the RRC configuration process, the network device adds a relevant information element for the interference information auxiliary function. This information element can be included in the relevant RRC for downlink data transmission. In the configuration information element (such as PDSCH-Config). When the value of this cell is True, it indicates that MU transmission will be used within a certain period of time specified by the subsequent protocol, and the TB2 field in the DCI is used to indicate interference auxiliary information (first indication information), rather than the original function. .
  • the configuration information element such as PDSCH-Config
  • the information source When the information source is False, it indicates that within a period of time specified in the subsequent protocol, the TB2 field is not used to indicate interference auxiliary information (ie, the first indication information). If there is content in the TB2 field, it is normal transmission information. Additionally, this cell can have a default value, such as False.
  • Table 3 is an example of multiplexing the DCI field to indicate the number of interference signals and the interference modulation mode of the first terminal device.
  • the multiplexing TB2 field when the multiplexing TB2 field is 0, SU-MIMO is currently used, that is, the first terminal device does not perform MU-MIMO pairing transmission.
  • the multiplexing TB2 field When the multiplexing TB2 field is 1, it indicates that there is currently a paired device, and the data configured by the paired device uses BPSK modulation.
  • the multiplexing field When the multiplexing field is 155, it indicates that there are currently three paired devices, and the data of these paired devices uses 256QAM modulation.
  • Table 4 is an example of multiplexing the DCI field to indicate the interference antenna port and interference modulation mode of the first terminal device.
  • the multiplexing TB2 field when the multiplexing TB2 field is 0, SU-MIMO is currently used, that is, the first terminal device does not perform MU-MIMO pairing transmission.
  • the multiplexing TB2 field When the multiplexing TB2 field is 1, it indicates that an interference port is currently sending interference data, and the interference data uses BPSK modulation.
  • the multiplexing field When the multiplexing field is 155, it indicates that there are currently three interference ports sending data, and the data of these interference data uses 256QAM modulation.
  • Table 5 is an example of multiplexing a DCI field to indicate the number of streams of interference signals, interference data transmission power, and interference modulation mode of the first terminal device.
  • the transmission power is expressed as a deviation compared with the data transmission power of the first terminal device.
  • the multiplexing TB2 field when the multiplexing TB2 field is 0, SU-MIMO is currently used, that is, the first terminal device does not perform MU-MIMO pairing transmission.
  • the multiplexing TB2 field When the multiplexing TB2 field is 1, it indicates that there is currently an interfering data stream.
  • the interfering data stream uses BPSK modulation, and the transmission power of the interfering data stream deviates from the data transmission power of the first terminal device by 0dB (that is, compared with the data transmission power of the first terminal device).
  • the data transmission power of a terminal device is equal).
  • the multiplexing field is 155, it indicates that there are currently three interfering data streams.
  • interfering data streams use 256QAM modulation, and the transmission power of the first interference stream deviates from the data transmission power of the first terminal equipment by 0dB (that is, compared with the first terminal equipment data transmission power).
  • the data transmission power of the terminal equipment is equal
  • the transmission power of the second interference stream is 1dB higher than the data transmission power of the first terminal equipment (that is, it is 1dB higher than the data transmission power of the first terminal equipment)
  • the transmission power of the third interference stream is equal to
  • the data transmission power deviation from the first terminal device is 3dB (that is, the data transmission power is 3dB higher than the data transmission power of the first terminal device).
  • Table 3 Table 4 and Table 5 are only illustrative examples. Of course, there may be other combinations of information, which this application does not limit.
  • the network device After the network device receives the first information from the first terminal device, the network device determines whether to configure configuration information related to interference cancellation instructions for the terminal device based on the ability of the first terminal device to detect interference signals in the first information.
  • the configuration information may be determined by the network device based on the first information.
  • the network device determines that the first terminal device's ability to detect interference signals does not meet the preset conditions, it may not configure the first terminal device with instruction information related to detecting and eliminating interference signals (such as first instruction information). That is, the network device may not send the configuration information to the first terminal device.
  • the network device determines that the first terminal device's ability to detect interference signals meets the preset conditions, it sends the configuration information to the first terminal device, and carries the first indication information in the first DCI field indicated by the configuration information and sends it to The first terminal device, the first indication information is used by the first terminal device to detect and eliminate interference signals.
  • the network device determines whether to configure relevant configuration information for the first terminal device. For example, after receiving the first information from the first terminal device, the network device determines whether the number of streams for detecting and eliminating interference data supported by the first terminal device is consistent with its desired MU scheduling policy. For example, the number of MU interference data streams expected to be scheduled (for example, the network device expects to perform paired transmission of two terminal devices and expects to schedule 4 streams of data for each terminal device, then for the first terminal device, the number of interference data streams (will be 4 streams)) exceeds the number of detected interference streams supported by the first terminal device. If they are consistent, the network device configures the relevant configuration information to the first terminal device.
  • the network device estimates whether the SNR of the signal meets the required range of the first terminal device after beamforming under its own regional channel. If satisfied, the network device configures relevant configuration information to the first terminal device. If it is not satisfied, it can be considered that the network device does not support interference cancellation assistance for the first terminal device, and subsequent steps may not be performed.
  • this configuration information can be implemented by standard predefinition.
  • the judgment conditions need to be further defined. For example, the number of interference streams supported by the first terminal device is less than a certain threshold, the interference modulation order supported by the first terminal device is less than a certain modulation order, or when the SNR interval is not within a predefined interval, the network The device does not provide interference elimination assistance for the first terminal device, and subsequent steps may not be performed.
  • the network device may also send second indication information to the first terminal device.
  • the second indication information is used to instruct the first terminal device to send its own motion status information to the network device, and the network device determines whether to send the first indication information to the first terminal device based on the motion status information of the first terminal device.
  • the method also includes:
  • S330 The network device sends the second instruction information to the first terminal device.
  • the first terminal device receives the second indication information from the network device.
  • the second instruction information is used to instruct the first terminal device to send its own motion status to the network device.
  • the second indication information can be implemented by the following code:
  • the second indication information can be configured through RRC and has a motion status reporting related cell (such as the MobilityReportConfig cell in the above code).
  • a motion status reporting related cell such as the MobilityReportConfig cell in the above code.
  • the motion status reporting trigger condition configured by the network device can be included. Reporting method.
  • the second instruction information may include a reporting method of the second information configured by the network device, such as configuring the MAC-CE used for reporting, configuring the format used for reporting UCI, and configuring the time-frequency domain location of the physical resources used for reporting. . (For example, as shown in the above code, all of the above content may not be configured, and the network device can configure only part of it.)
  • the first terminal device when the first terminal device receives the second instruction information from the network device, the first terminal device detects its own motion state according to the second instruction information, and determines the second information according to the motion state, and the second information is used to indicate the The motion status of the first terminal device.
  • the first terminal device determines its own motion status by detecting changes in sensors such as accelerometers; or, the first terminal device detects changes in signal strength to determine its own motion status; or, the first terminal device detects signals Doppler frequency offset estimation and other methods are used to determine one's own motion state, which is not limited in this application.
  • the second instruction information received by the first terminal device and the configuration information in the above step S320 can be sent by the network device in the same piece of information, or can be divided into different pieces of information and sent by the network device respectively. In this regard, There are no restrictions on application.
  • S340 The first terminal device sends the second information to the network device.
  • the network device receives the second information from the first terminal device.
  • the first terminal device determines the second information for indicating the motion status of the first terminal device based on the second indication information, and, the first terminal device A terminal device sends the second information to the network device.
  • the motion state includes speed, acceleration, and motion posture.
  • the speed and acceleration include magnitude and direction, where the direction can be based on the world coordinate system.
  • the direction can be based on the world coordinate system.
  • the first terminal device can determine the second information according to the second information indication information of the network device, and send the second information to the network device; the first terminal device can also periodically send the second information to the network device. (For example: its own protocol stipulates or predefines); the first terminal device can also send second information to the network device according to a certain trigger condition (for example: when the first terminal device determines that its movement speed is greater than or equal to a certain threshold, it sends The device sends the second information).
  • the second information determined by the first terminal device may include different speed levels, direction intervals, speed value sizes, etc.
  • the second information may also be a status value, such as 0/1, or True/False, used to indicate whether the reporting conditions of the second information are met. This application does not limit the specific content form of the motion state of the first terminal device in the second information sent by the first terminal device to the network device.
  • the network device may instruct the first terminal device to send the second information on the PUCCH or PUSCH carried by the UCI information, or as MAC-CE, etc. Sent in signaling form.
  • Figure 4 shows an example in which the network device configures the reporting format (for example, the arrangement order of bit information, etc.) when the second information is sent on the PUSCH carried by UCI information.
  • the network device defines a new MAC-CE format for the first terminal device to send motion status to the network device, where the new The MAC-CE format can carry several bytes, and can carry content such as the movement speed, movement direction, and movement acceleration of the first terminal device.
  • S350 The network device sends the first instruction information to the first terminal device.
  • the first terminal device receives the first indication information from the network device.
  • the first indication information is used by the first terminal device to detect and eliminate interference signals.
  • the network device determines whether to send the first indication information to the first terminal device based on the first information sent by the first terminal device.
  • the network device determines whether to send the first indication information to the first terminal device based on the first terminal device's ability to detect interference signals based on the AI model in the first information.
  • the network device sends the first instruction information to the first terminal device; when the network device determines that the first terminal device detects interference signals
  • the network device does not send the first indication information to the first terminal device when the ability of the first terminal device is unable to detect and eliminate the interference signal existing at the current stage, or in other words, the first terminal device does not have the ability to detect and eliminate the interference signal at the new stage.
  • the network device determines whether to send the first indication information to the first terminal device based on the first information and the second information sent by the first terminal device.
  • the network device determines whether to send the first indication information to the first terminal device based on the motion state of the first terminal device. .
  • the second information sent by the first terminal device includes the speed, acceleration, movement direction, and movement posture of the terminal device.
  • the network device determines whether the motion state in the second information satisfies the first condition. When the second information satisfies the first condition, the network device sends the first indication information to the first terminal device; when the second information does not satisfy the first condition, subsequent steps are not performed.
  • the first condition includes at least one of the following: the movement speed characteristics of the first terminal device satisfy the preset speed characteristics; the movement posture characteristics of the first terminal device satisfy the preset posture characteristics, wherein the movement speed characteristics include speed magnitude. , velocity direction, acceleration magnitude, acceleration direction.
  • the first condition is that when the movement speed characteristic of the first terminal device meets the preset speed characteristic, the preset speed characteristic is that the speed is greater than or equal to the first threshold.
  • the speed in the second information of the first terminal device is greater than or equal to the first threshold, the motion speed characteristics of the first terminal device meet the preset speed characteristics; when the speed in the second information of the first terminal device is less than When the first threshold is reached, the motion speed characteristics of the first terminal device do not meet the preset speed characteristics.
  • the first condition is that when the movement speed characteristic of the first terminal device meets the preset speed characteristic
  • the preset speed characteristic is that the movement direction is the first direction (based on the world coordinate system).
  • the movement speed characteristics of the first terminal equipment satisfy the preset speed characteristics; when the movement direction in the second information of the first terminal equipment is not the first direction, the movement speed characteristics of the first terminal equipment satisfy the preset speed characteristics. In other directions, the movement speed characteristics of the first terminal device do not meet the preset speed characteristics.
  • the method shown in Figure 3 may further include:
  • the first terminal device detects and eliminates interference signals according to the first instruction information.
  • the first terminal device determines , obtain the first indication information in the first DCI field, and select the corresponding AI model for inspection based on the first indication information. detect and eliminate interfering signals.
  • the first terminal device uses the C-RNTI to detect the DCI field, it obtains the TB2 field, and then parses it to obtain the first indication information.
  • the first indication information may include one or more of the following: The number of antenna ports, the second terminal device, the number of interfering data streams of the second terminal device, the signal modulation method of the second terminal device, and the transmission power received by the second terminal device from the network device.
  • the first terminal device detects and eliminates interference signals according to the first indication information. Among them, there may be many AI models that the first terminal device can use to detect and eliminate interference signals. Depending on the number of interference signals detected by the first terminal device and the modulation order of the interference signals, the first terminal device may further Choose between different AI models.
  • the first terminal device selects AI model #1 according to the content in the first indication information; when The number of interference signals of the first terminal device indicated in the first indication information is 2, and the modulation order of the interference signal is [QPSK, 16QAM]. Then the first terminal device selects the AI model# according to the specific content in the first indication information. 2.
  • AI model the first terminal device uses to detect and eliminate interference signals is decided by the first terminal device itself.
  • AI model used by the first terminal device to detect and eliminate interference signals can be implemented in a variety of ways, such as:
  • the input of the AI model can be received data, estimated channel and modulation order.
  • the output may be a demodulated signal, such as a useful signal of the first terminal device (ie, the transmission data sent by the base station to the first terminal device).
  • the network reception can be composed of a fully connected layer (DNN), or can be implemented based on a convolutional layer (CNN) or other network, which is not limited in this application.
  • the training of the AI model may be completed by the first terminal device based on the signal, channel, modulation information and other data received by the first terminal device, and the network device does not participate in the training of the AI model.
  • the AI model can be combined with the traditional MIMO detection algorithm.
  • the input of the AI model can be received data, estimated channel and modulation order.
  • This AI model is different from the data-driven AI model, in which the output of the AI model can be an intermediate variable in the traditional receiving algorithm.
  • the output of the AI model can be the heuristic function value of the best receiving algorithm in likelihood detection, etc.
  • the first terminal device performs interference detection and elimination based on the best receiving algorithm and the heuristic value calculated by the AI model to reduce the optimal Accept the complexity of short hair and improve computing efficiency.
  • the first terminal device eliminates the interference signal based on the AI model, further performs demapping and demodulation, and inputs it into a subsequent channel decoder to perform subsequent operations.
  • Example 1 in Figure 3 above mainly introduces when the ability of the first terminal device to detect interference signals is based on the ability of the AI model to detect interference signals, where the AI model is determined by the first terminal device itself, and the network device transmits the information to the first terminal device.
  • the terminal device sends first indication information, where the first indication information is used to indicate data transmission information of a second terminal device paired with the first terminal device.
  • the network device determines whether the first terminal device has the ability to detect and eliminate interference signals based on the first information of the first terminal device.
  • Example 2 The ability of the first terminal device to detect interference signals is based on the ability of the AI model to detect interference signals, and/or the ability to detect interference signals based on the AI model supported by the first terminal device, where the AI model is provided by the network. configured by the device, or the AI model is a joint AI model obtained by joint training of the first terminal device and the network device. type.
  • the first terminal device sends the first information to the network device.
  • the network device receives the first information from the first terminal device.
  • the first information includes one or more of the following: the maximum complexity of the AI model supported by the first terminal device, the storage upper limit of the AI model supported by the first terminal device, and the storage limit of the AI model supported by the first terminal device. Operator and the number of neural network layers of the AI model supported by the first terminal device.
  • the first information may also include one or more of the following: whether the first terminal device supports interference detection based on the artificial intelligence AI model, the number of signal interference flows that the first terminal device can detect based on the AI model, the The signal interference modulation order that a terminal device can detect based on the AI model, and the range of the signal-to-noise ratio SNR or signal-to-interference-to-noise ratio SINR that the first terminal device adapts based on the AI model.
  • the AI model used by the first terminal device in Example 2 can be configured by the network device.
  • the AI model of network device configuration includes two forms:
  • Form 1 Single-module AI model, that is, the single-module AI model is only used for AI interference detection and does not integrate other functions.
  • the input of the single-module AI model can be the channel, the received signal, the information of the second terminal device, etc., and the output is the useful signal of the first terminal device, the intermediate variable of the traditional algorithm (such as step S310 in Example 1 in Figure 3 above) (detailed examples in the first information).
  • the AI model is similar to the AI model implemented by the first terminal device itself.
  • Form 2 Multi-module AI model, that is, the AI model is jointly trained with multiple different functional modules (for example, combined with precoding on the network device side).
  • the multi-module AI model is shown in Figure 7.
  • the input of the AI model is the channels of multiple paired terminal devices (including the channels of the first terminal device and the second terminal device) obtained by the network device.
  • Precoding The operation can be completed through a linear layer in the multi-module AI model, so that AI demodulation can also be jointly trained as part of the AI model, thereby obtaining a cross-module AI model and further improving the performance of the system.
  • the network device can configure the demodulation part of the AI model to the first terminal device, so that after the first terminal device receives the signal, the signal is input to the subsequent network as part of the data in the multi-module AI model. Complete the demodulation operation.
  • the first terminal device sends information related to the capabilities of the AI model to the network device.
  • the information content of a single-module AI model and a multi-module AI model may also be different. Since the AI model is configured by the network device to the first terminal device, the first terminal device needs to first send the maximum capability requirement of the AI model to the network device.
  • the AI model capability can be FLOPS, etc. This application does not limit the AI network capability.
  • the first terminal device determines an AI model matching the network device according to the configuration of the network device.
  • the network device may only configure the AI model for detection, and configure the input and output content of the AI model.
  • the input of the AI model is the channel estimated by the first terminal device, the received signal, etc.
  • the output of the AI model is the detected signal or the intermediate variable of the traditional algorithm. Other steps (such as channel estimation) and other operations can still use the first terminal device's own implementation algorithm.
  • the first terminal device sends the multi-module capabilities supported by the first terminal device to the network device.
  • This capability may include: supporting an AI module that is combined with a network device, supporting an AI model that is combined with a network device, and supporting the model to include functions of other modules such as channel estimation of the first terminal device, etc.
  • different multi-module capabilities will affect the input and output of the AI model. For example, when the first terminal device supports an AI model combined with network equipment, the input of the AI model can be received signals, pilot positions, etc. The output of the AI model can be demodulated data.
  • multi-module AI models no longer need to perform operations such as channel estimation.
  • the network device sends configuration information to the first terminal device.
  • the first terminal device receives configuration information from the network device.
  • the configuration information includes the first DCI field and/or the identification of the first DCI field.
  • the network device determines the first DCI field. For example, the network device uses the DCI1_1 format and redefines a dedicated indication field for carrying the first indication information.
  • network equipment may modify existing DCI fields to increase the length of existing formats.
  • the network device carries the first indication information through the dedicated DCI field instead of multiplexing the existing DCI field.
  • the first terminal device only needs to parse the first indication information in the dedicated DCI field according to the configuration information, and will not modify the first indication information on the dedicated DCI field.
  • a terminal device affects the complexity of the detection of the DCI field.
  • the network device After receiving the first information from the first terminal device, the network device determines the first terminal device's ability to detect interference signals based on the AI model in the first information, and/or the AI for interference detection supported in the first information. The ability of the model to configure the AI model.
  • the network device can configure the first terminal device to the first terminal device.
  • the AI model is only used for MIMO detection, and the AI model matches the AI model capability sent by the first terminal device.
  • the network device configures the AI model, it also configures the input and output of the AI model at the same time, so that the first terminal device obtains how to use the AI model configured by the network device.
  • the network device may indicate the input and output of the AI model to the first terminal device through dedicated instruction information (such as the configuration instruction information of the AI model), or determine the input and output of the AI model in a predefined manner.
  • the network device can configure the model of the detection part in the jointly trained AI model to the first terminal device, and further to configure or instruct the first terminal device to input and output the AI model.
  • the network device when the network device configures the AI model for the first terminal device, it can configure multiple AI models. Among them, the first terminal device can use different AI models under different interference situations.
  • the network device may further configure the association between different AI models and the interference auxiliary information in the first indication information. For example, AI model #1 is associated with indicating two-stream interference, that is, when the first terminal device determines that the interference signal is two-stream interference, the first terminal device selects AI network #1 to detect and eliminate the interference signal.
  • the network device sends the second instruction information to the first terminal device.
  • the first terminal device receives the second indication information from the network device.
  • the network device may send second indication information to the first terminal device, where the second indication information is used to instruct the first terminal device to send the motion status of the first terminal device to the network device periodically or triggeringly.
  • the network device configures the first terminal device to send the motion status of the first terminal device periodically or triggeringly in the RRC configuration information.
  • the first terminal device When the first terminal device sends the motion status of the first terminal device to the network device, it may be sent on the PUCCH or the PUSCH.
  • the first terminal device sends the second information to the network device.
  • the network device receives the second information from the first terminal device.
  • the first terminal device determines the second information for indicating the motion status of the first terminal device based on the second indication information, and, the first terminal device a terminal The device sends the second information to the network device.
  • the motion state includes speed, acceleration, and motion posture.
  • steps S330' and step S340' are similar to the steps S330 and S340 in the above-mentioned Example 1, and will not be described in detail here.
  • the network device sends the first instruction information to the first terminal device.
  • the first terminal device receives the first indication information from the network device.
  • the network device may determine the first indication information based on the first information and the second information of the first terminal device.
  • the network device determines the first indication information based on the first terminal device's ability to detect interference signals based on the AI model in the first information sent by the first terminal device, and the first indication information is carried in the first DCI field and sent to First terminal device.
  • the network device determines the first indication information according to the first information of the first terminal device. For a detailed example, please refer to step S350 in the above example one.
  • the second information sent by the first terminal device includes the speed, acceleration, movement direction, and movement posture of the first terminal device.
  • the network device determines whether the motion state in the second information satisfies the first condition. When the second information satisfies the first condition, the network device sends the first indication information to the first terminal device; when the second information does not satisfy the first condition, the network device does not need to perform subsequent operations.
  • the first condition includes at least one of the following: the movement speed characteristics of the first terminal device satisfy the preset speed characteristics; the movement posture characteristics of the first terminal device satisfy the preset posture characteristics, wherein the movement speed characteristics include speed magnitude. , velocity direction, acceleration magnitude, acceleration direction.
  • the network device determines the MU pairing situation based on the motion status in the second information sent by the first terminal device, and further determines whether to send the first message to the first terminal device. Instructions.
  • the network device determines to send the first indication information to the first terminal device, the first indication information is carried in the first DCI field and sent to the first terminal device.
  • the network device inputs the second information of the first terminal device and the measured channel into the joint AI model, obtains precoding, and transmits based on the precoding.
  • the movement status of the first terminal device ie, the second information
  • the movement status of the first terminal device can be used as an input of the AI model.
  • the network device when the network device itself has a precoded AI model, instead of a joint AI model demodulated with the first terminal device, the network device can also perform based on the motion state in the second information sent by the first terminal device. AI precoding.
  • the first terminal device detects and eliminates interference signals according to the first instruction information.
  • the network device when the network device carries the first indication information in the first DCI field and sends it to the first terminal device, the first terminal device, according to the first DCI field or the identification of the first DCI field in the received configuration information, The first indication information in the first DCI field is obtained, and the corresponding AI model is selected to detect and eliminate the interference signal according to the first indication information.
  • the first terminal device can select a corresponding AI model based on the correlation between the configured AI model and different interference auxiliary information when configuring the AI model.
  • the first indication information may also include the AI model that the network device wants the first terminal device to use, for example, as shown in Table 6 below.
  • the first terminal device directly determines the AI model to be used based on the first instruction information.
  • the first terminal device selects different AI models to detect interference signals, and the input and output of the AI models may also be different.
  • the input and output of the AI model may be configured by the network device, or the first terminal device may determine the input and output of the corresponding AI model itself according to the configuration of the network device.
  • step S360' is similar to step S360 in the above-mentioned Example 1, and will not be described again in order to avoid redundancy.
  • a jointly trained AI model is used.
  • the first terminal device further selects an appropriate AI model according to the configuration of the network device for detecting and eliminating interference signals.
  • the first terminal device sends first information to the network device, the first information includes the capabilities of the AI model of the first terminal device, and the network device can configure the AI model of the joint module based on the first information for the first terminal device Detect and eliminate interfering signals, thereby improving system performance.
  • Example 3 The ability of the first terminal device to detect interference signals is based on the likelihood algorithm.
  • the first terminal device sends the first information to the network device.
  • the network device receives the first information from the first terminal device.
  • the first information also includes one or more of the following: whether the first terminal device supports likelihood detection capability, the number of detectable signal interference streams supported by the first terminal device, and the number of detectable signal interference streams supported by the first terminal device.
  • the maximum complexity of interference detection supported by the first terminal device can be the number of nodes supported by the spherical decoding and the detection radius, the number of nodes supported by the QR decomposition (QRD) algorithm, and the number of operations. upper limit value.
  • the spherical decoding is a tree-based detection method. Starting from the root node of the detection tree, it continues to expand. At each expanded node, a distance between the current node and the root node is calculated. This distance The calculation method is shown in Figure 8.
  • the distance between the previous node of the point and the root node is: (z_1-r_11x1) ⁇ 2.
  • the complexity of interference detection in the first information sent by the first terminal device may be a maximum number of nodes that support detection. This number of nodes may be used by the network device to estimate the upper limit of the potential complexity of detecting interference, thereby avoiding unnecessary interference during MU scheduling. , making the first terminal device too complex to detect and eliminate interference signals, resulting in reduced system performance.
  • the first information may also include the number of first terminal devices that detect and eliminate interference supported by the first terminal device based on spherical decoding, and the number of signal interference streams.
  • spherical decoding is practically applicable to any number of streams and any modulation order, however, additional computational costs are required when taking into account the interference detection and cancellation algorithms. Therefore, when spherical decoding is used to eliminate interference, a parameter limit such as the number of streams of the interference signal and the modulation order can also be provided.
  • the parameter limit is used to control the complexity of spherical decoding.
  • the restricted sphere decoding algorithm supports the elimination of 2-stream interference signals, and the restricted 2-stream interference can be eliminated for 16QAM.
  • limiting the number of streams and modulation orders of interference signals can also avoid making the first terminal device's detection of interference signals too complex during MU scheduling, resulting in high power consumption of the terminal device.
  • the complexity of spherical decoding is related to the number of streams and data modulation order of the signal that the first terminal device needs to demodulate.
  • the limit of the complexity of spherical decoding can be a specific upper limit of complexity (for example, using FLOPS (described by the number of operations), or it can be different level values, in which the approximate range of different level values is predefined between the network device and the first terminal device, or it can be the number of supported signals that interfere with the first terminal device.
  • the limit of spherical decoding complexity can also be different modulation orders, or it can be an explicit modulation order or a set of modulation orders, or it can be a modulation
  • the first terminal device may send the first information to the network device according to the capability query information of the network device; it may also periodically or triggeringly send the first information to the network device according to a certain protocol.
  • the device sends the first message.
  • the network device sends configuration information to the first terminal device.
  • the first terminal device receives configuration information from the network device.
  • the configuration information includes the first DCI field and/or the identification of the first DCI field.
  • step S220 in FIG. 2 and step S320 in the first example of FIG. 3 is similar to the above-mentioned step S220 in FIG. 2 and step S320 in the first example of FIG. 3.
  • step S220 in FIG. 2 and step S320 in the first example of FIG. 3 will not be described again here.
  • the network device sends the second instruction information to the first terminal device, or in other words, the first terminal device receives the second instruction information from the network device.
  • the second instruction information is used to instruct the first terminal device to send its own motion status to the network device.
  • Step S330 in Example 1 is similar to step S330 in Example 1 of Figure 3 above.
  • Step S330 in Example 1 is similar to Step S330 in Example 1 of Figure 3 above.
  • Step S330 in Example 1 is similar to Step S330 in Example 1.
  • the first terminal device sends the second information to the network device.
  • the network device receives the second information from the first terminal device.
  • the motion state includes speed, acceleration, and motion posture.
  • Step S340 is similar to step S340 in Example 1 of Figure 3.
  • Step S340 in Example 1 For detailed description, please refer to the description of Step S340 in Example 1.
  • the network device sends the first instruction information to the first terminal device.
  • the first terminal device receives the first indication information from the network device.
  • the first indication information is used to indicate data transmission information of a second terminal device, and the second terminal device is a terminal device paired with the first terminal device.
  • the first indication information is also used by the first terminal device to detect and eliminate interference signals.
  • the network device indicates the first indication information in the TB2 field, and scrambles the DCI corresponding to the first DCI field using RNTI2.
  • the first terminal device After the first terminal device demodulates the DCI according to RNTI2 and obtains the first DCI field, it obtains the first indication information. As shown in Figure 3, the method also includes:
  • the first terminal device detects and eliminates interference signals according to the first instruction information.
  • the first terminal device uses spherical decoding to perform demodulation according to the first indication information.
  • the channel conditions on each interfering antenna port can be further determined.
  • the first terminal device can measure the interference channel according to the antenna port of the second terminal device indicated by the network device, and the first terminal device further calculates the energy of the interference channel or the ratio between the interference channel and noise. If the energy of the interference channel is low, or the ratio between the interference channel and noise is low, the interference signal corresponding to the port can be regarded as noise and will not participate in the detection.
  • interference stream 2 can be regarded as noise, Only interference stream 1 and interference stream 3 are demodulated, so that the first terminal device only needs to eliminate interference on interference stream 1 and interference stream 3.
  • the threshold may be determined by the first terminal device, or may be indicated to the first terminal device in other ways, which is not limited in this application.
  • the first information sent by the first terminal device to the network device includes the ability of the first terminal device to detect and eliminate interference signals based on the likelihood algorithm, which reduces the detection of the first terminal device.
  • the complexity of the interfering signal At the same time, the network device sends first indication information to the first terminal device, where the first indication information includes interference elimination auxiliary information, which helps the first terminal device detect and eliminate interference signals when interference is strong. This avoids the complexity of the first terminal device detecting and eliminating interference signals, while reusing the existing DCI field to further reduce signaling overhead on the air interface.
  • the above-mentioned Figure 3 respectively enumerates three examples of the first terminal device sending the first information to the network device for indicating the first terminal device's ability to detect interference signals during multi-user multiple-input multiple-output MU-MIMO paired transmission. Describe the situation in detail.
  • the first terminal device reports its ability to detect interference signals.
  • the network device After receiving the ability of the first terminal device to detect interference signals, the network device sends first indication information to the first terminal device.
  • the information is used to indicate data transmission information of the terminal device paired with the first terminal device.
  • the first indication information may also be used to detect interference signals.
  • the network device sends relevant instructions to the first terminal device, and the first terminal device cannot detect and eliminate the interference signals well. removal, resulting in a waste of related control channel resources and degradation of system performance.
  • the network device reuses the existing DCI field to send the first indication information to the first terminal device, saving resource overhead and reducing the complexity of demodulation of the first terminal device.
  • the size of the sequence numbers of the above processes does not mean the order of execution.
  • the execution order of each process should be determined by its functions and internal logic, and should not constitute any limitation on the implementation process of the embodiments of the present application. . And it is possible that not all operations in the above method embodiments need to be performed.
  • the first terminal device and/or network device may perform some or all of the steps in the embodiments. These steps or operations are only examples. The embodiments of the present application may also include performing other operations or various operations. of deformation.
  • a multi-user data transmission method provided by an embodiment of the present application is described in detail above with reference to Figures 2 to 8.
  • a multi-user data transmission device provided by an embodiment of the present application is described in detail below with reference to Figures 9 to 10.
  • FIGS. 9 and 10 a multi-user data transmission device provided by an embodiment of the present application will be described in detail with reference to FIGS. 9 and 10 .
  • the description of the device embodiments corresponds to the description of the method embodiments. Therefore, for content that is not described in detail, please refer to the above method embodiments. For the sake of brevity, some content will not be described again.
  • Embodiments of the present application can divide the transmitting end device or the receiving end device into functional modules according to the above method examples.
  • each functional module can be divided corresponding to each function, or two or more functions can be integrated into one processing module. middle.
  • the above integrated modules can be implemented in the form of hardware or software function modules. It should be noted that the division of modules in the embodiment of the present application is schematic and is only a logical function division. In actual implementation, there may be other division methods. The following is an example of dividing each functional module according to each function.
  • Figure 9 is a schematic block diagram of an information transmission device 900 provided by this application. Any device involved in any of the methods in Figures 2 and 3, such as the first terminal device and network device, can be implemented by a multi-user data transmission device shown in Figure 9.
  • the information transmission device 900 may be a physical device, a component of the physical device (for example, an integrated circuit, a chip, etc.), or a functional module in the physical device.
  • the multi-user data transmission device 900 includes: one or more processors 910 .
  • the processor 910 can call an interface to implement the receiving and sending functions.
  • the interface may be a logical interface or a physical interface, which is not limited.
  • the interface may be a transceiver circuit, an input-output interface, or an interface circuit.
  • Transceiver circuits, input and output interfaces or interface circuits used to implement receiving and transmitting functions can be separate or integrated together.
  • the above-mentioned transceiver circuit or interface circuit can be used for reading and writing code/data, or the above-mentioned transceiver circuit or interface circuit can be used for signal transmission or transfer.
  • the interface can be implemented via transceivers.
  • the information transmission device 900 may also include a transceiver 930.
  • the transceiver 930 may also be called a transceiver unit, a transceiver, a transceiver circuit, etc., and is used to implement transceiver functions.
  • the multi-user data transmission device 900 may also include a memory 920 .
  • the embodiment of the present application does not specifically limit the specific deployment location of the memory 920.
  • the memory may be integrated in the processor or independent of the processor.
  • the multi-user data transmission device 900 only needs to have a processing function, and the memory can be deployed in other locations (such as a cloud system).
  • the processor 910, the memory 920 and the transceiver 930 communicate with each other through internal connection paths to transmit control and/or data signals.
  • a multi-user data transmission device 900 may also include other devices, such as input devices, output devices, batteries, etc.
  • the memory 920 may store execution instructions for executing the methods of embodiments of the present application.
  • the processor 910 can execute instructions stored in the memory 920 and combine with other hardware (such as the transceiver 930) to complete the steps of the method shown below.
  • other hardware such as the transceiver 930
  • the methods disclosed in the embodiments of this application can be applied to the processor 910 or implemented by the processor 910 .
  • the processor 910 may be an integrated circuit chip with signal processing capabilities. During the implementation process, each step of the method can be completed by instructions in the form of hardware integrated logic circuits or software in the processor.
  • the above-mentioned processor can be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), an off-the-shelf programmable gate array (field programmable gate array, FPGA), or other available processors.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • programmed logic devices discrete gate or transistor logic devices, discrete hardware components.
  • a general-purpose processor may be a microprocessor or the processor may be any conventional processor, etc.
  • the steps of the method disclosed in conjunction with the embodiments of the present application can be directly implemented by a hardware decoding processor, or executed by a combination of hardware and software modules in the decoding processor.
  • Software modules can be located in random access memory (RAM), flash memory, read-only memory (ROM), programmable read-only memory or electrically erasable programmable memory, registers, etc. that are mature in this field. in the storage medium.
  • the storage medium is located in the memory, and the processor reads the instructions in the memory and completes the steps of the above method in combination with its hardware.
  • memory 920 may be volatile memory or non-volatile memory, or may include both volatile and non-volatile memory.
  • non-volatile memory can be read-only memory ROM, programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), electrically erasable programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • Volatile memory may be random access memory RAM, which acts as an external cache.
  • RAM static random access memory
  • DRAM dynamic random access memory
  • SDRAM synchronous dynamic random access memory
  • double data rate SDRAM double data rate SDRAM
  • DDR SDRAM double data rate SDRAM
  • ESDRAM enhanced synchronous dynamic random access memory
  • SLDRAM synchronous link dynamic random access memory
  • direct rambus RAM direct rambus RAM
  • Figure 10 is a schematic block diagram of a multi-user data transmission device 1000 provided by this application.
  • the specific form of the multi-user data transmission device 1000 may be a general computer device or a chip in a general computer device, which is not limited in the embodiment of the present application.
  • this device for multi-user data transmission includes a processing unit 1010 and a transceiver unit 1020.
  • the device 1000 for multi-user data transmission can be any device involved in this application, and can implement the functions that the device can implement. It should be understood that the apparatus 1000 for multi-user data transmission may be a physical device, a component of the physical device (for example, an integrated circuit, a chip, etc.), or a component in the physical device. functional module.
  • the device 1000 for multi-user data transmission may be the first terminal device (such as the first terminal device 120) in the above method embodiment, or may be used to implement the above method.
  • the transceiver unit is used to send first information to the network device, and the first information is used to indicate the first terminal device's ability to detect interference signals during multi-user multiple input multiple output MU-MIMO paired transmission; the transceiver unit is also configured to use In receiving the first instruction information from the network device, the first instruction information is used to instruct the data transmission information of the second terminal device, and the second terminal device is the terminal device paired with the first terminal device.
  • the transceiver unit 1020 in the device 1000 for multi-user data transmission can pass a communication interface (such as a transceiver or an input/output interface)
  • the processing unit 1010 in the device 1000 for multi-user data transmission may be implemented by at least one processor, for example, may correspond to the processor 910 shown in FIG. 9 .
  • the device 1000 for multi-user data transmission may also include a storage unit, which may be used to store instructions or data, and the processing unit may call the instructions or data stored in the storage unit to implement corresponding operations.
  • a storage unit which may be used to store instructions or data
  • the processing unit may call the instructions or data stored in the storage unit to implement corresponding operations.
  • the device 1000 for multi-user data transmission may be the network device (such as the network device 110) in the above method embodiment, or may be a network device used to implement the above method embodiment.
  • a chip that functions as a network device eg, network device 110).
  • the transceiver unit is configured to receive first information from a first terminal device, and the first information is used to indicate the first terminal device's ability to detect interference signals during multi-user multiple-input multiple-output MU-MIMO paired transmission; the transceiver The unit is further configured to send first indication information to the first terminal device, where the first indication information is used to indicate data transmission information of the second terminal device, and the second terminal device is a terminal device paired with the first terminal device.
  • the transceiver unit 1020 in the device 1000 for multi-user data transmission can be implemented through a communication interface (such as a transceiver or an input/output interface). , for example, may correspond to the communication interface 930 shown in FIG. 9 , and the processing unit 1010 in the device 1000 for multi-user data transmission may be implemented by at least one processor, for example, may correspond to the processor shown in FIG. 9 910.
  • the device 1000 for multi-user data transmission may also include a storage unit, which may be used to store instructions or data, and the processing unit may call the instructions or data stored in the storage unit to implement corresponding operations.
  • a storage unit which may be used to store instructions or data
  • the processing unit may call the instructions or data stored in the storage unit to implement corresponding operations.
  • the device 1000 for multi-user data transmission is presented in the form of a functional module.
  • Module here may refer to an application specific integrated circuit (ASIC), a circuit, a processor and memory that executes one or more software or firmware programs, an integrated logic circuit, and/or other devices that can provide the above functions.
  • ASIC application specific integrated circuit
  • the device 1000 can take the form shown in FIG. 10 .
  • Processing unit 1010 This can be implemented by the processor 910 shown in Figure 9 .
  • the computer device shown in FIG. 9 includes a memory 900
  • the processing unit 1010 may be implemented by the processor 910 and the memory 900.
  • the transceiver unit 1020 may be implemented by the transceiver 930 shown in FIG.
  • the transceiver 930 includes a receiving function and a transmitting function.
  • the processor is implemented by executing the computer program stored in the memory.
  • the memory may be a storage unit within the chip, such as a register, cache, etc.
  • the storage unit may also be a storage unit located outside the chip in a device for multi-user data transmission, such as
  • the memory 920 shown in Figure 9 may also be a storage unit deployed in other systems or devices and is not within the computer device.
  • computer-readable media may include, but are not limited to: magnetic storage devices (e.g., hard disks, floppy disks, tapes, etc.), optical disks (e.g., compact discs (CD), digital versatile discs (DVD)) etc.), smart cards and flash memory devices (e.g. erasable programmable read-only memory (EPROM), cards, sticks or key drives, etc.).
  • the various storage media described herein may represent one or more devices and/or other machine-readable media for storing information.
  • the term "machine-readable medium” may include, but is not limited to, various other media capable of storing, containing and/or carrying instructions and/or data.
  • the present application also provides a computer program product.
  • the computer program product includes: a computer program or a set of instructions.
  • the computer program or a set of instructions When the computer program or a set of instructions is run on a computer, the computer causes the computer to execute The method of any one of the embodiments shown in Figures 2 to 8.
  • the present application also provides a computer-readable storage medium.
  • the computer-readable medium stores a program or a set of instructions.
  • the program or a set of instructions is run on a computer, the computer The method of any one of the embodiments shown in FIG. 2 to FIG. 8 is executed.
  • the present application also provides a communication system, which includes the aforementioned device or equipment.
  • a component may be, but is not limited to, a process, a processor, an object, an executable file, a thread of execution, a program and/or a computer running on a processor.
  • applications running on the computing device and the computing device may be components.
  • One or more components can reside in a process and/or thread of execution and a component can be localized on one computer and/or distributed between two or more computers. Additionally, these components can execute from various computer-readable media having various data structures stored thereon.
  • a component may pass a signal based on a signal having one or more data packets (e.g., data from two components interacting with another component on a local system, a distributed system, and/or on a network, such as the Internet, which interacts with other systems via signals).
  • data packets e.g., data from two components interacting with another component on a local system, a distributed system, and/or on a network, such as the Internet, which interacts with other systems via signals.
  • the disclosed systems, devices and methods can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or can be integrated into another system, or some features can be ignored, or not implemented.
  • the coupling or direct coupling or communication connection between each other shown or discussed may be through some interfaces, and the indirect coupling or communication connection of the devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or they may be distributed to multiple network units. Some or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application can be integrated into one processing unit, each unit can exist physically alone, or two or more units can be integrated into one unit.
  • the functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in various embodiments of this application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Databases & Information Systems (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供了一种多用户数据传输的方法和装置。该方法可以包括:第一终端设备向网络设备发送第一信息,该第一信息用于指示该第一终端设备在多用户多输入多输出配对传输时的检测干扰信号的能力;第一终端设备向该网络设备发送第一信息之后,第一终端设备接收来自网络设备的第一指示信息,第一指示信息用于指示第二终端设备的数据传输信息。第一终端设备根据第一指示信息检测并消除干扰信号。通过本申请,网络设备根据第一信息确定该第一终端设备检测干扰信号的能力满足预设条件,并向第一终端设备发送第一指示信息,第一指示信息用于第一终端设备检测并消除干扰信号,进而保证第一终端设备能够更好地进行干扰信号的检测和消除。

Description

一种多用户数据传输的方法和装置
本申请要求于2022年07月08日提交中国专利局、申请号为202210799828.2、申请名称为“一种多用户数据传输的方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请要求于2022年05月08日提交中国专利局、申请号为202210495917.8、申请名称为“一种基站辅助的MIMO检测方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信领域,并且更具体地,涉及一种多用户数据传输的方法和装置。
背景技术
多输入多输出(multiple-input multiple-output,MIMO)技术是无线移动通信领域中智能天线技术的一个重大突破,该技术可以在不增加带宽的情况下成倍地提高通信系统的容量和频谱利用率,还可以利用多径传输来减轻多径衰落,有效地检测和消除信道干扰,提高信道的可靠性,降低误码率,是新一代移动通信系统采用的关键技术。其已经被广泛地应用于长期演进(long term evolution,LTE)和新无线(new radio,NR)等多种无线通信系统中。
为了提高系统频谱效率,在无线通信系统中,通常结合MIMO技术,例如利用单用户多入多出技术(single-user multiple-input multiple-output,SU-MIMO)对单用户进行多流传输或者多用户多入多出技术(multi-user multiple-input multiple-output,MU-MIMO)对多个用户一起调度。为了消除SU-MIMO或MU-MIMO中存在的流间干扰和用户间干扰,通常对网络设备的预编码有较高的要求。其中,需要网络设备的预编码与信道能精准匹配,使得预编码后的信号经过相应信道传输后,干扰较小。
由于预编码的确定通常基于测量的信道信息,当用户处于移动状态下,可能导致测量的信道信息与实际传输时的信道信息存在延迟,导致预编码无法与信道精准匹配,特别是在MU-MIMO传输下,可能导致干扰剧增。因此,亟需一种多用户数据传输的方法,以期提高终端设备检测和消除干扰信号的性能。
发明内容
本申请实施例提供了一种多用户数据传输的方法和装置,能够提高终端设备检测和消除干扰信号的性能。
第一方面,提供了一种多用户数据传输的方法,该方法可以由终端设备执行,或者也可以由设置于终端设备中的芯片或者电路执行,本申请对此不作限定,为了便于描述,下面以由第一终端设备执行为例进行说明。
该方法包括:
第一终端设备向网络设备发送第一信息,第一信息用于指示第一终端设备在多用户多输入多输出MU-MIMO配对传输时的检测来自发送给配对终端设备的干扰信号的能力;第一终端设备向网络设备发送所述第一信息之后,第一终端设备接收来自网络设备的第一指示信息,第一指示信息用于指示第二终端设备的数据传输信息,第二终端设备为第一终端设备配对的终端设备。
根据本申请实施例提供的方法,第一终端设备向网络设备发送用于指示该第一终端设备检测来自发送给配对终端设备的干扰信号的能力的第一信息之后,第一终端设备接收来自网络设备的第一指示信息,该第一指示信息被用于该第一终端设备检测来自发送给配对终端设备的干扰信号,其中,该第一指示信息还用于指示该第一终端设备配对的终端设备(即,第二终端设备)的数据传输信息。网络设备根据第一信息确定该第一终端设备具备检测干扰信号的能力,再向第一终端设备发送第一指示信息,从而避免了当第一终端设备不具备检测干扰信号能力的情况下,网络设备指示第一终端设备检测干扰信号,第一终端设备无法完成较好的干扰检测和消除,浪费了相关的控制信道资源,以及终端设备的功耗。
需要说明的是,该第二终端设备可以是一个终端设备,也可以是多个终端设备,对此本申请不做限定。
结合第一方面,在一些可能实现的方式中,当第一信息满足预设条件时,第一终端设备接收来自网络设备的所述第一指示信息。
基于上述方案,当第一终端设备的检测干扰信号的能力满足预设条件时,网络设备向第一终端设备发送第一指示信息,其中,该预设条件可以是网络设备与第一终端设备协商的,也可以是协议规定的,还可以是网络设备根据某一条件自身确定的,对此本申请不做限定。
结合第一方面,在一些可能实现的方式中,所述第一指示信息是根据所述第一信息确定的。
结合第一方面,在一些可能实现的方式中,所述第一终端设备根据所述第一指示信息检测MU-MIMO配对传输时的多用户干扰信号。
结合第一方面,在一些可能实现的方式中,所述第一指示信息携带在第一下行控制信息DCI字段中,所述方法还包括:所述第一终端设备根据配置信息确定所述第一DCI字段,所述配置信息包括所述第一DCI字段和/或所述第一DCI字段的标识。
基于上述方案,该配置信息包括网络设备确定的第一DCI字段和/或第一DCI字段的标识,其中第一DCI字段为网络设备指示第一终端设备时使用的现有的DCI字段(即协议规定的DCI字段),第一终端设备根据配置信息在现有的DCI字段上直接解析第一指示信息,从而节省资源开销,降低第一终端设备的复杂度。
应理解,该配置信息可以是网络设备发送给第一终端设备的,也可以是协议规定的。
结合第一方面,在一些可能实现的方式中,所述第一终端设备接收来自所述网络设备的所述配置信息。
结合第一方面,在一些可能实现的方式中,在所述第一终端设备接收来自所述网络设备的所述第一指示信息之前,所述方法还包括:所述第一终端设备向所述网络设备发送第二信息,所述第二信息用于指示所述第一终端设备的运动状态,所述运动状态包括以下一 项或多项:速度、加速度、运动姿态。
应理解,第一终端设备接收到第一指示信息之前,第一终端设备向网络设备发送第二信息;或者,在第一终端设备接收到第一指示信息之前,第一终端设备向网络设备发送第一信息之后,第一终端设备再向网络设备发送第二信息,对此本申请不做限定。
还应理解,第一终端设备可以根据网络设备配置的运动状态上报触发条件,向网络设备发送第二信息;第一终端设备还可以周期性地向网络设备发送第二信息。
结合第一方面,在一些可能实现的方式中,在所述第一终端设备向所述网络设备发送所述第二信息之前,所述方法还包括:所述第一终端设备接收来自所述网络设备的第二指示信息,所述第二指示信息用于指示所述第一终端设备向所述网络设备发送所述第一终端设备的运动状态。
结合第一方面,在一些可能实现的方式中,所述第一信息包括以下一项或多项:所述第一终端设备是否支持基于人工智能AI模型的干扰检测、所述第一终端设备基于AI模型下可检测的信号干扰流数、所述第一终端设备基于AI模型下可检测的信号干扰调制阶数、所述第一终端设备基于AI模型所适配的信噪比SNR或信干噪比SINR的范围。
结合第一方面,在一些可能实现的方式中,所述第一信息包括以下一项或多项:所述第一终端设备是否支持似然检测能力,所述第一终端设备支持的可检测的信号干扰流数、所述第一终端设备支持的可检测的干扰信号调制阶数、所述第一终端设备支持的干扰检测的最大复杂度。
结合第一方面,在一些可能实现的方式中,所述第一信息包括以下一项或多项:所述第一终端设备支持的AI模型的最大复杂度、所述第一终端设备支持的AI模型的存储上限、所述第一终端设备支持的AI模型的算子、所述第一终端设备支持的AI模型的神经网络层数、所述第一终端设备支持的AI模型的神经网络类型。
结合第一方面,在一些可能实现的方式中,所述配置信息还包括AI网络模型,以及AI网络模型的输入输出的内容和参数。
示例性地,配置信息还包括AI网络模型的输入和输出的内容和参数,其中包括,AI网络模型的输入和输出的具体内容,以及输入和输出的数据大小。举例来说,配置该AI模型的输入为接收信号、导频信号或参考信号,输出为检测信号的结果;或者,配置该AI模型的输入为接收信号的矩阵,该接收信号的矩阵大小为N*1,输出为信号检测的结果,该信号检测的输出大小为N*T。
结合第一方面,在一些可能实现的方式中,所述第一指示信息包括以下至少一项:所述第二终端设备的天线端口、所述第二终端设备的数量、所述第二终端设备的干扰数据流数、所述第二终端设备的信号调制方式、所述第二终端设备接收来自所述网络设备的发送功率。
第二方面,提供了一种多用户传输的方法,该方法可以由网络设备执行,或者,也可以由设置于网络设备中的芯片或者电路执行,本申请对此不做限定,为了便于描述,下面以由网络设备执行为例进行说明。
该方法包括:
网络设备接收来自第一终端设备的第一信息,所述第一信息用于指示所述第一终端设备在多用户多输入多输出MU-MIMO配对传输时的检测来自发送给配对终端设备的干扰 信号的能力;所述网络设备接收到所述第一信息之后,所述网络设备向所述第一终端设备发送第一指示信息,所述第一指示信息用于指示第二终端设备的数据传输信息,所述第二终端设备为所述第一终端设备配对的终端设备。
根据本申请实施例提供的方法,网络设备接收来自第一终端设备第一信息,该第一信息用于指示所述第一终端设备在多用户多输入多输出MU-MIMO配对传输时的检测来自发送给配对终端设备的干扰信号的能力,网络设备向第一终端设备发送第一指示信息,该第一指示信息被用于该第一终端设备检测来自发送给配对终端设备的干扰信号,其中,该第一指示信息还用于指示该第一终端设备配对的终端设备(即,第二终端设备)的数据传输信息。网络设备根据第一信息确定该第一终端设备具备检测干扰信号的能力,再向第一终端设备发送第一指示信息,从而避免了当第一终端设备不具备检测干扰信号能力的情况下,网络设备指示第一终端设备检测干扰信号,第一终端设备无法完成较好的干扰检测和消除,浪费了相关的控制信道资源,以及终端设备的功耗。
需要说明的是,该第二终端设备可以是一个终端设备,也可以是多个终端设备,对此本申请不做限定。
结合第二方面,在一些可能实现的方式中,当所述第一信息满足预设条件时,所述网络设备向所述第一终端设备发送所述第一指示信息。
基于上述方案,当第一终端设备的检测干扰信号的能力满足预设条件时,网络设备向第一终端设备发送第一指示信息,其中,该预设条件可以是网络设备与第一终端设备协商的,也可以是协议规定的,还可以是网络设备根据某一条件自身确定的,对此本申请不做限定。
结合第二方面,在一些可能实现的方式中,所述第一指示信息是根据所述第一信息确定的。
结合第二方面,在一些可能实现的方式中,所述第一指示信息携带在第一下行控制信息DCI字段中,所述方法还包括:所述网络设备向所述第一终端设备发送配置信息,所述配置信息包括第一DCI字段和/或所述第一DCI字段的标识。
基于上述方案,该配置信息包括网络设备确定的第一DCI字段和/或第一DCI字段的标识,其中第一DCI字段为网络设备指示第一终端设备时使用的现有的DCI字段(即协议规定的DCI字段),第一终端设备根据配置信息在现有的DCI字段上直接解析第一指示信息,从而节省资源开销,降低终端设备的复杂度。
应理解,该配置信息可以是网络设备发送给第一终端设备的,也可以是协议规定的。
结合第二方面,在一些可能实现的方式中,在所述网络设备向所述第一终端设备发送第一指示信息之前,该方法还包括:所述网络设备接收来自所述第一终端设备的第二信息,所述第二信息用于指示所述第一终端设备的运动状态,所述运动状态包括以下一项或多项:速度、加速度、运动方向、运动姿态。
应理解,第一终端设备接收到第一指示信息之前,第一终端设备向网络设备发送第二信息;或者,在第一终端设备接收到第一指示信息之前,第一终端设备向网络设备发送第一信息之后,第一终端设备再向网络设备发送第二信息,对此本申请不做限定。
还应理解,第一终端设备可以根据网络设备配置的运动状态上报触发条件,向网络设备发送第二信息;第一终端设备还可以周期性地向网络设备发送第二信息。
结合第二方面,在一些可能实现的方式中,在所述网络设备接收来自所述第一终端设备的第二信息之前,所述方法还包括:所述网络设备向所述第一终端设备发送第二指示信息,所述第二指示信息用于指示所述第一终端设备向所述网络设备发送所述第一终端设备的运动状态。
结合第二方面,在一些可能实现的方式中,在所述网络设备向所述第一终端设备发送所述配置信息之前,所述方法还包括:所述网络设备确定所述第二信息满足第一条件。
结合第二方面,在一些可能实现的方式中,所述第一条件包括以下至少一项:
所述第一终端设备的运动速度特征满足预设速度特征;
所述第一终端设备的运动姿态特征满足预设姿态特征,
其中,所述运动速度特征包括速度大小、速度方向,加速度大小、加速度方向。
结合第二方面,在一些可能实现的方式中,所述第一信息包括以下一项或多项:所述第一终端设备是否支持基于人工智能AI模型的干扰检测、所述第一终端设备基于AI模型下可检测的信号干扰流数、所述第一终端设备基于AI模型下可检测的信号干扰调制阶数、所述第一终端设备基于AI模型所适配的信噪比SNR或信干噪比SINR的范围。
结合第二方面,在一些可能实现的方式中,所述第一信息还包括以下一项或多项:所述第一终端设备是否支持似然检测能力,所述第一终端设备支持的可检测的信号干扰流数、所述第一终端设备支持的可检测的干扰信号调制阶数、所述第一终端设备支持的干扰检测的最大复杂度。
结合第二方面,在一些可能实现的方式中,所述第一信息包括以下一项或多项:所述第一终端设备支持的AI模型的最大复杂度、所述第一终端设备支持的AI模型的存储上限、所述第一终端设备支持的AI模型的算子、所述第一终端设备支持的AI模型的神经网络层数、所述第一终端设备支持的AI模型的神经网络类型。
结合第二方面,在一些可能实现的方式中,所述配置信息还包括AI模型,以及该AI网络模型的输入输出的内容和参数。
可选地,所述AI模型是所述网络设备根据所述第一信息配置的。
示例性地,配置信息还包括AI网络模型的输入和输出的内容和参数,其中包括,AI网络模型的输入和输出的具体内容,以及输入和输出的数据大小。举例来说,配置该AI模型的输入为接收信号、导频信号或参考信号,输出为检测信号的结果;或者,配置该AI模型的输入为接收信号的矩阵,该接收信号的矩阵大小为N*1,输出为信号检测的结果,该信号检测的输出大小为N*T。结合第二方面,在一些可能实现的方式中,所述第一指示信息包括以下至少一项:所述第二终端设备的天线端口、所述第二终端设备的数量、所述第二终端设备的干扰数据流数、所述第二终端设备的信号调制方式、所述第二终端设备接收来自所述网络设备的发送功率。
第三方面,提供了一种多用户数据传输的方法,该方法可以由终端设备执行,或者也可以由设置于终端设备中的芯片或者电路执行,本申请对此不作限定,为了便于描述,下面以由第一终端设备执行为例进行说明。
该方法包括:
第一终端设备向网络设备发送第一信息,第一信息用于指示第一终端设备在多用户多输入多输出MU-MIMO配对传输时的检测来自发送给配对终端设备的干扰信号的能力; 当所述第一信息满足预设条件时,所述第一终端设备接收来自所述网络设备的第一指示信息,第一指示信息用于指示第二终端设备的数据传输信息,第二终端设备为第一终端设备配对的终端设备,所述第一指示信息是根据所述第一信息确定的。
根据本申请实施例提供的方法,网络设备根据第一信息确定该第一终端设备具备检测干扰信号的能力,并向第一终端设备发送第一指示信息,从而避免了当第一终端设备不具备检测干扰信号能力的情况下,网络设备指示第一终端设备检测干扰信号,第一终端设备无法完成较好的干扰检测和消除,浪费了相关的控制信道资源,以及终端设备的功耗。
结合第三方面,在一些可能实现的方式中,所述第一指示信息携带在第一下行控制信息DCI字段中,所述方法还包括:所述第一终端设备根据配置信息确定所述第一DCI字段,所述配置信息包括所述第一DCI字段和/或所述第一DCI字段的标识。
结合第三方面,在一些可能实现的方式中,所述第一终端设备接收来自所述网络设备的所述配置信息。
结合第三方面,在一些可能实现的方式中,在所述第一终端设备接收来自所述网络设备的所述第一指示信息之前,所述方法还包括:所述第一终端设备向所述网络设备发送第二信息,所述第二信息用于指示所述第一终端设备的运动状态,所述运动状态包括以下一项或多项:速度、加速度、运动姿态。
应理解,第一终端设备接收到第一指示信息之前,第一终端设备向网络设备发送第二信息;或者,在第一终端设备接收到第一指示信息之前,第一终端设备向网络设备发送第一信息之后,第一终端设备再向网络设备发送第二信息,对此本申请不做限定。
还应理解,第一终端设备可以根据网络设备配置的运动状态上报触发条件,向网络设备发送第二信息;第一终端设备还可以周期性地向网络设备发送第二信息。
结合第三方面,在一些可能实现的方式中,在所述第一终端设备向所述网络设备发送所述第二信息之前,所述方法还包括:所述第一终端设备接收来自所述网络设备的第二指示信息,所述第二指示信息用于指示所述第一终端设备向所述网络设备发送所述第一终端设备的运动状态。
结合第三方面,在一些可能实现的方式中,所述第一信息包括以下一项或多项:所述第一终端设备是否支持基于人工智能AI模型的干扰检测、所述第一终端设备基于AI模型下可检测的信号干扰流数、所述第一终端设备基于AI模型下可检测的信号干扰调制阶数、所述第一终端设备基于AI模型所适配的信噪比SNR或信干噪比SINR的范围。
结合第三方面,在一些可能实现的方式中,所述第一信息包括以下一项或多项:所述第一终端设备是否支持似然检测能力,所述第一终端设备支持的可检测的信号干扰流数、所述第一终端设备支持的可检测的干扰信号调制阶数、所述第一终端设备支持的干扰检测的最大复杂度。
结合第三方面,在一些可能实现的方式中,所述第一信息包括以下一项或多项:所述第一终端设备支持的AI模型的最大复杂度、所述第一终端设备支持的AI模型的存储上限、所述第一终端设备支持的AI模型的算子、所述第一终端设备支持的AI模型的神经网络层数、所述第一终端设备支持的AI模型的神经网络类型。
结合第三方面,在一些可能实现的方式中,所述配置信息还包括AI网络模型,以及AI网络模型的输入输出的内容和参数。
结合第三方面,在一些可能实现的方式中,所述第一指示信息包括以下至少一项:所述第二终端设备的天线端口、所述第二终端设备的数量、所述第二终端设备的干扰数据流数、所述第二终端设备的信号调制方式、所述第二终端设备接收来自所述网络设备的发送功率。
第四方面,提供了一种多用户传输的方法,该方法可以由网络设备执行,或者,也可以由设置于网络设备中的芯片或者电路执行,本申请对此不做限定,为了便于描述,下面以由网络设备执行为例进行说明。
该方法包括:
网络设备接收来自第一终端设备的第一信息,所述第一信息用于指示所述第一终端设备在多用户多输入多输出MU-MIMO配对传输时的检测来自发送给配对终端设备的干扰信号的能力;当所述第一信息满足预设条件时,所述网络设备向所述第一终端设备发送第一指示信息,所述第一指示信息用于指示第二终端设备的数据传输信息,所述第二终端设备为所述第一终端设备配对的终端设备。
根据本申请实施例提供的方法,网络设备根据第一信息确定该第一终端设备具备检测干扰信号的能力,并向第一终端设备发送第一指示信息,从而避免了当第一终端设备不具备检测干扰信号能力的情况下,网络设备指示第一终端设备检测干扰信号,第一终端设备无法完成较好的干扰检测和消除,浪费了相关的控制信道资源,以及终端设备的功耗。
结合第四方面,在一些可能实现的方式中,所述第一指示信息携带在第一下行控制信息DCI字段中,所述方法还包括:所述网络设备向所述第一终端设备发送配置信息,所述配置信息包括第一DCI字段和/或所述第一DCI字段的标识。
基于上述方案,该配置信息包括网络设备确定的第一DCI字段和/或第一DCI字段的标识,其中第一DCI字段为网络设备指示第一终端设备时使用的现有的DCI字段(即协议规定的DCI字段),第一终端设备根据配置信息在现有的DCI字段上直接解析第一指示信息,从而节省资源开销,降低终端设备的复杂度。
结合第四方面,在一些可能实现的方式中,在所述网络设备向所述第一终端设备发送第一指示信息之前,该方法还包括:所述网络设备接收来自所述第一终端设备的第二信息,所述第二信息用于指示所述第一终端设备的运动状态,所述运动状态包括以下一项或多项:速度、加速度、运动方向、运动姿态。
应理解,第一终端设备接收到第一指示信息之前,第一终端设备向网络设备发送第二信息;或者,在第一终端设备接收到第一指示信息之前,第一终端设备向网络设备发送第一信息之后,第一终端设备再向网络设备发送第二信息,对此本申请不做限定。
还应理解,第一终端设备可以根据网络设备配置的运动状态上报触发条件,向网络设备发送第二信息;第一终端设备还可以周期性地向网络设备发送第二信息。
结合第四方面,在一些可能实现的方式中,在所述网络设备接收来自所述第一终端设备的第二信息之前,所述方法还包括:所述网络设备向所述第一终端设备发送第二指示信息,所述第二指示信息用于指示所述第一终端设备向所述网络设备发送所述第一终端设备的运动状态。
结合第四方面,在一些可能实现的方式中,在所述网络设备向所述第一终端设备发送所述配置信息之前,所述方法还包括:所述网络设备确定所述第二信息满足第一条件。
结合第四方面,在一些可能实现的方式中,所述第一条件包括以下至少一项:
所述第一终端设备的运动速度特征满足预设速度特征;
所述第一终端设备的运动姿态特征满足预设姿态特征,
其中,所述运动速度特征包括速度大小、速度方向,加速度大小、加速度方向。
结合第四方面,在一些可能实现的方式中,所述第一信息包括以下一项或多项:所述第一终端设备是否支持基于人工智能AI模型的干扰检测、所述第一终端设备基于AI模型下可检测的信号干扰流数、所述第一终端设备基于AI模型下可检测的信号干扰调制阶数、所述第一终端设备基于AI模型所适配的信噪比SNR或信干噪比SINR的范围。
结合第四方面,在一些可能实现的方式中,所述第一信息还包括以下一项或多项:所述第一终端设备是否支持似然检测能力,所述第一终端设备支持的可检测的信号干扰流数、所述第一终端设备支持的可检测的干扰信号调制阶数、所述第一终端设备支持的干扰检测的最大复杂度。
结合第四方面,在一些可能实现的方式中,所述第一信息包括以下一项或多项:所述第一终端设备支持的AI模型的最大复杂度、所述第一终端设备支持的AI模型的存储上限、所述第一终端设备支持的AI模型的算子、所述第一终端设备支持的AI模型的神经网络层数、所述第一终端设备支持的AI模型的神经网络类型。
结合第四方面,在一些可能实现的方式中,所述配置信息还包括AI模型,以及该AI网络模型的输入输出的内容和参数。
第五方面,提供一种多用户数据传输的装置,所述一种多用户数据传输的装置包括:收发单元,向网络设备发送第一信息,所述第一信息用于指示所述第一终端设备在多用户多输入多输出MU-MIMO配对传输时的检测干扰信号的能力;所述收发单元在向所述网络设备发送所述第一信息之后,所述收发单元,还用于接收来自所述网络设备的第一指示信息,所述第一指示信息用于指示第二终端设备的数据传输信息,所述第二终端设备为所述第一终端设备配对的终端设备。
结合第五方面,在一些可能实现的方式中,当所述第一信息满足预设条件时,所述收发单元,还用于接收所述第一指示信息。
结合第五方面,在一些可能实现的方式中,所述第一指示信息是根据所述第一信息确定的。
结合第五方面,在一些可能实现的方式中,处理单元,用于根据所述第一指示信息检测MU-MIMO配对传输时的多用户干扰信号。
结合第五方面,在一些可能实现的方式中,所述第一指示信息携带在第一下行控制信息DCI字段中,所述装置还包括:所述处理单元根据配置信息确定所述第一DCI字段,所述配置信息包括所述第一DCI字段和/或所述第一DCI字段的标识。
结合第五方面,在一些可能实现的方式中,所述收发单元,还用于接收来自所述网络设备的所述配置信息。
结合第五方面,在一些可能实现的方式中,在所述接收单元用于接收来自所述网络设备的所述第一指示信息之前,所述装置还包括:
所述收发单元,还用于向所述网络设备发送第二信息,所述第二信息用于指示所述第一终端设备的运动状态,所述运动状态包括以下一项或多项:速度、加速度、运动姿态。
结合第五方面,在一些可能实现的方式中,在所述收发单元用于向所述网络设备发送所述第二信息之前,所述装置还包括:
所述收发单元,还用于接收来自所述网络设备的第二指示信息,所述第二指示信息用于指示所述第一终端设备向所述网络设备发送所述第一终端设备的运动状态。
结合第五方面,在一些可能实现的方式中,所述第一信息包括以下一项或多项:所述第一终端设备是否支持基于人工智能AI模型的干扰检测、所述第一终端设备基于AI模型下可检测的信号干扰流数、所述第一终端设备基于AI模型下可检测的信号干扰调制阶数、所述第一终端设备基于AI模型所适配的信噪比SNR或信干噪比SINR的范围。
结合第五方面,在一些可能实现的方式中,所述第一信息包括以下一项或多项:所述第一终端设备是否支持似然检测能力,所述第一终端设备支持的可检测的信号干扰流数、所述第一终端设备支持的可检测的干扰信号调制阶数、所述第一终端设备支持的干扰检测的最大复杂度。
结合第五方面,在一些可能实现的方式中,所述第一信息包括以下一项或多项:所述第一终端设备支持的AI模型的最大复杂度、所述第一终端设备支持的AI模型的存储上限、所述第一终端设备支持的AI模型的算子、所述第一终端设备支持的AI模型的神经网络层数。
结合第五方面,在一些可能实现的方式中,所述配置信息还包括AI网络模型。
结合第五方面,在一些可能实现的方式中,所述第一指示信息包括以下至少一项:所述第二终端设备的天线端口、所述第二终端设备的数量、所述第二终端设备的干扰数据流数、所述第二终端设备的信号调制方式、所述第二终端设备接收来自所述网络设备的功率。
第六方面,提供一种多用户数据传输的装置,所述一种多用户数据传输的装置包括:收发单元,用于接收来自第一终端设备的第一信息,所述第一信息用于指示所述第一终端设备在多用户多输入多输出MU-MIMO配对传输时的检测干扰信号的能力;所述收发单元用于接收到所述第一信息之后,所述收发单元,还用于向所述第一终端设备发送第一指示信息,所述第一指示信息用于指示第二终端设备的数据传输信息,所述第二终端设备为所述第一终端设备配对的终端设备。
结合第六方面,在一些可能实现的方式中,当所述第一信息满足预设条件时,所述收发单元,用于向所述第一终端设备发送所述第一指示信息。
结合第六方面,在一些可能实现的方式中,所述第一指示信息是根据所述第一信息确定的。
结合第六方面,在一些可能实现的方式中,所述第一指示信息携带在第一下行控制信息DCI字段中,所述装置还包括:所述收发单元,用于向所述第一终端设备发送配置信息,所述配置信息包括第一DCI字段和/或所述第一DCI字段的标识。
结合第六方面,在一些可能实现的方式中,在所述收发单元用于向所述第一终端设备发送第一指示信息之前,所述装置还包括:所述收发单元,还用于接收来自所述第一终端设备的第二信息,所述第二信息用于指示所述第一终端设备的运动状态,所述运动状态包括以下一项或多项:速度、加速度、运动方向、运动姿态。
结合第六方面,在一些可能实现的方式中,在所述收发单元用于接收来自所述第一终端设备的第二信息之前,所述装置还包括:所述收发单元,还用于向所述第一终端设备发 送第二指示信息,所述第二指示信息用于指示所述第一终端设备向所述网络设备发送所述第一终端设备的运动状态。
结合第六方面,在一些可能实现的方式中,在所述收发单元向所述第一终端设备发送所述配置信息之前,所述方法还包括:处理单元,用于确定所述第二信息满足第一条件。
结合第六方面,在一些可能实现的方式中,所述第一条件包括以下至少一项:
所述第一终端设备的运动速度特征满足预设速度特征;
所述第一终端设备的运动姿态特征满足预设姿态特征,
其中,所述运动速度特征包括速度大小、速度方向,加速度大小、加速度方向。
结合第六方面,在一些可能实现的方式中,所述第一信息包括以下一项或多项:所述第一终端设备是否支持基于人工智能AI模型的干扰检测、所述第一终端设备基于AI模型下可检测的信号干扰流数、所述第一终端设备基于AI模型下可检测的信号干扰调制阶数、所述第一终端设备基于AI模型所适配的信噪比SNR或信干噪比SINR的范围。
结合第六方面,在一些可能实现的方式中,所述第一信息还包括以下一项或多项:所述第一终端设备是否支持似然检测能力,所述第一终端设备支持的可检测的信号干扰流数、所述第一终端设备支持的可检测的干扰信号调制阶数、所述第一终端设备支持的干扰检测的最大复杂度。
结合第六方面,在一些可能实现的方式中,所述第一信息包括以下一项或多项:所述第一终端设备支持的AI模型的最大复杂度、所述第一终端设备支持的AI模型的存储上限、所述第一终端设备支持的AI模型的算子、所述第一终端设备支持的AI模型的神经网络层数。
结合第六方面,在一些可能实现的方式中,所述配置信息还包括AI模型,所述AI模型是所述网络设备根据所述第一信息配置的。
结合第六方面,在一些可能实现的方式中,所述第一指示信息包括以下至少一项:所述第二终端设备的天线端口、所述第二终端设备的数量、所述第二终端设备的干扰数据流数、所述第二终端设备的信号调制方式、所述第二终端设备接收来自所述网络设备的功率。
第七方面,提供了一种通信装置,包括:处理器,所述处理器与存储器耦合,所述存储器用于存储程序或指令,当所述程序或指令被所述处理器执行时,使得所述通信装置执行第一方面或第二方面及其各种可能实现方式中的方法,或者使得所述通信装置执行第三方面或第四方面及其各种可能实现方式中的方法,。
可选地,上述处理器为一个或多个,上述存储器为一个或多个。
可选地,上述存储器可以与上述处理器集成在一起,或者上述存储器与处理器分离设备。
可选地,该转发设备还包括,发射机(发射器)和接收机(接收机)。
第八方面,提供了一种通信系统,包括:第一终端设备,用于执行上述第一方面及其任一种可能实现方式中的方法,或者,用于执行上述第三方面及其任一种可能实现方式中的方法;网络设备,用于执行上述第二方面及其任一种可能实现方式中的方法,或者,用于执行上述第四方面及其任一种可能实现方式中的方法。
第九方面,提供了一种计算机可读介质,所述计算机可读介质存储有计算机程序(也可以称为代码,或者指令),当所述计算机程序被运行时,使得计算机执行上述第一方面 或第二方面中任一种可能实现方式的方法,或者,使得计算机执行上述第三方面或第四方面中任一种可能实现方式的方法。
第十方面,提供一种芯片系统,包括存储器和处理器,该存储器用于存储计算机程序,该处理器用于存储计算机程序,该处理器用于从存储器中调用并运行该计算机程序,使得安装有该芯片系统的通信设备执行上述第一方面或第二方面中的任意方面及其可能实现方式中的方法,或者,使使得安装有该芯片系统的通信设备执行上述第三方面或第四方面中的任意方面及其可能实现方式中的方法。
其中,该芯片系统可以包括用于发送信息或数据的输入芯片或者接口,以及用于接收信息或数据的输出芯片或者接口。
附图说明
图1是本申请适用的通信系统的示意图。
图2是本申请实施例提供的一种多用户传输数据的方法示意性流程图。
图3是本申请实施例提供的另一种多用户传输数据的方法示意性流程图。
图4是本申请实施例提供的一种UCI字段示意图。
图5是本申请实施例提供的一种MAC-CE字段示意图。
图6是本申请实施例提供的一种数据驱动的AI模型的示意图。
图7是本申请实施例提供的一种多模块的AI模型的示意图。
图8是本申请实施例提供的一种球形译码树形图。
图9是本申请实施例提供的一种多用户数据传输的装置900示意性框图。
图10是本申请提供的另一种多用户数据传输的装置1000示意性框图。
具体实施方式
下面将结合附图,对本申请实施例中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、全球互联微波接入(Worldwide Interoperability for Microwave Access,WiMAX)通信系统、未来的第五代(5th Generation,5G)系统或新无线(New Radio,NR)等。
本申请实施例中的终端设备可以指用户设备、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。终端设备还可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,未来5G网络中的终端设备或者未来演进的公用陆地移动通信网络(Public Land Mobile Network,PLMN)中的终端设备等,本申请实施 例对于终端设备的具体形式不作限定。
应理解,本申请实施例中,终端设备可以是用于实现终端设备功能的装置,也可以是能够支持终端设备实现该功能的装置,例如芯片系统,该装置可以被安装在终端中。本申请实施例中,芯片系统可以由芯片构成,也可以包括芯片和其他分立器件。
本申请实施例中的网络设备可以是用于与终端设备通信的设备,该网络设备可以是全球移动通讯(Global System of Mobile communication,GSM)系统或码分多址(Code Division Multiple Access,CDMA)中的网络设备(Base Transceiver Station,BTS),也可以是宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统中的网络设备(NodeB,NB),还可以是LTE系统中的演进型网络设备(Evolutional NodeB,eNB或eNodeB),还可以是云无线接入网络(Cloud Radio Access Network,CRAN)场景下的无线控制器,或者该网络设备可以为中继站、接入点、车载设备、可穿戴设备以及未来5G网络中的网络设备或者未来演进的PLMN网络中的网络设备等,本申请对此不做限定。
应理解,本申请实施例中,网络设备可以是用于实现网络设备功能的装置,也可以是能够支持网络设备实现该功能的装置,例如芯片系统,该装置可以被安装在网络设备中。
还应理解,下文示出的实施例并未对本申请实施例提供的方法的执行主体的具体结构特别限定,只要能够通过运行记录有本申请实施例的提供的方法的代码的程序,以根据本申请实施例提供的方法进行通信即可,例如,本申请实施例提供的方法的执行主体可以是终端设备或网络设备,或者,是终端设备或网络设备中能够调用程序并执行程序的功能模块。
在无线通信系统中(例如5G NR、4G LTE等),为了提高系统频谱效率,通常结合MIMO技术,例如利用SU-MIMO对单用户进行多流传输,或者利用MU-MIMO将多个终端设备配对在同一时频资源上进行同时调度。
其中,网络设备针对信道预编码的获取,可以根据终端设备反馈的信道信息,例如,通过信道状态信息(channel state indicator,CSI)反馈;或者通过上下行信道的互易性,例如通过终端设备发送的参考信号探测参考信号(sounding reference signal,SRS)获取当前下行信道的信道信息。网络设备可以根据下行信道信息,确定后续数据传输中的预编码信息。
作为一种示例,在SU-MIMO场景下,网络设备可以根据下行信道矩阵,进行奇异值分解(singular value decomposition,SVD),将特征向量作为预编码矩阵,从而消除系统中存在的流间干扰。
作为另一种示例,在MU-MIMO场景下,网络设备可以根据多个终端设备的下行信道矩阵,采用迫零(zero forcing,ZF)等方式进行预编码,从而消除终端设备间的干扰。
换句话说,MIMO性能的好坏,与预编码能否匹配信道相关。若预编码矩阵不能良好地匹配信道,则可能带来干扰问题。
在LTE中的多用户叠加传输(multi user superposition transmission,MUST)课题,讨论了关于终端设备复用同一块资源进行传输的场景,并通过不同的发射功率进行区分,即非正交多址接入(non-orthogonal multi access,NOMA)场景。在该场景下,可以支持将不同地理位置(主要针对远端和近端用户)的终端设备在同一时频资源上进行复用,达到提升频谱效率的目的。与MIMO场景不同的是NOMA场景下的功率域上终端设备有区分,而 MU-MIMO下,可支持MU间的等功率分配。此外,MU-MIMO对于UE的区分,主要是基于空间上的区分,例如使用不同的预编码使得不同UE之间的预编码与有用UE之间的信道存在一定的正交性。
当前LTE R13支持对两个终端设备配对进行NOMA传输。由于在功率域上进行区分,网络设备需要指示给近端终端设备关于远端终端设备的相关信息,包括功率信息和调制方式信息。从而使得近端终端设备可以在功率域上解调远端终端设备的数据,并通过结合信道译码和串行干扰消除,将远端终端设备的干扰信号进行消除。为了支持该机制,网络设备可通过DCI信令提供配对终端设备的调制方式和发射功率信息,用于近端终端设备的干扰信号的检测和消除。
可以看出,在功率域上的NOMA场景中,仅支持两个终端设备。同时需要在功率域上进行区分,即发射功率需要有区别。此外,上述方案还需要结合信道译码的串行干扰消除,复杂度较高。
如图1示出了本申请提供的一种移动性场景下的MU-MIMO系统图。在终端设备移动的场景下,如果终端设备的移动速度较快,或者网络设备获取信道信息的间隔较长(例如CSI反馈周期、SRS周期),可能会导致网络设备在信道预编码时所采用的信道信息存在过期现象。即,网络设备获取的信道与实际传输时的信道偏差较大,从而导致网络设备预编码时的预编码矩阵无法与真实信道匹配。在MU-MIMO场景下,该问题更为明显。由于终端设备自身的信号方向可能存在不匹配,也可能会导致匹配的多用户MU之间的干扰会增强,进一步地会导致系统性能下降。
为了消除SU-MIMO或MU-MIMO场景下的数据流间的干扰和用户间的干扰,系统通常对网络设备的预编码有较高要求,需要使得预编码与信道能精准匹配,使得预编码后的信号经过相应信道传输后,干扰较小。特别是对于MU-MIMO用户且用户距离较近的情况而言。
在LTE系统或者NR系统中,MU-MIMO的传输对于终端设备而言都是透明的。传统的技术方案中,下行控制信道(downlink control information,DCI)指示时,仅指示自身传输的相关指示内容,而不会对配对终端设备的指示做规定。因此,终端设备也不会获取到在MU-MIMO配对传输的情况下的与终端设备配对的MU的相关信息。对于终端设备而言,由于无法获取与其配对的终端设备的相关信息,则不利于终端设备进行干扰信号的检测和消除。
因此,现有技术提出了将配对MU的相关信息,也在DCI中进行指示。具体地,利用一种Group形式的DCI,将多个配对终端设备的调度信息承载在一条DCI中进行指示。这些终端设备共用相同的无线网络临时标识(radio network temporal identification,RNTI)。在Group-DCI的指示中,在不同的DCI字段指示不同终端设备的调制编码方式(modulation and coding scheme,MCS)信息内容,便于终端设备进行干扰信号的检测和消除。
其中,现有技术中需要设计专用的DCI格式进行相关指示,同时,每个配对的终端设备都需要一个专用字域进行指示,从而导致系统的信令开销比较大。另外,终端设备需要解调额外的专用DCI格式,导致终端设备的解调复杂度增加了。此外,现有技术中仅仅考虑在MU情况下如何进行调度时的信息指示,并未考虑到终端设备的检测干扰信号的能力相关问题。例如,有些终端设备可能不具备检测和消除干扰信号的能力,在此情况下即使 网络设备对终端设备进行了相关指示,终端设备也无法较好地检测和消除干扰信号,导致浪费了相关的控制信道资源,和终端设备解调DCI的功耗。
本申请主要针对移动性场景下的MU-MIMO,可能引起较大的MU干扰问题。基于现有技术存在的问题,提出了结合接收机能力的MIMO检测方案。同时,网络设备根据终端设备检测干扰信号的能力确定第一指示信息,为终端设备提供检测干扰信号的辅助信息,使得终端设备能够在较低复杂度的限制下检测和消除干扰信号。
其中,终端设备使用MIMO的检测算法对系统性能影响较大。典型的MIMO接收算法,例如最小均方误差(minimum mean square error,MMSE)、MMSE-IRC算法,这类算法在干扰信号较严重的场景下,效果可能不理想。另一类接收算法是基于最大似然检测算法进行接收,这类算法可以在可能的符号范围内进行搜索,从而确定待测的符号。针对信噪比较低的场景,效果可能受限,但在信噪比较高的区域,包括存在数据流间干扰的情况下,效果较好。由于最大似然检测的复杂度较高,特别是随着传输流数、信号调制阶数的增加会显著增大。因此,目前也有很多简化的最大似然算法,简化的最大似然检测算法可以基于树型搜索中的广度优先或深度优先方式等实现,例如球形译码算法等,可以在降低复杂度的情况下仍保证系统性能。
此外,随着人工智能(artificial intelligence,AI)技术逐渐应用于无线通信,AI用于MIMO检测也逐渐被提出。相比于传统算法,AI检测一般可以降低检测的复杂度。AI在MIMO检测中的应用,既可以基于数据驱动,即完全基于训练数据训练一个AI网络,网络的输出即为检测结果。也可以与传统方法结合。在传统方法中输入一个由AI网络训练得到的中间结果,辅助传统方法得到更优结果。本申请结合实施例进行详细地介绍。
以下,不失一般性,以网络设备与终端设备之间的交互为例详细说明本申请实施例提供的一种多用户数据传输的方法。
图2示出了本申请实施例提供的一种多用户数据传输的方法示意性框图。该方法包括步骤S210和S220。
S210,第一终端设备向网络设备发送第一信息。
其中,该第一信息用于指示所述第一终端设备在多用户多输入多输出MU-MIMO配对传输时的检测干扰信号的能力。
可选地,该第一信息可以包括以下一项或多项:所述第一终端设备是否支持基于人工智能AI模型的干扰检测、所述第一终端设备基于AI模型下可检测的信号干扰流数、所述第一终端设备基于AI模型下可检测的信号干扰调制阶数、所述第一终端设备基于AI模型所适配的信噪比SNR或信干噪比SINR的范围。
可选地,该第一信息可以包括以下一项或多项:所述第一终端设备是否支持似然检测能力,所述第一终端设备支持的可检测的信号干扰流数、所述第一终端设备支持的可检测的干扰信号调制阶数、所述第一终端设备支持的干扰检测的最大复杂度。
可选地,该第一信息可以包括以下一项或多项:所述第一终端设备支持的AI模型的最大复杂度、所述第一终端设备支持的AI模型的存储上限、所述第一终端设备支持的AI模型的算子、所述第一终端设备支持的AI模型的神经网络层数、所述第一终端设备支持的AI模型的神经网络类型。
应理解,第一终端设备触发性地或者周期性地向网络设备发送自身的检测干扰的能力, 即第一信息。网络设备根据第一终端设备上报的第一信息确定第一指示信息,该第一指示信息用于指示第二终端设备的数据传输信息,第二终端设备为第一终端设备配对的终端设备。其中,该第一指示信息被用于该第一终端设备检测干扰信号。其中,本申请考虑到第一终端设备检测和消除干扰信号的算法,一般需要对干扰信号进行解调操作,相比于正常信号的解调,复杂度往往是翻倍的。例如在似然检测中,该复杂度是与需要检测和消除的干扰信号的流数呈正相关。因此,本申请提出了终端设备基于接收机检测能力对干扰信号的检测和消除,从而达到避免在干扰信号检测和消除的过程中,对终端设备引入较大的复杂度和功耗。
作为一种示例,当第一终端设备接入网络之后,网络设备可以直接或者间接地触发该第一终端设备在多用户多输入多输出MU-MIMO配对传输时的检测干扰信号的能力的上报。其中,触发方式可以包括如下几种:
1.第一终端设备接收到小区广播信息,该广播信息中可包含当前网络设备支持的能力信息。例如,当前小区为特殊小区,该小区可支持该第一终端设备的干扰消除;
2.第一终端设备接收到网络设备的能力查询信息,该能力查询信息用于指示该第一终端设备将自身的检测和消除干扰信号的能力发送给网络设备。
3.第一终端设备希望改变其上报的干扰检测能力内容时,例如出于降低设备功耗或过热考虑,需要降低干扰检测的能力时,可以向网络设备发起能力改变请求,并上报新的检测干扰信号的能力。
还应理解,终端设备在MIMO下的检测和消除干扰信号,可以通过不同的方式实现。例如,第一终端设备利用似然检测算法进行干扰信号的检测和消除,其中包括利用最大似然(maximum likelihood,ML)算法,或者简化的ML算法(如:球形译码、QRD译码、最佳优先译码等方式)。第一终端设备可以利用人工智能AI检测方法进行干扰信号的检测和消除,其中,终端设备基于AI模型强大的学习能力,相较于先进接收机可以进一步地降低干扰信号的检测的复杂度。此外,第一终端设备还可以利用常规的最小均方值误差(minimum mean square error,MMSE)等方式进行检测和消除干扰信号。其中,本申请实施例以第一终端设备基于似然检测算法、AI模型等方式进行检测和消除干扰信号为例进行说明。其中,终端设备基于MMSE算法等方式进行检测和消除干扰信号的详细介绍,请参见现有技术,本申请实施例不做详细说明。
S220,在第一终端设备向网络设备发送第一信息之后,网络设备向第一终端设备发送第一指示信息,或者说,该第一终端设备接收来自网络设备的第一指示信息。
其中,该第一指示信息用于指示第二终端设备的数据传输信息,第二终端设备为第一终端设备配对的终端设备。
可选地,该第一指示信息还可以被用于该第一终端设备检测干扰信号。
可选地,该第一指示信息是根据该第一信息确定的。
具体地,网络设备接收到来自第一终端设备的第一信息之后,网络设备根据第一信息确定该第一终端设备检测干扰信号的能力是否满足预设条件。其中,当第一终端设备检测干扰信号的能力满足预设条件时,网络设备确定第一指示信息并向第一终端设备发送第一指示信息。该第一终端设备根据该第一指示信息检测干扰信号。
应理解,预设条件可以是网络设备根据网络协议确定的,也可以是网络设备与第一终 端设备通过信息交互确定的,还可以是网络设备自身确定的,对此本申请不做限定。
可选地,该第一指示信息携带在第一DCI字段中,第一终端设备根据配置信息确定第一DCI字段,其中,配置信息包括第一DCI字段和/或第一DCI字段的标识。
可选地,第一终端设备接收来自网络设备的配置信息,或者说,网络设备向第一终端设备发送配置信息。
其中,该配置信息包括网络设备确定的第一DCI字段和/或第一DCI字段的标识,其中第一DCI字段可以为现有的DCI字段,该配置信息用于指示该第一终端设备在该现有的DCI字段中解析第一指示信息。
作为一种示例,该配置信息中包括第一DCI字段,该配置信息可以通过网络设备进行静态指示。举例来说,在RRC配置中(例如PDSCH-Config信元),网络设备向第一终端设备发送该配置信息,指示该第一终端设备可通过在该第一DCI字段中解析并获取第一指示信息。同时,网络设备也可以通过RRC重新配置,恢复该第一DCI字段原有的功能。
作为另一种示例,该配置信息中包括第一DCI字段的临时标识信息(即,RNTI)。举例来说,该网络设备通过配置不同的RNTI,在发送第一指示信息时使用专用的标识RNTI对DCI进行加扰,在其他场景中使用C-RNTI对DCI进行加扰。第一终端设备通过不同的标识信息区分当前网络设备在第一DCI字段上指示的含义。
应理解,在现有的DCI字段或DCI格式(即:第一DCI字段)上发送第一指示信息。具体可以实现的方式包括:
1.在现有的DCI格式中,新增相关DCI字段,该DCI字段携带的第一指示信息用于第一终端设备进行干扰信号的检测和消除;
2.在现有的DCI格式的某个DCI字段中,引入复用功能。即,在MU场景下,该复用的DCI字段用于第一终端设备进行干扰信号的检测和消除,该复用的DCI字段不使用该字段本身的作用;
3.在非MU场景下或者网络设备未指示该第一终端设备进行干扰信号的检测和消除的情况下,该DCI字段可以使用该字段本身的作用。
网络设备向第一终端设备发送配置信息,该配置信息用于指示该第一终端设备在该复用的DCI字段(第一DCI字段)中解析第一指示信息。
应理解,终端设备在第一DCI字段中解析并获得第一指示信息,该第一指示信息是网络设备根据该第一信息确定的。
可选地,该配置信息中还可以包括AI模型,以及AI模型的输入和/或输出的内容及参数。该AI模型是网络设备训练的,或者,该AI模型是网络设备与第一终端设备联合训练得到的。
可选地,网络设备确定第一信息不满足预设条件,网络设备确定该第一终端设备不能检测和消除干扰信号。即,网络设备不会向第一终端设备发送第一指示信息。
可选地,网络设备确定第一信息满足预设条件,网络设备根据第一信息确定第一指示信息,并向第一终端设备发送该第一指示信息。
可选地,该第一指示信息包括以下一项或多项:第二终端设备的天线端口、第二终端设备的数量、第二终端设备的干扰数据流数、第二终端设备的信号调制方式、第二终端设备接收来自所述网络设备的发送功率。
本申请提供的方案,第一终端设备触发性地或者周期性地向网络设备发送第一信息,网络设备根据第一终端设备的第一信息确定第一指示信息,该第一指示信息用于该第一终端设备进检测和消除干扰信号。本申请实施例中提出的技术方案避免了当第一终端设备不具备检测和消除干扰信号的情况下,网络设备即使指示第一终端设备进行检测和消除干扰信号,第一终端设备也无法做到较好的干扰信号的检测和消除,并且浪费相关控制信道的资源。同时,本申请提供的方案中,网络设备复用现有的DCI字段指示第一终端设备在第一DCI字段中解析相应的第一指示信息,从而降低了第一终端设备解调的复杂度。
可选地,在一些实施例中,在网络设备向第一终端设备发送第一指示信息之前,该图2所示的方法还可能包括:
第一终端设备向网络设备发送第二信息,或者说,该网络设备接收来自第一终端设备的第二信息。
其中,该第二信息用于指示该第一终端设备的运动状态,该运动状态包括以下一项或多项:速度、加速度、运动姿态。
需要说明的是,速度、加速度可以为标量或矢量。其中,运动速度包括运动速度的大小和/或运动速度的方向,加速度包括运动加速度的大小和/或运动加速度的方向。
应理解,该第二信息可以在媒体接入层控制网元(medium access control element,MAC-CE),或者在上行控制信息(Uplink Control Information,UCI)中发送,并由物理层信道(如PUSCH,或者PUCCH)承载发送。
应理解,第一终端设备可以根据协议规定的运动状态上报触发条件,向网络设备发送第二信息。
作为一种示例,该触发条件可以是第一终端设备确定上报周期满足预定义的周期,或者该第一终端设备的速度大小超过一定预定义的门限,第一终端设备向网络设备发送第二信息。
还应理解,第一终端设备可以根据网络设备配置的运动状态上报触发条件,向网络设备发送第二信息。
作为一种示例,该触发条件可以是第一终端设备确定上报周期满足网络设备配置的周期,或者该第一终端设备的速度大小超过一定的门限,第一终端设备向网络设备发送第二信息。
可选地,在第一终端设备向网络设备发送第二信息之前,该图2所示的方法还可能包括:
第一终端设备接收来自网络设备的第二指示信息,该第二指示信息用于指示该第一终端设备向该网络设备发送该第一终端设备的运动状态。
可选地,第二指示信息中可以包括网络设备配置的运动状态上报触发条件。
可选地,第二指示信息中可以包括网络设备配置的第二信息的上报方式,例如配置上报所使用的MAC-CE、配置上报的UCI使用的格式、配置上报所使用的物理资源的时频域位置。
可选地,第一终端设备根据网络设备配置的运动状态上报第一终端设备的运动状态。其中,该运动状态可以根据自身实现算法确定(例如,使用传感器或者螺旋仪确定,或通过终端测得的信道变化情况确定)。
应理解,该网络设备确定该第二信息满足第一条件,网络设备确定并向第一终端设备发送第一指示信息。
其中,该第一条件包括以下一项或多项:
第一终端设备的运动速度特征满足预设速度特征;
第一终端设备的运动姿态特征满足预设姿态特征,
其中,运动速度特征包括以下一项或多项:速度大小、速度方向,加速度大小、加速度方向。
作为一种示例,预设速度特征为第一终端设备的速度大小大于或等于第一阈值。举例来说,第一阈值为3m/s,当该第一终端设备现在的速度大小为5m/s时,该网络设备向第一终端设备发送第一指示信息;当该第一终端设备现在的速度大小为2m/s时,该网络设备不向第一终端设备发送第一指示信息。
作为另一种示例,预设速度特征为第一终端设备的加速度大小大于或等于第二阈值。举例来说,第二阈值为2m/s2,当该第一终端设备现在的加速度大小为3m/s2时,该网络设备向第一终端设备发送第一配置信息;当该第一终端设备现在的速度大小为0m/s时,该网络设备不向第一终端设备发送第一配置信息。
作为另一种示例,预设速度特征为第一终端设备的运动速度方向,该方向可以是在全球坐标系(即绝对坐标系,如WGS84坐标系)下的方向,可以用三维向量(x,y,z)进行表示。举例来说,当预设的运动方向为(x0,y0,z0)与第一终端设备上报的运动速度方向(x1,y2,z1)之间的夹角小于预设值(如10度)时,该网络设备向第一终端设备发送第一指示信息。当预设的运动方向为(x0,y0,z0)与第一终端设备上报的运动速度方向(x1,y2,z1)之间的夹角大于预设值(如10度)时,该网络设备不向第一终端设备发送第一指示信息。
作为另一种示例,预设姿态特征为第一终端设备在全球坐标系(即绝对坐标系,如WGS84坐标系)下的姿态位置,可以用三维向量(x,y,z)进行表示。当预设的姿态位置为(x0,y0,z0)与第一终端设备上报的姿态位置(x1,y2,z1)之间的夹角小于预设值(如10度)时,该网络设备向第一终端设备发送第一指示信息。当预设的姿态位置为(x0,y0,z0)与第一终端设备上报的姿态位置(x1,y2,z1)之间的夹角大于预设值(如10度)时,该网络设备不向第一终端设备发送第一指示信息。
应理解,该网络设备的第一指示信息还可以根据该第二信息进行确定,其中第二信息指示的第一终端设备的状态信息可以用于确定MU-MIMO传输相关配置。
需要说明的是,网络设备可以通过探测参考信号(sounding reference signal,SRS)测量并估计第一终端设备的运动状态;或者网络设备也可以根据SRS或CSI参考信号(CSI-reference signal,CSI-RS)配置周期情况,确定是否向第一终端设备发送第一指示信息。当网络设备确定第一终端设备SRS或CSI-RS周期较短时,网络设备则不向第一终端设备发送第一指示信息。
本申请提供的方案中,考虑到MU干扰在移动性较强的场景中,干扰信号的影响特别明显。而第一终端设备移动性较弱时,干扰恶化并不严重。因此,网络设备可以参考第一终端设备的运动状态,确定后续是否需要在MU配对时向第一终端设备发送第一指示信息。如果第一终端设备的运动速度达到或者超出某一阈值,网络设备根据第一终端设备发 送的第一信息、第二信息确定第一指示信息,并向第一终端设备发送该第一指示信息,第一终端设备根据该第一指示信息进行检测和消除干扰信号。
上述图2中所示的方法,第一终端设备向网络设备发送第一信息,网络设备根据该第一终端设备检测干扰信号的能力确定该第一终端设备是否具有检测和消除干扰信号的能力,当该第一终端设备的第一信息满足预设条件,第一终端设备接收来自网络设备的第一指示信息,第一终端设备根据该第一指示信息检测和消除干扰信号。本申请实施例提供的技术方案中考虑到第一终端设备在多用户多输入多输出MU-MIMO配对传输时检测干扰信号的能力,网络设备向第一终端设备发送第一指示信息,从而避免了第一终端设备不具备检测和消除干扰信号的能力,即使发送的相关指示,第一终端设备也无法做到较好的检测和消除干扰信号,提高了第一终端设备检测和消除干扰信号的性能。
第一终端设备向网络设备发送第一信息,该第一信息可能包括该第一终端设备基于接收机检测干扰信号的能力,其中,该接收机可能是AI模型或者似然算法。
接下来,将结合图3示出了本申请实施例提供的另一种多用户数据传输的方法示意性框图,分别针对第一终端设备检测干扰信号的能力是基于AI模型检测干扰信号的能力和基于似然算法检测干扰信号的能力做出详细地举例说明:
示例一:第一终端设备检测干扰信号的能力是基于AI模型检测干扰信号的能力。
S310,第一终端设备向网络设备发送第一信息。
相应地,网络设备接收来自第一终端设备的第一信息。
其中,该第一信息包括以下一项或多项:第一终端设备是否支持基于人工智能AI模型的干扰检测、第一终端设备基于AI模型下可检测的信号干扰流数、第一终端设备基于AI模型下可检测的信号干扰调制阶数、第一终端设备基于AI模型所适配的信噪比SNR或信干噪比SINR的范围。
应理解,当该第一信息中包括第一终端支持基于AI模型的干扰检测时,该网络设备会根据默认的AI模型的干扰检测能力限度进行下一步操作。其中,该默认限度可以是事先定义的。
作为一种示例,该第一终端设备基于AI网络进行MIMO检测的最大数据流数(包括有用数据流和干扰数据流)为6流,其中针对干扰信号的检测和消除可以最大支持检测和消除4流干扰数据,则第一终端设备可上报最多支持检测的所有数据流和/或干扰数据流,例如,上报最大支持检测所有数据流数为6,最大支持检测干扰流数为4。当该第一终端设备基于AI网络检测的数据流数为6流数据时,其中最多支持4流干扰数据的检测和消除。当网络设备为第一终端设备调度1流数据后,还可以最多调度4流MU数据进行传输。或者,当网络设备调度4流有用信号流数进行传输,由于最多支持6流数据的检测和消除,此时,第一终端设备最多只能支持2流干扰数据的检测和消除。(如下表一列举的情况)
表一

作为另一种示例,该第一终端设备上报基于AI网络进行干扰信号的检测和消除的调制阶数,该支持检测和消除的干扰的调制阶数可以为一个具体的集合(例如[qpsk,16qam]),该集合包含了所有可支持检测和消除的干扰数据的调制阶数,或者,该调制阶数可以为一个支持的最大调制阶数(例如16QAM),则表明支持检测和干扰的调制阶数可以为{BPSK,QPSK,16QAM},又或者,该调制阶数可以为一个集合的索引index,每个集合中包含了支持的调制阶数。此外,第一信息中还可以针对每个干扰数据流,表明其支持的干扰调制阶数。举例来说,该第一终端设备基于AI网络最多支持4流干扰的检测和消除,其中支持消除两流[qpsk]的干扰,支持消除两流[16qam,qpsk]的干扰。(如下表二列举的情况)
表二
作为另一种示例,该第一终端设备基于AI模型进行干扰信号的检测和消除可以是支持的有用信号和干扰信号的信噪比(signal noise ratio,SNR)或信干噪比(signal to interference-plus-noise ratio,SINR)的范围。该第一信息中可能包括该SNR或SINR范围的最大值和最小值;也可能包括该SNR或SINR值的一个区间索引index。其中,该区间可以是网络设备与第一终端设备预先设定的,还可以是以一个SNR或SINR值为基准区间确定的偏差值(例如:偏离基准区间若干dB的一个区间等)。
需要说明的是,第一终端设备向网络设备发送第一信息的方式有很多种,网络设备获取第一信息的方式也自然不同。举例来说,当核心网查询第一终端设备的消除干扰信息的能力时,则该第一信息由核心网的网元转发给网络设备;或者说,当网络设备查询第一终端设备的消除干扰信息的能力时,则网络设备可以直接获取该第一信息。
S320,网络设备向第一终端设备发送配置信息,或者说,第一终端设备接收来自网络设备的配置信息。
其中,配置信息包括第一DCI字段和/或第一DCI字段的标识。
应理解,第一DCI字段为第一终端设备与网络设备之间现有的DCI字段。举例来说,网络设备根据静态复用的方式,使用现有的DCI字段。
作为一种示例,DCI1_1中的TB指示字段中的一部分复用为网络设备为第一终端设备进行辅助信息的指示(即,承载第一指示信息)。当前TB指示字段可分为两部分,在MU-MIMO场景下,由第一终端设备配对的流数不一般不会太高,因此可能只是用一个TB,TB2的指示字段不会激活。在现有的技术方案中,TB2字段不会承载任何比特信息,而在本申请实施例中将用该闲置字段TB2承载第一指示信息。
应理解,该TB2字段具备原有的功能。因此网络设备需要提前告知第一终端设备该TB2字段用于携带第一指示信息,而并非原有的功能。具体地,网络设备在RRC配置过程中,增加一个干扰信息辅助功能的相关信元,该信元可包含在下行数据传输的相关RRC 配置信元(如PDSCH-Config)中。当该信元取值为True时,则表明后续协议规定的一定时间段内将是用MU传输,且DCI中的TB2字段用于指示干扰辅助信息(第一指示信息),而非原来的功能。当该信源为False时,则表明后续协议规定的一段时间段内,TB2字段不用于指示干扰辅助信息(即,第一指示信息)。如该TB2字段中有内容时,则为正常的传输信息。此外,该信元可以有一个默认值,例如False。
作为一种示例,表三是一种复用DCI字段指示第一终端设备的干扰信号的数量和干扰调制方式的示例。
表三
如表三中所示,复用TB2字段为0时,即当前采用SU-MIMO,即第一终端设备未进行MU-MIMO配对传输。当复用TB2字段为1时,表明当前有一个配对设备,该配对设配的数据使用BPSK调制。当复用字段为155时,表明当前有三个配对设备,这些配对设备的数据使用256QAM调制。
作为另一种示例,表四是一种复用DCI字段指示第一终端设备的干扰天线端口和干扰调制方式的示例。
表四

如表四中所示,复用TB2字段为0时,即当前采用SU-MIMO,即第一终端设备未进行MU-MIMO配对传输。当复用TB2字段为1时,表明当前有一个干扰端口在发送干扰数据,该干扰数据使用BPSK调制。当复用字段为155时,表明当前有三个干扰端口在发送数据,这些干扰数据的数据使用256QAM调制。
作为另一种示例,表五是一种复用DCI字段指示第一终端设备的干扰信号的流数、干扰数据发送功率和干扰调制方式的示例。其中,发送功率表示为相比于第一终端设备数据发送功率的偏差。
表五
如表五中所示,复用TB2字段为0时,即当前采用SU-MIMO,即第一终端设备未进行MU-MIMO配对传输。当复用TB2字段为1时,表明当前有一个干扰数据流,该干扰数据流使用BPSK调制,且该干扰数据流的发送功率相比于第一终端设备数据发送功率偏差为0dB(即与第一终端设备数据发送功率相等)。当复用字段为155时,表明当前有三个干扰数据流,这些干扰数据流使用256QAM调制,且第一干扰流的发送功率相比于第一终端设备数据发送功率偏差为0dB(即与第一终端设备数据发送功率相等),第二干扰流的发送功率相比于第一终端设备数据发送功率偏差为1dB(即比第一终端设备数据发送功率高1dB),第三干扰流的发送功率相比于第一终端设备数据发送功率偏差为3dB(即比第一终端设备数据发送功率高3dB)。
上述表三,表四和表五只是一种示例性地举例,当然还可能会有其他各种信息的组合,对此本申请不做限定。
网络设备接收到来自第一终端设备的第一信息之后,网络设备根据第一信息中的第一终端设备的检测干扰信号的能力,确定是否为终端设备配置有关干扰消除的指示的配置信息。
可选地,该配置信息可能是网络设备根据第一信息确定的。其中,当网络设备确定该第一终端设备检测干扰信号的能力不满足预设条件时,可以不向第一终端设备配置相关检测和消除干扰信号的指示信息(如:第一指示信息)。即,网络设备可以不向第一终端设备发送该配置信息。当网络设备确定该第一终端设备检测干扰信号的能力满足预设条件时,向第一终端设备发送该配置信息,并将第一指示信息携带在该配置信息指示的第一DCI字段中发送给第一终端设备,该第一指示信息用于第一终端设备检测和消除干扰信号。
应理解,当网络设备获取到该第一终端设备的第一信息时,网络设备确定是否为第一终端设备配置相关的配置信息。举例来说,网络设备接收来自第一终端设备的第一信息之后,判断第一终端设备支持的检测和消除干扰数据的流数和自身期望的MU调度策略是否一致。举例来说,期望调度的MU干扰数据流数(例如,网络设备期望进行两个终端设备配对传输,期望对每个终端设备调度4流数据,则针对第一终端设备来说,干扰数据流数将为4流)是否超过第一终端设备支持的检测干扰流数。若一致,则网络设备向第一终端设备配置相关配置信息。若不一致,则后续步骤不再执行;或者,网络设备预估自身区域信道下经过波束赋型后,信号的SNR是否满足第一终端设备的要求区间。若满足,则网络设备向第一终端设备配置相关配置信息。若不满足,则可以认为网络设备不支持为第一终端设备进行干扰消除辅助,后续步骤也可不再进行。
可选地,该配置信息可以由标准预定义实现的。当配置信息由标准预定义时,则需进一步定义判断条件。例如,第一终端设备支持检测的干扰流数小于某一阈值,第一终端设备支持检测的干扰调制阶数小于某一调制阶数,或当SNR区间不在某一预定义的区间内时,网络设备不为第一终端设备进行干扰消除辅助,后续步骤也可不再进行。
可选地,当网络设备获取到该第一终端设备的第一信息之后,网络设备还可能向第一终端设备发送第二指示信息。其中,该第二指示信息用于指示第一终端设备将自身的运动状态信息发送给网络设备,网络设备根据第一终端设备的运动状态信息确定是否为第一终端设备发送第一指示信息。如图3所示的方法,该方法还包括:
S330,网络设备向第一终端设备发送第二指示信息。
相应地,第一终端设备接收来自网络设备的第二指示信息。
其中,该第二指示信息用于指示该第一终端设备将自身的运动状态发送给网络设备。作为一种示例,第二指示信息可以通过如下代码实现:
其中,第二指示信息可以通过RRC进行配置,并具有一个运动状态上报相关信元(例如上述代码中的MobilityReportConfig信元),在该信元中,可以包括网络设备配置的运动状态上报触发条件、上报方式。
其中,第二指示信息中可以包括网络设备配置的第二信息的上报方式,例如配置上报所使用的MAC-CE,配置上报的UCI使用的格式,配置上报所使用的物理资源的时频域位置。(例如上述代码所示,其中,上述内容不一定全部进行配置,网络设备可以只配置其中一部分内容)
其中,第一终端设备接收到来自网络设备的第二指示信息时,第一终端设备根据第二指示信息检测自身的运动状态,并根据运动状态确定第二信息,该第二信息用于指示该第一终端设备的运动状态。其中,第一终端设备检测自身运动状态的方式有很多。举例来说,第一终端设备通过检测加速度计等传感器的变化情况确定自身的运动状态;或者,第一终端设备检测信号强度的变化情况确定自身的运动状态情况;或者,第一终端设备检测信号多普勒频偏估计等方式确定自身的运动状态,本申请对此不做限定。
需要说明的是,第一终端设备接收的第二指示信息和上述步骤S320中的配置信息可以在同一条信息中由网络设备发送,也可以分为不同的信息由网络设备分别发送,对此本申请不做限定。
S340,第一终端设备向网络设备发送第二信息。
相应地,网络设备接收来自第一终端设备的第二信息。
具体地,第一终端设备接收到来自网络设备的第二指示信息之后,该第一终端设备根据该第二指示信息确定用于指示该第一终端设备运动状态的第二信息,并且,该第一终端设备向网络设备发送该第二信息。
其中,该运动状态包括速度、加速度、运动姿态。
该速度和加速度包括大小和方向,其中方向可以以世界坐标系为基准,详细说明请参见上述图2中的步骤S220,此处不再赘述。
需要说明的是,第一终端设备可以根据网络设备的第二信指示信息确定第二信息,并向网络设备发送该第二信息;第一终端设备也可以周期性地向网络设备发送第二信息(例如:自身协议规定或者预定义);第一终端设备还可以根据某一触发条件向网络设备发送第二信息(例如:第一终端设备确定自身的运动速度大于等于某一阈值时,向网络设备发送第二信息)。其中,第一终端设备确定的第二信息中可以是不同的速度等级、方向区间、速度值大小等。第二信息还可以是一个状态值,例如0/1,或True/False,用于指示是否满足第二信息的上报条件。第一终端设备具体向网络设备发送的第二信息中的第一终端设备的运动状态的具体内容形式,本申请对此不做限定。
作为一种示例,当第一终端设备根据某一触发条件向网络设备发送第二信息时,网络设备可以指示第一终端设备在UCI信息承载的PUCCH或PUSCH上发送,也可以作为MAC-CE等信令形式发送。其中,如图4示出了第二信息在UCI信息承载的PUSCH上发送时,网络设备配置上报的格式(例如,比特信息的排列顺序等)的示例。如图5示出了第二信息承载在MAC-CE信令上发送时,网络设备定义一种新的MAC-CE格式,用于第一终端设备向网络设备发送运动状态,其中,该新的MAC-CE格式可以承载若干个字节,并且可以承载第一终端设备的运动速度的大小、运动方向、运动加速大小等内容。
S350,网络设备向第一终端设备发送第一指示信息。
相应地,第一终端设备接收来自网络设备的第一指示信息。
其中,该第一指示信息用于第一终端设备检测和消除干扰信号。
可选地,网络设备根据第一终端设备发送的第一信息确定是否向第一终端设备发送第一指示信息。
其中,网络设备根据第一信息中的第一终端设备基于AI模型检测干扰信号的能力确定是否向第一终端设备发送第一指示信息。当网络设备确定第一终端设备检测干扰信号的能力能够检测和消除现阶段存在的干扰信号时,该网络设备向第一终端设备发送第一指示信息;当网络设备确定第一终端设备检测干扰信号的能力不能够检测和消除现阶段存在的干扰信号,或者说,该第一终端设备不具备检测和消除新阶段的干扰信号的能力时,网络设备不向第一终端设备发送第一指示信息。
可选地,网络设备根据第一终端设备发送的第一信息和第二信息确定是否向第一终端设备发送第一指示信息。
其中,网络设备确定第一终端设备检测干扰信号的能力能够检测和消除现阶段存在的干扰信号时,网络设备再根据第一终端设备的运动状态确定是否向第一终端设备发送该第一指示信息。
具体地,第一终端设备发送的第二信息中包括终端设备的速度、加速度、运动方向、运动姿态。网络设备确定第二信息中的运动状态是否满足第一条件。当第二信息满足第一条件时,网络设备向第一终端设备发送第一指示信息;当第二信息不满足第一条件时,则后续步骤不再执行。
可选地,该第一条件包括以下至少一项:第一终端设备的运动速度特征满足预设速度特征;第一终端设备的运动姿态特征满足预设姿态特征,其中,运动速度特征包括速度大小、速度方向,加速度大小、加速度方向。
作为一种示例,第一条件为第一终端设备的运动速度特征满足预设速度特征时,预设速度特征为速度大小大于或等于第一阈值。当第一终端设备的第二信息中的速度大小大于或者等于第一阈值时,则第一终端设备的运动速度特征满足预设速度特征;当第一终端设备的第二信息中的速度大小小于第一阈值时,则第一终端设备的运动速度特征不满足预设速度特征。
作为另一种示例,第一条件为第一终端设备的运动速度特征满足预设速度特征时,预设速度特征为运动方向为第一方向(以世界坐标系为基准)。当第一终端设备的第二信息中的运动方向为第一方向,则第一终端设备的运动速度特征满足预设速度特征;当第一终端设备的第二信息中的运动方向为非第一方向的其他方向时,则第一终端设备的运动速度特征不满足预设速度特征。
可选地,在一些实施例中,第一终端设备接收到来自网络设备的第一指示信息之后,该图3所示的方法还可能包括:
S360,第一终端设备根据第一指示信息检测和消除干扰信号。
应理解,当网络设备将第一指示信息承载在现有的DCI字段中发送给第一终端设备时,第一终端设备根据接收到的配置信息中的第一DCI字段或者第一DCI字段的标识,获取到第一DCI字段中的第一指示信息,并根据第一指示信息选择相应的AI模型进行检 测和消除干扰信号。
作为一种示例,第一终端设备利用C-RNTI检测DCI字段后,获取TB2字段,进而解析得到第一指示信息,该第一指示信息中可能包括以下一项或多项:第二终端设备的天线端口、第二终端设备的数量、第二终端设备的干扰数据流数、第二终端设备的信号调制方式、第二终端设备接收来自所述网络设备的发送功率。进一步地,第一终端设备根据第一指示信息检测和消除干扰信号。其中,第一终端设备能够用于检测和消除干扰信号的AI模型可能有很多种,针对第一终端设备检测的干扰信号的数量以及干扰信号的调制阶数的不同,第一终端设备可以进一步地选择不同的AI模型。例如,当第一指示信息中指示第一终端设备的干扰信号的数量为1,干扰信号的调制阶数为16QAM,则第一终端设备根据第一指示信息中的内容选择AI模型#1;当第一指示信息中指示的第一终端设备的干扰信号的数量为2,干扰信号的调制阶数为[QPSK,16QAM],则第一终端设备根据第一指示信息中的具体内容选择AI模型#2。
需要说明的是,第一终端设备具体采用哪一种AI模型检测和消除干扰信号,是由第一终端设备自身决定。其中,用于第一终端设备检测和消除干扰信号的AI模型可以有多种实现方式,例如:
方式一:数据驱动的AI模型
基于数据驱动的AI模型,AI模型的输入可以为接收数据、估计的信道和调制阶数。输出可以为解调的信号,例如第一终端设备的有用信号(即基站发送给第一终端设备的传输数据)。如图6所示,该网络接收可以为全连接层(DNN)组成,或者基于卷积层(CNN)等网络实现,对此本申请不做限定。AI模型的训练可以是由第一终端设备基于第一终端设备接收的信号、信道、调制信息等数据完成训练,网络设备不参与该AI模型的训练。
方式二:理论模型驱动的AI模型
基于理论模型的AI模型中,AI模型可以结合传统的MIMO检测算法。其中AI模型的输入可以为接收数据、估计的信道和调制阶数。该AI模型不同于数据驱动的AI模型,其中AI模型的输出可以为传统接收算法中的中间变量。例如,AI模型输出的可以为似然检测中最佳接收算法的启发函数值等,第一终端设备根据最佳接收算法,结合AI模型计算得到的启发值,进行干扰检测和消除,降低最佳接收短发的复杂度,提升运算效率。
本申请提供了上述两种AI模型作为示例进行详细说明,当然还有其他AI模型的实现方式,对此不做限定。
进一步地,第一终端设备基于AI模型消除干扰信号,并进一步地进行解映射、解调制,输入到后续的信道译码器中执行后续操作。
上述图3中的示例一中主要介绍了第一终端设备检测干扰信号的能力是基于AI模型检测干扰信号的能力时,其中,该AI模型是第一终端设备自身确定的,网络设备向第一终端设备发送第一指示信息,该第一指示信息用于指示第一终端设备配对的第二终端设备的数据传输信息。同时,网络设备根据第一终端设备的第一信息确定第一终端设备是否具备检测和消除干扰信号的能力。
示例二:第一终端设备检测干扰信号的能力是基于AI模型检测干扰信号的能力,和/或基于第一终端设备支持的用于干扰检测的AI模型的能力,其中,该AI模型是由网络设备配置的,或者,该AI模型是该第一终端设备和该网络设备联合训练得到的联合AI模 型。
S310’,第一终端设备向网络设备发送第一信息。
相应地,网络设备接收来自第一终端设备的第一信息。
可选地,该第一信息包括以下一项或多项:第一终端设备支持的AI模型的最大复杂度、第一终端设备支持的AI模型的存储上限、第一终端设备支持的AI模型的算子、第一终端设备支持的AI模型的神经网络层数。
可选地,该第一信息还可以包括以下一项或多项:第一终端设备是否支持基于人工智能AI模型的干扰检测、第一终端设备基于AI模型下可检测的信号干扰流数、第一终端设备基于AI模型下可检测的信号干扰调制阶数、第一终端设备基于AI模型所适配的信噪比SNR或信干噪比SINR的范围。
应理解,示例二中的第一终端设备使用的AI模型可以由网络设备进行配置。其中,网络设备配置的AI模型包括两种形式:
形式一:单模块的AI模型,即该单模块的AI模型仅用于AI干扰检测,不集成其他功能。单模块的AI模型的输入可以为信道、接收信号、第二终端设备的信息等,输出为第一终端设备的有用信号、传统算法的中间变量(如上述图3中的示例一中步骤S310中的关于第一信息中的详细举例)。该AI模型类似于该第一终端设备自身实现的AI模型。
形式二:多模块的AI模型,即该AI模型是与多个不同功能模块联合训练得到的(例如,联合网络设备侧的预编码得到)。作为一种示例,多模块AI模型如图7所示,该AI模型的输入为网络设备获取的多个配对的终端设备的信道(包括第一终端设备和第二终端设备的信道),预编码操作可以通过多模块的AI模型中的一个线性层完成,从而使得AI解调也可以作为AI模型的一部分共同训练,从而得到跨模块的AI模型,进一步地提升系统的性能。
其中,网络设备可以将该AI模型中解调部分的模型配置给第一终端设备,使得第一终端设备接收到信号后,将其信号作为多模块AI模型中的一部分数据,输入到后续的网络中完成解调操作。
基于上述两种方式的单模块的AI模型和多模块的AI模型,第一终端设备向网络设备发送关于AI模型的能力相关的信息。其中,单模块的AI模型和多模块的AI模型的信息内容也可能存在区别。由于AI模型由网络设备配置给第一终端设备,第一终端设备需要先向网络设备发送AI模型最大能力的要求,该AI模型能力可以为FLOPS等,本申请对AI网络能力不做限定。第一终端设备根据网络设备的配置确定与之匹配的AI模型。
应理解,在第一终端设备确定支持单模块的AI模型的情况下,网络设备可以仅配置用于检测的AI模型,并配置该AI模型的输入和输出内容。此时AI模型的输入为第一终端设备估计的信道、接收信号等内容。AI模型的输出为检测的信号或者传统算法的中间变量,其他步骤(如信道估计)等操作仍然可以采用第一终端设备自身的实现算法。
还应理解,在第一终端设备支持多模块的AI模型的情况下,第一终端设备向网络设备发送该第一终端设备支持的多模块的能力。该能力可能包括:支持与网络设备联合的AI模块、支持与网络设备联合的AI模型且支持该模型包含第一终端设备信道估计等其他模块的功能等。其中,不同的多模块能力将影响AI模型的输入和输出。举例来说,第一终端设备支持与网络设备联合的AI模型下,AI模型的输入可以为接收信号、导频位置等, AI模型的输出可以为解调后的数据。其中,多模块的AI模型无需再进行信道估计等操作。
S320’,网络设备向第一终端设备发送配置信息。
相应地,第一终端设备接收来自网络设备的配置信息。
其中,配置信息包括第一DCI字段和/或第一DCI字段的标识。
其中,网络设备确定第一DCI字段,例如网络设备使用DCI1_1格式,并重新定义专用的指示字段,用于携带第一指示信息。特别地,网络设备可能会对现有的DCI字段进行修改,增加已有格式的长度。网络设备通过该专用的DCI字段而非复用现有的DCI字段携带第一指示信息,其中,第一终端设备根据配置信息解析专用的DCI字段上的第一指示信息即可,不会对第一终端设备对DCI字段的检测造成复杂度的影响。
网络设备接收到来自第一终端设备的第一信息之后,根据第一信息中第一终端设备的基于AI模型的检测干扰信号的能力,和/或第一信息中支持的用于干扰检测的AI模型的能力,进行AI模型的配置。
可选地,当第一终端设备向网络设备发送的第一信息中的AI模型支持单模块时,且第一信息包括该AI模型最大支持的模型能力,则网络设备可以向第一终端设备配置仅用于MIMO检测的AI模型,该AI模型与第一终端设备发送的AI模型能力相匹配。网络设备在配置该AI模型时,还同时配置该AI模型的输入和输出,使得第一终端设备获取如何使用该网络设备配置的AI模型。其中,网络设备可以通过专用的指示信息(如AI模型的配置指示信息)向第一终端设备指示该AI模型的输入和输出,或者,通过预定义的方式确定该AI模型的输入和输出。
可选地,当第一终端设备向网络设备发送的第一信息中的AI模型支持多模块时,网络设备可以将联合训练的AI模型中的检测部分的模型配置给第一终端设备,并进一步地配置或者指示第一终端设备该AI模型的输入和输出。
应理解,网络设备为第一终端设备配置AI模型时,可以配置多个AI模型。其中,第一终端设备可以在不同的干扰情况下使用不同的AI模型。网络设备可以进一步地配置不同的AI模型与第一指示信息中的干扰辅助信息的关联关系。例如,AI模型#1与指示两流干扰相关联等,即,第一终端设备确定干扰信号为两流干扰时,则第一终端设备选择AI网络#1检测和消除干扰信号。
S330’,网络设备向第一终端设备发送第二指示信息。
相应地,第一终端设备接收来自网络设备的第二指示信息。
还应理解,网络设备可以向第一终端设备发送第二指示信息,该第二指示信息用于指示第一终端设备周期性或触发性地向网络设备发送第一终端设备的运动状态。或者说,网络设备在RRC配置信息中,配置第一终端设备周期性或触发性地发送第一终端设备的运动状态。
其中,第一终端设备向网络设备发送该第一终端设备的运动状态时,可以在PUCCH上进行发送,也可以在PUSCH上进行发送。
S340’,第一终端设备向网络设备发送第二信息。
相应地,网络设备接收来自第一终端设备的第二信息。
具体地,第一终端设备接收到来自网络设备的第二指示信息之后,该第一终端设备根据该第二指示信息确定用于指示该第一终端设备运动状态的第二信息,并且,该第一终端 设备向网络设备发送该第二信息。
其中,该运动状态包括速度、加速度、运动姿态。
上述步骤S330’和步骤S340’与上述示例一中的步骤S330和S340类似,此处不再详细地说明。
S350’,网络设备向第一终端设备发送第一指示信息。
相应地,第一终端设备接收来自网络设备的第一指示信息。
可选地,网络设备可以根据第一终端设备的第一信息、第二信息确定第一指示信息。
可选地,网络设备根据第一终端设备发送的第一信息中第一终端设备基于AI模型检测干扰信号的能力确定第一指示信息,该第一指示信息携带在第一DCI字段中并发送给第一终端设备。
其中,网络设备根据第一终端设备的第一信息确定第一指示信息,详细举例说明请参见上述示例一中的步骤S350。
具体地,第一终端设备发送的第二信息中包括第一终端设备的速度、加速度、运动方向、运动姿态。网络设备确定第二信息中的运动状态是否满足第一条件。当第二信息满足第一条件时,网络设备向第一终端设备发送第一指示信息;当第二信息不满足第一条件时,网络设备无需再进行后续操作。
可选地,该第一条件包括以下至少一项:第一终端设备的运动速度特征满足预设速度特征;第一终端设备的运动姿态特征满足预设姿态特征,其中,运动速度特征包括速度大小、速度方向,加速度大小、加速度方向。
可选地,在单模块的AI模型的情况下,网络设备根据第一终端设备发送的第二信息中的运动状态,并判断MU配对的情况,进一步地确定是否向第一终端设备发送第一指示信息。当网络设备确定向第一终端设备发送第一指示信息时,该第一指示信息携带在第一DCI字段中发送给第一终端设备。
可选地,在联合模块的AI模型的情况下,网络设备根据第一终端设备的第二信息以及测量的信道,输入到联合AI模型中,获得预编码,并基于预编码进行传输。在此情况下,第一终端设备的移动状态(即,第二信息)可以作为AI模型的输入。
应理解,当网络设备自身具有预编码AI模型时,而不是与第一终端设备解调的联合AI模型的情况下,网络设备也可以基于第一终端设备发送的第二信息中的运动状态进行AI预编码。
S360’,第一终端设备根据第一指示信息检测和消除干扰信号。
应理解,当网络设备将第一指示信息承载在第一DCI字段中发送给第一终端设备时,第一终端设备根据接收到的配置信息中的第一DCI字段或者第一DCI字段的标识,获取到第一DCI字段中的第一指示信息,并根据第一指示信息选择相应的AI模型检测和消除干扰信号。
应理解,第一终端设备可以根据在AI模型配置时,所配置的AI模型和不同干扰辅助信息的关联关系,来选择相应的AI模型。
还应理解,第一指示信息中还可以包含网络设备希望第一终端设备使用的AI模型,例如下表六所示。第一终端设备根据第一指示信息,直接确定所需使用的AI模型。
表六
其中,第一终端设备选择不同的AI模型检测干扰信号,AI模型的输入和输出也可能不同。AI模型的输入输出可能是网络设备配置的,或者,第一终端设备可以根据网络设备的配置自身确定相应的AI模型的输入和输出。
还应理解,步骤S360’与上述示例一中步骤S360类似,为了避免冗余,此处不再赘述。
上述示例二中采用的是联合训练的AI模型,第一终端设备根据网络设备的配置,进一步地选择合适的AI模型用于检测和消除干扰信号。其中,第一终端设备向网络设备发送第一信息,该第一信息包括该第一终端设备的AI模型的能力,网络设备根据第一信息可以配置联合模块的AI模型,用于第一终端设备检测和消除干扰信号,从而提升了系统的性能。
示例三:第一终端设备检测干扰信号的能力是基于似然算法检测干扰信号的能力。
S310”,第一终端设备向网络设备发送第一信息。
相应地,网络设备接收来自第一终端设备的第一信息。
可选地,该第一信息还包括以下一项或多项:第一终端设备是否支持似然检测能力,第一终端设备支持的可检测的信号干扰流数、第一终端设备支持的可检测的干扰信号调制阶数、第一终端设备支持的干扰检测的最大复杂度。
其中,第一终端设备支持的干扰检测的最大复杂度可以为球形译码支持检测的结点数量、检测半径,还可以为QR分解(QRD)算法支持检测的结点数量,还可以为运算次数的上限值。
以球形译码为例。应理解,该球形译码是一种基于树型的检测方式。从检测树的根节点开始不断扩展,在每个扩展的结点上,计算一个当前结点与根结点之间的距离,该距离 的计算方式如图8所示。
举例来说,如图8所示深灰色结点与根结点之间的距离D为:D(x)=(z_1-r_11x1)^2+(z_2-r_22x_2-r1x1_1)^2,深灰色结点的上一结点与根结点之间的距离为:(z_1-r_11x1)^2。
可以看出,球形译码的复杂度,将取决与需要扩展的结点数,其中扩展的结点数越多,则计算次数越多。第一终端设备发送的第一信息中的干扰检测的复杂度可以是一个最大支持检测的结点数,该结点数可以用于网络设备估计潜在的检测干扰的复杂度上限,从而避免在MU调度时,使得第一终端设备检测和消除干扰信号的复杂度过高,导致系统性能降低。
应理解,该第一信息中还可以包括第一终端设备基于球形译码支持的检测和消除干扰第一终端设备的数量、信号干扰流数。一般而言,球形译码实际上适用于任何流数和任何调制阶数,然而,在考虑到检测和消除干扰算法需要额外付出计算成本。因此,在使用球形译码进行消除干扰的情况下,也可以提供一个干扰信号的流数和调制阶数等参数的限制,该参数的限制用于控制球形译码的复杂度。举例来说,限定球形译码算法支持消除2流干扰信号,并限定2流干扰可以针对16QAM进行消除。
其中,干扰信号的流数和调制阶数的限定也能够避免在MU调度时,使得第一终端设备检测干扰信号的复杂度过高,导致终端设备功耗较大。
其中,球形译码的复杂度和第一终端设备需要解调的信号的流数和数据调制阶数相关,进一步,球形译码复杂度的限制可以是具体的复杂度上限值(例如使用FLOPS等运算次数来描述),也可以是不同的等级值,其中网络设备和第一终端设备之间预定义不同等级值大致所处的范围,也可以是支持的干扰第一终端设备的信号的数量具体数值,其中该值也可以体现为不同的等级;球形译码复杂度的限制还可以是不同的调制阶数,也可以为显式的调制阶数或调制阶数的集合,也可以是调制阶数集合的索引,其中该调制阶数集合需要第一终端设备和网络设备之间预定义。
需要说明的是,第一终端设备可以接收到网络设备的能力查询信息之后,根据网络设备的能力查询信息向网络设备发送第一信息;也可以根据某一协议规定周期性或者触发性地向网络设备发送第一信息。
S320”,网络设备向第一终端设备发送配置信息。
相应地,第一终端设备接收来自网络设备的配置信息。
其中,配置信息包括第一DCI字段和/或第一DCI字段的标识。
该步骤与上述图2中的步骤S220和图3示例一中的步骤S320类似,具体请参见图2中的步骤S220和图3示例一中步骤S320的描述,此处不再赘述。
S330”,网络设备向第一终端设备发送第二指示信息,或者说,第一终端设备接收来自网络设备的第二指示信息。
其中,该第二指示信息用于指示该第一终端设备将自身的运动状态发送给网络设备。
该步骤与上述图3示例一中的步骤S330类似,详细说明请参见示例一中的步骤S330中的描述。
S340”,第一终端设备向网络设备发送第二信息。
相应地,网络设备接收来自第一终端设备的第二信息。
其中,该运动状态包括速度、加速度、运动姿态。
该步骤与上述图3中示例一中的步骤S340类似,详细说明请参见示例一中的步骤S340中的描述。
S350”,网络设备向第一终端设备发送第一指示信息。
相应地,第一终端设备接收来自网络设备的第一指示信息。
其中,第一指示信息用于指示第二终端设备的数据传输信息,第二终端设备为所述第一终端设备配对的终端设备。
可选地,该第一指示信息还被用于该第一终端设备检测和消除干扰信号。
举例来说,网络设备在TB2字段中指示第一指示信息,并将该第一DCI字段对应的DCI使用RNTI2进行加扰。
其中,第一终端设备根据RNTI2解调DCI并获取第一DCI字段之后,获取到第一指示信息。如图3所示的方法,该方法还包括:
S360”,第一终端设备根据第一指示信息检测和消除干扰信号。
示例性地,第一终端设备根据第一指示信息,使用球形译码进行解调。
应理解,由于球形译码等似然检测算法,比较适用于不同数据流之间的功率较为平衡的情况,若出现其中某些数据流和/或干扰流的功率较低,甚至低于噪声水平,可能导致该干扰流无法正确进行检测,从而影响目标数据流的检测。因此,在使用球形译码检测前,还可以进一步判断各干扰天线端口上的信道情况。例如第一终端设备可以根据网络设备指示的第二终端设备的天线端口,测量出干扰信道,第一终端设备进一步计算干扰信道的能量或干扰信道与噪声之间的比值。若干扰信道能量低,或干扰信道与噪声之间的比值低,则可将该端口对应的干扰信号视作噪声,不参与检测。
作为一种示例,网络设备指示了3流干扰数据,但其中检测到干扰流2的信道能量或干扰流2的信道与干扰之间的比值小于一个阈值,则可将干扰流2视为噪声,仅解调干扰流1和干扰流3,从而第一终端设备也只需消除干扰流1和干扰流3上的干扰。其中,该阈值可以为第一终端设备实现决定,也可以为其他方式指示给第一终端设备,对此本申请不做限定。
上述图3示例三中所示的方法中,第一终端设备向网络设备发送的第一信息中包括第一终端设备基于似然算法的检测和消除干扰信号的能力,降低了第一终端设备检测干扰信号的复杂度。同时,网络设备对第一终端设备发送第一指示信息,其中该第一指示信息中包括消除干扰辅助信息,有助于第一终端设备在干扰较强时对干扰信号进行检测和消除。避免了第一终端设备检测和消除干扰信号的复杂度,同时复用现有的DCI字段,进一步地减少空口上的信令开销。
上述图3分别列举了三个示例对第一终端设备向网络设备发送用于指示第一终端设备在多用户多输入多输出MU-MIMO配对传输时的检测干扰信号的能力的第一信息的三种情况做出详细说明。其中,该三个示例中,第一终端设备上报自身检测干扰信号的能力,网络设备接收到第一终端设备检测干扰信号的能力之后,向第一终端设备发送第一指示信息,该第一指示信息用于指示与第一终端设备配对的终端设备的数据传输信息。该第一指示信息还可能被用于检测干扰信号。避免了当第一终端设备不具备检测干扰信号的能力时,网络设备向第一终端设备发送相关指示,该第一终端设备也无法做好干扰信号的检测和消 除,导致浪费相关控制信道资源,系统性能下降。同时,网络设备复用现有的DCI字段向第一终端设备发送第一指示信息,节省了资源的开销,降低了第一终端设备解调的复杂度。
上述方法实施例中,上述各过程的序列号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。并且有可能并非要执行上述方法实施例中的全部操作。
应理解,上述方法实施例中第一终端设备和/或网络设备可以执行施例中的部分或全部步骤,这些步骤或操作仅是示例,本申请实施例还可以包括执行其它操作或者各种操作的变形。
还应理解,在本申请的各个实施例中,如果没有特殊说明以及逻辑冲突,不同的实施例之间的术语和/或描述可以具有一致性、且可以相互引用,不同的实施例中的技术特征根据其内在的逻辑关系可以组合形成新的实施例。
上面结合图2-图8详细介绍了本申请实施例提供的一种多用户传输数据的方法,下面结合图9-图10详细介绍本申请实施例提供的一种多用户传输数据的装置。
以下,结合图9和图10详细说明本申请实施例提供的一种多用户传输数据的装置。应理解,装置实施例的描述与方法实施例的描述相互对应,因此,未详细描述的内容可以参见上文方法实施例,为了简洁,部分内容不再赘述。
本申请实施例可以根据上述方法示例对发射端设备或者接收端设备进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。下面以采用对应各个功能划分各个功能模块为例进行说明。
图9是本申请提供的信息传输设备900的一例示意性框图。上述图2和图3中任一方法所涉及的任一设备,如第一终端设备和网络设备等都可以由图9所示的一种多用户传输数据的设备来实现。
应理解,信息传输设备900可以是实体设备,也可以是实体设备的部件(例如,集成电路,芯片等等),还可以是实体设备中的功能模块。
如图9所示,该一种多用户传输数据的设备900包括:一个或多个处理器910。可选地,处理器910中可以调用接口实现接收和发送功能。所述接口可以是逻辑接口或物理接口,对此不作限定。例如,接口可以是收发电路,输入输出接口,或是接口电路。用于实现接收和发送功能的收发电路、输入输出接口或接口电路可以是分开的,也可以集成在一起。上述收发电路或接口电路可以用于代码/数据的读写,或者,上述收发电路或接口电路可以用于信号的传输或传递。
可选地,接口可以通过收发器实现。可选地,该信息传输设备900还可以包括收发器930。所述收发器930还可以称为收发单元、收发机、收发电路等,用于实现收发功能。
可选地,该一种多用户传输数据的设备900还可以包括存储器920。本申请实施例对存储器920的具体部署位置不作具体限定,该存储器可以集成于处理器中,也可以是独立于处理器之外。对于该一种多用户传输数据的设备900不包括存储器的情形,该一种多用户传输数据的设备900具备处理功能即可,存储器可以部署在其他位置(如,云系统)。
处理器910、存储器920和收发器930之间通过内部连接通路互相通信,传递控制和/或数据信号。
可以理解的是,尽管并未示出,一种多用户传输数据的设备900还可以包括其他装置,例如输入装置、输出装置、电池等。
可选地,在一些实施例中,存储器920可以存储用于执行本申请实施例的方法的执行指令。处理器910可以执行存储器920中存储的指令结合其他硬件(例如收发器930)完成下文所示方法执行的步骤,具体工作过程和有益效果可以参见上文方法实施例中的描述。
本申请实施例揭示的方法可以应用于处理器910中,或者由处理器910实现。处理器910可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,方法的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存取存储器(random access memory,RAM)、闪存、只读存储器(read-only memory,ROM)、可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的指令,结合其硬件完成上述方法的步骤。
可以理解,存储器920可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器ROM、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器RAM,其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
图10是本申请提供的一种多用户传输数据的装置1000的示意性框图。
可选地,所述一种多用户传输数据的装置1000的具体形态可以是通用计算机设备或通用计算机设备中的芯片,本申请实施例对此不作限定。如图10所示,该一种多用户传输数据的装置包括处理单元1010和收发单元1020。
具体而言,该用于多用户传输数据的装置1000可以是本申请涉及的任一设备,并且可以实现该设备所能实现的功能。应理解,用于多用户传输数据的装置1000可以是实体设备,也可以是实体设备的部件(例如,集成电路,芯片等等),还可以是实体设备中的 功能模块。
在一种可能的设计中,该用于多用户传输数据的装置1000可以是上文方法实施例中的第一终端设备(如,第一终端设备120),也可以是用于实现上文方法实施例中第一终端设备(如,第一终端设备120)的功能的芯片。
例如,收发单元,用于向网络设备发送第一信息,第一信息用于指示第一终端设备在多用户多输入多输出MU-MIMO配对传输时的检测干扰信号的能力;收发单元,还用于接收来自网络设备的第一指示信息,第一指示信息用于指示第二终端设备的数据传输信息,第二终端设备为第一终端设备配对的终端设备。
还应理解,该用于多用户传输数据的装置1000为第一终端设备(如,第一终端设备120)时,该用于多用户传输数据的装置1000中的收发单元1020可通过通信接口(如收发器或输入/输出接口)实现,该用于多用户传输数据的装置1000中的处理单元1010可通过至少一个处理器实现,例如可对应于图9中示出的处理器910。
可选地,用于多用户传输数据的装置1000还可以包括存储单元,该存储单元可以用于存储指令或者数据,处理单元可以调用该存储单元中存储的指令或者数据,以实现相应的操作。
应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
在另一种可能的设计中,该用于多用户传输数据的装置1000可以是上文方法实施例中的网络设备(如,网络设备110),也可以是用于实现上文方法实施例中网络设备(如,网络设备110)功能的芯片。
例如,收发单元,用于接收来自第一终端设备的第一信息,第一信息用于指示第一终端设备在多用户多输入多输出MU-MIMO配对传输时的检测干扰信号的能力;该收发单元,还用于向第一终端设备发送第一指示信息,第一指示信息用于指示第二终端设备的数据传输信息,第二终端设备为第一终端设备配对的终端设备。
还应理解,该用于多用户传输数据的装置1000为网络设备110时,该用于多用户传输数据的装置1000中的收发单元1020可通过通信接口(如收发器或输入/输出接口)实现,例如可对应于图9中示出的通信接口930,该用于多用户传输数据的装置1000中的处理单元1010可通过至少一个处理器实现,例如可对应于图9中示出的处理器910。
可选地,用于多用户传输数据的装置1000还可以包括存储单元,该存储单元可以用于存储指令或者数据,处理单元可以调用该存储单元中存储的指令或者数据,以实现相应的操作。
应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
另外,在本申请中,用于多用户传输数据的装置1000是以功能模块的形式来呈现。这里的“模块”可以指特定应用集成电路ASIC、电路、执行一个或多个软件或固件程序的处理器和存储器、集成逻辑电路,和/或其他可以提供上述功能的器件。在一个简单的实施例中,本领域的技术人员可以想到装置1000可以采用图10所示的形式。处理单元1010 可以通过图9所示的处理器910来实现。可选地,如果图9所示的计算机设备包括存储器900,处理单元1010可以通过处理器910和存储器900来实现。收发单元1020可以通过图9所示的收发器930来实现。所述收发器930包括接收功能和发送功能。具体的,处理器通过执行存储器中存储的计算机程序来实现。可选地,当所述装置1000是芯片时,那么收发单元1020的功能和/或实现过程还可以通过管脚或电路等来实现。可选地,所述存储器可以为所述芯片内的存储单元,比如寄存器、缓存等,所述存储单元还可以是用于多用户数据传输的装置内的位于所述芯片外部的存储单元,如图9所的存储器920,或者,也可以是部署在其他系统或设备中的存储单元,不在所述计算机设备内。
本申请的各个方面或特征可以实现成方法、装置或使用标准编程和/或工程技术的制品。例如,计算机可读介质可以包括,但不限于:磁存储器件(例如,硬盘、软盘或磁带等),光盘(例如,压缩盘(compact disc,CD)、数字通用盘(digital versatile disc,DVD)等),智能卡和闪存器件(例如,可擦写可编程只读存储器(erasable programmable read-only memory,EPROM)、卡、棒或钥匙驱动器等)。另外,本文描述的各种存储介质可代表用于存储信息的一个或多个设备和/或其它机器可读介质。术语“机器可读介质”可包括但不限于,能够存储、包含和/或承载指令和/或数据的各种其它介质。
根据本申请实施例提供的方法,本申请还提供一种计算机程序产品,该计算机程序产品包括:计算机程序或一组指令,当该计算机程序或一组指令在计算机上运行时,使得该计算机执行图2至图8所示实施例中任意一个实施例的方法。
根据本申请实施例提供的方法,本申请还提供一种计算机可读存储介质,该计算机可读介质存储有程序或一组指令,当该程序或一组指令在计算机上运行时,使得该计算机执行图2至图8所示实施例中任意一个实施例的方法。
根据本申请实施例提供的方法,本申请还提供一种通信系统,其包括前述的装置或设备。
在本说明书中使用的术语“部件”、“模块”、“系统”等用于表示计算机相关的实体、硬件、固件、硬件和软件的组合、软件、或执行中的软件。例如,部件可以是但不限于,在处理器上运行的进程、处理器、对象、可执行文件、执行线程、程序和/或计算机。通过图示,在计算设备上运行的应用和计算设备都可以是部件。一个或多个部件可驻留在进程和/或执行线程中,部件可位于一个计算机上和/或分布在两个或更多个计算机之间。此外,这些部件可从在上面存储有各种数据结构的各种计算机可读介质执行。部件可根据具有一个或多个数据分组(例如来自与本地系统、分布式系统和/或网络间的另一部件交互的二个部件的数据,例如通过信号与其它系统交互的互联网)的信号通过本地和/或远程进程来通信。
还应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
还应理解,本申请实施例中引入编号“第一”、“第二”等只是为了区分不同的对象,比如,区分不同的“信息”,或,“设备”,或,“单元”,对具体对象以及不同对象间的对应关系的理解应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (32)

  1. 一种多用户数据传输的方法,其特征在于,所述方法还包括:
    第一终端设备向网络设备发送第一信息,所述第一信息用于指示所述第一终端设备在多用户多输入多输出MU-MIMO配对传输时的检测干扰信号的能力;
    所述第一终端设备向所述网络设备发送所述第一信息之后,所述第一终端设备接收来自所述网络设备的第一指示信息,所述第一指示信息用于指示第二终端设备的数据传输信息,所述第二终端设备为所述第一终端设备配对的终端设备。
  2. 根据权利要求1所述的方法,其特征在于,当所述第一信息满足预设条件时,所述第一终端设备接收所述第一指示信息。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一指示信息是根据所述第一信息确定的。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述方法还包括:
    所述第一终端设备根据所述第一指示信息检测MU-MIMO配对传输时的多用户干扰信号。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,所述第一指示信息携带在第一下行控制信息DCI字段中,所述方法还包括:
    所述第一终端设备根据配置信息确定所述第一DCI字段,所述配置信息包括所述第一DCI字段和/或所述第一DCI字段的标识。
  6. 根据权利要求5所述的方法,其特征在于,所述方法还包括:
    所述第一终端设备接收来自所述网络设备的所述配置信息。
  7. 根据权利要求1至6中任一项所述的方法,其特征在于,在所述第一终端设备接收来自所述网络设备的所述第一指示信息之前,所述方法还包括:
    所述第一终端设备向所述网络设备发送第二信息,所述第二信息用于指示所述第一终端设备的运动状态,所述运动状态包括以下一项或多项:速度、加速度、运动姿态。
  8. 根据权利要求7所述的方法,其特征在于,在所述第一终端设备向所述网络设备发送所述第二信息之前,所述方法还包括:
    所述第一终端设备接收来自所述网络设备的第二指示信息,所述第二指示信息用于指示所述第一终端设备向所述网络设备发送所述第一终端设备的运动状态。
  9. 根据权利要求1至8中任一项所述的方法,其特征在于,所述第一信息包括以下一项或多项:
    所述第一终端设备是否支持基于人工智能AI模型的干扰检测、所述第一终端设备基于AI模型下可检测的信号干扰流数、所述第一终端设备基于AI模型下可检测的信号干扰调制阶数、所述第一终端设备基于AI模型所适配的信噪比SNR或信干噪比SINR的范围。
  10. 根据权利要求1至8中任一项所述的方法,其特征在于,所述第一信息包括以下一项或多项:
    所述第一终端设备是否支持似然检测能力,所述第一终端设备支持的可检测的信号干扰流数、所述第一终端设备支持的可检测的干扰信号调制阶数、所述第一终端设备支持的 干扰检测的最大复杂度。
  11. 根据权利要求1至8中任一项所述的方法,其特征在于,所述第一信息包括以下一项或多项:
    所述第一终端设备支持的AI模型的最大复杂度、所述第一终端设备支持的AI模型的存储上限、所述第一终端设备支持的AI模型的算子、所述第一终端设备支持的AI模型的神经网络层数、所述第一终端设备支持的AI模型的神经网络类型。
  12. 根据权利要求5至11中任一项所述的方法,其特征在于,所述配置信息还包括AI网络模型。
  13. 根据权利要求12所述的方法,其特征在于,所述第一指示信息包括以下至少一项:
    所述第二终端设备的天线端口、所述第二终端设备的数量、所述第二终端设备的干扰数据流数、所述第二终端设备的信号调制方式、所述第二终端设备接收来自所述网络设备的发送功率。
  14. 一种多用户数据传输的方法,其特征在于,包括:
    网络设备接收来自第一终端设备的第一信息,所述第一信息用于指示所述第一终端设备在多用户多输入多输出MU-MIMO配对传输时的检测干扰信号的能力;
    所述网络设备接收到所述第一信息之后,所述网络设备向所述第一终端设备发送第一指示信息,所述第一指示信息用于指示第二终端设备的数据传输信息,所述第二终端设备为所述第一终端设备配对的终端设备。
  15. 根据权利要求14所述的方法,其特征在于,当所述第一信息满足预设条件时,所述网络设备向所述第一终端设备发送所述第一指示信息。
  16. 根据权利要求14或15所述的方法,其特征在于,所述第一指示信息是根据所述第一信息确定的。
  17. 根据权利要求14至16中任一项所述的方法,其特征在于,所述第一指示信息携带在第一下行控制信息DCI字段中,所述方法还包括:
    所述网络设备向所述第一终端设备发送配置信息,所述配置信息包括第一DCI字段和/或所述第一DCI字段的标识。
  18. 根据权利要求14至17中任一项所述的方法,其特征在于,在所述网络设备向所述第一终端设备发送第一指示信息之前,所述方法还包括:
    所述网络设备接收来自所述第一终端设备的第二信息,所述第二信息用于指示所述第一终端设备的运动状态,所述运动状态包括以下一项或多项:速度、加速度、运动方向、运动姿态。
  19. 根据权利要求18所述的方法,其特征在于,在所述网络设备接收来自所述第一终端设备的第二信息之前,所述方法还包括:
    所述网络设备向所述第一终端设备发送第二指示信息,所述第二指示信息用于指示所述第一终端设备向所述网络设备发送所述第一终端设备的运动状态。
  20. 根据权利要求17至19中任一项所述的方法,其特征在于,在所述网络设备向所述第一终端设备发送所述配置信息之前,所述方法还包括:
    所述网络设备确定所述第二信息满足第一条件。
  21. 根据权利要求20所述的方法,其特征在于,所述第一条件包括以下至少一项:
    所述第一终端设备的运动速度特征满足预设速度特征;
    所述第一终端设备的运动姿态特征满足预设姿态特征,
    其中,所述运动速度特征包括速度大小、速度方向,加速度大小、加速度方向。
  22. 根据权利要求14至21中任一项所述的方法,其特征在于,所述第一信息包括以下一项或多项:
    所述第一终端设备是否支持基于人工智能AI模型的干扰检测、所述第一终端设备基于AI模型下可检测的信号干扰流数、所述第一终端设备基于AI模型下可检测的信号干扰调制阶数、所述第一终端设备基于AI模型所适配的信噪比SNR或信干噪比SINR的范围。
  23. 根据权利要求14至21中任一项所述的方法,其特征在于,所述第一信息还包括以下一项或多项:
    所述第一终端设备是否支持似然检测能力,所述第一终端设备支持的可检测的信号干扰流数、所述第一终端设备支持的可检测的干扰信号调制阶数、所述第一终端设备支持的干扰检测的最大复杂度。
  24. 根据权利要求14至21中任一项所述的方法,其特征在于,所述第一信息包括以下一项或多项:
    所述第一终端设备支持的AI模型的最大复杂度、所述第一终端设备支持的AI模型的存储上限、所述第一终端设备支持的AI模型的算子、所述第一终端设备支持的AI模型的神经网络层数、所述第一终端设备支持的AI模型的神经网络类型。
  25. 根据权利要求17至24中任一项所述的方法,其特征在于,所述配置信息还包括AI模型,所述AI模型是所述网络设备根据所述第一信息配置的。
  26. 根据权利要求14至25中任一项所述的方法,其特征在于,所述第一指示信息包括以下至少一项:
    所述第二终端设备的天线端口、所述第二终端设备的数量、所述第二终端设备的干扰数据流数、所述第二终端设备的信号调制方式、所述第二终端设备接收来自所述网络设备的发送功率。
  27. 一种多用户数据传输的装置,其特征在于,所述装置包括:用于执行如权利要求1至13中任一项所述方法的模块或单元,或者用于执行如权利要求14至26中任一项所述方法的模块或单元。
  28. 一种通信装置,其特征在于,包括:
    处理器,用于执行存储器中存储的计算机程序,以使得所述通信装置执行如权利要求1至13中任一项所述的方法,或者以使得所述装置执行如权利要求14至26中任一项所述的方法。
  29. 根据权利要求28所述的装置,其特征在于,所述装置还包括所述存储器,所述存储器用于存储计算机程序。
  30. 一种计算机可读存储介质,其特征在于,包括:
    所述计算机可读存储介质上存储有计算机程序,当所述计算机程序运行时,使得所述计算机执行如权利要求1至13中任一项所述的方法,或者以使得所述计算机执行如权利要求14至26中任一项所述的方法。
  31. 一种计算机程序产品,其特征在于,所述计算机程序产品在计算机上执行时,使得所述计算机执行如权利要求1至13中任一项所述的方法,或者以使得所述计算机程序产品执行如权利要求14至26中任一项所述的方法。
  32. 一种芯片,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程
    序,使得安装有所述芯片的装置执行如权利要求1至13中任一项所述的方法,或执行权利要求14至26中任一项所述的方法。
PCT/CN2023/091615 2022-05-08 2023-04-28 一种多用户数据传输的方法和装置 WO2023216923A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202210495917.8 2022-05-08
CN202210495917 2022-05-08
CN202210799828.2A CN117082487A (zh) 2022-05-08 2022-07-08 一种多用户数据传输的方法和装置
CN202210799828.2 2022-07-08

Publications (1)

Publication Number Publication Date
WO2023216923A1 true WO2023216923A1 (zh) 2023-11-16

Family

ID=88718089

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/091615 WO2023216923A1 (zh) 2022-05-08 2023-04-28 一种多用户数据传输的方法和装置

Country Status (2)

Country Link
CN (1) CN117082487A (zh)
WO (1) WO2023216923A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104023380A (zh) * 2013-02-28 2014-09-03 三星电子株式会社 在无线通信系统中发送控制信息的方法和装置
US20150312074A1 (en) * 2014-04-28 2015-10-29 Intel IP Corporation Non-Orthogonal Multiple Access (NOMA) Wireless Systems and Methods
CN106209300A (zh) * 2015-04-30 2016-12-07 电信科学技术研究院 一种控制信息发送方法和接收方法及发射机、接收机
CN107534508A (zh) * 2015-04-20 2018-01-02 夏普株式会社 终端装置及基站装置
CN112312552A (zh) * 2019-07-31 2021-02-02 华为技术有限公司 一种数据传输方法、装置及系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104023380A (zh) * 2013-02-28 2014-09-03 三星电子株式会社 在无线通信系统中发送控制信息的方法和装置
US20150312074A1 (en) * 2014-04-28 2015-10-29 Intel IP Corporation Non-Orthogonal Multiple Access (NOMA) Wireless Systems and Methods
CN107534508A (zh) * 2015-04-20 2018-01-02 夏普株式会社 终端装置及基站装置
CN106209300A (zh) * 2015-04-30 2016-12-07 电信科学技术研究院 一种控制信息发送方法和接收方法及发射机、接收机
CN112312552A (zh) * 2019-07-31 2021-02-02 华为技术有限公司 一种数据传输方法、装置及系统

Also Published As

Publication number Publication date
CN117082487A (zh) 2023-11-17

Similar Documents

Publication Publication Date Title
US11283503B2 (en) Communication method and communications apparatus
WO2021147933A1 (zh) 功率控制参数确定方法、设备和存储介质
EP2548314B1 (en) Switching between open and closed loop multi-stream transmission
WO2019192530A1 (zh) 数据传输方法、终端设备和网络设备
WO2019196801A1 (zh) 数据传输的方法、通信装置及系统
WO2019127199A1 (zh) 用于上行数据传输的方法和终端设备
US10498405B2 (en) Codebook restriction
WO2018113552A1 (zh) 动态调整波束集合的传输方法、基站及终端
JP2012521180A (ja) ビームフォーミング動作に対するフィードバックメカニズム
WO2014148962A1 (en) Methods, mobile devices and nodes for use in a mobile communication network
JP6224697B2 (ja) マルチアンテナ無線通信システムにおいて復調パイロット情報を伝達するための方法及び装置
CN112243261B (zh) 信息反馈、接收方法、装置、设备和存储介质
WO2020057375A1 (zh) 一种资源配置方法及通信装置
US10263675B2 (en) Method and device for efficient precoder search
CN110233651A (zh) 多用户mimo偏好-指示信令
US20230299821A1 (en) Transmission method and apparatus, device, and readable storage medium
WO2023216923A1 (zh) 一种多用户数据传输的方法和装置
WO2020000265A1 (zh) 选择传输模式的方法和通信装置
CN109478972B (zh) 切换状态的方法、网络设备和终端设备
JP2014500686A (ja) 無線ローカル・エリア・ネットワーク(lan)におけるアドバンスト受信機パフォーマンスを保護するためにシグナリングすること
WO2023011436A1 (zh) 通信处理方法和通信处理装置
WO2015100546A1 (zh) 一种数据传输方法及装置
WO2018035866A1 (zh) 一种数据发送方法及装置
WO2024032327A1 (zh) 信息传输方法、装置和系统
WO2023138507A1 (zh) 一种通信方法、装置及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23802695

Country of ref document: EP

Kind code of ref document: A1