WO2021088877A1 - 发送参数确定方法,电子装置,设备及介质 - Google Patents

发送参数确定方法,电子装置,设备及介质 Download PDF

Info

Publication number
WO2021088877A1
WO2021088877A1 PCT/CN2020/126516 CN2020126516W WO2021088877A1 WO 2021088877 A1 WO2021088877 A1 WO 2021088877A1 CN 2020126516 W CN2020126516 W CN 2020126516W WO 2021088877 A1 WO2021088877 A1 WO 2021088877A1
Authority
WO
WIPO (PCT)
Prior art keywords
pusch
power control
sri
group
srs resource
Prior art date
Application number
PCT/CN2020/126516
Other languages
English (en)
French (fr)
Inventor
姚珂
何震
高波
蒋创新
鲁照华
张淑娟
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP20885568.4A priority Critical patent/EP4057560A4/en
Priority to KR1020227018358A priority patent/KR20220098365A/ko
Publication of WO2021088877A1 publication Critical patent/WO2021088877A1/zh
Priority to US17/738,866 priority patent/US20230024375A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/242TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account path loss
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/08Closed loop power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/10Open loop power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/146Uplink power control

Definitions

  • This application relates to the field of communications, such as methods for determining transmission parameters, electronic devices, equipment, and media.
  • the high frequency band has abundant frequency domain resources, but there is a problem that the wireless signal decays quickly and the coverage is small.
  • the beam transmission signal can concentrate the energy in a relatively small spatial range and improve the coverage of high-frequency signals.
  • the beam pair between the base station and the terminal or User Equipment (UE)
  • UE User Equipment
  • MAC CE Medium Access Control-Control Element, Medium Access Control Element
  • This application provides a method, electronic device, equipment, and medium for determining transmission parameters, and optimizes the mechanism for determining the transmission parameters of uplink transmission.
  • the embodiment of the present application provides a method for determining sending parameters, which is applied to a first node device, and includes:
  • the MAC CE determine the CC group (Component Carrier group, component carrier group) and the sending parameters of the CC (Component Carrier, component carrier) of the CC group for uplink transmission;
  • the sending parameters of the uplink transmission include spatial relationship information and/or power control parameter information
  • the uplink transmission includes at least one of SRS (Sounding Reference Signal) transmission, PUSCH (Physical Uplink Shared Channel) transmission, and PUCCH (Physical Uplink Control Channel) transmission.
  • SRS Sounding Reference Signal
  • PUSCH Physical Uplink Shared Channel
  • PUCCH Physical Uplink Control Channel
  • the embodiment of the present application also provides a sending parameter determination method, which is applied to the second node device, and includes:
  • the sending parameters of the uplink transmission include spatial relationship information and/or power control parameter information
  • the uplink transmission includes at least one of SRS transmission, PUSCH transmission, and PUCCH transmission;
  • the characteristics of the power control parameter pool configured by the upper layer include at least one of the following:
  • BWP Band Width Part
  • More than one CC or BWP configured with SRS share the path loss measurement parameter pool of SRS, where multiple CCs measure path loss with reference to the RS of the same CC;
  • SRS and PUSCH share the path loss measurement parameter pool;
  • SRS and PUCCH share the path loss measurement parameter pool;
  • PUSCH and PUCCH share the path loss measurement parameter pool;
  • SRS, PUSCH and PUCCH share the path loss measurement parameter pool.
  • the embodiment of the present application also provides a sending parameter determination method, which is applied to the first node device, and includes:
  • the power control parameter of the PUSCH transmission includes at least one of the open-loop power control parameter of the PUSCH, the closed-loop power control parameter of the PUSCH, and the path loss measurement parameter of the PUSCH.
  • the embodiment of the present application also provides a method for determining sending parameters, which is applied to a second node device, and includes:
  • the associated information between the SRI and PUSCH power control parameters is used by the first node device to determine the power control parameters for PUSCH transmission;
  • the power control parameters transmitted by the PUSCH include at least one of the open-loop power control parameters of the PUSCH, the closed-loop power control parameters of the PUSCH, and the path loss measurement parameters of the PUSCH.
  • An embodiment of the present application also provides an electronic device, which is configured in the first node device, and includes:
  • the sending parameter determination module is used to determine the carrier group CC group according to the medium access control signaling MAC CE, and the sending parameters of the uplink transmission of the member carrier CC of the CC group;
  • the sending parameters of the uplink transmission include spatial relationship information and/or power control parameter information
  • the uplink transmission includes at least one of channel sounding reference signal SRS transmission, physical uplink shared channel PUSCH transmission, and physical uplink control channel PUCCH transmission.
  • An embodiment of the present application also provides an electronic device, which is configured in a second node device, and includes:
  • a signaling sending module configured to send a MAC CE to a first node device, so that the first node device determines a CC group according to the MAC CE, and sending parameters for uplink transmission of CCs in the CC group;
  • the sending parameters of the uplink transmission include spatial relationship information and/or power control parameter information
  • the uplink transmission includes at least one of SRS transmission, PUSCH transmission, and PUCCH transmission;
  • the parameter pool sending module is used to send the path loss measurement parameter pool configured by the higher layer
  • the characteristics of the power control parameter pool configured by the upper layer include at least one of the following:
  • More than one CC or BWP configured with SRS share the path loss measurement parameter pool of SRS, where multiple CCs measure path loss with reference to the RS of the same CC;
  • SRS and PUSCH share the path loss measurement parameter pool;
  • SRS and PUCCH share the path loss measurement parameter pool;
  • PUSCH and PUCCH share the path loss measurement parameter pool;
  • SRS, PUSCH and PUCCH share the path loss measurement parameter pool.
  • An embodiment of the present application also provides an electronic device, which is configured in the first node device, and includes:
  • the power control parameter determination module is used to determine the power control parameters of PUSCH transmission according to the associated information of SRI and PUSCH power control parameters;
  • the power control parameter of the PUSCH transmission includes at least one of the open-loop power control parameter of the PUSCH, the closed-loop power control parameter of the PUSCH, and the path loss measurement parameter of the PUSCH.
  • An embodiment of the present application also provides an electronic device, which is configured in a second node device, and includes:
  • the association information determination module is used to configure, reconfigure or update through high-level signaling, or activate through MAC CE, to deactivate or update the association information between SRI and PUSCH power control parameters;
  • the associated information between the SRI and PUSCH power control parameters is used by the first node device to determine the power control parameters for PUSCH transmission;
  • the power control parameters transmitted by the PUSCH include at least one of the open-loop power control parameters of the PUSCH, the closed-loop power control parameters of the PUSCH, and the path loss measurement parameters of the PUSCH.
  • An embodiment of the present application also provides a first node device, and the first node device includes:
  • One or more processors are One or more processors;
  • Storage device for storing one or more programs
  • the one or more processors implement the foregoing first sending parameter determination method.
  • An embodiment of the present application also provides a second node device, and the second node device includes:
  • One or more processors are One or more processors;
  • Storage device for storing one or more programs
  • the one or more processors implement the foregoing second sending parameter determination method.
  • An embodiment of the present application also provides a first node device, and the first node device includes:
  • One or more processors are One or more processors;
  • Storage device for storing one or more programs
  • the one or more processors When the one or more programs are executed by the one or more processors, the one or more processors implement the foregoing third method for determining sending parameters.
  • An embodiment of the present application also provides a second node device, and the second node device includes:
  • One or more processors are One or more processors;
  • Storage device for storing one or more programs
  • the one or more processors When the one or more programs are executed by the one or more processors, the one or more processors implement the fourth method for determining sending parameters.
  • the embodiment of the present application also provides a computer storage medium on which a computer program is stored, and when the program is executed by a processor, the foregoing first method for determining sending parameters is implemented.
  • the embodiment of the present application also provides a computer storage medium on which a computer program is stored, and when the program is executed by a processor, the foregoing second sending parameter determination method is implemented.
  • the embodiment of the present application also provides a computer storage medium on which a computer program is stored, and when the program is executed by a processor, the foregoing third method for determining sending parameters is implemented.
  • the embodiment of the present application also provides a computer storage medium on which a computer program is stored, and when the program is executed by a processor, the foregoing fourth method for determining sending parameters is implemented.
  • the CC group is determined according to the MAC CE, and the uplink transmission parameters of all CCs in the CC group including spatial relationship information and/or power control parameter information are further determined according to the correlation information between SRI and PUSCH power control parameters
  • the power control parameters of PUSCH transmission in the transmission parameters solve the problem that the determination mechanism of the transmission parameters of uplink transmission is not perfect, and the determination mechanism of the transmission parameters of uplink transmission is optimized.
  • FIG. 1 is a schematic diagram of a beam relationship between a base station and a UE after training provided by an embodiment of the present application;
  • FIG. 2 is a schematic diagram of a base station and UE selecting beams for transmission in beams after training according to an embodiment of the present application;
  • FIG. 3 is a schematic diagram of a sending parameter determination process provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a spatial relationship provided by an embodiment of the present application, a relationship between a CC group and a first-type CC group determined by a path loss reference link parameter;
  • FIG. 5 is a schematic diagram of a sending parameter determination process provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of a sending parameter determination process provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of a sending parameter determination process provided by an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of a first node device provided by an embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of a second node device provided by an embodiment of the present application.
  • the high frequency band has abundant frequency domain resources, but there is a problem that the wireless signal decays quickly and the coverage is small.
  • the beam transmission signal can concentrate the energy in a relatively small spatial range and improve the coverage of high-frequency signals.
  • the beam pair between a base station and a terminal may also change, so a flexible beam update mechanism is required.
  • signaling overhead will increase.
  • the beam can be a resource.
  • the transmitting end spatial filter, the receiving end spatial filter, the transmitting end precoding, the receiving end precoding, the antenna port, the antenna weight vector or the antenna weight matrix, etc. can all be used as beams.
  • the beam may be a transmission or reception mode, including at least one of the following modes: space division multiplexing or frequency domain/time domain diversity, etc.
  • the transmission beam or transmission mode can be indicated by the reference signal resource index or the spatial relationship index.
  • a transmission beam or transmission mode or reception mode is determined according to the reference signal resource index, which means that the transmission or reception filter parameter of the transmission is the same as the transmission or reception filter parameter of the reference signal resource indicated by the reference signal resource index.
  • the transmission includes one of the following: PUSCH transmission, PUCCH transmission or SRS transmission.
  • the spatial relationship is essentially indicated by a reference signal, that is, the spatial relationship index can also be a reference signal index.
  • the transmission beam or transmission mode or reception mode is determined according to the reference signal resource index, which means that the transmitted demodulation reference signal and the reference signal indicated by the reference signal resource index have the same quasi co-location parameters.
  • the parameters of quasi co-location include at least one of the following: Doppler spread, Doppler shift, delay spread, average delay, average gain, and spatial parameters.
  • the spatial parameters include spatial reception parameters, such as the angle of arrival, the spatial correlation of the received beam, the average delay, and the correlation of the time-frequency channel response (including phase information).
  • the transmission includes one of the following: physical downlink shared channel (Physical Downlink Shared Channel, PDSCH) transmission, physical downlink control channel (Physical Downlink Control Channel, PDCCH) transmission, or CSI-RS transmission.
  • the reference signal includes at least one of the following: Channel State Information Reference Signal (CSI-RS), Channel State Information Interference Measurement Signal (CSI-IM), Demodulation Reference Signal (Demodulation) Reference Signal, DMRS), Downlink Demodulation Reference Signal (DL DMRS), Uplink Demodulation Reference Signal (UL DMRS), Sounding Reference Signal (SRS), Phase Tracking Reference Signal (Phase-Tracking Reference Signals, PTRS), Random Access Channel (RACH), Synchronization Signal (SS), Synchronization Signal Block (SSB), Primary Synchronization Signal (Primary Synchronization) Signal, PSS) or Secondary Synchronization Signal (SSS).
  • CSI-RS Channel State Information Reference Signal
  • CSI-IM Channel State Information Interference Measurement Signal
  • DMRS Downlink Demodulation Reference Signal
  • DL DMRS Downlink Demodulation Reference Signal
  • UL DMRS Uplink Demodulation Reference Signal
  • SRS Phase Tracking Reference Signal
  • PTRS Phase Tracking Reference Signal
  • Random Access Channel RACH
  • the reference signal can be configured by high-level signaling, such as RRC (Radio Resources Control, radio resource control) signaling.
  • RRC Radio Resources Control, radio resource control
  • the reference signal in the downlink direction (DL) is SSB and CSI-RS
  • the reference signal in the uplink direction (UL) is SRS.
  • the base station schedules DL transmission, such as PDSCH, PDCCH or CSI-RS transmission, and uses a reference signal to indicate the beam direction or reception mode of the scheduled transmission to the UE, and the scheduled transmission has the same quasi co-location parameters as the indicated reference signal .
  • the base station schedules UL transmissions, such as PUSCH, PUCCH, or SRS transmission, and uses a reference signal to indicate the beam direction or transmission mode of the scheduled transmission to the UE, and the scheduled transmission has the same filter parameters as the indicated reference signal, or has The same quasi co-location parameters.
  • UL transmissions such as PUSCH, PUCCH, or SRS transmission
  • the base station configures at least one SRS resource (SRS resource) for the UE, and the SRS resource is distinguished by an SRS resource ID (index or number, Identifier).
  • the base station also configures at least one SRS resource set (SRS resource set) for the UE, and the SRS resource set is distinguished by an SRS resource set ID (index or number).
  • the SRS resource set includes at least one SRS resource (SRS resource).
  • SRS resource sets have different uses: beam management, antenna selection, codebook or non-codebook. Wherein, the SRS resource sets whose uses are codebook and non-codebook are respectively used for codebook-based PUSCH transmission and non-codebook-based PUSCH transmission. Spatial relationships may be configured in SRS resources.
  • the UE When the SRS resource is configured with a spatial relationship, the UE needs to send the SRS resource according to the spatial relationship of the SRS resource, that is, to determine the transmission filter parameter; when the SRS resource is not configured with a spatial relationship, the UE determines the transmission filter parameter by itself.
  • the transmission filter parameter can be understood as the transmission parameter required to form a specific beam direction.
  • the base station Take the base station (gNB) and the UE both supporting multiple beams as an example.
  • beam training also called beam scanning or beam management
  • the base station first configures a set of SRS resources used for beam management for the UE.
  • the SRS resources are not configured with spatial relationships, and the UE itself determines the transmission filter parameters for the SRS resources.
  • the base station selects some better beam pairs as available/alternative beam pairs according to the results of beam training, and configures the SRS resource set for the codebook or non-codebook to the UE.
  • the SRS resource set includes at least For an SRS resource, the spatial relationship of the SRS resource is expressed by the SRS resource that the UE has already sent or the downlink reference signal indicator (including the reference signal resource index) or the SSB indicator (including the SSB index) that the base station has sent, and at least one SRS resource corresponds to each Available/alternative at least one beam pair.
  • the base station For PUSCH transmission, the base station indicates one or more SRS resources through the SRI (SRS Resource Indicator) field in the Downlink Control Information (DCI), that is, the SRI can indicate multiple SRS resource IDs.
  • the UE uses the same transmission filter parameters as the SRS resource corresponding to the SRI to transmit the PUSCH, which can also be understood as using the same beam.
  • the SRI indicated in the DCI is determined according to the SRS resource set configured by the base station.
  • the SRS resources in the SRS resource set whose usage is codebook and non-codebook can be used as a reference for PUSCH transmission.
  • FIG. 2 is a schematic diagram of a base station and UE selecting beams for transmission in the trained beams according to an embodiment of the present application.
  • the SRS resource set includes two SRS resources, which are marked as SRI1 and SRI2, respectively.
  • the SRI field in the DCI for scheduling the PUSCH indicates SRI1
  • the UE uses the spatial relationship of the SRS resources corresponding to the SRI1 to determine the transmission filter parameters of the PUSCH.
  • the beam is expressed by the spatial relationship corresponding to the PUCCH resource.
  • the base station For uplink transmission, the base station also needs to configure power control (ie, power control) parameters for the UE.
  • power control parameters For PUSCH transmission, power control parameters are associated with PUSCH SRI.
  • the power control parameters are related to the spatial relationship of the PUCCH.
  • the SRS resource set, the spatial relationship corresponding to the SRS resource, and the corresponding relationship between the value of the SRI field in the DCI and the power control parameter are all configured by high-level signaling, such as RRC signaling.
  • high-level signaling such as RRC signaling.
  • the configuration delay of high-level parameters is relatively large, and the flexibility is not high. Therefore, the related technology supports the use of MAC CE to modify the spatial relationship of SRS resources for the SRS resource set.
  • it also supports the use of MAC CE to modify the power control parameters of the uplink transmission.
  • the MAC layer is below the RRC layer and above the physical layer. Its time domain and flexibility are between the two, and its sensitivity to overhead is also between the two.
  • Carrier aggregation (CA, carrier aggregation) or dual connectivity (DC, dual connectivity) scenarios include at least one CC.
  • CC can also be called serving cell or cell carrier.
  • a CC may include at least one uplink carrier, for example, UL carrier and SUL carrier, which respectively indicate an uplink carrier and a supplementary uplink carrier.
  • One uplink carrier or supplementary uplink carrier includes at least one partial bandwidth (BWP).
  • PUSCH transmission, PUCCH transmission, and SRS transmission are transmitted in the uplink BWP, and may occupy part or all of the frequency domain resources of the uplink BWP.
  • the MAC CE may be used to update the spatial relation of the uplink channel (PUCCH or PUSCH) or signal (SRS) to the CC group.
  • PUCCH uplink channel
  • SRS signal
  • an embodiment of the present application provides a sending parameter determination method applied to a first node device.
  • Fig. 3 is a schematic diagram of a sending parameter determination process provided by an embodiment of the present application. This method may be applicable to a situation where the first node device determines the sending parameters of uplink transmission, where the first node device may be a terminal device or the like.
  • a method for determining sending parameters provided by this application includes S110.
  • the sending parameters of the uplink transmission include spatial relationship information and/or power control parameter information; the uplink transmission includes at least one of SRS transmission, PUSCH transmission, and PUCCH transmission.
  • the first node device may receive the MAC CE sent by the second node device, and determine the CC group according to the received MAC CE, and the sending parameters of the uplink transmission of the CC within the CC group.
  • the uplink transmission of the CC in the CC group refers to the uplink transmission of all BWPs or activated BWPs of the CCs in the CC group.
  • the uplink transmission of CCs in a CC group refers to the situation where there is a specified type of transmission on each CC. Assuming that the CC group includes CC1, CC2, and CC3, where PUSCH, PUCCH, and SRS transmission are configured on CC1, and PUSCH and SRS transmission are configured on CC2, then when the designated uplink transmission is PUCCH transmission, MAC CE is used in the CC group PUCCH of CC1. When the designated uplink transmission is PUSCH transmission, MAC CE is applied to the PUSCH transmission of CC1, CC2, and CC3 in the CC group.
  • the embodiment of this application determines the transmission parameters of the uplink transmission of the CC group according to the MAC CE and all CCs in the CC group including spatial relationship information and/or power control parameter information, and solves the problem that the mechanism for determining the transmission parameters of uplink transmission is not perfect.
  • the mechanism for determining the sending parameters of the uplink transmission is optimized.
  • determining the CC group according to the MAC CE may include: according to the CC group ID included in the MAC CE, according to the CC group to which the cell number included in the MAC CE belongs, or according to the CC group carrying the MAC CE The CC group to which the cell belongs determines the CC group to which the MAC CE applies.
  • the carrier members (or called component carriers, serving cells, cells) included in the CC group may be pre-configured.
  • a cell can only belong to one CC group, that is, different CC groups cannot have the same cell.
  • the characteristics of the CC group may include at least one of the following:
  • the CC group includes at least one CC; each CC of the CC group is configured with SRS; SRS resources with the same SRS resource number in the CC group are associated with the same spatial relationship; (that is, the SRS resources are associated with The spatial relationship is the same reference signal or SSB.)
  • the reference signal or SSB of the spatial relationship associated with the SRS resources with the same SRS resource number in the CC group has a quasi-co-location QCL relationship; the SRS resource numbers in the CC group are the same
  • the reference signals or SSBs of the spatial relationship associated with the SRS resources have the same QCL parameters of type D;
  • the CC group includes the spatial relationship CC group and/or the power control parameter CC group; the CC group is configured by high-level parameters;
  • the CC group is determined by the path loss reference link parameter;
  • the CC group is a subset of the first type CC group determined by the path loss reference link parameter;
  • the CC group is the same as the first type CC group
  • the CC group can be a CC group of spatial relationships and power control parameters
  • the first type of CC group can be a CC group determined by reference to link parameters for path loss.
  • the PUCCH group may include: a primary PUCCH group and a secondary PUCCH group (Secondary PUCCH group).
  • the primary PUCCH group includes a primary cell (PCell, Primary Cell) and greater than or equal to 0 secondary cells (SCell, Secondary Cell), and the PUCCH signaling of these cells is all associated with the PUCCH on the PCell.
  • the secondary PUCCH group includes a group of secondary cells, and the PUCCH signaling of these secondary cells is all associated with the PUCCH on the PUCCH SCell.
  • the CC group of the spatial relationship may be a CC group or a subset determined by reference to the link parameter of the path loss.
  • the spatial relationship of MAC CE updating SRS is based on CC group.
  • the CC group where the MAC CE updates the spatial relationship of the SRS is configured by the RRC or determined by the path loss reference link parameter (for example, the pathlossReferenceLinking parameter).
  • the CC group for which the MAC CE updates the spatial relationship of PUSCH transmission is configured by RRC, or can be determined by the path loss reference link parameter. Therefore, the CC group for the MAC CE to update the spatial relationship of uplink transmission is configured by RRC, or can be determined by the path loss reference link parameter.
  • the CC group of the spatial relationship has nothing to do with the CC group determined by the path loss reference link parameter; the CC group of the spatial relationship is the same as the CC group determined by the path loss reference link parameter; or the CC group of the spatial relationship does not have more CC members than the path loss reference link CC members of the CC group determined by the parameters. That is, the CC members of the CC group of the spatial relationship cannot belong to different CC groups determined by the path loss reference link parameters.
  • FIG. 4 is a schematic diagram of a spatial relationship, a relationship between a CC group and a first-type CC group determined by a path loss reference link parameter provided by an embodiment of the present application.
  • PL_Ref_linking refers to the value of the high-level parameter path loss reference linking parameter. If UL CC1 is PCell (primary cell), its corresponding DL CC is CC1'; DL CC2', DL CC3', and DL CC4' are DL CCs corresponding to UL CC2, UL CC3, and UL CC4.
  • UL CC1, UL CC2, and UL CC3 all refer to the PL-RS (path loss measurement parameter) of CC1
  • PL-RS is the downlink RS sent in CC1'
  • UL CC4 refers to the PL-RS of CC4
  • the PL-RS of CC4 is in CC4' sent. Therefore, there are two CC groups determined with reference to link parameters for path loss: CC1+CC2+CC3 and CC4.
  • CC members in the CC group where the MAC CE updates the spatial relationship of the uplink transmission are determined according to the CC group determined by the path loss reference link parameter, which can be the same as the CC group determined by the path loss reference link parameter as shown in the CC group set 1 in Figure 4 It may also be a subset of the CC group determined by reference to the link parameter for the path loss shown in CC group set 2 in FIG. 4.
  • CC group set 2 includes 3 CC groups: CC1+CC2, CC3, and CC4.
  • the shared CC group of SRS, PUSCH, and PUCCH is used to update PL-RS and/or spatial relationship, including at least one of the following:
  • the CC group of the spatial relationship of the uplink channel or signal is the same as the CC group of the PL-RS; the CC group of the spatial relationship of the uplink channel or signal is a subset of the CC group of its PL-RS; the CC of the spatial relationship of the uplink channel or signal is shared group; or CC group where the uplink channel or signal shares the PL-RS.
  • the CC group of the uplink channel or signal sharing spatial relationship may be: the CC group of part or all of the shared spatial relationship in the transmission of SRS, PUSCH, and PUCCH.
  • SRS and PUSCH transmission have the same spatial relationship CC group.
  • PUSCH and PUCCH transmit CC groups with the same spatial relationship.
  • SRS, PUSCH, and PUCCH transmit CC groups with the same spatial relationship.
  • the CC group where the uplink channel or signal shares the PL-RS can be: the CC group where some or all of the path loss measurement parameters in the transmission of SRS, PUSCH, and PUCCH are shared.
  • SRS and PUSCH transmit CC groups with the same path loss measurement parameters.
  • PUSCH and PUCCH transmit CC groups with the same path loss measurement parameters.
  • SRS, PUSCH, and PUCCH transmit CC groups with the same path loss measurement parameters. That is, MAC CE updating PL-RS can be based on CC group.
  • the MAC CE may include the CC group ID, the cell ID, the cell ID of the SRS resource set, the partial bandwidth BWP ID of the SRS resource set, the SRS resource set ID, and at least one SRS resource SRS resource ID
  • the spatial relationship related information includes: at least one of spatial relationship information, a CC ID of the spatial relationship information, and a BWP ID of the spatial relationship information.
  • the power control parameter related information includes at least one of the power control parameter, the CC ID of the power control parameter, and the BWP ID of the power control parameter.
  • the power control parameters include at least one of an open-loop power control parameter, a closed-loop power control parameter, and a path loss measurement parameter.
  • the open-loop power control parameters include at least one of the following: open-loop power control parameter ID, target received power P0, and path loss compensation coefficient alpha.
  • the closed-loop power control parameters include the number of closed-loop power control. For example, 2, it means there are two closed-loop power control, or closed-loop power control loop.
  • the path loss measurement parameter refers to the reference signal resource number for measuring the path loss, and is also written as PL-RS.
  • the reference signal for measuring path loss can be CSI-RS or SSB.
  • the number, index, index, and ID have the same meaning and can be interchanged.
  • the cell ID and CC number have the same meaning and can be interchanged.
  • the SRS resource set is configured based on CC/BWP, and the number of SRS resource sets of each CC/BWP and the number of resources in the SRS resource set may be different.
  • the MAC CE contains at least one of the following information:
  • CC group number CC number of the SRS resource set of the spatial relationship to be updated; BWP number of the SRS resource set of the spatial relationship to be updated; SRS resource set number of the SRS resource of the spatial relationship to be updated; SRS resource set of the spatial relationship to be updated Resource number; SRS resource spatial relationship related information; or SRS resource or SRS resource set path loss measurement related information.
  • the spatial relationship related information of the SRS resource includes at least one of the following: at least one spatial relationship information, a CC number of the spatial relationship information, or a BWP number of the spatial relationship information.
  • the spatial relationships of the resources in the corresponding SRS resource sets on all CCs in the CC group are completely the same, or may also be partially the same.
  • the CC group of the spatial relationship of SRS has at least one of the following characteristics:
  • the MAC CE may include one or more SRS resource IDs and their corresponding spatial relationships, which are used to update the spatial relationships of SRS resource corresponding to the SRS resource IDs of all CCs in the CC group.
  • CC group is configured for SRS resource ID, or CC group is configured for SRS.
  • the spatial relationship corresponding to each SRS resource ID is used to update the corresponding SRS resource of all CCs of the CC group of the SRS resource ID.
  • the MAC CE may include one or more SRS resource IDs and their corresponding one or more spatial relationships, and the CC group ID, which is used to update the SRS of all CCs in the CC group identified by the CC group ID The spatial relationship of the SRS resource corresponding to the resource ID.
  • CC group is configured for SRS resource ID, or CC group is configured for SRS.
  • the MAC CE may include the CC index (index), BWP index, SRS resource set ID, SRS resource set ID, and all SRS resource corresponding spatial relationships in the SRS resource set, which are used to update the CC group
  • CC group is configured for SRS resource ID, or CC group is configured for SRS.
  • CC group is for SRS configuration, a CC can only belong to one CC group at most.
  • the UE determining the CC group applied by the MAC CE that updates the spatial relationship of the SRS may include one of the following methods:
  • the CC group is determined according to the CC group ID contained in the MAC CE that updates the spatial relationship of the SRS; or, the CC group is configured for SRS, and the CC group to which the MAC CE applies refers to the corresponding UL CC that contains the DL CC that carries the MAC CE CC group.
  • the UE determining the SRS resource applied by the MAC CE that updates the spatial relationship of the SRS may include one of the following methods:
  • the MAC CE that updates the spatial relationship of the SRS includes the SRS resource ID to determine the MAC CE that updates the spatial relationship of the SRS.
  • the CE application SRS resource; or, the MAC CE that updates the spatial relationship of the SRS includes the SRS resource set ID. All SRS resources are SRS resources of MAC CE multi-application that update the spatial relationship of SRS.
  • SRS resource set refers to the cell index contained in the MAC CE that updates the spatial relationship of the SRS and the SRS resource set in the BWP index, or SRS resource set refers to the CC of the cell index contained in the MAC CE that updates the spatial relationship of the SRS
  • the SRS resource set in the activated BWP, or SRS resource set refers to the SRS resource set in the UL CC corresponding to the DL CC of the MAC CE that carries the spatial relationship of the updated SRS.
  • the SRS resource contained in other SRS resource sets in the same CC group as the above-determined SRS resource set if its SRS resource ID is the same as the SRS resource ID in the above-determined SRS resource set, then the spatial relationship of the SRS is also updated SRS resource applied by MAC CE.
  • the SRS resource set whose use is consistent with the above-determined SRS resource set includes the SRS resource, if its SRS resource ID is the same as the one in the above-determined SRS resource set If the ID of the SRS resource is the same, it is also the SRS resource applied by the MAC CE that updates the spatial relationship of the SRS.
  • a group of CCs for PL-RS RRC parameter configuration and path loss reference link parameters share a set of SRS PL-RS parameter pool.
  • SRS, PUSCH and PUCCH can share a set of PL-RS parameter pool.
  • the PL-RS may also need to be updated.
  • the base station configures the path loss measurement parameter pool for the UE through RRC, which may include at least one of the following methods:
  • the path loss measurement parameter pool is shared within the group; the CC group includes multiple CCs that measure path loss by RSs that refer to the same CC.
  • the MAC CE may update the PL-RS of the SRS of the CC group.
  • the CC group configuration updated by the PL-RS of the SRS is consistent with the CC group configuration of the spatial relationship of the SRS.
  • the CC group updated by the PL-RS of the SRS is configured for the path loss parameters of the SRS.
  • the base station sends the MAC CE to the UE, which is used to update the power control parameters of the UE's SRS.
  • the MAC CE that updates the power control parameters of the SRS may include at least one of the following:
  • CC group number CC number of the SRS resource set of the path loss measurement parameter to be updated; BWP number of the SRS resource set of the path loss measurement parameter to be updated; SRS resource set number of the path loss measurement parameter to be updated; one or more SRS resources Number; or SRS resource or SRS resource set path loss measurement related information.
  • the path loss measurement related information includes at least one of the following: path loss measurement information, a CC number of the path loss measurement information, or a BWP number of the path loss measurement information.
  • the MAC CE may include CC index, BWP index, SRS resource set ID, and SRS resource set ID identified by the path loss measurement information, used to update all CCs in the CC group and SRS resource set The path loss measurement parameters of the SRS resource set with the same SRS resource ID contained in it.
  • the MAC CE includes one or more SRS resource IDs and SRS resource set path loss measurement related information.
  • the path loss measurement related information of the SRS resource set is used to update the PL-RS of the SRS resource set of all CCs in the CC group that contains one or more SRS resource IDs.
  • a CC when a CC group is configured for SRS, a CC can only belong to one CC group at most.
  • the UE determining the CC group applied by the MAC CE for updating the power control parameters of the SRS may include one of the following methods:
  • the CC group is determined according to the CC group ID contained in the MAC CE that updates the spatial relationship of the SRS; or, the CC group is configured for SRS, and the CC group to which the MAC CE applies refers to the corresponding UL CC that contains the DL CC that carries the MAC CE CC group.
  • the MAC CE may update the PL-RS of the PUSCH of the CC group.
  • the CC group configuration of the PL-RS update of the PUSCH is consistent with the CC group configuration of the spatial relationship of the SRS.
  • the CC group updated by the PL-RS of the PUSCH is configured for the PUSCH.
  • the CC group updated by the PL-RS of the PUSCH is consistent with the CC group updated by the PL-RS of the PUCCH.
  • the base station sends the MAC CE to the UE, which is used to update the power control parameters of the UE's SRS.
  • the MAC CE that updates the power control parameters of the PUSCH may include at least one of the following:
  • the CC group number the CC number of the PUSCH whose path loss measurement parameter is to be updated; the BWP number of the PUSCH whose path loss measurement parameter is to be updated; the SRI of the PUSCH whose path loss measurement parameter is to be updated; or
  • the path loss measurement related information may include at least one of the following: path loss measurement information, a CC number of the path loss measurement information, or a BWP number of the path loss measurement information.
  • SRI refers to the SRS resource indicator in the SRS resource set associated with the PUSCH.
  • three methods can be used to update the sending parameters of the uplink transmission according to the SRS resource set or SRS resource applied by the MAC CE.
  • determining the CC group according to the MAC CE and the sending parameters of the uplink transmission of all CCs in the CC group may include: determining the first SRS resource set to which the MAC CE is applied; according to the first SRS resource set updates the power control parameter information.
  • determining the CC group according to the MAC CE and the sending parameters of the uplink transmission of all CCs in the CC group may include: determining the first SRS resource set to which the MAC CE is applied; according to the first SRS The resource set determines the second SRS resource set applied by the MAC CE; and updates the power control parameter information according to the first SRS resource set and/or the second SRS resource set.
  • the power control parameter information is updated according to the first SRS resource set, and the power control parameter information may include: SRS power control parameter association ID and/or SRS power control parameter ID.
  • the path loss measurement parameter ID is used for the same SRS resource set ID of all BWPs in the CC group to which the MAC CE applies.
  • the path loss measurement parameter ID corresponds to the corresponding ID in the path loss measurement parameter pool defined in each CC or BWP.
  • the path loss measurement parameter ID obtains the PL-RS in the specified CC and applies it to all BWPs in the CC group applied by the MAC CE In the same SRS resource set ID.
  • the first SRS resource set and the second SRS resource set may be two different SRS resource sets applied by the MAC CE.
  • determining the CC group according to the MAC CE and the sending parameters of the uplink transmission of all CCs in the CC group may include: determining the SRS resource applied by the MAC CE; according to the SRS applied by the MAC CE resource updates the spatial relationship information.
  • determining the first SRS resource set applied by the MAC CE may include: determining according to the SRS resource set ID contained in the MAC CE, the cell ID of the SRS resource set, and the partial bandwidth BWP ID of the SRS resource set The first SRS resource set to which the MAC CE is applied; the first SRS resource set ID contained in the MAC CE, the cell ID of the SRS resource set, and the activated BWP in the cell identified by the cell ID of the SRS resource set are used to determine the second SRS resource set.
  • An SRS resource set; the first SRS resource set is determined according to the SRS resource set ID contained in the MAC CE and the BWP activated in the cell carrying the MAC CE; or, according to at least one SRS included in the MAC CE The resource ID determines the first SRS resource set.
  • determining the first SRS resource set according to at least one SRS resource ID included in the MAC CE may include: an SRS resource that is consistent with the at least one SRS resource ID included in the MAC CE set as the first SRS resource set, or an SRS resource set that is consistent with at least K1 SRS resource IDs among the at least 1 SRS resource ID included in the MAC CE as the first SRS resource set; where , K1 is a pre-defined or pre-configured integer greater than or equal to 1, or is determined according to a pre-defined or pre-configured percentage.
  • the K1 SRS resource IDs may be the K1 SRS resource IDs with the smallest number in the SRS resource set. Or, the K1 SRS resource IDs may be the K1 SRS resource IDs with the largest number in the SRS resource set.
  • K1 is a pre-configured integer greater than or equal to 1.
  • K1 can also be determined based on a predefined or pre-configured percentage.
  • the SRS resource set includes 4 SRS resources.
  • determining the second SRS resource set to which the MAC CE applies according to the first SRS resource set may include: assigning CCs that belong to the same CC group as the first SRS resource set to the same CC group as the first SRS resource set.
  • the SRS resource set in the first SRS resource set that is the same as the SRS resource set is used as the second SRS resource set applied by the MAC CE; among the CCs that belong to the same CC group as the first SRS resource set, it is the same as the first SRS resource set.
  • the SRS resource set with the same resource set ID is used as the second SRS resource set applied by the MAC CE; or, the CC that belongs to the same CC group as the first SRS resource set is the same as the one in the first SRS resource set
  • at least K2 SRS resource sets with the same SRS resource ID are used as the second SRS resource set applied by the MAC CE; K2 is a pre-defined or pre-configured integer greater than or equal to 1, or according to a preset Defined or pre-configured percentage determination.
  • the K2 SRS resource IDs may be the K2 SRS resource IDs with the smallest number in the SRS resource set. Or, the K2 SRS resource IDs may be the K2 SRS resource IDs with the largest number in the SRS resource set.
  • the UE determining the SRS resource set applied by the MAC CE that updates the power control parameters of the SRS may include one of the following methods:
  • the MAC CE that updates the power control parameters of the SRS including the SRS resource set ID, determine the MAC that updates the power control parameters of the SRS.
  • the CE application SRS resource set; and the MAC index of the CE that updates the power control parameters of the SRS belongs to the same CC group.
  • the SRS resource set that is exactly the same as the SRS resource in the SRS resource set determined by the SRS resource set ID is the SRS resource set used by the MAC CE that updates the power control parameters of the SRS; and the MAC CE that updates the power control parameters of the SRS includes
  • the SRS resource set with exactly the same SRS resource ID is the SRS resource set applied by the MAC CE that updates the power control parameters of the SRS;
  • the CC index included in the MAC CE that updates the power control parameters of the SRS belongs to the CC in the same CC group, which is the same as the SRS
  • the SRS resource in the SRS resource set identified by the resource set ID is at least K1 SRS resource IDs with the same SRS resource set is the SRS resource set of the MAC CE application that updates the power control parameters of the SRS; where K1 is a pre-configured greater than or equal to 1 Integer.
  • the SRS resource ID included in the MAC CE that updates the SRS power control parameters is at least K2 SRS resource IDs.
  • the SRS resource set is the SRS resource set of the MAC CE application that updates the power control parameters of the SRS;
  • K2 is the pre-configured greater than or equal to An integer of 1.
  • K2 can also be determined based on a predefined or pre-configured percentage. The example is similar to K1.
  • determining the SRS resource applied by the MAC CE may include at least one of the following: determining the SRS resource applied by the MAC CE according to at least one SRS resource ID included in the MAC CE; according to the first SRS
  • the SRS resource included in the resource set determines the SRS resource applied by the MAC CE; the SRS resource applied by the MAC CE is determined according to the SRS resource included in the second SRS resource set; it belongs to the same CC group as the first SRS resource set In the CC, if the SRS resource ID of the SRS resource included in the SRS resource set is the same as the SRS resource ID of the SRS resource in the first SRS resource set, then the SRS resource corresponding to the SRS resource ID is applied by the MAC CE SRS resource; In CCs belonging to the same CC group as the first SRS resource set, the SRS resource set included in the SRS resource set with the same usage as the first SRS resource set SRS resource ID and the SRS resource ID in the first SRS resource set When the SRS
  • the SRS resource applied by the MAC CE includes: all BWPs (or activated BWPs) in all CCs in the CC group to which the MAC CE applies.
  • the at least one SRS resource ID included in the MAC CE determines the SRS resource applied by the MAC CE.
  • three methods can be used to update the sending parameters of the uplink transmission according to the SRI of the PUSCH transmission applied by the MAC CE.
  • determining the CC group according to the MAC CE and the sending parameters of the uplink transmission of all CCs in the CC group may include: determining the first SRI for PUSCH transmission applied by the MAC CE; according to the MAC CE The first SRI transmitted by the applied PUSCH updates the spatial relationship information and/or power control parameter information.
  • determining the CC group according to the MAC CE and the sending parameters of the uplink transmission of all CCs in the CC group may include: determining the first SRI of PUSCH transmission applied by the MAC CE; determining the MAC CE The second SRI transmitted by the applied PUSCH; the spatial relationship information and/or the power control parameter information are updated according to the first SRI and/or the second SRI transmitted by the PUSCH applied by the MAC CE.
  • the first SRI for PUSCH transmission and the second SRI for PUSCH transmission may be two different PUSCH transmission SRIs applied by MAC CE.
  • the SRI for PUSCH transmission refers to: the SRI for PUSCH transmission based on the codebook is the value of the SRI field in the DCI corresponding to the SRS resource set of the codebook, and the SRI for PUSCH transmission based on the non-codebook is the value for non-code The value of SRI and in the DCI corresponding to this SRS resource set.
  • determining the first SRI for PUSCH transmission applied by the MAC CE may include: determining the first SRI for PUSCH transmission applied by the MAC CE according to the SRI of the PUSCH included in the MAC CE; At least one of the SRI, SRS resource ID, and SRS resource set ID of the PUSCH included in the MAC CE, the cell ID of the PUSCH and the BWP ID of the PUSCH determine the PUSCH transmission sequence to which the MAC CE applies 1 SRI; according to at least one of the PUSCH SRI, SRS resource ID, and SRS resource set ID included in the MAC CE, the PUSCH cell ID, and activation in the cell corresponding to the PUSCH cell ID
  • the BWP determines the first SRI of the PUSCH transmission applied by the MAC CE; at least one of the SRI, SRS resource ID, and SRS resource set ID of the PUSCH contained in the MAC CE, and the cell that carries the MAC CE
  • the activated BWP determines the first S
  • the first SRI may be determined according to the SRI of at least one PUSCH included in the MAC CE.
  • the first SRI may be determined according to the cell ID and BWP ID specified in the MAC CE and the SRS resource set ID included in the MAC CE. That is, the SRI corresponding to the SRS resource set is the first SRI.
  • the first SRI may be determined according to the cell ID specified in the MAC CE and the SRI included in the DCI of the PUSCH corresponding to the BWP ID. That is, according to the cell ID specified in the MAC CE and the same transmission configuration parameter of the PUSCH corresponding to the BWP ID, the cell and the SRI included in the SRS resource set of the BWP are used as the first SRI.
  • the designated cell ID and BWP ID may be: the designated cell ID and BWP ID are determined according to at least one of the PUSCH cell ID included in the MAC CE and the PUSCH BWP ID; or the designated cell ID and BWP ID are determined according to the PUSCH included in the MAC CE The cell ID and the cell ID and BWP ID specified by the activated BWP in the cell corresponding to the cell ID of the PUSCH; or the cell ID and BWP ID specified by the activated BWP in the cell carrying the MAC CE.
  • determining the second SRI for PUSCH transmission applied by the MAC CE may include: combining the SRI of the PUSCH in a CC that belongs to the same CC group as the first SRI transmitted by the PUSCH and the SRI indicated by the MAC CE
  • the SRI of the PUSCH includes the SRS of the PUSCH with the same SRS resource ID as the second SRI of the PUSCH transmission applied by the MAC CE; or, the SRI of the PUSCH in the CC that belongs to the same CC group as the first SRI transmitted by the PUSCH
  • the SRI of the PUSCH that includes at least K3 SRS resource IDs that are the same as the SRI of the PUSCH indicated by the MAC CE is used as the second SRI of the PUSCH transmission applied by the MAC CE; where K3 is a predefined or pre-configured greater than or An integer equal to 1, or based on a predefined or pre-configured percentage. K3 can also be determined based on a predefined or pre-con
  • the MAC CE may include CC index, BWP index, and path loss measurement related information, which are used to update the PUSCH path loss measurement parameters of all CCs in the CC group that are the same as the SRS resource ID contained in the SRI, or used to Update the PUSCH path loss measurement parameters of all CCs in the CC group that are the same as at least K3 SRS resource IDs included in the SRI.
  • K3 is a pre-configured integer greater than or equal to 1.
  • the UE determining the CC group applied by the MAC CE that updates the power control parameters of the PUSCH may include one of the following methods:
  • the CC group is configured for SRS or PUSCH, and the CC group applied by the MAC CE refers to the corresponding UL that contains the DL CC that carries the MAC CE CC group of CC.
  • the UE determines the SRI applied by the MAC CE, which updates the power control parameters of the PUSCH, including one of the following methods:
  • the PUSCH path loss measurement parameter in the PUSCH SRI of all CCs in the CC group is the same as the SRS resource ID contained in the SRI indicated by the MAC CE that updates the power control parameters of the PUSCH; or, in the PUSCH SRI of all CCs in the CC group
  • the path loss measurement parameters of the PUSCH are the same as at least K3 SRS resource IDs included in the SRI indicated by the MAC CE that updates the power control parameters of the PUSCH.
  • K3 is a pre-configured integer greater than or equal to 1.
  • the sending parameter determination method may further include: receiving a path loss measurement parameter pool configured by a higher layer; wherein the characteristics of the path loss measurement parameter pool configured by a higher layer include at least one of the following:
  • the CC or BWP configured with SRS independently configure the path loss measurement parameter pool of SRS; more than 1 CC or BWP configured with SRS share the path loss measurement parameter pool of SRS; more than 1 CC or BWP configured with SRS share the path loss of SRS Measurement parameter pool, where multiple CCs measure path loss with reference to the RS of the same CC; on the same CC or BWP, or within the same CC group, SRS and PUSCH share the path loss measurement parameter pool; on the same CC or BWP, or In the same CC group, SRS and PUCCH share path loss measurement parameter pool; in the same CC or BWP, or in the same CC group, PUSCH and PUCCH share path loss measurement parameter pool; or in the same CC or BWP, or in the same CC group Inside, SRS, PUSCH and PUCCH share the path loss measurement parameter pool.
  • the sending parameter determination method may further include: receiving a power control parameter pool configured by a higher layer; wherein the power control parameter pool includes an open-loop power control parameter pool, a closed-loop power control parameter pool, and a path loss measurement parameter pool.
  • the open-loop power control parameter pool includes at least one open-loop power control parameter element.
  • the open-loop power control parameter elements include at least one of the following: open-loop power control parameter ID, target received power P0, and path loss compensation coefficient alpha.
  • the closed-loop power control parameter pool includes at least one closed-loop power control parameter element.
  • the closed-loop power control parameter element includes a closed-loop power control ID, which is used to identify a closed-loop power control or a closed-loop power control loop.
  • the closed-loop power control parameter pool can be indicated by the number of closed-loop power control.
  • the closed-loop power control parameter pool includes two closed-loop power controls, and the closed-loop power control ID can be 0 or 1, respectively identifying the first and second closed-loop power controls.
  • the path loss measurement parameter pool includes at least one path loss measurement parameter element.
  • the path loss measurement parameter elements include path loss measurement parameter ID and path loss measurement parameter.
  • the path loss measurement parameter refers to the reference signal resource number for measuring the path loss.
  • the reference signal for measuring path loss can be CSI-RS or SSB.
  • the embodiment of the present application provides a method for determining sending parameters applied to a second node device.
  • Fig. 5 is a schematic diagram of a sending parameter determination process provided by an embodiment of the present application. This method may be applicable to the case where the second node device sends the MAC CE to the first node device to enable the first node device to determine the sending parameters of the uplink transmission, where the second node device may be a base station device or the like.
  • a method for determining sending parameters provided by this application includes S210.
  • S210 Send a MAC CE to a first node device, so that the first node device determines a CC group according to the MAC CE and a sending parameter of uplink transmission of CCs in the CC group.
  • the sending parameters of the uplink transmission include spatial relationship information and/or power control parameter information; the uplink transmission includes at least one of SRS transmission, PUSCH transmission, and PUCCH transmission.
  • the determined power control parameter number refers to the power control parameter corresponding to the power control parameter number in the parameter pool on each CC/BWP, or when the specified The power control parameter corresponding to the number of the power control parameter in the parameter pool on the CC/BWP.
  • S220 Send the path loss measurement parameter pool configured by the upper layer.
  • the CC or BWP configured with SRS independently configure the path loss measurement parameter pool of SRS; more than 1 CC or BWP configured with SRS share the path loss measurement parameter pool of SRS; more than 1 CC or BWP configured with SRS share the path loss of SRS Measurement parameter pool, where multiple CCs measure path loss with reference to the RS of the same CC; on the same CC or BWP, or within the same CC group, SRS and PUSCH share the path loss measurement parameter pool; on the same CC or BWP, or In the same CC group, SRS and PUCCH share path loss measurement parameter pool; in the same CC or BWP, or in the same CC group, PUSCH and PUCCH share path loss measurement parameter pool; or in the same CC or BWP, or in the same CC group Inside, SRS, PUSCH and PUCCH share the path loss measurement parameter pool.
  • the second node device sends the MAC CE to the first node device, so that the first node device determines the CC group according to the MAC CE, and the uplink of all CCs in the CC group including spatial relationship information and/or power control parameter information
  • the sending parameter of transmission solves the problem that the sending parameter determination mechanism of uplink transmission is not perfect, and the determination mechanism of sending parameter of uplink transmission is optimized.
  • the first node device is configured to: according to the CC group ID included in the MAC CE, according to the CC group to which the cell number included in the MAC CE belongs, or according to the CC group to which the cell carrying the MAC CE belongs CC group, which determines the CC group to which the MAC CE applies.
  • the UL CC may be a member of the CC group.
  • the carrier members (or called component carriers) included in the CC group may be pre-configured.
  • the characteristics of the CC group may include at least one of the following:
  • the CC group includes at least one CC; each CC of the CC group is configured with SRS; SRS resources with the same SRS resource number in the CC group are associated with the same spatial relationship; the CC group includes the spatial relationship CC group and/or power control parameter CC group; the CC group is configured by high-level parameters; the CC group is determined by the path loss reference link parameter; the CC group is a child of the first type of CC group determined by the path loss reference link parameter The CC group is the same as the first type CC group determined by the path loss reference link parameter; the CC group is determined by the PUCCH group; the CC group is a subset of the PUCCH group; the CC group is the same as the PUCCH group; The SRS is the same as the CC group of the PUSCH; the spatial relationship CC group of the SRS is the same as the power control parameter CC group of the SRS; the spatial relationship CC group of the PUSCH is the same as the power control parameter CC group of the PU
  • the CC group can be a CC group of spatial relationships and power control parameters, and the first type of CC group can be a CC group determined by the PL-Ref-linking parameter.
  • the PUCCH group may include: a primary PUCCH group and a secondary PUCCH group (Secondary PUCCH group).
  • the primary PUCCH group includes a primary cell (PCell, Primary Cell) and greater than or equal to 0 secondary cells (SCell, Secondary Cell), and the PUCCH signaling of these cells is all associated with the PUCCH on the PCell.
  • the secondary PUCCH group includes a group of secondary cells, and the PUCCH signaling of these secondary cells is all associated with the PUCCH on the PUCCH SCell.
  • the MAC CE includes the CC group ID, the cell ID, the cell ID of the SRS resource set, the partial bandwidth BWP ID of the SRS resource set, the SRS resource set ID, at least one SRS resource SRS resource ID, At least one of SRS resource spatial relationship related information, SRS resource or SRS resource set power control parameter related information, PUSCH cell ID, PUSCH BWP ID, PUSCH SRS resource indicator SRI and SRI power control parameter related information .
  • the spatial relationship related information includes: at least one of spatial relationship information, a CC ID of the spatial relationship information, and a BWP ID of the spatial relationship information;
  • the power control parameter related information includes a power control parameter, and a CCID of the power control parameter And at least one of the BWP ID of the power control parameter.
  • number, index, index, and ID have the same meaning and can be interchanged.
  • the cell ID and CC number have the same meaning and can be interchanged.
  • the first node device is used to determine the first SRS resource set applied by the MAC CE; and update the power control parameter information according to the first SRS resource set.
  • the first node device is used to: determine the first SRS resource set applied by the MAC CE; determine the second SRS resource set applied by the MAC CE according to the first SRS resource set; Update the power control parameter information according to the first SRS resource set and/or the second SRS resource set.
  • the first SRS resource set and the second SRS resource set may be two different SRS resource sets applied by the MAC CE.
  • the first node device is used to determine the SRS resource applied by the MAC CE; and update the spatial relationship information according to the SRS resource applied by the MAC CE.
  • the first node device is used to determine the first node device to which the MAC CE is applied according to the SRS resource set ID, the cell ID of the SRS resource set, and the partial bandwidth BWP ID of the SRS resource set included in the MAC CE.
  • An SRS resource set; the first SRS resource set is determined according to the SRS resource set ID contained in the MAC CE, the cell ID of the SRS resource set, and the BWP activated in the cell identified by the cell ID of the SRS resource set; according to the The SRS resource set ID included in the MAC CE and the BWP activated in the cell that carries the MAC CE determine the first SRS resource set; or, the first SRS is determined according to at least one SRS resource ID included in the MAC CE resource set.
  • the first node device is configured to: use an SRS resource set that is consistent with the at least one SRS resource ID included in the MAC CE as the first SRS resource set, or combine it with the Among the at least one SRS resource ID included in the MAC CE, at least K1 SRS resource sets with the same SRS resource ID are used as the first SRS resource set; K1 is a predefined or pre-configured integer greater than or equal to 1 , Or based on a predefined or pre-configured percentage.
  • the K1 SRS resource IDs may be the K1 SRS resource IDs with the smallest number in the SRS resource set. Or, the K1 SRS resource IDs may be the K1 SRS resource IDs with the largest number in the SRS resource set.
  • K is a pre-configured integer greater than or equal to 1.
  • K can also be determined based on a predefined or pre-configured percentage.
  • the SRS resource set includes 4 SRS resources.
  • the first node device is used to: set the SRS resource set consistent with the SRS resource in the first SRS resource set in the CC that belongs to the same CC group as the first SRS resource set as the destination.
  • the second SRS resource set applied by the MAC CE among CCs that belong to the same CC group as the first SRS resource set, the SRS resource set with the same ID as the first SRS resource set is used as the MAC CE applied The second SRS resource set; or, the SRS resource set that belongs to the same CC group as the first SRS resource set and the SRS resource set that is consistent with at least K2 SRS resource IDs in the first SRS resource set is used as The second SRS resource set applied by the MAC CE; where K2 is a predefined or pre-configured integer greater than or equal to 1, or is determined according to a predefined or pre-configured percentage.
  • the K2 SRS resource IDs may be the K2 SRS resource IDs with the smallest number in the SRS resource set. Or, the K2 SRS resource IDs may be the K2 SRS resource IDs with the largest number in the SRS resource set.
  • the first node device is configured to: determine the SRS resource applied by the MAC CE according to at least one SRS resource ID included in the MAC CE; determine the SRS resource included in the first SRS resource set The SRS resource applied by the MAC CE; the SRS resource applied by the MAC CE is determined according to the SRS resource included in the second SRS resource set; among CCs that belong to the same CC group as the first SRS resource set, if the SRS resource set is in the SRS resource set The SRS resource ID of the included SRS resource is the same as the SRS resource ID of the SRS resource in the first SRS resource set, and the SRS resource corresponding to the SRS resource ID is the SRS resource applied by the MAC CE; When the SRS resource set belongs to CCs in the same CC group, the SRS resource ID of the SRS resource included in the SRS resource set with the same usage as the first SRS resource set is the same as the SRS resource ID of the SRS resource in the first SRS resource set, then The SRS
  • the first node device may use three methods to update the sending parameters of the uplink transmission according to the SRI of the PUSCH transmission applied by the MAC CE.
  • the first node device is configured to: determine the first SRI transmitted by the PUSCH applied by the MAC CE; update the spatial relationship information and the first SRI transmitted according to the first SRI transmitted by the PUSCH applied by the MAC CE / Or power control parameter information.
  • the first node device is configured to: determine the first SRI for PUSCH transmission applied by the MAC CE; determine the second SRI for PUSCH transmission applied by the MAC CE; The first SRI and/or the second SRI transmitted by the applied PUSCH update the spatial relationship information and/or power control parameter information.
  • the first SRI for PUSCH transmission and the second SRI for PUSCH transmission may be two different PUSCH transmission SRIs applied by MAC CE.
  • the first node device is configured to: determine the first SRI of PUSCH transmission applied by the MAC CE according to the SRI of the PUSCH included in the MAC CE; At least one of SRI, SRS resource ID, and SRS resource set ID, the cell ID of the PUSCH, and the BWP ID of the PUSCH determine the first SRI of the PUSCH transmission applied by the MAC CE; according to the MAC CE includes At least one of the SRI, SRS resource ID, and SRS resource set ID of the PUSCH, the cell ID of the PUSCH, and the activated BWP in the cell corresponding to the cell ID of the PUSCH determine the MAC CE applied
  • the first SRI transmitted by the PUSCH determine the location of the MAC CE according to at least one of the SRI, SRS resource ID, and SRS resource set ID of the PUSCH contained in the MAC CE, and the activated BWP in the cell that carries the MAC CE
  • determining the second SRI for PUSCH transmission applied by the MAC CE may include: combining the SRI of the PUSCH in a CC that belongs to the same CC group as the first SRI transmitted by the PUSCH and the SRI indicated by the MAC CE
  • the SRI of the PUSCH includes the SRS of the PUSCH with the same SRS resource ID as the second SRI of the PUSCH transmission applied by the MAC CE; or, the SRI of the PUSCH in the CC that belongs to the same CC group as the first SRI transmitted by the PUSCH
  • the SRI of the PUSCH that includes at least K3 SRS resource IDs that are the same as the SRI of the PUSCH indicated by the MAC CE is used as the second SRI of the PUSCH transmission applied by the MAC CE; where K3 is a predefined or pre-configured greater than or An integer equal to 1, or based on a predefined or pre-configured percentage.
  • the sending parameter determination method may further include: sending a power control parameter pool configured by a higher layer; wherein the power control parameter pool includes an open-loop power control parameter pool, a closed-loop power control parameter pool, and a path loss measurement parameter pool.
  • the open-loop power control parameter pool includes at least one open-loop power control parameter element.
  • the open-loop power control parameter elements include at least one of the following: open-loop power control parameter ID, target received power P0, and path loss compensation coefficient alpha.
  • the closed-loop power control parameter pool includes at least one closed-loop power control parameter element.
  • the closed-loop power control parameter element includes a closed-loop power control ID, which is used to identify a closed-loop power control or a closed-loop power control loop.
  • the closed-loop power control parameter pool can be indicated by the number of closed-loop power control.
  • the closed-loop power control parameter pool includes two closed-loop power controls, and the closed-loop power control ID can be 0 or 1, respectively identifying the first and second closed-loop power controls.
  • the path loss measurement parameter pool includes at least one path loss measurement parameter element.
  • the path loss measurement parameter elements include path loss measurement parameter ID and path loss measurement parameter.
  • the path loss measurement parameter refers to the reference signal resource number for measuring the path loss.
  • the reference signal for measuring path loss can be CSI-RS or SSB.
  • the power control parameters of PUSCH transmission in the transmission parameters of uplink transmission are obtained in the following way:
  • the base station allocates a power control parameter pool for the UE through high-level signaling, where the power control parameter pool includes at least one of the following: an open-loop power control parameter pool, a closed-loop power control parameter pool, and a path loss measurement parameter pool.
  • the parameter pool of each category includes at least one parameter of the corresponding category.
  • the base station allocates an SRS resource set for the UE through high-level signaling.
  • the base station uses SRI to indicate one or more SRS resources in the SRS resource set, which is used as a reference for PUSCH transmission.
  • the base station configures the association relationship between the value of the SRI field in the DCI and the power control parameters of each category of the power control parameter pool (referred to as the association of SRI and power control parameters) for the UE through high-level signaling.
  • the base station can update or modify the association between SRI and power control parameters through MAC CE.
  • the base station schedules or activates the UE to send PUSCH transmission through physical layer control information, such as DCI, and includes the SRI field in the DCI to indicate the SRS resource referenced by the PUSCH.
  • the base station configures the UE to send PUSCH transmission through high-level signaling, and includes SRI through high-level signaling to indicate the SRS resources referenced by the PUSCH.
  • the DCI scheduled PUSCH transmission is called dynamically authorized PUSCH transmission
  • the higher layer configured PUSCH transmission is called type 1 configuration authorized PUSCH transmission
  • the DCI activated PUSCH transmission is called type 2 configuration authorized PUSCH transmission.
  • the UE receives the power control parameter information of the above PUSCH transmission, and divides the different types of PUSCH transmission into the following processing situations:
  • the power control parameters corresponding to the PUSCH transmission are obtained through the SRI value in the DCI and the correlation between the value of the SRI field and the power control parameters of each category in the power control parameter pool.
  • the power control parameters of the PUSCH transmission are directly obtained through high-layer signaling.
  • the open-loop power control parameters and closed-loop power control parameters of PUSCH transmission are directly obtained through high-layer signaling, and the path loss measurement parameters are activated by activating the SRI value and SRI in the DCI of the PUSCH transmission.
  • the correlation between the value of the domain and the path loss measurement parameter pool of the power control parameter pool is obtained.
  • the power control parameter acquisition of the dynamically authorized PUSCH transmission and the type 2 configuration authorized PUSCH transmission is related to the SRI and the associated information of the SRI and the PUSCH power control parameter. Therefore, in some scenarios, the UE may not be able to obtain SRI.
  • the type 2 configuration authorized PUSCH transmission and the dynamically authorized PUSCH transmission can be scheduled or activated in the DCI format 0_0 or 0_1.
  • the SRI field is not included in the DCI format 0_0. When only one SRS resource is included in the SRS resource set corresponding to PUSCH transmission, the SRI field is not included in the DCI format 0_1.
  • the processing method for open-loop power control parameters and closed-loop power control parameters is: use the power control parameter pool The power control parameter with the smallest number in the open-loop and closed-loop power control parameter pools. For example, the first (numbered 0) open-loop power control parameter configured in the open-loop power control parameter pool.
  • the processing method for the path loss measurement parameters is: when the spatial parameters of the PUCCH are available, the UE obtains the path loss measurement parameters through the associated spatial relationship of the PUCCH resource with the smallest number. When the spatial parameters of the PUCCH cannot be obtained, the power control parameter with the smallest number in the path loss measurement parameter pool in the power control parameter pool is used.
  • the processing method for open-loop power control parameters and closed-loop power control parameters is: use high-level parameter configuration value.
  • the processing method for the path loss measurement parameter is: use the power control parameter with the lowest number in the path loss measurement parameter pool in the power control parameter pool.
  • the power control parameter with a fixed number in the power control parameter pool is used.
  • the MAC CE updating power control parameters is to update the corresponding relationship between the associated IDs of the SRI and PUSCH power control parameters and the IDs of the various types of parameters in the power control parameter pools (including the IDs of the path loss measurement parameters) in their respective parameter pools.
  • the correlation ID between the SRI and PUSCH power control parameters can be understood as the value of the SRI field.
  • the SRI field does not exist, how to determine the correlation ID of the SRI and PUSCH power control parameters, and when there is no SRI field, MAC CE cannot update the power control parameters. Effectiveness is a problem with related technologies. For example, there is only one SRS resource in the SRS resource set, and the spatial relationship of the SRS resource can be updated through the MAC CE.
  • the UE cannot obtain the SRI, but the spatial relationship can be obtained through the unique SRS resource.
  • the base station can also update or modify the association information between SRI and PUSCH power control parameters through high-layer signaling or MAC CE.
  • the above-mentioned fixed number of power control parameters using the power control parameter pool causes the base station to update or modify the association between the SRI and the power control parameters and cannot be effective for PUSCH transmission.
  • the associated information ID of SRI and PUSCH power control parameters is a fixed value, such as 0. That is, in the related technology, only the correlation ID between SRI and PUSCH power control parameters corresponds to the value of the SRI field in DCI.
  • the correlation ID between SRI and PUSCH power control parameters is a fixed value, such as 0 .
  • the maximum, minimum, configured value, or the power control parameter corresponding to the predetermined value in the associated ID of the SRI and PUSCH power control parameter can be used. For example, 0.
  • an embodiment of the present application provides a sending parameter determination method applied to a first node device.
  • Fig. 6 is a schematic diagram of a sending parameter determination process provided by an embodiment of the present application. This method may be suitable for the case where the first node device determines the sending parameters of uplink transmission, especially the power control parameters of PUSCH transmission, where the first node device may be a terminal device or the like.
  • a method for determining sending parameters provided by this application includes S310.
  • S310 Determine the power control parameter of PUSCH transmission according to the associated information of SRI and PUSCH power control parameter; wherein, the power control parameter of PUSCH transmission includes the open loop power control parameter of PUSCH, the closed loop power control parameter of PUSCH, and the path loss of PUSCH At least one of the measurement parameters.
  • the embodiment of the application determines the power control parameters of PUSCH transmission according to the associated information of SRI and PUSCH power control parameters, which can effectively solve the problem of ineffectiveness of updating power control parameters through MAC-CE in related technologies, and optimize the sending parameters of uplink transmission.
  • the determination mechanism determines the power control parameters of PUSCH transmission according to the associated information of SRI and PUSCH power control parameters, which can effectively solve the problem of ineffectiveness of updating power control parameters through MAC-CE in related technologies, and optimize the sending parameters of uplink transmission.
  • the associated information between the SRI and the PUSCH power control parameter includes at least one associated element between the SRI and the PUSCH power control parameter; the associated element between the SRI and the PUSCH power control parameter includes the associated ID of the SRI and the PUSCH power control parameter At least one of the open loop power control parameter ID of PUSCH, the closed loop power control parameter ID of PUSCH, and the path loss measurement parameter ID of PUSCH; wherein, the open loop power control parameter ID of PUSCH is used to indicate the open loop of PUSCH
  • the closed-loop power control parameter ID of the PUSCH is used to indicate the closed-loop power control parameter ID of PUSCH in the closed-loop power control parameter pool of PUSCH; for example, the closed-loop power control parameter pool of PUSCH includes two closed-loop power control (or called closed-loop) of PUSCH. Power control loop), the closed-loop power control parameter ID of PUSCH can be 0 or 1, respectively identifying the first and second closed-loop power control; the path loss measurement parameter ID of the PUSCH is used to indicate the path loss measurement parameter of PUSCH Path loss measurement parameters of PUSCH in the pool.
  • the path loss measurement parameter of PUSCH refers to the reference signal resource number for measuring path loss.
  • the reference signal for measuring path loss can be CSI-RS or SSB.
  • the association ID between the SRI and the PUSCH power control parameter included in the association information between the SRI and the PUSCH power control parameter is a predefined value or a pre-configured value.
  • association information between the SRI and PUSCH power control parameters is configured, reconfigured or updated through higher layer signaling, or activated, deactivated or updated through MAC CE.
  • the association between the SRI and the PUSCH power control parameter in the association information of the SRI and the PUSCH power control parameter is a pre-defined value or a pre-configured value.
  • the high-layer signaling RRC may configure, reconfigure, or update the association information between SRI and PUSCH power control parameters.
  • MAC signaling can be activated, deactivated, or updated related information between SRI and PUSCH power control parameters.
  • determining the power control parameter of PUSCH transmission according to the correlation information of SRI and PUSCH power control parameter includes determining that the correlation ID of SRI and PUSCH power control parameter is predefined Value or pre-configured value:
  • the DCI for scheduling PUSCH transmission or the DCI for activating PUSCH transmission does not have the SRI field; the format of the DCI for scheduling PUSCH transmission or the DCI for activating PUSCH transmission is 0_0; the associated information between SRI and PUSCH power control parameters exists or is configured; so
  • the first node device supports MAC CE to activate or update the power control parameters of PUSCH; the first node device supports MAC CE to activate or update the path loss measurement parameters of PUSCH; or when the DCI format 0_0 schedules or activates PUSCH transmission, PUCCH transmission
  • the spatial relationship configuration does not exist or is not provided.
  • the power control parameters for PUSCH transmission are determined according to the correlation information of SRI and PUSCH power control parameters, including the open-loop power control parameters of PUSCH corresponding to the determined correlation ID of SRI and PUSCH power control parameters, the closed-loop power control parameters of PUSCH, and the PUSCH power control parameters. At least one of the path loss measurement parameters.
  • the predefined value is one of the following: 0, 1
  • the association information between SRI and PUSCH power control parameters includes the smallest SRI and PUSCH power control parameter association ID, and the relationship between SRI and PUSCH power control parameter
  • the association information includes the largest association ID between SRI and PUSCH power control parameters, the number of associated elements between SRI and PUSCH power control parameters included in the association information between SRI and PUSCH power control parameters, or the association information between SRI and PUSCH power control parameters
  • the number of associated elements between SRI and PUSCH power control parameters included in the SRI is reduced by 1; the pre-configured value is 0 to the number of associated elements between SRI and PUSCH power control parameters included in the associated information of SRI and PUSCH power control parameters A number between the number minus 1 value.
  • Determining the power control parameter of the PUSCH transmission according to the correlation information of the SRI and the PUSCH power control parameter includes determining that the correlation ID of the SRI and the PUSCH power control parameter is a predefined value or a pre-configured value.
  • the first node device searches for the associated information of the SRI and PUSCH power control parameters according to the associated ID of the SRI and PUSCH power control parameters as a predefined value or a pre-configured value to obtain the corresponding SRI and PUSCH power control parameters to determine PUSCH transmission power.
  • the SRI and PUSCH power control parameters corresponding to 0 including path loss measurement parameters, such as the path loss measurement and control parameters identified by PUSCH-PathlossReferenceRS-Id Corresponding path loss measurement parameters in the pool.
  • the power control parameter of the PUSCH transmission may be the open-loop power control parameter of the PUSCH.
  • open-loop power control parameters are all configured by higher-layer signaling RRC.
  • the PUSCH open loop power control parameter ID corresponding to the smallest PUSCH open loop power control parameter pool of the PUSCH open loop power control parameter pool is used. Power control parameters.
  • the power control parameter of the PUSCH transmission may be a closed-loop power control parameter of the PUSCH.
  • closed-loop power control parameters are configured by higher-layer signaling RRC.
  • the closed-loop power control parameter ID of the PUSCH corresponding to the smallest closed-loop power control parameter ID of the PUSCH closed-loop power control parameter pool is used. , Which is the closed-loop power control numbered 0.
  • the power control parameter of the PUSCH transmission may be a path loss measurement parameter of the PUSCH.
  • the DCI format 0_0 schedules or activates PUSCH transmission, there is no SRI field in the DCI, and there may be one or more SRS resources in the SRS resource set. If the spatial relationship of the PUCCH exists, the path loss measurement parameter of the spatial relationship of the PUCCH is used. If the spatial relationship of the PUCCH does not exist, the path loss measurement parameter corresponding to the smallest path loss measurement parameter ID of the PUSCH in the PUSCH power control parameter pool is used.
  • the parameter of the information corresponds to the path loss measurement parameter.
  • the SRS resource in the SRS resource set is 1, the DCI format 0_1 does not carry SRI.
  • the path loss measurement parameter corresponding to the path loss measurement parameter ID of the smallest PUSCH in the power control parameter pool is used.
  • the path loss measurement parameter corresponding to the parameter is used.
  • X is a pre-defined value, or a pre-configured value.
  • the predefined value may be one of the following: 0, 1, the number of associated elements of SRI and PUSCH power control parameters included in the associated information of SRI and PUSCH power control parameters, or the associated information of SRI and PUSCH power control parameters The number of associated elements of the SRI and PUSCH power control parameters included in the SRI is reduced by one.
  • the pre-configured value may be a value between 0 and the number of associated elements of the SRI and PUSCH power control parameters included in the associated information of the SRI and PUSCH power control parameters minus 1 value.
  • the pre-configured value is sent by the base station to the UE.
  • an embodiment of the present application provides a method for determining sending parameters applied to a second node device.
  • Fig. 7 is a schematic diagram of a sending parameter determination process provided by an embodiment of the present application. This method may be applicable to a situation where the second node device determines the association information between SRI and PUSCH power control parameters, so that the first node device determines the power control parameters for PUSCH transmission, where the second node device may be a base station device or the like.
  • a method for determining sending parameters provided by this application includes S410.
  • S410 Deactivate or update the association information between SRI and PUSCH power control parameters through high-level signaling configuration, reconfiguration or update, or through MAC CE activation; wherein, the association information between SRI and PUSCH power control parameters is used for the first
  • the node device determines the power control parameters for PUSCH transmission.
  • the power control parameters transmitted by the PUSCH include at least one of the open-loop power control parameters of the PUSCH, the closed-loop power control parameters of the PUSCH, and the path loss measurement parameters of the PUSCH.
  • the embodiment of the application determines the associated information between SRI and PUSCH power control parameters, so that the first node device determines the power control parameters transmitted by PUSCH, which can effectively solve the problem that the power control parameters cannot be updated through MAC-CE in related technologies.
  • the mechanism for determining the sending parameters of the uplink transmission is optimized.
  • the associated information between the SRI and the PUSCH power control parameter includes at least one associated element between the SRI and the PUSCH power control parameter; the associated element between the SRI and the PUSCH power control parameter includes the associated ID of the SRI and the PUSCH power control parameter At least one of the open loop power control parameter ID of PUSCH, the closed loop power control parameter ID of PUSCH, and the path loss measurement parameter ID of PUSCH; wherein, the open loop power control parameter ID of PUSCH is used to indicate the open loop of PUSCH
  • the closed-loop power control parameter ID of the PUSCH is used to indicate the closed-loop power control parameter ID of PUSCH in the closed-loop power control parameter pool of PUSCH; for example, the closed-loop power control parameter pool of PUSCH includes two closed-loop power control (or called closed-loop) of PUSCH. Power control loop), the closed-loop power control parameter ID of PUSCH can be 0 or 1, respectively identifying the first and second closed-loop power control; the path loss measurement parameter ID of the PUSCH is used to indicate the path loss measurement parameter of PUSCH Path loss measurement parameters of PUSCH in the pool.
  • the path loss measurement parameter of PUSCH refers to the reference signal resource number for measuring path loss.
  • the reference signal for measuring path loss can be CSI-RS or SSB.
  • the association ID between the SRI and the PUSCH power control parameter included in the association information between the SRI and the PUSCH power control parameter is a predefined value or a pre-configured value.
  • association information between the SRI and PUSCH power control parameters is configured, reconfigured or updated through higher layer signaling, or activated, deactivated or updated through MAC CE.
  • the association between the SRI and the PUSCH power control parameter in the association information of the SRI and the PUSCH power control parameter is a pre-defined value or a pre-configured value.
  • the high-layer signaling RRC may configure, reconfigure, or update the association information between SRI and PUSCH power control parameters.
  • MAC signaling can be activated, deactivated, or updated related information between SRI and PUSCH power control parameters.
  • determining the power control parameter of PUSCH transmission according to the correlation information of SRI and PUSCH power control parameter includes determining that the correlation ID of SRI and PUSCH power control parameter is predefined Value or pre-configured value:
  • the DCI for scheduling PUSCH transmission or the DCI for activating PUSCH transmission does not have the SRI field; the format of the DCI for scheduling PUSCH transmission or the DCI for activating PUSCH transmission is 0_0; the associated information between SRI and PUSCH power control parameters exists or is configured;
  • the first node device supports MAC CE to activate or update the power control parameters of PUSCH; the first node device supports MAC CE to activate or update the path loss measurement parameters of PUSCH; or when the DCI format 0_0 schedules or activates PUSCH transmission, PUCCH transmission
  • the spatial relationship configuration does not exist or is not provided.
  • the power control parameters for PUSCH transmission are determined according to the correlation information of SRI and PUSCH power control parameters, including the open-loop power control parameters of PUSCH corresponding to the determined correlation ID of SRI and PUSCH power control parameters, the closed-loop power control parameters of PUSCH, and the PUSCH power control parameters. At least one of the path loss measurement parameters.
  • the predefined value is one of the following: 0, 1
  • the association information between SRI and PUSCH power control parameters includes the smallest SRI and PUSCH power control parameter association ID, and the relationship between SRI and PUSCH power control parameter
  • the association information includes the largest association ID between SRI and PUSCH power control parameters, the number of associated elements between SRI and PUSCH power control parameters included in the association information between SRI and PUSCH power control parameters, or the association information between SRI and PUSCH power control parameters
  • the number of associated elements between SRI and PUSCH power control parameters included in the SRI is reduced by 1; the pre-configured value is 0 to the number of associated elements between SRI and PUSCH power control parameters included in the associated information of SRI and PUSCH power control parameters A number between the number minus 1 value.
  • an embodiment of the present application provides an electronic device.
  • the device can be configured in the first node device.
  • FIG. 8 is a schematic structural diagram of an electronic device provided by an embodiment of the present application. As shown in Figure 8, the device may include:
  • the parameter determination module 510 is configured to determine the CC group and the uplink transmission parameters of the CCs of the CC group according to the MAC CE; wherein, the uplink transmission parameters include spatial relationship information and/or power control parameter information;
  • the uplink transmission includes at least one of SRS transmission, PUSCH transmission, and PUCCH transmission.
  • the embodiment of this application determines the transmission parameters of the uplink transmission of the CC group according to the MAC CE and all CCs in the CC group including spatial relationship information and/or power control parameter information, and solves the problem that the mechanism for determining the transmission parameters of uplink transmission is not perfect.
  • the mechanism for determining the sending parameters of the uplink transmission is optimized.
  • the parameter determination module 510 is specifically configured to determine according to the CC group ID included in the MAC CE, according to the CC group to which the cell number included in the MAC CE belongs, or according to the CC group to which the cell carrying the MAC CE belongs To determine the CC group to which the MAC CE applies.
  • the characteristics of the CC group include at least one of the following:
  • the CC group includes at least one CC; each CC of the CC group is configured with SRS; SRS resources with the same SRS resource number in the CC group are associated with the same spatial relationship; the CC group includes the spatial relationship CC group and/or power control parameter CC group; the CC group is configured by high-level parameters; the CC group is determined by the path loss reference link parameter; the CC group is a child of the first type of CC group determined by the path loss reference link parameter The CC group is the same as the first type CC group determined by the path loss reference link parameter; the CC group is determined by the PUCCH group; the CC group is a subset of the PUCCH group; the CC group is the same as the PUCCH group; The SRS is the same as the CC group of the PUSCH; the spatial relationship CC group of the SRS is the same as the power control parameter CC group of the SRS; the spatial relationship CC group of the PUSCH is the same as the power control parameter CC group of the PU
  • the MAC CE includes CC group ID, cell ID, SRS resource set cell ID, SRS resource set partial bandwidth BWP ID, SRS resource set ID, at least one SRS resource SRS resource ID, SRS At least one of the information related to the spatial relationship of the resource, the power control parameter related information of the SRS resource or the SRS resource set, the cell ID of the PUSCH, the BWP ID of the PUSCH, the SRS resource indicator of the PUSCH, and the power control parameter related information of the SRI;
  • the spatial relationship related information includes: at least one of spatial relationship information, a CC ID of the spatial relationship information, and a BWP ID of the spatial relationship information;
  • the power control parameter related information includes a power control parameter, and a CCID of the power control parameter And at least one of the BWP ID of the power control parameter.
  • the parameter determination module 510 is specifically configured to determine the first SRS resource set applied by the MAC CE; and update the power control parameter information according to the first SRS resource set.
  • the parameter determination module 510 is specifically configured to determine the first SRS resource set applied by the MAC CE; determine the second SRS resource set applied by the MAC CE according to the first SRS resource set; The first SRS resource set and/or the second SRS resource set update the power control parameter information.
  • the parameter determination module 510 is specifically configured to determine the SRS resource applied by the MAC CE; and update the spatial relationship information according to the SRS resource applied by the MAC CE.
  • the parameter determination module 510 is specifically configured to determine the first SRS to which the MAC CE is applied according to the SRS resource set ID contained in the MAC CE, the cell ID of the SRS resource set, and the partial bandwidth BWP ID of the SRS resource set. resource set; determine the first SRS resource set according to the SRS resource set ID contained in the MAC CE, the cell ID of the SRS resource set, and the activated BWP in the cell identified by the cell ID of the SRS resource set; according to the MAC CE The included SRS resource set ID and the activated BWP in the cell carrying the MAC CE determine the first SRS resource set; or, determine the first SRS resource set according to at least one SRS resource ID included in the MAC CE .
  • the parameter determination module 510 is specifically configured to use the SRS resource set that is consistent with the at least one SRS resource ID included in the MAC CE as the first SRS resource set, or combine it with the MAC CE In the at least one SRS resource ID included, at least K1 SRS resource sets with the same SRS resource ID are used as the first SRS resource set; where K1 is a predefined or pre-configured integer greater than or equal to 1, or Determined according to a predefined or pre-configured percentage.
  • the parameter determination module 510 is specifically configured to use the SRS resource set in the CC that belongs to the same CC group as the first SRS resource set and that is consistent with the SRS resource in the first SRS resource set as the MAC
  • the second SRS resource set applied by the CE among CCs that belong to the same CC group as the first SRS resource set, the SRS resource set with the same ID as the first SRS resource set serves as the second SRS resource set applied by the MAC CE SRS resource set; or, in a CC that belongs to the same CC group as the first SRS resource set, and SRS resource sets with at least K2 SRS resource IDs consistent with the SRS resource in the first SRS resource set are used as the The second SRS resource set applied by the MAC CE; where K2 is a pre-defined or pre-configured integer greater than or equal to 1, or is determined according to a pre-defined or pre-configured percentage.
  • the parameter determination module 510 is specifically configured to determine the SRS resource to which the MAC CE is applied according to at least one SRS resource ID included in the MAC CE; and determine the MAC CE according to the SRS resource included in the first SRS resource set The applied SRS resource; determine the SRS resource applied by the MAC CE according to the SRS resource included in the second SRS resource set; among CCs that belong to the same CC group as the first SRS resource set, if the SRS resource set includes The SRS resource ID of the SRS resource is the same as the SRS resource ID of the SRS resource in the first SRS resource set, then the SRS resource corresponding to the SRS resource ID is the SRS resource applied by the MAC CE; or, it is the same as the SRS resource ID of the first SRS resource set.
  • the SRS resource ID included in the SRS resource set with the same purpose as the first SRS resource set is the same as the SRS resource ID of the SRS resource in the first SRS resource set, then The SRS resource corresponding to the SRS resource ID is the SRS resource applied by the MAC CE.
  • the parameter determination module 510 is specifically configured to determine the first SRI for PUSCH transmission applied by the MAC CE; update the spatial relationship information and/or according to the first SRI for PUSCH transmission applied by the MAC CE Power control parameter information.
  • the parameter determination module 510 is specifically configured to determine the first SRI for PUSCH transmission applied by the MAC CE; determine the second SRI for PUSCH transmission applied by the MAC CE; The first SRI and/or the second SRI transmitted by the PUSCH update the spatial relationship information and/or power control parameter information.
  • the parameter determining module 510 is specifically configured to determine, according to the SRI of the PUSCH included in the MAC CE, the first SRI of the PUSCH transmission applied by the MAC CE; according to the SRI of the PUSCH included in the MAC CE, At least one of SRS resource ID and SRS resource set ID, the cell ID of the PUSCH and the BWP ID of the PUSCH determine the first SRI of the PUSCH transmission applied by the MAC CE; At least one of the SRI, SRS resource ID, and SRS resource set ID of the PUSCH, the cell ID of the PUSCH, and the activated BWP in the cell corresponding to the cell ID of the PUSCH determine the PUSCH transmission applied by the MAC CE
  • the first SRI of the MAC CE; at least one of the SRI, SRS resource ID, and SRS resource set ID of the PUSCH contained in the MAC CE, and the activated BWP in the cell that carries the MAC CE is used to determine the application of the MAC CE
  • the parameter determination module 510 is specifically configured to determine the PUSCH SRI of the PUSCH in the CC that belongs to the same CC group as the first SRI transmitted by the PUSCH and the same SRS resource ID included in the SRI of the PUSCH indicated by the MAC CE.
  • the SRI of the PUSCH in the CC that belongs to the same CC group as the first SRI transmitted by the PUSCH and the SRI of the PUSCH indicated by the MAC CE include At least K3 PUSCH SRIs with the same SRS resource ID as the second SRI for PUSCH transmission applied by the MAC CE; where K3 is a predefined or pre-configured integer greater than or equal to 1, or according to predefined or pre-defined The percentage of configuration is determined.
  • the device further includes: a path loss measurement parameter pool receiving module configured to receive a path loss measurement parameter pool configured by a higher layer; wherein the characteristics of the path loss measurement parameter pool configured by a higher layer include at least one of the following:
  • the CC or BWP configured with SRS independently configure the path loss measurement parameter pool of SRS; more than 1 CC or BWP configured with SRS share the path loss measurement parameter pool of SRS; more than 1 CC or BWP configured with SRS share the path loss of SRS Measurement parameter pool, where multiple CCs measure path loss with reference to the RS of the same CC; on the same CC or BWP, or within the same CC group, SRS and PUSCH share the path loss measurement parameter pool; on the same CC or BWP, or In the same CC group, SRS and PUCCH share path loss measurement parameter pool; in the same CC or BWP, or in the same CC group, PUSCH and PUCCH share path loss measurement parameter pool; or in the same CC or BWP, or in the same CC group Inside, SRS, PUSCH and PUCCH share the path loss measurement parameter pool.
  • an embodiment of the present application provides an electronic device.
  • the device can be configured in the second node device.
  • FIG. 9 is a schematic structural diagram of an electronic device provided by an embodiment of the present application. As shown in Figure 9, the device may include:
  • the signaling sending module 610 is configured to send the MAC CE to the first node device, so that the first node device determines the CC group according to the MAC CE and the sending parameters of the CC of the CC group for uplink transmission; wherein, The sending parameters of the uplink transmission include spatial relationship information and/or power control parameter information; the uplink transmission includes at least one of SRS transmission, PUSCH transmission, and PUCCH transmission.
  • the parameter pool sending module 620 is configured to send the path loss measurement parameter pool configured by the upper layer; wherein the characteristics of the power control parameter pool configured by the upper layer include at least one of the following:
  • the CC or BWP configured with SRS independently configure the path loss measurement parameter pool of SRS; more than 1 CC or BWP configured with SRS share the path loss measurement parameter pool of SRS; more than 1 CC or BWP configured with SRS share the path loss of SRS Measurement parameter pool, where multiple CCs measure path loss with reference to the RS of the same CC; on the same CC or BWP, or within the same CC group, SRS and PUSCH share the path loss measurement parameter pool; on the same CC or BWP, or In the same CC group, SRS and PUCCH share path loss measurement parameter pool; in the same CC or BWP, or in the same CC group, PUSCH and PUCCH share path loss measurement parameter pool; or in the same CC or BWP, or in the same CC group Inside, SRS, PUSCH and PUCCH share the path loss measurement parameter pool.
  • the second node device sends the MAC CE to the first node device, so that the first node device determines the CC group according to the MAC CE, and the uplink of all CCs in the CC group including spatial relationship information and/or power control parameter information
  • the sending parameter of transmission solves the problem that the sending parameter determination mechanism of uplink transmission is not perfect, and the determination mechanism of sending parameter of uplink transmission is optimized.
  • the first node device is configured to: according to the CC group ID included in the MAC CE, according to the CC group to which the cell number included in the MAC CE belongs, or according to the CC group to which the cell carrying the MAC CE belongs group, which determines the CC group to which the MAC CE applies.
  • the characteristics of the CC group include at least one of the following:
  • the CC group includes at least one CC; each CC of the CC group is configured with SRS; SRS resources with the same SRS resource number in the CC group are associated with the same spatial relationship; the CC group includes the spatial relationship CC group and/or power control parameter CC group; the CC group is configured by high-level parameters; the CC group is determined by the path loss reference link parameter; the CC group is a child of the first type of CC group determined by the path loss reference link parameter The CC group is the same as the first type CC group determined by the path loss reference link parameter; the CC group is determined by the PUCCH group; the CC group is a subset of the PUCCH group; the CC group is the same as the PUCCH group; The SRS is the same as the CC group of the PUSCH; the spatial relationship CC group of the SRS is the same as the power control parameter CC group of the SRS; the spatial relationship CC group of the PUSCH is the same as the power control parameter CC group of the PU
  • the MAC CE includes CC group ID, cell ID, SRS resource set cell ID, SRS resource set partial bandwidth BWP ID, SRS resource set ID, at least one SRS resource SRS resource ID, SRS At least one of the information related to the spatial relationship of the resource, the power control parameter related information of the SRS resource or the SRS resource set, the cell ID of the PUSCH, the BWP ID of the PUSCH, the SRS resource indicator of the PUSCH, and the power control parameter related information of the SRI;
  • the spatial relationship related information includes: at least one of spatial relationship information, a CC ID of the spatial relationship information, and a BWP ID of the spatial relationship information;
  • the power control parameter related information includes a power control parameter, and a CCID of the power control parameter And at least one of the BWP ID of the power control parameter.
  • the first node device is configured to: determine a first SRS resource set to which the MAC CE is applied; and update the power control parameter information according to the first SRS resource set.
  • the first node device is configured to: determine the first SRS resource set applied by the MAC CE; determine the second SRS resource set applied by the MAC CE according to the first SRS resource set; The first SRS resource set and/or the second SRS resource set update the power control parameter information.
  • the first node device is configured to: determine the SRS resource applied by the MAC CE; and update the spatial relationship information according to the SRS resource applied by the MAC CE.
  • the first node device is configured to determine the first node to which the MAC CE applies according to the SRS resource set ID, the cell ID of the SRS resource set, and the partial bandwidth BWP ID of the SRS resource set included in the MAC CE.
  • SRS resource set determine the first SRS resource set according to the SRS resource set ID contained in the MAC CE, the cell ID of the SRS resource set, and the activated BWP in the cell identified by the cell ID of the SRS resource set; according to the MAC
  • the SRS resource set ID included in the CE and the activated BWP in the cell carrying the MAC CE determine the first SRS resource set; or, the first SRS resource set is determined according to at least one SRS resource ID included in the MAC CE set.
  • the first node device is configured to: use an SRS resource set consistent with the at least one SRS resource ID included in the MAC CE as the first SRS resource set, or combine it with the MAC Among the at least one SRS resource ID included in the CE, at least K1 SRS resource sets with the same SRS resource ID are used as the first SRS resource set; where K1 is a predefined or preconfigured integer greater than or equal to 1, and Or based on a predefined or pre-configured percentage.
  • the first node device is configured to: use as the SRS resource set in a CC that belongs to the same CC group as the first SRS resource set and that is consistent with the SRS resource in the first SRS resource set The second SRS resource set applied by the MAC CE; among CCs that belong to the same CC group as the first SRS resource set, the SRS resource set with the same ID as the first SRS resource set is used as the first SRS resource set applied by the MAC CE.
  • Two SRS resource sets or, in CCs belonging to the same CC group as the first SRS resource set, SRS resource sets with at least K2 SRS resource IDs consistent with the SRS resource in the first SRS resource set are used as the destination
  • the second SRS resource set applied by the MAC CE where K2 is a pre-defined or pre-configured integer greater than or equal to 1, or is determined according to a pre-defined or pre-configured percentage.
  • the first node device is configured to: determine the SRS resource applied by the MAC CE according to at least one SRS resource ID included in the MAC CE; determine the MAC according to the SRS resource included in the first SRS resource set The SRS resource applied by the CE; the SRS resource applied by the MAC CE is determined according to the SRS resource included in the second SRS resource set; among the CCs that belong to the same CC group as the first SRS resource set, if the SRS resource set includes If the SRS resource ID of the SRS resource is the same as the SRS resource ID of the SRS resource in the first SRS resource set, the SRS resource corresponding to the SRS resource ID is the SRS resource applied by the MAC CE; or, it is the same as the SRS resource ID of the SRS resource in the first SRS resource set.
  • the SRS resource corresponding to the SRS resource ID is the SRS resource applied by the MAC CE.
  • the first node device is configured to: determine the first SRI for PUSCH transmission applied by the MAC CE; update the spatial relationship information and/or according to the first SRI for PUSCH transmission applied by the MAC CE Or power control parameter information.
  • the first node device is configured to: determine the first SRI for PUSCH transmission applied by the MAC CE; determine the second SRI for PUSCH transmission applied by the MAC CE; The first SRI and/or the second SRI transmitted by the PUSCH update the spatial relationship information and/or power control parameter information.
  • the first node device is configured to: determine the first SRI of PUSCH transmission applied by the MAC CE according to the SRI of the PUSCH included in the MAC CE; according to the SRI of the PUSCH included in the MAC CE , At least one of SRS resource ID and SRS resource set ID, the cell ID of the PUSCH and the BWP ID of the PUSCH determine the first SRI transmitted by the PUSCH to which the MAC CE is applied; according to what the MAC CE includes At least one of the SRI, SRS resource ID, and SRS resource set ID of the PUSCH, the cell ID of the PUSCH, and the activated BWP in the cell corresponding to the cell ID of the PUSCH determine the PUSCH to which the MAC CE applies The first SRI transmitted; according to at least one of the SRI, SRS resource ID, and SRS resource set ID of the PUSCH contained in the MAC CE, and the activated BWP in the cell that carries the MAC CE to determine the application of the MAC CE
  • the first node device is configured to: the SRI of the PUSCH in the CC belonging to the same CC group as the first SRI transmitted by the PUSCH is the same as the SRS resource ID included in the SRI of the PUSCH indicated by the MAC CE The SRI of the PUSCH is used as the second SRI for PUSCH transmission applied by the MAC CE; or, the SRI of the PUSCH in the CC that belongs to the same CC group as the first SRI transmitted by the PUSCH is the same as the SRI of the PUSCH indicated by the MAC CE.
  • At least K3 PUSCH SRIs with the same SRS resource ID are included as the second SRI for PUSCH transmission applied by the MAC CE; where K3 is a predefined or pre-configured integer greater than or equal to 1, or according to predefined or The percentage of pre-configuration is determined.
  • an embodiment of the present application provides an electronic device.
  • the device can be configured in the first node device.
  • FIG. 10 is a schematic structural diagram of an electronic device provided by an embodiment of the present application. As shown in Figure 10, the device may include:
  • the power control parameter determination module 710 is configured to determine the power control parameters of PUSCH transmission according to the associated information of SRI and PUSCH power control parameters; wherein, the power control parameters of PUSCH transmission include PUSCH open-loop power control parameters and PUSCH closed-loop power control parameters. At least one of control parameters and PUSCH path loss measurement parameters.
  • the embodiment of the application determines the power control parameters of PUSCH transmission according to the associated information of SRI and PUSCH power control parameters, which can effectively solve the problem of ineffectiveness of updating power control parameters through MAC-CE in related technologies, and optimize the sending parameters of uplink transmission.
  • the determination mechanism determines the power control parameters of PUSCH transmission according to the associated information of SRI and PUSCH power control parameters, which can effectively solve the problem of ineffectiveness of updating power control parameters through MAC-CE in related technologies, and optimize the sending parameters of uplink transmission.
  • the association information between the SRI and the PUSCH power control parameter includes at least one associated element between the SRI and the PUSCH power control parameter; the associated element between the SRI and the PUSCH power control parameter includes the associated ID of the SRI and the PUSCH power control parameter, At least one of the open loop power control parameter ID of PUSCH, the closed loop power control parameter ID of PUSCH, and the path loss measurement parameter ID of PUSCH; wherein, the open loop power control parameter ID of PUSCH is used to indicate the open loop power of PUSCH.
  • the association ID between the SRI and the PUSCH power control parameter included in the association information between the SRI and the PUSCH power control parameter is a predefined value or a preconfigured value.
  • the associated information between the SRI and PUSCH power control parameters is configured, reconfigured or updated through higher layer signaling, or activated, deactivated or updated through MAC CE.
  • the association ID of the SRI and the PUSCH power control parameter in the association information of the SRI and the PUSCH power control parameter It is a pre-defined value or a pre-configured value.
  • determining the power control parameters for PUSCH transmission according to the association information between SRI and PUSCH power control parameters includes determining that the associated ID of the SRI and PUSCH power control parameters is predefined Value or pre-configured value: DCI for scheduling PUSCH transmission, or DCI for activating PUSCH transmission, does not have SRI field; DCI for scheduling PUSCH transmission, or DCI for activating PUSCH transmission, the format is 0_0; SRI and PUSCH power control parameters are associated Information exists or is configured; the first node device supports MAC CE activation or update of PUSCH power control parameters; the first node device supports MAC CE activation or update of PUSCH path loss measurement parameters; or, DCI format 0_0 scheduling or When PUSCH transmission is activated, the spatial relationship configuration of PUCCH transmission does not exist or is not provided.
  • the predefined value is one of the following: 0, 1.
  • the association information between SRI and PUSCH power control parameter includes the smallest SRI and PUSCH power control parameter association ID, and the association between SRI and PUSCH power control parameter.
  • the largest SRI and PUSCH power control parameter associated ID included in the information, the number of SRI and PUSCH power control parameters included in the associated information of the SRI and PUSCH power control parameters, or the associated information between SRI and PUSCH power control parameters The number of included SRI and PUSCH power control parameters associated elements minus 1; the pre-configured value is 0 to the number of SRI and PUSCH power control parameters associated elements included in the associated information of SRI and PUSCH power control parameters A value between the value minus 1.
  • an embodiment of the present application provides an electronic device.
  • the device can be configured in the second node device.
  • FIG. 11 is a schematic structural diagram of an electronic device provided by an embodiment of the present application. As shown in Figure 11, the device may include:
  • the association information determining module 810 is used to configure, reconfigure or update through high-level signaling, or activate through MAC CE, to deactivate or update the association information between SRI and PUSCH power control parameters; wherein, the SRI and PUSCH power control parameters
  • the associated information is used by the first node device to determine the power control parameters of PUSCH transmission; the power control parameters of PUSCH transmission include at least one of the open loop power control parameters of PUSCH, the closed loop power control parameters of PUSCH, and the path loss measurement parameters of PUSCH. item.
  • the embodiment of the application determines the associated information between SRI and PUSCH power control parameters, so that the first node device determines the power control parameters transmitted by PUSCH, which can effectively solve the problem that the power control parameters cannot be updated through MAC-CE in related technologies.
  • the mechanism for determining the sending parameters of the uplink transmission is optimized.
  • the association information between the SRI and the PUSCH power control parameter includes at least one associated element between the SRI and the PUSCH power control parameter; the associated element between the SRI and the PUSCH power control parameter includes the associated ID of the SRI and the PUSCH power control parameter, At least one of the open loop power control parameter ID of PUSCH, the closed loop power control parameter ID of PUSCH, and the path loss measurement parameter ID of PUSCH; wherein, the open loop power control parameter ID of PUSCH is used to indicate the open loop power of PUSCH.
  • the association ID between the SRI and the PUSCH power control parameter included in the association information between the SRI and the PUSCH power control parameter is a predefined value or a preconfigured value.
  • the associated information between the SRI and PUSCH power control parameters is configured, reconfigured or updated through higher layer signaling, or activated, deactivated or updated through MAC CE.
  • the association ID of the SRI and the PUSCH power control parameter in the association information of the SRI and the PUSCH power control parameter It is a pre-defined value or a pre-configured value.
  • determining the power control parameters for PUSCH transmission according to the association information between SRI and PUSCH power control parameters includes determining that the associated ID of the SRI and PUSCH power control parameters is predefined Value or pre-configured value: DCI for scheduling PUSCH transmission, or DCI for activating PUSCH transmission, does not have SRI field; DCI for scheduling PUSCH transmission, or DCI for activating PUSCH transmission, the format is 0_0; SRI and PUSCH power control parameters are associated Information exists or is configured; the first node device supports MAC CE activation or update of PUSCH power control parameters; the first node device supports MAC CE activation or update of PUSCH path loss measurement parameters; or, DCI format 0_0 scheduling or When PUSCH transmission is activated, the spatial relationship configuration of PUCCH transmission does not exist or is not provided.
  • the predefined value is one of the following: 0, 1.
  • the association information between SRI and PUSCH power control parameter includes the smallest SRI and PUSCH power control parameter association ID, and the association between SRI and PUSCH power control parameter.
  • the largest SRI and PUSCH power control parameter associated ID included in the information, the number of SRI and PUSCH power control parameters included in the associated information of the SRI and PUSCH power control parameters, or the associated information between SRI and PUSCH power control parameters The number of included SRI and PUSCH power control parameters associated elements minus 1; the pre-configured value is 0 to the number of SRI and PUSCH power control parameters associated elements included in the associated information of SRI and PUSCH power control parameters A value between the value minus 1.
  • FIG. 12 is a schematic structural diagram of a first node device provided by an embodiment of the present application. As shown in Figure 12, the first node device in this application may also include:
  • the processor 11 and the storage device 12 in the first node device may be connected through a bus or other methods.
  • the connection through a bus is taken as an example.
  • the storage device 12 can be configured to store software programs, computer-executable programs, and modules.
  • the storage device 12 may include a storage program area and a storage data area.
  • the storage program area may store an operating system and an application program required by at least one function; the storage data area may store data created according to the use of the device, and the like.
  • the storage device 12 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other non-volatile solid-state storage devices.
  • the storage device 12 may include memories remotely provided with respect to the processor 11, and these remote memories may be connected to the first node device through a network. Examples of the aforementioned networks include, but are not limited to, the Internet, corporate intranets, local area networks, mobile communication networks, and combinations thereof.
  • FIG. 13 is a schematic structural diagram of a second node device provided by an embodiment of the present application. As shown in Figure 13, the second node device in this application may also include:
  • the processor 21 and the storage device 22 in the second node device may be connected through a bus or other methods.
  • the connection through a bus is taken as an example.
  • the storage device 22 can be configured to store software programs, computer-executable programs, and modules.
  • the storage device 22 may include a storage program area and a storage data area.
  • the storage program area may store an operating system and an application program required by at least one function; the storage data area may store data created according to the use of the device, and the like.
  • the storage device 22 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other non-volatile solid-state storage devices.
  • the storage device 22 may include memories remotely provided with respect to the processor 21, and these remote memories may be connected to the second node device through a network. Examples of the aforementioned networks include, but are not limited to, the Internet, corporate intranets, local area networks, mobile communication networks, and combinations thereof.
  • the embodiment of the present application also provides a computer storage medium storing a computer program.
  • the computer program When the computer program is executed by a computer processor, it is used to execute the sending parameter determination method described in any of the foregoing embodiments of the present application: determining CC according to MAC CE group, and the transmission parameters of the uplink transmission of the CC of the CC group; wherein, the transmission parameters of the uplink transmission include spatial relationship information and/or power control parameter information; the uplink transmission includes channel sounding reference signal SRS transmission, physical At least one of uplink shared channel PUSCH transmission and physical uplink control channel PUCCH transmission.
  • the computer program when executed by a computer processor, it is used to execute the sending parameter determination method described in any of the above embodiments of this application: sending MAC CE to the first node device so that the first node device can
  • the MAC CE determines the CC group and the uplink transmission parameters of the CCs in the CC group; wherein the uplink transmission parameters include spatial relationship information and/or power control parameter information; the uplink transmission includes SRS transmission At least one of PUSCH transmission and PUCCH transmission; sending a path loss measurement parameter pool configured by a higher layer; wherein the characteristics of the power control parameter pool configured by a higher layer include at least one of the following: CC configured with SRS or BWP configured with SRS independently Path loss measurement parameter pool; more than 1 CC or BWP configured with SRS share the path loss measurement parameter pool of SRS; more than 1 CC or BWP configured with SRS share the path loss measurement parameter pool of SRS, where multiple CCs refer to RS measurement path loss for the same CC; on the same CC or
  • the computer program when executed by a computer processor, it is used to execute the sending parameter determination method described in any one of the above embodiments of the present application: determining the power control parameter for PUSCH transmission according to the correlation information between SRI and PUSCH power control parameter; where The power control parameter transmitted by the PUSCH includes at least one of the open-loop power control parameter of the PUSCH, the closed-loop power control parameter of the PUSCH, and the path loss measurement parameter of the PUSCH.
  • the computer program when executed by a computer processor, it is used to perform the sending parameter determination method described in any of the above embodiments of the present application: configuration, reconfiguration or update through high-level signaling, or activation and deactivation through MAC CE Or update the associated information between SRI and PUSCH power control parameters; wherein, the associated information between SRI and PUSCH power control parameters is used by the first node device to determine the power control parameters for PUSCH transmission; the power control parameters for PUSCH transmission include PUSCH At least one of open-loop power control parameters, closed-loop power control parameters of PUSCH, and path loss measurement parameters of PUSCH.
  • the computer storage media in the embodiments of the present application may adopt any combination of one or more computer-readable media.
  • the computer-readable medium may be a computer-readable signal medium or a computer-readable storage medium.
  • the computer-readable storage medium may be, for example, but not limited to, an electrical, magnetic, optical, electromagnetic, infrared, or semiconductor system, device, or device, or a combination of any of the above.
  • Examples of computer-readable storage media include: electrical connections with one or more wires, portable computer disks, hard disks, random access memory (Random Access Memory, RAM), read-only memory (Read Only) Memory, ROM), Erasable Programmable Read Only Memory (EPROM or flash memory), optical fiber, portable compact disk read-only memory (Compact Disk-ROM, CD-ROM), optical storage devices, Magnetic storage device, or any suitable combination of the above.
  • the computer-readable storage medium can be any tangible medium that contains or stores a program, and the program can be used by or in combination with an instruction execution system, apparatus, or device.
  • the computer-readable signal medium may include a data signal propagated in baseband or as a part of a carrier wave, and computer-readable program code is carried therein. This propagated data signal can take many forms, including but not limited to electromagnetic signals, optical signals, or any suitable combination of the foregoing.
  • the computer-readable signal medium may also be any computer-readable medium other than the computer-readable storage medium.
  • the computer-readable medium may send, propagate, or transmit the program for use by or in combination with the instruction execution system, apparatus, or device .
  • the program code contained on the computer-readable medium can be transmitted by any suitable medium, including but not limited to wireless, wire, optical cable, radio frequency (RF), etc., or any suitable combination of the foregoing.
  • suitable medium including but not limited to wireless, wire, optical cable, radio frequency (RF), etc., or any suitable combination of the foregoing.
  • the computer program code used to perform the operations of this application can be written in one or more programming languages or a combination thereof.
  • the programming languages include object-oriented programming languages—such as Java, Smalltalk, C++, and also conventional Procedural programming language-such as "C" language or similar programming language.
  • the program code can be executed entirely on the user's computer, partly on the user's computer, executed as an independent software package, partly on the user's computer and partly executed on a remote computer, or entirely executed on the remote computer or server.
  • the remote computer can be connected to the user's computer through any kind of network-including Local Area Network (LAN) or Wide Area Network (WAN)-or it can be connected to an external computer ( For example, use an Internet service provider to connect via the Internet).
  • LAN Local Area Network
  • WAN Wide Area Network
  • user terminal encompasses any suitable type of wireless user equipment, such as mobile phones, portable data processing devices, portable web browsers, or vehicle-mounted mobile stations.
  • the various embodiments of the present application can be implemented in hardware or dedicated circuits, software, logic or any combination thereof.
  • some aspects may be implemented in hardware, while other aspects may be implemented in firmware or software that may be executed by a controller, microprocessor, or other computing device, although the present application is not limited thereto.
  • Computer program instructions can be assembly instructions, Instruction Set Architecture (ISA) instructions, machine instructions, machine-related instructions, microcode, firmware instructions, state setting data, or written in any combination of one or more programming languages Source code or object code.
  • ISA Instruction Set Architecture
  • the block diagram of any logic flow in the drawings of the present application may represent program steps, or may represent interconnected logic circuits, modules, and functions, or may represent a combination of program steps and logic circuits, modules, and functions.
  • the computer program can be stored on the memory.
  • the memory can be of any type suitable for the local technical environment and can be implemented using any suitable data storage technology, such as but not limited to read only memory (ROM), random access memory (RAM), optical storage devices and systems (digital multi-function optical discs) (Digital Video Disc, DVD) or CD disc) and so on.
  • Computer-readable media may include non-transitory storage media.
  • the data processor can be any type suitable for the local technical environment, such as but not limited to general-purpose computers, special-purpose computers, microprocessors, digital signal processors (Digital Signal Processing, DSP), application specific integrated circuits (ASICs) ), programmable logic devices (Field-Programmable Gate Array, FPGA), and processors based on multi-core processor architecture.
  • DSP Digital Signal Processing
  • ASICs application specific integrated circuits
  • FPGA Field-Programmable Gate Array
  • FPGA Field-Programmable Gate Array
  • this application includes at least the following items:
  • a method for determining sending parameters, applied to a first node device including:
  • the sending parameters of the uplink transmission include spatial relationship information and/or power control parameter information
  • the uplink transmission includes at least one of channel sounding reference signal SRS transmission, physical uplink shared channel PUSCH transmission, and physical uplink control channel PUCCH transmission.
  • the determination of the CC group according to the MAC CE includes: according to the CC group ID included in the MAC CE, according to the CC group to which the cell number included in the MAC CE belongs, or according to the bearer The CC group to which the cell of the MAC CE belongs determines the CC group to which the MAC CE applies.
  • the characteristics of the CC group include at least one of the following:
  • the CC group includes at least one CC
  • SRS is configured on each CC of the CC group
  • the CC group includes the spatial relationship CC group and/or the power control parameter CC group;
  • the CC group is configured by high-level parameters
  • the CC group is determined by the path loss reference link parameter
  • the CC group is a subset of the first type of CC group determined by reference to the link parameter of the path loss;
  • the CC group is the same as the first type CC group determined by the path loss reference link parameter;
  • the CC group is determined by PUCCH grouping
  • the CC group is a subset of the PUCCH group
  • the CC group is the same as the PUCCH group
  • SRS is the same as the CC group of PUSCH
  • the spatial relationship CC group of SRS is the same as the power control parameter CC group of SRS;
  • the spatial relationship CC group of the PUSCH is the same as the power control parameter CC group of the PUSCH.
  • the MAC CE includes CC group ID, cell ID, SRS resource set cell ID, SRS resource set partial bandwidth BWP ID, SRS resource set ID, and at least 1 SRS Resource SRS resource ID, SRS resource spatial relationship related information, SRS resource or SRS resource set power control parameter related information, PUSCH cell ID, PUSCH BWP ID, PUSCH SRS resource indicator SRI and SRI power control parameter related information At least one of
  • the spatial relationship related information includes: at least one of spatial relationship information, a CC ID of the spatial relationship information, and a BWP ID of the spatial relationship information;
  • the power control parameter related information includes at least one of the power control parameter, the CCID of the power control parameter, and the BWP ID of the power control parameter.
  • the CC group is determined according to the MAC CE, and the sending parameters of the uplink transmission of all CCs in the CC group include:
  • the CC group is determined according to the MAC CE, and the sending parameters of the uplink transmission of all CCs in the CC group include:
  • determining the first SRS resource set applied by the MAC CE includes:
  • the first SRS resource set is determined according to at least one SRS resource ID included in the MAC CE.
  • determining the first SRS resource set according to at least one SRS resource ID included in the MAC CE includes:
  • K1 is a pre-defined or pre-configured integer greater than or equal to 1, or is determined according to a pre-defined or pre-configured percentage.
  • determining the second SRS resource set applied by the MAC CE according to the first SRS resource set includes:
  • the SRS resource set with the same ID as the first SRS resource set serves as the second SRS resource set applied by the MAC CE;
  • K2 is a pre-defined or pre-configured integer greater than or equal to 1, or is determined according to a pre-defined or pre-configured percentage.
  • determining the SRS resource applied by the MAC CE includes at least one of the following:
  • the SRS resource ID of the SRS resource included in the SRS resource set is the same as the SRS resource ID of the SRS resource in the first SRS resource set, then the SRS resource The SRS resource corresponding to the ID is the SRS resource applied by the MAC CE;
  • the SRS resource ID of the SRS resource included in the SRS resource set and the SRS resource of the SRS resource in the first SRS resource set with the same usage as the first SRS resource set is the SRS resource applied by the MAC CE.
  • the CC group is determined according to the MAC CE, and the sending parameters of the uplink transmission of all CCs in the CC group include:
  • determining the first SRI for PUSCH transmission applied by the MAC CE includes:
  • the SRI, SRS resource ID, and SRS resource set ID of the PUSCH included in the MAC CE the cell ID of the PUSCH, and the activated BWP in the cell corresponding to the cell ID of the PUSCH.
  • the activated BWP in the cell that carries the MAC CE determine the first PUSCH transmission applied by the MAC CE SRI;
  • the first SRI for PUSCH transmission applied by the MAC CE is determined according to the activated BWP in the cell carrying the MAC CE.
  • determining the second SRI for PUSCH transmission applied by the MAC CE includes:
  • the SRI of the PUSCH in the SRI of the PUSCH in the CC that belongs to the same CC group as the first SRI transmitted by the PUSCH, and the SRI of the PUSCH included in the SRS resource ID indicated by the MAC CE are the same as the PUSCH transmitted by the MAC CE.
  • the SRI of the PUSCH in the SRI of the PUSCH in the CC that belongs to the same CC group as the first SRI transmitted by the PUSCH and the SRI of the PUSCH included in the SRI of the PUSCH indicated by the MAC CE are the same as the SRI of the PUSCH as the MAC CE.
  • K3 is a pre-defined or pre-configured integer greater than or equal to 1, or is determined according to a pre-defined or pre-configured percentage.
  • the characteristics of the path loss measurement parameter pool configured by the upper layer include at least one of the following:
  • More than one CC or BWP configured with SRS share the path loss measurement parameter pool of SRS, where multiple CCs measure path loss with reference to the RS of the same CC;
  • SRS and PUSCH share the path loss measurement parameter pool;
  • SRS and PUCCH share the path loss measurement parameter pool;
  • PUSCH and PUCCH share the path loss measurement parameter pool;
  • SRS, PUSCH and PUCCH share the path loss measurement parameter pool.
  • a method for determining sending parameters, applied to a second node device including:
  • the sending parameters of the uplink transmission include spatial relationship information and/or power control parameter information
  • the uplink transmission includes at least one of SRS transmission, PUSCH transmission, and PUCCH transmission.
  • a method for determining sending parameters, applied to a first node device including:
  • the power control parameter of the PUSCH transmission includes at least one of the open-loop power control parameter of the PUSCH, the closed-loop power control parameter of the PUSCH, and the path loss measurement parameter of the PUSCH.
  • the associated elements of the SRI and PUSCH power control parameters include at least one of the associated ID of the SRI and PUSCH power control parameters, the open loop power control parameter ID of PUSCH, the closed loop power control parameter ID of PUSCH, and the path loss measurement parameter ID of PUSCH. item;
  • the PUSCH open-loop power control parameter ID is used to indicate the PUSCH open-loop power control parameter element in the PUSCH open-loop power control parameter pool;
  • the PUSCH open-loop power control parameter element includes target received power and path loss compensation Coefficient alpha;
  • the closed-loop power control parameter ID of the PUSCH is used to indicate the closed-loop power control parameter ID of the PUSCH in the closed-loop power control parameter pool of the PUSCH;
  • the path loss measurement parameter ID of the PUSCH is used to indicate the path loss measurement parameter of the PUSCH in the path loss measurement parameter pool of the PUSCH.
  • association ID of the SRI and the PUSCH power control parameter included in the association information of the SRI and the PUSCH power control parameter is a predefined value or a preconfigured value.
  • association information between the SRI and PUSCH power control parameters is configured, reconfigured or updated through higher layer signaling, or activated, deactivated or updated through MAC CE.
  • the SRI in the association information between the SRI and the PUSCH power control parameter is a pre-defined value or a pre-configured value.
  • determining the power control parameters of PUSCH transmission according to the associated information of SRI and PUSCH power control parameters includes determining SRI and PUSCH power control parameters
  • the association ID is a predefined value or a pre-configured value:
  • the format of the DCI for scheduling PUSCH transmission or the DCI for activating PUSCH transmission is 0_0;
  • the correlation information between SRI and PUSCH power control parameters exists or is configured
  • the first node device supports MAC CE to activate or update the power control parameters of the PUSCH;
  • the first node device supports MAC CE activation or updating the path loss measurement parameters of PUSCH; or
  • the spatial relationship configuration of PUCCH transmission does not exist or is not provided.
  • the predefined value is one of the following: 0, 1
  • the association information between SRI and PUSCH power control parameter includes the smallest SRI and PUSCH power control parameter association ID
  • SRI and PUSCH power control parameter association information includes the largest SRI and PUSCH power control parameter association ID
  • SRI and PUSCH power control parameter association information includes the number of SRI and PUSCH power control parameters associated elements or The number of associated elements of SRI and PUSCH power control parameters included in the associated information of SRI and PUSCH power control parameters is reduced by one;
  • the pre-configured value is a value between 0 and the number of associated elements of the SRI and the PUSCH power control parameter included in the associated information of the SRI and the PUSCH power control parameter minus 1 value.
  • a method for determining sending parameters, applied to a second node device including:
  • the associated information between the SRI and PUSCH power control parameters is used by the first node device to determine the power control parameters for PUSCH transmission;
  • the power control parameters transmitted by the PUSCH include at least one of the open-loop power control parameters of the PUSCH, the closed-loop power control parameters of the PUSCH, and the path loss measurement parameters of the PUSCH.
  • association ID of the SRI and the PUSCH power control parameter included in the association information of the SRI and the PUSCH power control parameter is a predefined value or a pre-configured value
  • the predefined value is one of the following: 0, 1, the association information between SRI and PUSCH power control parameters includes the smallest SRI and PUSCH power control parameter association ID, and the association information between SRI and PUSCH power control parameters includes the largest The associated ID of the SRI and PUSCH power control parameters, the number of associated elements of SRI and PUSCH power control parameters included in the associated information of SRI and PUSCH power control parameters, or the SRI included in the associated information of SRI and PUSCH power control parameters and The number of associated elements of PUSCH power control parameters is reduced by 1;
  • the pre-configured value is a value between 0 and the number of associated elements of the SRI and the PUSCH power control parameter included in the associated information of the SRI and the PUSCH power control parameter minus 1 value.
  • An electronic device comprising a memory and a processor, wherein a computer program is stored in the memory, and the processor is configured to run the computer program to execute the sending described in any one of items 1-14.
  • Parameter determination method or, set to execute the sending parameter determination method described in item 15 at runtime; or, set to execute the sending parameter determination method described in any one of items 16-22 at runtime ; Or, it is set to execute the sending parameter determination method described in any one of the items 23-24 at runtime.
  • a device comprising:
  • One or more processors are One or more processors;
  • Storage device for storing one or more programs
  • the one or more processors When the one or more programs are executed by the one or more processors, the one or more processors implement the sending parameter determination method as described in any one of items 1-14; or, implement the method as described in item 1-14; The method for determining the sending parameters described in any one of 15; or, the method for determining the sending parameters as described in any one of items 16-22; or, the method for determining the sending parameters as described in any one of items 23-24.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提出一种发送参数确定方法、电子装置、设备及介质。该发送参数确定方法包括:根据探测参考信号资源指示SRI与物理上行共享信道PUSCH功控参数的关联信息确定PUSCH传输的功控参数;其中,所述PUSCH传输的功控参数包括PUSCH的开环功控参数、PUSCH的闭环功控参数及PUSCH的路损测量参数中的至少一项。

Description

发送参数确定方法,电子装置,设备及介质
本申请要求在2019年11月08日提交中国专利局、申请号为201911090408.1的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及通讯领域,例如涉及发送参数确定方法、电子装置、设备及介质。
背景技术
第五代移动通信系统新空口技术(New Radio,NR)的关键特征之一就是支持高频段。高频段有丰富的频域资源,但是存在无线信号衰减快导致覆盖小的问题。波束方式发送信号可以将能量聚集在比较小的空间范围,改善高频段信号的覆盖问题。在波束场景下,随着时间和位置的变化,基站与终端(或称为用户设备(User Equipment,UE)之间的波束对也可能发生变化,因此需要灵活的波束更新机制,以确定适宜的上行传输的发送参数。
相关技术中,主要使用MAC CE(Medium Access Control-Control Element,介质访问控制-控制单元)信令更新上行传输的发送参数,但该上行传输的发送参数的确定机制并不完善。
发明内容
本申请提供了一种发送参数确定方法、电子装置、设备及介质,优化了上行传输的发送参数的确定机制。
本申请实施例提供了一种发送参数确定方法,应用于第一节点设备,包括:
根据MAC CE确定CC group(Component Carrier group,成员载波分组),以及所述CC group的CC(Component Carrier,成员载波)的上行传输的发送参数;
其中,所述上行传输的发送参数包括空间关系信息和/或功控参数信息;
所述上行传输包括SRS(Sounding Reference Signal,探测参考信号)传输、PUSCH(Physical Uplink Shared Channel,物理上行共享信道)传输及PUCCH(Physical Uplink Control Channel,物理上行控制信道)传输中的至少一项。
本申请实施例还提供了一种发送参数确定方法,应用于第二节点设备,包 括:
向第一节点设备发送MAC CE,以使所述第一节点设备根据所述MAC CE确定CC group,以及所述CC group内的CC的上行传输的发送参数;
其中,所述上行传输的发送参数包括空间关系信息和/或功控参数信息;
所述上行传输包括SRS传输、PUSCH传输、PUCCH传输中的至少一项;
发送高层配置的路损测量参数池;
其中,所述高层配置的功控参数池的特征包括以下至少之一:
配置SRS的CC或部分带宽(Band Width Part,BWP)独立配置SRS的路损测量参数池;
配置SRS的多于1个CC或BWP共享SRS的路损测量参数池;
配置SRS的多于1个CC或BWP共享SRS的路损测量参数池,其中,多个CC参考相同的CC的RS测量路损;
在同一CC或BWP上,或同一CC group内,SRS和PUSCH共享路损测量参数池;
在同一CC或BWP上,或同一CC group内,SRS和PUCCH共享路损测量参数池;
在同一CC或BWP上,或同一CC group内,PUSCH和PUCCH共享路损测量参数池;或
在同一CC或BWP上,或同一CC group内,SRS、PUSCH和PUCCH共享路损测量参数池。
本申请实施例还提供了一种发送参数确定方法,应用于第一节点设备,包括:
根据SRI与PUSCH功控参数的关联信息确定PUSCH传输的功控参数;
其中,所述PUSCH传输的功控参数包括PUSCH的开环功控参数、PUSCH的闭环功控参数及PUSCH的路损测量参数中的至少一项。
本申请实施例还提供了一种发送参数确定方法,应用于第二节点设备,包括:
通过高层信令配置、重配置或更新,或通过MAC CE激活,去激活或更新SRI与PUSCH功控参数的关联信息;
其中,所述SRI与PUSCH功控参数的关联信息用于第一节点设备确定 PUSCH传输的功控参数;
所述PUSCH传输的功控参数包括PUSCH的开环功控参数、PUSCH的闭环功控参数、PUSCH的路损测量参数中的至少一项。
本申请实施例还提供了一种电子装置,配置于第一节点设备,包括:
发送参数确定模块,用于根据介质访问控制信令MAC CE确定载波分组CC group,以及所述CC group的成员载波CC的上行传输的发送参数;
其中,所述上行传输的发送参数包括空间关系信息和/或功控参数信息;
所述上行传输包括信道探测参考信号SRS传输、物理上行共享信道PUSCH传输及物理上行控制信道PUCCH传输中的至少一项。
本申请实施例还提供了一种电子装置,配置于第二节点设备,包括:
信令发送模块,用于向第一节点设备发送MAC CE,以使所述第一节点设备根据所述MAC CE确定CC group,以及所述CC group内的CC的上行传输的发送参数;
其中,所述上行传输的发送参数包括空间关系信息和/或功控参数信息;
所述上行传输包括SRS传输、PUSCH传输、PUCCH传输中的至少一项;
参数池发送模块,用于发送高层配置的路损测量参数池;
其中,所述高层配置的功控参数池的特征包括以下至少之一:
配置SRS的CC或BWP独立配置SRS的路损测量参数池;
配置SRS的多于1个CC或BWP共享SRS的路损测量参数池;
配置SRS的多于1个CC或BWP共享SRS的路损测量参数池,其中,多个CC参考相同的CC的RS测量路损;
在同一CC或BWP上,或同一CC group内,SRS和PUSCH共享路损测量参数池;
在同一CC或BWP上,或同一CC group内,SRS和PUCCH共享路损测量参数池;
在同一CC或BWP上,或同一CC group内,PUSCH和PUCCH共享路损测量参数池;或
在同一CC或BWP上,或同一CC group内,SRS、PUSCH和PUCCH共享路损测量参数池。
本申请实施例还提供了一种电子装置,配置于第一节点设备,包括:
功控参数确定模块,用于根据SRI与PUSCH功控参数的关联信息确定PUSCH传输的功控参数;
其中,所述PUSCH传输的功控参数包括PUSCH的开环功控参数、PUSCH的闭环功控参数及PUSCH的路损测量参数中的至少一项。
本申请实施例还提供了一种电子装置,配置于第二节点设备,包括:
关联信息确定模块,用于通过高层信令配置、重配置或更新,或通过MAC CE激活,去激活或更新SRI与PUSCH功控参数的关联信息;
其中,所述SRI与PUSCH功控参数的关联信息用于第一节点设备确定PUSCH传输的功控参数;
所述PUSCH传输的功控参数包括PUSCH的开环功控参数、PUSCH的闭环功控参数、PUSCH的路损测量参数中的至少一项。
本申请实施例还提供了一种第一节点设备,所述第一节点设备包括:
一个或多个处理器;
存储装置,用于存储一个或多个程序;
当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现上述第一种发送参数确定方法。
本申请实施例还提供了一种第二节点设备,所述第二节点设备包括:
一个或多个处理器;
存储装置,用于存储一个或多个程序;
当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现上述第二种发送参数确定方法。
本申请实施例还提供了一种第一节点设备,所述第一节点设备包括:
一个或多个处理器;
存储装置,用于存储一个或多个程序;
当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现上述第三种发送参数确定方法。
本申请实施例还提供了一种第二节点设备,所述第二节点设备包括:
一个或多个处理器;
存储装置,用于存储一个或多个程序;
当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多 个处理器实现上述第四种发送参数确定方法。
本申请实施例还提供了一种计算机存储介质,其上存储有计算机程序,该程序被处理器执行时实现上述第一种发送参数确定方法。
本申请实施例还提供了一种计算机存储介质,其上存储有计算机程序,该程序被处理器执行时实现上述第二种发送参数确定方法。
本申请实施例还提供了一种计算机存储介质,其上存储有计算机程序,该程序被处理器执行时实现上述第三种发送参数确定方法。
本申请实施例还提供了一种计算机存储介质,其上存储有计算机程序,该程序被处理器执行时实现上述第四种发送参数确定方法。
本申请实施例通过根据MAC CE确定CC group,以及CC group内所有CC包括空间关系信息和/或功控参数信息的上行传输的发送参数,并根据SRI与PUSCH功控参数的关联信息来进一步确定发送参数中PUSCH传输的功控参数,解决上行传输的发送参数的确定机制不够完善的问题,优化了上行传输的发送参数的确定机制。
附图说明
图1是本申请实施例提供的一种基站和UE训练后的波束关系示意图;
图2是本申请实施例提供的一种基站和UE在训练后的波束中选择波束进行传输的示意图;
图3是本申请实施例提供的一种发送参数确定流程示意图;
图4是本申请实施例提供的一种空间关系、CC group与路损参考链接参数确定的第一类CC group的关系示意图;
图5是本申请实施例提供的一种发送参数确定流程示意图;
图6是本申请实施例提供的一种发送参数确定流程示意图;
图7是本申请实施例提供的一种发送参数确定流程示意图;
图8是本申请实施例提供的一种电子装置的结构示意图;
图9是本申请实施例提供的一种电子装置的结构示意图;
图10是本申请实施例提供的一种电子装置的结构示意图;
图11是本申请实施例提供的一种电子装置的结构示意图;
图12是本申请实施例提供的一种第一节点设备的结构示意图;
图13是本申请实施例提供的一种第二节点设备的结构示意图。
具体实施方式
下文中将结合附图对本申请的实施例进行说明。
第五代移动通信系统新空口技术(New Radio,NR)的关键特征之一就是支持高频段。高频段有丰富的频域资源,但是存在无线信号衰减快导致覆盖小的问题。波束方式发送信号可以将能量聚集在比较小的空间范围,改善高频段信号的覆盖问题。在波束场景下,随着时间和位置的变化,基站与终端(User Equipment,UE)之间的波束对也可能发生变化,因此需要灵活的波束更新机制。为了支持灵活的波束变化,会导致信令开销变大。
波束可以是一种资源。例如,发送端空间滤波器、接收端空间滤波器、发送端预编码、接收端预编码、天线端口、天线权重矢量或天线权重矩阵等均可以作为波束。波束可以是一种传输的发送或接收方式,包括以下方式中的至少之一:空分复用或频域/时域分集等。
传输的波束或发送方式可以用参考信号资源索引,或空间关系索引指示。一个传输的波束或发送方式或接收方式根据参考信号资源索引确定,是指该传输的发送或接收滤波器参数与参考信号资源索引所指示的参考信号资源的发送或接收滤波器参数相同。所述传输包括以下之一:PUSCH传输、PUCCH传输或SRS传输。空间关系本质上是用参考信号指示,即空间关系索引也可以是参考信号索引。
传输的波束或发送方式或接收方式根据参考信号资源索引确定,是指该传输的解调参考信号与参考信号资源索引所指示的参考信号具有相同的准共址参数。准共址的参数包括以下至少之一:多普勒扩展、多普勒平移、时延拓展、平均时延、平均增益和空间参数。空间参数包括空间接收参数,例如到达角、接收波束的空间相关性、平均时延和时频信道响应的相关性(包括相位信息)。所述传输包括以下之一:物理下行共享信道(Physical Downlink Shared Channel,PDSCH)传输、物理下行控制信道(Physical Downlink Control Channel,PDCCH)传输或CSI-RS传输。
参考信号至少包括以下之一:信道状态信息参考信号(Channel State Information Reference Signal,CSI-RS)、信道状态信息干扰测量信号(Channel State Information Interference Measurement Signal,CSI-IM)、解调参考信号(Demodulation Reference Signal,DMRS)、下行解调参考信号(Downlink Demodulation Reference Signal,DL DMRS)、上行解调参考信号(Uplink Demodulation Reference Signal,UL DMRS)、探测参考信号(Sounding Reference  Signal,SRS)、相位追踪参考信号(Phase-Tracking Reference Signals,PTRS)、随机接入信道信号(Random Access Channel,RACH)、同步信号(Synchronization Signal,SS)、同步信号块(Synchronization Signal Block,SSB)、主同步信号(Primary Synchronization Signal,PSS)或辅同步信号(Secondary Synchronization Signal,SSS)。
可以由高层信令,如RRC(Radio Resources Control,无线资源控制)信令,配置参考信号。例如,下行链路方向(DL)的参考信号是SSB、CSI-RS,上行链路方向(UL)的参考信号是SRS。基站调度DL的传输,如PDSCH、PDCCH或CSI-RS传输,用参考信号指示给UE所调度传输的波束方向或接收方式,则被调度的传输与所指示的参考信号具有相同的准共址参数。基站调度UL的传输,如PUSCH、PUCCH或SRS传输,用参考信号指示给UE所调度传输的波束方向或发送方式,则被调度的传输与所指示的参考信号具有相同的滤波器参数,或具有相同的准共址参数。
下面以UL传输为例介绍。
基站配置至少一个SRS资源(SRS resource)给UE,SRS资源用SRS资源ID(索引或编号,Identifier)区分。基站还配置至少一个SRS资源集合(SRS resource set)给UE,SRS资源集合用SRS资源集合ID(索引或编号)区分。SRS资源集合中包括至少一个SRS资源(SRS resource)。SRS资源集合有不同用途:波束管理、天线选择、码本或非码本。其中,用途为码本和非码本的SRS资源集合分别用于基于码本的PUSCH传输和非基于码本的PUSCH传输。SRS资源中可能配置空间关系。当SRS资源配置了空间关系,UE需要按照SRS资源的空间关系发送SRS资源,即确定发送滤波器参数;当SRS资源没有配置空间关系,则UE自己确定发送滤波器参数。发送滤波器参数可以理解为为了形成特定的波束方向需要的发送参数。
以基站(gNB)和UE都支持多个波束为例说明。一般地,上行和下行链路都需要做波束训练(也叫波束扫描或波束管理)。基站先为UE配置用途为波束管理的SRS资源集合,SRS资源不配置空间关系,UE自己为SRS资源确定发送滤波器参数。然后,基站根据波束训练的结果挑选一些较好的波束对(beam pair)作为可用的/备选的波束对配置用途为码本或非码本的SRS资源集合给UE,SRS资源集合中包括至少一个SRS资源,SRS资源的空间关系用UE已经发送过的SRS资源或基站已经发送过的下行参考信号指示(包括参考信号资源索引)或SSB指示(包括SSB索引)表达,至少一个SRS资源分别对应可用的/备选的至少一个波束对。
对于PUSCH传输,基站通过下行控制信息(Downlink Control Information, DCI)中的SRI(SRS Resource Indicator,SRS资源指示)域指示一个或多个SRS资源,即SRI可以指示多个SRS资源ID。UE则使用与SRI对应的SRS资源相同的发送滤波器参数发送PUSCH,也可以理解为使用相同的波束。DCI中指示的SRI是根据基站配置的SRS资源集合确定的。用途为码本及非码本的SRS资源集合中的SRS资源可以用于PUSCH传输的参考。图2是本申请实施例提供的一种基站和UE在训练后的波束中选择波束进行传输的示意图,图1是本申请实施例提供的一种基站和UE训练后的波束关系示意图,如图1所示,SRS资源集合中包括2个SRS资源,分别标记为SRI1和SRI2。如图2所示,调度PUSCH的DCI中SRI域指示了SRI1,则UE使用SRI1对应的SRS资源的空间关系确定PUSCH的发送滤波器参数。对于PUCCH传输,其波束用PUCCH资源对应的空间关系表达。
对于上行传输,基站还需要为UE配置功控(即功率控制)参数。对PUSCH传输,功控参数与PUSCH的SRI有关联关系。对PUCCH传输,功控参数与PUCCH的空间关系有关联关系。
当UE发生位置改变时,基站与UE之间的可用波束对可能会发生改变。SRS资源集合、SRS资源对应的空间关系,以及DCI中的SRI域的取值与功率控制参数的对应关系都是由高层信令配置的,例如RRC信令。一般地,高层参数的配置时延较大,灵活性不高。因此相关技术支持对SRS资源集合用MAC CE修改SRS资源的空间关系。另外,也支持用MAC CE修改上行传输的功控参数。MAC层介于RRC层之下,物理层之上,其时域和灵活性介于两者之间,对开销的敏感性也介于两者之间。
相关技术使用MAC CE更新上行传输的发送参数时,存在以下问题:
用于空间关系更新的CC group与PL_ref_linking(高层参数pathlossReferenceLinking的取值)、PUCCH group(PUCCH分组)的关系不明确;SRS的空间关系更新的CC group与SRS resource set ID及SRS resource ID的关系不明确;RRC信令对每种上行传输在每个CC的每个BWP独立配置功控参数池导致开销太大。总之,相关技术使用MAC CE确定上行传输的发送参数的机制仍不够完善。
载波聚合(CA,carrier aggregation)或双连接(DC,dual connectivity)场景中包括至少一个CC。CC也可以叫服务小区、小区载波。一个CC可以包括至少一个上行载波,例如UL carrier,SUL carrier,分别表示上行载波、补充的上行载波。一个上行载波或补充的上行载波包括至少一个部分带宽(BWP)。PUSCH传输、PUCCH传输、SRS传输在上行BWP中传输,可以占上行BWP的部分或全部频域资源。
为节省MAC CE的开销,在本申请实施例中,可以使用MAC CE对CC group更新上行信道(PUCCH或PUSCH)或信号(SRS)的空间关系(spatial relation)。
为了解决上述问题,在一个示例性实施方式中,本申请实施例提供了应用于第一节点设备的一种发送参数确定方法。图3是本申请实施例提供的一种发送参数确定流程示意图。该方法可以适用于第一节点设备确定上行传输的发送参数的情况,其中,第一节点设备可以是终端设备等。相应的,如图3所示,本申请提供的一种发送参数确定方法,包括S110。
S110、根据MAC CE确定CC group,以及所述CC group的CC的上行传输的发送参数。
所述上行传输的发送参数包括空间关系信息和/或功控参数信息;所述上行传输包括SRS传输、PUSCH传输及PUCCH传输中的至少一项。
在本申请实施例中,第一节点设备可以接收第二节点设备发送的MAC CE,并根据接收的MAC CE确定CC group,以及CC group内CC的上行传输的发送参数。CC group内CC的上行传输是指CC group内CC的所有BWP或激活的BWP的上行传输。
CC group内CC的上行传输是指每个CC上有指定类型的传输的情形。假设CC group包括CC1、CC2、CC3,其中,CC1上配置PUSCH、PUCCH、SRS传输,而CC2上配置了PUSCH、SRS传输,那么当指定的上行传输是PUCCH传输时,MAC CE应用于CC group中的CC1的PUCCH。而当指定的上行传输是PUSCH传输时,MAC CE应用于CC group中的CC1、CC2、和CC3的PUSCH传输。
本申请实施例通过根据MAC CE确定CC group,以及CC group内所有CC包括空间关系信息和/或功控参数信息的上行传输的发送参数,解决上行传输的发送参数的确定机制不够完善的问题,优化了上行传输的发送参数的确定机制。
在上述实施例的基础上,提出了上述实施例的变型实施例,为了使描述简要,在变型实施例中仅描述与上述实施例的不同之处。
在一个示例中,所述根据MAC CE确定CC group,可以包括:根据所述MAC CE包括的CC group ID,根据所述MAC CE包括的小区编号所属的CC group,或根据承载所述MAC CE的小区所属的CC group,确定所述MAC CE所应用的CC group。
在本申请实施例中,CC group所包括的载波成员(或叫成员载波、服务小区、小区)可以是预先配置的。一个小区只能属于一个CC group,即不同CC group不能有相同的小区。
在一个示例中,所述CC group的特性可以包括下述至少一项:
所述CC group包括至少一个CC;所述CC group的每个CC上都配置了SRS;所述CC group内SRS资源编号相同的SRS资源与相同的空间关系关联;(即,SRS资源所关联的空间关系是相同的参考信号或SSB。)所述CC group内SRS资源编号相同的SRS资源所关联的空间关系的参考信号或SSB具有准共址QCL关系;所述CC group内SRS资源编号相同的SRS资源所关联的空间关系的参考信号或SSB具有相同的类型D的QCL参数;所述CC group包括空间关系CC group和/或功控参数CC group;所述CC group由高层参数配置;所述CC group由路损参考链接参数确定;所述CC group是路损参考链接参数确定的第一类CC group的子集;所述CC group与路损参考链接参数确定的第一类CC group相同;所述CC group由PUCCH分组确定;所述CC group是PUCCH分组的子集;所述CC group与PUCCH分组相同;SRS与PUSCH的所述CC group相同;SRS的空间关系CC group与SRS的功控参数CC group相同;PUSCH的空间关系CC group与PUSCH的功控参数CC group相同。
CC group可以是空间关系和功控参数的CC group,第一类CC group可以是路损参考链接参数确定的CC group。
在本申请实施例中,PUCCH分组可以包括:主PUCCH分组和辅PUCCH分组(Secondary PUCCH group)。主PUCCH分组包括主小区(PCell,Primary Cell)以及大于或等于0个辅小区(SCell,Secondary Cell),这些小区的PUCCH信令都与PCell上的PUCCH关联。辅PUCCH分组包括一组辅小区,这些辅小区的PUCCH信令都与PUCCH SCell上的PUCCH关联。
在本申请的一个可选实施例中,空间关系的CC group可以是路损参考链接参数确定的CC group或子集。
MAC CE更新SRS的空间关系是基于CC group的。MAC CE更新SRS的空间关系的CC group是RRC配置的,或者由路损参考链接参数(例如,pathlossReferenceLinking参数)确定。MAC CE更新PUSCH传输的空间关系的CC group是RRC配置的,或者可以由路损参考链接参数确定。因此,MAC CE更新上行传输的空间关系的CC group是RRC配置的,或者可以由路损参考链接参数确定。
MAC CE更新上行传输的空间关系的CC group具有如下至少之一的特征:
空间关系的CC group与路损参考链接参数确定的CC group无关;空间关系的CC group与路损参考链接参数确定的CC group相同;或空间关系的CC group的CC成员不多于路损参考链接参数确定的CC group的CC成员。即空间关系 的CC group的CC成员不能属于路损参考链接参数确定的不同CC group。
图4是本申请实施例提供的一种空间关系、CC group与路损参考链接参数确定的第一类CC group的关系示意图。如图4所示,PL_Ref_linking是指高层参数路损参考链接参数的取值。如UL CC1是PCell(primary cell,主小区),其对应的DL CC为CC1’;DL CC2’、DL CC3’及DL CC4’是UL CC2、UL CC3及UL CC4对应的DL CC。假设UL CC1、UL CC2及UL CC3都参考CC1的PL-RS(路损测量参数),PL-RS是下行RS在CC1’发送;而UL CC4参考CC4的PL-RS,CC4的PL-RS在CC4’发送。因此路损参考链接参数确定的CC group有两个:CC1+CC2+CC3和CC4。MAC CE更新上行传输的空间关系的CC group中的CC成员依据路损参考链接参数确定的CC group确定,可以是图4中CC group set 1所示的与路损参考链接参数确定的CC group相同,也可以是图4中CC group set 2所示的路损参考链接参数确定的CC group的子集。CC group set 2包括3个CC group:CC1+CC2、CC3及CC4。
在本申请实施例中,可选的,SRS、PUSCH以及PUCCH共享CC group用于更新PL-RS和/或空间关系,包括以下至少之一:
上行信道或信号的空间关系的CC group与其PL-RS的CC group相同;上行信道或信号的空间关系的CC group是其PL-RS的CC group的子集;上行信道或信号共享空间关系的CC group;或上行信道或信号共享PL-RS的CC group。
上行信道或信号共享空间关系的CC group可以是:SRS、PUSCH及PUCCH传输中的部分或全部共享空间关系的CC group。例如,SRS与PUSCH传输有相同的空间关系的CC group。或,PUSCH与PUCCH传输有相同的空间关系的CC group。或,SRS、PUSCH与PUCCH传输有相同的空间关系的CC group。
上行信道或信号共享PL-RS的CC group可以是:SRS、PUSCH及PUCCH传输中的部分或全部共享路损测量参数的CC group。例如,SRS与PUSCH传输有相同的路损测量参数的CC group。或,PUSCH与PUCCH传输有相同的路损测量参数的CC group。或,SRS、PUSCH与PUCCH传输有相同的路损测量参数的CC group。即MAC CE更新PL-RS可以是基于CC group的。
在一个示例中,所述MAC CE可以包括CC group ID、小区ID、SRS资源集合SRS resource set的小区ID、SRS resource set的部分带宽BWP ID、SRS resource set ID、至少1个SRS资源SRS resource ID、SRS resource的空间关系相关信息、SRS resource或SRS resource set的功控参数相关信息、PUSCH的小区ID、PUSCH的BWP ID、PUSCH的SRS资源指示SRI及SRI的功控参数相关信息中的至少一项;所述空间关系相关信息包括:至少一个空间关系信息、空间关系信息的CC ID及空间关系信息的BWP ID中的至少一项。所述功控参 数相关信息包括功控参数、功控参数的CC ID及功控参数的BWP ID中的至少一项。
所述功控参数包括开环功控参数、闭环功控参数及路损测量参数中的至少一种。开环功控参数包括以下至少之一:开环功控参数ID、目标接收功率P0和路损补偿系数alpha。闭环功控参数包括闭环功控的个数。例如2,表示存在2个闭环功控,或闭环功控环。路损测量参数是指测量路损的参考信号资源编号,也写为PL-RS。测量路损的参考信号可以是CSI-RS,或SSB。
在本申请实施例中,编号、索引、index及ID的含义相同,可以互换。小区ID与CC编号的含义相同,可以互换。
在实施例中,SRS resource set是基于CC/BWP配置的,每个CC/BWP的SRS resource set的个数、以及SRS resource set中的resource数量可能不同。基于CC group更新SRS的空间关系时,MAC CE中包含以下信息中的至少之一:
CC group编号;待更新空间关系的SRS resource set的CC编号;待更新空间关系的SRS resource set的BWP编号;待更新空间关系的SRS resource的SRS resource set编号;待更新空间关系的SRS resource的SRS resource编号;SRS resource的空间关系相关信息;或SRS resource或SRS resource set的路损测量相关信息。
SRS resource的空间关系相关信息包括以下至少之一:至少一个空间关系信息、空间关系信息的CC编号或空间关系信息的BWP编号。
在本申请的一个可选实施例中,CC group内的所有CC上的对应的SRS resource set中的resource的空间关系完全相同,或也可能部分相同。SRS的空间关系的CC group具有如下特点中的至少之一:
包括至少一个CC;每个CC上配置SRS;或同一CC group的CC的SRS资源编号相同的SRS资源的空间关系一致。
在一个例子中,MAC CE可以包括一个或多个SRS resource ID及其对应的空间关系,用于更新CC group内的所有CC的SRS resource ID所对应的SRS resource的空间关系。CC group是针对SRS resource ID配置的,或CC group是针对SRS配置的。每个SRS resource ID对应的空间关系用于更新该SRS resource ID的CC group的所有CC的对应SRS resource。
在另外一个例子中,MAC CE可以包括一个或多个SRS resource ID及其对应的一个或多个空间关系,以及CC group ID,用于更新CC group ID所标识的CC group内的所有CC的SRS resource ID所对应的SRS resource的空间关系。CC group是针对SRS resource ID配置的,或CC group是针对SRS配置的。
在另外一个例子中,MAC CE可以包括CC索引(index)、BWP index、SRS resource set ID、SRS resource set ID所标识的SRS resource set内的所有SRS resource对应的空间关系,用于更新CC group内所有CC的与SRS resource set中包含的SRS resource ID一样的SRS resource的空间关系。CC group是针对SRS resource ID配置的,或CC group是针对SRS配置的。CC group是针对SRS配置时,一个CC只能最多属于一个CC group。
UE确定更新SRS的空间关系的MAC CE所应用的CC group,可以包括以下方法之一:
根据更新SRS的空间关系的MAC CE包含的CC group ID确定CC group;或,CC group是针对SRS配置的,该MAC CE应用的CC group是指包含承载该MAC CE的DL CC的对应UL CC的CC group。
UE确定更新SRS的空间关系的MAC CE所应用的SRS resource,可以包括以下方法之一:
根据更新SRS的空间关系的MAC CE包括SRS resource ID确定更新SRS的空间关系的MAC CE应用的SRS resource;或,根据更新SRS的空间关系的MAC CE包含SRS resource set ID确定的SRS resource set中包含的所有SRS resource都是更新SRS的空间关系的MAC CE多应用的SRS resource。
SRS resource set是指该更新SRS的空间关系的MAC CE包含的cell index和BWP index中的SRS resource set,或SRS resource set是指该更新SRS的空间关系的MAC CE包含的cell index的CC中的激活BWP中的SRS resource set,或SRS resource set是指承载该更新SRS的空间关系的MAC CE的DL CC的对应UL CC中激活BWP的SRS resource set。
与上述确定的SRS resource set在同一CC group的其他SRS resource set中包含的SRS resource,如果其SRS resource ID与上述确定的SRS resource set中的SRS resource的ID相同,则也是更新SRS的空间关系的MAC CE所应用的SRS resource。
与上述确定的SRS resource set在同一CC group的其他SRS resource set中,用途与上述确定的SRS resource set一致的SRS resource set包含的SRS resource,如果其SRS resource ID与上述确定的SRS resource set中的SRS resource的ID相同,则也是更新SRS的空间关系的MAC CE所应用的SRS resource。
在本申请的一个可选实施例中,PL-RS的RRC参数配置及路损参考链接参数的一组CC共用一套SRS的PL-RS参数池。SRS、PUSCH及PUCCH可以共享一套PL-RS参数池。
上行信道(PUCCH或PUSCH)或信号(SRS)的空间关系被更新后,PL-RS也可能需要更新。
基站通过RRC为UE配置路损测量参数池,可以包括以下方式中的至少之一:
为配置SRS的每个CC或BWP配置SRS的路损测量参数池;为配置SRS的多个CC配置共享的SRS的路损测量参数池,其中,多个CC参考相同的CC的RS测量路损;SRS和PUSCH共享路损测量参数池;SRS和PUCCH共享路损测量参数池;PUSCH和PUCCH共享路损测量参数池;SRS、PUSCH和PUCCH共享路损测量参数池;SRS、PUSCH和PUCCH在CC group内共享路损测量参数池;CC group包括由参考相同的CC的RS测量路损的多个CC。
在本申请的一个可选实施例中,MAC CE可以更新CC group的SRS的PL-RS。SRS的PL-RS更新的CC group配置与SRS的空间关系的CC group配置与一致。或,SRS的PL-RS更新的CC group是针对SRS的路损参数配置的。
基站发送MAC CE给UE,用于更新UE的SRS的功控参数。
更新SRS的功控参数的MAC CE可以包括以下至少之一:
CC group编号;待更新路损测量参数的SRS resource set的CC编号;待更新路损测量参数的SRS resource set的BWP编号;待更新路损测量参数的SRS resource set编号;一个或多个SRS resource编号;或SRS resource或SRS resource set的路损测量相关信息。
路损测量相关信息包括以下至少之一:路损测量信息、路损测量信息的CC编号或路损测量信息的BWP编号。
在一个例子中,MAC CE可以包括CC index、BWP index、SRS resource set ID及SRS resource set ID所标识的SRS resource set的路损测量相关信息,用于更新CC group内所有CC的与SRS resource set中包含的SRS resource ID一样的SRS resource set的路损测量参数。
在一个例子中,MAC CE包括一个或多个SRS resource ID及SRS resource set的路损测量相关信息。其中,SRS resource set的路损测量相关信息,用于更新CC group内所有CC的包含了上述一个或多个SRS resource ID的SRS resource set的PL-RS。
在本申请的一个可选实施例中,CC group针对SRS配置时,一个CC只能最多属于一个CC group。相应的,UE确定更新SRS的功控参数的MAC CE所应用的CC group,可以包括以下方法之一:
根据更新SRS的空间关系的MAC CE包含的CC group ID确定CC group;或,CC group是针对SRS配置的,该MAC CE应用的CC group是指包含承载该MAC CE的DL CC的对应UL CC的CC group。
在本申请的一个可选实施例中,MAC CE可以更新CC group的PUSCH的PL-RS。PUSCH的PL-RS更新的CC group配置与SRS的空间关系的CC group配置与一致。或,PUSCH的PL-RS更新的CC group是针对PUSCH配置的。或,PUSCH的PL-RS更新的CC group与PUCCH的PL-RS更新的CC group一致。
基站发送MAC CE给UE,用于更新UE的SRS的功控参数。更新PUSCH的功控参数的MAC CE可以包括以下至少之一:
CC group编号;待更新路损测量参数的PUSCH的CC编号;待更新路损测量参数的PUSCH的BWP编号;待更新路损测量参数的PUSCH的SRI;或
SRI的路损测量相关信息。
路损测量相关信息可以包括以下至少之一:路损测量信息、路损测量信息的CC编号或路损测量信息的BWP编号。
SRI(SRS resource indicator)是指PUSCH所关联的SRS resource set中的SRS资源指示。
在本申请实施例中,可以采用三种方式根据MAC CE所应用的SRS resource set或SRS resource来更新上行传输的发送参数。
在一个示例中,根据MAC CE确定CC group,以及所述CC group内所有CC的上行传输的发送参数,可以包括:确定所述MAC CE所应用的第一SRS resource set;根据所述第一SRS resource set更新所述功控参数信息。
在一个示例中,根据MAC CE确定CC group,以及所述CC group内所有CC的上行传输的发送参数,可以包括:确定所述MAC CE所应用的第一SRS resource set;根据所述第一SRS resource set确定所述MAC CE所应用的第二SRS resource set;根据所述第一SRS resource set和/或所述第二SRS resource set更新所述功控参数信息。
示例性的,根据所述第一SRS resource set更新所述功控参数信息,所述功控参数信息可以包括:SRS功控参数关联ID和/或SRS功控参数ID。
当MAC CE激活或更新了SRS的功控参数,例如路损测量参数ID,则路损测量参数ID用于MAC CE所应用的CC group中的所有BWP的相同SRS resource set ID。路损测量参数ID在各个CC或BWP中对应各自定义的路损测量参数池中对应ID。
当MAC CE激活或更新了SRS的功控参数,例如路损测量参数ID,则路损测量参数ID在指定的CC中得到PL-RS,并应用于MAC CE所应用的CC group中的所有BWP的相同SRS resource set ID中。
第一SRS resource set和第二SRS resource set可以是MAC CE所应用的两种不同的SRS resource set。
在一个示例中,根据MAC CE确定CC group,以及所述CC group内所有CC的上行传输的发送参数,可以包括:确定所述MAC CE所应用的SRS resource;根据所述MAC CE所应用的SRS resource更新所述空间关系信息。
在一个示例中,确定所述MAC CE所应用的第一SRS resource set,可以包括:根据所述MAC CE包含的SRS resource set ID、SRS resource set的小区ID、SRS resource set的部分带宽BWP ID确定所述MAC CE所应用的第一SRS resource set;根据所述MAC CE包含的SRS resource set ID、SRS resource set的小区ID以及SRS resource set的小区ID所标识的小区中激活的BWP确定所述第一SRS resource set;根据所述MAC CE包含的SRS resource set ID、承载所述MAC CE的小区中激活的BWP确定所述第一SRS resource set;或,根据所述MAC CE包括的至少1个SRS resource ID确定所述第一SRS resource set。
在一个示例中,根据所述MAC CE包括的至少1个SRS resource ID确定所述第一SRS resource set,可以包括:将与所述MAC CE包括的所述至少1个SRS resource ID一致的SRS resource set作为所述第一SRS resource set,或,将与所述MAC CE包括的所述至少1个SRS resource ID中至少K1个SRS resource ID一致的SRS resource set作为所述第一SRS resource set;其中,K1是预先定义的或预先配置的大于或等于1的整数,或根据预定义或预配置的百分比确定。
所述K1个SRS resource ID可以是SRS resource set中编号最小的K1个SRS resource ID。或,所述K1个SRS resource ID可以是SRS resource set中编号最大的K1个SRS resource ID。
K1是预先配置的大于或等于1的整数。K1也可以根据预定义或预配置的百分比确定。例如SRS resource set包括4个SRS resource,当预定义的百分比为50%时,K1=4*50%=2。
在一个示例中,根据所述第一SRS resource set确定所述MAC CE所应用的第二SRS resource set,可以包括:将与所述第一SRS resource set属于相同CC group的CC内,与所述第一SRS resource set中的SRS resource一致的SRS resource set作为所述MAC CE所应用的第二SRS resource set;与所述第一SRS resource set属于同一CC group的CC中,与所述第一SRS resource set ID相同的 SRS resource set作为所述MAC CE所应用的第二SRS resource set;或,将与所述第一SRS resource set属于相同CC group的CC内,与所述第一SRS resource set中的SRS resource中至少K2个SRS resource ID一致的SRS resource set作为所述MAC CE所应用的第二SRS resource set;其中,K2是预先定义的或预先配置的大于或等于1的整数,或根据预定义或预配置的百分比确定。
所述K2个SRS resource ID可以是SRS resource set中编号最小的K2个SRS resource ID。或,所述K2个SRS resource ID可以是SRS resource set中编号最大的K2个SRS resource ID。
在一个例子中,UE确定更新SRS的功控参数的MAC CE所应用的SRS resource set,可以包括以下方法之一:
根据更新SRS的功控参数的MAC CE包括SRS resource set ID确定更新SRS的功控参数的MAC CE应用的SRS resource set;与更新SRS的功控参数的MAC CE包括的CC index属于相同CC group的CC内,与SRS resource set ID确定的SRS resource set中的SRS resource完全一致的SRS resource set是更新SRS的功控参数的MAC CE应用的SRS resource set;与更新SRS的功控参数的MAC CE包括的SRS resource ID完全一致的SRS resource set是更新SRS的功控参数的MAC CE应用的SRS resource set;与更新SRS的功控参数的MAC CE包括的CC index属于相同CC group的CC内,与SRS resource set ID确定的SRS resource set中的SRS resource至少K1个SRS resource ID一致的SRS resource set是更新SRS的功控参数的MAC CE应用的SRS resource set;其中,K1是预先配置的大于或等于1的整数。
与更新SRS的功控参数的MAC CE包括的SRS resource ID至少K2个SRS resource ID一致的SRS resource set是更新SRS的功控参数的MAC CE应用的SRS resource set;K2是预先配置的大于或等于1的整数。K2也可以根据预定义或预配置的百分比确定。举例与K1类似。
在一个示例中,确定所述MAC CE所应用的SRS resource,可以包括以下至少之一:根据所述MAC CE包括的至少一个SRS resource ID确定所述MAC CE所应用的SRS resource;根据第一SRS resource set包括的SRS resource确定所述MAC CE所应用的SRS resource;根据第二SRS resource set包括的SRS resource确定所述MAC CE所应用的SRS resource;与所述第一SRS resource set属于同一CC group的CC中,如果SRS resource set中包括的SRS resource的SRS resource ID与第一SRS resource set中的SRS resource的SRS resource ID相同,则所述SRS resource ID对应的SRS resource是所述MAC CE所应用的SRS resource;与所述第一SRS resource set属于同一CC group的CC中,用途与第一 SRS resource set相同的SRS resource set中包括的SRS resource的SRS resource ID与第一SRS resource set中的SRS resource的SRS resource ID相同时,则所述SRS resource ID对应的SRS resource是所述MAC CE所应用的SRS resource。
根据所述MAC CE包括的至少一个SRS resource ID确定所述MAC CE所应用的SRS resource包括:在所述MAC CE所应用的CC group中的所有CC中的所有BWP(或激活BWP)上根据所述MAC CE包括的至少一个SRS resource ID确定所述MAC CE所应用的SRS resource。
在本申请实施例中,可以采用三种方式根据MAC CE所应用的PUSCH传输的SRI来更新上行传输的发送参数。
在一个示例中,根据MAC CE确定CC group,以及所述CC group内所有CC的上行传输的发送参数,可以包括:确定所述MAC CE所应用的PUSCH传输的第一SRI;根据所述MAC CE所应用的PUSCH传输的第一SRI更新所述空间关系信息和/或功控参数信息。
在一个示例中,根据MAC CE确定CC group,以及所述CC group内所有CC的上行传输的发送参数,可以包括:确定所述MAC CE所应用的PUSCH传输的第一SRI;确定所述MAC CE所应用的PUSCH传输的第二SRI;根据所述MAC CE所应用的PUSCH传输的第一SRI和/或第二SRI更新所述空间关系信息和/或功控参数信息。
PUSCH传输的第一SRI和PUSCH传输的第二SRI可以是MAC CE所应用的两种不同的PUSCH传输的SRI。PUSCH传输的SRI是指:基于码本的PUSCH传输的SRI是用途为码本的SRS资源集合所对应的DCI中的SRI域的取值,基于非码本的PUSCH传输的SRI是用途为非码本的SRS资源集合所对应的DCI中的SRI与的取值。
在一个示例中,确定所述MAC CE所应用的PUSCH传输的第一SRI,可以包括:根据所述MAC CE包括的PUSCH的SRI确定所述MAC CE所应用的PUSCH传输的第一SRI;根据所述MAC CE包括的所述PUSCH的SRI、SRS resource ID和SRS resource set ID中的至少一项、所述PUSCH的小区ID和所述PUSCH的BWP ID确定所述MAC CE所应用的PUSCH传输的第一SRI;根据所述MAC CE包括的所述PUSCH的SRI、SRS resource ID和SRS resource set ID中的至少一项、所述PUSCH的小区ID,以及所述PUSCH的小区ID对应的小区中的激活BWP确定所述MAC CE所应用的PUSCH传输的第一SRI;根据所述MAC CE包含的所述PUSCH的SRI、SRS resource ID和SRS resource set ID中的至少一项、承载所述MAC CE的小区中激活BWP确定所述MAC CE所应用的PUSCH传输的第一SRI;根据所述MAC CE包括的PUSCH的小区ID和 PUSCH的BWP ID中的至少一项确定所述MAC CE所应用的PUSCH传输的第一SRI;根据所述MAC CE包括的PUSCH的小区ID和所述PUSCH的小区ID对应的小区中的激活BWP确定所述MAC CE所应用的PUSCH传输的第一SRI;或根据承载所述MAC CE的小区中激活BWP确定所述MAC CE所应用的PUSCH传输的第一SRI。所述第一SRI可以包括一个或多个SRI。
第一SRI可以根据MAC CE中包括的至少一个PUSCH的SRI确定。
第一SRI可以根据MAC CE中指定的小区ID和BWP ID以及MAC CE包括的SRS resource set ID确定。即该SRS resource set对应的SRI是所述第一SRI。
第一SRI可以根据MAC CE中指定的小区ID和BWP ID所对应的PUSCH的DCI所包含的SRI确定。即,根据MAC CE中指定的小区ID和BWP ID所对应的PUSCH的传输配置参数相同的该小区以及BWP的SRS resource set中包括的SRI作为第一SRI。指定的小区ID和BWP ID可以是:根据所述MAC CE包括的PUSCH的小区ID和PUSCH的BWP ID中的至少一项确定指定的小区ID和BWP ID;或根据所述MAC CE包括的PUSCH的小区ID和所述PUSCH的小区ID对应的小区中的激活BWP指定的小区ID和BWP ID;或根据承载所述MAC CE的小区中激活BWP指定的小区ID和BWP ID。
在一个示例中,确定所述MAC CE所应用的PUSCH传输的第二SRI,可以包括:将与PUSCH传输的第一SRI属于同一CC group的CC中的PUSCH的SRI中与MAC CE指示的所述PUSCH的SRI包括的SRS resource ID一样的PUSCH的SRI作为所述MAC CE所应用的PUSCH传输的第二SRI;或,将与PUSCH传输的第一SRI属于同一CC group的CC中的PUSCH的SRI中与MAC CE指示的所述PUSCH的SRI包括的至少K3个SRS resource ID一样的PUSCH的SRI作为所述MAC CE所应用的PUSCH传输的第二SRI;其中,K3是预先定义或预先配置的大于或等于1的整数,或根据预定义或预配置的百分比确定。K3也可以根据预定义或预配置的百分比确定。举例与K1类似。
在一个例子中,MAC CE可以包括CC index、BWP index及路损测量相关信息,用于更新CC group内所有CC的与SRI中包含的SRS resource ID一样的PUSCH的路损测量参数,或用于更新CC group内所有CC的与SRI中包含的至少K3个SRS resource ID一样的PUSCH的路损测量参数。K3是预先配置的大于或等于1的整数。
相应的,UE确定更新PUSCH的功控参数的MAC CE所应用的CC group,可以包括以下方法之一:
根据更新PUSCH功控参数的MAC CE包含的CC group ID确定CC group; 或,CC group是针对SRS或PUSCH配置的,该MAC CE应用的CC group是指包含承载该MAC CE的DL CC的对应UL CC的CC group。
UE确定更新PUSCH的功控参数的MAC CE所应用的SRI,包括以下方法之一:
CC group内所有CC的PUSCH的SRI中与更新PUSCH的功控参数的MAC CE指示的SRI中包含的SRS resource ID一样的PUSCH的路损测量参数;或,CC group内所有CC的PUSCH的SRI中与更新PUSCH的功控参数的MAC CE指示的SRI中包含的至少K3个SRS resource ID一样的PUSCH的路损测量参数。K3是预先配置的大于或等于1的整数。
在一个示例中,发送参数确定方法还可以包括:接收高层配置的路损测量参数池;其中,所述高层配置的路损测量参数池的特征包括以下至少之一:
配置SRS的CC或BWP独立配置SRS的路损测量参数池;配置SRS的多于1个CC或BWP共享SRS的路损测量参数池;配置SRS的多于1个CC或BWP共享SRS的路损测量参数池,其中,多个CC参考相同的CC的RS测量路损;在同一CC或BWP上,或同一CC group内,SRS和PUSCH共享路损测量参数池;在同一CC或BWP上,或同一CC group内,SRS和PUCCH共享路损测量参数池;在同一CC或BWP上,或同一CC group内,PUSCH和PUCCH共享路损测量参数池;或在同一CC或BWP上,或同一CC group内,SRS、PUSCH和PUCCH共享路损测量参数池。
在一个示例中,发送参数确定方法还可以包括:接收高层配置的功控参数池;其中,所述功控参数池包括开环功控参数池、闭环功控参数池及路损测量参数池中的至少一种;开环功控参数池包括至少一个开环功控参数元素。开环功控参数元素包括以下至少之一:开环功控参数ID、目标接收功率P0和路损补偿系数alpha。
闭环功控参数池包括至少一个闭环功控参数元素。闭环功控参数元素包括闭环功控ID,用于标识一个闭环功控,或闭环功控环。闭环功控参数池可以用闭环功控的数量指示。例如闭环功控参数池包括2个的闭环功控,则闭环功控ID可以是0或者1,分别标识第一个和第二个闭环功控。
路损测量参数池包括至少一个路损测量参数元素。路损测量参数元素包括路损测量参数ID,路损测量参数。其中,路损测量参数是指测量路损的参考信号资源编号。测量路损的参考信号可以是CSI-RS,或SSB。
在一个示例性实施方式中,本申请实施例提供了应用于第二节点设备的一 种发送参数确定方法。图5是本申请实施例提供的一种发送参数确定流程示意图。该方法可以适用于第二节点设备向第一节点设备发送MAC CE以使第一节点设备确定上行传输的发送参数的情况,其中,第二节点设备可以是基站设备等。相应的,如图5所示,本申请提供的一种发送参数确定方法,包括S210。
S210、向第一节点设备发送MAC CE,以使所述第一节点设备根据所述MAC CE确定CC group,以及所述CC group内的CC的上行传输的发送参数。
所述上行传输的发送参数包括空间关系信息和/或功控参数信息;所述上行传输包括SRS传输、PUSCH传输、PUCCH传输中的至少一项。
所述上行传输的发送参数包括功控参数信息时,所确定的功控参数的编号是指在每个CC/BWP上的参数池中对应该功控参数的编号的功控参数,或在指定的CC/BWP上的参数池中对应功控参数的编号的功控参数。
S220、发送高层配置的路损测量参数池。
所述高层配置的功控参数池的特征包括以下至少之一:
配置SRS的CC或BWP独立配置SRS的路损测量参数池;配置SRS的多于1个CC或BWP共享SRS的路损测量参数池;配置SRS的多于1个CC或BWP共享SRS的路损测量参数池,其中,多个CC参考相同的CC的RS测量路损;在同一CC或BWP上,或同一CC group内,SRS和PUSCH共享路损测量参数池;在同一CC或BWP上,或同一CC group内,SRS和PUCCH共享路损测量参数池;在同一CC或BWP上,或同一CC group内,PUSCH和PUCCH共享路损测量参数池;或在同一CC或BWP上,或同一CC group内,SRS、PUSCH和PUCCH共享路损测量参数池。
本申请实施例通过第二节点设备向第一节点设备发送MAC CE,以使第一节点设备根据MAC CE确定CC group,以及CC group内所有CC包括空间关系信息和/或功控参数信息的上行传输的发送参数,解决上行传输的发送参数的确定机制不够完善的问题,优化了上行传输的发送参数的确定机制。
在上述实施例的基础上,提出了上述实施例的变型实施例,为了使描述简要,在变型实施例中仅描述与上述实施例的不同之处。
在一个示例中,所述第一节点设备用于:根据所述MAC CE包括的CC group ID,根据所述MAC CE包括的小区编号所属的CC group,或根据承载所述MAC CE的小区所属的CC group,确定所述MAC CE所应用的CC group。
在本申请实施例中,UL CC可以是CC group的成员。CC group所包括的载波成员(或叫成员载波)可以是预先配置的。
在一个示例中,所述CC group的特性可以包括下述至少一项:
所述CC group包括至少一个CC;所述CC group的每个CC上都配置了SRS;所述CC group内SRS资源编号相同的SRS资源与相同的空间关系关联;所述CC group包括空间关系CC group和/或功控参数CC group;所述CC group由高层参数配置;所述CC group由路损参考链接参数确定;所述CC group是路损参考链接参数确定的第一类CC group的子集;所述CC group与路损参考链接参数确定的第一类CC group相同;所述CC group由PUCCH分组确定;所述CC group是PUCCH分组的子集;所述CC group与PUCCH分组相同;SRS与PUSCH的所述CC group相同;SRS的空间关系CC group与SRS的功控参数CC group相同;PUSCH的空间关系CC group与PUSCH的功控参数CC group相同。
CC group可以是空间关系和功控参数的CC group,第一类CC group可以是PL-Ref-linking参数确定的CC group。
在本申请实施例中,PUCCH分组可以包括:主PUCCH分组和辅PUCCH分组(Secondary PUCCH group)。主PUCCH分组包括主小区(PCell,Primary Cell)以及大于或等于0个辅小区(SCell,Secondary Cell),这些小区的PUCCH信令都与PCell上的PUCCH关联。辅PUCCH分组包括一组辅小区,这些辅小区的PUCCH信令都与PUCCH SCell上的PUCCH关联。
在一个示例中,所述MAC CE包括CC group ID、小区ID、SRS资源集合SRS resource set的小区ID、SRS resource set的部分带宽BWP ID、SRS resource set ID、至少1个SRS资源SRS resource ID、SRS resource的空间关系相关信息、SRS resource或SRS resource set的功控参数相关信息、PUSCH的小区ID、PUSCH的BWP ID、PUSCH的SRS资源指示SRI及SRI的功控参数相关信息中的至少一项。
所述空间关系相关信息包括:至少一个空间关系信息、空间关系信息的CC ID及空间关系信息的BWP ID中的至少一项;所述功控参数相关信息包括功控参数、功控参数的CCID及功控参数的BWP ID中的至少一项。
在本申请中,编号、索引、index、ID的含义相同,可以互换。小区ID与CC编号的含义相同,可以互换。
在一个示例中,所述第一节点设备用于:确定所述MAC CE所应用的第一SRS resource set;根据所述第一SRS resource set更新所述功控参数信息。
在一个示例中,所述第一节点设备用于:确定所述MAC CE所应用的第一SRS resource set;根据所述第一SRS resource set确定所述MAC CE所应用的第二SRS resource set;根据所述第一SRS resource set和/或所述第二SRS resource  set更新所述功控参数信息。
第一SRS resource set和第二SRS resource set可以是MAC CE所应用的两种不同的SRS resource set。
在一个示例中,所述第一节点设备用于:确定所述MAC CE所应用的SRS resource;根据所述MAC CE所应用的SRS resource更新所述空间关系信息。
在一个示例中,所述第一节点设备用于:根据所述MAC CE包含的SRS resource set ID、SRS resource set的小区ID、SRS resource set的部分带宽BWP ID确定所述MAC CE所应用的第一SRS resource set;根据所述MAC CE包含的SRS resource set ID、SRS resource set的小区ID以及SRS resource set的小区ID所标识的小区中激活的BWP确定所述第一SRS resource set;根据所述MAC CE包含的SRS resource set ID、承载所述MAC CE的小区中激活的BWP确定所述第一SRS resource set;或,根据所述MAC CE包括的至少1个SRS resource ID确定所述第一SRS resource set。
在一个示例中,所述第一节点设备用于:将与所述MAC CE包括的所述至少1个SRS resource ID一致的SRS resource set作为所述第一SRS resource set,或,将与所述MAC CE包括的所述至少1个SRS resource ID中至少K1个SRS resource ID一致的SRS resource set作为所述第一SRS resource set;其中,K1是预先定义的或预先配置的大于或等于1的整数,或根据预定义或预配置的百分比确定。
所述K1个SRS resource ID可以是SRS resource set中编号最小的K1个SRS resource ID。或,所述K1个SRS resource ID可以是SRS resource set中编号最大的K1个SRS resource ID。
K是预先配置的大于或等于1的整数。K也可以根据预定义或预配置的百分比确定。例如SRS resource set包括4个SRS resource,当预定义的百分比为50%时,K=4*50%=2。
在一个示例中,所述第一节点设备用于:将与所述第一SRS resource set属于相同CC group的CC内,与所述第一SRS resource set中的SRS resource一致的SRS resource set作为所述MAC CE所应用的第二SRS resource set;与所述第一SRS resource set属于同一CC group的CC中,与所述第一SRS resource set ID相同的SRS resource set作为所述MAC CE所应用的第二SRS resource set;或,将与所述第一SRS resource set属于相同CC group的CC内,与所述第一SRS resource set中的SRS resource中至少K2个SRS resource ID一致的SRS resource set作为所述MAC CE所应用的第二SRS resource set;其中,K2是预先定义的 或预先配置的大于或等于1的整数,或根据预定义或预配置的百分比确定。
所述K2个SRS resource ID可以是SRS resource set中编号最小的K2个SRS resource ID。或,所述K2个SRS resource ID可以是SRS resource set中编号最大的K2个SRS resource ID。
在一个示例中,所述第一节点设备用于:根据所述MAC CE包括的至少一个SRS resource ID确定所述MAC CE所应用的SRS resource;根据第一SRS resource set包括的SRS resource确定所述MAC CE所应用的SRS resource;根据第二SRS resource set包括的SRS resource确定所述MAC CE所应用的SRS resource;与所述第一SRS resource set属于同一CC group的CC中,如果SRS resource set中包括的SRS resource的SRS resource ID与第一SRS resource set中的SRS resource的SRS resource ID相同,则所述SRS resource ID对应的SRS resource是所述MAC CE所应用的SRS resource;与所述第一SRS resource set属于同一CC group的CC中,用途与第一SRS resource set相同的SRS resource set中包括的SRS resource的SRS resource ID与第一SRS resource set中的SRS resource的SRS resource ID相同时,则所述SRS resource ID对应的SRS resource是所述MAC CE所应用的SRS resource。
在本申请实施例中,第一节点设备可以采用三种方式根据MAC CE所应用的PUSCH传输的SRI来更新上行传输的发送参数。
在一个示例中,所述第一节点设备用于:确定所述MAC CE所应用的PUSCH传输的第一SRI;根据所述MAC CE所应用的PUSCH传输的第一SRI更新所述空间关系信息和/或功控参数信息。
在一个示例中,所述第一节点设备用于:确定所述MAC CE所应用的PUSCH传输的第一SRI;确定所述MAC CE所应用的PUSCH传输的第二SRI;根据所述MAC CE所应用的PUSCH传输的第一SRI和/或第二SRI更新所述空间关系信息和/或功控参数信息。
PUSCH传输的第一SRI和PUSCH传输的第二SRI可以是MAC CE所应用的两种不同的PUSCH传输的SRI。
在一个示例中,所述第一节点设备用于:根据所述MAC CE包括的PUSCH的SRI确定所述MAC CE所应用的PUSCH传输的第一SRI;根据所述MAC CE包括的所述PUSCH的SRI、SRS resource ID和SRS resource set ID中的至少一项、所述PUSCH的小区ID和所述PUSCH的BWP ID确定所述MAC CE所应用的PUSCH传输的第一SRI;根据所述MAC CE包括的所述PUSCH的SRI、SRS resource ID和SRS resource set ID中的至少一项、所述PUSCH的小区ID, 以及所述PUSCH的小区ID对应的小区中的激活BWP确定所述MAC CE所应用的PUSCH传输的第一SRI;根据所述MAC CE包含的所述PUSCH的SRI、SRS resource ID和SRS resource set ID中的至少一项、承载所述MAC CE的小区中激活BWP确定所述MAC CE所应用的PUSCH传输的第一SRI;根据所述MAC CE包括的PUSCH的小区ID和PUSCH的BWP ID中的至少一项确定所述MAC CE所应用的PUSCH传输的第一SRI;根据所述MAC CE包括的PUSCH的小区ID和所述PUSCH的小区ID对应的小区中的激活BWP确定所述MAC CE所应用的PUSCH传输的第一SRI;或根据承载所述MAC CE的小区中激活BWP确定所述MAC CE所应用的PUSCH传输的第一SRI。
在一个示例中,确定所述MAC CE所应用的PUSCH传输的第二SRI,可以包括:将与PUSCH传输的第一SRI属于同一CC group的CC中的PUSCH的SRI中与MAC CE指示的所述PUSCH的SRI包括的SRS resource ID一样的PUSCH的SRI作为所述MAC CE所应用的PUSCH传输的第二SRI;或,将与PUSCH传输的第一SRI属于同一CC group的CC中的PUSCH的SRI中与MAC CE指示的所述PUSCH的SRI包括的至少K3个SRS resource ID一样的PUSCH的SRI作为所述MAC CE所应用的PUSCH传输的第二SRI;其中,K3是预先定义或预先配置的大于或等于1的整数,或根据预定义或预配置的百分比确定。
在一个示例中,发送参数确定方法还可以包括:发送高层配置的功控参数池;其中,所述功控参数池包括开环功控参数池、闭环功控参数池及路损测量参数池中的至少一种;开环功控参数池包括至少一个开环功控参数元素。开环功控参数元素包括以下至少之一:开环功控参数ID、目标接收功率P0和路损补偿系数alpha。
闭环功控参数池包括至少一个闭环功控参数元素。闭环功控参数元素包括闭环功控ID,用于标识一个闭环功控,或闭环功控环。闭环功控参数池可以用闭环功控的数量指示。例如闭环功控参数池包括2个的闭环功控,则闭环功控ID可以是0或者1,分别标识第一个和第二个闭环功控。
路损测量参数池包括至少一个路损测量参数元素。路损测量参数元素包括路损测量参数ID,路损测量参数。其中,路损测量参数是指测量路损的参考信号资源编号。测量路损的参考信号可以是CSI-RS,或SSB。
上行传输的发送参数中PUSCH传输的功控参数是通过以下方式获得的:
(1)、基站通过高层信令为UE配功控参数池,其中,功控参数池包括以下至少之一:开环功控参数池,闭环功控参数池,路损测量参数池。每个类别 的参数池包括至少一个对应类别的参数。
(2)、基站通过高层信令为UE配SRS资源集合。基站用SRI指示SRS资源集合内的一个或多个SRS资源,用于PUSCH传输的参考。
(3)、基站通过高层信令为UE配置DCI中的SRI域的取值与功控参数池的各个类别的功控参数的关联关系(简称为SRI与功控参数的关联)。另外,基站可以通过MAC CE更新或修改SRI与功控参数的关联。
(4)、基站通过物理层控制信息,如DCI,调度或激活UE发送PUSCH传输,并在DCI中包括SRI域,用于指示PUSCH所参考的SRS资源。或,基站通过高层信令配置UE发送PUSCH传输,并通过高层信令包括SRI指示PUSCH所参考的SRS资源。其中,DCI调度的PUSCH传输称为动态授权的PUSCH传输,高层配置的PUSCH传输称为类型1的配置授权的PUSCH传输,DCI激活的PUSCH传输称为类型2的配置授权的PUSCH传输。
UE接收以上PUSCH传输的功控参数信息,对不同类型的PUSCH传输分为以下几种处理情况:
对于动态授权的PUSCH传输,通过DCI中的SRI值,以及SRI域的取值与功控参数池的各个类别的功控参数的关联关系获取PUSCH传输所对应的功控参数。
对于类型1的配置授权的PUSCH传输,通过高层信令直接获取PUSCH传输的功控参数。
对于类型2的配置授权的PUSCH传输,通过高层信令直接获取PUSCH传输的开环功控参数和闭环功控参数,而路损测量参数则通过激活该PUSCH传输的DCI中的SRI值,以及SRI域的取值与功控参数池的路损测量参数池的关联关系获得。
从上述描述可见,动态授权的PUSCH传输和类型2的配置授权的PUSCH传输的功控参数获取与SRI以及SRI与PUSCH功控参数的关联信息有关。因此,在一些场景中,UE可能无法获得SRI。例如,对类型2的配置授权的PUSCH传输,和动态授权的PUSCH传输,可以用DCI格式0_0或0_1调度或激活。DCI格式0_0中不包括SRI域。当PUSCH传输对应的SRS资源集合中只包括一个SRS资源时,则DCI格式0_1中不包括SRI域。
对动态授权的PUSCH传输,当UE无法获取SRI,或无法获取SRI与PUSCH功控参数的关联信息时,对开环功控参数和闭环功控参数的处理方式为:使用功控参数池中的开环和闭环的功控参数池的编号最小的功控参数。例如开环功控参数池中配置的第一个(编号为0)开环功控参数。对路损测量参数的处理方 式为:当PUCCH的空间参数可以获取时,UE通过最小编号的PUCCH资源的所关联的空间关系获得路损测量参数。当无法获取PUCCH的空间参数时,使用功控参数池中的路损测量参数池的编号最小的功控参数。
对于类型2的配置授权的PUSCH传输,当UE无法获取SRI,或无法获取SRI与PUSCH功控参数的关联信息时,对开环功控参数和闭环功控参数的处理方式为:使用高层参数配置值。对路损测量参数的处理方式为:使用功控参数池中的路损测量参数池的编号最小的功控参数。
综上所述,当UE无法获取SRI,或无法获取SRI与PUSCH功控参数的关联信息时,则使用功控参数池的固定编号的功控参数。
由此可见,MAC CE更新功控参数是更新SRI与PUSCH功控参数的关联ID与功控参数池各类型参数在各自参数池中的ID(包括路损测量参数的ID)的对应关系。这个SRI与PUSCH功控参数的关联ID可以理解为SRI域的取值,当SRI域没有的时候,SRI与PUSCH功控参数的关联ID如何确定,以及没有SRI域时MAC CE更新功控参数无法起效是相关技术存在的问题。例如,SRS resource set中只有1个SRS resource,该SRS resource的空间关系可以通过MAC CE更新,UE无法获得SRI,但是可以通过唯一的SRS resource获得空间关系。基站也可以通过高层信令或MAC CE更新或修改SRI与PUSCH功控参数的关联信息。但上述使用功控参数池的固定编号的功控参数导致基站更新或修改SRI与功控参数的关联无法对PUSCH的传输起效。
因此,当DCI中无SRI域时,RRC或MAC CE更新功控参数时,SRI与PUSCH功控参数的关联信息ID就是固定值,例如0。即相关技术中只有SRI与PUSCH功控参数的关联ID与DCI中的SRI域的取值对应,当DCI中无SRI域时,需要明确SRI与PUSCH功控参数的关联ID就是固定值,例如0。当DCI中无SRI域,但存在SRI与PUSCH功控参数的关联信息时,可以使用SRI与PUSCH功控参数的关联ID中的最大、最小、配置的值、或预定值对应的功控参数。例如0。
为了解决上述问题,在一个示例性实施方式中,本申请实施例提供了应用于第一节点设备的一种发送参数确定方法。图6是本申请实施例提供的一种发送参数确定流程示意图。该方法可以适用于第一节点设备确定上行传输的发送参数,尤其是PUSCH传输的功控参数的情况,其中,第一节点设备可以是终端设备等。相应的,如图6所示,本申请提供的一种发送参数确定方法,包括S310。
S310、根据SRI与PUSCH功控参数的关联信息确定PUSCH传输的功控参数;其中,所述PUSCH传输的功控参数包括PUSCH的开环功控参数、PUSCH的闭环功控参数及PUSCH的路损测量参数中的至少一项。
本申请实施例通过根据SRI与PUSCH功控参数的关联信息确定PUSCH传输的功控参数,能够有效解决相关技术中通过MAC-CE更新功控参数无法起效的问题,优化了上行传输的发送参数的确定机制。
在一个示例中,所述SRI与PUSCH功控参数的关联信息包括至少一个SRI与PUSCH功控参数的关联元素;所述SRI与PUSCH功控参数的关联元素包括SRI与PUSCH功控参数的关联ID、PUSCH的开环功控参数ID、PUSCH的闭环功控参数ID及PUSCH的路损测量参数ID中的至少一项;其中,所述PUSCH的开环功控参数ID用于指示PUSCH的开环功控参数池中的PUSCH开环功控参数元素;所述PUSCH开环功控参数元素包括目标接收功率P0和路损补偿系数alpha;其中,目标接收功率是指上行传输的接收方,如基站侧的目标接收功率。所述PUSCH的闭环功控参数ID用于指示PUSCH的闭环功控参数池中的PUSCH的闭环功控参数ID;例如,PUSCH的闭环功控参数池包括2个PUSCH的闭环功控(或叫闭环功控环),则PUSCH的闭环功控参数ID可以是0或者1,分别标识第一个和第二个闭环功控;所述PUSCH的路损测量参数ID用于指示PUSCH的路损测量参数池中的PUSCH的路损测量参数。PUSCH的路损测量参数是指测量路损的参考信号资源编号。测量路损的参考信号可以是CSI-RS,或SSB。
在一个示例中,所述SRI与PUSCH功控参数的关联信息中包括的SRI与PUSCH功控参数的关联ID为预定义的值或预配置的值。
在一个示例中,所述SRI与PUSCH功控参数的关联信息通过高层信令配置、重配置或更新,或通过MAC CE激活、去激活或更新。
在一个示例中,在DCI中不存在SRI域,或SRS资源集合中的SRS资源个数为1的情况下,所述SRI与PUSCH功控参数的关联信息中的SRI与PUSCH功控参数的关联ID为预定义的值或预配置的值。
示例性的,当DCI中不存在SRI域时,或SRS资源集合中的SRS资源个数为1时,高层信令RRC可以配置、重配置或更新SRI与PUSCH功控参数的关联信息。当DCI中不存在SRI域时,或SRS资源集合中的SRS资源个数为1时,MAC信令可以激活,去激活或更新SRI与PUSCH功控参数的关联信息。
在一个示例中,在以下条件中的至少之一被满足的情况下,根据SRI与PUSCH功控参数的关联信息确定PUSCH传输的功控参数包括确定SRI与PUSCH功控参数的关联ID为预定义的值或预配置的值:
调度PUSCH传输的DCI,或激活PUSCH传输的DCI中不存在SRI域;调度PUSCH传输的DCI,或激活PUSCH传输的DCI的格式是0_0;SRI与PUSCH 功控参数的关联信息存在或被配置;所述第一节点设备支持MAC CE激活或更新PUSCH的功控参数;所述第一节点设备支持MAC CE激活或更新PUSCH的路损测量参数;或DCI格式0_0调度或激活PUSCH传输时,PUCCH传输的空间关系配置不存在或未被提供。
根据SRI与PUSCH功控参数的关联信息确定PUSCH传输的功控参数包括确定的SRI与PUSCH功控参数的关联ID所对应的PUSCH的开环功控参数、PUSCH的闭环功控参数、和PUSCH的路损测量参数中的至少一项。
在一个示例中,所述预定义的值为以下之一:0、1、SRI与PUSCH功控参数的关联信息包括的最小的SRI与PUSCH功控参数的关联ID、SRI与PUSCH功控参数的关联信息包括的最大的SRI与PUSCH功控参数的关联ID、SRI与PUSCH功控参数的关联信息中包括的SRI与PUSCH功控参数的关联元素的个数或SRI与PUSCH功控参数的关联信息中包括的SRI与PUSCH功控参数的关联元素的个数减1;所述预配置的值为0到SRI与PUSCH功控参数的关联信息中包括的SRI与PUSCH功控参数的关联元素的个数减1的值之间的一个数值。
根据SRI与PUSCH功控参数的关联信息确定PUSCH传输的功控参数包括确定SRI与PUSCH功控参数的关联ID为预定义的值或预配置的值。第一节点设备根据SRI与PUSCH功控参数的关联ID为预定义的值或预配置的值查找SRI与PUSCH功控参数的关联信息获得相应的SRI与PUSCH的功控参数用于确定PUSCH的传输功率。
例如,根据SRI与PUSCH功控参数的关联ID,如sri-PUSCH-PowerControlId,为0对应的SRI与PUSCH功控参数,包括路损测量参数,如PUSCH-PathlossReferenceRS-Id所标识的路损测控参数池中对应的路损测量参数。
在一个示例中,所述PUSCH传输的功控参数可以是PUSCH的开环功控参数。对类型1、类型2的配置授权的PUSCH,开环功控参数都是高层信令RRC配置的。对动态授权PUSCH,当其被DCI格式0_0或不带SRI域的DCI格式0_1调度时,则使用PUSCH的开环功控参数池的最小的PUSCH的开环功控参数ID对应的PUSCH的开环功控参数。根据本申请实施例的方法,如果DCI中没有SRI,但存在SRI与PUSCH功控参数的关联信息,则使用SRI与PUSCH功控参数的关联ID=X的SRI与PUSCH功控参数的关联信息的参数对应的开环功控参数。
在一个示例中,所述PUSCH传输的功控参数可以是PUSCH的闭环功控参数。对类型1、类型2的配置授权的PUSCH,闭环功控参数都是高层信令RRC配置的。对动态授权PUSCH,当其被DCI格式0_0或不带SRI域的DCI格式 0_1调度时,则使用PUSCH的闭环功控参数池的最小的PUSCH的闭环功控参数ID对应的PUSCH的闭环功控参数,即编号为0的闭环功控。根据本申请的方法,如果DCI中没有SRI,但存在SRI与PUSCH功控参数的关联信息时,则使用SRI与PUSCH功控参数的关联ID=X的SRI与PUSCH功控参数的关联信息的参数对应的闭环功控参数。
在一个示例中,所述PUSCH传输的功控参数可以是PUSCH的路损测量参数。当DCI格式0_0调度或激活PUSCH传输时,该DCI中不存在SRI域,SRS资源集合中的SRS resource可以是1个或多个。如果PUCCH的空间关系存在,则使用PUCCH的空间关系的路损测量参数。如果PUCCH的空间关系不存在,则使用PUSCH的功控参数池中路损测量参数池的最小的PUSCH的路损测量参数ID对应的路损测量参数。根据本申请实施例的方法,如果PUCCH的空间关系不存在,但存在SRI与PUSCH功控参数的关联信息,则使用SRI与PUSCH功控参数的关联ID=X的SRI与PUSCH功控参数的关联信息的参数对应的路损测量参数。当SRS资源集合中的SRS resource是1个时,DCI格式0_1不带SRI。一实施例中,使用功控参数池的最小的PUSCH的路损测量参数ID对应的路损测量参数。根据本申请实施例的方法,当DCI不带SRI,但存在SRI与PUSCH功控参数的关联信息时,使用SRI与PUSCH功控参数的关联ID=X的SRI与PUSCH功控参数的关联信息的参数对应的路损测量参数。当不带SRI与PUSCH功控参数的关联信息时,无论是否DCI中有SRI,均使用PUSCH功控参数池的最小的PUSCH的路损测量参数ID对应的路损测量参数。
在以上描述中,X是预定义的值,或预配置的值。所述预定义的值可以为以下之一:0、1、SRI与PUSCH功控参数的关联信息中包括的SRI与PUSCH功控参数的关联元素的个数或SRI与PUSCH功控参数的关联信息中包括的SRI与PUSCH功控参数的关联元素的个数减1。所述预配置的值可以为0到SRI与PUSCH功控参数的关联信息中包括的SRI与PUSCH功控参数的关联元素的个数减1的值之间的一个数值。预配置的值是由基站发送给UE的。
在一个示例性实施方式中,本申请实施例提供了应用于第二节点设备的一种发送参数确定方法。图7是本申请实施例提供的一种发送参数确定流程示意图。该方法可以适用于第二节点设备确定SRI与PUSCH功控参数的关联信息,以使第一节点设备确定PUSCH传输的功控参数的情况,其中,第二节点设备可以是基站设备等。相应的,如图7所示,本申请提供的一种发送参数确定方法,包括S410。
S410、通过高层信令配置、重配置或更新,或通过MAC CE激活,去激活 或更新SRI与PUSCH功控参数的关联信息;其中,所述SRI与PUSCH功控参数的关联信息用于第一节点设备确定PUSCH传输的功控参数。
所述PUSCH传输的功控参数包括PUSCH的开环功控参数、PUSCH的闭环功控参数、PUSCH的路损测量参数中的至少一项。
本申请实施例通过确定SRI与PUSCH功控参数的关联信息,以使第一节点设备确定PUSCH传输的功控参数,能够有效解决相关技术中通过MAC-CE更新功控参数无法起效的问题,优化了上行传输的发送参数的确定机制。
在一个示例中,所述SRI与PUSCH功控参数的关联信息包括至少一个SRI与PUSCH功控参数的关联元素;所述SRI与PUSCH功控参数的关联元素包括SRI与PUSCH功控参数的关联ID、PUSCH的开环功控参数ID、PUSCH的闭环功控参数ID及PUSCH的路损测量参数ID中的至少一项;其中,所述PUSCH的开环功控参数ID用于指示PUSCH的开环功控参数池中的PUSCH开环功控参数元素;所述PUSCH开环功控参数元素包括目标接收功率P0和路损补偿系数alpha;其中,目标接收功率是指上行传输的接收方,如基站侧的目标接收功率。所述PUSCH的闭环功控参数ID用于指示PUSCH的闭环功控参数池中的PUSCH的闭环功控参数ID;例如,PUSCH的闭环功控参数池包括2个PUSCH的闭环功控(或叫闭环功控环),则PUSCH的闭环功控参数ID可以是0或者1,分别标识第一个和第二个闭环功控;所述PUSCH的路损测量参数ID用于指示PUSCH的路损测量参数池中的PUSCH的路损测量参数。PUSCH的路损测量参数是指测量路损的参考信号资源编号。测量路损的参考信号可以是CSI-RS,或SSB。
在一个示例中,所述SRI与PUSCH功控参数的关联信息中包括的SRI与PUSCH功控参数的关联ID为预定义的值或预配置的值。
在一个示例中,所述SRI与PUSCH功控参数的关联信息通过高层信令配置、重配置或更新,或通过MAC CE激活、去激活或更新。
在一个示例中,在DCI中不存在SRI域,或SRS资源集合中的SRS资源个数为1的情况下,所述SRI与PUSCH功控参数的关联信息中的SRI与PUSCH功控参数的关联ID为预定义的值或预配置的值。
示例性的,当DCI中不存在SRI域时,或SRS资源集合中的SRS资源个数为1时,高层信令RRC可以配置、重配置或更新SRI与PUSCH功控参数的关联信息。当DCI中不存在SRI域时,或SRS资源集合中的SRS资源个数为1时,MAC信令可以激活,去激活或更新SRI与PUSCH功控参数的关联信息。
在一个示例中,在以下条件中的至少之一被满足的情况下,根据SRI与 PUSCH功控参数的关联信息确定PUSCH传输的功控参数包括确定SRI与PUSCH功控参数的关联ID为预定义的值或预配置的值:
调度PUSCH传输的DCI,或激活PUSCH传输的DCI中不存在SRI域;调度PUSCH传输的DCI,或激活PUSCH传输的DCI的格式是0_0;SRI与PUSCH功控参数的关联信息存在或被配置;所述第一节点设备支持MAC CE激活或更新PUSCH的功控参数;所述第一节点设备支持MAC CE激活或更新PUSCH的路损测量参数;或DCI格式0_0调度或激活PUSCH传输时,PUCCH传输的空间关系配置不存在或未被提供。
根据SRI与PUSCH功控参数的关联信息确定PUSCH传输的功控参数包括确定的SRI与PUSCH功控参数的关联ID所对应的PUSCH的开环功控参数、PUSCH的闭环功控参数、和PUSCH的路损测量参数中的至少一项。
在一个示例中,所述预定义的值为以下之一:0、1、SRI与PUSCH功控参数的关联信息包括的最小的SRI与PUSCH功控参数的关联ID、SRI与PUSCH功控参数的关联信息包括的最大的SRI与PUSCH功控参数的关联ID、SRI与PUSCH功控参数的关联信息中包括的SRI与PUSCH功控参数的关联元素的个数或SRI与PUSCH功控参数的关联信息中包括的SRI与PUSCH功控参数的关联元素的个数减1;所述预配置的值为0到SRI与PUSCH功控参数的关联信息中包括的SRI与PUSCH功控参数的关联元素的个数减1的值之间的一个数值。
在一个示例性实施方式中,本申请实施例提供了一种电子装置。该装置可以配置于第一节点设备中。图8是本申请实施例提供的一种电子装置的结构示意图。如图8所示,该装置可以包括:
参数确定模块510,用于根据MAC CE确定CC group,以及所述CC group的CC的上行传输的发送参数;其中,所述上行传输的发送参数包括空间关系信息和/或功控参数信息;所述上行传输包括SRS传输、PUSCH传输及PUCCH传输中的至少一项。
本申请实施例通过根据MAC CE确定CC group,以及CC group内所有CC包括空间关系信息和/或功控参数信息的上行传输的发送参数,解决上行传输的发送参数的确定机制不够完善的问题,优化了上行传输的发送参数的确定机制。
可选的,参数确定模块510,具体用于根据所述MAC CE包括的CC group ID,根据所述MAC CE包括的小区编号所属的CC group,或根据承载所述MAC CE的小区所属的CC group,确定所述MAC CE所应用的CC group。
可选的,所述CC group的特性包括下述至少一项:
所述CC group包括至少一个CC;所述CC group的每个CC上都配置了SRS;所述CC group内SRS资源编号相同的SRS资源与相同的空间关系关联;所述CC group包括空间关系CC group和/或功控参数CC group;所述CC group由高层参数配置;所述CC group由路损参考链接参数确定;所述CC group是路损参考链接参数确定的第一类CC group的子集;所述CC group与路损参考链接参数确定的第一类CC group相同;所述CC group由PUCCH分组确定;所述CC group是PUCCH分组的子集;所述CC group与PUCCH分组相同;SRS与PUSCH的所述CC group相同;SRS的空间关系CC group与SRS的功控参数CC group相同;PUSCH的空间关系CC group与PUSCH的功控参数CC group相同。
可选的,所述MAC CE包括CC group ID、小区ID、SRS资源集合SRS resource set的小区ID、SRS resource set的部分带宽BWP ID、SRS resource set ID、至少1个SRS资源SRS resource ID、SRS resource的空间关系相关信息、SRS resource或SRS resource set的功控参数相关信息、PUSCH的小区ID、PUSCH的BWP ID、PUSCH的SRS资源指示SRI及SRI的功控参数相关信息中的至少一项;所述空间关系相关信息包括:至少一个空间关系信息、空间关系信息的CC ID及空间关系信息的BWP ID中的至少一项;所述功控参数相关信息包括功控参数、功控参数的CCID及功控参数的BWP ID中的至少一项。
可选的,参数确定模块510,具体用于确定所述MAC CE所应用的第一SRS resource set;根据所述第一SRS resource set更新所述功控参数信息。
可选的,参数确定模块510,具体用于确定所述MAC CE所应用的第一SRS resource set;根据所述第一SRS resource set确定所述MAC CE所应用的第二SRS resource set;根据所述第一SRS resource set和/或所述第二SRS resource set更新所述功控参数信息。
可选的,参数确定模块510,具体用于确定所述MAC CE所应用的SRS resource;根据所述MAC CE所应用的SRS resource更新所述空间关系信息。
可选的,参数确定模块510,具体用于根据所述MAC CE包含的SRS resource set ID、SRS resource set的小区ID、SRS resource set的部分带宽BWP ID确定所述MAC CE所应用的第一SRS resource set;根据所述MAC CE包含的SRS resource set ID、SRS resource set的小区ID以及SRS resource set的小区ID所标识的小区中激活的BWP确定所述第一SRS resource set;根据所述MAC CE包含的SRS resource set ID、承载所述MAC CE的小区中激活的BWP确定所述第一SRS resource set;或,根据所述MAC CE包括的至少1个SRS resource ID确定所述第一SRS resource set。
可选的,参数确定模块510,具体用于将与所述MAC CE包括的所述至少1 个SRS resource ID一致的SRS resource set作为所述第一SRS resource set,或,将与所述MAC CE包括的所述至少1个SRS resource ID中至少K1个SRS resource ID一致的SRS resource set作为所述第一SRS resource set;其中,K1是预先定义的或预先配置的大于或等于1的整数,或根据预定义或预配置的百分比确定。
可选的,参数确定模块510,具体用于将与所述第一SRS resource set属于相同CC group的CC内,与所述第一SRS resource set中的SRS resource一致的SRS resource set作为所述MAC CE所应用的第二SRS resource set;与所述第一SRS resource set属于同一CC group的CC中,与所述第一SRS resource set ID相同的SRS resource set作为所述MAC CE所应用的第二SRS resource set;或,将与所述第一SRS resource set属于相同CC group的CC内,与所述第一SRS resource set中的SRS resource中至少K2个SRS resource ID一致的SRS resource set作为所述MAC CE所应用的第二SRS resource set;其中,K2是预先定义的或预先配置的大于或等于1的整数,或根据预定义或预配置的百分比确定。
可选的,参数确定模块510,具体用于根据所述MAC CE包括的至少一个SRS resource ID确定所述MAC CE所应用的SRS resource;根据第一SRS resource set包括的SRS resource确定所述MAC CE所应用的SRS resource;根据第二SRS resource set包括的SRS resource确定所述MAC CE所应用的SRS resource;与所述第一SRS resource set属于同一CC group的CC中,如果SRS resource set中包括的SRS resource的SRS resource ID与第一SRS resource set中的SRS resource的SRS resource ID相同,则所述SRS resource ID对应的SRS resource是所述MAC CE所应用的SRS resource;或,与所述第一SRS resource set属于同一CC group的CC中,用途与第一SRS resource set相同的SRS resource set中包括的SRS resource的SRS resource ID与第一SRS resource set中的SRS resource的SRS resource ID相同时,则所述SRS resource ID对应的SRS resource是所述MAC CE所应用的SRS resource。
可选的,参数确定模块510,具体用于确定所述MAC CE所应用的PUSCH传输的第一SRI;根据所述MAC CE所应用的PUSCH传输的第一SRI更新所述空间关系信息和/或功控参数信息。
可选的,参数确定模块510,具体用于确定所述MAC CE所应用的PUSCH传输的第一SRI;确定所述MAC CE所应用的PUSCH传输的第二SRI;根据所述MAC CE所应用的PUSCH传输的第一SRI和/或第二SRI更新所述空间关系信息和/或功控参数信息。
可选的,参数确定模块510,具体用于根据所述MAC CE包括的PUSCH的 SRI确定所述MAC CE所应用的PUSCH传输的第一SRI;根据所述MAC CE包括的所述PUSCH的SRI、SRS resource ID和SRS resource set ID中的至少一项、所述PUSCH的小区ID和所述PUSCH的BWP ID确定所述MAC CE所应用的PUSCH传输的第一SRI;根据所述MAC CE包括的所述PUSCH的SRI、SRS resource ID和SRS resource set ID中的至少一项、所述PUSCH的小区ID,以及所述PUSCH的小区ID对应的小区中的激活BWP确定所述MAC CE所应用的PUSCH传输的第一SRI;根据所述MAC CE包含的所述PUSCH的SRI、SRS resource ID和SRS resource set ID中的至少一项、承载所述MAC CE的小区中激活BWP确定所述MAC CE所应用的PUSCH传输的第一SRI;根据所述MAC CE包括的PUSCH的小区ID和PUSCH的BWP ID中的至少一项确定所述MAC CE所应用的PUSCH传输的第一SRI;根据所述MAC CE包括的PUSCH的小区ID和所述PUSCH的小区ID对应的小区中的激活BWP确定所述MAC CE所应用的PUSCH传输的第一SRI;或根据承载所述MAC CE的小区中激活BWP确定所述MAC CE所应用的PUSCH传输的第一SRI。
可选的,参数确定模块510,具体用于将与PUSCH传输的第一SRI属于同一CC group的CC中的PUSCH的SRI中与MAC CE指示的所述PUSCH的SRI包括的SRS resource ID一样的PUSCH的SRI作为所述MAC CE所应用的PUSCH传输的第二SRI;或,将与PUSCH传输的第一SRI属于同一CC group的CC中的PUSCH的SRI中与MAC CE指示的所述PUSCH的SRI包括的至少K3个SRS resource ID一样的PUSCH的SRI作为所述MAC CE所应用的PUSCH传输的第二SRI;其中,K3是预先定义或预先配置的大于或等于1的整数,或根据预定义或预配置的百分比确定。
可选的,所述装置还包括:路损测量参数池接收模块,用于接收高层配置的路损测量参数池;其中,所述高层配置的路损测量参数池的特征包括以下至少之一:
配置SRS的CC或BWP独立配置SRS的路损测量参数池;配置SRS的多于1个CC或BWP共享SRS的路损测量参数池;配置SRS的多于1个CC或BWP共享SRS的路损测量参数池,其中,多个CC参考相同的CC的RS测量路损;在同一CC或BWP上,或同一CC group内,SRS和PUSCH共享路损测量参数池;在同一CC或BWP上,或同一CC group内,SRS和PUCCH共享路损测量参数池;在同一CC或BWP上,或同一CC group内,PUSCH和PUCCH共享路损测量参数池;或在同一CC或BWP上,或同一CC group内,SRS、PUSCH和PUCCH共享路损测量参数池。
在一个示例性实施方式中,本申请实施例提供了一种电子装置。该装置可以配置于第二节点设备中。图9是本申请实施例提供的一种电子装置的结构示意图。如图9所示,该装置可以包括:
信令发送模块610,用于向第一节点设备发送MAC CE,以使所述第一节点设备根据所述MAC CE确定CC group,以及所述CC group的CC的上行传输的发送参数;其中,所述上行传输的发送参数包括包括空间关系信息和/或功控参数信息;所述上行传输包括SRS传输、PUSCH传输、PUCCH传输中的至少一项。
参数池发送模块620,用于发送高层配置的路损测量参数池;其中,所述高层配置的功控参数池的特征包括以下至少之一:
配置SRS的CC或BWP独立配置SRS的路损测量参数池;配置SRS的多于1个CC或BWP共享SRS的路损测量参数池;配置SRS的多于1个CC或BWP共享SRS的路损测量参数池,其中,多个CC参考相同的CC的RS测量路损;在同一CC或BWP上,或同一CC group内,SRS和PUSCH共享路损测量参数池;在同一CC或BWP上,或同一CC group内,SRS和PUCCH共享路损测量参数池;在同一CC或BWP上,或同一CC group内,PUSCH和PUCCH共享路损测量参数池;或在同一CC或BWP上,或同一CC group内,SRS、PUSCH和PUCCH共享路损测量参数池。
本申请实施例通过第二节点设备向第一节点设备发送MAC CE,以使第一节点设备根据MAC CE确定CC group,以及CC group内所有CC包括空间关系信息和/或功控参数信息的上行传输的发送参数,解决上行传输的发送参数的确定机制不够完善的问题,优化了上行传输的发送参数的确定机制。
可选的,所述第一节点设备用于:根据所述MAC CE包括的CC group ID,根据所述MAC CE包括的小区编号所属的CC group,或根据承载所述MAC CE的小区所属的CC group,确定所述MAC CE所应用的CC group。
可选的,所述CC group的特性包括下述至少一项:
所述CC group包括至少一个CC;所述CC group的每个CC上都配置了SRS;所述CC group内SRS资源编号相同的SRS资源与相同的空间关系关联;所述CC group包括空间关系CC group和/或功控参数CC group;所述CC group由高层参数配置;所述CC group由路损参考链接参数确定;所述CC group是路损参考链接参数确定的第一类CC group的子集;所述CC group与路损参考链接参数确定的第一类CC group相同;所述CC group由PUCCH分组确定;所述CC group是PUCCH分组的子集;所述CC group与PUCCH分组相同;SRS与PUSCH的 所述CC group相同;SRS的空间关系CC group与SRS的功控参数CC group相同;PUSCH的空间关系CC group与PUSCH的功控参数CC group相同。
可选的,所述MAC CE包括CC group ID、小区ID、SRS资源集合SRS resource set的小区ID、SRS resource set的部分带宽BWP ID、SRS resource set ID、至少1个SRS资源SRS resource ID、SRS resource的空间关系相关信息、SRS resource或SRS resource set的功控参数相关信息、PUSCH的小区ID、PUSCH的BWP ID、PUSCH的SRS资源指示SRI及SRI的功控参数相关信息中的至少一项;所述空间关系相关信息包括:至少一个空间关系信息、空间关系信息的CC ID及空间关系信息的BWP ID中的至少一项;所述功控参数相关信息包括功控参数、功控参数的CCID及功控参数的BWP ID中的至少一项。
可选的,所述第一节点设备用于:确定所述MAC CE所应用的第一SRS resource set;根据所述第一SRS resource set更新所述功控参数信息。
可选的,所述第一节点设备用于:确定所述MAC CE所应用的第一SRS resource set;根据所述第一SRS resource set确定所述MAC CE所应用的第二SRS resource set;根据所述第一SRS resource set和/或所述第二SRS resource set更新所述功控参数信息。
可选的,所述第一节点设备用于:确定所述MAC CE所应用的SRS resource;根据所述MAC CE所应用的SRS resource更新所述空间关系信息。
可选的,所述第一节点设备用于:根据所述MAC CE包含的SRS resource set ID、SRS resource set的小区ID、SRS resource set的部分带宽BWP ID确定所述MAC CE所应用的第一SRS resource set;根据所述MAC CE包含的SRS resource set ID、SRS resource set的小区ID以及SRS resource set的小区ID所标识的小区中激活的BWP确定所述第一SRS resource set;根据所述MAC CE包含的SRS resource set ID、承载所述MAC CE的小区中激活的BWP确定所述第一SRS resource set;或,根据所述MAC CE包括的至少1个SRS resource ID确定所述第一SRS resource set。
可选的,所述第一节点设备用于:将与所述MAC CE包括的所述至少1个SRS resource ID一致的SRS resource set作为所述第一SRS resource set,或,将与所述MAC CE包括的所述至少1个SRS resource ID中至少K1个SRS resource ID一致的SRS resource set作为所述第一SRS resource set;其中,K1是预先定义的或预先配置的大于或等于1的整数,或根据预定义或预配置的百分比确定。
可选的,所述第一节点设备用于:将与所述第一SRS resource set属于相同CC group的CC内,与所述第一SRS resource set中的SRS resource一致的SRS  resource set作为所述MAC CE所应用的第二SRS resource set;与所述第一SRS resource set属于同一CC group的CC中,与所述第一SRS resource set ID相同的SRS resource set作为所述MAC CE所应用的第二SRS resource set;或,将与所述第一SRS resource set属于相同CC group的CC内,与所述第一SRS resource set中的SRS resource中至少K2个SRS resource ID一致的SRS resource set作为所述MAC CE所应用的第二SRS resource set;其中,K2是预先定义的或预先配置的大于或等于1的整数,或根据预定义或预配置的百分比确定。
可选的,所述第一节点设备用于:根据所述MAC CE包括的至少一个SRS resource ID确定所述MAC CE所应用的SRS resource;根据第一SRS resource set包括的SRS resource确定所述MAC CE所应用的SRS resource;根据第二SRS resource set包括的SRS resource确定所述MAC CE所应用的SRS resource;与所述第一SRS resource set属于同一CC group的CC中,如果SRS resource set中包括的SRS resource的SRS resource ID与第一SRS resource set中的SRS resource的SRS resource ID相同,则所述SRS resource ID对应的SRS resource是所述MAC CE所应用的SRS resource;或,与所述第一SRS resource set属于同一CC group的CC中,用途与第一SRS resource set相同的SRS resource set中包括的SRS resource的SRS resource ID与第一SRS resource set中的SRS resource的SRS resource ID相同时,则所述SRS resource ID对应的SRS resource是所述MAC CE所应用的SRS resource。
可选的,所述第一节点设备用于:确定所述MAC CE所应用的PUSCH传输的第一SRI;根据所述MAC CE所应用的PUSCH传输的第一SRI更新所述空间关系信息和/或功控参数信息。
可选的,所述第一节点设备用于:确定所述MAC CE所应用的PUSCH传输的第一SRI;确定所述MAC CE所应用的PUSCH传输的第二SRI;根据所述MAC CE所应用的PUSCH传输的第一SRI和/或第二SRI更新所述空间关系信息和/或功控参数信息。
可选的,所述第一节点设备用于:根据所述MAC CE包括的PUSCH的SRI确定所述MAC CE所应用的PUSCH传输的第一SRI;根据所述MAC CE包括的所述PUSCH的SRI、SRS resource ID和SRS resource set ID中的至少一项、所述PUSCH的小区ID和所述PUSCH的BWP ID确定所述MAC CE所应用的PUSCH传输的第一SRI;根据所述MAC CE包括的所述PUSCH的SRI、SRS resource ID和SRS resource set ID中的至少一项、所述PUSCH的小区ID,以及所述PUSCH的小区ID对应的小区中的激活BWP确定所述MAC CE所应用的PUSCH传输的第一SRI;根据所述MAC CE包含的所述PUSCH的SRI、SRS  resource ID和SRS resource set ID中的至少一项、承载所述MAC CE的小区中激活BWP确定所述MAC CE所应用的PUSCH传输的第一SRI;根据所述MAC CE包括的PUSCH的小区ID和PUSCH的BWP ID中的至少一项确定所述MAC CE所应用的PUSCH传输的第一SRI;根据所述MAC CE包括的PUSCH的小区ID和所述PUSCH的小区ID对应的小区中的激活BWP确定所述MAC CE所应用的PUSCH传输的第一SRI;或根据承载所述MAC CE的小区中激活BWP确定所述MAC CE所应用的PUSCH传输的第一SRI。
可选的,所述第一节点设备用于:将与PUSCH传输的第一SRI属于同一CC group的CC中的PUSCH的SRI中与MAC CE指示的所述PUSCH的SRI包括的SRS resource ID一样的PUSCH的SRI作为所述MAC CE所应用的PUSCH传输的第二SRI;或,将与PUSCH传输的第一SRI属于同一CC group的CC中的PUSCH的SRI中与MAC CE指示的所述PUSCH的SRI包括的至少K3个SRS resource ID一样的PUSCH的SRI作为所述MAC CE所应用的PUSCH传输的第二SRI;其中,K3是预先定义或预先配置的大于或等于1的整数,或根据预定义或预配置的百分比确定。
在一个示例性实施方式中,本申请实施例提供了一种电子装置。该装置可以配置于第一节点设备中。图10是本申请实施例提供的一种电子装置的结构示意图。如图10所示,该装置可以包括:
功控参数确定模块710,用于根据SRI与PUSCH功控参数的关联信息确定PUSCH传输的功控参数;其中,所述PUSCH传输的功控参数包括PUSCH的开环功控参数、PUSCH的闭环功控参数及PUSCH的路损测量参数中的至少一项。
本申请实施例通过根据SRI与PUSCH功控参数的关联信息确定PUSCH传输的功控参数,能够有效解决相关技术中通过MAC-CE更新功控参数无法起效的问题,优化了上行传输的发送参数的确定机制。
可选的,所述SRI与PUSCH功控参数的关联信息包括至少一个SRI与PUSCH功控参数的关联元素;所述SRI与PUSCH功控参数的关联元素包括SRI与PUSCH功控参数的关联ID、PUSCH的开环功控参数ID、PUSCH的闭环功控参数ID及PUSCH的路损测量参数ID中的至少一项;其中,所述PUSCH的开环功控参数ID用于指示PUSCH的开环功控参数池中的PUSCH开环功控参数元素;所述PUSCH开环功控参数元素包括目标接收功率和路损补偿系数alpha;所述PUSCH的闭环功控参数ID用于指示PUSCH的闭环功控参数池中的PUSCH的闭环功控参数ID;所述PUSCH的路损测量参数ID用于指示PUSCH 的路损测量参数池中的PUSCH的路损测量参数。
可选的,所述SRI与PUSCH功控参数的关联信息中包括的SRI与PUSCH功控参数的关联ID为预定义的值或预配置的值。
可选的,所述SRI与PUSCH功控参数的关联信息通过高层信令配置、重配置或更新,或通过MAC CE激活、去激活或更新。
可选的,在DCI中不存在SRI域,或SRS资源集合中的SRS资源个数为1的情况下,所述SRI与PUSCH功控参数的关联信息中的SRI与PUSCH功控参数的关联ID为预定义的值或预配置的值。
可选的,在以下条件中的至少之一被满足的情况下,根据SRI与PUSCH功控参数的关联信息确定PUSCH传输的功控参数包括确定SRI与PUSCH功控参数的关联ID为预定义的值或预配置的值:调度PUSCH传输的DCI,或激活PUSCH传输的DCI中不存在SRI域;调度PUSCH传输的DCI,或激活PUSCH传输的DCI的格式是0_0;SRI与PUSCH功控参数的关联信息存在或被配置;所述第一节点设备支持MAC CE激活或更新PUSCH的功控参数;所述第一节点设备支持MAC CE激活或更新PUSCH的路损测量参数;或,DCI格式0_0调度或激活PUSCH传输时,PUCCH传输的空间关系配置不存在或未被提供。
可选的,所述预定义的值为以下之一:0、1、SRI与PUSCH功控参数的关联信息包括的最小的SRI与PUSCH功控参数的关联ID、SRI与PUSCH功控参数的关联信息包括的最大的SRI与PUSCH功控参数的关联ID、SRI与PUSCH功控参数的关联信息中包括的SRI与PUSCH功控参数的关联元素的个数或SRI与PUSCH功控参数的关联信息中包括的SRI与PUSCH功控参数的关联元素的个数减1;所述预配置的值为0到SRI与PUSCH功控参数的关联信息中包括的SRI与PUSCH功控参数的关联元素的个数减1的值之间的一个数值。
在一个示例性实施方式中,本申请实施例提供了一种电子装置。该装置可以配置于第二节点设备中。图11是本申请实施例提供的一种电子装置的结构示意图。如图11所示,该装置可以包括:
关联信息确定模块810,用于通过高层信令配置、重配置或更新,或通过MAC CE激活,去激活或更新SRI与PUSCH功控参数的关联信息;其中,所述SRI与PUSCH功控参数的关联信息用于第一节点设备确定PUSCH传输的功控参数;所述PUSCH传输的功控参数包括PUSCH的开环功控参数、PUSCH的闭环功控参数、PUSCH的路损测量参数中的至少一项。
本申请实施例通过确定SRI与PUSCH功控参数的关联信息,以使第一节点 设备确定PUSCH传输的功控参数,能够有效解决相关技术中通过MAC-CE更新功控参数无法起效的问题,优化了上行传输的发送参数的确定机制。
可选的,所述SRI与PUSCH功控参数的关联信息包括至少一个SRI与PUSCH功控参数的关联元素;所述SRI与PUSCH功控参数的关联元素包括SRI与PUSCH功控参数的关联ID、PUSCH的开环功控参数ID、PUSCH的闭环功控参数ID及PUSCH的路损测量参数ID中的至少一项;其中,所述PUSCH的开环功控参数ID用于指示PUSCH的开环功控参数池中的PUSCH开环功控参数元素;所述PUSCH开环功控参数元素包括目标接收功率和路损补偿系数alpha;所述PUSCH的闭环功控参数ID用于指示PUSCH的闭环功控参数池中的PUSCH的闭环功控参数ID;所述PUSCH的路损测量参数ID用于指示PUSCH的路损测量参数池中的PUSCH的路损测量参数。
可选的,所述SRI与PUSCH功控参数的关联信息中包括的SRI与PUSCH功控参数的关联ID为预定义的值或预配置的值。
可选的,所述SRI与PUSCH功控参数的关联信息通过高层信令配置、重配置或更新,或通过MAC CE激活、去激活或更新。
可选的,在DCI中不存在SRI域,或SRS资源集合中的SRS资源个数为1的情况下,所述SRI与PUSCH功控参数的关联信息中的SRI与PUSCH功控参数的关联ID为预定义的值或预配置的值。
可选的,在以下条件中的至少之一被满足的情况下,根据SRI与PUSCH功控参数的关联信息确定PUSCH传输的功控参数包括确定SRI与PUSCH功控参数的关联ID为预定义的值或预配置的值:调度PUSCH传输的DCI,或激活PUSCH传输的DCI中不存在SRI域;调度PUSCH传输的DCI,或激活PUSCH传输的DCI的格式是0_0;SRI与PUSCH功控参数的关联信息存在或被配置;所述第一节点设备支持MAC CE激活或更新PUSCH的功控参数;所述第一节点设备支持MAC CE激活或更新PUSCH的路损测量参数;或,DCI格式0_0调度或激活PUSCH传输时,PUCCH传输的空间关系配置不存在或未被提供。
可选的,所述预定义的值为以下之一:0、1、SRI与PUSCH功控参数的关联信息包括的最小的SRI与PUSCH功控参数的关联ID、SRI与PUSCH功控参数的关联信息包括的最大的SRI与PUSCH功控参数的关联ID、SRI与PUSCH功控参数的关联信息中包括的SRI与PUSCH功控参数的关联元素的个数或SRI与PUSCH功控参数的关联信息中包括的SRI与PUSCH功控参数的关联元素的个数减1;所述预配置的值为0到SRI与PUSCH功控参数的关联信息中包括的SRI与PUSCH功控参数的关联元素的个数减1的值之间的一个数值。
本申请实施例各装置中的各模块的功能可以参见上述方法实施例中的对应描述,在此不再赘述。
图12是本申请实施例提供的一种第一节点设备的结构示意图。如图12所示,本申请中的第一节点设备还可以包括:
一个或多个处理器11和存储装置12;该第一节点设备的处理器11可以是一个或多个,图12中以一个处理器11为例;存储装置12用于存储一个或多个程序;所述一个或多个程序被所述一个或多个处理器11执行。
第一节点设备中的处理器11、存储装置12可以通过总线或其他方式连接,图12中以通过总线连接为例。
存储装置12作为一种计算机可读存储介质,可设置为存储软件程序、计算机可执行程序以及模块。存储装置12可包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序;存储数据区可存储根据设备的使用所创建的数据等。此外,存储装置12可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。在一些实例中,存储装置12可包括相对于处理器11远程设置的存储器,这些远程存储器可以通过网络连接至第一节点设备。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
图13是本申请实施例提供的一种第二节点设备的结构示意图。如图13所示,本申请中的第二节点设备还可以包括:
一个或多个处理器21和存储装置22;该第二节点设备的处理器21可以是一个或多个,图13中以一个处理器21为例;存储装置22用于存储一个或多个程序;所述一个或多个程序被所述一个或多个处理器21执行。
第二节点设备中的处理器21、存储装置22可以通过总线或其他方式连接,图13中以通过总线连接为例。
存储装置22作为一种计算机可读存储介质,可设置为存储软件程序、计算机可执行程序以及模块。存储装置22可包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序;存储数据区可存储根据设备的使用所创建的数据等。此外,存储装置22可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。在一些实例中,存储装置22可包括相对于处理 器21远程设置的存储器,这些远程存储器可以通过网络连接至第二节点设备。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
本申请实施例还提供一种存储计算机程序的计算机存储介质,所述计算机程序在由计算机处理器执行时用于执行本申请上述实施例任一所述的发送参数确定方法:根据MAC CE确定CC group,以及所述CC group的CC的上行传输的发送参数;其中,所述上行传输的发送参数包括空间关系信息和/或功控参数信息;所述上行传输包括信道探测参考信号SRS传输、物理上行共享信道PUSCH传输及物理上行控制信道PUCCH传输中的至少一项。
或者,所述计算机程序在由计算机处理器执行时用于执行本申请上述实施例任一所述的发送参数确定方法:向第一节点设备发送MAC CE,以使所述第一节点设备根据所述MAC CE确定CC group,以及所述CC group内的CC的上行传输的发送参数;其中,所述上行传输的发送参数包括空间关系信息和/或功控参数信息;所述上行传输包括SRS传输、PUSCH传输、PUCCH传输中的至少一项;发送高层配置的路损测量参数池;其中,所述高层配置的功控参数池的特征包括以下至少之一:配置SRS的CC或BWP独立配置SRS的路损测量参数池;配置SRS的多于1个CC或BWP共享SRS的路损测量参数池;配置SRS的多于1个CC或BWP共享SRS的路损测量参数池,其中多个CC参考相同的CC的RS测量路损;在同一CC或BWP上,或同一CC group内,SRS和PUSCH共享路损测量参数池;在同一CC或BWP上,或同一CC group内,SRS和PUCCH共享路损测量参数池;在同一CC或BWP上,或同一CC group内,PUSCH和PUCCH共享路损测量参数池;或,在同一CC或BWP上,或同一CC group内,SRS、PUSCH和PUCCH共享路损测量参数池。
或者,所述计算机程序在由计算机处理器执行时用于执行本申请上述实施例任一所述的发送参数确定方法:根据SRI与PUSCH功控参数的关联信息确定PUSCH传输的功控参数;其中,所述PUSCH传输的功控参数包括PUSCH的开环功控参数、PUSCH的闭环功控参数及PUSCH的路损测量参数中的至少一项。
或者,所述计算机程序在由计算机处理器执行时用于执行本申请上述实施例任一所述的发送参数确定方法:通过高层信令配置、重配置或更新,或通过MAC CE激活,去激活或更新SRI与PUSCH功控参数的关联信息;其中,所述SRI与PUSCH功控参数的关联信息用于第一节点设备确定PUSCH传输的功控参数;所述PUSCH传输的功控参数包括PUSCH的开环功控参数、PUSCH的 闭环功控参数、PUSCH的路损测量参数中的至少一项。
本申请实施例的计算机存储介质,可以采用一个或多个计算机可读的介质的任意组合。计算机可读介质可以是计算机可读信号介质或者计算机可读存储介质。计算机可读存储介质例如可以是——但不限于——电、磁、光、电磁、红外线、或半导体的系统、装置或器件,或者任意以上的组合。计算机可读存储介质的例子(非穷举的列表)包括:具有一个或多个导线的电连接、便携式计算机磁盘、硬盘、随机存取存储器(Random Access Memory,RAM)、只读存储器(Read Only Memory,ROM)、可擦式可编程只读存储器((Erasable Programmable Read Only Memory,EPROM)或闪存)、光纤、便携式紧凑磁盘只读存储器(Compact Disk-ROM,CD-ROM)、光存储器件、磁存储器件、或者上述的任意合适的组合。在本文件中,计算机可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行系统、装置或者器件使用或者与其结合使用。
计算机可读的信号介质可以包括在基带中或者作为载波一部分传播的数据信号,其中承载了计算机可读的程序代码。这种传播的数据信号可以采用多种形式,包括但不限于电磁信号、光信号或上述的任意合适的组合。计算机可读的信号介质还可以是计算机可读存储介质以外的任何计算机可读介质,该计算机可读介质可以发送、传播或者传输用于由指令执行系统、装置或者器件使用或者与其结合使用的程序。
计算机可读介质上包含的程序代码可以用任何适当的介质传输,包括——但不限于无线、电线、光缆、射频(Radio Frequency,RF)等等,或者上述的任意合适的组合。
可以以一种或多种程序设计语言或其组合来编写用于执行本申请操作的计算机程序代码,所述程序设计语言包括面向对象的程序设计语言—诸如Java、Smalltalk、C++,还包括常规的过程式程序设计语言——诸如“C”语言或类似的程序设计语言。程序代码可以完全地在用户计算机上执行、部分地在用户计算机上执行、作为一个独立的软件包执行、部分在用户计算机上部分在远程计算机上执行、或者完全在远程计算机或服务器上执行。在涉及远程计算机的情形中,远程计算机可以通过任意种类的网络——包括局域网(Local Area Network,LAN)或广域网(Wide Area Network,WAN)—连接到用户计算机,或者,可以连接到外部计算机(例如利用因特网服务提供商来通过因特网连接)。
以上所述,仅为本申请的示例性实施例而已,并非用于限定本申请的保护范围。
术语用户终端涵盖任何适合类型的无线用户设备,例如移动电话、便携数据处理装置、便携网络浏览器或车载移动台。
一般来说,本申请的多种实施例可以在硬件或专用电路、软件、逻辑或其任何组合中实现。例如,一些方面可以被实现在硬件中,而其它方面可以被实现在可以被控制器、微处理器或其它计算装置执行的固件或软件中,尽管本申请不限于此。
本申请的实施例可以通过移动装置的数据处理器执行计算机程序指令来实现,例如在处理器实体中,或者通过硬件,或者通过软件和硬件的组合。计算机程序指令可以是汇编指令、指令集架构(Instruction Set Architecture,ISA)指令、机器指令、机器相关指令、微代码、固件指令、状态设置数据、或者以一种或多种编程语言的任意组合编写的源代码或目标代码。
本申请附图中的任何逻辑流程的框图可以表示程序步骤,或者可以表示相互连接的逻辑电路、模块和功能,或者可以表示程序步骤与逻辑电路、模块和功能的组合。计算机程序可以存储在存储器上。存储器可以具有任何适合于本地技术环境的类型并且可以使用任何适合的数据存储技术实现,例如但不限于只读存储器(ROM)、随机访问存储器(RAM)、光存储器装置和系统(数码多功能光碟(Digital Video Disc,DVD)或CD光盘)等。计算机可读介质可以包括非瞬时性存储介质。数据处理器可以是任何适合于本地技术环境的类型,例如但不限于通用计算机、专用计算机、微处理器、数字信号处理器(Digital Signal Processing,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、可编程逻辑器件(Field-Programmable Gate Array,FPGA)以及基于多核处理器架构的处理器。
综上所述,本申请至少包括以下项目:
1.一种发送参数确定方法,应用于第一节点设备,包括:
根据介质访问控制信令MAC CE确定载波分组CC group,以及所述CC group的成员载波CC的上行传输的发送参数;
其中,所述上行传输的发送参数包括空间关系信息和/或功控参数信息;
所述上行传输包括信道探测参考信号SRS传输、物理上行共享信道PUSCH传输及物理上行控制信道PUCCH传输中的至少一项。
2.根据项目1所述的方法,所述根据MAC CE确定CC group,包括:根据所述MAC CE包括的CC group ID,根据所述MAC CE包括的小区编号所属的CC group,或根据承载所述MAC CE的小区所属的CC group,确定所述MAC CE所应用的CC group。
3.根据项目1所述的方法,所述CC group的特性包括下述至少一项:
所述CC group包括至少一个CC;
所述CC group的每个CC上都配置了SRS;
所述CC group内SRS资源编号相同的SRS资源与相同的空间关系关联;
所述CC group包括空间关系CC group和/或功控参数CC group;
所述CC group由高层参数配置;
所述CC group由路损参考链接参数确定;
所述CC group是路损参考链接参数确定的第一类CC group的子集;
所述CC group与路损参考链接参数确定的第一类CC group相同;
所述CC group由PUCCH分组确定;
所述CC group是PUCCH分组的子集;
所述CC group与PUCCH分组相同;
SRS与PUSCH的所述CC group相同;
SRS的空间关系CC group与SRS的功控参数CC group相同;
PUSCH的空间关系CC group与PUSCH的功控参数CC group相同。
4.根据项目1所述的方法,所述MAC CE包括CC group ID、小区ID、SRS资源集合SRS resource set的小区ID、SRS resource set的部分带宽BWP ID、SRS resource set ID、至少1个SRS资源SRS resource ID、SRS resource的空间关系相关信息、SRS resource或SRS resource set的功控参数相关信息、PUSCH的小区ID、PUSCH的BWP ID、PUSCH的SRS资源指示SRI及SRI的功控参数相关信息中的至少一项;
所述空间关系相关信息包括:至少一个空间关系信息、空间关系信息的CC ID及空间关系信息的BWP ID中的至少一项;
所述功控参数相关信息包括功控参数、功控参数的CCID及功控参数的BWP ID中的至少一项。
5.根据项目1或4所述的方法,根据MAC CE确定CC group,以及所述CC group内所有CC的上行传输的发送参数,包括:
确定所述MAC CE所应用的第一SRS resource set;
根据所述第一SRS resource set更新所述功控参数信息;或
确定所述MAC CE所应用的第一SRS resource set;
根据所述第一SRS resource set确定所述MAC CE所应用的第二SRS resource set;
根据所述第一SRS resource set和/或所述第二SRS resource set更新所述功控参数信息。
6.根据项目1、4或5所述的方法,根据MAC CE确定CC group,以及所述CC group内所有CC的上行传输的发送参数,包括:
确定所述MAC CE所应用的SRS resource;
根据所述MAC CE所应用的SRS resource更新所述空间关系信息。
7.根据项目5所述的方法,确定所述MAC CE所应用的第一SRS resource set,包括:
根据所述MAC CE包含的SRS resource set ID、SRS resource set的小区ID、SRS resource set的部分带宽BWP ID确定所述MAC CE所应用的第一SRS resource set;
根据所述MAC CE包含的SRS resource set ID、SRS resource set的小区ID以及SRS resource set的小区ID所标识的小区中激活的BWP确定所述第一SRS resource set;
根据所述MAC CE包含的SRS resource set ID、承载所述MAC CE的小区中激活的BWP确定所述第一SRS resource set;或
根据所述MAC CE包括的至少1个SRS resource ID确定所述第一SRS resource set。
8.根据项目7所述的方法,根据所述MAC CE包括的至少1个SRS resource ID确定所述第一SRS resource set,包括:
将与所述MAC CE包括的所述至少1个SRS resource ID一致的SRS resource set作为所述第一SRS resource set,或
将与所述MAC CE包括的所述至少1个SRS resource ID中至少K1个SRS resource ID一致的SRS resource set作为所述第一SRS resource set;
其中,K1是预先定义的或预先配置的大于或等于1的整数,或根据预定义或预配置的百分比确定。
9.根据项目5所述的方法,根据所述第一SRS resource set确定所述MAC CE所应用的第二SRS resource set,包括:
将与所述第一SRS resource set属于相同CC group的CC内,与所述第一SRS  resource set中的SRS resource一致的SRS resource set作为所述MAC CE所应用的第二SRS resource set;
与所述第一SRS resource set属于同一CC group的CC中,与所述第一SRS resource set ID相同的SRS resource set作为所述MAC CE所应用的第二SRS resource set;或
将与所述第一SRS resource set属于相同CC group的CC内,与所述第一SRS resource set中的SRS resource中至少K2个SRS resource ID一致的SRS resource set作为所述MAC CE所应用的第二SRS resource set;
其中,K2是预先定义的或预先配置的大于或等于1的整数,或根据预定义或预配置的百分比确定。
10.根据项目6所述的方法,确定所述MAC CE所应用的SRS resource,包括以下至少之一:
根据所述MAC CE包括的至少一个SRS resource ID确定所述MAC CE所应用的SRS resource;
根据第一SRS resource set包括的SRS resource确定所述MAC CE所应用的SRS resource;
根据第二SRS resource set包括的SRS resource确定所述MAC CE所应用的SRS resource;
与所述第一SRS resource set属于同一CC group的CC中,如果SRS resource set中包括的SRS resource的SRS resource ID与第一SRS resource set中的SRS resource的SRS resource ID相同,则所述SRS resource ID对应的SRS resource是所述MAC CE所应用的SRS resource;
与所述第一SRS resource set属于同一CC group的CC中,用途与第一SRS resource set相同的SRS resource set中包括的SRS resource的SRS resource ID与第一SRS resource set中的SRS resource的SRS resource ID相同时,则所述SRS resource ID对应的SRS resource是所述MAC CE所应用的SRS resource。
11.根据项目1或4所述的方法,根据MAC CE确定CC group,以及所述CC group内所有CC的上行传输的发送参数,包括:
确定所述MAC CE所应用的PUSCH传输的第一SRI;
根据所述MAC CE所应用的PUSCH传输的第一SRI更新所述空间关系信息和/或功控参数信息;或
确定所述MAC CE所应用的PUSCH传输的第一SRI;
确定所述MAC CE所应用的PUSCH传输的第二SRI;
根据所述MAC CE所应用的PUSCH传输的第一SRI和/或第二SRI更新所述空间关系信息和/或功控参数信息。
12.根据项目11所述的方法,确定所述MAC CE所应用的PUSCH传输的第一SRI,包括:
根据所述MAC CE包括的PUSCH的SRI确定所述MAC CE所应用的PUSCH传输的第一SRI;
根据所述MAC CE包括的所述PUSCH的SRI、SRS resource ID和SRS resource set ID中的至少一项、所述PUSCH的小区ID和所述PUSCH的BWP ID确定所述MAC CE所应用的PUSCH传输的第一SRI;
根据所述MAC CE包括的所述PUSCH的SRI、SRS resource ID和SRS resource set ID中的至少一项、所述PUSCH的小区ID,以及所述PUSCH的小区ID对应的小区中的激活BWP确定所述MAC CE所应用的PUSCH传输的第一SRI;
根据所述MAC CE包含的所述PUSCH的SRI、SRS resource ID和SRS resource set ID中的至少一项、承载所述MAC CE的小区中激活BWP确定所述MAC CE所应用的PUSCH传输的第一SRI;
根据所述MAC CE包括的PUSCH的小区ID和PUSCH的BWP ID中的至少一项确定所述MAC CE所应用的PUSCH传输的第一SRI;
根据所述MAC CE包括的PUSCH的小区ID和所述PUSCH的小区ID对应的小区中的激活BWP确定所述MAC CE所应用的PUSCH传输的第一SRI;或
根据承载所述MAC CE的小区中激活BWP确定所述MAC CE所应用的PUSCH传输的第一SRI。
13.根据项目11所述的方法,确定所述MAC CE所应用的PUSCH传输的第二SRI,包括:
将与PUSCH传输的第一SRI属于同一CC group的CC中的PUSCH的SRI中与MAC CE指示的所述PUSCH的SRI包括的SRS resource ID一样的PUSCH的SRI作为所述MAC CE所应用的PUSCH传输的第二SRI;或
将与PUSCH传输的第一SRI属于同一CC group的CC中的PUSCH的SRI中与MAC CE指示的所述PUSCH的SRI包括的至少K3个SRS resource ID一样的PUSCH的SRI作为所述MAC CE所应用的PUSCH传输的第二SRI;
其中,K3是预先定义或预先配置的大于或等于1的整数,或根据预定义或 预配置的百分比确定。
14.根据项目1所述的方法,所述方法还包括:
接收高层配置的路损测量参数池;
其中,所述高层配置的路损测量参数池的特征包括以下至少之一:
配置SRS的CC或BWP独立配置SRS的路损测量参数池;
配置SRS的多于1个CC或BWP共享SRS的路损测量参数池;
配置SRS的多于1个CC或BWP共享SRS的路损测量参数池,其中,多个CC参考相同的CC的RS测量路损;
在同一CC或BWP上,或同一CC group内,SRS和PUSCH共享路损测量参数池;
在同一CC或BWP上,或同一CC group内,SRS和PUCCH共享路损测量参数池;
在同一CC或BWP上,或同一CC group内,PUSCH和PUCCH共享路损测量参数池;或
在同一CC或BWP上,或同一CC group内,SRS、PUSCH和PUCCH共享路损测量参数池。
15.一种发送参数确定方法,应用于第二节点设备,包括:
向第一节点设备发送MAC CE,以使所述第一节点设备根据所述MAC CE确定CC group,以及所述CC group内的CC的上行传输的发送参数;
其中,所述上行传输的发送参数包括空间关系信息和/或功控参数信息;
所述上行传输包括SRS传输、PUSCH传输、PUCCH传输中的至少一项。
16.一种发送参数确定方法,应用于第一节点设备,包括:
根据SRI与PUSCH功控参数的关联信息确定PUSCH传输的功控参数;
其中,所述PUSCH传输的功控参数包括PUSCH的开环功控参数、PUSCH的闭环功控参数及PUSCH的路损测量参数中的至少一项。
17.根据项目16所述的方法,所述SRI与PUSCH功控参数的关联信息包括至少一个SRI与PUSCH功控参数的关联元素;
所述SRI与PUSCH功控参数的关联元素包括SRI与PUSCH功控参数的关联ID、PUSCH的开环功控参数ID、PUSCH的闭环功控参数ID及PUSCH的路损测量参数ID中的至少一项;
其中,所述PUSCH的开环功控参数ID用于指示PUSCH的开环功控参数池中的PUSCH开环功控参数元素;所述PUSCH开环功控参数元素包括目标接收功率和路损补偿系数alpha;
所述PUSCH的闭环功控参数ID用于指示PUSCH的闭环功控参数池中的PUSCH的闭环功控参数ID;
所述PUSCH的路损测量参数ID用于指示PUSCH的路损测量参数池中的PUSCH的路损测量参数。
18.根据项目16或17所述的方法,所述SRI与PUSCH功控参数的关联信息中包括的SRI与PUSCH功控参数的关联ID为预定义的值或预配置的值。
19.根据项目16所述的方法,所述SRI与PUSCH功控参数的关联信息通过高层信令配置、重配置或更新,或通过MAC CE激活、去激活或更新。
20.根据项目16或19所述的方法,在DCI中不存在SRI域,或SRS资源集合中的SRS资源个数为1的情况下,所述SRI与PUSCH功控参数的关联信息中的SRI与PUSCH功控参数的关联ID为预定义的值或预配置的值。
21.根据项目16所述的方法,在以下条件中的至少之一被满足的情况下,根据SRI与PUSCH功控参数的关联信息确定PUSCH传输的功控参数包括确定SRI与PUSCH功控参数的关联ID为预定义的值或预配置的值:
调度PUSCH传输的DCI,或激活PUSCH传输的DCI中不存在SRI域;
调度PUSCH传输的DCI,或激活PUSCH传输的DCI的格式是0_0;
SRI与PUSCH功控参数的关联信息存在或被配置;
所述第一节点设备支持MAC CE激活或更新PUSCH的功控参数;
所述第一节点设备支持MAC CE激活或更新PUSCH的路损测量参数;或
DCI格式0_0调度或激活PUSCH传输时,PUCCH传输的空间关系配置不存在或未被提供。
22.根据项目18、20或21所述的方法,所述预定义的值为以下之一:0、1、SRI与PUSCH功控参数的关联信息包括的最小的SRI与PUSCH功控参数的关联ID、SRI与PUSCH功控参数的关联信息包括的最大的SRI与PUSCH功控参数的关联ID、SRI与PUSCH功控参数的关联信息中包括的SRI与PUSCH功控参数的关联元素的个数或SRI与PUSCH功控参数的关联信息中包括的SRI与PUSCH功控参数的关联元素的个数减1;
所述预配置的值为0到SRI与PUSCH功控参数的关联信息中包括的SRI与PUSCH功控参数的关联元素的个数减1的值之间的一个数值。
23.一种发送参数确定方法,应用于第二节点设备,包括:
通过高层信令配置、重配置或更新,或通过MAC CE激活,去激活或更新SRI与PUSCH功控参数的关联信息;
其中,所述SRI与PUSCH功控参数的关联信息用于第一节点设备确定PUSCH传输的功控参数;
所述PUSCH传输的功控参数包括PUSCH的开环功控参数、PUSCH的闭环功控参数、PUSCH的路损测量参数中的至少一项。
24.根据项目23所述的方法,所述SRI与PUSCH功控参数的关联信息中包括的SRI与PUSCH功控参数的关联ID为预定义的值或预配置的值;
所述预定义的值为以下之一:0、1、SRI与PUSCH功控参数的关联信息包括的最小的SRI与PUSCH功控参数的关联ID、SRI与PUSCH功控参数的关联信息包括的最大的SRI与PUSCH功控参数的关联ID、SRI与PUSCH功控参数的关联信息中包括的SRI与PUSCH功控参数的关联元素的个数或SRI与PUSCH功控参数的关联信息中包括的SRI与PUSCH功控参数的关联元素的个数减1;
所述预配置的值为0到SRI与PUSCH功控参数的关联信息中包括的SRI与PUSCH功控参数的关联元素的个数减1的值之间的一个数值。
25.一种电子装置,包括存储器和处理器,所述存储器中存储有计算机程序,所述处理器被设置为运行所述计算机程序以执行所述项目1-14任一项中所述的发送参数确定方法;或,被设置为运行时执行所述项目15中所述的发送参数确定方法;或,被设置为运行时执行所述项目16-22任一项中所述的发送参数确定方法;或,被设置为运行时执行所述项目23-24任一项中所述的发送参数确定方法。
26.一种设备,包括:
一个或多个处理器;
存储装置,用于存储一个或多个程序;
当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现如项目1-14中任一所述的发送参数确定方法;或,实现如项目15中任一所述的发送参数确定方法;或,实现如项目16-22中任一所述的发送参数确定方法;或,实现如项目23-24中任一所述的发送参数确定方法。
27.一种计算机存储介质,其上存储有计算机程序,该程序被处理器执行时实现如项目1-14中任一所述的发送参数确定方法;或,实现如项目15中任一所 述的发送参数确定方法;或,实现如项目16-22中任一所述的发送参数确定方法;或,实现如项目23-24中任一所述的发送参数确定方法。

Claims (20)

  1. 一种发送参数确定方法,应用于第一节点设备,包括:
    根据探测参考信号资源指示SRI与物理上行共享信道PUSCH功控参数的关联信息确定PUSCH传输的功控参数;
    其中,所述PUSCH传输的功控参数包括PUSCH的开环功控参数、PUSCH的闭环功控参数及PUSCH的路损测量参数中的至少一项。
  2. 根据权利要求1所述的方法,其中,所述SRI与PUSCH功控参数的关联信息包括至少一个SRI与PUSCH功控参数的关联元素;
    所述SRI与PUSCH功控参数的关联元素包括SRI与PUSCH功控参数的关联标识ID、PUSCH的开环功控参数ID、PUSCH的闭环功控参数ID及PUSCH的路损测量参数ID中的至少一项;
    其中,所述PUSCH的开环功控参数ID用于指示PUSCH的开环功控参数池中的PUSCH开环功控参数元素;所述PUSCH开环功控参数元素包括目标接收功率和路损补偿系数alpha;
    所述PUSCH的闭环功控参数ID用于指示PUSCH的闭环功控参数池中的PUSCH的闭环功控参数;
    所述PUSCH的路损测量参数ID用于指示PUSCH的路损测量参数池中的PUSCH的路损测量参数。
  3. 根据权利要求1或2所述的方法,其中,所述SRI与PUSCH功控参数的关联信息中包括的SRI与PUSCH功控参数的关联ID为预定义的值或预配置的值。
  4. 根据权利要求1所述的方法,其中,所述SRI与PUSCH功控参数的关联信息通过高层信令配置、重配置或更新,或通过介质访问控制-控制单元MAC CE激活、去激活或更新。
  5. 根据权利要求1或4所述的方法,其中,在下行控制信息DCI中不存在SRI域,或探测参考信号SRS资源集合中的SRS资源个数为1的情况下,所述SRI与PUSCH功控参数的关联信息中的SRI与PUSCH功控参数的关联ID为预定义的值或预配置的值。
  6. 根据权利要求1所述的方法,其中,在以下条件中的至少之一被满足的情况下,根据所述SRI与PUSCH功控参数的关联信息确定PUSCH传输的功控参数包括确定SRI与PUSCH功控参数的关联ID为预定义的值或预配置的值:
    调度PUSCH传输的DCI,或激活PUSCH传输的DCI中不存在SRI域;
    调度PUSCH传输的DCI,或激活PUSCH传输的DCI的格式是0_0;
    SRI与PUSCH功控参数的关联信息存在或被配置;
    所述第一节点设备支持MAC CE激活或更新PUSCH的功控参数;
    所述第一节点设备支持MAC CE激活或更新PUSCH的路损测量参数;或
    在DCI格式0_0调度或激活PUSCH传输的情况下,PUCCH传输的空间关系配置不存在或未被提供。
  7. 根据权利要求3、5或6所述的方法,其中,所述预定义的值为以下之一:0、1、所述SRI与PUSCH功控参数的关联信息包括的最小的SRI与PUSCH功控参数的关联ID、所述SRI与PUSCH功控参数的关联信息包括的最大的SRI与PUSCH功控参数的关联ID、所述SRI与PUSCH功控参数的关联信息中包括的SRI与PUSCH功控参数的关联元素的个数或所述SRI与PUSCH功控参数的关联信息中包括的SRI与PUSCH功控参数的关联元素的个数减1;
    所述预配置的值为0到所述SRI与PUSCH功控参数的关联信息中包括的SRI与PUSCH功控参数的关联元素的个数减1的值之间的一个数值。
  8. 一种发送参数确定方法,应用于第二节点设备,包括:
    通过高层信令配置、重配置或更新,或通过介质访问控制-控制单元MAC CE激活,去激活或更新探测参考信号资源指示SRI与物理上行共享信道PUSCH功控参数的关联信息;
    其中,所述SRI与PUSCH功控参数的关联信息用于第一节点设备确定PUSCH传输的功控参数;
    所述PUSCH传输的功控参数包括PUSCH的开环功控参数、PUSCH的闭环功控参数、PUSCH的路损测量参数中的至少一项。
  9. 根据权利要求8所述的方法,其中,所述SRI与PUSCH功控参数的关联信息中包括的SRI与PUSCH功控参数的关联标识ID为预定义的值或预配置的值;
    所述预定义的值为以下之一:0、1、所述SRI与PUSCH功控参数的关联信息包括的最小的SRI与PUSCH功控参数的关联ID、所述SRI与PUSCH功控参数的关联信息包括的最大的SRI与PUSCH功控参数的关联ID、所述SRI与PUSCH功控参数的关联信息中包括的SRI与PUSCH功控参数的关联元素的个数或所述SRI与PUSCH功控参数的关联信息中包括的SRI与PUSCH功控参数的关联元素的个数减1;
    所述预配置的值为0到所述SRI与PUSCH功控参数的关联信息中包括的SRI与PUSCH功控参数的关联元素的个数减1的值之间的一个数值。
  10. 一种发送参数确定方法,应用于第一节点设备,包括:
    根据介质访问控制-控制单元MAC CE确定成员载波分组CC group,以及所述CC group的CC的上行传输的发送参数;
    其中,所述上行传输的发送参数包括空间关系信息和功控参数信息中的至少之一;
    所述上行传输包括探测参考信号SRS传输、物理上行共享信道PUSCH传输及物理上行控制信道PUCCH传输中的至少一项。
  11. 根据权利要求10所述的方法,其中,所述根据MAC CE确定CC group,包括:
    根据所述MAC CE包括的CC group标识ID,根据所述MAC CE包括的小区编号所属的CC group,或根据承载所述MAC CE的小区所属的CC group,确定所述MAC CE所应用的CC group。
  12. 根据权利要求10所述的方法,其中,所述CC group的特性包括下述至少一项:
    所述CC group包括至少一个CC;
    所述CC group的每个CC上都配置了SRS;
    所述CC group内SRS资源编号相同的SRS资源与相同的空间关系关联;
    所述CC group包括空间关系CC group和功控参数CC group中的至少之一;
    所述CC group由高层参数配置;
    所述CC group由路损参考链接参数确定;
    所述CC group是路损参考链接参数确定的第一类CC group的子集;
    所述CC group与路损参考链接参数确定的第一类CC group相同;
    所述CC group由PUCCH分组确定;
    所述CC group是PUCCH分组的子集;
    所述CC group与PUCCH分组相同;
    SRS与PUSCH的所述CC group相同;
    SRS的空间关系CC group与SRS的功控参数CC group相同;
    PUSCH的空间关系CC group与PUSCH的功控参数CC group相同。
  13. 根据权利要求10所述的方法,其中,所述MAC CE包括CC group ID、小区ID、SRS资源集合resource set的小区ID、SRS resource set的部分带宽BWP  ID、SRS resource set ID、至少一个SRS resource ID、SRS resource的空间关系相关信息、SRS resource或SRS resource set的功控参数相关信息、PUSCH的小区ID、PUSCH的BWP ID、PUSCH的SRS资源指示SRI及SRI的功控参数相关信息中的至少一项;
    所述空间关系相关信息包括:至少一个空间关系信息、空间关系信息的CC ID及空间关系信息的BWP ID中的至少一项;
    所述功控参数相关信息包括功控参数、功控参数的CC ID及功控参数的BWP ID中的至少一项。
  14. 一种发送参数确定方法,应用于第二节点设备,包括:
    向第一节点设备发送介质访问控制-控制单元MAC CE,以使所述第一节点设备根据所述MAC CE确定成员载波分组CC group,以及所述CC group内的CC的上行传输的发送参数;
    其中,所述上行传输的发送参数包括空间关系信息和功控参数信息中的至少之一;
    所述上行传输包括探测参考信号SRS传输、物理上行共享信道PUSCH传输、物理上行控制信道PUCCH传输中的至少一项。
  15. 一种电子装置,应用于第一节点设备,包括:
    功控参数确定模块,设置为根据探测参考信号资源指示SRI与物理上行共享信道PUSCH功控参数的关联信息确定PUSCH传输的功控参数;
    其中,所述PUSCH传输的功控参数包括PUSCH的开环功控参数、PUSCH的闭环功控参数及PUSCH的路损测量参数中的至少一项。
  16. 一种电子装置,应用于第二节点设备,包括:
    关联信息确定模块,设置为通过高层信令配置、重配置或更新,或通过介质访问控制-控制单元MAC CE激活,去激活或更新探测参考信号资源指示SRI与物理上行共享信道PUSCH功控参数的关联信息;
    其中,所述SRI与PUSCH功控参数的关联信息用于第一节点设备确定PUSCH传输的功控参数;
    所述PUSCH传输的功控参数包括PUSCH的开环功控参数、PUSCH的闭环功控参数、PUSCH的路损测量参数中的至少一项。
  17. 一种电子装置,应用于第一节点设备,包括:
    参数确定模块,设置为根据介质访问控制-控制单元MAC CE确定成员载波 分组CC group,以及所述CC group的CC的上行传输的发送参数;
    其中,所述上行传输的发送参数包括空间关系信息和功控参数信息中的至少之一;
    所述上行传输包括探测参考信号SRS传输、物理上行共享信道PUSCH传输及物理上行控制信道PUCCH传输中的至少一项。
  18. 一种电子装置,应用于第二节点设备,包括:
    信令发送模块,设置为向第一节点设备发送介质访问控制-控制单元MAC CE,以使所述第一节点设备根据所述MAC CE确定成员载波分组CC group,以及所述CC group内的CC的上行传输的发送参数;
    其中,所述上行传输的发送参数包括空间关系信息和功控参数信息中的至少之一;
    所述上行传输包括探测参考信号SRS传输、物理上行共享信道PUSCH传输、物理上行控制信道PUCCH传输中的至少一项。
  19. 一种设备,包括:
    至少一个处理器;
    存储装置,设置为存储至少一个程序;
    当所述至少一个程序被所述至少一个处理器执行,使得所述至少一个处理器实现如权利要求1-7中任一项所述的发送参数确定方法;或,实现如权利要求8-9中任一项所述的发送参数确定方法;或,实现如权利要求10-13中任一项所述的发送参数确定方法;或,实现如权利要求14中所述的发送参数确定方法。
  20. 一种计算机存储介质,存储有计算机程序,其中,所述程序被处理器执行时,实现如权利要求1-7中任一项所述的发送参数确定方法;或,实现如权利要求8-9中任一项所述的发送参数确定方法;或,实现如权利要求10-13中任一项所述的发送参数确定方法;或,实现如权利要求14中所述的发送参数确定方法。
PCT/CN2020/126516 2019-11-08 2020-11-04 发送参数确定方法,电子装置,设备及介质 WO2021088877A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP20885568.4A EP4057560A4 (en) 2019-11-08 2020-11-04 TRANSMISSION PARAMETER DETERMINATION METHOD, ELECTRONIC APPARATUS, DEVICE, AND MEDIUM
KR1020227018358A KR20220098365A (ko) 2019-11-08 2020-11-04 송신 파라미터 결정 방법, 전자 장치, 디바이스, 및 매체
US17/738,866 US20230024375A1 (en) 2019-11-08 2022-05-06 Transmission parameter determining method, electronic apparatus, device, and medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911090408.1A CN111092710A (zh) 2019-11-08 2019-11-08 发送参数确定方法、电子装置、设备及介质
CN201911090408.1 2019-11-08

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/738,866 Continuation US20230024375A1 (en) 2019-11-08 2022-05-06 Transmission parameter determining method, electronic apparatus, device, and medium

Publications (1)

Publication Number Publication Date
WO2021088877A1 true WO2021088877A1 (zh) 2021-05-14

Family

ID=70393648

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/126516 WO2021088877A1 (zh) 2019-11-08 2020-11-04 发送参数确定方法,电子装置,设备及介质

Country Status (6)

Country Link
US (1) US20230024375A1 (zh)
EP (1) EP4057560A4 (zh)
KR (1) KR20220098365A (zh)
CN (2) CN115694770B (zh)
TW (1) TW202121864A (zh)
WO (1) WO2021088877A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023015099A1 (en) * 2021-08-03 2023-02-09 Qualcomm Incorporated Sounding reference signal (srs) resource indicator (sri) association for configured‑grant (cg)‑based transmission and reception point (trp) physical uplink shared channel (pusch) transmission

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113692041B (zh) * 2019-11-06 2023-03-24 Oppo广东移动通信有限公司 激活或者更新pusch路损rs的方法和设备
CN115694770B (zh) * 2019-11-08 2023-10-31 中兴通讯股份有限公司 发送参数确定方法、电子装置、设备及介质
US11785594B2 (en) * 2020-03-16 2023-10-10 Qualcomm Incorporated Multi-downlink control information message related to physical uplink shared channels
WO2021223231A1 (en) * 2020-05-08 2021-11-11 Qualcomm Incorporated Path loss reference signal count in carrier aggregation
WO2021223212A1 (en) * 2020-05-08 2021-11-11 Qualcomm Incorporated Pathloss reference signal update for multiple resources
WO2022000475A1 (en) * 2020-07-03 2022-01-06 Qualcomm Incorporated Supplementary uplink configuration update for serving cell set
EP4340480A1 (en) * 2021-05-10 2024-03-20 Beijing Xiaomi Mobile Software Co., Ltd. Information configuration method and apparatus
WO2022266990A1 (en) * 2021-06-25 2022-12-29 Qualcomm Incorporated Pc parameters of reference bwp/cc to tci pool
CN116094667A (zh) * 2021-11-03 2023-05-09 维沃移动通信有限公司 传输参数确定方法、资源确定方法、设备和存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102148670A (zh) * 2010-02-10 2011-08-10 中国移动通信集团公司 一种时间提前ta值指示方法和装置
US20170367105A1 (en) * 2016-06-15 2017-12-21 Industry-Academic Cooperation Foundation, Yonsei University Scheduling method and apparatus
CN110167122A (zh) * 2018-02-13 2019-08-23 电信科学技术研究院有限公司 一种上行物理共享信道功率控制方法和终端
CN110392418A (zh) * 2018-04-17 2019-10-29 中兴通讯股份有限公司 功率控制方法和装置、基站、终端、计算机可读存储介质
CN111092710A (zh) * 2019-11-08 2020-05-01 中兴通讯股份有限公司 发送参数确定方法、电子装置、设备及介质

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109803362B (zh) * 2017-11-17 2022-04-12 中兴通讯股份有限公司 功率控制方法、ue、基站、参数配置方法和控制方法
EP4152869A1 (en) * 2018-02-16 2023-03-22 Lenovo (Singapore) Pte. Ltd. Method and apparatus having power control for grant-free uplink transmission

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102148670A (zh) * 2010-02-10 2011-08-10 中国移动通信集团公司 一种时间提前ta值指示方法和装置
US20170367105A1 (en) * 2016-06-15 2017-12-21 Industry-Academic Cooperation Foundation, Yonsei University Scheduling method and apparatus
CN110167122A (zh) * 2018-02-13 2019-08-23 电信科学技术研究院有限公司 一种上行物理共享信道功率控制方法和终端
CN110392418A (zh) * 2018-04-17 2019-10-29 中兴通讯股份有限公司 功率控制方法和装置、基站、终端、计算机可读存储介质
CN111092710A (zh) * 2019-11-08 2020-05-01 中兴通讯股份有限公司 发送参数确定方法、电子装置、设备及介质

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
INTEL CORPORATION: "On Power Control Framework", 3GPP DRAFT; R1-1804736 ON POWER CONTROL FRAMEWORK, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Sanya, China; 20180416 - 20180420, 15 April 2018 (2018-04-15), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051427003 *
MEDIATEK INC.: "Enhancements on multi-beam operations", 3GPP DRAFT; R1-1906537 MULTI-BEAM OPERATION_FINAL, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Reno, USA; 20190513 - 20190517, 13 May 2019 (2019-05-13), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051727988 *
See also references of EP4057560A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023015099A1 (en) * 2021-08-03 2023-02-09 Qualcomm Incorporated Sounding reference signal (srs) resource indicator (sri) association for configured‑grant (cg)‑based transmission and reception point (trp) physical uplink shared channel (pusch) transmission
US11991106B2 (en) 2021-08-03 2024-05-21 Qualcomm Incorporated Sounding reference signal (SRS) resource indicator (SRI) association for configured-grant (CG)-based transmission and reception point (TRP) physical uplink shared channel (PUSCH) transmission

Also Published As

Publication number Publication date
CN115694770A (zh) 2023-02-03
EP4057560A1 (en) 2022-09-14
TW202121864A (zh) 2021-06-01
KR20220098365A (ko) 2022-07-12
CN111092710A (zh) 2020-05-01
CN115694770B (zh) 2023-10-31
EP4057560A4 (en) 2024-03-27
US20230024375A1 (en) 2023-01-26

Similar Documents

Publication Publication Date Title
WO2021088877A1 (zh) 发送参数确定方法,电子装置,设备及介质
WO2021147933A1 (zh) 功率控制参数确定方法、设备和存储介质
JP7171926B2 (ja) 端末、無線通信方法、基地局及びシステム
US10412726B2 (en) Method and apparatus for X2 signalling
WO2020230217A1 (ja) ユーザ端末及び無線通信方法
WO2018202215A1 (zh) 配置上行信号的方法及装置、确定上行信号的方法及装置
US20240073890A1 (en) Terminal, radio communication method, and base station
US20230239032A1 (en) Beam processing method and apparatus, and related device
US20230389038A1 (en) Terminal, radio communication method, and base station
WO2022024378A1 (ja) 端末、無線通信方法及び基地局
US20240064527A1 (en) Terminal, radio communication method, and base station
EP4231754A1 (en) Terminal, wireless communication method, and base station
US20230379936A1 (en) Terminal, radio communication method, and base station
US20220150929A1 (en) User terminal and radio communication method
JPWO2020016938A1 (ja) 端末、無線通信方法、基地局及びシステム
WO2021224965A1 (ja) 端末、無線通信方法及び基地局
KR20220004061A (ko) 유저단말 및 무선 통신 방법
EP4224903A1 (en) Terminal, radio communication method, and base station
US20230276435A1 (en) Terminal, radio communication method, and base station
KR20220163348A (ko) 컴포넌트 캐리어 그룹을 사용한 캐리어 집성
US20220159640A1 (en) User terminal and radio communication method
US20240129933A1 (en) Terminal, radio communication method, and base station
US20230397121A1 (en) Terminal, radio communication method, and base station
WO2021224966A1 (ja) 端末、無線通信方法及び基地局
WO2021224968A1 (ja) 端末、無線通信方法及び基地局

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20885568

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20227018358

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020885568

Country of ref document: EP

Effective date: 20220608