WO2018035866A1 - 一种数据发送方法及装置 - Google Patents

一种数据发送方法及装置 Download PDF

Info

Publication number
WO2018035866A1
WO2018035866A1 PCT/CN2016/097001 CN2016097001W WO2018035866A1 WO 2018035866 A1 WO2018035866 A1 WO 2018035866A1 CN 2016097001 W CN2016097001 W CN 2016097001W WO 2018035866 A1 WO2018035866 A1 WO 2018035866A1
Authority
WO
WIPO (PCT)
Prior art keywords
component carrier
base station
terminal
similarity
carrier
Prior art date
Application number
PCT/CN2016/097001
Other languages
English (en)
French (fr)
Inventor
陈平平
曹冬辉
顾雪芹
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201680087958.6A priority Critical patent/CN109478949A/zh
Priority to PCT/CN2016/097001 priority patent/WO2018035866A1/zh
Publication of WO2018035866A1 publication Critical patent/WO2018035866A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a data transmission method and apparatus.
  • the uplink and downlink channels are reciprocal. Therefore, in the TDD system, the uplink and downlink channel reciprocity can be utilized to implement beamforming, and the terminal demodulation signal is improved. Noise ratio and throughput.
  • the base station may estimate the downlink channel information based on the uplink channel measurement, form a downlink weight matrix, and weight the data first and then transmit, so as to maximize the signal reaching the receiving end.
  • the terminal can perform data transmission on different component carriers (CCs), but the uplink carrier supported by the terminal due to power limitation of the terminal
  • CCs component carriers
  • the number of downlink carriers supported by the terminal is greater than the number of uplink carriers.
  • the uplink carrier is a subset of the downlink carriers. Therefore, for a certain terminal, there may be one or more component carriers, only the downlink transmission channel and no uplink transmission channel. .
  • the base station Since the base station implements downlink carrier beamforming, it relies on uplink channel measurement. Currently, for a carrier having only a downlink transmission channel and no uplink transmission channel, the technique of performing beamforming by estimating the estimated downlink channel information through the uplink channel cannot be used. Gain the gain from beamforming.
  • Embodiments of the present invention provide a data transmission method and apparatus, in order to improve a demodulation signal to noise ratio and throughput of a terminal in a multi-carrier scenario.
  • a data transmission method is provided, which is used in a multi-carrier communication system, where the communication system includes a first component carrier and a second component carrier, wherein the first component carrier is used for both downlink transmission of the terminal and The uplink transmission of the terminal, and the second component carrier is a downlink transmission for the terminal
  • the single downlink component carrier includes: the first base station determines an antenna weight of the first component carrier on the antenna used by the second component carrier, where the first base station is a base station where the second component carrier is located; when the first component carrier and the first component carrier When the channel similarity of the two component carriers meets the preset requirement, the first base station uses the antenna weight to weight the downlink data of the terminal on the second component carrier; the first base station sends the weighted downlink data to the terminal.
  • the first base station uses the antenna weight to the terminal on the second component carrier.
  • the weighting of the downlink data can be achieved as follows:
  • the first base station acquires a channel similarity between the first component carrier and the second component carrier, determines whether the channel similarity is greater than a preset threshold, and uses the antenna weight when the channel similarity is greater than a preset threshold. Downlinking the downlink data of the terminal on the second component carrier.
  • the first base station acquires the channel similarity between the first component carrier and the second component carrier, which can be implemented as follows:
  • the first base station receives the first PMI corresponding to the first component carrier and the second PMI corresponding to the second component carrier, and performs similarity calculation on the first PMI and the second PMI to obtain the first component carrier and the second component carrier. Channel similarity between.
  • the first base station when the first component carrier and the second component carrier are jointly fed, the first base station directly calculates the first component carrier based on the first PMI corresponding to the first component carrier and the second PMI corresponding to the second component carrier.
  • the channel similarity between the second component carriers is simple to implement.
  • the first base station acquires the channel similarity between the first component carrier and the second component carrier, which can be implemented as follows:
  • the first base station receives the channel similarity between the first component carrier and the second component carrier sent by the second base station; where the second base station is the base station where the first component carrier is located.
  • receiving the channel similarity between the first component carrier and the second component carrier sent by the second base station can improve information acquisition efficiency.
  • the first base station determines that the first component carrier is in the second
  • the component carrier corresponds to the antenna weight of the antenna, which can be implemented as follows:
  • the first base station acquires the antenna weight of the antenna used by the first component carrier as the antenna weight of the first component carrier on the antenna used by the second component carrier;
  • the first base station receives an uplink reference signal sent by the terminal on the first component carrier, and determines, according to the uplink reference signal, that the first component carrier is in the second member.
  • the antenna weight on the antenna used by the carrier is not limited
  • a data transmission method is provided, the method being used in a multi-carrier communication system, where the communication system includes a first component carrier and a second component carrier, wherein the first component carrier is used for both downlinks of the terminal
  • the transmission is used for the uplink transmission of the terminal
  • the second component carrier is a single downlink component carrier for downlink transmission of the terminal, and includes:
  • the second base station determines a channel similarity between the first component carrier and the second component carrier of the terminal; and sends the channel similarity to the first base station;
  • the first base station is a base station where the second component carrier is located
  • the second base station is a base station where the first component carrier is located.
  • the second base station determines the channel similarity between the first component carrier and the second component carrier of the terminal, and can be implemented as follows:
  • the second base station receives the first PMI corresponding to the first component carrier and the second PMI corresponding to the second component carrier, and calculates a similarity between the first PMI and the second PMI2 to obtain the first component carrier and the second component carrier. Channel similarity between.
  • a data transmitting apparatus is provided, the apparatus being used in a first base station of a multi-carrier communication system, the communication system comprising a first component carrier and a second component carrier, wherein the first component carrier is used
  • the downlink transmission of the terminal is used for the uplink transmission of the terminal
  • the second component carrier is a single downlink component carrier for downlink transmission of the terminal
  • the first base station is where the second component carrier is located.
  • the base station, the device includes:
  • a processing unit configured to determine an antenna weight of the first component carrier on an antenna used by the second component carrier; when channel similarity of the first component carrier and the second component carrier meets
  • the processing unit is further configured to: use the antenna weight to weight downlink data of the terminal on the second component carrier;
  • a sending unit configured to send the weighted downlink data to the terminal.
  • the processing unit is specifically configured to:
  • the apparatus further includes:
  • a receiving unit configured to receive a first precoding matrix indication PMI corresponding to the first component carrier and a second PMI corresponding to the second component carrier;
  • the processing unit is configured to perform similarity calculation on the first PMI and the second PMI to obtain channel similarity between the first component carrier and the second component carrier.
  • the apparatus further includes:
  • the interface unit is configured to receive a channel similarity between the first component carrier and the second component carrier that is sent by the second base station, where the second base station is a base station where the first component carrier is located.
  • the processing unit is specifically configured to:
  • the antenna weight of the antenna used by the first component carrier is obtained as the antenna weight of the antenna used by the first component carrier on the second component carrier;
  • a fourth aspect provides a data transmitting apparatus, where the apparatus is used in a second base station of a multi-carrier communication system, where the communication system includes a first component carrier and a second component carrier, wherein the first component carrier is used by The downlink transmission of the terminal is used for the uplink transmission of the terminal, the second component carrier is a single downlink component carrier for downlink transmission of the terminal, and the second base station is a base station where the first component carrier is located,
  • the device includes:
  • a processing unit configured to determine a channel phase between the first component carrier and the second component carrier of the terminal Similarity
  • a sending unit configured to send the channel similarity to the first base station
  • the first base station is a base station where the second component carrier is located.
  • the apparatus further includes:
  • a receiving unit configured to receive a first precoding indication matrix PMI corresponding to the first component carrier and a second PMI corresponding to the second component carrier;
  • the processing unit is configured to calculate similarity between the first component and the second component to obtain a channel similarity between the first component carrier and the second component carrier.
  • an apparatus comprising a processor, a memory, a transmitter, and a receiver, wherein the memory stores a computer readable program, and the processor controls by running a program in the memory
  • the transmitter and the receiver implement the data transmission method related to the first aspect.
  • an apparatus comprising a processor, a memory, a transmitter, and a receiver, wherein the memory stores a computer readable program, and the processor controls by running a program in the memory
  • the transmitter and the receiver implement the data transmission method related to the second aspect.
  • the present application provides a computer storage medium for storing computer software instructions for use by the first base station of the first aspect and the second aspect, comprising a program designed to perform the above aspects.
  • the present application provides a computer storage medium for storing computer software instructions for use in the second base station of the first aspect and the second aspect, comprising a program designed to perform the above aspects.
  • the second member carrier of the single downlink cannot use the reciprocity of the uplink and downlink channels to perform beamforming processing, so that the second component carrier is compared with the prior art.
  • the beamforming gain is not obtained.
  • the uplink channel is used.
  • the first component carrier is used in the second component carrier
  • the antenna weight on the antenna system is used to weight the downlink data on the second component carrier, and is sent to the terminal, thereby implementing beamforming on the second component carrier, obtaining beamforming gain, and improving the demodulation signal to noise ratio of the terminal. And throughput.
  • FIG. 1A is a schematic diagram of a non-common antenna multi-carrier communication system according to an embodiment of the present invention
  • FIG. 1B is a schematic diagram of a common antenna feed multi-carrier communication system according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a channel similarity calculation process between a first component carrier and a second component carrier according to an embodiment of the present invention
  • FIG. 4 is a signaling flow diagram of a data transmission method in an implementation of the present invention.
  • FIG. 5 is a signaling flow diagram of a data sending method according to an embodiment of the present invention.
  • FIG. 6 is a signaling flow diagram of a data sending method according to an embodiment of the present invention.
  • FIG. 7 is a signaling flow diagram of a data sending method in an implementation of the present invention.
  • FIG. 8 is a signaling flow diagram of a data sending method according to an embodiment of the present invention.
  • FIG. 9 is a signaling flow diagram of a data transmission method in an implementation of the present invention.
  • FIG. 10A, FIG. 10B and FIG. 10C are schematic diagrams showing the structure of a data transmitting apparatus according to an embodiment of the present invention.
  • FIG. 11 is a schematic structural diagram of a data sending device according to an embodiment of the present invention.
  • FIG. 12A and FIG. 12B are schematic diagrams showing the structure of a data transmitting apparatus according to an embodiment of the present invention.
  • FIG. 13 is a schematic structural diagram of a data sending device according to an embodiment of the present invention.
  • FIG. 14 is a schematic structural diagram of a base station in an implementation of the present invention.
  • the base station which may be referred to as a Radio Access Network (RAN) device, is a device that accesses the terminal to the wireless network, including but not limited to: an evolved Node B (eNB). ), radio network controller (RNC), Node B (Node B, NB), Base Station Controller (BSC), Base Transceiver Station (BTS), home base station (for example, Home evolved NodeB, or Home Node B, HNB), BaseBand Unit (BBU), WIFI Access Point (AP), etc.
  • eNB evolved Node B
  • RNC radio network controller
  • Node B Node B
  • BSC Base Station Controller
  • BTS Base Transceiver Station
  • home base station for example, Home evolved NodeB, or Home Node B, HNB
  • BBU BaseBand Unit
  • AP WIFI Access Point
  • a terminal also referred to as a user equipment, is a device that provides voice and/or data connectivity to a user, for example, a handheld device having a wireless connection function, an in-vehicle device, and the like.
  • Common terminals include, for example, mobile phones, tablets, notebook computers, PDAs, mobile internet devices (MIDs), wearable devices such as smart watches, smart bracelets, pedometers, and the like.
  • Multi-carrier communication system refers to a system that implements communication with a terminal by using multiple carriers, where each carrier may be referred to as a component carrier.
  • CA Carrier Aggregation
  • LTE-A Long Term Evolution Advanced
  • LTE-A Long Term Evolution Advanced
  • CC aggregation which includes adjacent or non-adjacent CC aggregations in the same frequency band, and CC aggregation in different frequency bands.
  • the aggregated multiple component carriers include a PCC and at least one SCC, wherein the PCC is used for control plane transmission, and can also be used for user plane transmission; the SCC is used for user plane transmission.
  • the cell corresponding to the PCC is the primary cell (PCell), and the cell corresponding to the SCC is the secondary cell (SCell).
  • the PCell is a cell initially accessed by the terminal and is responsible for radio resource control (RRC) communication with the terminal. SCell is added during RRC reconfiguration. Used to provide additional wireless resources.
  • the PCell is determined at the time of connection establishment; the SCell is added/modified/released by the RRC Connection Reconfiguration message after the initial security activation procedure.
  • a single downlink component carrier refers to a component carrier used for terminal downlink transmission and not used for terminal uplink transmission, that is, a component carrier having only a downlink transmission channel; the single downlink component carrier is usually an SCC. .
  • Multiple means two or more. "and/or”, describing the association relationship of the associated objects, indicating that there may be three relationships, for example, A and/or B, which may indicate that there are three cases where A exists separately, A and B exist at the same time, and B exists separately.
  • the character "/" generally indicates that the contextual object is an "or" relationship.
  • the uplink and downlink component carriers are asymmetric.
  • FIG. 1A and FIG. 1B in which a multi-carrier communication system of 3CC aggregation is taken as an example, and more CCs and Similar.
  • the three CCs that are aggregated including PCC, SCC 1 and SCC 2, in which there is only a downlink channel on SCC2, therefore, in the TDD system, the reciprocity of the uplink and downlink channels cannot be utilized to perform beamforming processing on SCC2.
  • the beamforming gain is not available on SCC2.
  • a data sending method is provided.
  • the use exists.
  • the CC of the uplink channel weights the downlink data on the single downlink CC in the antenna weight of the antenna system used by the single downlink CC, and sends the downlink data to the terminal, thereby implementing beamforming on the single downlink CC and obtaining beamforming gain.
  • FIG. 1A is a schematic diagram of a non-common antenna multi-carrier communication system according to an embodiment of the present invention.
  • the communication system includes a first base station and a second base station, and the first base station uses an eNodeB1. Indicates that the second base station is represented by eNodeB2.
  • the terminal has the ability to support CA.
  • the terminal and the first base station and the second base station can communicate through the air interface (Uu), and the first base station and the second base station can communicate through the X2 port.
  • the component carrier that is communicated between the first base station eNodeB1 and the terminal in FIG.
  • the component carrier includes a primary component carrier PCC and a first secondary component carrier SCC1, and the SCC1 has both uplink transmission and downlink transmission.
  • the first base station eNodeB1 is the base station where the single downlink secondary component carrier of the terminal is located
  • the second base station eNodeB2 is the base station where the PCC of the terminal is located.
  • the first base station where the single downlink secondary component carrier SCC2 is located and the second base station where the primary component carrier PCC is located may be the same base station, and when they are co-cast, they may form a common antenna-multi-carrier aggregation scenario, for example, reference may be made to the figure.
  • PCC, SCC1 and SCC2 are fed together.
  • data transmission on PCC and SCC2 is implemented by different radio frequency devices, it still constitutes a non-co-island multi-carrier aggregation scenario.
  • the base station since there is no uplink channel, the base station cannot estimate the downlink channel information through the uplink measurement, so that the beamforming technology cannot be used, and the corresponding gain cannot be obtained, which is not conducive to the solution. Adjust the signal to noise ratio and affect the terminal throughput.
  • Embodiments of the present invention provide a data transmission method and apparatus, in order to improve a demodulation signal to noise ratio and throughput of a terminal in a multi-carrier scenario.
  • the method and the device are based on the same inventive concept. Since the principles of the method and the device for solving the problem are similar, the implementation of the device and the method can be referred to each other, and the repeated description is not repeated.
  • FIG. 2 it is a flowchart of a data method according to an embodiment of the present invention.
  • the method is used in a multi-carrier communication system, where the communication system includes a first component carrier and a second component carrier, where The first component carrier is used for both the downlink transmission of the terminal and the uplink transmission of the terminal, and the second component carrier is a single downlink component carrier for downlink transmission of the terminal.
  • the method includes the following steps:
  • Step 21 The first base station determines the day of the first component carrier on the antenna used by the second component carrier Line weight.
  • the first base station is a base station where the second component carrier is located.
  • the first component carrier is a component carrier that has an uplink transmission channel, and the first component carrier includes a primary component carrier or an uplink secondary component carrier.
  • the first base station determines an antenna weight of the first component carrier in the antenna corresponding to the second component carrier, and includes the following two situations:
  • the first base station acquires the antenna weight of the antenna used by the first component carrier, and the first component carrier is used on the antenna used by the second component carrier. Antenna weight.
  • the second case is: when the first component carrier and the second component carrier are non-co-investing, the first base station receives the uplink reference signal sent by the terminal on the first component carrier, and determines, according to the uplink reference signal, that the first component carrier is in the second The antenna weight on the antenna used by the component carrier.
  • the uplink reference signal may be, for example, a Sounding Reference Signal (SRS).
  • Step 22 When the channel similarity of the first component carrier and the second component carrier meet the preset requirement, the first base station uses the above antenna weight to weight the downlink data of the terminal on the second component carrier.
  • the first base station when determining, by the first base station, whether the channel similarity of the first component carrier and the second component carrier meets a preset requirement, the first base station may be implemented by:
  • the first base station acquires a channel similarity between the first component carrier and the second component carrier; the first base station determines whether the channel similarity is greater than a preset threshold; and when the channel similarity is greater than a preset threshold, determining the first component carrier and The channel similarity of the second component carrier satisfies a preset requirement.
  • the first base station may acquire channel similarity between the first component carrier and the second component carrier of the terminal by:
  • the first base station receives a first precoding matrix indication (PMI) corresponding to the first component carrier and a second PMI corresponding to the second component carrier;
  • PMI precoding matrix indication
  • the first base station performs similarity calculation on the first PMI and the second PMI to obtain channel similarity between the first component carrier and the second component carrier.
  • the first base station can obtain the channel similarity between the first component carrier and the second component carrier of the terminal by using the following manner. For details, refer to FIG. 3:
  • Step S1 The second base station receives the first PMI corresponding to the first component carrier and the second PMI corresponding to the second component carrier sent by the terminal.
  • Step S2 The second base station calculates the similarity between the first component carrier and the second component carrier for the first PMI and the second PMI to obtain a channel similarity between the first component carrier and the second component carrier.
  • the second base station sends the calculated channel similarity between the first component carrier and the second component carrier to the first base station.
  • Step S3 The first base station receives the channel similarity between the first component carrier and the second component carrier sent by the second base station.
  • the second base station is a base station where the first component carrier is located.
  • the first PMI and the second PMI may be converted into two vectors, and the cosine values of the two vectors are calculated as the channel similarity; or, two vectors are calculated.
  • the Euclidean distance value of the point is taken as the channel similarity.
  • Step 23 The first base station sends the weighted downlink data to the terminal.
  • the base station uses the PMI of the component carrier with the uplink channel and the PMI of the single downlink auxiliary component carrier to calculate the similarity between the two downlink auxiliary component carriers, and performs similarity judgment.
  • the component weight of the uplink carrier component is borrowed for the single downlink component carrier to measure the antenna weight on the antenna used by the single downlink component carrier, and the beamforming process is performed to reach the member of the uplink channel.
  • a similar beamforming gain of the carrier solves the problem that the single downlink auxiliary component carrier cannot achieve beamforming in the CA scenario.
  • FIG. 4 is a signaling flow diagram of a possible data transmission method in the scenario of a common antenna multi-carrier aggregation in FIG. 1B.
  • the specific process is as follows.
  • Step 41 The terminal sends an SRS on an uplink channel of the PCC and the SCC1.
  • Step 42 The eNodeB measures the SRS to obtain the antenna weights corresponding to the PCC and the SCC1, respectively.
  • Step 43 The terminal feeds back PMI information of PCC, SCC1, and SCC2 to the eNodeB through the PCC.
  • Step 44 The eNodeB determines, according to the fed PMI information, whether the PCC and the SCC2 have similar channel characteristics. If yes, proceed to step 45; otherwise, the SCC2 is not beamformed.
  • the eNodeB obtains the PMIs corresponding to the PCC and the SCC2 according to the fed PMI information, respectively, and uses PMI1 and PMI2 respectively, and calculates a cosine similarity between PMI1 and PMI2.
  • the obtained cosine similarity is less than a preset threshold, It is determined that PCC and SCC2 have similar channel characteristics; otherwise, there are no similar channel characteristics.
  • Step 45 The eNodeB performs downlink channel processing on the PCC and the SCC1 according to the antenna weights corresponding to the PCC and the SCC1, and sends downlink data.
  • Step 46 The eNodeB performs weighting processing on the downlink data of the SCC2 by using the antenna weight corresponding to the PCC, and sends the downlink data.
  • step 45 and step 46 is not limited, and may be performed at the same time, or step 45 may be performed first, and then step 46 may be performed;
  • FIG. 5 is a signaling flow diagram of another possible data transmission method in the scenario of a common antenna multi-carrier aggregation in FIG. 1B.
  • the specific process is as follows.
  • Steps 51 to 53 are the same as steps 41 to 43 in FIG. 4, and details are not described herein again.
  • Step 54 The eNodeB determines, according to the fed PMI information, whether there are similar channel characteristics in SCC1 and SCC2, and if yes, proceeds to step 55; otherwise, does not perform beamforming processing on SCC2.
  • the eNodeB obtains PMIs corresponding to SCC1 and SCC2 according to the fed PMI information, and respectively uses PMI3 and PMI2, and calculates a cosine similarity between PMI3 and PMI2.
  • the obtained cosine similarity is less than a preset threshold, It is determined that there are similar channel characteristics for SCC1 and SCC2; otherwise, there are no similar channel characteristics.
  • Step 55 The eNodeB performs downlink channel processing on the PCC and the SCC1 according to the antenna weights corresponding to the PCC and the SCC1, and sends downlink data.
  • Step 56 The eNodeB performs weighting processing on the downlink data of the SCC2 by using the antenna weight corresponding to the SCC1, and sends the downlink data.
  • step 55 and step 56 is not limited, and may be performed at the same time, or step 55 may be performed first, and then step 56 may be performed;
  • the base station performs beamforming processing on the single downlink component carrier by using the antenna weight corresponding to the SCC of the PCC and the non-single downlink component carrier.
  • the PCC or the SCC may not be limited.
  • a single downlink component carrier is beamformed, for example, a PCC or an SCC1, by selecting an antenna weight corresponding to a component carrier whose channel similarity meets a predetermined requirement from the component carriers of the non-single downlink component carrier.
  • FIG. 6 is a signaling flow diagram of another possible data transmission method in the scenario of the co-event multi-carrier aggregation in FIG. 1B.
  • the specific process is as follows.
  • Steps 61 to 63 are the same as steps 41 to 43 in FIG. 4, and details are not described herein again.
  • Step 64 The eNodeB determines, according to the fed PMI information, whether the PCC and the SCC1 include a component carrier having a similar channel characteristic as the SCC2. If yes, proceed to step 65; otherwise, the SCC2 is not subjected to beamforming processing.
  • the eNodeB obtains PMIs corresponding to PCC, SCC1, and SCC2 according to the fed PMI information, and respectively uses PMI1, PMI3, and PMI2, and calculates a first cosine similarity between PMI1 and PMI2 and between PMI3 and PMI2.
  • the second cosine similarity determines that the PCC and the SCC2 have similar channel characteristics when the obtained first cosine similarity is less than a preset threshold; and determines the SCC1 when the obtained second cosine similarity is less than a preset threshold Similar channel characteristics exist with SCC2; otherwise, there are no similar channel characteristics.
  • Step 65 The eNodeB performs downlink channel processing on the PCC and the SCC1 according to the antenna weights corresponding to the PCC and the SCC1, and sends downlink data.
  • Step 66 The eNodeB selects a component carrier from the PCC and the SCC1, performs weighting processing on the downlink data of the SCC2, and sends downlink data by using the antenna weight corresponding to the selected component carrier.
  • the eNodeB selects the PCC from the PCC and the SCC1, and uses the antenna weight corresponding to the PCC to downlink data of the SCC2. Perform weighting processing and send downlink data.
  • the eNodeB selects SCC1 from the PCC and the SCC1, uses the antenna weight corresponding to the SCC1, performs weighting processing on the downlink data of the SCC2, and transmits downlink data.
  • the eNodeB arbitrarily selects one component carrier from the PCC and the SCC1 or selects a component carrier with a smaller cosine similarity. Selecting the antenna weight corresponding to the component carrier, weighting the downlink data of the SCC2, and transmitting the downlink data.
  • step 65 and step 66 is not limited, and may be performed at the same time, or step 65 may be performed first, and then step 66 may be performed;
  • FIG. 7 is a detailed signaling flow diagram for a possible data transmission method in the scenario of non-co-investing multi-carrier aggregation in FIG. 1A, and the specific process is as follows.
  • Step 71 The terminal sends an SRS on an uplink channel of the PCC and the SCC1.
  • Step 72 The eNodeB1 measures the SRS of the PCC and the SCC1 to obtain antenna weights corresponding to the two carriers.
  • Step 73 The eNodeB2 actively receives the SRS of the PCC through the Radio Remote Unit (RRU)/ ⁇ , where the SCC2 is located, and measures the antenna weight of the PCC on the antenna used by the SCC2.
  • the antenna weight of the PCC measured by the eNodeB2 in step 73 is different from the antenna weight of the PCC measured by the eNodeB1.
  • the antenna of the PCC is not on the eNodeB2.
  • the antenna weight of the PCC measured by the eNodeB2 is not actually used by the PCC.
  • the antenna weight is a method of weighting the SCC2 by using the uplink channel of the PCC equivalent to the uplink channel of the SCC2 when the channels of the PCC and the SCC2 are similar.
  • Step 74 The terminal feeds back the PMI information of the PCC, SCC1, and SCC2 to the eNodeB1 through the PCC.
  • Step 75 The eNodeB1 calculates a channel similarity between the PCC and the SCC2 according to the fed back PMI information.
  • the eNodeB1 obtains the PMIs corresponding to the PCC and the SCC2 according to the fed PMI information, respectively, and uses PMI1 and PMI2 respectively, and calculates a cosine similarity between PMI1 and PMI2, and uses the cosine similarity as between PCC and SCC2. Channel similarity.
  • Step 76 The eNodeB1 sends the channel similarity between the PCC and the SCC2 to the eNodeB2.
  • Step 77 The eNodeB1 performs downlink channel processing on the PCC and the SCC1 according to the antenna weights corresponding to the PCC and the SCC1, and sends downlink data.
  • Step 78 The eNodeB2 determines whether the PCC and the SCC2 have similar channel characteristics. If yes, proceed to step 79; otherwise, the SCC2 is not beamformed.
  • the eNodeB2 determines that the PCC and the SCC2 have similar channel characteristics; otherwise, there is no similar channel feature.
  • Step 79 The eNodeB2 uses the antenna weight of the PCC on the antenna used by the SCC2, performs weighting processing on the downlink data of the SCC2, and sends downlink data.
  • Step 77 may be performed first, and then step 78 may be performed;
  • FIG. 8 is a detailed signaling flow diagram of a possible data transmission method in the scenario of non-co-investing multi-carrier aggregation in FIG. 1A.
  • the specific process is as follows.
  • Steps 81 to 82 are the same as steps 71 to 72 in FIG. 7, and are not described here.
  • Step 83 The eNodeB2 actively receives the SRS signal of the SCC1 through the RRU/antenna in which the SCC2 is located, and measures the antenna weight of the SCC1 on the antenna used by the SCC2.
  • Step 84 The terminal feeds back PMI information of PCC, SCC1, and SCC2 to the eNodeB1 through the PCC.
  • Step 85 The eNodeB1 calculates channel similarity between SCC1 and SCC2 according to the fed back PMI information.
  • the eNodeB1 obtains PMIs corresponding to SCC1 and SCC2 according to the fed PMI information, respectively, and uses PMI3 and PMI2 respectively, and calculates a cosine similarity between PMI3 and PMI2, and uses the cosine similarity as between SCC1 and SCC2. Channel similarity.
  • Step 86 The eNodeB1 sends the channel similarity between SCC1 and SCC2 to the eNodeB2.
  • Step 87 The eNodeB1 performs downlink channel processing on the PCC and the SCC1 according to the antenna weights corresponding to the PCC and the SCC1, and sends downlink data.
  • Step 88 The eNodeB2 determines whether there are similar channel characteristics of SCC1 and SCC2, and if yes, proceeds to step 89; otherwise, the beamforming process is not performed on the SCC2.
  • the eNodeB2 determines that there are similar channel characteristics in SCC1 and SCC2; otherwise, there is no similar channel feature.
  • Step 89 The eNodeB2 uses the antenna weight of the SCC1 on the antenna used by the SCC2, performs weighting processing on the downlink data of the SCC2, and sends downlink data.
  • Step 87 may be performed first, and then step 88 may be performed;
  • FIG. 9 is a signaling flow diagram of a possible data transmission method in the non-co-instance multi-carrier aggregation scenario of FIG. 1A.
  • the specific process is as follows.
  • Steps 91 to 92 are the same as steps 71 to 72 in FIG. 7, and are not described here.
  • Step 93 The eNodeB2 actively receives the SRS signals of the PCC and the SCC1 through the RRU/antenna in which the SCC2 is located, and measures the antenna weights of the PCC and the SCC1 on the antenna used by the SCC2.
  • Step 94 The terminal feeds back the PMI information of the PCC, SCC1, and SCC2 to the eNodeB1 through the PCC.
  • Step 95 The eNodeB1 calculates a channel similarity between the PCC and the SCC2 and a channel similarity between the SCC1 and the SCC2 according to the fed back PMI information.
  • the eNodeB1 obtains PMIs corresponding to PCC, SCC1, and SCC2 according to the fed PMI information, and respectively uses PMI1, PMI3, and PMI2, and calculates a first cosine similarity between PMI1 and PMI2, and the first The cosine similarity is taken as the channel similarity between the PCC and the SCC2; and the second cosine similarity between PMI3 and PMI2 is calculated, and the second cosine similarity is taken as the channel similarity between SCC1 and SCC2.
  • Step 96 The eNodeB1 sends the channel similarity of the PCC and the SCC2, and the channel similarity of the SCC1 and the SCC2 to the eNodeB2.
  • Step 97 The eNodeB1 performs downlink channel processing on the PCC and the SCC1 according to the antenna weights corresponding to the PCC and the SCC1, and sends downlink data.
  • Step 98 The eNodeB2 determines whether the PCC and the SCC1 include a component carrier having a channel characteristic similar to that of the SCC2. If yes, select a component carrier from the PCC and the SCC1, and continue to perform step 99; otherwise, the SCC2 is not beamformed. .
  • the eNodeB2 determines that the PCC and the SCC2 have similar channel characteristics; and when the obtained second cosine similarity is less than a preset threshold, determining that the SCC1 and the SCC2 are similar. Channel characteristics.
  • the eNodeB2 selects the PCC from the PCC and the SCC1; the second cosine similarity is less than the preset threshold and the first When the cosine similarity is not less than the preset threshold, the eNodeB2 selects SCC1 from the PCC and the SCC1; when the first cosine similarity is less than the preset threshold and the second cosine similarity is less than the preset threshold, the eNodeB2 is from the PCC and the SCC1. Any one of the component carriers or a member carrier with a smaller cosine similarity is selected, and step 99 is continued.
  • Step 99 The eNodeB2 weights the downlink data of the SCC2 by using the antenna weight of the selected component carrier on the antenna used by the SCC2, and sends the downlink data.
  • step 97 and the step 98 are not limited, and may be performed at the same time.
  • Step 97 may be performed first, and then step 98 may be performed;
  • the PMI when determining the channel similarity between the component carriers, the PMI is used to calculate the cosine similarity.
  • the present invention is not limited thereto, and any existing or future may be used. The method of calculating the channel similarity is performed.
  • the embodiment of the present invention provides an apparatus 1000, where the apparatus 1000 is used in a first base station of a multi-carrier communication system, where the communication system includes a first component carrier and a second component carrier.
  • the first component carrier is used for both the downlink transmission of the terminal and the uplink transmission of the terminal
  • the second component carrier is a single downlink component carrier for downlink transmission of the terminal
  • FIG. 10A is a schematic structural diagram of an apparatus 1000 according to an embodiment of the present invention.
  • the apparatus 1000 includes a sending unit 1001 and a processing unit 1002, where:
  • the processing unit 1002 is configured to determine an antenna weight of the first component carrier on the antenna used by the second component carrier; when the channel similarity of the first component carrier and the second component carrier meet the preset requirement, the processing unit 1002 further uses And weighting the downlink data of the terminal on the second component carrier by using the determined antenna weight;
  • the sending unit 1001 is configured to send the weighted downlink data to the terminal.
  • processing unit 1002 is specifically configured to:
  • the processing unit 1002 may determine the channel similarity between the first component carrier and the second component carrier by using the PMI obtained from the terminal.
  • the apparatus 1000 further includes a receiving unit 1003:
  • the receiving unit 1003 is configured to receive, by the terminal, a first PMI corresponding to the first component carrier and a second PMI corresponding to the second component carrier.
  • the processing unit 1002 is configured to perform similarity calculation on the first PMI and the second PMI to obtain channel similarity between the first component carrier and the second component carrier.
  • the processing unit 1002 may obtain the channel similarity between the first component carrier and the second component carrier from the base station where the first component carrier is located.
  • the apparatus 1000 further includes: the interface unit 1004:
  • the interface unit 1004 is configured to receive a channel similarity between the first component carrier and the second component carrier sent by the second base station, where the second base station is a base station where the first component carrier is located, and optionally, the second base station may
  • the device 1200 shown in FIG. 12A or FIG. 12B or the device 1300 shown in FIG. 13 is included.
  • processing unit 1002 is specifically configured to:
  • the antenna weight of the antenna used by the first component carrier is obtained as the antenna weight of the antenna used by the first component carrier on the second component carrier;
  • the uplink reference signal sent by the receiving terminal on the first component carrier determines that the first component carrier is in the second component based on the uplink reference signal.
  • the antenna weight on the antenna used by the carrier is not limited to the uplink reference signal.
  • each unit in the above device 1000 is only a division of a logical function, and the actual implementation may be integrated into one physical entity in whole or in part, or may be physically separated.
  • each of the above units may be a separate processing element, or may be integrated in a chip of the base station, or may be stored in a storage element of the base station in the form of a program code, and is called by a processing element of the base station. And perform the functions of each unit above.
  • the individual units can be integrated or implemented independently.
  • the processing elements described herein can be an integrated circuit chip with signal processing capabilities.
  • each step of the above method or each of the above units may be completed by an integrated logic circuit of hardware in the processor element or an instruction in a form of software.
  • the processing element may be a general-purpose processor, such as a central processing unit (CPU), or may be one or more integrated circuits configured to implement the above method, for example, one or more specific integrated circuits (Application Specific) Integrated Circuit (ASIC), or one or more digital singal processors (DSPs), or one or more Field Programmable Gate Arrays (FPGAs).
  • ASIC Application Specific
  • DSPs digital singal processors
  • FPGAs Field Programmable Gate Arrays
  • the embodiment of the present invention further provides a device 1100, where the device 1100 is used in a first base station of a multi-carrier communication system, where the device 1100 may be the first base station, or a device located on the first base station, the multi-carrier communication
  • the system includes a first component carrier and a second component carrier, where the first component carrier is used for both the downlink transmission of the terminal and the uplink transmission of the terminal, and the second component carrier is a single downlink component carrier for downlink transmission of the terminal,
  • a base station is a base station where a second component carrier is located.
  • FIG. 11 is a schematic structural diagram of a device 1100 according to an embodiment of the present invention. As shown in FIG. 11, the device 1100 includes a processor 1101, a memory 1102, a transmitter 1103, and a receiver. 1104.
  • the program code for executing the scheme of the present invention is stored in the memory 1102, and is controlled by the processor 1101.
  • the program stored in the memory 1102 is used by the instruction processor 1101 to perform a data transmission method, including: determining an antenna weight of a first component carrier on an antenna used by a second component carrier; and a channel of the first component carrier and the second component carrier When the similarity meets the preset requirement, the antenna weight is used.
  • the downlink data of the terminal on the two component carriers is weighted; the weighted downlink data is transmitted to the terminal by the transmitter 1103.
  • the processor 1101 is specifically configured to:
  • processor 1101 is further configured to:
  • the processor 1101 is further configured to perform similarity calculation on the first PMI and the second PMI to obtain channel similarity between the first component carrier and the second component carrier.
  • processor 1101 is further configured to:
  • the interface may include FIG. 12A or The device 1200 shown in FIG. 12B or the device 1300 shown in FIG.
  • the interface here is an interface between the base stations, for example, an X2 interface. When there is no direct interface between the two base stations, the interface can be forwarded through the core network. The interface at this time can be an S1 interface.
  • the processor 1101 is specifically configured to:
  • the antenna weight of the antenna used by the first component carrier is obtained as the antenna weight of the antenna used by the first component carrier on the second component carrier;
  • the receiver receives the uplink reference signal sent by the terminal on the first component carrier, and determines, according to the uplink reference signal, that the first component carrier is used by the second component carrier. Antenna weight on the antenna.
  • the device 1100 of this embodiment may be used to implement all the functions related to the first base station in the foregoing method embodiments, and the specific implementation process may refer to the related description of the method performed by the first base station in the foregoing method embodiment. Narration.
  • an embodiment of the present invention provides an apparatus 1200.
  • the device 1200 is used in a second base station of a multi-carrier communication system, where the communication system includes a first component carrier and a second component carrier, where the first component carrier is used for both downlink transmission of the terminal and uplink transmission of the terminal.
  • the second component carrier is a single downlink component carrier for the downlink transmission of the terminal, and the second base station is the base station where the first component carrier is located.
  • FIG. 12A is a schematic structural diagram of the device 1200 according to the embodiment of the present invention, as shown in FIG. 12A.
  • the device 1200 includes a transmitting unit 1201 and a processing unit 1202, wherein:
  • the processing unit 1202 is configured to determine a channel similarity between the first component carrier and the second component carrier of the terminal;
  • the sending unit 1201 is configured to send the channel similarity to the first base station, where the first base station is a base station where the second component carrier is located.
  • the first base station may include the device 1000 shown in FIG. 10A, 10B, or 10C or the device 1100 shown in FIG.
  • the device further includes:
  • the receiving unit 1203 is configured to receive, by the terminal, a first PMI corresponding to the first component carrier and a second PMI corresponding to the second component carrier.
  • the processing unit 1202 is configured to calculate similarity between the first component and the second component to obtain a channel similarity between the first component carrier and the second component carrier.
  • each unit in the above apparatus 1200 is only a division of a logical function, and may be integrated into one physical entity in whole or in part, or may be physically separated.
  • each of the above units may be a separate processing element, or may be integrated in a chip of the base station, or may be stored in a storage element of the base station in the form of a program code, and is called by a processing element of the base station. And perform the functions of each unit above.
  • the individual units can be integrated or implemented independently.
  • the processing elements described herein can be an integrated circuit chip with signal processing capabilities.
  • each step of the above method or each of the above units may be completed by an integrated logic circuit of hardware in the processor element or an instruction in a form of software.
  • the processing element may be a general purpose processor, such as a CPU, or may be one or more integrated circuits configured to implement the above methods, such as one or more ASICs, or one or more DSPs, or one or more FPGA and so on.
  • the embodiment of the present invention further provides an apparatus 1300, where the apparatus 1300 is used in a second base station of a multi-carrier communication system, and the apparatus 1300 may be the second base station, or a device located on the second base station, where the communication system
  • the first component carrier and the second component carrier are included, where the first component carrier is used for both the downlink transmission of the terminal and the uplink transmission of the terminal, and the second component carrier is a single downlink component carrier for downlink transmission of the terminal, first.
  • the base station is the base station where the second component carrier is located.
  • FIG. 13 is a schematic structural diagram of the device 1300 according to the embodiment of the present invention. As shown in FIG. 13, the device 1300 includes a processor 1301, a memory 1302, a transmitter 1303, and a receiver 1304.
  • the program code for executing the inventive scheme is stored in the memory 1302 and controlled by the processor 1301 for execution.
  • the program stored in the memory 1302 is used by the instruction processor 1301 to perform a data transmission method, including: determining channel similarity between the first component carrier and the second component carrier of the terminal; transmitting the channel similarity to the first by the transmitter 1303
  • the base station is the base station where the second component carrier is located.
  • the first base station may include the device 1000 shown in FIG. 10A, 10B, or 10C or the device 1100 shown in FIG.
  • the processor 1301 is further configured to: receive, by the receiver 1304, a first PMI corresponding to the first component carrier and a second PMI corresponding to the second component carrier, and calculate a similarity between the first PMI and the second PMI2 to obtain the first member. Channel similarity between the carrier and the second component carrier.
  • the device 1300 in this embodiment may be used to implement all the functions related to the second base station in the foregoing method embodiments, and the specific implementation process may refer to the related description of the second base station execution method in the foregoing method embodiment, where the description is no longer Narration.
  • the processor involved in the foregoing apparatus 1100 and apparatus 1300 may be a general-purpose central processing unit (CPU), a microprocessor, an application-specific integrated circuit (ASIC), or an application-specific integrated circuit (ASIC). Or an integrated circuit for controlling the execution of the program of the present invention.
  • One or more memories included in the computer system which may be read-only memory (ROM) or other types of static storage devices that can store static information and instructions, random access memory (RAM) or Store information Other types of dynamic storage devices with instructions, but also disk storage. These memories are connected to the processor via a bus.
  • the receiver and transmitter can perform their functions through a transceiver, which can be a physical module capable of transceiving functions to communicate with other devices or communication networks.
  • a memory such as a RAM, holds an operating system and a program for executing the inventive scheme.
  • the operating system is a program that controls the running of other programs and manages system resources.
  • These memories, transmitters and receivers can be connected to the processor via a bus or can also be connected to the processor via dedicated connection lines.
  • the code corresponding to the method shown below is solidified into the chip, so that the chip can perform the method shown in FIG. 2 while it is running.
  • How to design and program the processor is a technique well known to those skilled in the art, and details are not described herein.
  • FIG. 14 is a schematic structural diagram of a base station according to an embodiment of the present invention.
  • the base station includes an antenna 141, a radio frequency device 142, and a baseband device 143.
  • the antenna 141 is connected to the radio frequency device 142.
  • the radio frequency device 132 receives the information transmitted by the terminal through the antenna 141, and transmits the information transmitted by the terminal to the baseband device 143 for processing.
  • the baseband device 143 processes the information of the terminal and sends it to the radio frequency device 142.
  • the radio frequency device 142 processes the information of the terminal and sends it to the terminal via the antenna 141.
  • the above device 1000 can be located in the baseband device 143, including the processing element 131 and the storage element 132.
  • the baseband device 143 may, for example, comprise at least one baseband board having a plurality of chips disposed thereon, as shown in FIG. 14, one of which is, for example, a processing component 131, coupled to the storage component 132 to invoke a program in the storage component 132 The operations shown in the above method embodiments are performed.
  • the baseband device 143 can also include an interface 133 for interacting with the radio frequency device 142, such as a common public radio interface (CPRI).
  • CPRI common public radio interface
  • the processing unit 1002 in the above device 1000 can be implemented in one chip of the baseband device 143, the transmitting unit 1001 is implemented by another chip of the baseband device 143, or they are integrated together, through a chip of the baseband device 143. Or, their functions are stored in the storage element of the baseband device 143 in the form of program code, and are processed by the baseband device 143. Component scheduling implementation. The implementation of other units is similar. Moreover, the units in device 1200 are implemented similarly.
  • the processing elements herein, as described above, may be a general purpose processor, such as a CPU, or may be one or more integrated circuits configured to implement the above methods, such as one or more ASICs, or one or more DSPs. Or, one or more FPGAs, etc.
  • the storage element can be a memory or a collective name for a plurality of storage elements.
  • FIG. 1 These computer program instructions can be provided to a processor of a general purpose computer, special purpose computer, embedded processor, or other programmable data processing device to produce a machine for the execution of instructions for execution by a processor of a computer or other programmable data processing device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Abstract

一种数据发送方法及装置,所述方法用于多载波通信系统中,该通信系统包括第一成员载波和第二成员载波,其中第一成员载波既用于终端的下行传输又用于该终端的上行传输,第二成员载波为用于该终端的下行传输的单下行成员载波,包括:第一基站确定第一成员载波在第二成员载波使用的天线上的天线权值,其中第一基站为第二成员载波所在的基站;当第一成员载波和该第二成员载波的信道相似度满足预设要求时,利用该天线权值对第二成员载波上的该终端的下行数据进行加权;向该终端发送加权的下行数据,这样,能够提高多载波场景中终端的解调信噪比和吞吐量。

Description

一种数据发送方法及装置 技术领域
本发明涉及通信技术领域,尤其涉及一种数据发送方法及装置。
背景技术
在时分双工(time division duplex,TDD)通信系统中,上下行信道是具有互易性的,因此在TDD系统中可以利用上下行信道互易性来实现波束赋形,提高终端的解调信噪比和吞吐量。例如,基站可以基于上行信道测量估计下行信道信息,形成下行加权矩阵,对数据先加权再发送,从而使到达接收端的信号最大化。
然而,在多载波技术引入之后,例如载波聚合(Carrier Aggregation,CA)技术,终端可以在不同的成员载波(Component Carrier,CC)上进行数据传输,但由于终端的功率限制,终端支持的上行载波数有限,终端支持的下行载波数大于上行载波数,通常上行载波是下行载波的子集,因此对于某个终端而言,可能会存在一个或多个成员载波只有下行传输信道而没有上行传输信道。
由于基站实现下行载波波束赋形时依赖于上行信道测量,目前对于只有下行传输信道而没有上行传输信道的载波,无法使用通过上行信道测量预估下行信道信息来进行波束赋形的技术,从而无法获得波束赋形带来的增益。
发明内容
本发明实施例提供一种数据发送方法及装置,以期提高多载波场景中终端的解调信噪比和吞吐量。
第一方面,提供一种数据发送方法,该方法用于多载波通信系统中,该通信系统包括第一成员载波和第二成员载波,其中第一成员载波既用于终端的下行传输又用于该终端的上行传输,第二成员载波为用于终端的下行传输 的单下行成员载波,包括:第一基站确定第一成员载波在第二成员载波使用的天线上的天线权值,其中第一基站为第二成员载波所在的基站;当第一成员载波和第二成员载波的信道相似度满足预设要求时,第一基站利用所述天线权值对第二成员载波上的终端的下行数据进行加权;第一基站向终端发送加权的下行数据。
结合第一方面,一种可能的设计中,当第一成员载波和第二成员载波的信道相似度满足预设要求时,第一基站利用所述天线权值对第二成员载波上的该终端的下行数据进行加权,可以通过如下方式实现:
第一基站获取第一成员载波与第二成员载波之间的信道相似度;确定所述信道相似度是否大于预设阈值;当所述信道相似度大于预设阈值时,利用所述天线权值对第二成员载波上的所述终端的下行数据进行加权。
结合第一方面,一种可能的设计中,第一基站获取第一成员载波与第二成员载波之间的信道相似度,可以通过如下方式实现:
第一基站接收终端发送的第一成员载波对应的第一PMI和第二成员载波对应的第二PMI;对第一PMI、第二PMI进行相似性计算得到第一成员载波与第二成员载波之间的信道相似度。
这种设计中,当第一成员载波和第二成员载波共天馈时,第一基站基于第一成员载波对应的第一PMI和第二成员载波对应的第二PMI直接计算第一成员载波与第二成员载波之间的信道相似度,实现方式简单。
结合第一方面,一种可能的设计中,第一基站获取第一成员载波与第二成员载波之间的信道相似度,可以通过如下方式实现:
第一基站接收第二基站发送的第一成员载波与第二成员载波之间的信道相似度;其中,第二基站为第一成员载波所在的基站。
这种设计中,当第一成员载波和第二成员载波非共天馈时,接收第二基站发送的第一成员载波与第二成员载波之间的信道相似度,可以提高信息获取效率。
结合第一方面,一种可能的设计中,第一基站确定第一成员载波在第二 成员载波对应天线的天线权值,可以通过如下方式实现:
当第一成员载波和第二成员载波共天馈时,第一基站获取第一成员载波使用的天线的天线权值,作为第一成员载波在第二成员载波使用的天线上的天线权值;
当第一成员载波和第二成员载波非共天馈时,第一基站接收所述终端在第一成员载波上发送的上行参考信号,基于所述上行参考信号确定第一成员载波在第二成员载波使用的天线上的天线权值。
第二方面,提供一种数据发送方法,所述方法用于多载波通信系统中,所述通信系统包括第一成员载波和第二成员载波,其中所述第一成员载波既用于终端的下行传输又用于所述终端的上行传输,所述第二成员载波为用于所述终端的下行传输的单下行成员载波,包括:
第二基站确定终端的第一成员载波与第二成员载波之间的信道相似度;将所述信道相似度发送至所述第一基站;
其中,第一基站为第二成员载波所在的基站,第二基站为第一成员载波所在的基站。
结合第二方面,一种可能的设计中,第二基站确定终端的第一成员载波与第二成员载波之间的信道相似度,可以通过如下方式实现:
第二基站接收终端发送的第一成员载波对应的第一PMI和第二成员载波对应的第二PMI;对所述第一PMI、第二PMI2计算相似性得到第一成员载波与第二成员载波之间的信道相似度。
第三方面,提供一种数据发送装置,所述装置用于多载波通信系统的第一基站中,所述通信系统包括第一成员载波和第二成员载波,其中所述第一成员载波既用于终端的下行传输又用于所述终端的上行传输,所述第二成员载波为用于所述终端的下行传输的单下行成员载波,所述第一基站为所述第二成员载波所在的基站,所述装置包括:
处理单元,用于确定所述第一成员载波在所述第二成员载波使用的天线上的天线权值;当所述第一成员载波和所述第二成员载波的信道相似度满足 预设要求时,所述处理单元还用于利用所述天线权值对所述第二成员载波上的所述终端的下行数据进行加权;
发送单元,用于向所述终端发送加权的下行数据。
结合第三方面,一种可能的设计中,所述处理单元具体用于:
获取第一成员载波与第二成员载波之间的信道相似度;确定所述信道相似度是否大于预设阈值;当所述信道相似度大于预设阈值时,利用所述天线权值对第二成员载波上的所述终端的下行数据进行加权。
结合第三方面,一种可能的设计中,所述装置还包括:
接收单元,用于接收终端发送的第一成员载波对应的第一预编码矩阵指示PMI和第二成员载波对应的第二PMI;
所述处理单元,用于对所述第一PMI、所述第二PMI进行相似性计算得到所述第一成员载波与所述第二成员载波之间的信道相似度。
结合第三方面,一种可能的设计中,所述装置还包括:
接口单元,用于接收第二基站发送的第一成员载波与第二成员载波之间的信道相似度;其中,所述第二基站为所述第一成员载波所在的基站。
结合第三方面,一种可能的设计中,所述处理单元具体用于:
当第一成员载波和第二成员载波共天馈时,获取第一成员载波使用的天线的天线权值,作为第一成员载波在第二成员载波使用的天线上的天线权值;
当第一成员载波和第二成员载波非共天馈时,接收所述终端在第一成员载波上发送的上行参考信号,基于所述上行参考信号确定第一成员载波在第二成员载波使用的天线上的天线权值。
第四方面,提供一种数据发送装置,所述装置用于多载波通信系统的第二基站中,所述通信系统包括第一成员载波和第二成员载波,其中所述第一成员载波既用于终端的下行传输又用于所述终端的上行传输,所述第二成员载波为用于所述终端的下行传输的单下行成员载波,第二基站为第一成员载波所在的基站,所述装置包括:
处理单元,用于确定终端的第一成员载波与第二成员载波之间的信道相 似度;
发送单元,用于将所述信道相似度发送至第一基站;
其中,第一基站为第二成员载波所在的基站。
结合第四方面,一种可能的设计中,所述装置还包括:
接收单元,用于接收终端发送的第一成员载波对应的第一预编码指示矩阵PMI和第二成员载波对应的第二PMI;
所述处理单元,用于对第一PMI、第二PMI2计算相似性得到第一成员载波与第二成员载波之间的信道相似度。
第五方面,提供一种设备,该设备包括处理器、存储器、发射器和接收器,其中,所述存储器中存有计算机可读程序,所述处理器通过运行所述存储器中的程序,控制所述发射器和接收器,实现第一方面涉及的数据发送方法。
第六方面,提供一种设备,该设备包括处理器、存储器、发射器和接收器,其中,所述存储器中存有计算机可读程序,所述处理器通过运行所述存储器中的程序,控制所述发射器和所述接收器,实现第二方面涉及的数据发送方法。
第七方面,本申请提供一种计算机存储介质,用于储存为上述第一方面、第二方面所述的第一基站所用的计算机软件指令,其包含用于执行上述方面所设计的程序。
第八方面,本申请提供一种计算机存储介质,用于储存为上述第一方面、第二方面所述的第二基站所用的计算机软件指令,其包含用于执行上述方面所设计的程序。
可见,在以上各个方面,多载波聚合场景中,相较于现有技术中,对于单下行的第二成员载波无法利用上下行信道的互易性来进行波束赋形处理,使得第二成员载波上无法获得波束赋形增益,本发明提供的数据传输方案中,当存在上行信道的第一成员载波的信道相似度与第二成员载波的信道相似度满足预设要求时,利用存在上行信道的第一成员载波在第二成员载波所使用 的天线系统上的天线权值来加权第二成员载波上的下行数据,并发送给终端,从而实现对第二成员载波的波束赋形,获得波束赋形增益,提高终端的解调信噪比和吞吐量。
附图说明
图1A为本发明实施例中非共天馈多载波通信系统的示意图;
图1B为本发明实施例中共天馈多载波通信系统的示意图;
图2为本发明实施中的数据发送方法流程图;
图3为本发明实施例中第一成员载波与第二成员载波之间的信道相似度计算过程示意图;
图4为本发明实施中的一种数据发送方法信令流图;
图5为本发明实施中的一种数据发送方法信令流图;
图6为本发明实施中的一种数据发送方法信令流图;
图7为本发明实施中的一种数据发送方法信令流图;
图8为本发明实施中的一种数据发送方法信令流图;
图9为本发明实施中的一种数据发送方法信令流图;
图10A、图10B和图10C为本发明实施中的一种数据发送装置结构示意图;
图11为本发明实施中的一种数据发送设备结构示意图;
图12A和图12B为本发明实施中的一种数据发送装置结构示意图;
图13为本发明实施中的一种数据发送设备结构示意图;
图14为本发明实施中的基站结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳 动前提下所获得的所有其他实施例,都属于本发明保护的范围。
首先,对本申请中的部分用语进行解释说明,以便于本领域技术人员理解。
1)、基站又可以称之为无线接入网(Radio Access Network,RAN)设备,是一种将终端接入到无线网络的设备,包括但不限于:演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(Base Station Controller,BSC)、基站收发台(Base Transceiver Station,BTS)、家庭基站(例如,Home evolved NodeB,或Home Node B,HNB)、基带单元(BaseBand Unit,BBU)、WIFI接入点(Access Point,AP)等。
2)、终端,又称之为用户设备,是一种向用户提供语音和/或数据连通性的设备,例如,具有无线连接功能的手持式设备、车载设备等。常见的终端例如包括:手机、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备,例如智能手表、智能手环、计步器等。
3)、多载波通信系统,是指利用多个载波实现与终端之间的通信的系统,其中每个载波可以称为成员载波。例如,载波聚合(Carrier Aggregation,CA),CA技术通过多个成员载波的聚合来提高系统的带宽。长期演进的后续演进(Long Term Evolution Advanced,LTE-A)系统为了满足单用户峰值速率和系统容量提升的要求,引入了CA技术,该技术支持聚合多个CC的聚合,包括在相同频带内的CC聚合,其中包括相同频带内相邻或不相邻的CC聚合,以及不同频带内的CC聚合。
4)、主成员载波(Primary Component Carrier,PCC)、辅成员载波(Secondary Component Carrier,SCC)。在聚合的多个成员载波中,包括一个PCC和至少一个SCC,其中,PCC用于控制面的传输,也可以用于用户面的传输;SCC用于用户面的传输。PCC对应的小区为主小区(PCell),SCC对应的小区为辅小区(SCell)。PCell是终端初始接入的小区,负责与终端之间的无线资源控制(radio resource control,RRC)通信。SCell是在RRC重配置时添加的, 用于提供额外的无线资源。通常,PCell是在连接建立(connection establishment)时确定的;SCell是在初始安全激活流程(initial security activation procedure)之后,通过RRC连接重配置消息(RRC Connection Reconfiguration)添加/修改/释放的。
5)单下行成员载波,是指用于终端下行传输而不用于终端上行传输的成员载波,也就是说,是只存在下行传输信道的成员载波;该单下行成员载波通常为SCC。。
6)、“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
在多载波通信系统中,受终端功率的限制,往往存在上下行成员载波不对称的场景,例如,请参考图1A和图1B,其中以3CC聚合的多载波通信系统为例,更多CC与之类似。在聚合的的3个CC中,包括PCC,SCC 1和SCC 2,其中SCC2上只有下行信道,因此在TDD系统中,目前无法利用上下行信道的互易性来对SCC2进行波束赋形处理,使得SCC2上无法获得波束赋形增益。
考虑到此问题,以下实施例中提供一种数据发送方法,在聚合的多个CC中,当存在上行信道的CC的信道相似度与单下行CC的信道相似度满足预设要求时,利用存在上行信道的CC在单下行CC所使用的天线系统上的天线权值来加权单下行CC上的下行数据,并发送给终端,从而实现对单下行CC的波束赋形,获得波束赋形增益,提高终端的解调信噪比和吞吐量。
下面分别结合图1A和图1B,分别以共天馈多载波聚合场景和非共天馈多载波聚合场景为例,来描述本申请的实施例,此处仅为举例,并非用于限制本发明。
请参考图1A,其为本发明实施例提供的非共天馈多载波通信系统的示意图。如图1所示,该通信系统包括第一基站和第二基站,第一基站用eNodeB1 表示,第二基站用eNodeB2表示。终端具有支持CA的能力。其中终端与第一基站和第二基站之间可以通过空口(Uu)通信,第一基站和第二基站之间可以通过X2口进行通信。示意性的,图1中第一基站eNodeB1与终端之间通信的成员载波包括第二辅成员载波SCC2,SCC2仅存在下行传输,是单下行辅成员载波,第二基站eNodeB2与终端之间通信的成员载波包括主成员载波PCC和第一辅成员载波SCC1,SCC1同时存在上行传输和下行传输。第一基站eNodeB1为终端的单下行辅成员载波所在的基站,第二基站eNodeB2为终端的PCC所在的基站。
当然,单下行辅成员载波SCC2所在的第一基站和主成员载波PCC所在的第二基站可以是同一基站,当它们共天馈时,可以构成共天馈多载波聚合场景,例如,可参考图1B所示,PCC,SCC1和SCC2共天馈。当它们不共天馈时,例如PCC和SCC2上的数据传输通过不同的射频装置实现时,仍然构成非共天馈多载波聚合场景。
这两种多载波聚合场景中,对于单下行辅成员载波SCC2,由于没有上行信道,基站无法通过上行测量预估下行信道信息,从而无法使用波束赋形技术,无法获得相应的增益,不利于解调信噪比,影响终端吞吐量。
本发明实施例提供了一种数据发送方法及装置,以期提高多载波场景中终端的解调信噪比和吞吐量。其中,方法和装置是基于同一发明构思的,由于方法及装置解决问题的原理相似,因此装置与方法的实施可以相互参见,重复之处不再赘述。
下面结合附图对本发明优选的实施方式进行详细说明。
请参考图2,其为本发明实施例提供的一种数据方法的流程图,所述方法用于多载波通信系统中,所述通信系统包括第一成员载波和第二成员载波,其中所述第一成员载波既用于终端的下行传输又用于所述终端的上行传输,所述第二成员载波为用于所述终端的下行传输的单下行成员载波。如图2所示,该方法包括如下步骤:
步骤21:第一基站确定第一成员载波在第二成员载波使用的天线上的天 线权值。
其中,第一基站为第二成员载波所在的基站。第一成员载波为存在上行传输信道的成员载波,第一成员载波包括主成员载波或上行辅成员载波。
具体的,第一基站确定第一成员载波在第二成员载波对应天线的天线权值,包括以下两种情形:
第一种情形:当第一成员载波和第二成员载波共天馈时,第一基站获取第一成员载波使用的天线的天线权值,作为第一成员载波在第二成员载波使用的天线上的天线权值。
第二种情形:当第一成员载波和第二成员载波非共天馈时,第一基站接收终端在第一成员载波上发送的上行参考信号,基于上行参考信号确定第一成员载波在第二成员载波使用的天线上的天线权值。其中,上行参考信号例如可以为探测参考信号(Sounding Reference Signal,SRS)。
步骤22:当第一成员载波和第二成员载波的信道相似度满足预设要求时,第一基站利用以上天线权值对第二成员载波上的终端的下行数据进行加权。
可选的,第一基站在确定第一成员载波和第二成员载波的信道相似度是否满足预设要求时,可以通过以下方式实现:
第一基站获取第一成员载波与第二成员载波之间的信道相似度;第一基站确定该信道相似度是否大于预设阈值;当信道相似度大于预设阈值时,确定第一成员载波和第二成员载波的信道相似度满足预设要求。
在一种可能的实施方式中,对于共天馈多载波通信系统中的终端,第一基站可以通过以下方式获取终端的第一成员载波与第二成员载波之间的信道相似度:
第一基站接收终端发送的第一成员载波对应的第一预编码矩阵指示(Precoding Matrix Indication,PMI)和第二成员载波对应的第二PMI;
第一基站对第一PMI、第二PMI进行相似性计算得到第一成员载波与第二成员载波之间的信道相似度。
在另一种可能的实施方式中,对于非共天馈多载波通信系统中的终端, 第一基站可以通过以下方式获取终端的第一成员载波与第二成员载波之间的信道相似度,具体可参考图3所示:
步骤S1:第二基站接收终端发送的第一成员载波对应的第一PMI和第二成员载波对应的第二PMI。
步骤S2:第二基站针对第一PMI、第二PMI计算相似性得到第一成员载波与第二成员载波之间的信道相似度。
第二基站将计算得到的第一成员载波与第二成员载波之间的信道相似度发送给第一基站。
步骤S3:第一基站接收第二基站发送的第一成员载波与第二成员载波之间的信道相似度。
其中,第二基站为第一成员载波所在的基站。
具体的,在针对第一PMI、第二PMI计算相似性时,可以将第一PMI和第二PMI转化为两个向量,计算两个向量的余弦值作为信道相似度;或者,计算两个向量点的欧式距离值作为信道相似度。
步骤23:第一基站向终端发送加权的下行数据。
这样,当终端的多载波聚合上下行不对称时,针对单下行辅成员载波,基站利用存在上行信道的成员载波和单下行辅成员载波的PMI计算二者相似度,并进行相似性判断,在相似性满足预设条件时,针对单下行辅成员载波借用存在上行信道的成员载波测量在该单下行成员载波使用的天线上的天线权值进行波束赋形处理,达到与该存在上行信道的成员载波类似的波束赋形增益,解决了CA场景下,单下行辅成员载波无法实现波束赋形的问题。
图4为针对图1B中共天馈多载波聚合场景下一种可能的数据发送方法的信令流图,具体流程如下所示。
步骤41、终端在PCC、SCC1的上行信道发送SRS。
步骤42、eNodeB测量SRS得到PCC、SCC1分别对应的天线权值。
步骤43、终端通过PCC向eNodeB反馈PCC、SCC1、SCC2的PMI信息。
步骤44、eNodeB根据反馈的PMI信息,判断PCC和SCC2是否存在相似的信道特征,如果是,继续执行步骤45;否则不对SCC2进行波束赋形处理。
具体的,eNodeB根据反馈的PMI信息,得到PCC、SCC2分别对应的PMI,分别用PMI1、PMI2表示,并计算PMI1和PMI2之间的余弦相似度,在得到的余弦相似度小于预设阈值时,确定PCC和SCC2存在相似的信道特征;否则,不存在相似的信道特征。
步骤45、eNodeB根据PCC和SCC1对应的天线权值对PCC和SCC1分别进行下行信道处理并发送下行数据。
步骤46、eNodeB采用PCC对应的天线权值,对SCC2的下行数据进行加权处理,并发送下行数据。
需要说明的是,步骤45和步骤46执行顺序不限定,可以同时执行,也可以先执行步骤45,再执行步骤46;反之也可。
图5为针对图1B中共天馈多载波聚合场景下另一种可能的数据发送方法的信令流图,具体流程如下所示。
步骤51~步骤53与图4中的步骤41~步骤43一致,在此不再赘述。
步骤54、eNodeB根据反馈的PMI信息,判断SCC1和SCC2是否存在相似的信道特征,如果是,继续执行步骤55;否则不对SCC2进行波束赋形处理。
具体的,eNodeB根据反馈的PMI信息,得到SCC1、SCC2分别对应的PMI,分别用PMI3、PMI2表示,并计算PMI3和PMI2之间的余弦相似度,在得到的余弦相似度小于预设阈值时,确定SCC1和SCC2存在相似的信道特征;否则,不存在相似的信道特征。
步骤55、eNodeB根据PCC和SCC1对应的的天线权值对PCC和SCC1分别进行下行信道处理并发送下行数据。
步骤56、eNodeB采用SCC1对应的天线权值,对SCC2的下行数据进行加权处理,并发送下行数据。
需要说明的是,步骤55和步骤56执行顺序不限定,可以同时执行,也可以先执行步骤55,再执行步骤56;反之也可。
在以上两个实施例中,基站分别利用PCC和非单下行成员载波的SCC对应的天线权值来对单下行成员载波进行波束赋形处理,当然,也可以不限制用PCC还是SCC,而是从所有的非单下行成员载波的成员载波中选择一个信道相似度满足预定要求的成员载波对应的天线权值来对单下行成员载波进行波束赋形,例如可以为PCC,也可以为SCC1。
图6为针对图1B中共天馈多载波聚合场景下另一种可能的数据发送方法的信令流图,具体流程如下所示。
步骤61~步骤63与图4中的步骤41~步骤43一致,在此不再赘述。
步骤64、eNodeB根据反馈的PMI信息,判断PCC和SCC1中是否包括一个与SCC2存在相似的信道特征的成员载波,如果是,继续执行步骤65;否则不对SCC2进行波束赋形处理。
具体的,eNodeB根据反馈的PMI信息,得到PCC、SCC1、SCC2分别对应的PMI,分别用PMI1、PMI3、PMI2表示,并计算PMI1和PMI2之间的第一余弦相似度以及PMI3和PMI2之间的第二余弦相似度,在得到的第一余弦相似度小于预设阈值时,确定PCC和SCC2存在相似的信道特征;在得到的第二余弦相似度小于预设阈值时,确定SCC1和SCC2存在相似的信道特征;否则,不存在相似的信道特征。
步骤65、eNodeB根据PCC和SCC1对应的天线权值对PCC和SCC1进行下行信道处理并发送下行数据。
步骤66、eNodeB从PCC、SCC1中选择一个成员载波,采用选择的成员载波对应的天线权值,对SCC2的下行数据进行加权处理,并发送下行数据。
具体的,在第一余弦相似度小于预设阈值且第二余弦相似度不小于预设阈值时,eNodeB从PCC、SCC1中选择PCC,采用PCC对应的天线权值,对SCC2的下行数据进行加权处理,并发送下行数据。
在第二余弦相似度小于预设阈值且第一余弦相似度不小于预设阈值时, eNodeB从PCC、SCC1中选择SCC1,采用SCC1对应的天线权值,对SCC2的下行数据进行加权处理,并发送下行数据。
具体的,在第一余弦相似度小于预设阈值且第二余弦相似度小于预设阈值时,eNodeB从PCC、SCC1中任意选择一个成员载波或选择余弦相似较小的一个成员载波,采用选择的成员载波对应的天线权值,对SCC2的下行数据进行加权处理,并发送下行数据。
需要说明的是,步骤65和步骤66执行顺序不限定,可以同时执行,也可以先执行步骤65,再执行步骤66;反之也可。
图7为针对图1A中非共天馈多载波聚合场景下一种可能的数据发送方法的详细信令流图,具体流程如下所示。
步骤71、终端在PCC、SCC1的上行信道发送SRS。
步骤72、eNodeB1测量PCC、SCC1的SRS得到这2个载波分别对应的天线权值。
步骤73、eNodeB2通过SCC2所在的射频拉远单元(Radio Remote Unit,RRU)/天馈主动接收PCC的SRS,并测量得到PCC在SCC2使用的天线上的天线权值。步骤73中eNodeB2测量得到的PCC的天线权值与eNodeB1测量得到的PCC的天线权值是不同的,PCC的天馈并不在eNodeB2上,eNodeB2测量得到的PCC的天线权值并不是PCC实际使用的天线权值,是在PCC和SCC2的信道相似的情况下,利用PCC的上行信道等效SCC2的上行信道,进而对SCC2进行加权的一种方式。
步骤74、终端通过PCC向eNodeB1反馈PCC、SCC1、SCC2的PMI信息。
步骤75、eNodeB1根据反馈的PMI信息,计算PCC和SCC2之间的信道相似度。
具体的,eNodeB1根据反馈的PMI信息,得到PCC、SCC2分别对应的PMI,分别用PMI1、PMI2表示,并计算PMI1和PMI2之间的余弦相似度,将所述余弦相似度作为PCC、SCC2之间的信道相似度。
步骤76、eNodeB1将PCC与SCC2的信道相似度发送给eNodeB2。
步骤77、eNodeB1根据PCC和SCC1对应的天线权值对PCC和SCC1分别进行下行信道处理并发送下行数据。
步骤78、eNodeB2判断PCC和SCC2是否存在相似的信道特征,如果是,继续执行步骤79;否则不对SCC2进行波束赋形处理。
具体的,eNodeB2在得到的余弦相似度小于预设阈值时,确定PCC和SCC2存在相似的信道特征;否则,不存在相似的信道特征。
步骤79:eNodeB2采用PCC在SCC2使用的天线上的天线权值,对SCC2的下行数据进行加权处理,并发送下行数据。
需要说明的是,eNodeB1和eNodeB2执行的步骤之间没有顺序限制,例如,步骤77和步骤78执行顺序不限定,可以同时执行,也可以先执行步骤77,再执行步骤78;反之也可。
图8为针对图1A中非共天馈多载波聚合场景下一种可能的数据发送方法的详细信令流图,具体流程如下所示。
步骤81~步骤82与图7中的步骤71~步骤72一致,在此不再赘述。
步骤83、eNodeB2通过SCC2所在的RRU/天馈主动接收SCC1的SRS信号,并测量得到SCC1在SCC2使用的天线上的天线权值。
步骤84、终端通过PCC向eNodeB1反馈PCC、SCC1、SCC2的PMI信息。
步骤85、eNodeB1根据反馈的PMI信息,计算SCC1和SCC2之间的信道相似度。
具体的,eNodeB1根据反馈的PMI信息,得到SCC1、SCC2分别对应的PMI,分别用PMI3、PMI2表示,并计算PMI3和PMI2之间的余弦相似度,将所述余弦相似度作为SCC1、SCC2之间的信道相似度。
步骤86、eNodeB1将SCC1与SCC2的信道相似度发送给eNodeB2。
步骤87、eNodeB1根据PCC和SCC1对应的天线权值对PCC和SCC1分别进行下行信道处理并发送下行数据。
步骤88、eNodeB2判断SCC1和SCC2是否存在相似的信道特征,如果是,继续执行步骤89;否则不对SCC2进行波束赋形处理。
具体的,eNodeB2在得到的余弦相似度小于预设阈值时,确定SCC1和SCC2存在相似的信道特征;否则,不存在相似的信道特征。
步骤89:eNodeB2采用SCC1在SCC2使用的天线上的天线权值,对SCC2的下行数据进行加权处理,并发送下行数据。
需要说明的是,eNodeB1和eNodeB2执行的步骤之间没有顺序限制,例如,步骤87和步骤88执行顺序不限定,可以同时执行,也可以先执行步骤87,再执行步骤88;反之也可。
图9为针对图1A中非共天馈多载波聚合场景下一种可能的数据发送方法的信令流图,具体流程如下所示。
步骤91~步骤92与图7中的步骤71~步骤72一致,在此不再赘述。
步骤93、eNodeB2通过SCC2所在的RRU/天馈主动接收PCC、SCC1的SRS信号,并测量得到PCC和SCC1在SCC2使用的天线上的天线权值。
步骤94、终端通过PCC向eNodeB1反馈PCC、SCC1、SCC2的PMI信息。
步骤95、eNodeB1根据反馈的PMI信息,计算PCC和SCC2之间的信道相似度和SCC1和SCC2之间的信道相似度。
具体的,eNodeB1根据反馈的PMI信息,得到PCC、SCC1、SCC2分别对应的PMI,分别用PMI1、PMI3、PMI2表示,并计算PMI1和PMI2之间的第一余弦相似度,将所述第一余弦相似度作为PCC和SCC2之间的信道相似度;并计算PMI3和PMI2之间的第二余弦相似度,将所述第二余弦相似度作为SCC1和SCC2之间的信道相似度。
步骤96、eNodeB1将PCC和SCC2的信道相似度、SCC1与SCC2的信道相似度发送给eNodeB2。
步骤97、eNodeB1根据PCC和SCC1对应的天线权值对PCC和SCC1分别进行下行信道处理并发送下行数据。
步骤98、eNodeB2判断PCC和SCC1中是否包括一个与SCC2存在相似的信道特征的成员载波,如果是,则从PCC、SCC1中选择一个成员载波,继续执行步骤99;否则不对SCC2进行波束赋形处理。
具体的,eNodeB2在得到的第一余弦相似度小于预设阈值时,确定PCC和SCC2存在相似的信道特征;在得到的第二余弦相似度小于预设阈值时,确定SCC1和SCC2存在相似的信道特征。
具体的,在第一余弦相似度小于预设阈值且第二余弦相似度不小于预设阈值时,eNodeB2从PCC、SCC1中选择PCC;在第二余弦相似度小于预设阈值且第一余弦相似度不小于预设阈值时,eNodeB2从PCC、SCC1中选择SCC1;在第一余弦相似度小于预设阈值且第二余弦相似度小于预设阈值时,eNodeB2从PCC、SCC1中任意选择一个成员载波或选择余弦相似较小的一个成员载波,继续执行步骤99。
步骤99:eNodeB2采用选择的成员载波在SCC2使用的天线上的天线权值,对SCC2的下行数据进行加权处理,并发送下行数据。
需要说明的是,eNodeB1和eNodeB2执行的步骤之间没有顺序限制,例如,步骤97和步骤98执行顺序不限定,可以同时执行,也可以先执行步骤97,再执行步骤98;反之也可。
需要说明的是,以上实施例中在确定成员载波之间的信道相似度时,采用了PMI计算余弦相似度的方式进行,然而本发明不以此为限,也可以采用任何现有或将来的计算信道相似度的方式进行。
基于上述实施例提供的数据发送方法,本发明实施例提供一种装置1000,该装置1000用于多载波通信系统的第一基站中,所述通信系统包括第一成员载波和第二成员载波,其中所述第一成员载波既用于终端的下行传输又用于所述终端的上行传输,所述第二成员载波为用于所述终端的下行传输的单下行成员载波,所述第一基站为所述第二成员载波所在的基站,图10A所示为本发明实施例提供的装置1000的结构示意图,如图10A所示,该装置1000包括发送单元1001和处理单元1002,其中:
处理单元1002,用于确定第一成员载波在第二成员载波使用的天线上的天线权值;当第一成员载波和第二成员载波的信道相似度满足预设要求时,处理单元1002还用于利用确定的天线权值对第二成员载波上的终端的下行数据进行加权;
发送单元1001,用于向终端发送加权的下行数据。
可选的,处理单元1002具体用于:
获取第一成员载波与第二成员载波之间的信道相似度;确定该信道相似度是否大于预设阈值;当信道相似度大于预设阈值时,利用以上天线权值对第二成员载波上的终端的下行数据进行加权。
可选的,处理单元1002可以利用从终端获取的PMI来确定第一成员载波和第二成员载波之间的信道相似度,此时,请参见图10B,该装置1000还包括接收单元1003:
接收单元1003,用于接收终端发送的第一成员载波对应的第一PMI和第二成员载波对应的第二PMI;
处理单元1002,用于对第一PMI、第二PMI进行相似性计算得到第一成员载波与第二成员载波之间的信道相似度。
可选的,处理单元1002可以从第一成员载波所在的基站获取第一成员载波与第二成员载波之间的信道相似度,请参见图10B,该装置1000还包括:接口单元1004:
接口单元1004,用于接收第二基站发送的第一成员载波与第二成员载波之间的信道相似度;其中,第二基站为第一成员载波所在的基站,可选的,第二基站可以包括图12A或图12B所示的装置1200或图13所示的设备1300。
可选的,处理单元1002具体用于:
当第一成员载波和第二成员载波共天馈时,获取第一成员载波使用的天线的天线权值,作为第一成员载波在第二成员载波使用的天线上的天线权值;
当第一成员载波和所述第二成员载波非共天馈时,接收终端在第一成员载波上发送的上行参考信号,基于上行参考信号确定第一成员载波在第二成 员载波使用的天线上的天线权值。
应理解以上装置1000中的各个单元的划分仅仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。例如,以上各个单元可以为单独设立的处理元件,也可以集成在基站的某一个芯片中实现,此外,也可以以程序代码的形式存储于基站的存储元件中,由基站的某一个处理元件调用并执行以上各个单元的功能。此外各个单元可以集成在一起,也可以独立实现。这里所述的处理元件可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤或以上各个单元可以通过处理器元件中的硬件的集成逻辑电路或者软件形式的指令完成。该处理元件可以是通用处理器,例如中央处理器(Central Processing Unit,CPU),还可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个特定集成电路(Application Specific Integrated Circuit,ASIC),或,一个或多个微处理器(digital singnal processor,DSP),或,一个或者多个现场可编程门阵列(Field Programmable Gate Array,FPGA)等。
需要说明的是,本发明实施例中的装置1000的各个单元的功能实现以及交互方式可以进一步参照相关方法实施例的描述,在此不再赘述。
本发明实施例还提供一种设备1100,所述设备1100用于多载波通信系统的第一基站中,该设备1100可以为该第一基站,或位于第一基站上的设备,该多载波通信系统包括第一成员载波和第二成员载波,其中第一成员载波既用于终端的下行传输又用于终端的上行传输,第二成员载波为用于终端的下行传输的单下行成员载波,第一基站为第二成员载波所在的基站,图11所示为本发明实施例提供的设备1100的结构示意图,如图11所示,设备1100包括处理器1101,存储器1102、发射器1103,接收器1104,执行本发明方案的程序代码保存在存储器1102中,并由处理器1101,来控制执行。
存储器1102中存储的程序用于指令处理器1101执行数据发送方法,包括:确定第一成员载波在第二成员载波使用的天线上的天线权值;当第一成员载波和第二成员载波的信道相似度满足预设要求时,利用该天线权值对第 二成员载波上的终端的下行数据进行加权;通过发射器1103向终端发送加权的下行数据。
可选的,处理器1101具体用于:
获取第一成员载波与第二成员载波之间的信道相似度;确定信道相似度是否大于预设阈值;当信道相似度大于预设阈值时,利用天线权值对第二成员载波上的终端的下行数据进行加权。
可选的,处理器1101还用于:
通过接收器1104接收终端发送的第一成员载波对应的第一PMI和第二成员载波对应的第二PMI;
处理器1101,还用于对第一PMI、第二PMI进行相似性计算得到第一成员载波与第二成员载波之间的信道相似度。
可选的,处理器1101还用于:
通过接口接收第二基站发送的第一成员载波与第二成员载波之间的信道相似度;其中,第二基站为第一成员载波所在的基站,可选的,第二基站可以包括图12A或12B所示的装置1200或图13所示的设备1300。这里的接口是基站之间的接口,例如X2接口,当两个基站之间没有直接的接口时,可以通过核心网转发,此时的接口可以为S1接口。
可选的,处理器1101具体用于:
当第一成员载波和第二成员载波共天馈时,获取第一成员载波使用的天线的天线权值,作为第一成员载波在第二成员载波使用的天线上的天线权值;
当第一成员载波和第二成员载波非共天馈时,通过接收器接收终端在第一成员载波上发送的上行参考信号,基于该上行参考信号确定第一成员载波在第二成员载波使用的天线上的天线权值。
可以理解的是,本实施例的设备1100可用于实现上述方法实施例中涉及第一基站的所有功能,其具体实现过程可以参照上述方法实施例第一基站执行方法的相关描述,此处不再赘述。
基于上述实施例提供的数据发送方法,本发明实施例提供一种装置1200, 该装置1200用于多载波通信系统的第二基站中,所述通信系统包括第一成员载波和第二成员载波,其中第一成员载波既用于终端的下行传输又用于终端的上行传输,第二成员载波为用于终端的下行传输的单下行成员载波,第二基站为第一成员载波所在的基站,图12A所示为本发明实施例提供的装置1200的结构示意图,如图12A所示,该装置1200包括发送单元1201和处理单元1202,其中:
处理单元1202,用于确定终端的第一成员载波与第二成员载波之间的信道相似度;
发送单元1201,用于将所述信道相似度发送至第一基站;其中,第一基站为第二成员载波所在的基站。可选的,第一基站可以包括图10A,10B,或10C所示的装置1000或图11所示的设备1100。
可选的,请参见12B,所述装置还包括:
接收单元1203,用于接收终端发送的第一成员载波对应的第一PMI和第二成员载波对应的第二PMI;
处理单元1202,用于对第一PMI、第二PMI2计算相似性得到第一成员载波与第二成员载波之间的信道相似度。
应理解以上装置1200中的各个单元的划分仅仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。例如,以上各个单元可以为单独设立的处理元件,也可以集成在基站的某一个芯片中实现,此外,也可以以程序代码的形式存储于基站的存储元件中,由基站的某一个处理元件调用并执行以上各个单元的功能。此外各个单元可以集成在一起,也可以独立实现。这里所述的处理元件可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤或以上各个单元可以通过处理器元件中的硬件的集成逻辑电路或者软件形式的指令完成。该处理元件可以是通用处理器,例如CPU,还可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个ASIC,或,一个或多个DSP,或,一个或者多个FPGA等。
需要说明的是,本发明实施例中的装置1200的各个单元的功能实现以及交互方式可以进一步参照相关方法实施例的描述,在此不再赘述。
本发明实施例还提供一种设备1300,所述设备1300用于多载波通信系统的第二基站中,该设备1300可以为该第二基站,或位于第二基站上的设备,所述通信系统包括第一成员载波和第二成员载波,其中第一成员载波既用于终端的下行传输又用于终端的上行传输,第二成员载波为用于终端的下行传输的单下行成员载波,第一基站为第二成员载波所在的基站,图13所示为本发明实施例提供的设备1300的结构示意图,如图13所示,设备1300包括处理器1301,存储器1302、发射器1303,接收器1304,执行本发明方案的程序代码保存在存储器1302中,并由处理器1301来控制执行。
存储器1302中存储的程序用于指令处理器1301执行数据发送方法,包括:确定终端的第一成员载波与第二成员载波之间的信道相似度;通过发射器1303将信道相似度发送至第一基站;其中,第一基站为第二成员载波所在的基站,可选的,第一基站可以包括图10A,10B,或10C所示的装置1000或图11所示的设备1100。
处理器1301还用于:通过接收器1304接收终端发送的第一成员载波对应的第一PMI和第二成员载波对应的第二PMI;对第一PMI、第二PMI2计算相似性得到第一成员载波与第二成员载波之间的信道相似度。
可以理解的是,本实施例的设备1300可用于实现上述方法实施例中涉及第二基站的所有功能,其具体实现过程可以参照上述方法实施例第二基站执行方法的相关描述,此处不再赘述。
可以理解的是,本发明实施例上述设备1100和设备1300中涉及的处理器可以是一个通用中央处理器(CPU),微处理器,特定应用集成电路application-specific integrated circuit(ASIC),或一个或多个用于控制本发明方案程序执行的集成电路。计算机系统中包括的一个或多个存储器,可以是只读存储器read-only memory(ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器random access memory(RAM)或者可存储信息 和指令的其他类型的动态存储设备,也可以是磁盘存储器。这些存储器通过总线与处理器相连接。
接收器和发射器可以通过收发器实现其功能,所述收发器可以是能够实现收发功能的实体模块,以便与其他设备或通信网络通信。
存储器,如RAM,保存有操作系统和执行本发明方案的程序。操作系统是用于控制其他程序运行,管理系统资源的程序。
这些存储器、发射器和接收器可以通过总线与处理器相连接,或者也可以通过专门的连接线分别与处理器连接。
通过对处理器进行设计编程,将下面所示的方法所对应的代码固化到芯片内,从而使芯片在运行时能够执行图2所示的方法。如何对处理器进行设计编程为本领域技术人员所公知的技术,这里不再赘述。
请参见图14,图14为本发明实施例提供的一种基站的结构示意图。如图14所示,该基站包括:天线141、射频装置142、基带装置143。天线141与射频装置142连接。在上行方向上,射频装置132通过天线141接收终端发送的信息,将终端发送的信息发送给基带装置143进行处理。在下行方向上,基带装置143对终端的信息进行处理,并发送给射频装置142,射频装置142对终端的信息进行处理后经过天线141发送给终端。
以上装置1000可以位于基带装置143,包括处理元件131和存储元件132。基带装置143例如可以包括至少一个基带板,该基带板上设置有多个芯片,如图14所示,其中一个芯片例如为处理元件131,与存储元件132连接,以调用存储元件132中的程序,执行以上方法实施例中所示的操作。该基带装置143还可以包括接口133,用于与射频装置142交互信息,该接口例如为通用公共无线接口(common public radio interface,CPRI)。
再如,以上装置1000中的处理单元1002可以通过基带装置143的一个芯片中实现,发送单元1001通过基带装置143的另一个芯片实现,或者,将它们集成在一起,通过基带装置143的一个芯片实现;或者,将它们的功能通过程序代码的形式存储于基带装置143的存储元件中,通过基带装置143的一个处理 元件调度实现。其它单元的实现与之类似。此外,装置1200中的单元实现与之类似。
这里的处理元件同以上描述,可以是通用处理器,例如CPU,还可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个ASIC,或,一个或多个DSP,或,一个或者多个FPGA等。
存储元件可以是一个存储器,也可以是多个存储元件的统称。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分步骤是可以通过程序来指令处理器完成,所述的程序可以存储于计算机可读存储介质中,所述存储介质是非短暂性(英文:non-transitory)介质,例如随机存取存储器,只读存储器,快闪存储器,硬盘,固态硬盘,磁带(英文:magnetic tape),软盘(英文:floppy disk),光盘(英文:optical disc)及其任意组合。
本发明是参照本发明实施例的方法和设备各自的流程图和方框图来描述的。应理解可由计算机程序指令实现流程图和方框图中的每一流程和方框、以及流程图和方框图中的流程和方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和方框图一个方框或多个方框中指定的功能的装置。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求的保护范围为准。

Claims (14)

  1. 一种数据发送方法,其特征在于,所述方法用于多载波通信系统中,所述通信系统包括第一成员载波和第二成员载波,其中所述第一成员载波既用于终端的下行传输又用于所述终端的上行传输,所述第二成员载波为用于所述终端的下行传输的单下行成员载波,包括:
    第一基站确定所述第一成员载波在所述第二成员载波使用的天线上的天线权值,其中所述第一基站为所述第二成员载波所在的基站;
    当所述第一成员载波和所述第二成员载波的信道相似度满足预设要求时,所述第一基站利用所述天线权值对所述第二成员载波上的所述终端的下行数据进行加权;
    所述第一基站向所述终端发送加权的下行数据。
  2. 如权利要求1所述的方法,其特征在于,当所述第一成员载波和所述第二成员载波的信道相似度满足预设要求时,所述第一基站利用所述天线权值对所述第二成员载波上的所述终端的下行数据进行加权,包括:
    所述第一基站获取所述第一成员载波与所述第二成员载波之间的信道相似度;
    所述第一基站确定所述信道相似度是否大于预设阈值;
    当所述信道相似度大于预设阈值时,所述第一基站利用所述天线权值对所述第二成员载波上的所述终端的下行数据进行加权。
  3. 如权利要求2所述的方法,其特征在于,所述第一基站获取所述第一成员载波与第二成员载波之间的信道相似度,包括:
    所述第一基站接收终端发送的第一成员载波对应的第一预编码矩阵指示PMI和第二成员载波对应的第二PMI;
    所述第一基站对所述第一PMI、所述第二PMI进行相似性计算得到所述第一成员载波与所述第二成员载波之间的信道相似度。
  4. 如权利要求2所述的方法,其特征在于,所述第一基站获取所述第一 成员载波与第二成员载波之间的信道相似度,包括:
    所述第一基站接收第二基站发送的所述第一成员载波与第二成员载波之间的信道相似度;
    其中,所述第二基站为所述第一成员载波所在的基站。
  5. 如权利要求1至4任一项所述的方法,其特征在于,所述第一基站确定所述第一成员载波在所述第二成员载波对应天线的天线权值,包括:
    当所述第一成员载波和所述第二成员载波共天馈时,所述第一基站获取所述第一成员载波使用的天线的天线权值,作为所述第一成员载波在所述第二成员载波使用的天线上的天线权值;
    当所述第一成员载波和所述第二成员载波非共天馈时,所述第一基站接收所述终端在所述第一成员载波上发送的上行参考信号,基于所述上行参考信号确定所述第一成员载波在所述第二成员载波使用的天线上的天线权值。
  6. 一种数据发送方法,其特征在于,所述方法用于多载波通信系统中,所述通信系统包括第一成员载波和第二成员载波,其中所述第一成员载波既用于终端的下行传输又用于所述终端的上行传输,所述第二成员载波为用于所述终端的下行传输的单下行成员载波,包括:
    第二基站确定终端的第一成员载波与第二成员载波之间的信道相似度;
    所述第二基站将所述信道相似度发送至第一基站;
    其中,所述第一基站为所述第二成员载波所在的基站,所述第二基站为所述第一成员载波所在的基站。
  7. 如权利要求6所述的方法,其特征在于,所述第二基站确定终端的第一成员载波与第二成员载波之间的信道相似度,包括:
    所述第二基站接收终端发送的第一成员载波对应的第一预编码指示矩阵PMI和第二成员载波对应的第二PMI;
    所述第二基站对所述第一PMI、所述第二PMI2计算相似性得到所述第一成员载波与所述第二成员载波之间的信道相似度。
  8. 一种数据发送装置,其特征在于,所述装置用于多载波通信系统的第 一基站中,所述通信系统包括第一成员载波和第二成员载波,其中所述第一成员载波既用于终端的下行传输又用于所述终端的上行传输,所述第二成员载波为用于所述终端的下行传输的单下行成员载波,所述第一基站为所述第二成员载波所在的基站,所述装置包括:
    处理单元,用于确定所述第一成员载波在所述第二成员载波使用的天线上的天线权值;
    当所述第一成员载波和所述第二成员载波的信道相似度满足预设要求时,所述处理单元还用于利用所述天线权值对所述第二成员载波上的所述终端的下行数据进行加权;
    发送单元,用于向所述终端发送加权的下行数据。
  9. 如权利要求8所述的装置,其特征在于,所述处理单元具体用于:
    获取所述第一成员载波与所述第二成员载波之间的信道相似度;
    确定所述信道相似度是否大于预设阈值;
    当所述信道相似度大于预设阈值时,利用所述天线权值对所述第二成员载波上的所述终端的下行数据进行加权。
  10. 如权利要求9所述的装置,其特征在于,所述装置还包括:
    接收单元,用于接收终端发送的第一成员载波对应的第一预编码矩阵指示PMI和第二成员载波对应的第二PMI;
    所述处理单元,用于对所述第一PMI、所述第二PMI进行相似性计算得到所述第一成员载波与所述第二成员载波之间的信道相似度。
  11. 如权利要求9所述的装置,其特征在于,还包括:
    接口单元,用于接收第二基站发送的所述第一成员载波与第二成员载波之间的信道相似度;
    其中,所述第二基站为所述第一成员载波所在的基站。
  12. 如权利要求8至11任一项所述的装置,其特征在于,所述处理单元具体用于:
    当所述第一成员载波和所述第二成员载波共天馈时,获取所述第一成员 载波使用的天线的天线权值,作为所述第一成员载波在所述第二成员载波使用的天线上的天线权值;
    当所述第一成员载波和所述第二成员载波非共天馈时,接收所述终端在所述第一成员载波上发送的上行参考信号,基于所述上行参考信号确定所述第一成员载波在所述第二成员载波使用的天线上的天线权值。
  13. 一种数据发送装置,其特征在于,所述装置用于多载波通信系统的第二基站中,所述通信系统包括第一成员载波和第二成员载波,其中所述第一成员载波既用于终端的下行传输又用于所述终端的上行传输,所述第二成员载波为用于所述终端的下行传输的单下行成员载波,所述第二基站为所述第一成员载波所在的基站,所述装置包括:
    处理单元,用于确定终端的第一成员载波与第二成员载波之间的信道相似度;
    发送单元,用于将所述信道相似度发送至第一基站;
    其中,第一基站为第二成员载波所在的基站。
  14. 如权利要求13所述的装置,其特征在于,所述装置还包括:
    接收单元,用于接收终端发送的第一成员载波对应的第一预编码指示矩阵PMI和第二成员载波对应的第二PMI;
    所述处理单元,用于对所述第一PMI、所述第二PMI2计算相似性得到所述第一成员载波与所述第二成员载波之间的信道相似度。
PCT/CN2016/097001 2016-08-26 2016-08-26 一种数据发送方法及装置 WO2018035866A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201680087958.6A CN109478949A (zh) 2016-08-26 2016-08-26 一种数据发送方法及装置
PCT/CN2016/097001 WO2018035866A1 (zh) 2016-08-26 2016-08-26 一种数据发送方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/097001 WO2018035866A1 (zh) 2016-08-26 2016-08-26 一种数据发送方法及装置

Publications (1)

Publication Number Publication Date
WO2018035866A1 true WO2018035866A1 (zh) 2018-03-01

Family

ID=61245411

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/097001 WO2018035866A1 (zh) 2016-08-26 2016-08-26 一种数据发送方法及装置

Country Status (2)

Country Link
CN (1) CN109478949A (zh)
WO (1) WO2018035866A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023056832A1 (zh) * 2021-10-09 2023-04-13 华为技术有限公司 一种通信方法及相关产品

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102281133A (zh) * 2010-06-13 2011-12-14 华为技术有限公司 一种在物理上行控制信道上传输信息的方法及装置
CN102299769A (zh) * 2011-09-01 2011-12-28 电信科学技术研究院 一种下行控制信息传输方法及装置
CN103001732A (zh) * 2011-09-19 2013-03-27 北京邮电大学 传输模式选择方法、装置及移动终端
CN103686858A (zh) * 2012-08-31 2014-03-26 华为技术有限公司 上行控制信息的反馈方法、基站及用户设备

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8798183B2 (en) * 2007-08-13 2014-08-05 Qualcomm Incorporated Feedback and rate adaptation for MIMO transmission in a time division duplexed (TDD) communication system
CN103475401B (zh) * 2013-09-18 2017-02-01 北京北方烽火科技有限公司 一种下行波束赋形方法与装置
CN105850087B (zh) * 2013-12-20 2019-04-26 瑞典爱立信有限公司 用于使用信道互易性降低开销的方法和装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102281133A (zh) * 2010-06-13 2011-12-14 华为技术有限公司 一种在物理上行控制信道上传输信息的方法及装置
CN102299769A (zh) * 2011-09-01 2011-12-28 电信科学技术研究院 一种下行控制信息传输方法及装置
CN103001732A (zh) * 2011-09-19 2013-03-27 北京邮电大学 传输模式选择方法、装置及移动终端
CN103686858A (zh) * 2012-08-31 2014-03-26 华为技术有限公司 上行控制信息的反馈方法、基站及用户设备

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023056832A1 (zh) * 2021-10-09 2023-04-13 华为技术有限公司 一种通信方法及相关产品

Also Published As

Publication number Publication date
CN109478949A (zh) 2019-03-15

Similar Documents

Publication Publication Date Title
US10461994B2 (en) Method for response to beam failure recovery request
KR102328352B1 (ko) 가변 코히어런스 적응성 안테나 어레이
US12034508B2 (en) Smaller sub-band size for PMI than for CQI
EP4009539A1 (en) Cross-carrier spatial relation indication for semi-persistent sounding reference signal (sp-srs) resources
US11855728B2 (en) Reporting of coefficients for channel state information
WO2018228532A1 (zh) 通信方法、终端及网络设备
CN117998381A (zh) 用于通信波束恢复的系统和方法
US20200162134A1 (en) User equipment and method of channel state information (csi) acquisition
US11102783B2 (en) System and method for supporting beamformed sounding reference signals
US11723058B2 (en) Method of frequency resource allocation
WO2019137441A1 (zh) 一种通信方法及装置
EP2643988B1 (en) Multi-layer beamforming with partial channel state information
WO2018126794A1 (zh) 一种资源指示方法、装置及系统
WO2015165356A1 (zh) 一种鉴权信息的传输方法及终端
EP4017176A1 (en) Method for indicating antenna panel state, and device
WO2021052473A1 (zh) 通信方法和通信装置
WO2022048593A1 (zh) 信道测量的方法和装置
WO2018202137A1 (zh) 一种通信方法及装置
US20230239014A1 (en) Information indication method and apparatus
US11784853B2 (en) Channel measurement method and communication apparatus
WO2018035866A1 (zh) 一种数据发送方法及装置
WO2019028704A1 (zh) 下行信号传输的方法、终端设备和网络设备
US20240204844A1 (en) Information feedback method and related apparatus
WO2017173594A1 (zh) 一种信息处理方法及装置
WO2023011436A1 (zh) 通信处理方法和通信处理装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16913887

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16913887

Country of ref document: EP

Kind code of ref document: A1