WO2021147933A1 - 功率控制参数确定方法、设备和存储介质 - Google Patents

功率控制参数确定方法、设备和存储介质 Download PDF

Info

Publication number
WO2021147933A1
WO2021147933A1 PCT/CN2021/072995 CN2021072995W WO2021147933A1 WO 2021147933 A1 WO2021147933 A1 WO 2021147933A1 CN 2021072995 W CN2021072995 W CN 2021072995W WO 2021147933 A1 WO2021147933 A1 WO 2021147933A1
Authority
WO
WIPO (PCT)
Prior art keywords
beam state
power control
state
transmission
control parameter
Prior art date
Application number
PCT/CN2021/072995
Other languages
English (en)
French (fr)
Inventor
姚珂
高波
蒋创新
鲁照华
何震
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to CA3165650A priority Critical patent/CA3165650A1/en
Priority to KR1020227028620A priority patent/KR20220130753A/ko
Priority to EP21743731.8A priority patent/EP4096107A4/en
Publication of WO2021147933A1 publication Critical patent/WO2021147933A1/zh
Priority to US17/870,584 priority patent/US20230028861A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0426Power distribution
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/04Arrangements for maintaining operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • H04W52/0216Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave using a pre-established activity schedule, e.g. traffic indication frame
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0251Power saving arrangements in terminal devices using monitoring of local events, e.g. events related to user activity
    • H04W52/0258Power saving arrangements in terminal devices using monitoring of local events, e.g. events related to user activity controlling an operation mode according to history or models of usage information, e.g. activity schedule or time of day
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/08Closed loop power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/146Uplink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/242TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account path loss
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/247TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters where the output power of a terminal is based on a path parameter sent by another terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/32TPC of broadcast or control channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/42TPC being performed in particular situations in systems with time, space, frequency or polarisation diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/54Signalisation aspects of the TPC commands, e.g. frame structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • This application relates to communications, for example, to a method, device, and storage medium for determining power control parameters.
  • the high frequency band has abundant frequency domain resources, but there is a problem that the wireless signal decays quickly and the coverage is small.
  • Using beams to send signals can concentrate energy in a relatively small space and improve the coverage of high-frequency signals.
  • the beam pair between a base station and a user terminal may also change, so a flexible beam update mechanism is required.
  • UE User Equipment
  • the embodiments of the present application provide a method, device, and storage medium for determining power control parameters, so as to effectively provide efficient power control parameters for uplink transmission.
  • the embodiment of the application provides a method for determining power control parameters, which is applied to a first communication node, and includes: determining a beam state of uplink transmission; determining the power control parameter of uplink transmission according to the beam state; wherein, the beam state It includes at least one of the following: Quasi Co-location (QCL) status, Transmission Configuration Indication (TCI) status, spatial relationship information, reference signal information, spatial filter information, and precoding information.
  • QCL Quasi Co-location
  • TCI Transmission Configuration Indication
  • the embodiment of the application provides a method for determining power control parameters, which is applied to a second communication node, and includes: configuring or activating a specific beam state set; configuring or indicating the beam state associated with uplink transmission, and the beam state associated with the uplink transmission is used For determining the power control parameter of the uplink transmission; the beam state associated with the uplink transmission includes: at least one beam state in the specific set of beam states; wherein the beam state includes at least one of the following: quasi-common Address QCL status, transmission configuration indication TCI status, spatial relationship information, reference signal information, spatial filter information, and precoding information.
  • An embodiment of the present application provides a power control parameter determination device, which is applied to a first communication node, and includes: a first determination module configured to determine a beam state for uplink transmission; a second determination module configured to determine a power control parameter based on the beam state The power control parameters of the uplink transmission; wherein, the beam status includes at least one of the following: quasi co-located QCL status, transmission configuration indication TCI status, spatial relationship information, reference signal information, spatial filter information, and precoding information.
  • An apparatus for determining power control parameters in an embodiment of the application, applied to a second communication node includes: a first configuration module configured to configure or activate a specific beam state set; a second configuration module configured to configure or indicate uplink transmission association
  • the beam state associated with the uplink transmission is used to determine the power control parameter of the uplink transmission;
  • the beam state associated with the uplink transmission includes: at least one beam state in a specific set of beam states; wherein, the The beam state includes at least one of the following: quasi-co-located QCL state, transmission configuration indication TCI state, spatial relationship information, reference signal information, spatial filter information, and precoding information.
  • a device in an embodiment of the present application includes: a memory and one or more processors; the memory is used to store one or more programs; when the one or more programs are used by the one or more processors Execution, so that the one or more processors implement the method described in any one of the foregoing embodiments.
  • An embodiment of the present application provides a storage medium that stores a computer program, and when the computer program is executed by a processor, the method described in any of the foregoing embodiments is implemented.
  • FIG. 1 is a flowchart of a method for determining power control parameters according to an embodiment of the present application
  • FIG. 2 is a flowchart of another method for determining power control parameters provided by an embodiment of the present application
  • Figure 3 is a schematic diagram of the association between a power control parameter and a TCI state provided by the present application
  • FIG. 4 is a schematic diagram of the configuration of TCI states at different levels according to an embodiment of the present application.
  • FIG. 5 is a schematic diagram of another configuration of different levels of TCI states provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of the relationship between a TCI state and power control (Power Control, PC) parameters, and Sounding Reference Signal (SRS) resources provided by an embodiment of the present application;
  • PC Power Control
  • SRS Sounding Reference Signal
  • FIG. 7 is a structural block diagram of a device for determining power control parameters provided by an embodiment of the present application.
  • FIG. 8 is a structural block diagram of another device for determining power control parameters provided by an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a device provided by an embodiment of the present application.
  • the beam status is the same as the concept of the following parameters, that is, the beam status in this embodiment can be replaced by one of the following parameters: Quasi Co-location (QCL) status, transmission configuration indication ( Transmission Configuration Indication (TCI) status, spatial relationship information, reference signal (Reference Signal, RS) information, spatial filter information, and precoding information.
  • QCL Quasi Co-location
  • TCI Transmission Configuration Indication
  • RS Reference Signal
  • the beam state may also be referred to as a beam.
  • the beam may be a resource or transmission (sending or receiving) mode.
  • resources such as transmitter precoding, receiver precoding, antenna port, antenna weight vector, antenna weight matrix, etc.
  • Transmission methods can include space division multiplexing, frequency domain/time domain diversity, and so on.
  • the beam indication means that the transmitting end can indicate that the reference signal (or reference reference signal) and the antenna port meet the QCL state through the current reference signal and antenna port, the reference signal (or reference reference signal) reported by the base station or the UE feedback report.
  • the concept of transmitting beam is equivalent to the following parameters: QCL state, TCI state, spatial relationship state, downlink (DL) reference signal (RS) or uplink (UL) reference signal (RS), RS resource, transmission spatial filtering Or send precoding.
  • the concept of the receive beam is equivalent to the following parameters: QCL state, TCI state, spatial relationship state, downlink RS or uplink RS, RS resource, receive spatial filter or receive precoding.
  • the concept of the beam number is equivalent to the following parameters: QCL state number, TCI state number, spatial relationship state number, RS number, RS resource number, spatial filter number, or precoding number.
  • the number can also be called index, IDentifier (ID), or index.
  • Downlink (DL) RS includes: Channel State Information Reference Signal (CSI-RS), Synchronization Signal Block (SSB) (also called SS/PBCH), or demodulation Reference signal (DeModulation Reference Signal, DMRS).
  • CSI-RS Channel State Information Reference Signal
  • SSB Synchronization Signal Block
  • DMRS demodulation Reference signal
  • the uplink (UpLink, UL) RS includes: Sounding Reference Signal (SRS) and Physical Random Access Channel (PRACH).
  • SRS Sounding Reference Signal
  • PRACH Physical Random Access Channel
  • the spatial filter which can also be called a spatial filter, can be on the UE side, on the base station side (gNB), or on the network side.
  • the spatial relationship information includes one or more reference RSs, which are used to describe the same or quasi-same spatial relationship between the target RS or channel and the one or more reference RSs.
  • Spatial relationships refer to beams, spatial parameters, or spatial filters.
  • the QCL status includes one or more reference RSs and QCL type parameters corresponding to the reference RSs.
  • QCL type parameters include at least one of the following: type A, type B, type C, or type D. Different types are used to distinguish different QCL parameters.
  • the QCL parameters include at least one or a combination of the following: Doppler spread, Doppler frequency shift, delay spread, average delay, average gain, and spatial parameters.
  • the TCI state is equivalent to the QCL state.
  • QCL type D is equivalent to spatial parameters or spatial reception parameters.
  • the uplink signal includes at least one of the following: Physical Uplink Control Channel (PUCCH), Physical Uplink Shared Channel (PUSCH), Sounding Reference Signal (SRS), PRACH.
  • PUCCH Physical Uplink Control Channel
  • PUSCH Physical Uplink Shared Channel
  • SRS Sounding Reference Signal
  • PRACH Physical Uplink Control Channel
  • the downlink signal includes at least one of the following: a physical downlink control channel (Physical Downlink Control Channel, PDCCH), a physical downlink shared channel (Physical Downlink Shared Channel, PDSCH), and a CSI-RS.
  • a physical downlink control channel Physical Downlink Control Channel, PDCCH
  • a physical downlink shared channel Physical Downlink Shared Channel, PDSCH
  • CSI-RS CSI-RS
  • the time unit includes one of the following: sub-symbol, symbol, slot, sub-frame, frame, transmission occasion.
  • power control is equivalent to power control.
  • Power control parameters include at least one of the following: target power (also called P0, or target received power), path loss (path-loss, path loss) RS, path loss coefficient (also called alpha, or path loss compensation factor, path loss Compensation factor), or closed-loop process (closed-loop power control process, or closed-loop power control loop).
  • radio resource control Radio Resource Control
  • RRC Radio Resource Control
  • MAC Media Access Control
  • CE MAC control element
  • DCI is equivalent to DCI information and PDCCH transmission that carries DCI.
  • FIG. 1 is a flowchart of a method for determining power control parameters according to an embodiment of the present application.
  • This embodiment is applied to the first communication node.
  • the first communication node may be a UE.
  • this embodiment includes S110-S120.
  • the uplink transmission includes at least one of the following: Physical Uplink Shared Channel (PUSCH) transmission, PUCCH transmission, SRS transmission, and PRACH transmission.
  • the beam state includes at least one of the following: QCL state, TCI state, spatial relationship information, reference signal information, spatial filter information, and precoding information.
  • S120 Determine a power control parameter for uplink transmission according to the beam status.
  • the power control parameters include at least one of the following: path loss measurement parameters, target received power, path loss compensation factors, and closed-loop power control parameters.
  • the power control parameters include power control parameters used to determine at least one of the following: PUSCH transmission, PUCCH transmission, SRS transmission, and PRACH transmission.
  • the beam state includes at least one beam state.
  • the beam state is indicated by one of the following information: the number of at least one beam state in the specific beam state set; the number of at least one beam state in the active beam state in the specific beam state set; the specific beam The combination number of at least one beam state in the state set; or the combination number of at least one beam state in the active beam state in the specific beam state set.
  • the specific beam state set is configured or activated by higher layer signaling and/or MAC layer signaling.
  • the specific beam state set includes: a basic beam state set; the basic beam state set includes at least one of the following features: the basic beam state set includes at least one beam state; the basic beam state set is configured through high-level signaling Or reconfiguration; the basic beam state set is used to determine at least one of the following channel or signal transmission parameters: PDCCH, PDSCH, channel state information reference signal CSI-RS, PUSCH, PUCCH, SRS; or, a specific beam state set, It includes: a first beam state set; the first beam state set includes at least one of the following features: the first beam state set includes at least one beam state in the basic beam state set; the beam state of the first beam state set passes through high-level information Make configuration or reconfiguration, or activate through MAC signaling; the first beam state set is used to determine the transmission parameters of at least one of the following channels or signals: PUSCH, PUCCH, SRS; the basic beam state set includes at least one of the following Features: The basic beam state set includes at least one beam state; the basic beam state set is configured
  • the first beam state set is used to determine at least one of the following channel or signal transmission parameters: PUSCH, PUCCH, SRS;
  • the basic beam state set includes at least one of the following characteristics: the basic beam state set includes at least one beam State; the basic beam state set is configured or reconfigured through high-level signaling; the basic beam state set is used to determine the transmission parameters of at least one of the following channels or signals: PDCCH, PDSCH, channel state information reference signal CSI-RS, PUSCH, PUCCH , SRS.
  • the beam status of uplink transmission includes at least one of the following: beam status referenced by uplink transmission; beam status associated with uplink transmission; downlink control information (DCI) for scheduling or triggering uplink transmission ) Indicates the beam status; the beam status configured for uplink transmission by high-level signaling; the beam status associated with the resources of the uplink transmission.
  • DCI downlink control information
  • the beam status of the uplink transmission is determined by the DCI information that schedules or triggers the uplink transmission.
  • the DCI information indicates the number of the beam state, and the number of the beam state is the number of the beam state set in the MAC CE activated beam state set or the beam state set configured/reconfigured by higher layer signaling.
  • the beam status of periodic uplink transmission is determined by high-level signaling.
  • the high-layer signaling indicates the beam state number of periodic uplink transmission, and the beam state number is the number of the beam state set in the MAC CE activated beam state set or the beam state set configured/reconfigured by the high-layer signaling.
  • the beam state of the uplink transmission is determined by the beam state associated with the resource of the uplink transmission.
  • the uplink transmission resource is determined by the DCI information for scheduling or activating the uplink transmission; the association between the uplink transmission resource and the beam status is determined by high-level signaling and/or MAC signaling.
  • determining the power control parameter for uplink transmission according to the beam state includes one of the following: determining the power control parameter for uplink transmission according to the power control parameter or power control parameter number contained in the beam state; and according to the beam state and power control The correlation of the parameters determines the power control parameters for uplink transmission.
  • the correlation between the beam state and the power control parameter includes at least one correlation unit of the beam state and the power control parameter; the correlation unit of the beam state and the power control parameter includes: the number of the correlation unit of the beam state and the power control parameter , At least one of beam status and power control parameters.
  • the correlation between the beam state and the power control parameter includes: the beam state includes the power control parameter; the power control parameter includes the beam state; and the correlation between the beam state number and the power control parameter number.
  • the power control parameters include at least one of the following: path loss measurement parameters, target received power, path loss compensation factors, and closed-loop power control parameters.
  • the power control parameters include at least one of the following: PUSCH path loss measurement parameters, PUSCH target received power, PUSCH Path loss compensation factor, the closed-loop power control parameter of PUSCH.
  • the power control parameters include at least one of the following: PUCCH path loss measurement parameters, PUCCH target received power, and PUCCH closed-loop power control parameters.
  • the power control parameters include at least one of the following: path loss measurement parameters of the SRS, target received power of the SRS, and closed-loop power control parameters of the SRS.
  • the power control parameters include at least one of the following: path loss measurement parameters, PUSCH target received power, PUSCH path loss compensation factor, PUSCH closed-loop power control parameters, PUCCH target received power, PUCCH closed-loop power control parameters.
  • the power control parameters include at least one of the following: path loss measurement parameters, PUSCH target received power, PUSCH path loss compensation factor, PUSCH
  • path loss measurement parameters PUSCH target received power
  • PUSCH path loss compensation factor PUSCH
  • the power control parameter may be represented by a power control parameter number.
  • the power control parameter number is the number of the power control parameter in the predetermined power control parameter set.
  • the characteristics of the beam state include at least one of the following: a beam state configured or associated with SRS resources; a beam state used for uplink transmission; and a beam state not only used for downlink transmission.
  • the beam status used for uplink transmission not only the beam status used for downlink transmission, and/or the beam status configured or associated with the SRS resource, has an association relationship with the power control parameter.
  • the beam state used for uplink transmission not only the beam state used for downlink transmission, and/or the beam state configured or associated with the SRS resource, has an association relationship with the power control parameter.
  • the beam state of the configured or associated SRS resource has an association relationship with the power control parameter of the PUSCH.
  • the beam state used for uplink transmission has an association relationship with the power control parameter of PUSCH, the power control parameter of PUCCH, and/or the power control parameter of SRS.
  • the beam state when the beam state is used for PUSCH transmission, the beam state is configured or associated with SRS resources.
  • the beam state used for PUSCH transmission includes: the beam state is used to determine the transmission mode of PUSCH transmission, such as transmitting beam.
  • the path loss measurement parameters included or associated with the beam state are used to determine at least one of the following path loss measurement parameters for uplink transmission: PUSCH transmission, PUCCH transmission, SRS transmission, and PRACH transmission.
  • the path loss measurement parameter associated with the beam state can be used to determine the path loss measurement parameter of the PUSCH transmission, or it can be used to determine Path loss measurement parameters for PUCCH transmission.
  • the path loss measurement parameter associated with the beam state is determined by the reference signal RS in the beam state; or, when the beam state is not configured or the path loss measurement parameter is not provided, the beam state is associated
  • the path loss measurement parameter is determined by the RS in the beam state.
  • the RS in the beam state includes: the RS included in the QCL information of the beam state.
  • the RS included in the QCL information of the beam state may include one of the following: downlink RS included in the QCL information of the beam state; periodic RS included in the QCL information of the beam state; and QCL information of the beam state Included semi-persistent RS.
  • the downlink RS includes: SSB or CSI-RS; the periodic RS includes: SSB or periodic CSI-RS; and the semi-persistent RS includes: semi-persistent CSI-RS.
  • the RS in the beam state includes at least one of the following features: downlink RS, periodic RS, semi-persistent RS, first type QCL type RS, second type QCL type RS.
  • the first type of QCL type includes one of the following: type A, type B, type C, or a QCL type corresponding to QCL parameters other than spatial parameters;
  • the second type of QCL type includes one of the following: type D , Or include the QCL type corresponding to the spatial parameter.
  • the path loss measurement parameters associated with the beam state are determined by the reference signal RS in the beam state and include at least one of the following: in the case that the beam state includes the RS of the second type QCL type, according to the beam state included
  • the second type of QCL RS determines the path loss measurement parameters associated with the beam state; in the case that the beam state does not include the second type of QCL RS, the beam state is determined according to the first type of QCL RS included in the beam state.
  • the frequency range FR 1 refers to a spectrum range lower than or equal to a predetermined frequency.
  • FR 2 refers to the spectrum range higher than the predetermined frequency.
  • the predetermined frequency is 6 GHz, or 7 GHz.
  • the path loss measurement parameter associated with the beam state is determined by at least one of the following: the cell where the uplink transmission is located or the first communication node The path loss measurement parameters of the cell with the smallest number in the configured cell; the bandwidth part (BandWidth Part, BWP) where the uplink transmission is located, the active BWP in the cell where the uplink transmission is located, or the BWP with the smallest BWP number in the cell where the uplink transmission is located Path loss measurement parameters; path loss measurement parameters determined according to the Control Resource Set (CORESET).
  • CORESET Control Resource Set
  • the high-level signaling is the path loss measurement parameter of the cell with the smallest number among the cell where the uplink transmission is located or the cell where the first communication node is configured. In an embodiment, the high-level signaling is the BWP where the uplink transmission is located, the active BWP in the cell where the uplink transmission is located, or the path loss measurement parameter of the BWP with the smallest BWP number in the cell where the uplink transmission is located.
  • determining the beam status associated with the uplink transmission includes: determining the beam status associated with the uplink transmission through the indication information of the beam status.
  • the correspondence between the indication information of the beam status and the beam status in the specific beam status set is determined in a predefined manner; or, the indication information of the beam status and the specific beam status are determined through high-level signaling or MAC signaling.
  • the method for determining the power control parameters for uplink transmission includes at least one of the following: determining a corresponding set of power control parameters according to the value of the indication information of each beam state; The beam state determines a set of power control parameters.
  • the corresponding set of power control parameters is determined according to the value of the indication information of each beam state, and at least one of the following conditions is satisfied: uplink transmission is based on non-codebook transmission; beam state is associated with at least one SRS Resources; the number of ports of SRS resources associated with beam status is equal to 1.
  • a set of power control parameters is determined according to the beam state indicated by the indication information of the beam state, and at least one of the following conditions is met: the uplink transmission is a codebook-based transmission; the beam state is associated with one SRS resource; the beam state The number of ports of the associated SRS resource is greater than or equal to 1.
  • Fig. 2 is a flowchart of another method for determining power control parameters provided by an embodiment of the present application. This embodiment is applied to the second communication node. As shown in Figure 2, this embodiment includes S210-S220.
  • S220 Configure or indicate a beam state associated with uplink transmission, and the beam state associated with uplink transmission is used to determine a power control parameter for uplink transmission.
  • the beam state associated with uplink transmission includes: at least one beam state in a specific set of beam states.
  • the beam state includes at least one of the following: QCL state, TCI state, spatial relationship information, reference signal information, spatial filter information, and precoding information.
  • the uplink transmission includes at least one of the following: PUSCH transmission, PUCCH transmission, SRS transmission, and PRACH transmission.
  • the path loss measurement parameters included or associated with the beam state are used to determine at least one of the following path loss measurement parameters for uplink transmission: PUSCH transmission, PUCCH transmission, SRS transmission, and PRACH transmission.
  • the specific beam state set includes: a basic beam state set; wherein, the basic beam state set includes at least one of the following features: the basic beam state set includes at least one beam state; the basic beam state set passes through a higher layer Signaling configuration or reconfiguration; the basic beam state set is used to determine at least one of the following channel or signal transmission parameters: PDCCH, PDSCH, channel state information reference signal CSI-RS, PUSCH, PUCCH, SRS.
  • the specific beam state set includes: a first beam state set; wherein the first beam state set includes at least one of the following features: the first beam state set includes at least one of the basic beam state sets Beam state; the beam state of the first beam state set is configured or reconfigured through higher layer signaling, or activated through MAC signaling; the first beam state set is used to determine the transmission parameters of at least one of the following channels or signals: PUSCH, PUCCH , SRS; the basic beam state set includes at least one of the following features: the basic beam state set includes at least one beam state; the basic beam state set is configured or reconfigured through high-level signaling; the basic beam state set is used To determine the transmission parameters of at least one of the following channels or signals: PDCCH, PDSCH, channel state information reference signal CSI-RS, PUSCH, PUCCH, SRS.
  • the first beam state set includes at least one of the following features: the first beam state set includes at least one of the basic beam state sets Beam state; the beam state of the first beam state set is configured
  • the specific beam state set includes: a second beam state set; wherein the second beam state set includes at least one of the following features: the second beam state set includes at least one of the first beam state set One beam state; the beam state of the second beam state set is activated by MAC signaling; the second beam state set is used to determine the transmission parameters of at least one of the following: PUSCH, PUCCH, SRS; the first beam state set includes at least the following One of the characteristics: the first beam state set includes at least one beam state in the basic beam state set; the beam state of the first beam state set is configured or reconfigured through higher layer signaling, or activated through MAC signaling; the first beam state The set is used to determine the transmission parameters of at least one of the following channels or signals: PUSCH, PUCCH, SRS; the basic beam state set includes at least one of the following characteristics: the basic beam state set includes at least one beam state; the basic beam state set passes High-level signaling configuration or reconfiguration; the basic beam state set is used to determine at least one of the
  • determining the transmission parameters of the aforementioned channel and/or signal includes: determining the transmission parameters of the channel, and/or the transmission or reception parameters of the channel, such as transmission/reception beam, spatial relationship, reference signal to be referred to, transmission /Receive filter, precoding, etc.
  • the first beam state set includes at least one beam state in the basic beam state set, and is configured or reconfigured through higher layer signaling.
  • the beam states included in the first beam state set are a subset of the basic beam state set, which can be activated through MAC signaling.
  • the activated beam states in the first set of beam states are a subset of the basic set of beam states.
  • the beam state associated with uplink transmission is used to determine the power control parameter of uplink transmission, including one of the following: determining the power control parameter of uplink transmission according to the power control parameter or power control number contained in the beam state; The association relationship between the state and the power control parameter determines the power control parameter of the uplink transmission.
  • the correlation between the beam state and the power control parameter includes: at least one correlating unit of the beam state and the power control parameter; the correlating unit of the beam state and the power control parameter includes at least one of the following: beam state Unit number, beam state, power control parameter associated with power control parameter.
  • the beam status is indicated by one of the following information: the number of the beam status; the combination number of the beam status.
  • the association relationship between beam states and power control parameters includes one of the following: configuring at least one beam state and power control in a specific set of beam states through high-layer signaling or media access control MAC signaling Parameter association; each beam state in the first set of beam states is associated with a power control parameter.
  • the association relationship between the beam state and the power control parameter includes one of the following: configure the association between the number of the beam state in the basic beam state set and the power control parameter through high-level signaling; configure through high-level signaling The association between the number of the beam state in the first beam state set and the power control parameter; configure the association between the number of the active beam state in the first beam state set and the power control parameter through the media access control MAC signaling; configure the first beam state through the MAC signaling The association between the number of the active beam state in the two beam state set and the power control parameter.
  • the power control parameters include at least one of the following: path loss measurement parameters, target received power, path loss compensation factors, and closed-loop power control parameters.
  • the power control parameters include at least one of the following: PUSCH path loss measurement parameters, PUSCH target received power, PUSCH path Loss compensation factor, the closed-loop power control parameter of PUSCH.
  • the power control parameters include at least one of the following: PUCCH path loss measurement parameters, PUCCH target received power, and PUCCH closed-loop power control parameters.
  • the power control parameters include at least one of the following: path loss measurement parameters of the SRS, target received power of the SRS, and closed-loop power control parameters of the SRS.
  • the closed-loop power control parameters of the SRS include one of the following: an independent closed-loop SRS, a closed-loop shared with the PUSCH, and a closed-loop number shared with the PUSCH.
  • the power control parameters include at least one of the following: path loss measurement parameters, PUSCH target received power, PUSCH path loss compensation factor, PUSCH closed-loop power control parameters, PUCCH target received power, PUCCH closed-loop power control parameters.
  • the power control parameters include at least one of the following: path loss measurement parameters, PUSCH target received power, PUSCH path loss compensation factor, PUSCH closed loop Power control parameters, PUCCH target received power, PUCCH closed-loop power control parameters, SRS target received power, SRS closed-loop power control parameters.
  • the power control parameter may be represented by a power control parameter number. The power control parameter number is the number of the power control parameter in the predetermined power control parameter set.
  • configuring or instructing the beam status associated with uplink transmission includes: configuring or instructing the beam status associated with uplink transmission through the indication information of the beam status.
  • the beam state associated with uplink transmission includes at least one beam state.
  • the correspondence between the indication information of the beam status and the beam status in the specific beam status set is determined in a predefined manner; or, the indication information of the beam status and the specific beam status are determined through high-level signaling or MAC signaling.
  • the correspondence between the indication information of the beam state and the beam state in the predetermined set of beam states can be determined in a predefined manner.
  • the predefined manner includes: the indication information of the predefined beam state and a specific set of beam states The corresponding relationship table of the beam states, or the combination of beam states and beam states in a specific beam state set according to a predetermined sequence, and establish a corresponding relationship with the value of the indication information of the beam state.
  • configuring the indication information of the beam state through MAC signaling includes establishing, activating, and updating the corresponding relationship between the beam state and the beam state in a specific beam state set.
  • Table 1 is a mapping relationship table between the value of the indication information of configuring the beam state and the TCI state in a predefined manner provided in this application.
  • Table 1 A mapping relationship table between the value of the indication information of the beam state and the TCI state
  • the method for determining the power control parameters for uplink transmission includes at least one of the following: determining a corresponding set of power control parameters according to the value of the indication information of each beam state; The beam state determines a set of power control parameters.
  • the beam status indication information includes multiple TCI statuses that can be used for repeated transmission scenarios of uplink transmission or scenarios where multiple beams are sent simultaneously. Multiple repeated transmissions or simultaneous transmission of multiple uplink transmissions of multiple beams may correspond to A set of power control parameters. Or, each TCI state determines a set of power control parameters.
  • the corresponding set of power control parameters is determined according to the value of the indication information of each beam state, and at least one of the following conditions is satisfied: uplink transmission is based on non-codebook transmission; beam state is associated with at least one SRS Resources; the number of ports of SRS resources associated with beam status is equal to 1.
  • a set of power control parameters is determined according to the beam state indicated by the indication information of the beam state, and at least one of the following conditions is met: the uplink transmission is a codebook-based transmission; the beam state is associated with one SRS resource; the beam state The number of ports of the associated SRS resource is greater than or equal to 1.
  • the process of determining the power control parameter will be described from the perspective of the first communication node.
  • the first communication node is a UE, a user, a terminal, etc.
  • the second communication node is a base station, NodeB, NB, gNB, eNB, or a network.
  • the power control parameter of the uplink transmission is determined according to the TCI state.
  • the power control parameters include at least one of the following: path loss measurement parameters, target received power parameters, path loss compensation factors (also referred to as path loss compensation coefficients), and closed-loop power control parameters.
  • the power control parameter may also refer to indicating the power control parameter number from a pre-configured or predefined power control parameter set.
  • the power control parameter may also include at least one of the following: a path loss measurement parameter number, a target received power number, a path loss compensation factor number, and a closed-loop power control number.
  • the power control parameters are used for PUSCH transmission, PUCCH transmission, and/or SRS transmission.
  • the power control parameter number is a power control parameter set configured based on the corresponding transmission type.
  • the power control parameter number of PUSCH refers to the corresponding power control parameter in the power control parameter set configured for PUSCH.
  • the power control parameters include: path loss measurement parameters, PUSCH target received power parameters, path loss compensation coefficients, and/or PUSCH closed-loop power control parameters.
  • the power control parameters include: path loss measurement parameters, PUCCH target received power parameters, and/or PUCCH closed-loop power control parameters.
  • the power control parameters include: path loss measurement parameters and/or SRS target received power parameters.
  • the TCI status includes at least one piece of QCL information (ie, QCL status), and the QCL information includes reference signal information and QCL type parameters corresponding to the reference signal information.
  • the TCI state refers to the TCI state of one of the following channels, signals, or transmissions configured by the base station for the UE: PDCCH, PDSCH, CSI-RS, PUSCH, PUCCH, and/or SRS; or, the TCI state refers to the downlink configured by the base station to the UE.
  • the TCI state refers to the uplink channel or uplink signal configured by the base station to the UE, and the TCI state of the downlink channel or downlink signal transmission; the TCI state refers to the uplink channel and the downlink channel, the uplink signal and the downlink signal, or, The TCI state shared by the uplink transmission and the downlink transmission; it can also be said that the TCI state is the cell-based TCI state configured by the base station to the UE. Cells include serving cells, primary cells, secondary cells, and so on. Alternatively, the TCI state is a BWP-based TCI state configured to the UE by the base station.
  • determining the power control parameter of the uplink transmission according to the TCI state includes: the TCI state includes the power control parameter, or the TCI state and the power control parameter have an associated relationship.
  • the power control parameter included in the TCI state includes at least one of the following: the power control parameter included in the TCI state is a path loss reference signal (Path Loss-Reference Signal, PL-RS) of a path loss measurement parameter, which is used for At least one of the following channels, signals or transmissions: PUSCH, PUCCH, SRS; the power control parameter included in the TCI state is the closed-loop power control ID, which is used for at least one of the following channels, signals or transmissions: PUSCH, PUCCH, SRS; The power control parameter included in the TCI state is the target received power P0, which is used for PUSCH, and the P0 of PUCCH is obtained by the PUSCH P0+offset value offset.
  • PL-RS path loss reference signal
  • the offset is configured through higher layer signaling, or the power control parameter included in the TCI state is
  • the target received power P0 is used for the PUCCH, and the PUSCH P0 is obtained through the PUSCH P0+offset value offset, which is configured through high-level signaling;
  • the TCI state includes PUSCH P0 and alpha, PUCCH P0, and SRS P0.
  • the Y transmission powers are determined according to one of the following methods, where X, Y is an integer greater than or equal to 1, and X is greater than or equal to Y: determine Y TCI states in X TCI states, use P0 and alpha in these Y TCI states to calculate Y transmit powers; X TCI states Belong to Y groups, determine P0 and alpha of Y groups to calculate Y transmission powers respectively.
  • the P0 and alpha of the group include at least one of the following: the TCI state with the smallest number of the TCI state in the group includes or is associated with P0 for the P0 of the group; the TCI state in the group with the highest number The included or associated P0 of the TCI state is used for the P0 of the group; the TCI state included or associated with the smallest number of the TCI state in the group is used for the alpha of the group; the highest numbered TCI state of the TCI state in the group The included or associated alpha is used for the group's alpha; the average value of P0 of the TCI state in the group is used for the group's P0; the maximum value of the P0 of the TCI state within the group is used for the group's P0; the TCI within the group The minimum value of P0 of the state is used for the P0 of the group; the average alpha value of the TCI state in the group is used for the alpha of the group; the maximum value of the alpha of
  • TCI states having at least one of the following characteristics belong to the same group: the TCI states are associated with the same group; the TCI states include the same group ID.
  • the grouping includes grouping of the following characteristics: channel characteristics.
  • the correlation between the TCI state and the power control parameter means that the correlation between the TCI state and the power control parameter includes the TCI state number and the power control parameter number.
  • the power control parameter number includes at least one of the following: open-loop power control parameter number, closed-loop power control parameter number, and path loss measurement parameter number.
  • the power control parameter set is one of the following sets: PUSCH power control set; PUCCH power control set; SRS power control set; unified power control set.
  • the TCI state number refers to the number of the TCI state in one of the following sets: RRC configuration or TCI state set of PDSCH activated by MAC CE; RRC configuration or TCI state set of PDCCH activated by MAC CE; RRC configuration or The TCI state set of PUCCH activated by MAC CE; the TCI state set of PUSCH activated by RRC configuration or MAC CE.
  • determining the power control parameter of the uplink transmission according to the TCI state further includes at least one of the following: determining the path loss measurement parameter of the uplink transmission according to the downlink reference signal in the TCI state; according to the periodic or semi-continuous state in the TCI state
  • the downlink reference signal determines the path loss measurement parameter of the uplink transmission; the path loss measurement parameter of the uplink transmission is determined according to the type D downlink reference signal in the TCI state; the TCI state is the TCI state configured by CORESET; the path loss measurement parameter is based on the CORESET TCI state
  • the downlink RS determines the PL-RS for uplink transmission; the PL-RS for uplink transmission is determined according to the downlink RS in the TCI state of the CORESET with the smallest number.
  • the downlink reference signal includes at least one of the following: SSB and CSI-RS.
  • the TCI state can be divided into multiple levels of configuration, and the association between the power control parameters and the TCI state of different levels is explained.
  • the second communication node configures the first communication node to associate power control parameters with different levels of TCI status as an example to describe the process of association configuration between power control parameters and different levels of TCI status.
  • the second communication node is a base station
  • the first communication node is a UE.
  • Fig. 3 is a schematic diagram of the association between a power control parameter and different levels of TCI states provided by the present application.
  • determining the power control parameter of the uplink transmission according to the TCI state corresponding to the uplink transmission includes: determining the TCI state corresponding to the uplink transmission; and determining the TCI state and the power control parameter corresponding to the uplink transmission.
  • determining the TCI status corresponding to the uplink transmission includes at least one of the following: determining the TCI status corresponding to the PUSCH transmission according to the TCI status indicated in the DCI that schedules or triggers the PUSCH transmission; and determines the TCI status corresponding to the PUSCH transmission configuration
  • the TCI state corresponding to PUSCH transmission; the TCI state corresponding to PUCCH transmission is determined according to the TCI state associated with the PUCCH resource transmitted by PUCCH; the TCI state corresponding to SRS transmission is determined according to the SRS spatial relationship associated with the SRS resource of SRS transmission.
  • the TCI status in the above information is described by one of the following information:
  • the basic TCI state set is configured by the base station for the UE.
  • the basic TCI state set includes at least one TCI state, which is used to determine the transmission parameters of channels or signals such as PDCCH, PDSCH, CSI-RS, PUSCH, PUCCH, and/or SRS.
  • the TCI state in the basic TCI state set includes or is associated with power control parameters.
  • the power control parameters of the uplink transmission can be determined according to the TCI status corresponding to the uplink transmission.
  • the power control parameters include: path loss measurement parameters, target received power parameters, path loss compensation coefficients, and/or closed-loop power control parameters.
  • different uplink transmissions may have different requirements for power control parameters.
  • the power control parameters include: path loss measurement parameters, PUSCH target received power parameters, path loss compensation coefficients, PUSCH closed-loop power control parameters, PUCCH targets The received power parameter, the closed-loop power control parameter of PUCCH, and/or the target received power parameter of SRS.
  • the corresponding TCI status information in the basic TCI status set can determine the power control parameters applied to the PUSCH transmission.
  • Description mode two the number of the TCI state in the first TCI state set, or the number of the TCI state in a subset of the first TCI state set.
  • the first TCI state set is configured or activated for the UE by the base station through high-layer signaling or MAC CE.
  • the first TCI state set includes at least one TCI state or TCI state combination, and the first TCI state set is a subset of the basic TCI state set.
  • the first TCI state set is used to determine uplink transmission, for example, transmission parameters of channels or signals such as PUSCH, PUCCH, and/or SRS.
  • the TCI state in the first TCI state set includes or is associated with power control parameters.
  • the power control parameters of the uplink transmission can be determined according to the TCI status corresponding to the uplink transmission.
  • the power control parameters included or associated with one TCI state in the first TCI state set and the same TCI state in the basic TCI state set are different types of power control parameters. That is, the parameters in the power control parameters may be respectively associated with different levels of TCI state sets.
  • the TCI state in the basic TCI state set is associated with path loss measurement parameters.
  • the TCI state in the first TCI state set is associated with other power control parameters, including at least one of the following: target received power, PUSCH target received power, PUCCH target received power, path loss compensation coefficient, closed loop power control parameter, PUSCH closed loop Power control parameters, or PUCCH closed-loop power control parameters.
  • the first TCI state set is configured for PUSCH, PUCCH, and/or SRS respectively
  • the first TCI state set for PUSCH, PUCCH, and SRS is respectively associated with power control parameters related to PUSCH, PUCCH, and SRS.
  • the TCI state associated path loss measurement parameter in the first TCI state set is used to determine the path loss measurement parameter of PUSCH transmission, PUCCH transmission, and/or SRS transmission.
  • the TCI state in the basic TCI state set is associated with other power control parameters, including at least one of the following: target received power, PUSCH target received power, PUCCH target received power, path loss compensation coefficient, closed-loop power control parameter, PUSCH closed-loop power Control parameters, or PUCCH closed-loop power control parameters.
  • a TCI state in the first TCI state set and the same TCI state in the basic TCI state set include or are associated with power control parameters of the same type
  • use the power control parameters in the first TCI state set or use The newer one of the power control parameters in the first TCI state set and the basic TCI state set. That is, the parameters in the power control parameters may be associated with different levels of TCI state sets.
  • the information of the MAC layer for example, the power control parameters included or associated in the first TCI state set is used to update the power control parameters included or associated with the same TCI state in the basic TCI state set.
  • the premise of using the newer one of the power control parameters in the first TCI state set and the basic TCI state set is that the association relationship between the first TCI state set and the power control parameter has taken effect.
  • the UE takes effect after a period of time after receiving the MAC CE of the association relationship between the first TCI state set and the power control parameter. For example, 3 subframes after the UE sends the MAC CE Acknowledge (ACK) information.
  • ACK Acknowledge
  • the first TCI state set includes more than one TCI state or one TCI state combination
  • further scheduling information is required, for example, physical layer indication information DCI indicates the TCI state corresponding to the uplink transmission based on the first TCI state set.
  • Description mode three the number of the TCI state in the second TCI state set or the subset of the second TCI state set, or the number of the TCI state combination in the second TCI state set or the subset of the second TCI state set.
  • the second TCI state set is configured or activated for the UE by the base station through high-layer signaling or MAC CE.
  • the second TCI state set is a subset of the first TCI state set or a basic TCI state set, and includes at least one TCI state or at least one TCI state combination.
  • the first TCI state set and the basic TCI state set are contracted as described above.
  • the second TCI state set includes more than one TCI state or one TCI state combination
  • further scheduling information is required, for example, physical layer indication information DCI is further based on the second TCI state set to indicate the corresponding TCI state for uplink transmission .
  • the TCI state in the second TCI state set includes or is associated with power control parameters.
  • the power control parameters of the uplink transmission can be determined according to the TCI status corresponding to the uplink transmission.
  • the power control parameters included or associated with one TCI state in the second TCI state set and the same TCI state in the basic TCI state set or the first TCI state set are different types of power control parameters. That is, the parameters in the power control parameters may be respectively associated with different levels of TCI state sets.
  • the basic TCI state set and/or the TCI state associated path loss measurement parameters in the first TCI state set are used for PUSCH transmission, PUCCH transmission, and/or SRS transmission.
  • the TCI state in the second TCI state set is associated with other power control parameters, including at least one of the following: target received power, PUSCH target received power, PUCCH target received power, path loss compensation coefficient, closed loop power control parameter, PUSCH closed loop Power control parameters, PUCCH closed-loop power control parameters.
  • the TCI state associated path loss measurement parameter in the second TCI state set is used for PUSCH transmission, PUCCH transmission, and/or SRS transmission.
  • the basic TCI state set and/or the TCI state in the first TCI state set is associated with other power control parameters, including at least one of the following: target received power, PUSCH target received power, PUCCH target received power, path loss compensation coefficient, closed loop Power control parameters, PUSCH closed-loop power control parameters, PUCCH closed-loop power control parameters.
  • the second TCI state set is configured for PUSCH, PUCCH, and/or SRS respectively
  • the second TCI state set for PUSCH, PUCCH, and SRS is respectively associated with power control parameters related to PUSCH, PUCCH, and SRS.
  • the indication information of the power control parameters comes from a pre-configured set, which is also called a power control parameter set.
  • the power control parameter set is configured by higher layers.
  • the PL-RS parameter set includes 64 PL-RS information
  • the PO parameter set includes 32 PO parameters.
  • 6 bits are required to indicate the overhead of a PL-RS, and 5 bits are required to indicate a P0.
  • this embodiment proposes to determine a subset of power control parameters for the activated TCI state set, which is called the activated power control parameter set, which includes the following methods: configure M power controls through high-layer signaling
  • the control parameter is called the activated power control parameter set; the activated power control parameter set is used to determine the power control parameters of the activated TCI state.
  • At least one of the following methods is used to select N power control parameters or N groups of power control parameters from M power control parameters: bitmap; predefined or configured parameters.
  • the bit map method includes: a bit map with a length of M, and each bit corresponds to the activation/deactivation state of one or one group of power control parameters.
  • N bits in the bit map are active, for example, the active state is 1; or, the length is a*M Bit map, each a bit corresponds to the activation/deactivation state of 1 power control parameter.
  • a is an integer greater than or equal to 1.
  • the manner of pre-defining or configuring parameters includes: activating one or more groups in the group in a manner of pre-defining or configuring parameters.
  • the activated power control parameter set may also be indicated by DCI information.
  • the size of the activated power control parameter set is configurable. For example, when the difference in interference between the beams on the base station side is relatively small, the activated power control parameter set may be relatively small, and conversely, the activated power control parameter set may be relatively large.
  • the activated power control parameter set includes an activated path loss measurement parameter set, an activated target received power parameter set, an activated path loss compensation coefficient set, an activated open loop power control parameter set, and/or an activated set of power control parameters.
  • Set of closed-loop power control parameters Each TCI state or TCI state combination is respectively associated with multiple power control parameter numbers in the activated power control parameter set.
  • the activated power control parameter set includes at least one activated power control parameter, and each activated power control parameter includes a path loss measurement parameter, a target received power parameter, a path loss compensation coefficient, an open loop power control parameter, and / Or closed-loop power control parameters. Associate each TCI state or TCI state combination with a power control parameter number in an active power control parameter set.
  • multiple TCI states and TCI state combinations indicated in the same signaling may indicate multiple P0/alpha values in a differential manner.
  • a MAC CE needs to indicate TCI status 0, TCI status 1, and the combination of TCI status 0 and 1 respectively correspond to 3 sets of power control parameters.
  • the P0 value of TCI status 0 is the P0 parameter in the power control parameter set indicating activation.
  • the number of TCI status 1 and the combination of TCI status 0 and 1 is indicated by a way of indicating the deviation value of the P0 value relative to TCI status 0.
  • the indication mode of the deviation value is determined by the predefined mode and/or the configuration parameter mode.
  • the DCI that schedules or triggers PUSCH transmission indicates the TCI state related to the PUSCH transmission, or obtains the TCI state related to the PUSCH transmission according to the MAC CE information, and determines the power control parameter of the PUSCH transmission according to the TCI state related to the PUSCH transmission.
  • the TCI state related to PUSCH transmission includes one or more TCI states.
  • Determining the power control parameters of PUSCH transmission according to the TCI state related to PUSCH transmission includes at least one of the following:
  • Manner 1 Determine the power control parameter of PUSCH transmission according to the power control parameter of PUSCH included in the TCI state related to PUSCH transmission.
  • the TCI status information includes power control parameters.
  • the power control parameters include at least power control parameters for PUSCH transmission. Some power control parameters in the power control parameters, such as path loss measurement parameters, can also be used to determine PUCCH transmission or SRS transmission power.
  • Manner 2 Determine the transmission power control parameter of the PUSCH according to the association between the TCI state related to PUSCH transmission and the power control parameter of the PUSCH. For example, according to the TCI status of PUSCH transmission, the power control parameter of PUSCH transmission is determined by checking the association table of TCI status and the power control parameter of PUSCH.
  • the table of the association between the TCI state and the power control parameter of the PUSCH includes at least one association between the TCI state and the power control parameter of the PUSCH.
  • Each TCI state and PUSCH power control parameter association relationship includes at least one of the following: TCI state and PUSCH power control parameter association relationship number, TCI state number, PUSCH power control parameter, PUSCH power control parameter number.
  • the TCI status number refers to the number of the TCI status in a specific TCI status set or a combination of the number of the TCI status.
  • the specific TCI state set includes one of the following: a TCI state set configured or activated for one or a combination of PDSCH, PDCCH (or control resource set CORESET), PUSCH, PUCCH, or SRS, basic TCI state set, first TCI state set, Or the second TCI state set.
  • the number of the association relationship between the TCI state and the power control parameter of the PUSCH has an association relationship with at least one TCI state number.
  • At least one TCI state number is determined by the combination of the number of the TCI state and/or the number of the TCI state in the specific TCI state set. For example, if a specific TCI state set includes two TCI states, the TCI state numbers are 0 and 1, and the combination of TCI state numbers is 0 and 1.
  • the TCI status and the PUSCH power control parameter association number 0, 1, 2 correspond to the TCI status number 0, 1, 0, and 1, respectively.
  • the number of the association relationship between the TCI state and the power control parameter of the PUSCH is associated with more than one TCI state number, and the more than one TCI state number is determined by the combination of the number of the TCI state in the specific TCI state set.
  • the association relationship between the TCI state and the power control parameters of the PUSCH includes X sets of power control parameters of the PUSCH, and X is 0, 1, or an integer greater than 1.
  • the power control parameter corresponding to the TCI state and the PUSCH power control parameter association number is the TCI state and PUSCH
  • the relationship corresponds to more than one TCI state number related to PUSCH transmission; when X is greater than 1, then X sets of power control parameters are respectively applied to multiple TCI states corresponding to the TCI state and the PUSCH power control parameter correlation number Numbered X packets related PUSCH transmission.
  • a TCI state and PUSCH power control parameter association relationship corresponds to 4 TCI state numbers 0, 1, 2 and 3
  • the two sets of PUSCH power control parameters correspond to the two groups of PUSCH transmissions with TCI state numbers from 0 to 3.
  • the PUSCH transmission power control parameter is determined according to the sounding reference signal resource indication (Sounding Reference Signal Resource Indication, SRI) associated with the TCI state related to PUSCH transmission. For example, according to the SRI associated with the TCI state, a mapping relationship table between the SRI and the power control parameter of the PUSCH is searched to determine the power control parameter of the PUSCH transmission.
  • SRI Sounding Reference Signal Resource Indication
  • the TCI status includes SRI information.
  • the SRI information indicates one or more SRS resources in the SRS resource set.
  • the TCI status is associated with the SRI information.
  • one or more SRS resource numbers included in the TCI status are consistent with one or more SRS resource numbers indicated by the SRI.
  • FIG. 4 is a schematic diagram of the configuration of TCI states at different levels according to an embodiment of the present application.
  • the TCI status of PUSCH 1 is indicated from the TCI status in pool #2, #1, or #0 (pool #2, #1, or #0).
  • the TCI status is configured in pool#1 or #0 to be associated with power control parameters. Therefore, the power control parameter for PUSCH 1 transmission can be determined according to the power control parameter associated with its corresponding TCI state.
  • the TCI status of PUSCH 2 is indicated from the TCI status in pool#3.
  • the TCI state in pool#3 includes at least one TCI state combination ID, and each TCI state combination ID indicates one or more TCI states.
  • Each TCI state combination ID is associated with power control parameters.
  • the association relationship between the TCI status combination ID and power control parameters is indicated by MAC CE or higher layer signaling.
  • the TCI state related to PUCCH transmission is determined, and the power control parameter of the PUCCH is determined according to the TCI state.
  • the TCI status related to PUCCH transmission is determined according to one of the following: the TCI status included in the PUCCH spatial relationship associated with the PUCCH resource corresponding to the PUCCH transmission; the TCI status associated with the PUCCH resource corresponding to the PUCCH transmission.
  • the base station configures a basic TCI state set for the UE through high-level signaling, such as RRC signaling.
  • the basic TCI state set is used to determine channels such as PDCCH, PDSCH, CSI-RS, PUSCH, PUCCH, and/or SRS. Or the transmission parameters of the signal.
  • the TCI state related to PUCCH transmission comes from the basic TCI state set, or the first TCI state set which is a subset of the basic TCI state set.
  • the first TCI state set is configured or activated by higher layer signaling or MAC CE based on the basic TCI state set.
  • the TCI state comes from the second TCI state set, and the second TCI state set is activated by the MAC CE.
  • the second TCI state set is determined based on the basic TCI state set and/or the first TCI state set, and is a subset of the basic TCI state or the first TCI state set.
  • each TCI state member in the first TCI state set or the second TCI state set is associated with a set of power control parameters.
  • the association relationship between the TCI state and the power control parameter may be configured by higher layer signaling, and/or configured or updated by MAC signaling.
  • FIG. 5 is a schematic diagram of another configuration of different levels of TCI states provided by an embodiment of the present application.
  • the corresponding PUCCH resource has an association relationship with a spatial relationship (denoted as spatial relation).
  • the space associated with the PUCCH resource may come from the PUCCH spatial relation parameter pool configured by high-level signaling.
  • the PUCCH spatial relation in the parameter pool indicates the TCI status of the PUCCH transmission reference, and the TCI status comes from pool#
  • the TCI state in 0 or #1 may correspond to the basic beam state set and the first beam state set, respectively.
  • the power control parameter of the PUCCH transmission is determined according to the power control parameter associated with the aforementioned reference TCI state (state).
  • the spatial associated with the PUCCH resource comes from the TCI state of pool#2, #1 or #0, which can correspond to the second beam state set, the first beam state set, and the basic beam state set, respectively.
  • the pool#2' in the figure refers to the second beam state set separately configured for PUCCH.
  • Pool#2 is a set of beam states shared by PUCCH and other transmissions.
  • the power control parameter of the PUCCH transmission is determined according to the power control parameter associated with the TCI state corresponding to the spatial relationship associated with the PUCCH resource.
  • the SRS power control parameters may be determined in the following manner.
  • the base station configures at least one SRS resource for the UE, and configures at least one SRS resource set, and each SRS resource set includes at least one SRS resource number and SRS power control parameters.
  • the SRS resource set includes spatial relationship parameters, and the spatial relationship parameters include one of the following: SSB, CSI-RS, SRS, and TCI status.
  • the power control parameter is determined according to the SRS resource set to which the SRS resource of the SRS transmission belongs.
  • a set of SRS resources corresponds to a set of power control parameters, and all SRS resources use the same power control parameters.
  • the base station configures a basic TCI state set for the UE.
  • the basic TCI state set includes at least one TCI state, which is used to determine the transmission parameters of channels or signals such as PDCCH, PDSCH, CSI-RS, PUSCH, PUCCH, and/or SRS.
  • the TCI state in the basic TCI state set contains power control parameters.
  • the power control parameter of the STS transmission corresponding to the SRS resource is determined according to the power control parameter associated with the TCI state associated with the SRS resource.
  • the power control parameters of all SRS resources in the SRS resource set need to be consistent, and a set of power control parameters needs to be determined according to the respective power control parameters of all SRS resources in the SRS resource set. Power control parameters.
  • the SRS resource set includes multiple SRS resource groups. For example, in a multi-transmission point (Transmission Point, TRP) multi-panel (panel) scenario, it needs to be based on the corresponding power of the SRS resources in the SRS resource group.
  • the control parameters determine a set of power control parameters for the corresponding SRS resource grouping.
  • the method for determining a set of power control parameters based on at least one set of power control parameters associated with the TCI state corresponding to at least one SRS resource in the SRS resource set or SRS resource group includes at least one of the following: SRS resource set or The specific SRS resource number in the SRS resource group, for example, the smallest or largest number, the power control parameter associated with the TCI state corresponding to the SRS resource; the SRS resource set or the TCI state associated with all SRS resources in the SRS resource group The average value of the power control parameters.
  • the power control parameters include, for example, P0 parameters, alpha parameters, and/or PL-RS parameters.
  • P0 parameters for example, P0 parameters, alpha parameters, and/or PL-RS parameters.
  • PL-RS parameters for example, P0 parameters, alpha parameters, and/or PL-RS parameters.
  • FIG. 6 is a schematic diagram of a relationship between a TCI state, PC parameters, and SRS resources provided by an embodiment of the present application.
  • the embodiments of the present application propose the following solutions.
  • the base station configures at least one TCI state for the UE, and the TCI state is associated with at least one SRS resource.
  • the TCI state is associated with one SRS resource.
  • the TCI state is associated with at least one SRS resource.
  • the TCI status is associated with the SRS resource, including: the TCI status includes the SRS resource number, or the TCI status number has an association relationship with the SRS resource number.
  • the DCI that schedules or triggers PUSCH transmission includes TCI state indication information, and the value of each TCI state indication information indicates one Or multiple TCI states.
  • the DCI that schedules or triggers PUSCH transmission includes TCI state indication information, and each TCI state indication information The value of indicates one or more TCI states.
  • the DCI that schedules or triggers the PUSCH includes transmit precoding matrix indication (Transmitted Precoding Matrix Indication, TPMI) information.
  • precoding matrix indication Transmitted Precoding Matrix Indication
  • TPMI Transmitted Precoding Matrix Indication
  • At least one TPMI information is included in the DCI that schedules or triggers PUSCH transmission. At least one TPMI information can be jointly coded.
  • the DCI that schedules or triggers PUSCH transmission includes SRI information.
  • SRI information is included in the DCI that schedules or triggers PUSCH transmission. At least one SRI information can be jointly coded.
  • the UE determines the sending parameter of the PUSCH transmission by scheduling or triggering the PUSCH transmission by at least one of the following included in the DCI: at least one TCI status indication information, at least one TPMI indication information, and at least one SRI indication information.
  • the TCI status is related to the power control parameters.
  • the UE obtains the TCI state corresponding to the PUSCH transmission by scheduling or triggering the DCI of the PUSCH transmission, and uses the TCI state to associate with the power control parameter to obtain the power control parameter of the PUSCH transmission.
  • FIG. 7 is a structural block diagram of a power control parameter determination apparatus provided in an embodiment of the present application. This embodiment is applied to the first communication node. As shown in FIG. 7, this embodiment includes: a first determining module 310 and a second determining module 320.
  • the first determining module 310 is configured to determine the beam state of uplink transmission.
  • the second determining module 320 is configured to determine the power control parameter for uplink transmission according to the beam state.
  • the beam state includes at least one of the following: quasi-co-located QCL state, transmission configuration indication TCI state, spatial relationship information, reference signal information, spatial filter information, and precoding information.
  • the power control parameter determination device provided in this embodiment is configured to implement the power control parameter determination method applied to the first communication node in the embodiment shown in FIG. 1.
  • the implementation principle of the power control parameter determination device provided in this embodiment is as shown in FIG.
  • the method for determining the power control parameter applied to the first communication node in the embodiment is similar, and will not be repeated here.
  • the uplink transmission includes at least one of the following: PUSCH transmission, PUCCH transmission, SRS transmission, and PRACH transmission.
  • the beam state includes at least one beam state.
  • the beam state is indicated by one of the following information: the number of at least one beam state in the specific beam state set; the number of at least one beam state in the active beam state in the specific beam state set; the specific beam The combination number of at least one beam state in the state set; or the combination number of at least one beam state in the active beam state in the specific beam state set; wherein, the specific beam state set is determined by high-level signaling and/or MAC layer signaling. Make configuration or activation.
  • the beam status of the uplink transmission includes at least one of the following: the beam status referenced by the uplink transmission; the beam status associated with the uplink transmission; the beam status indicated by the downlink control information DCI for scheduling or triggering the uplink transmission; The beam state configured for uplink transmission by high-layer signaling; the beam state associated with the resource for uplink transmission.
  • the second determining module is set to one of the following: determining the power control parameter for uplink transmission according to the power control parameter or power control parameter number contained in the beam state; and determining the power control parameter according to the correlation between the beam state and the power control parameter Power control parameters for uplink transmission.
  • the correlation between the beam state and the power control parameter includes at least one correlation unit of the beam state and the power control parameter; the correlation unit of the beam state and the power control parameter includes: the number of the correlation unit of the beam state and the power control parameter , At least one of beam status and power control parameters.
  • the power control parameters include at least one of the following: path loss measurement parameters, target received power, path loss compensation factors, and closed-loop power control parameters.
  • the power control parameters include at least one of the following: PUSCH path loss measurement parameters, PUSCH target received power, PUSCH Path loss compensation factor, PUSCH closed-loop power control parameter;
  • the power control parameter includes at least one of the following: PUCCH path loss measurement parameter, PUCCH Target received power, the closed-loop power control parameter of PUCCH;
  • the power control parameter includes at least one of the following: SRS path loss measurement parameter, SRS target Received power, the closed-loop power control parameter of SRS;
  • the power control parameter includes at least one of the following: path loss measurement parameter, PUSCH target received power, PUSCH path loss Compensation factor, PUSCH closed-loop power control parameters,
  • the characteristics of the beam state include at least one of the following: a beam state configured or associated with SRS resources; a beam state used for uplink transmission; and a beam state not only used for downlink transmission.
  • the beam state when the beam state is used for PUSCH transmission, the beam state is configured or associated with SRS resources.
  • the path loss measurement parameters included or associated with the beam state are used to determine at least one of the following path loss measurement parameters for uplink transmission: PUSCH transmission, PUCCH transmission, SRS transmission, and PRACH transmission.
  • the path loss measurement parameter associated with the beam state is determined by the reference signal RS in the beam state; or, when the beam state is not configured or the path loss measurement parameter is not provided, the beam state is associated
  • the path loss measurement parameter is determined by the reference signal RS in the beam state.
  • the RS in the beam state includes at least one of the following features: downlink RS, periodic RS, semi-persistent RS, the first type of QCL type RS, and the second type of QCL type RS;
  • One type of QCL type includes one of the following: type A, type B, type C, or QCL type corresponding to QCL parameters other than spatial parameters;
  • the second type of QCL type includes one of the following: type D, or includes corresponding spatial parameters The QCL type.
  • the path loss measurement parameters associated with the beam state are determined by the reference signal RS in the beam state and include at least one of the following: in the case that the beam state includes the RS of the second type QCL type, according to the beam state included
  • the second type of QCL RS determines the path loss measurement parameters associated with the beam state; in the case that the beam state does not include the second type of QCL RS, the beam state is determined according to the first type of QCL RS included in the beam state.
  • the path loss measurement parameter associated with the beam state is determined by at least one of the following: RS included in the QCL information of the beam state ; Downlink RS included in the QCL information of the beam state; Periodic RS included in the QCL information of the beam state; Semi-persistent RS included in the QCL information of the beam state.
  • the path loss measurement parameter associated with the beam state is determined by at least one of the following: the cell where the uplink transmission is located or the first communication node The path loss measurement parameters of the cell with the smallest number among the configured cells; the BWP of the bandwidth part where the uplink transmission is located, the active BWP in the cell where the uplink transmission is located, or the path loss measurement parameters of the BWP with the smallest BWP number in the cell where the uplink transmission is located; Path loss measurement parameters determined according to the control resource set.
  • FIG. 8 is a structural block diagram of another power control parameter determination apparatus provided in an embodiment of the present application. This embodiment is applied to the second communication node. As shown in FIG. 8, this embodiment includes: a first configuration module 410 and a second configuration module 410.
  • the first configuration module 410 is configured to configure or activate a specific beam state set.
  • the second configuration module 420 is configured to configure or indicate the beam status associated with the uplink transmission, and the beam status associated with the uplink transmission is used to determine the power control parameter of the uplink transmission.
  • the beam state associated with uplink transmission includes: at least one beam state in a specific set of beam states.
  • the beam state includes at least one of the following: quasi-co-located QCL state, transmission configuration indication TCI state, spatial relationship information, reference signal information, spatial filter information, and precoding information.
  • the power control parameter determination device provided in this embodiment is configured to implement the power control parameter determination method applied to the second communication node in the embodiment shown in FIG. 2.
  • the implementation principle of the power control parameter determination device provided in this embodiment is as shown in FIG.
  • the method for determining the power control parameter applied to the second communication node in the embodiment is similar, and will not be repeated here.
  • the uplink transmission includes at least one of the following: PUSCH transmission, PUCCH transmission, SRS transmission, and PRACH transmission.
  • the path loss measurement parameters included or associated with the beam state are used to determine at least one of the following path loss measurement parameters for uplink transmission: PUSCH transmission, PUCCH transmission, SRS transmission, and PRACH transmission.
  • the specific beam state set includes: a basic beam state set; wherein, the basic beam state set includes at least one of the following features: the basic beam state set includes at least one beam state; the basic beam state set passes through a higher layer Signaling configuration or reconfiguration; the basic beam state set is used to determine at least one of the following channel or signal transmission parameters: PDCCH, PDSCH, channel state information reference signal CSI-RS, PUSCH, PUCCH, SRS.
  • the specific beam state set includes: a first beam state set; wherein the first beam state set includes at least one of the following features: the first beam state set includes at least one of the basic beam state sets Beam state; the beam state of the first beam state set is configured or reconfigured through higher layer signaling, or activated through MAC signaling; the first beam state set is used to determine the transmission parameters of at least one of the following channels or signals: PUSCH, PUCCH , SRS; the basic beam state set includes at least one of the following features: the basic beam state set includes at least one beam state; the basic beam state set is configured or reconfigured through higher layer signaling; the basic beam state set is used to determine at least one of the following Transmission parameters of a channel or signal: PDCCH, PDSCH, channel state information reference signal CSI-RS, PUSCH, PUCCH, SRS.
  • the first beam state set includes at least one of the following features: the first beam state set includes at least one of the basic beam state sets Beam state; the beam state of the first beam state set is configured
  • the specific beam state set includes: a second beam state set; wherein the second beam state set includes at least one of the following features: the second beam state set includes at least one of the first beam state set One beam state; the beam state of the second beam state set is activated by MAC signaling; the second beam state set is used to determine the transmission parameters of at least one of the following channels or signals: PUSCH, PUCCH, SRS; the first beam state set includes The feature of at least one of the following: the first beam state set includes at least one beam state in the basic beam state set; the beam state of the first beam state set is configured or reconfigured through higher layer signaling, or activated through MAC signaling; A beam state set is used to determine at least one of the following channel or signal transmission parameters: PUSCH, PUCCH, SRS; the basic beam state set includes at least one of the following characteristics: the basic beam state set includes at least one beam state; the basic beam The state set is configured or reconfigured through high-level signaling; the basic beam state set is used to determine at least one
  • the beam state associated with uplink transmission is used to determine the power control parameter of uplink transmission, including one of the following: determining the power control parameter of uplink transmission according to the power control parameter or power control number contained in the beam state; The association relationship between the state and the power control parameter determines the power control parameter of the uplink transmission.
  • the correlation between the beam state and the power control parameter includes: at least one correlating unit of the beam state and the power control parameter; the correlating unit of the beam state and the power control parameter includes at least one of the following: beam state Unit number, beam state, power control parameter associated with power control parameter.
  • the beam status is indicated by one of the following information: the number of the beam status; the combination number of the beam status.
  • the association relationship between beam states and power control parameters includes one of the following: configuring at least one beam state and power control in a specific set of beam states through high-layer signaling or media access control MAC signaling Parameter association.
  • the association relationship between the beam state and the power control parameter includes one of the following: configure the association between the number of the beam state in the basic beam state set and the power control parameter through high-level signaling; configure through high-level signaling The association between the number of the beam state in the first beam state set and the power control parameter; configure the association between the number of the active beam state in the first beam state set and the power control parameter through the media access control MAC signaling; configure the first beam state through the MAC signaling The association between the number of the active beam state in the two beam state set and the power control parameter.
  • the power control parameters include at least one of the following: path loss measurement parameters, target received power, path loss compensation factors, and closed-loop power control parameters.
  • the configuration module is configured to configure or indicate the beam state associated with uplink transmission through the indication information of the beam state.
  • the correspondence between the indication information of the beam status and the beam status in the specific beam status set is determined in a predefined manner; or, the indication information of the beam status and the specific beam status are determined through high-level signaling or MAC signaling.
  • the method for determining the power control parameters for uplink transmission includes at least one of the following: determining a corresponding set of power control parameters according to the value of the indication information of each beam state; The beam state determines a set of power control parameters.
  • the corresponding set of power control parameters is determined according to the value of the indication information of each beam state, and at least one of the following conditions is satisfied: uplink transmission is based on non-codebook transmission; beam state is associated with at least one SRS Resources; the number of ports of SRS resources associated with beam status is equal to 1.
  • a set of power control parameters is determined according to the beam state indicated by the indication information of the beam state, and at least one of the following conditions is met: the uplink transmission is a codebook-based transmission; the beam state is associated with one SRS resource; the beam state The number of ports of the associated SRS resource is greater than or equal to 1.
  • FIG. 9 is a schematic structural diagram of a device provided by an embodiment of the present application.
  • the device provided by the present application includes: a processor 510, a memory 520, and a communication module 530.
  • the number of processors 510 in the device may be one or more.
  • One processor 510 is taken as an example in FIG. 9.
  • the number of memories 520 in the device may be one or more, and one memory 520 is taken as an example in FIG. 9.
  • the processor 510, the memory 520, and the communication module 530 of the device may be connected by a bus or in other ways. In FIG. 9, a bus connection is taken as an example.
  • the device is the first communication node.
  • the memory 520 can be configured to store software programs, computer-executable programs, and modules, such as program instructions/modules corresponding to the device of any embodiment of the present application (for example, the first device in the power control parameter determination device).
  • the memory 520 may include a program storage area and a data storage area.
  • the program storage area may store an operating system and an application program required by at least one function; the data storage area may store data created according to the use of the device, and the like.
  • the memory 520 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other non-volatile solid-state storage devices.
  • the memory 520 may further include a memory remotely provided with respect to the processor 510, and these remote memories may be connected to the device through a network. Examples of the aforementioned networks include, but are not limited to, the Internet, corporate intranets, local area networks, mobile communication networks, and combinations thereof.
  • the communication module 530 is configured to perform a communication connection between the first communication node and the second communication node for data communication and signal communication.
  • the above-provided device can be configured to execute the method for determining the power control parameter applied to the first communication node provided by any of the above-mentioned embodiments, and has corresponding functions.
  • the device in the case where the device is the second communication node, the device provided above can be configured to execute the method for determining the power control parameter applied to the second communication node provided by any of the foregoing embodiments, and has corresponding functions.
  • An embodiment of the present application also provides a storage medium containing computer-executable instructions.
  • the computer-executable instructions When executed by a computer processor, they are used to execute a method for determining power control parameters applied to a first communication node.
  • the method includes: Determine the beam status of the uplink transmission; determine the power control parameters of the uplink transmission according to the beam status; wherein the beam status includes at least one of the following: quasi co-located QCL status, transmission configuration indication TCI status, spatial relationship information, reference signal information, and spatial Filter information, precoding information.
  • An embodiment of the present application also provides a storage medium containing computer-executable instructions.
  • the computer-executable instructions When executed by a computer processor, they are used to execute a power control parameter determination method applied to a second communication node, the method including: Configure or activate a specific beam state set; configure or indicate the beam state associated with uplink transmission.
  • the beam state associated with uplink transmission is used to determine the power control parameters of uplink transmission; the beam state associated with uplink transmission includes: At least one beam state; wherein the beam state includes at least one of the following: a quasi co-located QCL state, a transmission configuration indication TCI state, spatial relationship information, reference signal information, spatial filter information, and precoding information.
  • user equipment encompasses any suitable type of wireless user equipment, such as a mobile phone, a portable data processing device, a portable web browser, or a vehicle-mounted mobile station.
  • the various embodiments of the present application can be implemented in hardware or dedicated circuits, software, logic or any combination thereof.
  • some aspects may be implemented in hardware, while other aspects may be implemented in firmware or software that may be executed by a controller, microprocessor, or other computing device, although the present application is not limited thereto.
  • Computer program instructions can be assembly instructions, Instruction Set Architecture (ISA) instructions, machine instructions, machine-related instructions, microcode, firmware instructions, state setting data, or written in any combination of one or more programming languages Source code or object code.
  • ISA Instruction Set Architecture
  • the block diagram of any logic flow in the drawings of the present application may represent program steps, or may represent interconnected logic circuits, modules, and functions, or may represent a combination of program steps and logic circuits, modules, and functions.
  • the computer program can be stored on the memory.
  • the memory can be of any type suitable for the local technical environment and can be implemented using any suitable data storage technology, such as but not limited to read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), optical Memory devices and systems (Digital Video Disc (DVD) or Compact Disk (CD)), etc.
  • Computer-readable media may include non-transitory storage media.
  • the data processor can be any type suitable for the local technical environment, such as but not limited to general-purpose computers, special-purpose computers, microprocessors, digital signal processors (Digital Signal Processing, DSP), application specific integrated circuits (ASICs) ), programmable logic devices (Field-Programmable Gate Array, FPGA), and processors based on multi-core processor architecture.
  • DSP Digital Signal Processing
  • ASICs application specific integrated circuits
  • FPGA Field-Programmable Gate Array
  • FPGA Field-Programmable Gate Array

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Control Of Eletrric Generators (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

本申请提出一种功率控制参数确定方法、设备和存储介质。该方法包括:确定上行传输的波束状态;根据波束状态确定上行传输的功率控制参数;其中,波束状态至少包括下述之一:QCL状态,TCI状态,空间关系信息,参考信号信息,空间滤波器信息,预编码信息。

Description

功率控制参数确定方法、设备和存储介质
本申请要求在2020年01月21日提交中国专利局、申请号为202010072006.5的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信,例如涉及一种功率控制参数确定方法、设备和存储介质。
背景技术
第五代移动通信系统新空口(New Radio,NR)技术的特征之一就是支持高频段。高频段具备丰富的频域资源,但是存在无线信号衰减快导致覆盖小的问题。采用波束方式发送信号可以将能量聚集在比较小的空间范围,改善高频段信号的覆盖问题。在波束场景下,随着时间和位置的变化,基站与用户终端(User Equipment,UE)之间的波束对也可能发生变化,因此需要灵活的波束更新机制。在统一波束机制中,如何为上行传输提供灵活高效的功率控制参数,是一个亟待解决的问题。
发明内容
本申请实施例提供一种功率控制参数确定方法、设备和存储介质,实现了有效为上行传输提供高效的功率控制参数。
本申请实施例提供一种功率控制参数确定方法,应用于第一通信节点,包括:确定上行传输的波束状态;根据所述波束状态确定所述上行传输的功率控制参数;其中,所述波束状态至少包括下述之一:准共址(Quasci Co-location,QCL)状态,传输配置指示(Transmission Configuration Indication,TCI)状态,空间关系信息,参考信号信息,空间滤波器信息,预编码信息。
本申请实施例提供一种功率控制参数确定方法,应用于第二通信节点,包括:配置或激活特定的波束状态集合;配置或指示上行传输关联的波束状态,所述上行传输关联的波束状态用于确定所述上行传输的功率控制参数;所述上行传输关联的波束状态包括:所述特定的波束状态集合中的至少一个波束状态;其中,所述波束状态至少包括下述之一:准共址QCL状态,传输配置指示TCI状态,空间关系信息,参考信号信息,空间滤波器信息,预编码信息。
本申请实施例提供一种功率控制参数确定装置,应用于第一通信节点,包括:第一确定模块,设置为确定上行传输的波束状态;第二确定模块,设置为 根据所述波束状态确定所述上行传输的功率控制参数;其中,所述波束状态至少包括下述之一:准共址QCL状态,传输配置指示TCI状态,空间关系信息,参考信号信息,空间滤波器信息,预编码信息。
本申请实施例一种功率控制参数确定装置,应用于第二通信节点,包括:第一配置模块,设置为配置或激活特定的波束状态集合;第二配置模块,设置为配置或指示上行传输关联的波束状态,所述上行传输关联的波束状态用于确定所述上行传输的功率控制参数;所述上行传输关联的波束状态包括:特定的波束状态集合中的至少一个波束状态;其中,所述波束状态至少包括下述之一:准共址QCL状态,传输配置指示TCI状态,空间关系信息,参考信号信息,空间滤波器信息,预编码信息。
本申请实施例一种设备,包括:存储器,以及一个或多个处理器;所述存储器,用于存储一个或多个程序;当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现上述任一实施例所述的方法。
本申请实施例提供了一种存储介质,所述存储介质存储有计算机程序,所述计算机程序被处理器执行时实现上述任一实施例所述的方法。
附图说明
图1是本申请实施例提供的一种功率控制参数确定方法的流程图;
图2是本申请实施例提供的另一种功率控制参数确定方法的流程图;
图3是本申请提供的一种功率控制参数与TCI状态的关联示意图;
图4是本申请实施例提供的一种不同层次的TCI状态的配置示意图;
图5是本申请实施例提供的另一种不同层次的TCI状态的配置示意图;
图6是本申请实施例提供的一种TCI状态与功率控制(Power Control,PC)参数,以及探测参考信号(Sounding Reference Signal,SRS)资源之间的关系示意图;
图7是本申请实施例提供的一种功率控制参数确定装置的结构框图;
图8是本申请实施例提供的另一种功率控制参数确定装置的结构框图;
图9是本申请实施例提供的一种设备的结构示意图。
具体实施方式
下文中将结合附图对本申请的实施例进行说明。
在实施例中,波束状态与下述参数的概念等同,即本实施例中的波束状态 可以由下述参数之一进行替换:准共址(Quasi Co-location,QCL)状态、传输配置指示(Transmission Configuration Indication,TCI)状态、空间关系信息、参考信号(Reference Signal,RS)信息、空间滤波器信息、预编码信息。在实施例中,波束状态也可以称为波束。
在实施例中,波束可以为一种资源或者传输(发送或接收)方式。在实施例中,资源例如发端预编码,收端预编码、天线端口,天线权重矢量,天线权重矩阵等。传输方式可以包括空分复用、频域/时域分集等。波束指示是指发送端可以通过当前参考信号和天线端口,与基站扫描或者UE反馈报告的参考信号(或基准参考信号)和天线端口满足QCL状态进行指示。
发送波束与下述参数的概念等同:QCL状态,TCI状态,空间关系状态,下行链路(DL)参考信号(RS)或上行链路(UL)参考信号(RS),RS资源,发送空间滤波器或发送预编码。接收波束与以下参数的概念等同:QCL状态,TCI状态,空间关系状态,下行链路RS或上行链路RS,RS资源,接收空间滤波器或接收预编码。
波束编号与以下参数的概念等同:QCL状态编号,TCI状态编号,空间关系状态编号,RS编号,RS资源编号,空间滤波器编号,或预编码编号。编号也可称为index,IDentifier(ID),或索引。
下行链路(DownLink,DL)RS包括:信道状态信息参考信号(Channel State Information Reference Signal,CSI-RS),同步信号块(Synchronization Signal Block,SSB)(也叫作SS/PBCH),或解调参考信号(DeModulation Reference Signal,DMRS)。上行链路(UpLink,UL)RS包括:探测参考信号(Sounding Reference Signal,SRS),物理随机接入信道(Physical Random Access Channel,PRACH)。
空间滤波器,也可以叫做空域滤波器,可以是UE侧的,也可以是基站侧(gNB),或网络侧的。
空间关系信息包括一个或多个参考RS,用于描述目标RS或信道与一个或多个参考RS之间的相同的或准相同的空间关系。
空间关系是指波束、空间参数、或空域滤波器。
QCL状态包括一个或多个参考RS和参考RS对应的QCL类型参数。QCL类型参数包括以下至少之一:类型A、类型B、类型C、或类型D。不同的类型用于区分不同的QCL参数。QCL参数包括至少以下之一或组合:多普勒扩展,多普勒频移,时延扩展,平均时延,平均增益,空间参数。
在本申请实施例中,TCI状态等同于QCL状态。QCL类型D等同于空间参数或空间接收参数。
上行信号包括以下至少之一:物理上行控制信道(Physical Uplink Control Channel,PUCCH),物理上行共享信道(Physical Uplink Shared Channel,PUSCH),探测参考信号(Sounding Reference Signal,SRS),PRACH。
下行信号包括以下至少之一:物理下行控制信道(Physical Downlink Control Channel,PDCCH),物理下行共享信道(Physical Downlink Shared Channel,PDSCH),CSI-RS。
在本申请实施例中,时间单位包括以下之一:子符号,符号,时隙(slot),子帧,帧,传输时机(transmission occasion)。
本申请实施例中,功控等同于功率控制。功率控制参数包括以下至少之一:目标功率(也叫P0,或目标接收功率),路损(path-loss,路径损耗)RS,路损系数(也叫alpha,或路损补偿因子,路损补偿系数),或闭环过程(闭环功率控制过程,或闭环功率控制环)。
本申请实施例中,无线资源控制(Radio Resource Control,RRC)信令与高层信令等同。媒体访问控制(Media Access Control,MAC)信令与MAC层信令、MAC控制单元(Control Element,CE)等同。
本申请实施例中,DCI与DCI信息、承载DCI的PDCCH传输等同。
在一实施例中,图1是本申请实施例提供的一种功率控制参数确定方法的流程图。本实施例应用于第一通信节点。示例性地,第一通信节点可以为UE。如图1所示,本实施例包括S110-S120。
S110、确定上行传输的波束状态。
在实施例中,上行传输至少包括下述之一:物理上行共享信道(Physical Uplink Shared Channel,PUSCH)传输,PUCCH传输,SRS传输,PRACH传输。波束状态至少包括下述之一:QCL状态,TCI状态,空间关系信息,参考信号信息,空间滤波器信息,预编码信息。
S120、根据波束状态确定上行传输的功率控制参数。
在实施例中,功率控制参数至少包括下述之一:路损测量参数,目标接收功率,路损补偿因子,闭环功控参数。功率控制参数包括用于确定至少下述一项的功率控制参数:PUSCH传输、PUCCH传输、SRS传输、PRACH传输。
在一实施例中,波束状态包括至少一个波束状态。
在一实施例中,波束状态由以下之一信息指示:特定的波束状态集合中的至少一个波束状态的编号;特定的波束状态集合中激活的波束状态中至少一个波束状态的编号;特定的波束状态集合中的至少一个波束状态的组合编号;或 特定的波束状态集合中激活的波束状态中的至少一个波束状态的组合编号。
特定的波束状态集合由高层信令和/或MAC层信令配置或激活。
在实施例中,特定的波束状态集合,包括:基本波束状态集合;基本波束状态集合包括下述至少之一的特征:基本波束状态集合包括至少一个波束状态;基本波束状态集合通过高层信令配置或重配置;基本波束状态集合用于确定下述至少一项信道或信号的传输参数:PDCCH、PDSCH、信道状态信息参考信号CSI-RS、PUSCH、PUCCH、SRS;或者,特定的波束状态集合,包括:第一波束状态集合;第一波束状态集合包括下述至少之一的特征:第一波束状态集合包括基本波束状态集合中的至少一个波束状态;第一波束状态集合的波束状态通过高层信令配置或重配置,或通过MAC信令激活;第一波束状态集合用于确定下述至少一项信道或信号的传输参数:PUSCH、PUCCH、SRS;基本波束状态集合包括下述至少之一的特征:基本波束状态集合包括至少一个波束状态;基本波束状态集合通过高层信令配置或重配置;基本波束状态集合用于确定下述至少一项信道或信号的传输参数:PDCCH、PDSCH、信道状态信息参考信号CSI-RS、PUSCH、PUCCH、SRS;或者,特定的波束状态集合,包括:第二波束状态集合;第二波束状态集合包括下述至少之一的特征:第二波束状态集合包括第一波束状态集合中的至少一个波束状态;第二波束状态集合的波束状态通过MAC信令激活;第二波束状态集合用于确定下述至少一项的传输参数:PUSCH、PUCCH、SRS;第一波束状态集合包括下述至少之一的特征:第一波束状态集合包括基本波束状态集合中的至少一个波束状态;第一波束状态集合的波束状态通过高层信令配置或重配置,或通过MAC信令激活;第一波束状态集合用于确定下述至少一项信道或信号的传输参数:PUSCH、PUCCH、SRS;基本波束状态集合包括下述至少之一的特征:基本波束状态集合包括至少一个波束状态;基本波束状态集合通过高层信令配置或重配置;基本波束状态集合用于确定下述至少一项信道或信号的传输参数:PDCCH、PDSCH、信道状态信息参考信号CSI-RS、PUSCH、PUCCH、SRS。
在一实施例中,上行传输的波束状态,至少包括下述之一:上行传输所参考的波束状态;上行传输所关联的波束状态;调度或触发上行传输的下行控制信息(Downlink Control Information,DCI)指示的波束状态;高层信令配置给上行传输的波束状态;上行传输的资源所关联的波束状态。
在实施例中,上行传输的波束状态由调度或触发上行传输的DCI信息确定。在实施例中,DCI信息指示波束状态的编号,而波束状态的编号是MAC CE激活的波束状态集合或高层信令配置/重配置的波束状态集合中的波束状态的编号。
周期的上行传输的波束状态由高层信令确定。高层信令指示周期的上行传输的波束状态编号,而波束状态的编号是MAC CE激活的波束状态集合或高层信令配置/重配置的波束状态集合中的波束状态的编号。
在实施例中,上行传输的波束状态由上行传输的资源所关联的波束状态确定。在实施例中,上行传输的资源由调度或激活上行传输的DCI信息确定;上行传输的资源与波束状态的关联由高层信令和/或MAC信令确定。
在一实施例中,根据波束状态确定上行传输的功率控制参数,包括以下之一:根据波束状态中包含的功率控制参数或功率控制参数编号确定上行传输的功率控制参数;根据波束状态与功率控制参数的关联关系确定上行传输的功率控制参数。
在一实施例中,波束状态与功率控制参数的关联关系包括至少一个波束状态与功率控制参数的关联单元;波束状态与功率控制参数的关联单元中包括:波束状态与功率控制参数的关联单元编号、波束状态、功率控制参数中的至少一个。在实施例中,波束状态与功率控制参数的关联关系包括:波束状态中包含功率控制参数;功率控制参数中包含波束状态;波束状态编号与功率控制参数编号的关联。
在一实施例中,功率控制参数至少包括下述至少之一:路损测量参数,目标接收功率,路损补偿因子,闭环功控参数。
在一实施例中,在上行传输是PUSCH传输,或波束状态用于PUSCH传输的情况下,功率控制参数至少包括下述至少之一:PUSCH的路损测量参数,PUSCH的目标接收功率,PUSCH的路损补偿因子,PUSCH的闭环功控参数。
在上行传输是PUCCH传输,或波束状态用于PUCCH传输的情况下,功率控制参数至少包括下述至少之一:PUCCH的路损测量参数,PUCCH的目标接收功率,PUCCH的闭环功控参数。
在上行传输是SRS传输,或波束状态用于SRS传输的情况下,功率控制参数至少包括下述至少之一:SRS的路损测量参数,SRS的目标接收功率,SRS的闭环功控参数。
在波束状态用于PUSCH传输和PUCCH传输的情况下,功率控制参数至少包括下述至少之一:路损测量参数,PUSCH的目标接收功率,PUSCH的路损补偿因子,PUSCH的闭环功控参数,PUCCH的目标接收功率,PUCCH的闭环功控参数。
或,在波束状态用于PUSCH传输、PUCCH传输、和SRS传输的情况下,功率控制参数至少包括下述至少之一:路损测量参数,PUSCH的目标接收功率, PUSCH的路损补偿因子,PUSCH的闭环功控参数,PUCCH的目标接收功率,PUCCH的闭环功控参数,SRS的目标接收功率,SRS的闭环功控参数。
在实施例中,功率控制参数可以用功率控制参数编号表示。功率控制参数编号是在预定的功率控制参数集合中功率控制参数的编号。
在一实施例中,波束状态的特性包括下述至少之一:配置或关联SRS资源的波束状态;用于上行传输的波束状态;非仅用于下行传输的波束状态。
例如,用于上行传输的波束状态,非仅用于下行传输的波束状态,和/或被配置或关联SRS资源的波束状态,与功率控制参数具有关联关系。
在实施例中,在波束状态集合中,用于上行传输的波束状态,非仅用于下行传输的波束状态,和/或被配置或关联SRS资源的波束状态,与功率控制参数具有关联关系。
在实施例中,配置或关联SRS资源的波束状态与PUSCH的功率控制参数具有关联关系。
在实施例中,用于上行传输的波束状态与PUSCH的功率控制参数、PUCCH的功率控制参数、和/或SRS的功率控制参数具有关联关系。
在一实施例中,波束状态被用于PUSCH传输的情况下,波束状态被配置或关联SRS资源。在实施例中,波束状态被用于PUSCH传输包括:波束状态被用作确定PUSCH传输的发送方式,如发送波束。
在一实施例中,波束状态所包含或所关联的路损测量参数用于确定下述至少一种上行传输的路损测量参数:PUSCH传输,PUCCH传输,SRS传输,PRACH传输。在实施例中,在一个PUSCH传输与一个PUCCH传输所关联的波束状态相同的情况下,该波束状态关联的路损测量参数既可以用于确定PUSCH传输的路损测量参数,也可以用于确定PUCCH传输的路损测量参数。
在一实施例中,波束状态所关联的路损测量参数由波束状态中的参考信号RS确定;或,在波束状态未被配置或未被提供路损测量参数的情况下,波束状态所关联的路损测量参数由波束状态中的RS确定。在实施例中,波束状态中的RS包括:波束状态的QCL信息中包含的RS。在实施例中,波束状态的QCL信息中包含的RS,可以包括下述之一:波束状态的QCL信息中包含的下行RS;波束状态的QCL信息中包含的周期RS;波束状态的QCL信息中包含的半持续RS。在实施例中,下行RS包括:SSB或CSI-RS;周期RS包括:SSB或周期的CSI-RS;半持续RS包括:半持续的CSI-RS。
在一实施例中,波束状态中的RS包括以下至少之一的特征:下行RS,周期的RS,半持续的RS,第一类QCL类型的RS,第二类QCL类型的RS。在实 施例中,第一类QCL类型包括以下之一:类型A、类型B、类型C,或除空间参数之外的QCL参数对应的QCL类型;第二类QCL类型包括以下之一:类型D,或包括空间参数对应的QCL类型。
在一实施例中,波束状态所关联的路损测量参数由波束状态中的参考信号RS确定包括以下至少之一:在波束状态包含第二类QCL类型的RS的情况下,根据波束状态包含的第二类QCL类型的RS确定波束状态所关联的路损测量参数;在波束状态不包含第二类QCL类型的RS的情况下,根据波束状态包含的第一类QCL类型的RS确定波束状态所关联的路损测量参数;在上行传输属于频率范围(Frequency Range,FR)1的情况下,根据波束状态包含的第一类QCL类型的RS确定波束状态所关联的路损测量参数。在实施例中,频率范围FR 1是指低于或等于预定频率的频谱范围。FR 2是指高于预定频率的频谱范围。例如,预定频率为6GHz,或7GHz。
在一实施例中,在波束状态未被配置或未被提供路损测量参数的情况下,波束状态所关联的路损测量参数由下述至少之一确定:上行传输所在小区或第一通信节点被配置的小区中编号最小的小区的路损测量参数;上行传输所在的带宽部分(BandWidth Part,BWP),上行传输所在小区中的激活BWP,或上行传输所在小区中的BWP编号最小的BWP的路损测量参数;根据控制资源集合(Control Resource Set,CORESET)确定的路损测量参数。在实施例中,高层信令为上行传输所在的小区或第一通信节点被配置的小区中编号最小的小区的路损测量参数。在一实施例中,高层信令为上行传输所在的BWP,上行传输所在小区中的激活BWP,或上行传输所在小区中的BWP编号最小的BWP的路损测量参数。
在一实施例中,确定上行传输关联的波束状态,包括:通过波束状态的指示信息确定上行传输关联的波束状态。
在一实施例中,通过预定义的方式确定波束状态的指示信息与特定的波束状态集合中波束状态的对应关系;或者,通过高层信令或MAC信令确定波束状态的指示信息与特定的波束状态集合中波束状态的对应关系;或者,在上行传输是基于非码本传输的情况下,通过高层信令或MAC信令确定波束状态的指示信息与特定的波束状态集合中波束状态的对应关系。
在一实施例中,上行传输的功率控制参数的确定方式,包括下述至少之一:根据每个波束状态的指示信息取值确定对应的一套功率控制参数;根据波束状态的指示信息指示的波束状态确定一套功率控制参数。
在一实施例中,根据每个波束状态的指示信息取值确定对应的一套功率控制参数,至少满足下述条件之一:上行传输是基于非码本的传输;波束状态关 联至少1个SRS资源;波束状态关联的SRS资源的端口数量等于1。
在一实施例中,根据波束状态的指示信息指示的波束状态确定一套功率控制参数,至少满足下述条件之一:上行传输为基于码本的传输;波束状态关联1个SRS资源;波束状态关联的SRS资源的端口数量大于或等于1。
图2是本申请实施例提供的另一种功率控制参数确定方法的流程图。本实施例应用于第二通信节点。如图2所示,本实施例包括S210-S220。
S210、配置或激活特定的波束状态集合。
S220、配置或指示上行传输关联的波束状态,上行传输关联的波束状态用于确定上行传输的功率控制参数。
在实施例中,上行传输关联的波束状态包括:特定的波束状态集合中的至少一个波束状态。
波束状态至少包括下述之一:QCL状态,TCI状态,空间关系信息,参考信号信息,空间滤波器信息,预编码信息。
在一实施例中,上行传输至少包括下述之一:PUSCH传输,PUCCH传输,SRS传输,PRACH传输。
在一实施例中,波束状态所包含或所关联的路损测量参数用于确定下述至少一种上行传输的路损测量参数:PUSCH传输,PUCCH传输,SRS传输,PRACH传输。
在一实施例中,特定的波束状态集合,包括:基本波束状态集合;其中,基本波束状态集合包括下述至少之一的特征:基本波束状态集合包括至少一个波束状态;基本波束状态集合通过高层信令配置或重配置;基本波束状态集合用于确定下述至少一项信道或信号的传输参数:PDCCH、PDSCH、信道状态信息参考信号CSI-RS、PUSCH、PUCCH、SRS。
在一实施例中,特定的波束状态集合,包括:第一波束状态集合;其中,第一波束状态集合包括下述至少之一的特征:第一波束状态集合包括基本波束状态集合中的至少一个波束状态;第一波束状态集合的波束状态通过高层信令配置或重配置,或通过MAC信令激活;第一波束状态集合用于确定下述至少一项信道或信号的传输参数:PUSCH、PUCCH、SRS;基本波束状态集合包括下述至少之一的特征:所述基本波束状态集合包括至少一个波束状态;所述基本波束状态集合通过高层信令配置或重配置;所述基本波束状态集合用于确定下述至少一项信道或信号的传输参数:PDCCH、PDSCH、信道状态信息参考信号CSI-RS、PUSCH、PUCCH、SRS。
在一实施例中,特定的波束状态集合,包括:第二波束状态集合;其中,第二波束状态集合包括下述至少之一的特征:第二波束状态集合包括第一波束状态集合中的至少一个波束状态;第二波束状态集合的波束状态通过MAC信令激活;第二波束状态集合用于确定下述至少一项的传输参数:PUSCH、PUCCH、SRS;第一波束状态集合包括下述至少之一的特征:第一波束状态集合包括基本波束状态集合中的至少一个波束状态;第一波束状态集合的波束状态通过高层信令配置或重配置,或通过MAC信令激活;第一波束状态集合用于确定下述至少一项信道或信号的传输参数:PUSCH、PUCCH、SRS;基本波束状态集合包括下述至少之一的特征:基本波束状态集合包括至少一个波束状态;基本波束状态集合通过高层信令配置或重配置;基本波束状态集合用于确定下述至少一项信道或信号的传输参数:PDCCH、PDSCH、信道状态信息参考信号CSI-RS、PUSCH、PUCCH、SRS。在实施例中,确定上述信道和/或信号的传输参数包括:确定信道的传输参数,和/或信道的发送或接收参数,比如,发送/接收波束、空间关系、所参考的参考信号、发送/接收滤波器、预编码等。
在一实施例中,第一波束状态集合包括基本波束状态集合中的至少一个波束状态,并通过高层信令配置或重配置。在实施例中,第一波束状态集合包括的波束状态是基本波束状态集合的子集,可通过MAC信令激活。在第一波束状态集合中的激活的波束状态是基本波束状态集合的子集。
在一实施例中,上行传输关联的波束状态用于确定上行传输的功率控制参数,包括以下之一:根据波束状态中包含的功率控制参数或功率控制编号确定上行传输的功率控制参数;根据波束状态与功率控制参数的关联关系确定所述上行传输的功率控制参数。
在一实施例中,波束状态与功率控制参数之间的关联关系,包括:至少一个波束状态与功率控制参数的关联单元;波束状态与功率控制参数的关联单元至少包括下述之一:波束状态与功率控制参数的关联单元编号、波束状态、功率控制参数。
在一实施例中,波束状态由以下之一信息指示:波束状态的编号;波束状态的组合编号。
在一实施例中,波束状态与功率控制参数之间的关联关系,包括下述之一:通过高层信令或媒体访问控制MAC信令配置特定的波束状态集合中的至少一个波束状态与功率控制参数关联;第一波束状态集合中的每个波束状态与功率控制参数关联。
在一实施例中,波束状态与功率控制参数之间的关联关系,包括下述之一:通过高层信令配置基本波束状态集合中波束状态的编号与功率控制参数的关 联;通过高层信令配置第一波束状态集合中波束状态的编号与功率控制参数的关联;通过媒体访问控制MAC信令配置第一波束状态集合中激活的波束状态的编号与功率控制参数的关联;通过MAC信令配置第二波束状态集合中激活的波束状态的编号与功率控制参数的关联。
在一实施例中,功率控制参数至少包括下述之一:路损测量参数,目标接收功率,路损补偿因子,闭环功控参数。
在实施例中,在上行传输是PUSCH传输,或波束状态用于PUSCH传输的情况下,功率控制参数至少包括下述至少之一:PUSCH的路损测量参数,PUSCH的目标接收功率,PUSCH的路损补偿因子,PUSCH的闭环功控参数。
在上行传输是PUCCH传输,或波束状态用于PUCCH传输的情况下,功率控制参数至少包括下述至少之一:PUCCH的路损测量参数,PUCCH的目标接收功率,PUCCH的闭环功控参数。
在上行传输是SRS传输,或波束状态用于SRS传输的情况下,功率控制参数至少包括下述至少之一:SRS的路损测量参数,SRS的目标接收功率,SRS的闭环功控参数。在实施例中,SRS的闭环功控参数包括以下之一:独立的SRS闭环,与PUSCH共享闭环,与PUSCH共享的闭环编号。
在波束状态用于PUSCH传输和PUCCH传输的情况下,功率控制参数至少包括下述至少之一:路损测量参数,PUSCH的目标接收功率,PUSCH的路损补偿因子,PUSCH的闭环功控参数,PUCCH的目标接收功率,PUCCH的闭环功控参数。
在波束状态用于PUSCH传输、PUCCH传输、和SRS传输的情况下,功率控制参数至少包括下述至少之一:路损测量参数,PUSCH的目标接收功率,PUSCH的路损补偿因子,PUSCH的闭环功控参数,PUCCH的目标接收功率,PUCCH的闭环功控参数,SRS的目标接收功率,SRS的闭环功控参数。在实施例中,功率控制参数可以用功率控制参数编号表示。功率控制参数编号是在预定的功率控制参数集合中功率控制参数的编号。
在一实施例中,配置或指示上行传输关联的波束状态,包括:通过波束状态的指示信息配置或指示上行传输关联的波束状态。在实施例中,上行传输关联的波束状态包括至少一个波束状态。
在一实施例中,通过预定义的方式确定波束状态的指示信息与特定的波束状态集合中波束状态的对应关系;或者,通过高层信令或MAC信令确定波束状态的指示信息与特定的波束状态集合中波束状态的对应关系;或者,在上行传输是基于非码本传输的情况下,通过高层信令或MAC信令确定波束状态的指示 信息与特定的波束状态集合中波束状态的对应关系。
在实施例中,可通过预定义的方式确定波束状态的指示信息与预先特定的波束状态集合中波束状态的对应关系,预定义的方式包括:预定义波束状态的指示信息与特定的波束状态集合中波束状态的对应关系的表格,或者,依照预定的顺序将特定的波束状态集合中波束状态以及波束状态的组合进行排序,并与波束状态的指示信息的取值建立对应关系。
在实施例中,通过MAC信令配置波束状态的指示信息,包括建立、激活、更新波束状态与特定的波束状态集合中波束状态的对应关系。示例性地,表1是本申请提供的采用预定义方式,配置波束状态的指示信息取值与TCI状态之间的映射关系表。
表1一种波束状态的指示信息取值与TCI状态之间的映射关系表
Figure PCTCN2021072995-appb-000001
在一实施例中,上行传输的功率控制参数的确定方式,包括下述至少之一:根据每个波束状态的指示信息取值确定对应的一套功率控制参数;根据波束状态的指示信息指示的波束状态确定一套功率控制参数。
在实施例中,波束状态的指示信息包括多个TCI状态可以用于上行传输的重复传输场景或多个波束同时发送的场景,多个重复传输或多个波束的多个上行传输同时传输可能对应一套功控参数。或者,每个TCI状态分别确定一套功控参数。
在一实施例中,根据每个波束状态的指示信息取值确定对应的一套功率控制参数,至少满足下述条件之一:上行传输是基于非码本的传输;波束状态关联至少1个SRS资源;波束状态关联的SRS资源的端口数量等于1。
在一实施例中,根据波束状态的指示信息指示的波束状态确定一套功率控制参数,至少满足下述条件之一:上行传输为基于码本的传输;波束状态关联1个SRS资源;波束状态关联的SRS资源的端口数量大于或等于1。
在一实现方式中,以根据TCI状态确定上行传输的功率控制参数为例,从第一通信节点的角度,对功率控制参数的确定过程进行说明。示例性地,第一通信节点为UE、用户、终端等,第二通信节点为基站、NodeB,NB,gNB,eNB,或网络(network)。
在实施例中,根据TCI状态确定上行传输的功率控制参数。在实施例中,功率控制参数包括以下至少之一:路损测量参数、目标接收功率参数、路损补偿因子(也可称为路损补偿系数)、闭环功控参数。
在实施例中,功率控制参数还可以是指从预配置或预定义的功率控制参数集合中指示功率控制参数编号。也就是说,功率控制参数还可以包括以下至少之一:路损测量参数编号、目标接收功率编号、路损补偿因子编号、闭环功控编号。
功率控制参数用于PUSCH传输、PUCCH传输、和/或SRS传输。用于不同的传输类型时,功率控制参数编号为基于对应的传输类型配置的功控参数集合。例如,PUSCH的功控参数编号是指为PUSCH配置的功控参数集合中的对应功率控制参数。
上行传输是PUSCH传输的情况下,功率控制参数包括:路损测量参数、PUSCH的目标接收功率参数、路损补偿系数、和/或PUSCH的闭环功控参数。
上行传输是PUCCH传输的情况下,功率控制参数包括:路损测量参数、PUCCH的目标接收功率参数、和/或PUCCH的闭环功控参数。
上行传输是SRS传输的情况下,功率控制参数包括:路损测量参数、和/或SRS的目标接收功率参数。
TCI状态包括至少一个QCL信息(即QCL状态),QCL信息包括参考信号信息以及参考信号信息对应的QCL类型参数。TCI状态是指基站配置给UE以下之一的信道、信号或传输的TCI状态:PDCCH、PDSCH、CSI-RS、PUSCH、PUCCH、和/或SRS;或,TCI状态是指基站配置给UE的下行信道、下行信号或下行传输的TCI状态;或,TCI状态是指基站配置给UE的上行信道、上行信号或上行传输的TCI状态;或,TCI状态是指基站配置给UE的上行信道、上行信号或上行传输,以及下行信道、下行信号或下行传输的TCI状态。在实施例中,TCI状态是指基站配置给UE的上行信道或上行信号,以及下行信道或下行信号的传输的TCI状态;TCI状态是指上行信道和下行信道,上行信号和下行 信号,或者,上行传输和下行传输共用的TCI状态;也可以说,TCI状态是基站配置给UE的基于小区的TCI状态。小区包括服务小区、主小区、辅小区等。或者,TCI状态是基站配置给UE的基于BWP的TCI状态。
在实施例中,根据TCI状态确定上行传输的功率控制参数,包括:TCI状态中包含功率控制参数,或TCI状态与功率控制参数具有关联关系。
在实施例中,TCI状态中包括功率控制参数包括以下至少之一:TCI状态中包括的功率控制参数为路损测量参数的路损参考信号(Path Loss-Reference Signal,PL-RS),用于以下至少之一的信道、信号或传输:PUSCH、PUCCH、SRS;TCI状态中包括的功率控制参数为闭环功控ID,用于以下至少之一的信道、信号或传输:PUSCH、PUCCH、SRS;TCI状态中包括的功率控制参数为目标接收功率P0,用于PUSCH,而PUCCH的P0通过PUSCH的P0+偏移值offset获得,offset通过高层信令配置,或,TCI状态中包括的功率控制参数为目标接收功率P0,用于PUCCH,而PUSCH的P0通过PUSCH的P0+偏移值offset获得,offset通过高层信令配置;TCI状态中分别包括PUSCH的P0和alpha、PUCCH的P0、SRS的P0。
对于一个PUSCH传输被指示参考X个TCI状态的情况,或,对一个SRS资源集合中的SRS资源被指示参考X个TCI状态的情况,根据如下方式之一确定Y个发送功率,其中,X、Y为大于或等于1的整数,并且X大于或等于Y:在X个TCI状态中确定Y个TCI状态,使用这Y个TCI状态中的P0和alpha分别计算Y个发送功率;X个TCI状态属于Y个分组,确定Y个分组的P0和alpha分别计算Y个发送功率。
在实施例中,确定分组的P0和alpha包括以下至少之一:分组内的TCI状态的编号最小的TCI状态包括的或关联的P0用于该分组的P0;分组内的TCI状态的编号最大的TCI状态包括的或关联的P0用于该分组的P0;分组内的TCI状态的编号最小的TCI状态包括的或关联的alpha用于该分组的alpha;分组内的TCI状态的编号最大的TCI状态包括的或关联的alpha用于该分组的alpha;分组内的TCI状态的P0平均值用于该分组的P0;分组内的TCI状态的P0的最大值用于该分组的P0;分组内的TCI状态的P0的最小值用于该分组的P0;分组内的TCI状态的alpha平均值用于该分组的alpha;分组内的TCI状态的alpha的最大值用于该分组的alpha;分组内的TCI状态的alpha的最小值用于该分组的alpha;分组内的TCI状态的P0的最大值的TCI状态中的alpha用于该分组的alpha;分组内的TCI状态的P0的最小值的TCI状态中的alpha用于该分组的alpha;分组内的TCI状态的alpha的最大值的TCI状态中的P0用于该分组的P0;分组内的TCI状态的alpha的最小值的TCI状态中的P0用于该分组的P0。
在实施例中,具有以下至少之一的特性的TCI状态属于同一个分组:所述TCI状态关联到同一个分组;所述TCI状态中包括同一个分组ID。
所述分组包括对以下特征的分组:信道特征。
TCI状态与功率控制参数具有关联关系是指:TCI状态与功率控制参数的关联关系包括TCI状态编号与功率控制参数编号。
功率控制参数编号包括至少以下之一:开环功控参数编号、闭环功控参数编号、路损测量参数编号。
所述功率控制参数集合为以下之一的集合:PUSCH的功率控制集合;PUCCH的功率控制集合;SRS的功率控制集合;统一的功率控制集合。
在实施例中,TCI状态编号是指以下集合之一中的TCI状态的编号:RRC配置或MAC CE激活的PDSCH的TCI状态集合;RRC配置或MAC CE激活的PDCCH的TCI状态集合;RRC配置或MAC CE激活的PUCCH的TCI状态集合;RRC配置或MAC CE激活的PUSCH的TCI状态集合。
在实施例中,根据TCI状态确定上行传输的功率控制参数,还包括以下至少之一:根据TCI状态中的下行参考信号确定上行传输的路损测量参数;根据TCI状态中的周期的或半持续的下行参考信号确定上行传输的路损测量参数;根据TCI状态中的类型D的下行参考信号确定上行传输的路损测量参数;所述TCI状态是CORESET配置的TCI状态;根据CORESET的TCI状态的下行RS确定上行传输的PL-RS;根据编号最小的CORESET的TCI状态的下行RS确定上行传输的PL-RS。
在实施例中,下行参考信号包括以下至少之一:SSB、CSI-RS。
在一实现方式中,TCI状态可以分为多个层次配置,对功率控制参数与不同层次的TCI状态的关联进行说明。在实施例中,以第二通信节点为第一通信节点配置功率控制参数与不同层次的TCI状态的关联为例,对功率控制参数与不同层次的TCI状态的关联配置过程进行说明。示例性地,第二通信节点为基站,第一通信节点为UE。图3是本申请提供的一种功率控制参数与不同层次的TCI状态的关联示意图。
在一实施例中,根据上行传输对应的TCI状态确定上行传输的功率控制参数包括:确定上行传输对应的TCI状态;确定TCI状态与上行传输对应的功率控制参数。
在实施例中,确定上行传输对应的TCI状态,包括以下至少之一:根据调度或触发该PUSCH传输的DCI中指示的TCI状态确定PUSCH传输对应的TCI状态;根据配置PUSCH传输的高层信令确定PUSCH传输对应的TCI状态;根 据PUCCH传输的PUCCH资源所关联的TCI状态确定PUCCH传输对应的TCI状态;根据SRS传输的SRS资源所关联的SRS空间关系确定SRS传输对应的TCI状态。
在实施例中,上述信息中TCI状态由以下信息之一描述:
描述方式一,基本TCI状态集合中的TCI状态编号,或基本TCI状态集合的子集中的TCI状态的编号。
在实施例中,基本TCI状态集合由基站为UE配置。该基本TCI状态集合包括至少一个TCI状态,用于确定PDCCH、PDSCH、CSI-RS、PUSCH、PUCCH、和/或SRS等信道或信号的传输参数。基本TCI状态集合中的TCI状态包括或关联功率控制参数。根据上行传输对应的TCI状态可以确定上行传输的功率控制参数。在实施例中,功率控制参数包括:路损测量参数、目标接收功率参数、路损补偿系数、和/或闭环功控参数。
在实施例中,不同的上行传输对功率控制参数的需求可能不同,功率控制参数包括:路损测量参数、PUSCH的目标接收功率参数、路损补偿系数、PUSCH的闭环功控参数、PUCCH的目标接收功率参数、PUCCH的闭环功控参数、和/或SRS的目标接收功率参数。
例如:对于PUSCH传输,根据调度或触发该PUSCH传输的DCI中指示的TCI状态,在基本TCI状态集合中对应的TCI状态的信息可以确定应用于PUSCH传输的功控参数。
描述方式二,第一TCI状态集合中的TCI状态编号,或第一TCI状态集合的子集中的TCI状态的编号。
在实施例中,第一TCI状态集合由基站通过高层信令或MAC CE为UE配置或激活。第一TCI状态集合包括至少一个TCI状态或TCI状态组合,且第一TCI状态集合是基本TCI状态集合的子集。第一TCI状态集合用于确定上行传输,例如PUSCH、PUCCH、和/或SRS等信道或信号的传输参数。第一TCI状态集合可能有多个,分别对应不同类型的上行传输。第一TCI状态集合也可能有1个,对应多种类型的上行传输。基本TCI状态集合同上述实施例的描述,在此不再赘述。
第一TCI状态集合中的TCI状态包括或关联功率控制参数。根据上行传输对应的TCI状态可以确定上行传输的功率控制参数。
第一TCI状态集合中一个TCI状态与基本TCI状态集合中相同TCI状态包括或关联的功率控制参数是不同类型的功率控制参数。即,功率控制参数中的参数可能分别与不同层次TCI状态集合关联。
例如,基本TCI状态集合中的TCI状态关联路损测量参数。第一TCI状态集合中的TCI状态关联其他功率控制参数,包括以下至少之一:目标接收功率、PUSCH的目标接收功率、PUCCH的目标接收功率、路损补偿系数、闭环功控参数、PUSCH的闭环功控参数、或PUCCH的闭环功控参数。在第一TCI状态集合是为PUSCH、PUCCH、和/或SRS分别配置的情况下,用于PUSCH、PUCCH、SRS的第一TCI状态集合分别关联与PUSCH、PUCCH、SRS相关的功率控制参数。
又如,第一TCI状态集合中的TCI状态关联路损测量参数,用于确定PUSCH传输、PUCCH传输、和/或SRS传输的路损测量参数。基本TCI状态集合中的TCI状态关联其他功率控制参数,包括以下至少之一:目标接收功率、PUSCH的目标接收功率、PUCCH的目标接收功率、路损补偿系数、闭环功控参数、PUSCH的闭环功控参数、或PUCCH的闭环功控参数。
第一TCI状态集合中一个TCI状态与基本TCI状态集合中相同TCI状态包括或关联的功率控制参数是相同类型的功率控制参数的情况下,使用第一TCI状态集合中的功率控制参数,或使用第一TCI状态集合与基本TCI状态集合中的功率控制参数中较新的一个。即功率控制参数中的参数可能与不同层次TCI状态集合关联。
MAC层的信息,例如第一TCI状态集合包括的或关联的功率控制参数用于更新基本TCI状态集合中相同的TCI状态包括或关联的功率控制参数。
使用第一TCI状态集合与基本TCI状态集合中的功率控制参数中较新的一个的前提是,第一TCI状态集合与功率控制参数的关联关系已经生效。例如,UE在接收到第一TCI状态集合与功率控制参数的关联关系的MAC CE的一段时间后生效。如UE发送了该MAC CE的确认(Acknowledge,ACK)信息后的3个子帧之后。
在第一TCI状态集合中包括多于1个TCI状态或一个TCI状态组合的情况下,需要进一步的调度信息,例如物理层的指示信息DCI基于第一TCI状态集合指示上行传输对应的TCI状态。
描述方式三,第二TCI状态集合或第二TCI状态集合的子集中的TCI状态编号,或第二TCI状态集合或第二TCI状态集合的子集中的TCI状态组合的编号。
在实施例中,第二TCI状态集合由基站通过高层信令或MAC CE为UE配置或激活。第二TCI状态集合是第一TCI状态集合的或基本TCI状态集合的子集,包括至少一个TCI状态,或至少一个TCI状态组合。第二TCI状态集 合可能有多个,分别对应不同类型的上行传输。第二TCI状态集合也可能有1个,对应多种类型的上行传输。第一TCI状态集合和基本TCI状态集合同上述。
在第二TCI状态集合中包括多于1个TCI状态或一个TCI状态组合的情况下,需要进一步的调度信息,例如物理层的指示信息DCI进一步基于第二TCI状态集合指示上行传输对应的TCI状态。
第二TCI状态集合中的TCI状态包括或关联功率控制参数。根据上行传输对应的TCI状态可以确定上行传输的功率控制参数。
第二TCI状态集合中一个TCI状态与基本TCI状态集合或第一TCI状态集合中相同TCI状态包括或关联的功率控制参数是不同类型的功率控制参数。即,功率控制参数中的参数可能分别与不同层次TCI状态集合关联。
例如,基本TCI状态集合和/或第一TCI状态集合中的TCI状态关联路损测量参数,用于PUSCH传输、PUCCH传输、和/或SRS传输。第二TCI状态集合中的TCI状态关联其他功率控制参数,包括以下至少之一:目标接收功率、PUSCH的目标接收功率、PUCCH的目标接收功率、路损补偿系数、闭环功控参数、PUSCH的闭环功控参数、PUCCH的闭环功控参数。
又如,第二TCI状态集合中的TCI状态关联路损测量参数,用于PUSCH传输、PUCCH传输、和/或SRS传输。基本TCI状态集合和/或第一TCI状态集合中的TCI状态关联其他功率控制参数,包括以下至少之一:目标接收功率、PUSCH的目标接收功率、PUCCH的目标接收功率、路损补偿系数、闭环功控参数、PUSCH的闭环功控参数、PUCCH的闭环功控参数。
在第二TCI状态集合是为PUSCH、PUCCH、和/或SRS分别配置的情况下,用于PUSCH、PUCCH、SRS的第二TCI状态集合分别关联与PUSCH、PUCCH、SRS相关的功率控制参数。
在一实现方式中,在MAC层为激活的TCI状态关联功率控制参数的情况下,功率控制参数的指示信息来自于预先配置的集合,也叫作功率控制参数集合。功率控制参数集合是由高层配置的。例如,PL-RS参数集合包括64个PL-RS信息,P0参数集合包括32个P0参数。在MAC CE为一个或多个TCI状态关联功率控制参数的情况下,指示一个PL-RS的开销需要6比特,指示一个P0需要5比特。
为了减小功率控制参数指示的开销,本实施例提出针对激活的TCI状态集合确定一个功率控制参数子集,称为激活的功率控制参数集合,包括如下方式:通过高层信令配置M个功率控制参数,例如M=64,称为基本功率控制参数集合;通过高层信令或MAC信令从M个功率控制参数中选择N个功率控制参数, 其中N小于M,例如N=4,N个功率控制参数称为激活功率控制参数集合;激活的功率控制参数集合用于确定激活的TCI状态的功率控制参数。
在实施例中,采用以下方式至少之一从M个功率控制参数中选择N个或N组功率控制参数:比特地图;预定义或配置参数。
在实施例中,比特地图的方式包括:长度为M的比特地图,每比特对应1个或1组功率控制参数的激活/去激活状态。在从M个功率控制参数中选择N个或N组功率控制参数的情况下,比特地图中的比特有N个为激活状态,比如,激活状态取值为1;或,长度为a*M的比特地图,每a比特对应1个功率控制参数的激活/去激活状态。a是大于或等于1的整数。
在实施例中,预定义或配置参数的方式包括:以预定义或配置参数的方式激活分组中的一个或多个分组。
在实施例中,激活的功率控制参数集合也可以通过DCI信息指示。
激活的功率控制参数集合的大小是可以配置的。例如,在基站侧波束之间受到干扰的差别比较小的情况下,激活的功率控制参数集合可以比较小,反之,激活的功率控制参数集合可以比较大。
在实施例中,激活的功率控制参数集合包括激活的路损测量参数集合、激活的目标接收功率参数集合、激活的路损补偿系数集合、激活的开环功控参数集合、和/或激活的闭环功控参数集合。对每个TCI状态或TCI状态组合分别关联激活的功率控制参数集合中的多个功率控制参数编号。
在实施例中,激活的功率控制参数集合包括至少一个激活的功率控制参数,每个激活的功率控制参数包括路损测量参数、目标接收功率参数、路损补偿系数、开环功控参数、和/或闭环功控参数。对每个TCI状态或TCI状态组合关联一个激活的功率控制参数集合中的功率控制参数编号。
在实施例中,为进一步减小P0/alpha的开销,同一个信令(例如MAC CE)中指示的多个TCI状态和TCI状态组合之间可以采用差分方式指示多个P0/alpha的值。例如,一个MAC CE中需要指示TCI状态0,TCI状态1,TCI状态0和1的组合分别对应3套功率控制参数,其中TCI状态0的P0值是采用指示激活的功率控制参数集合中P0参数的编号,而对TCI状态1以及TCI状态0和1的组合采用指示相对于TCI状态0的P0值的偏差值的方式指示。偏差值的指示方式由预定义方式和/或配置参数的方式确定。
在一实现方式中,调度或触发PUSCH传输的DCI指示该PUSCH传输相关的TCI状态,或者根据MAC CE信息获得PUSCH传输相关的TCI状态,根据PUSCH传输相关的TCI状态确定PUSCH传输的功率控制参数。PUSCH传输 相关的TCI状态包括一个或多个TCI状态。
根据PUSCH传输相关的TCI状态确定PUSCH传输的功率控制参数,包括以下至少之一:
方式1,根据PUSCH传输相关的TCI状态中包括的PUSCH的功率控制参数确定PUSCH传输的功率控制参数。
在实施例中,TCI状态的信息中包括功率控制参数,功率控制参数至少包括用于PUSCH传输的功率控制参数,功率控制参数中的部分功率控制参数,例如路损测量参数,也可以用于确定PUCCH传输、或SRS传输的功率。
方式2,根据PUSCH传输相关的TCI状态与PUSCH的功率控制参数的关联确定PUSCH的传输功率控制参数。例如,根据PUSCH传输的TCI状态查TCI状态与PUSCH的功率控制参数关联关系表确定PUSCH传输的功率控制参数。
在实施例中,TCI状态与PUSCH的功率控制参数关联关系表中包括至少1个TCI状态与PUSCH的功率控制参数关联关系。每个TCI状态与PUSCH的功率控制参数关联关系中包括以下至少之一:TCI状态与PUSCH的功率控制参数关联关系编号,TCI状态编号,PUSCH的功率控制参数,PUSCH的功率控制参数编号。
在实施例中,TCI状态编号是指特定TCI状态集合中的TCI状态的编号或TCI状态的编号的组合。特定TCI状态集合包括以下之一:为PDSCH、PDCCH(或控制资源集合CORESET)、PUSCH、PUCCH或SRS之一或组合配置的或激活的TCI状态集合、基本TCI状态集合、第一TCI状态集合、或第二TCI状态集合。
在实施例中,TCI状态与PUSCH的功率控制参数关联关系编号与至少1个TCI状态编号有关联关系。至少1个TCI状态编号由特定TCI状态集合中的TCI状态的编号和/或TCI状态的编号的组合确定。例如,特定TCI状态集合中包括2个TCI状态,则TCI状态编号为0、1,TCI状态编号的组合为0和1。TCI状态与PUSCH的功率控制参数关联关系编号0、1、2分别对应TCI状态编号为0、1、0和1。
在实施例中,TCI状态与PUSCH的功率控制参数关联关系编号与多于1个TCI状态编号有关联关系,多于1个TCI状态编号由特定TCI状态集合中TCI状态的编号的组合确定。此时,TCI状态与PUSCH的功率控制参数关联关系包括X套PUSCH的功率控制参数,X为0、1、或大于1的整数。在X=0的情况下,即该TCI状态与PUSCH的功率控制参数关联关系不包括PUSCH的功 率控制参数,则TCI状态与PUSCH的功率控制参数关联关系编号对应的功率控制参数是TCI状态与PUSCH的功率控制参数关联关系编号对应的多个TCI状态编号分别对应的PUSHC的功率控制参数;在X=1的情况下,则对应的1套功率控制参数应用于TCI状态与PUSCH的功率控制参数关联关系对应的多于1个TCI状态编号相关的PUSCH传输;在X大于1的情况下,则X套功率控制参数分别应用于该TCI状态与PUSCH的功率控制参数关联关系编号对应的多个TCI状态编号的X个分组相关的PUSCH传输。例如,一个TCI状态与PUSCH的功率控制参数关联关系对应2个TCI状态编号0和1,并且该TCI状态与PUSCH的功率控制参数关联关系中包括X=2套PUSCH的功率控制参数,则2套PUSCH的功率控制参数分别对应TCI状态编号为0和1的PUSCH传输。又如,一个TCI状态与PUSCH的功率控制参数关联关系对应4个TCI状态编号0、1、2和3,并且该TCI状态与PUSCH的功率控制参数关联关系中包括X=2套PUSCH的功率控制参数,则2套PUSCH的功率控制参数分别对应TCI状态编号为0到3的2个分组的PUSCH传输,其中4个TCI状态分为X=2组是根据预定义的方式确定,或根据配置信息确定,如TCI状态编号0和1是第一分组,TCI状态编号为2、3是第二分组。
方式3,根据PUSCH传输相关的TCI状态所关联的探测参考信号资源指示(Sounding Reference Signal Resource Indication,SRI)确定PUSCH传输功率控制参数。例如,根据TCI状态所关联的SRI,查找SRI与PUSCH的功率控制参数的映射(mapping)关系表,以确定PUSCH传输的功率控制参数。
在实施例中,TCI状态中包括SRI信息。SRI信息指示SRS资源集合中的1个或多个SRS资源。
在实施例中,TCI状态与SRI信息有关联关系。例如,TCI状态中包括的1个或多个SRS resource编号与SRI所指示的1个或多个SRS resource编号一致。
图4是本申请实施例提供的一种不同层次的TCI状态的配置示意图。PUSCH 1的TCI状态从池#2、#1或#0(pool#2、#1或#0)中的TCI状态中指示。TCI状态在pool#1或#0中被配置关联了功率控制参数。因此PUSCH 1传输的功率控制参数可以根据其对应的TCI状态关联的功率控制参数确定。
PUSCH 2的TCI状态从pool#3中的TCI状态中指示。pool#3中的TCI状态中包括至少一个TCI状态组合ID,每个TCI状态组合ID指示一个或多个TCI状态。每个TCI状态组合ID与功率控制参数关联。TCI状态组合ID与功率控制参数关联关系由MAC CE或高层信令指示。
在一实现方式中,确定PUCCH传输相关的TCI状态,根据TCI状态确定PUCCH的功率控制参数。
根据以下之一确定PUCCH传输相关的TCI状态:PUCCH传输对应的PUCCH资源关联的PUCCH空间关系中包含的TCI状态;PUCCH传输对应的PUCCH资源关联的TCI状态。
在实施例中,基站通过高层信令,如RRC信令,为UE配置基本TCI状态集合,该基本TCI状态集合用于确定PDCCH、PDSCH、CSI-RS、PUSCH、PUCCH、和/或SRS等信道或信号的传输参数。
在实施例中,PUCCH传输相关的TCI状态来自于基本TCI状态集合,或基本TCI状态集合的子集第一TCI状态集合。第一TCI状态集合由高层信令或MAC CE基于基本TCI状态集合配置或激活。
或者,TCI状态来自于第二TCI状态集合,第二TCI状态集合是MAC CE激活的。第二TCI状态集合是基于基本TCI状态集合和/或第一TCI状态集合确定的,是基本TCI状态或第一TCI状态集合的子集。
在实施例中,第一TCI状态集合或第二TCI状态集合中每个TCI状态成员关联一套功率控制参数。TCI状态与功率控制参数的关联关系可以是由高层信令配置,和/或MAC信令配置或更新。
图5是本申请实施例提供的另一种不同层次的TCI状态的配置示意图。对于PUCCH传输,其对应的PUCCH资源与空间关系(记为spatial relation)有关联关系。
选择1:与PUCCH资源关联的空间(spatial)可能来自高层信令配置的PUCCH spatial relation参数池(pool),该参数池中的PUCCH spatial relation指示PUCCH传输参考的TCI状态,该TCI状态来自pool#0,或#1中的TCI状态,可以分别对应基本波束状态集合,第一波束状态集合。根据上述参考的TCI状态(state)关联的功率控制参数确定该PUCCH传输的功率控制参数。
选择2:与PUCCH资源关联的spatial来自pool#2,#1或#0的TCI状态,可以分别对应第二波束状态集合,第一波束状态集合,和基本波束状态集合。图中的pool#2’是指对PUCCH单独配置的第二波束状态集合。Pool#2是PUCCH与其他传输共享的波束状态集合。根据与PUCCH资源关联的空间关系所对应的TCI状态关联的功率控制参数确定该PUCCH传输的功率控制参数。
在一实现方式中,可采用以下方式确定SRS功率控制参数。
方式1:基站为UE配置至少一个SRS资源,并且配置至少一个SRS资源集合,每个SRS资源集合中包含至少一个SRS资源编号、以及SRS的功率控制参数。SRS资源集合中包含空间关系参数,空间关系参数包含以下之一:SSB、CSI-RS、SRS、TCI状态。
UE发送一个SRS传输的情况下,根据该SRS传输的SRS资源所属的SRS资源集合确定功率控制参数。一个SRS资源集合对应一套功率控制参数,其中所有SRS资源都使用相同的功率控制参数。
方式2:基站为UE配置基本TCI状态集合。该基本TCI状态集合包括至少一个TCI状态,用于确定PDCCH、PDSCH、CSI-RS、PUSCH、PUCCH、和/或SRS等信道或信号的传输参数。
基本TCI状态集合中的TCI状态包含功率控制参数。
根据SRS资源所关联的TCI状态所关联的功率控制参数确定该SRS资源对应的STS传输的功率控制参数。
在实施例中,对于特定用途的SRS,如波束管理,SRS资源集合中所有SRS资源的功率控制参数需要保持一致,则需要根据SRS资源集合中的所有SRS资源各自对应的功率控制参数确定一套功率控制参数。
在实施例中,SRS资源集合包括多个SRS资源分组,例如,在多传输点(Transmission Point,TRP)多面板(panel)的场景下,则需要根据SRS资源分组中的SRS资源各自对应的功率控制参数确定一套的功率控制参数用于对应的SRS资源分组。
在实施例中,根据SRS资源集合或SRS资源分组中的至少一个SRS资源对应的TCI状态所关联的至少1套功率控制参数确定一套功率控制参数的方法包括以下至少之一:SRS资源集合或SRS资源分组中特定SRS资源编号的,例如,编号最小的或最大的,SRS资源对应的TCI状态所关联的功率控制参数;SRS资源集合或SRS资源分组中所有SRS资源对应的TCI状态所关联的功率控制参数的平均值。
功控参数包括例P0参数,alpha参数,和/或PL-RS参数。在一实现方式中,对TCI状态与PC参数,以及SRS资源之间的关系进行描述。图6是本申请实施例提供的一种TCI状态与PC参数,以及SRS资源之间的关系示意图。
在TCI状态中只包括或关联下行RS,并且用于上行传输的情况下,下行RS无法提供端口信息。有鉴于此,本申请实施例提出下述方案。
基站配置给UE至少一个TCI状态,TCI状态与至少一个SRS资源关联。
用于基于码本的PUSCH传输的情况下,TCI状态与一个SRS资源关联。
用于基于非码本的PUSCH传输的情况下,TCI状态与至少一个SRS资源关联。
TCI状态与SRS资源关联,包括:TCI状态中包括SRS资源编号,或TCI 状态编号与SRS资源编号具有关联关系。
对于PUSCH传输使用多于1个TCI状态的情况,例如PUSCH传输多次重复使用不同的TCI状态,调度或触发PUSCH传输的DCI中包括TCI状态指示信息,每个TCI状态指示信息的取值指示一个或多个TCI状态。
为了统一处理,对于PUSCH传输使用多于1个TCI状态的情况,也可以兼容PUSCH传输使用1个TCI状态,因此,调度或触发PUSCH传输的DCI中包括TCI状态指示信息,每个TCI状态指示信息的取值指示一个或多个TCI状态。
在实施例中,对于基于码本的PUSCH传输,调度或触发PUSCH的DCI中包括发射预编码矩阵指示(Transmitted Precoding Matrix Indication,TPMI)信息。为支持PUSCH传输使用多于1个TCI状态的情况,调度或触发PUSCH传输的DCI中包括至少1个TPMI信息。至少一个TPMI信息可以联合编码。
在实施例中,对于基于非码本的PUSCH传输,调度或触发PUSCH传输的DCI中包括SRI信息。为支持PUSCH传输使用多于1个TCI状态的情况,调度或触发PUSCH传输的DCI中包括至少1个SRI信息。至少一个SRI信息可以联合编码。
UE通过调度或触发PUSCH传输的DCI中包括的以下至少之一确定PUSCH传输的发送参数:至少一个TCI状态的指示信息,至少一个TPMI的指示信息,至少一个SRI的指示信息。
TCI状态与功率控制参数有关联关系。UE通过调度或触发PUSCH传输的DCI得到PUSCH传输对应的TCI状态,使用TCI状态与功率控制参数关联得到PUSCH传输的功率控制参数。
在一实施例中,图7是本申请实施例提供的一种功率控制参数确定装置的结构框图。本实施例应用于第一通信节点。如图7所示,本实施例包括:第一确定模块310和第二确定模块320。
第一确定模块310,设置为确定上行传输的波束状态。
第二确定模块320,设置为根据波束状态确定上行传输的功率控制参数。
波束状态至少包括下述之一:准共址QCL状态,传输配置指示TCI状态,空间关系信息,参考信号信息,空间滤波器信息,预编码信息。
本实施例提供的功率控制参数确定装置设置为实现图1所示实施例的应用于第一通信节点的功率控制参数确定方法,本实施例提供的功率控制参数确定装置实现原理和图1所示实施例的应用于第一通信节点的功率控制参数确定方法类似,此处不再赘述。
在一实施例中,上行传输至少包括下述之一:PUSCH传输,PUCCH传输,SRS传输,PRACH传输。
在一实施例中,波束状态包括至少一个波束状态。
在一实施例中,波束状态由以下之一信息指示:特定的波束状态集合中的至少一个波束状态的编号;特定的波束状态集合中激活的波束状态中至少一个波束状态的编号;特定的波束状态集合中的至少一个波束状态的组合编号;或特定的波束状态集合中激活的波束状态中的至少一个波束状态的组合编号;其中,特定的波束状态集合由高层信令和/或MAC层信令配置或激活。
在一实施例中,上行传输的波束状态,至少包括下述之一:上行传输所参考的波束状态;上行传输所关联的波束状态;调度或触发上行传输的下行控制信息DCI指示的波束状态;高层信令配置给上行传输的波束状态;上行传输的资源所关联的波束状态。
在一实施例中,第二确定模块,设置为以下之一:根据波束状态中包含的功率控制参数或功率控制参数编号确定上行传输的功率控制参数;根据波束状态与功率控制参数的关联关系确定上行传输的功率控制参数。
在一实施例中,波束状态与功率控制参数的关联关系包括至少一个波束状态与功率控制参数的关联单元;波束状态与功率控制参数的关联单元中包括:波束状态与功率控制参数的关联单元编号、波束状态、功率控制参数中的至少一个。
在一实施例中,功率控制参数至少包括下述至少之一:路损测量参数,目标接收功率,路损补偿因子,闭环功控参数。
在一实施例中,在上行传输是PUSCH传输,或波束状态用于PUSCH传输的情况下,功率控制参数至少包括下述至少之一:PUSCH的路损测量参数,PUSCH的目标接收功率,PUSCH的路损补偿因子,PUSCH的闭环功控参数;在上行传输是PUCCH传输,或波束状态用于PUCCH传输的情况下,功率控制参数至少包括下述至少之一:PUCCH的路损测量参数,PUCCH的目标接收功率,PUCCH的闭环功控参数;在上行传输是SRS传输,或波束状态用于SRS传输的情况下,功率控制参数至少包括下述至少之一:SRS的路损测量参数,SRS的目标接收功率,SRS的闭环功控参数;在波束状态用于PUSCH传输和PUCCH传输的情况下,功率控制参数至少包括下述至少之一:路损测量参数,PUSCH的目标接收功率,PUSCH的路损补偿因子,PUSCH的闭环功控参数,PUCCH的目标接收功率,PUCCH的闭环功控参数;或,在波束状态用于PUSCH传输、PUCCH传输、和SRS传输的情况下,功率控制参数至少包括下述至少之 一:路损测量参数,PUSCH的目标接收功率,PUSCH的路损补偿因子,PUSCH的闭环功控参数,PUCCH的目标接收功率,PUCCH的闭环功控参数,SRS的目标接收功率,SRS的闭环功控参数。
在一实施例中,波束状态的特性包括下述至少之一:配置或关联SRS资源的波束状态;用于上行传输的波束状态;非仅用于下行传输的波束状态。
在一实施例中,波束状态被用于PUSCH传输的情况下,波束状态被配置或关联SRS资源。
在一实施例中,波束状态所包含或所关联的路损测量参数用于确定下述至少一种上行传输的路损测量参数:PUSCH传输,PUCCH传输,SRS传输,PRACH传输。
在一实施例中,波束状态所关联的路损测量参数由波束状态中的参考信号RS确定;或,在波束状态未被配置或未被提供路损测量参数的情况下,波束状态所关联的路损测量参数由波束状态中的参考信号RS确定。
在一实施例中,波束状态中的RS包括以下至少之一的特征:下行RS,周期的RS,半持续的RS,第一类QCL类型的RS,第二类QCL类型的RS;其中,第一类QCL类型包括以下之一:类型A、类型B、类型C,或除空间参数之外的QCL参数对应的QCL类型;第二类QCL类型包括以下之一:类型D,或包括空间参数对应的QCL类型。
在一实施例中,波束状态所关联的路损测量参数由波束状态中的参考信号RS确定包括以下至少之一:在波束状态包含第二类QCL类型的RS的情况下,根据波束状态包含的第二类QCL类型的RS确定波束状态所关联的路损测量参数;在波束状态不包含第二类QCL类型的RS的情况下,根据波束状态包含的第一类QCL类型的RS确定波束状态所关联的路损测量参数;在上行传输属于频率范围FR 1的情况下,根据波束状态包含的第一类QCL类型的RS确定波束状态所关联的路损测量参数。
在一实施例中,在波束状态未被配置或未被提供路损测量参数的情况下,波束状态所关联的路损测量参数由下述至少之一确定:波束状态的QCL信息中包含的RS;波束状态的QCL信息中包含的下行RS;波束状态的QCL信息中包含的周期RS;波束状态的QCL信息中包含的半持续RS。
在一实施例中,在波束状态未被配置或未被提供路损测量参数的情况下,波束状态所关联的路损测量参数由下述至少之一确定:上行传输所在小区或第一通信节点被配置的小区中编号最小的小区的路损测量参数;上行传输所在的带宽部分BWP,上行传输所在小区中的激活BWP,或上行传输所在小区中的 BWP编号最小的BWP的路损测量参数;根据控制资源集合确定的路损测量参数。
在一实施例中,图8是本申请实施例提供的另一种功率控制参数确定装置的结构框图。本实施例应用于第二通信节点。如图8所示,本实施例包括:第一配置模块410和第二配置模块410。
第一配置模块410,设置为配置或激活特定的波束状态集合。
第二配置模块420,设置为配置或指示上行传输关联的波束状态,上行传输关联的波束状态用于确定上行传输的功率控制参数。
上行传输关联的波束状态包括:特定的波束状态集合中的至少一个波束状态。
波束状态至少包括下述之一:准共址QCL状态,传输配置指示TCI状态,空间关系信息,参考信号信息,空间滤波器信息,预编码信息。
本实施例提供的功率控制参数确定装置设置为实现图2所示实施例的应用于第二通信节点的功率控制参数确定方法,本实施例提供的功率控制参数确定装置实现原理和图2所示实施例的应用于第二通信节点的功率控制参数确定方法类似,此处不再赘述。
在一实施例中,上行传输至少包括下述之一:PUSCH传输,PUCCH传输,SRS传输,PRACH传输。
在一实施例中,波束状态所包含或所关联的路损测量参数用于确定下述至少一种上行传输的路损测量参数:PUSCH传输,PUCCH传输,SRS传输,PRACH传输。
在一实施例中,特定的波束状态集合,包括:基本波束状态集合;其中,基本波束状态集合包括下述至少之一的特征:基本波束状态集合包括至少一个波束状态;基本波束状态集合通过高层信令配置或重配置;基本波束状态集合用于确定下述至少一项信道或信号的传输参数:PDCCH、PDSCH、信道状态信息参考信号CSI-RS、PUSCH、PUCCH、SRS。
在一实施例中,特定的波束状态集合,包括:第一波束状态集合;其中,第一波束状态集合包括下述至少之一的特征:第一波束状态集合包括基本波束状态集合中的至少一个波束状态;第一波束状态集合的波束状态通过高层信令配置或重配置,或通过MAC信令激活;第一波束状态集合用于确定下述至少一项信道或信号的传输参数:PUSCH、PUCCH、SRS;基本波束状态集合包括下述至少之一的特征:基本波束状态集合包括至少一个波束状态;基本波束状态集合通过高层信令配置或重配置;基本波束状态集合用于确定下述至少一项信 道或信号的传输参数:PDCCH、PDSCH、信道状态信息参考信号CSI-RS、PUSCH、PUCCH、SRS。
在一实施例中,特定的波束状态集合,包括:第二波束状态集合;其中,第二波束状态集合包括下述至少之一的特征:第二波束状态集合包括第一波束状态集合中的至少一个波束状态;第二波束状态集合的波束状态通过MAC信令激活;第二波束状态集合用于确定下述至少一项信道或信号的传输参数:PUSCH、PUCCH、SRS;第一波束状态集合包括下述至少之一的特征:第一波束状态集合包括基本波束状态集合中的至少一个波束状态;第一波束状态集合的波束状态通过高层信令配置或重配置,或通过MAC信令激活;第一波束状态集合用于确定下述至少一项信道或信号的传输参数:PUSCH、PUCCH、SRS;基本波束状态集合包括下述至少之一的特征:基本波束状态集合包括至少一个波束状态;基本波束状态集合通过高层信令配置或重配置;基本波束状态集合用于确定下述至少一项信道或信号的传输参数:PDCCH、PDSCH、信道状态信息参考信号CSI-RS、PUSCH、PUCCH、SRS。
在一实施例中,上行传输关联的波束状态用于确定上行传输的功率控制参数,包括以下之一:根据波束状态中包含的功率控制参数或功率控制编号确定上行传输的功率控制参数;根据波束状态与功率控制参数的关联关系确定所述上行传输的功率控制参数。
在一实施例中,波束状态与功率控制参数之间的关联关系,包括:至少一个波束状态与功率控制参数的关联单元;波束状态与功率控制参数的关联单元至少包括下述之一:波束状态与功率控制参数的关联单元编号、波束状态、功率控制参数。
在一实施例中,波束状态由以下之一信息指示:波束状态的编号;波束状态的组合编号。
在一实施例中,波束状态与功率控制参数之间的关联关系,包括下述之一:通过高层信令或媒体访问控制MAC信令配置特定的波束状态集合中的至少一个波束状态与功率控制参数关联。
在一实施例中,波束状态与功率控制参数之间的关联关系,包括下述之一:通过高层信令配置基本波束状态集合中波束状态的编号与功率控制参数的关联;通过高层信令配置第一波束状态集合中波束状态的编号与功率控制参数的关联;通过媒体访问控制MAC信令配置第一波束状态集合中激活的波束状态的编号与功率控制参数的关联;通过MAC信令配置第二波束状态集合中激活的波束状态的编号与功率控制参数的关联。
在一实施例中,功率控制参数至少包括下述之一:路损测量参数,目标接收功率,路损补偿因子,闭环功控参数。
在一实施例中,配置模块,设置为通过波束状态的指示信息配置或指示上行传输关联的波束状态。
在一实施例中,通过预定义的方式确定波束状态的指示信息与特定的波束状态集合中波束状态的对应关系;或者,通过高层信令或MAC信令确定波束状态的指示信息与特定的波束状态集合中波束状态的对应关系;或者,在上行传输是基于非码本传输的情况下,通过高层信令或MAC信令确定波束状态的指示信息与特定的波束状态集合中波束状态的对应关系。
在一实施例中,上行传输的功率控制参数的确定方式,包括下述至少之一:根据每个波束状态的指示信息取值确定对应的一套功率控制参数;根据波束状态的指示信息指示的波束状态确定一套功率控制参数。
在一实施例中,根据每个波束状态的指示信息取值确定对应的一套功率控制参数,至少满足下述条件之一:上行传输是基于非码本的传输;波束状态关联至少1个SRS资源;波束状态关联的SRS资源的端口数量等于1。
在一实施例中,根据波束状态的指示信息指示的波束状态确定一套功率控制参数,至少满足下述条件之一:上行传输为基于码本的传输;波束状态关联1个SRS资源;波束状态关联的SRS资源的端口数量大于或等于1。
图9是本申请实施例提供的一种设备的结构示意图。如图9所示,本申请提供的设备,包括:处理器510、存储器520和通信模块530。该设备中处理器510的数量可以是一个或者多个,图9中以一个处理器510为例。该设备中存储器520的数量可以是一个或者多个,图9中以一个存储器520为例。该设备的处理器510、存储器520和通信模块530可以通过总线或者其他方式连接,图9中以通过总线连接为例。在该实施例中,该设备为第一通信节点。
存储器520作为一种计算机可读存储介质,可设置为存储软件程序、计算机可执行程序以及模块,如本申请任意实施例的设备对应的程序指令/模块(例如,功率控制参数确定装置中的第一确定模块和第二确定模块)。存储器520可包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序;存储数据区可存储根据设备的使用所创建的数据等。此外,存储器520可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。在一些实例中,存储器520还可包括相对于处理器510远程设置的存储器,这些远程存储器可以通过网络连接至设备。上述网络的实例包括但不限于互联网、企 业内部网、局域网、移动通信网及其组合。
通信模块530,设置为在第一通信节点和第二通信节点之间进行通信连接,以进行数据通信和信号通信。
上述提供的设备可设置为执行上述任意实施例提供的应用于第一通信节点的功率控制参数确定方法,具备相应的功能。
在设备为第二通信节点的情况下,上述提供的设备可设置为执行上述任意实施例提供的应用于第二通信节点的功率控制参数确定方法,具备相应的功能。
本申请实施例还提供一种包含计算机可执行指令的存储介质,计算机可执行指令在由计算机处理器执行时用于执行应用于第一通信节点的一种功率控制参数确定方法,该方法包括:确定上行传输的波束状态;根据波束状态确定上行传输的功率控制参数;其中,波束状态至少包括下述之一:准共址QCL状态,传输配置指示TCI状态,空间关系信息,参考信号信息,空间滤波器信息,预编码信息。
本申请实施例还提供一种包含计算机可执行指令的存储介质,计算机可执行指令在由计算机处理器执行时用于执行应用于第二通信节点的一种功率控制参数确定方法,该方法包括:配置或激活特定的波束状态集合;配置或指示上行传输关联的波束状态,上行传输关联的波束状态用于确定上行传输的功率控制参数;上行传输关联的波束状态包括:特定的波束状态集合中的至少一个波束状态;其中,波束状态至少包括下述之一:准共址QCL状态,传输配置指示TCI状态,空间关系信息,参考信号信息,空间滤波器信息,预编码信息。
本领域内的技术人员应明白,术语用户设备涵盖任何适合类型的无线用户设备,例如移动电话、便携数据处理装置、便携网络浏览器或车载移动台。
一般来说,本申请的多种实施例可以在硬件或专用电路、软件、逻辑或其任何组合中实现。例如,一些方面可以被实现在硬件中,而其它方面可以被实现在可以被控制器、微处理器或其它计算装置执行的固件或软件中,尽管本申请不限于此。
本申请的实施例可以通过移动装置的数据处理器执行计算机程序指令来实现,例如在处理器实体中,或者通过硬件,或者通过软件和硬件的组合。计算机程序指令可以是汇编指令、指令集架构(Instruction Set Architecture,ISA)指令、机器指令、机器相关指令、微代码、固件指令、状态设置数据、或者以一种或多种编程语言的任意组合编写的源代码或目标代码。
本申请附图中的任何逻辑流程的框图可以表示程序步骤,或者可以表示相互连接的逻辑电路、模块和功能,或者可以表示程序步骤与逻辑电路、模块和 功能的组合。计算机程序可以存储在存储器上。存储器可以具有任何适合于本地技术环境的类型并且可以使用任何适合的数据存储技术实现,例如但不限于只读存储器(Read-Only Memory,ROM)、随机访问存储器(Random Access Memory,RAM)、光存储器装置和系统(数码多功能光碟(Digital Video Disc,DVD)或光盘(Compact Disk,CD))等。计算机可读介质可以包括非瞬时性存储介质。数据处理器可以是任何适合于本地技术环境的类型,例如但不限于通用计算机、专用计算机、微处理器、数字信号处理器(Digital Signal Processing,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、可编程逻辑器件(Field-Programmable Gate Array,FPGA)以及基于多核处理器架构的处理器。

Claims (29)

  1. 一种功率控制参数确定方法,应用于第一通信节点,包括:
    确定上行传输的波束状态;
    根据所述波束状态确定所述上行传输的功率控制参数;
    其中,所述波束状态至少包括下述之一:准共址QCL状态,传输配置指示TCI状态,空间关系信息,参考信号信息,空间滤波器信息,预编码信息;
    所述上行传输至少包括下述之一:物理上行共享信道PUSCH传输、物理上行控制信道PUCCH传输、探测参考信号SRS传输,物理随机接入信道PRACH传输。
  2. 根据权利要求1所述的方法,其中,所述波束状态由以下之一信息指示:
    特定的波束状态集合中的至少一个波束状态的编号;
    特定的波束状态集合中激活的波束状态中至少一个波束状态的编号;
    特定的波束状态集合中的至少一个波束状态的组合编号;或
    特定的波束状态集合中激活的波束状态中的至少一个波束状态的组合编号;
    其中,所述特定的波束状态集合由高层信令和媒体访问控制MAC层信令中的至少之一配置或激活。
  3. 根据权利要求1所述的方法,其中,所述上行传输的波束状态至少包括下述之一:所述上行传输所参考的波束状态;所述上行传输所关联的波束状态;调度或触发所述上行传输的下行控制信息DCI指示的波束状态;高层信令配置给所述上行传输的波束状态;所述上行传输的资源所关联的波束状态。
  4. 根据权利要求1所述的方法,其中,所述根据所述波束状态确定所述上行传输的功率控制参数,包括以下之一:
    根据所述波束状态中包含的功率控制参数或功率控制参数编号确定所述上行传输的功率控制参数;
    根据所述波束状态与功率控制参数的关联关系确定所述上行传输的功率控制参数。
  5. 根据权利要求4所述的方法,其中,所述波束状态与功率控制参数的关联关系包括至少一个波束状态与功率控制参数的关联单元;所述波束状态与功率控制参数的关联单元中包括:波束状态与功率控制参数的关联单元编号、波束状态、功率控制参数中的至少一个。
  6. 根据权利要求1、4或5所述的方法,其中,所述功率控制参数至少包括 下述至少之一:路损测量参数,目标接收功率,路损补偿因子,闭环功率控制参数。
  7. 根据权利要求1、4或5所述的方法,其中,
    在所述上行传输是PUSCH传输,或所述波束状态用于PUSCH传输的情况下,所述功率控制参数至少包括下述至少之一:PUSCH的路损测量参数,PUSCH的目标接收功率,PUSCH的路损补偿因子,PUSCH的闭环功率控制参数;
    在所述上行传输是PUCCH传输,或所述波束状态用于PUCCH传输的情况下,所述功率控制参数至少包括下述至少之一:PUCCH的路损测量参数,PUCCH的目标接收功率,PUCCH的闭环功率控制参数;
    在所述上行传输是SRS传输,或所述波束状态用于SRS传输的情况下,所述功率控制参数至少包括下述至少之一:SRS的路损测量参数,SRS的目标接收功率,SRS的闭环功率控制参数;
    在所述波束状态用于PUSCH传输和PUCCH传输的情况下,所述功率控制参数至少包括下述至少之一:路损测量参数,PUSCH的目标接收功率,PUSCH的路损补偿因子,PUSCH的闭环功率控制参数,PUCCH的目标接收功率,PUCCH的闭环功率控制参数;
    或,在所述波束状态用于PUSCH传输、PUCCH传输、和SRS传输的情况下,所述功率控制参数至少包括下述至少之一:路损测量参数,PUSCH的目标接收功率,PUSCH的路损补偿因子,PUSCH的闭环功率控制参数,PUCCH的目标接收功率,PUCCH的闭环功率控制参数,SRS的目标接收功率,SRS的闭环功率控制参数。
  8. 根据权利要求1或4所述的方法,其中,所述波束状态包括下述至少之一:配置或关联SRS资源的波束状态;用于上行传输的波束状态;非仅用于下行传输的波束状态。
  9. 根据权利要求1所述的方法,其中,所述波束状态被用于PUSCH传输的情况下,所述波束状态被配置或关联SRS资源。
  10. 根据权利要求1或4所述的方法,其中,所述波束状态所包含或所关联的路损测量参数用于确定下述至少一种上行传输的路损测量参数:PUSCH传输,PUCCH传输,SRS传输,PRACH传输。
  11. 根据权利要求1或4所述的方法,其中,所述波束状态所关联的路损测量参数由所述波束状态中的参考信号RS确定;或,在波束状态未被配置或未被提供路损测量参数的情况下,所述波束状态所关联的路损测量参数由所述波束状态中的参考信号RS确定。
  12. 根据权利要求11所述的方法,其中,所述波束状态中的RS包括以下至少之一:
    下行RS,
    周期的RS,
    半持续的RS,
    第一类QCL类型的RS,
    第二类QCL类型的RS;
    其中,第一类QCL类型包括以下之一:类型A、类型B、类型C,或除空间参数之外的QCL参数对应的QCL类型;
    第二类QCL类型包括以下之一:类型D,或包括空间参数对应的QCL类型。
  13. 根据权利要求12所述的方法,其中,所述波束状态所关联的路损测量参数由所述波束状态中的参考信号RS确定包括以下至少之一:
    在所述波束状态包含第二类QCL类型的RS的情况下,根据所述波束状态包含的第二类QCL类型的RS确定所述波束状态所关联的路损测量参数;
    在所述波束状态不包含第二类QCL类型的RS的情况下,根据所述波束状态包含的第一类QCL类型的RS确定所述波束状态所关联的路损测量参数;
    在所述上行传输属于频率范围FR 1的情况下,根据所述波束状态包含的第一类QCL类型的RS确定所述波束状态所关联的路损测量参数。
  14. 一种功率控制参数确定方法,应用于第二通信节点,包括:
    配置或激活特定的波束状态集合;
    配置或指示上行传输关联的波束状态,所述上行传输关联的波束状态用于确定所述上行传输的功率控制参数;
    所述上行传输关联的波束状态包括:所述特定的波束状态集合中的至少一个波束状态;
    其中,所述波束状态至少包括下述之一:准共址QCL状态,传输配置指示TCI状态,空间关系信息,参考信号信息,空间滤波器信息,预编码信息。
  15. 根据权利要求14所述的方法,其中,所述特定的波束状态集合,包括:基本波束状态集合;
    其中,所述基本波束状态集合包括下述至少之一的特征:所述基本波束状 态集合包括至少一个波束状态;所述基本波束状态集合通过高层信令配置或重配置;所述基本波束状态集合用于确定下述至少一项信道或信号的传输参数:物理下行控制信道PDCCH、物理下行共享信道PDSCH、信道状态信息参考信号CSI-RS、物理上行共享信道PUSCH、物理上行控制信道PUCCH、探测参考信号SRS。
  16. 根据权利要求14所述的方法,其中,所述特定的波束状态集合,包括:第一波束状态集合;
    其中,所述第一波束状态集合包括下述至少之一的特征:所述第一波束状态集合包括基本波束状态集合中的至少一个波束状态;所述第一波束状态集合的波束状态通过高层信令配置或重配置,或通过媒体访问控制MAC信令激活;所述第一波束状态集合用于确定下述至少一项信道或信号的传输参数:PUSCH、PUCCH、SRS;
    所述基本波束状态集合包括下述至少之一的特征:所述基本波束状态集合包括至少一个波束状态;所述基本波束状态集合通过高层信令配置或重配置;所述基本波束状态集合用于确定下述至少一项信道或信号的传输参数:PDCCH、PDSCH、信道状态信息参考信号CSI-RS、PUSCH、PUCCH、SRS。
  17. 根据权利要求14所述的方法,其中,所述特定的波束状态集合,包括:第二波束状态集合;
    其中,所述第二波束状态集合包括下述至少之一的特征:所述第二波束状态集合包括第一波束状态集合中的至少一个波束状态;所述第二波束状态集合的波束状态通过MAC信令激活;所述第二波束状态集合用于确定下述至少一项信道或信号的传输参数:PUSCH、PUCCH、SRS;
    所述第一波束状态集合包括下述至少之一的特征:所述第一波束状态集合包括基本波束状态集合中的至少一个波束状态;所述第一波束状态集合的波束状态通过高层信令配置或重配置,或通过MAC信令激活;所述第一波束状态集合用于确定下述至少一项信道或信号的传输参数:PUSCH、PUCCH、SRS;
    所述基本波束状态集合包括下述至少之一的特征:所述基本波束状态集合包括至少一个波束状态;所述基本波束状态集合通过高层信令配置或重配置;所述基本波束状态集合用于确定下述至少一项信道或信号的传输参数:PDCCH、PDSCH、信道状态信息参考信号CSI-RS、PUSCH、PUCCH、SRS。
  18. 根据权利要求14所述的方法,其中,所述上行传输关联的波束状态用于确定所述上行传输的功率控制参数,包括以下之一:
    根据所述波束状态中包含的功率控制参数或功率控制参数编号确定所述上 行传输的功率控制参数;
    根据所述波束状态与功率控制参数的关联关系确定所述上行传输的功率控制参数。
  19. 根据权利要求18所述的方法,其中,所述波束状态与功率控制参数之间的关联关系,包括:
    至少一个波束状态与功率控制参数的关联单元;
    所述波束状态与功率控制参数的关联单元至少包括下述之一:波束状态与功率控制参数的关联单元编号、波束状态、功率控制参数。
  20. 根据权利要求14或19所述的方法,其中,所述波束状态由以下之一信息指示:
    波束状态的编号;
    波束状态的组合编号。
  21. 根据权利要求18所述的方法,其中,所述波束状态与功率控制参数之间的关联关系,包括下述之一:通过高层信令或媒体访问控制MAC信令配置所述特定的波束状态集合中的至少一个波束状态与功率控制参数关联;第一波束状态集合中的每个波束状态与功率控制参数关联。
  22. 根据权利要求18所述的方法,其中,所述波束状态与功率控制参数之间的关联关系,包括下述之一:
    通过高层信令配置基本波束状态集合中波束状态的编号与功率控制参数的关联;
    通过高层信令配置第一波束状态集合中波束状态的编号与功率控制参数的关联;
    通过媒体访问控制MAC信令配置第一波束状态集合中激活的波束状态的编号与功率控制参数的关联;
    通过MAC信令配置第二波束状态集合中激活的波束状态的编号与功率控制参数的关联。
  23. 根据权利要求14所述的方法,其中,所述配置或指示上行传输关联的波束状态,包括:
    通过波束状态的指示信息配置或指示上行传输关联的波束状态。
  24. 根据权利要求23所述的方法,其中,
    通过预定义的方式确定所述波束状态的指示信息与所述特定的波束状态集 合中波束状态的对应关系;
    或者,通过高层信令或MAC信令确定所述波束状态的指示信息与所述特定的波束状态集合中波束状态的对应关系;
    或者,在上行传输是基于非码本传输的情况下,通过高层信令或MAC信令确定所述波束状态的指示信息与所述特定的波束状态集合中波束状态的对应关系。
  25. 根据权利要求23所述的方法,其中,所述上行传输的功率控制参数的确定方式,包括下述至少之一:
    根据每个波束状态的指示信息取值确定对应的一套功率控制参数;
    根据所述波束状态的指示信息指示的波束状态确定一套功率控制参数。
  26. 根据权利要求25所述的方法,其中,所述根据每个波束状态的指示信息取值确定对应的一套功率控制参数,至少满足下述条件之一:
    所述上行传输是基于非码本的传输;
    所述波束状态关联至少1个SRS资源;
    所述波束状态关联的SRS资源的端口数量等于1。
  27. 根据权利要求25所述的方法,其中,所述根据所述波束状态的指示信息指示的波束状态确定一套功率控制参数,至少满足下述条件之一:
    所述上行传输为基于码本的传输;
    所述波束状态关联1个SRS资源;
    所述波束状态关联的SRS资源的端口数量大于或等于1。
  28. 一种设备,包括:存储器,以及至少一个处理器;
    所述存储器,设置为存储至少一个程序;
    当所述至少一个程序被所述至少一个处理器执行,使得所述至少一个处理器实现如权利要求1-27中任一所述的方法。
  29. 一种存储介质,存储有计算机程序,所述计算机程序被处理器执行时实现权利要求1-27任一项所述的方法。
PCT/CN2021/072995 2020-01-21 2021-01-21 功率控制参数确定方法、设备和存储介质 WO2021147933A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CA3165650A CA3165650A1 (en) 2020-01-21 2021-01-21 Power control parameter determination method and device, and storage medium
KR1020227028620A KR20220130753A (ko) 2020-01-21 2021-01-21 전력 제어 파라미터 결정 방법 및 디바이스, 및 저장 매체
EP21743731.8A EP4096107A4 (en) 2020-01-21 2021-01-21 METHOD AND DEVICE FOR DETERMINING POWER CONTROL PARAMETERS AND STORAGE MEDIUM
US17/870,584 US20230028861A1 (en) 2020-01-21 2022-07-21 Power control parameter determination method and device, and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010072006.5A CN111901020A (zh) 2020-01-21 2020-01-21 一种功率控制参数确定方法、设备和存储介质
CN202010072006.5 2020-01-21

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/870,584 Continuation US20230028861A1 (en) 2020-01-21 2022-07-21 Power control parameter determination method and device, and storage medium

Publications (1)

Publication Number Publication Date
WO2021147933A1 true WO2021147933A1 (zh) 2021-07-29

Family

ID=73169765

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/072995 WO2021147933A1 (zh) 2020-01-21 2021-01-21 功率控制参数确定方法、设备和存储介质

Country Status (6)

Country Link
US (1) US20230028861A1 (zh)
EP (1) EP4096107A4 (zh)
KR (1) KR20220130753A (zh)
CN (1) CN111901020A (zh)
CA (1) CA3165650A1 (zh)
WO (1) WO2021147933A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023014636A1 (en) * 2021-08-03 2023-02-09 Ofinno, Llc Methods and apparatuses for wireless communication with multiple transmission and reception points
WO2023083641A1 (en) * 2021-11-12 2023-05-19 Nokia Technologies Oy Uplink transmit power control
US20230163831A1 (en) * 2021-11-23 2023-05-25 Qualcomm Incorporated Beam switching in near-field operations
WO2023205983A1 (en) * 2022-04-24 2023-11-02 Zte Corporation Techniques for beam configuration in wireless communications

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111901020A (zh) * 2020-01-21 2020-11-06 中兴通讯股份有限公司 一种功率控制参数确定方法、设备和存储介质
EP4133652A4 (en) * 2020-05-15 2024-01-03 Apple Inc QUASI-LOCALIZED FRAME FOR BEAM RECEPTION IN A SINGLE FREQUENCY NETWORK
WO2022082695A1 (en) * 2020-10-23 2022-04-28 Zte Corporation Methods for beam state updating for uplink transmission
CN116762392A (zh) * 2021-01-11 2023-09-15 中兴通讯股份有限公司 用于基于参考信号确定准共址信息的系统和方法
US20220264475A1 (en) * 2021-02-16 2022-08-18 Ofinno, Llc Pathloss Determination for Beam Management Sounding Reference Signals
CN115209460A (zh) * 2021-04-09 2022-10-18 维沃移动通信有限公司 上行功率确定方法和设备
BR112023022881A2 (pt) * 2021-05-10 2024-01-23 Qualcomm Inc Esquemas de indicação de parâmetros de controle de potência de uplink
WO2023272709A1 (en) * 2021-07-02 2023-01-05 Qualcomm Incorporated Power control parameter in unified tci
CN115622672A (zh) * 2021-07-16 2023-01-17 维沃移动通信有限公司 Srs的传输方法、装置、终端及网络侧设备
CN115696540A (zh) * 2021-07-30 2023-02-03 维沃移动通信有限公司 参数确定方法、装置及设备
CN118020251A (zh) * 2021-11-05 2024-05-10 中兴通讯股份有限公司 小区间波束通信的管理
WO2023115380A1 (en) * 2021-12-22 2023-06-29 Qualcomm Incorporated Techniques for power control with unified transmission configuration indicator states for multiple transmission/reception points
WO2023141850A1 (en) * 2022-01-27 2023-08-03 Qualcomm Incorporated Transmission configuration indicator for downlink control information
CN116614870A (zh) * 2022-02-09 2023-08-18 维沃移动通信有限公司 功率控制pc参数的确定方法、装置及终端
WO2023205986A1 (en) * 2022-04-25 2023-11-02 Qualcomm Incorporated Unified transmission configuration indicator for sounding reference signal set
WO2023206302A1 (zh) * 2022-04-28 2023-11-02 富士通株式会社 信号发送、信号接收装置以及方法
WO2024055251A1 (zh) * 2022-09-15 2024-03-21 深圳传音控股股份有限公司 控制方法、通信设备及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180014254A1 (en) * 2016-07-05 2018-01-11 Lg Electronics Inc. Method of controlling transmit power of uplink channel in wireless communication system and apparatus therefor
US20180376430A1 (en) * 2014-09-28 2018-12-27 Huawei Technologies Co.,Ltd. Uplink power control method and apparatus
CN110035484A (zh) * 2018-01-12 2019-07-19 中兴通讯股份有限公司 一种功率控制方法、第一通信节点和第二通信节点
CN110167126A (zh) * 2018-02-13 2019-08-23 电信科学技术研究院有限公司 一种多波束传输时pucch功率的控制方法及装置
CN111901020A (zh) * 2020-01-21 2020-11-06 中兴通讯股份有限公司 一种功率控制参数确定方法、设备和存储介质

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102444081B1 (ko) * 2017-09-26 2022-09-19 애플 인크. 빔-특정 전력 제어

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180376430A1 (en) * 2014-09-28 2018-12-27 Huawei Technologies Co.,Ltd. Uplink power control method and apparatus
US20180014254A1 (en) * 2016-07-05 2018-01-11 Lg Electronics Inc. Method of controlling transmit power of uplink channel in wireless communication system and apparatus therefor
CN110035484A (zh) * 2018-01-12 2019-07-19 中兴通讯股份有限公司 一种功率控制方法、第一通信节点和第二通信节点
CN110167126A (zh) * 2018-02-13 2019-08-23 电信科学技术研究院有限公司 一种多波束传输时pucch功率的控制方法及装置
CN111901020A (zh) * 2020-01-21 2020-11-06 中兴通讯股份有限公司 一种功率控制参数确定方法、设备和存储介质

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP4096107A4
VIVO: "Discussion on Enhancements on Multi-Beam Operation", 3GPP TSG RAN WG1 MEETING #95; R1-1812324, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), SOPHIA-ANTIPOLIS CEDEX ; FRANCE, 16 November 2018 (2018-11-16), Spokane,USA, 12112018-16112018, pages 1 - 10, XP051478513 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023014636A1 (en) * 2021-08-03 2023-02-09 Ofinno, Llc Methods and apparatuses for wireless communication with multiple transmission and reception points
WO2023083641A1 (en) * 2021-11-12 2023-05-19 Nokia Technologies Oy Uplink transmit power control
US20230163831A1 (en) * 2021-11-23 2023-05-25 Qualcomm Incorporated Beam switching in near-field operations
US11909496B2 (en) * 2021-11-23 2024-02-20 Qualcomm Incorporated Beam switching in near-field operations
WO2023205983A1 (en) * 2022-04-24 2023-11-02 Zte Corporation Techniques for beam configuration in wireless communications

Also Published As

Publication number Publication date
KR20220130753A (ko) 2022-09-27
EP4096107A1 (en) 2022-11-30
EP4096107A4 (en) 2024-01-17
CA3165650A1 (en) 2021-07-29
US20230028861A1 (en) 2023-01-26
CN111901020A (zh) 2020-11-06

Similar Documents

Publication Publication Date Title
WO2021147933A1 (zh) 功率控制参数确定方法、设备和存储介质
WO2019223729A1 (zh) 通信方法、终端设备和网络设备
WO2021164634A1 (zh) 确定发送参数的方法及装置、确定发送功率的方法及装置、确定phr的方法及装置、存储介质
WO2021088877A1 (zh) 发送参数确定方法,电子装置,设备及介质
US20220271890A1 (en) Uplink Beamforming Framework for Advanced 5G Networks
US20220123815A1 (en) Dynamic inter-beam-interference indication, configuration and communication in wireless networks
US20220369235A1 (en) Method for determining transmit power, terminal device, and network device
US20230239032A1 (en) Beam processing method and apparatus, and related device
KR20220005437A (ko) 전송 명령 방법, 디바이스, 단말, 기지국 및 저장 매체
EP4300840A2 (en) Restricting sounding reference signal (srs) power control configurations
US20230254030A1 (en) Beam-based communication method and related apparatus
KR20240049571A (ko) 다중 trp 시스템용 공간 필터의 동적 전환
US11139868B2 (en) Propagation link selection in telecommunication systems
WO2019170089A1 (zh) 信息传输的方法、装置和通信节点
WO2023206528A1 (en) Multiple panel transmissions in wireless communication systems
US20240097863A1 (en) Methods and systems for enhanced transmission configuration indicator framework
WO2024020848A1 (en) Method and apparatus of dynamic adaption of spatial elements
WO2023050337A1 (zh) 无线通信的方法、终端设备和网络设备
WO2024069489A1 (en) Victim prioritization for crosslink interference handling in tdd and sbfd systems
WO2023031853A1 (en) Framework for simultaneous multi-panel uplink transmission
WO2023031806A1 (en) Common spatial filter indication for reference signals in multi-transmission reception point systems
KR20230096754A (ko) 무선 통신 시스템에서 자기 간섭 채널을 추정하기 위한 방법 및 장치
EP4272334A2 (en) Separate implicit update of activated transmission configuration indicator states for downlink and uplink
KR20230150671A (ko) 무선 통신 시스템의 전력 절감을 위한 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21743731

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3165650

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 20227028620

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021743731

Country of ref document: EP

Effective date: 20220822