WO2023216887A1 - 一种可视化插管装置及其使用方法 - Google Patents

一种可视化插管装置及其使用方法 Download PDF

Info

Publication number
WO2023216887A1
WO2023216887A1 PCT/CN2023/090936 CN2023090936W WO2023216887A1 WO 2023216887 A1 WO2023216887 A1 WO 2023216887A1 CN 2023090936 W CN2023090936 W CN 2023090936W WO 2023216887 A1 WO2023216887 A1 WO 2023216887A1
Authority
WO
WIPO (PCT)
Prior art keywords
guide wire
knife
wire
channel
illumination
Prior art date
Application number
PCT/CN2023/090936
Other languages
English (en)
French (fr)
Inventor
马骁萧
冯宇
瞿小丹
Original Assignee
精微致远医疗科技(武汉)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 精微致远医疗科技(武汉)有限公司 filed Critical 精微致远医疗科技(武汉)有限公司
Publication of WO2023216887A1 publication Critical patent/WO2023216887A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/0105Steering means as part of the catheter or advancing means; Markers for positioning
    • A61M25/0113Mechanical advancing means, e.g. catheter dispensers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/045Control thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/07Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements using light-conductive means, e.g. optical fibres
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/273Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor for the upper alimentary canal, e.g. oesophagoscopes, gastroscopes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B90/361Image-producing devices, e.g. surgical cameras
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/39Markers, e.g. radio-opaque or breast lesions markers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/09Guide wires
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/09Guide wires
    • A61M25/09041Mechanisms for insertion of guide wires
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00315Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
    • A61B2018/00482Digestive system
    • A61B2018/00494Stomach, intestines or bowel
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/00601Cutting
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00982Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body combined with or comprising means for visual or photographic inspections inside the body, e.g. endoscopes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B2018/1405Electrodes having a specific shape
    • A61B2018/1412Blade
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B90/361Image-producing devices, e.g. surgical cameras
    • A61B2090/3614Image-producing devices, e.g. surgical cameras using optical fibre
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/39Markers, e.g. radio-opaque or breast lesions markers
    • A61B2090/3904Markers, e.g. radio-opaque or breast lesions markers specially adapted for marking specified tissue
    • A61B2090/3912Body cavities
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/39Markers, e.g. radio-opaque or breast lesions markers
    • A61B2090/3937Visible markers
    • A61B2090/395Visible markers with marking agent for marking skin or other tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M2025/0177Introducing, guiding, advancing, emplacing or holding catheters having external means for receiving guide wires, wires or stiffening members, e.g. loops, clamps or lateral tubes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/58Means for facilitating use, e.g. by people with impaired vision
    • A61M2205/583Means for facilitating use, e.g. by people with impaired vision by visual feedback
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/58Means for facilitating use, e.g. by people with impaired vision
    • A61M2205/587Lighting arrangements

Definitions

  • the present disclosure belongs to the technical field of medical devices, and specifically relates to a visual intubation device and a method of using the same.
  • Endoscopic retrograde cholangiopancreatography refers to inserting a duodenoscope into the descending part of the duodenum, finding the duodenal papilla, inserting a contrast catheter from the biopsy duct to the opening of the papilla, and injecting contrast A post-dose x-ray to show the pancreatic and bile ducts.
  • Selective intubation is the basis for successful ERCP diagnosis and treatment. Insert the catheter through the biopsy hole, adjust the angle of the catheter and the forceps lifter to make the catheter perpendicular to the nipple opening, and insert the catheter into the nipple. Since the beginning of the duodenal papilla is very narrow, it is very difficult to directly insert the catheter into the papilla. There is a high risk of pancreatic and bile duct bleeding and perforation. Once this occurs, it will endanger the patient's life.
  • a guidewire is generally inserted first, and then the The diameter of the wire is generally 0.025 inches or 0.035 inches, made of metal, with a soft head at the front end and the head will be visualized under X-rays.
  • the doctor inserts the guide wire into the duodenal papilla and enters it in the correct direction (pancreatic duct or bile duct) Then, insert the catheter.
  • a catheter with an incision function (also called a duodenal papillotomy knife) is generally used to insert and incise the duodenal papilla to expand the diameter of the channel to facilitate subsequent insertion of treatment instruments and stone removal.
  • a guide wire lumen in the middle of the incision knife. During insertion, the guide wire needs to be placed into the guide wire lumen so that the incision knife advances in the direction of the guide wire to enter the bile duct or pancreatic duct. Therefore, the current general clinical steps for ERCP are:
  • the second step of inserting the guide wire into the pancreatic duct or bile duct is the riskiest and most difficult. This major difficulty limits the development of ERCP surgery.
  • the main risk points are:
  • This disclosure proposes a visual intubation device used in ERCP and a matching intubation method in view of the huge risks involved in guidewire insertion during ERCP operations.
  • a visual intubation device including an incision knife and a visual guide wire
  • the incision knife includes an incision knife operating part and an incision knife insertion part
  • the incision knife operating part includes an operating part main body
  • the operating part The operating handle connected to one end of the main body of the operating part is located in the knife wire channel, the guide wire channel and the contrast medium channel in the main body of the operating part.
  • One end of the operating handle is inserted into the knife wire channel and is connected to the knife wire located in the knife wire channel.
  • the main body of the operating part is provided with a guide wire channel opening connected to the guide wire channel, and a contrast medium channel opening connected to the contrast agent channel.
  • the main body of the operating part is provided with an electrode connection point near the end of the operating handle.
  • the guide wire channel opening is used to insert a guide wire into the guide wire channel.
  • the contrast agent channel opening is used to connect a liquid supply device and inject contrast agent into the contrast agent channel. Or other liquids, the liquid will flow out from the distal end of the insertion part of the incision knife to assist in development, flushing, etc.;
  • the incision knife insertion part includes a guide wire channel, a knife wire channel and a contrast agent channel.
  • the guide wire channel is connected with the guide wire channel opening of the incision knife operating part and is used for transporting the guide wire.
  • the guide wire can be passed through the guide wire channel. Insert into the mouth and advance along the guide wire channel until reaching the distal exit; the contrast medium channel is connected to the contrast medium channel opening located at the operating part of the incision knife for the delivery of contrast medium.
  • the other end of the knife wire reaches the operating part of the incision knife along the knife wire channel and is connected to the operating handle.
  • the distal end is the end away from the operating part of the incision knife.
  • the part of the incision knife exposed at the distal end is arc-shaped.
  • the arc The wire in the shaped part is straightened, which causes the distal end of the incision knife to bend, thereby adjusting the direction of the distal end to facilitate the advancement of the bile duct and pancreatic duct in different directions.
  • the electrode connection point When the wire is straightened, the electrode connection point is inserted into the knife The part in the wire channel is connected with the knife wire, and energizing the knife wire through the electrode connection point allows the knife wire to achieve the function of incising the duodenal papilla;
  • One side of the visualization guidewire is the imaging end, and the other side is the connector end.
  • the imaging end uses an optical lens to acquire images and provide illumination.
  • the outside of the visualization guidewire is wrapped with a protective layer, and the connector end is used to connect to the imaging controller host. .
  • One end of the electrode connection point is an electrode inserted vertically into the knife wire channel, and the other end is a spherical connection point located outside the main body of the operating part.
  • the incision knife needs to be powered on, connect the cable of the electric knife host to this electrode connection point. , and then activate the electric knife to energize the metal knife wire. After energizing, the duodenal papilla can be Cut.
  • the continuity between the electrode and the knife wire is controlled by the operating handle, forming a safety interlocking device. Only when the operating handle is pulled out (at this time the metal knife wire is straightened), the electrode connection point and the knife wire are connected, and power can be supplied. , otherwise the two are disconnected and cannot be powered on.
  • the insertion part of the cutting knife is made of soft insulating material and can be coiled for easy storage and operation.
  • the size of the guide wire channel is suitable for ordinary guide wires and the visual guide wire proposed in this disclosure.
  • the traditional ERCP standard guide wire has two specifications: 0.035 inches and 0.025 inches, with 0.035 inches being the most commonly used, about 0.89mm, and the visual guide wire
  • the diameter can be the same as the traditional 0.035-inch guidewire, or even slightly thinner;
  • the diameter is affected by the photoelectric sensor (CMOS). chip), it will be slightly thicker, and should be about 1 mm to 1.3 mm. Therefore, the diameter of the visualization guide wire of the present disclosure is different from the diameter of the standard guide wire.
  • the incision knife of the present disclosure is also different from other incision knives in the prior art. .
  • the cross-sectional shape of the guide wire channel is circular or C-shaped with one side open.
  • the C-shaped opening can ensure guideability while making the diameter of the incision knife thinner, and the guide wire can be taken out from the side;
  • the cross-section of the visualization guide wire is circular, or an asymmetric shape with an arc shape on one side and a protrusion matching the C-shaped opening on the other side.
  • the asymmetric shape of the visualization guide wire structure is used to insert the visualization guide wire. The angle is limited to ensure that the target angle observed by the visual guide wire is always consistent with the design intention.
  • the visualization guidewire has a purely optical structure and uses an optical fiber image transmission bundle to achieve both illumination and image transmission.
  • the image beam is connected to the imaging controller host through an optical connector.
  • the imaging controller host is equipped with an illuminating light source, a spectroscopic device and a focusing device. The light emitted by the illuminating light source, after being reflected by the spectroscopic device, enters the optical fiber transmission through the focusing device. The image beam is emitted from the optical lens and illuminated on the observation target.
  • the target image is imaged through the optical lens onto the optical fiber image beam, and then the optical fiber is used to transmit the image beam.
  • the image transmission beam transmits the image to the interior of the imaging controller host, passes through multiple focusing devices, and is transmitted through the spectroscopic device before reaching the image sensor to achieve imaging.
  • the visualization guidewire has a purely optical structure, using an optical fiber imaging beam to transmit images and an independent lighting fiber to achieve illumination.
  • the far end of the guidewire is an optical lens.
  • the optical lens is connected to the optical fiber image transmission bundle; the optical fiber image transmission bundle is connected to the imaging controller host through an optical connector.
  • the imaging controller host is equipped with an illumination source and an image sensor.
  • the outside of the optical fiber image transmission bundle is equipped with an illuminating optical fiber.
  • the light source irradiates the light onto the illumination optical fiber, reaches the distal end of the guide wire through the illumination optical fiber, and illuminates the target.
  • the target image is imaged onto the optical fiber imaging bundle through the optical lens, and then the optical fiber imaging bundle transmits the image to the interior of the imaging controller. , reaches the image sensor to achieve imaging.
  • the visualization guidewire is a photoelectric hybrid structure that uses cables to transmit images and lighting optical fibers to achieve illumination.
  • the guidewire The far end is an optical lens, and there is an image sensor between the optical lens and the cable;
  • the visualization guidewire is connected to the imaging controller host through a photoelectric hybrid connector, and the imaging controller host is equipped with an illumination source, which irradiates light to the illumination
  • the illumination optical fiber reaches the far end of the guide wire to illuminate the target.
  • the target image is imaged to the image sensor located behind the optical lens through the optical lens.
  • the image is converted into an electrical signal and then transmitted to the imaging controller host via a cable.
  • Connect The connector is an optoelectronic hybrid connector that can simultaneously transmit the optical signal of the lighting and the electrical signal of the image sensor.
  • the visualization guidewire is a photoelectric hybrid structure that uses cables to transmit images and lighting optical fibers to achieve illumination.
  • the distal end of the wire is an optical lens, and an image sensor is arranged between the optical lens and the cable;
  • the visualization guide wire is connected to the imaging controller host through two independent optical connectors and an electrical connector, and the cable is connected to the imaging controller through an electrical connector.
  • the controller host is connected, and the lighting optical fiber is connected to the imaging controller host through an optical connector.
  • the imaging controller host is equipped with an illuminating light source.
  • the source irradiates light onto the illumination fiber, reaches the distal end of the guide wire through the illumination fiber, and illuminates the target.
  • the target image is imaged to the image sensor located behind the optical lens through the optical lens.
  • the image is converted into an electrical signal and then transmitted to the Imaging controller host.
  • the visualization guidewire is a photoelectric hybrid structure that uses cables to transmit images and lighting optical fibers to achieve illumination.
  • the protective layer is equipped with an illumination source, focusing device, Illuminating optical fiber and cable, the distal end of the visualization guidewire is an optical lens, and an image sensor is arranged between the optical lens and the cable;
  • the visualization guidewire is connected to the imaging controller host through an electrical connector, and the illumination light source is built into the visualization guidewire to communicate with the imaging controller.
  • the focusing device connects the lighting source and the imaging controller host through a cable, and uses the electrical signal of the imaging controller host to control the lighting source to emit light, thereby achieving lighting.
  • the target image is imaged to the image sensor located behind the optical lens through the optical lens. The image is converted into electrical signals and then transmitted to the imaging controller host via cables.
  • the visual guide wire When the visual guide wire is in use, it will advance along the guide wire channel of the incision knife and reach the distal end of the incision knife insertion part of the guide wire channel.
  • the best state when the two work together is that the visual guide wire reaches the incision knife.
  • the distal end of the knife is opened, but does not extend out. Instead, observation is made with the help of the gap in front of the optical lens of the guide wire, thereby preventing the lens from being too close to the observation target and causing unclear imaging.
  • the commonly used imaging lens has a field of view of 90 There are two types: ° and 120°.
  • the diameter of the guide wire channel is represented by D. If it is a 90° lens, the optimal distance is 0 ⁇ D/2.
  • the optimal distance is 0 ⁇ D/ 3.46;
  • water can be injected through the contrast agent channel to clean the visualization guidewire lens and expand the pancreaticobiliary channel in the front of the lens, so that the front-end target of the visualization guidewire can be more clearly observed.
  • Step 1 Insert the duodenoscope into the descending part of the duodenum, find the duodenal papilla, and inject indocyanine green into the patient at the same time;
  • Step 2 Insert the visual intubation device from the biopsy hole of the duodenoscope and insert it along the duodenal papilla;
  • Step 3 the visualization guidewire obtains images of the pancreatic duct in real time, and determines whether the target is the pancreatic duct or the bile duct according to whether there is a fluorescent signal in the image, so as to adjust the angle of the incision knife in a timely manner. and direction, and then safely insert the incision knife into the target channel under image guidance; during the insertion process, the cutting function of the incision knife can be activated as needed to cut the duodenal papilla to the appropriate size; it can be simultaneously Observe the direction of the incision knife under X-ray as an auxiliary confirmation;
  • Step 4 When the incision knife has safely reached the target position, you can withdraw the visual guide wire and reinsert an ordinary guide wire or other instrument;
  • Step 5 the intubation work has been completed, and the doctor can carry out subsequent surgical operations with the assistance of the guide wire and incision knife.
  • Figure 1 is a schematic diagram of the overall structure of the cutting knife
  • Figure 2 is a schematic cross-sectional view of the connection point between the knife wire and the electrode of the operating part of the incision knife;
  • Figure 3 is a schematic cross-sectional view of the state where the cutting blade operating part and the electrode connection point are connected;
  • Figure 4 is a schematic structural diagram of the cutting blade insertion part in a relaxed state
  • Figure 5 is a schematic structural diagram of the cutting knife insertion part in a tightened state
  • Figure 6 is an example 1 of a schematic cross-sectional view of the cutting blade insertion portion in Embodiment 1;
  • Figure 7 is a second example of a schematic cross-sectional view of the cutting blade insertion portion in Embodiment 2;
  • Figure 8 is Example 3 of the schematic cross-sectional view of the insertion portion of the cutting knife in Embodiment 3;
  • Figure 9 is a schematic diagram of the visual guidewire structure in Embodiment 1.
  • Figure 10 is a schematic diagram of the visual guidewire structure in Embodiment 2.
  • Figure 11 is a schematic diagram of the visual guidewire structure in Embodiment 3.
  • Figure 12 is a schematic diagram of the visual guidewire structure in Embodiment 4.
  • Figure 13 is a schematic diagram of the visual guidewire structure in Embodiment 5.
  • Figure 14 is a schematic structural diagram of the cooperation state between the visual guide wire and the incision knife
  • 1-Incision knife operating part 2-Incision knife insertion part, 3-Operation handle, 4-Operation part main body, 5-Electrode connection point, 6-Guide wire channel opening, 7-Contrast medium channel opening, 8 -Knife wire, 9-electrode and knife wire are disconnected, 10-electrode and knife wire are connected, 11-knife wire channel, 12-guide wire channel, 13-contrast agent channel, 14-guide wire, 15.
  • image sensor 16-Focusing device, 17-Spectroscopic device, 18-Illumination source, 19-Optical connector, 20 Protective layer, 21-Fiber image transmission bundle, 22-Optical lens, 23-Illumination fiber, 24-Optoelectric hybrid connector, 25 -cable, 26-electrical connector, 27-water injection through contrast agent channel, 28-visual guide wire observation range, A imaging controller host, B visual guide wire.
  • a visual intubation device includes an incision knife and a visualization guide wire.
  • the incision knife It includes an incision knife operating part 1 and an incision knife insertion part 2.
  • the incision knife operating part 1 includes an operating part main body 4, an operating handle 3 connected to one end of the operating part main body 4, and a knife wire located in the operating part main body. Channel 11, guide wire channel 12 and contrast medium channel 13.
  • One end of the operating handle 3 is inserted into the wire channel 11 and communicates with the wire 8 located in the wire channel 11.
  • the main body 4 of the operating part is provided with a structure that communicates with the guide wire channel 12.
  • the guidewire channel opening 6, the contrast agent channel opening 7 connected with the contrast agent channel 13, the operating part body 4 is provided with an electrode connection point 5 near the end of the operating handle, one end of the electrode connection point is inserted into the knife wire channel, and the other end Located outside the main body of the operating part, the guide wire channel port 6 is used to insert the guide wire 14 into the guide wire channel, and the contrast agent channel port 7 is used to connect the liquid supply device to inject contrast agent or other liquid into the contrast agent channel 13, and the liquid will pass through the incision.
  • the distal end of the incision insertion part 2 flows out to assist in development, flushing, etc.; the incision insertion part 2 includes a guide wire channel 12, a knife wire channel 11 and a contrast medium channel 13.
  • the guide wire channel 12 operates with the incision knife.
  • the guide wire channel opening 6 of part 1 is connected for the transportation of the guide wire.
  • the guide wire can be inserted from the guide wire channel opening 6 and advance along the guide wire channel until it reaches the distal exit; the contrast agent channel 13 is located in the incision knife operation
  • the contrast agent channel opening 7 of the part 1 is connected and used for the delivery of the contrast agent.
  • the knife wire 8 of an incision knife is provided in the knife wire channel 11.
  • the knife wire 8 is exposed outside the incision knife at the distal end of the incision knife insertion part. And is fixedly connected to the distal end of the incision knife.
  • the other end of the knife wire 8 reaches the incision knife operating part along the knife wire channel 11 and is connected to the operating handle 3.
  • the distal end is the end away from the incision knife operating part, as shown in Figure 4
  • the part of the cutting knife exposed at the far end of the cutting knife is arc-shaped in a relaxed state.
  • the arc-shaped part of the cutting wire is straightened, as shown in As shown in Figure 5, the distal end of the incision knife is bent, thereby adjusting the direction of the distal end to facilitate the advancement of the bile duct and pancreatic duct in different directions.
  • the electrode connection point 5 is inserted into the knife wire channel. The part of the electrode is connected to the knife wire. By energizing the knife wire through the electrode connection point, the knife wire can achieve the function of incising the duodenal papilla;
  • One end of the electrode connection point 5 is an electrode inserted vertically into the knife wire channel, and the other end is a spherical connection point located outside the main body of the operating part.
  • the electric knife is then activated to energize the metal knife wire. After the electric knife is energized, the duodenal papilla can be incised.
  • the continuity between the electrode and the knife wire is controlled by the operating handle, forming a safety interlocking device. Only when the operating handle is pulled out (at this time the metal knife wire is straightened), the electrode connection point and the knife wire are connected, and power can be supplied. , otherwise the two are disconnected and cannot be powered on.
  • the insert part of the cutting knife is made of soft insulating material and can be coiled for easy storage and operation.
  • the size of the guidewire channel is suitable for ordinary guidewires and the visual guidewire proposed in this disclosure.
  • the traditional ERCP standard guidewire has two specifications: 0.035 inches and 0.025 inches. 0.035 inches is the most commonly used, about 0.89mm.
  • the visual guidewire is based on its Different structural compositions have different diameters: for guidewires with purely optical structures, the diameter can be consistent with the traditional 0.035-inch guidewire, or even slightly thinner; for guidewires with photoelectric hybrid structures, the diameter is affected by the photoelectric sensor (CMOS chip) The limit will be slightly thicker and should be about 1 mm to 1.3 mm. Therefore, the diameter of the visualization guide wire of the present disclosure is different from the diameter of the standard guide wire.
  • the incision knife of the present disclosure is also different from other incision knives in the prior art.
  • the cross-sectional shape of the guidewire channel is circular or C-shaped with one side open.
  • the C-shaped opening can ensure guideability while making the diameter of the incision knife thinner, and the guidewire can be taken out from the side.
  • the cross-section of the visualization guide wire is circular, or an asymmetric shape with an arc shape on one side and a protrusion matching the C-shaped opening on the other side.
  • the asymmetric shape of the visualization guide wire structure is used to adjust the angle of the visualization guide wire insertion. limit, thereby ensuring that the target angle observed by the visual guidewire is always consistent with the design intention.
  • one side of the visualization guidewire B is the imaging end, and the other side is the connector end.
  • the imaging end uses an optical lens to acquire images and provide illumination.
  • the outside of the visualization guidewire is wrapped with a protective layer, and the connector end is For connecting to the imaging controller host.
  • the visualization guidewire has a purely optical structure and uses an optical fiber image transmission bundle 21 to achieve illumination and image transmission at the same time.
  • a protective layer 20 on the outside of the guidewire to protect internal components; the distal end It is an optical lens 22.
  • the optical lens 22 is connected to the optical fiber image transmission bundle 21, and is connected to the imaging controller host through the optical connector 19.
  • the imaging controller host is equipped with an illumination source 18, a spectroscopic device 17 and a focusing device 16.
  • the illumination The light emitted by the light source 18, after being reflected by the spectroscopic device 17, enters the optical fiber image transmission bundle 21 through the focusing device 16, and is emitted from the optical lens 22 to illuminate the observation target to achieve illumination.
  • the target image is imaged to the optical fiber through the optical mirror 22.
  • the image is transmitted to the inside of the imaging controller host by the optical fiber image transmission beam 21. After passing through multiple focusing devices and transmitting through the spectroscopic device, it reaches the image sensor 15 to achieve imaging.
  • the visualization guide wire has a purely optical structure and uses an optical fiber imaging bundle 21 to transmit images and an independent lighting fiber 23 to achieve illumination.
  • a protective layer 20 on the outside of the guide wire to protect the internal elements.
  • the far end of the guide wire is an optical lens 22, and the optical lens 22 is connected to the optical fiber image transmission bundle 21; the optical fiber image transmission bundle 21 is connected to the imaging controller host through the optical connector 19, and the imaging controller host is equipped with an illumination
  • the light source 18 and the image sensor 15 are provided with an illuminating optical fiber 23 outside the optical fiber imaging bundle.
  • the illuminating light source 18 irradiates light onto the illuminating optical fiber 23 and reaches the distal end of the guide wire through the illuminating optical fiber 23 to illuminate the target.
  • the target image is transmitted through the optical lens. 22 is imaged onto the optical fiber image transmission bundle 21, and then the optical fiber image transmission bundle transmits the image to the interior of the imaging controller and reaches the image sensor 15 to achieve imaging.
  • the visualization guide wire is an optoelectronic hybrid structure, using a cable 25 to transmit the image, and using an illumination optical fiber 23 to achieve illumination.
  • a protective layer 20 on the outside of the guide wire to protect the internal components.
  • the far end of the guide wire is an optical lens 22.
  • An image sensor 15 is provided between the optical lens 22 and the cable 25.
  • the visualization guide wire is connected to the imaging controller host through an optical and electrical hybrid connector 24.
  • the imaging controller host computer is provided with an illumination light source 18.
  • the illumination light source 18 irradiates the light onto the illumination optical fiber 23, and reaches the distal end of the guide wire through the illumination optical fiber 23 to target the target.
  • Illumination is performed, and the target image is imaged onto the image sensor 15 located behind the optical lens 22 through the optical lens 22.
  • the image is converted into an electrical signal and then transmitted to the imaging controller host via the cable 25.
  • the connector is an optical-electric hybrid connector that can be transmitted simultaneously. The optical signal of the illumination and the electrical signal of the image sensor.
  • the visualization guide wire is a hybrid optical and electrical structure, uses a cable 25 to transmit images, and uses an illumination optical fiber 23 to achieve illumination.
  • the protective layer is provided with an illumination optical fiber 23 and a cable 25.
  • the far end of the guide wire is an optical lens 22.
  • An image sensor 15 is provided between the optical lens 22 and the cable 25; the visual guide wire passes through two independent optical connectors 19 and 25 respectively.
  • the electrical connector 26 is connected to the imaging controller host, wherein the cable is connected to the imaging controller host through the electrical connector 26, and the lighting fiber is connected to the imaging controller host through the optical connector 19.
  • the imaging controller host is provided with an illumination light source 18,
  • the illumination light source 18 irradiates light onto the illumination fiber 23 and reaches the distal end of the guide wire via the illumination fiber 23 to illuminate the target.
  • the target image is imaged onto the image sensor 15 located behind the optical lens 22 through the optical lens 22, and the image is converted into The electrical signal is then transmitted to the imaging controller host via cable 25.
  • the visualization guide wire is a photoelectric hybrid structure, uses a cable 25 to transmit images, and uses an illumination optical fiber 23 to achieve illumination.
  • a protective layer 20 on the outside of the visualization guide wire to protect the internal components.
  • the protective layer is provided with an illumination light source 18, a focusing device 16, an illumination optical fiber 23 and a cable 25.
  • the far end of the visualization guide wire is an optical lens 22, and an image sensor 15 is provided between the optical lens 22 and the cable 25; the visualization guide wire passes through the electrical
  • the connector 26 is connected to the imaging controller host.
  • the illumination light source and the focusing device are built into the visualization guide wire.
  • the illumination light source is connected to the imaging controller host through a cable.
  • the electrical signal of the imaging controller host is used to control the illumination light source to emit light.
  • the target image is imaged onto the image sensor 15 located behind the optical lens 22 through the optical lens 22.
  • the image is converted into an electrical signal and then transmitted to the imaging controller host via the cable 25.
  • the visualization guide wire when the visualization guide wire is in use, it will advance along the guide wire channel 12 of the incision knife and reach the distal end of the incision knife insertion part of the guide wire channel 12.
  • the visual guide wire reaches the distal end of the incision knife, but does not extend out. Instead, observation is made with the help of the gap in front of the optical lens of the guide wire, thereby avoiding unclear imaging caused by the distance between the lens and the observation target being too close.
  • imaging lenses there are two types of field of view: 90° and 120°.
  • the diameter of the guide wire channel is represented by D. If it is a 90° lens, the best distance is 0 ⁇ D/2.
  • the best distance is The distance is 0 ⁇ D/3.46; during the observation process, water can be injected through the contrast agent channel to clean the visualization guidewire lens and expand the pancreaticobiliary channel in the front of the lens, so that the visualization guidewire can be seen more clearly Observe the front-end target.
  • a method of using a visual intubation device includes the following steps:
  • Step 1 Insert the duodenoscope into the descending part of the duodenum, find the duodenal papilla, and inject indocyanine green into the patient at the same time;
  • Step 2 Insert the visual intubation device from the biopsy hole of the duodenoscope and insert it along the duodenal papilla;
  • Step 3 the visualization guidewire obtains images of the pancreatic duct in real time, and determines whether the target is the pancreatic duct or the bile duct according to whether there is a fluorescent signal in the image, so as to adjust the angle of the incision knife in a timely manner. and direction, and then safely insert the incision knife into the target channel under image guidance; during the insertion process, the cutting function of the incision knife can be activated as needed to cut the duodenal papilla to the appropriate size; it can be simultaneously Observe the direction of the incision knife under X-ray as an auxiliary confirmation;
  • Step 4 When the incision knife has safely reached the target position, you can withdraw the visual guide wire and reinsert an ordinary guide wire or other instrument;
  • Step 5 At this time, the intubation work has been completed, and the doctor can carry out subsequent surgical operations with the assistance of the guide wire and incision knife.
  • indocyanine green A special fluorescent indicator called indocyanine green is used during surgery. This fluorescent agent absorbs near-infrared light around 780nm and emits fluorescence. After injection into the human body, indocyanine green will be highly enriched in bile but not in pancreatic secretions, so it can be used as an indicator to distinguish between bile ducts and pancreatic ducts.

Abstract

本公开提供一种可视化插管装置及其使用方法,包括切开刀和可视化导丝,所述切开刀包括切开刀操作部和切开刀插入部,切开刀操作部包括操作部主体、操作手柄,所述切开刀插入部包括导丝通道、刀丝通道和造影剂通道,刀丝通道中设有一根切开刀的刀丝;操作部主体上设有与导丝通道连通的导丝通道口,与造影剂通道连通的造影剂通道口;所述可视化导丝一侧为成像端,另一侧为连接器端,成像端使用光学镜头获取图像,并提供照明,可视化导丝外部包裹着保护层,连接器端用于连接成像控制器主机。

Description

一种可视化插管装置及其使用方法 技术领域
本公开属于医疗器械技术领域,具体涉及一种可视化插管装置及其使用方法。
背景技术
经内镜逆行性胰胆管造影术(ERCP)是指将十二指肠镜插至十二指肠降部,找到十二指肠乳头,由活检管道内插入造影导管至乳头开口部,注入造影剂后x线摄片,以显示胰胆管的技术。
选择性插管是顺利进行ERCP诊断和治疗的基础。经活检孔插入导管,调节导管角度及抬钳器,使导管与乳头开口垂直,将导管插入乳头。由于十二指肠乳头开头非常狭窄,直接将导管插入乳头是很困难的,有很高的胰胆管出血和穿孔风险,一旦发生会危及病人生命,目前临床一般会先插入一根导丝,导丝直径一般为0.025英寸或者0.035英寸,金属材质,前端有柔软的头部并且头部会在X射线下显影,医生将导丝插入十二指肠乳头并进入正确的方向(胰管或者胆管)后,再插入导管。
目前一般使用带有切开功能的导管(又称十二指肠乳头切开刀)来插入十二指肠乳头并将其切开,扩大通道直径,便于后续插入治疗器械及取石。切开刀中间有导丝腔道,在插入时需要将导丝放入导丝腔道中,使得切开刀沿导丝的方向前进,从而进入胆管或者胰管。因此,当前ERCP的一般临床操作步骤是:
(1)将十二指肠镜插入十二指肠降部,找到十二指肠乳头;
(2)从十二指肠镜的活检孔道中插入导丝,在X光引导下,将导丝通过十二指肠乳头插入胰管或者胆管;
(3)再沿着十二指肠镜的活检孔道插入十二指肠乳头切开刀(保持导丝位于切开刀的导丝腔内),将十二指肠乳头切开至合适大小,再继续插入切开刀直到其进入胆管或胰管的目标位置;
(4)此时插管工作已经完成,医生可以在导丝和切开刀的辅助下,开展后续的手术操作。
当前的操作中,第二步将导丝插入胰管或者胆管时,是风险最高,难度最大的,这个重大难点限制了ERCP手术的开展。该主要风险点在于:
(1)插错了方向,本来想进入胆管但是错误的进入了胰管(或者反之),有可能导致重症胰腺炎等一些严重的手术并发症,危及患者生命;
(2)没有插入胆管或胰管,反而刺破了胆管壁或者胰管壁,造成穿孔,穿孔后如不能立即发现并处置,也会危及患者生命。
本公开针对ERCP操作中导丝插入时的巨大风险,提出一种ERCP使用的可视化插管装置以及相配套的插管方法。
发明内容
针对现有技术存在的问题,本公开为解决现有技术中存在的问题采用的技术方案如下:
一种可视化插管装置,包括切开刀和可视化导丝,其特征在于:所述切开刀包括切开刀操作部和切开刀插入部,切开刀操作部包括操作部主体,与操作部主体一侧端部连接的操作手柄,位于操作部主体内的刀丝通道、导丝通道和造影剂通道,所述操作手柄一端插入刀丝通道内,与位于刀丝通道内的刀丝连 通,操作部主体上设有与导丝通道连通的导丝通道口,与造影剂通道连通的造影剂通道口,操作部主体上靠近操作手柄端部设有一个电极连接点,电极连接点一端插入刀丝通道内,另一端位于操作部主体外部,所述导丝通道口用于向导丝通道内插入导丝,所述造影剂通道口用于连接液体供给装置,向造影剂通道注入造影剂或其他液体,液体会从切开刀插入部的远端流出,起到辅助显影、冲洗等作用;
所述切开刀插入部包括导丝通道、刀丝通道和造影剂通道,导丝通道与切开刀操作部的导丝通道口连通,用于导丝的输送,导丝可以从导丝通道口插入,沿导丝通道前进直至到达远端出口处;造影剂通道与位于切开刀操作部的造影剂通道口连通,用于造影剂的输送,刀丝通道中设有一根切开刀的刀丝,刀丝在切开刀插入部远端露出切开刀外部,并与切开刀远端固定连接,刀丝另一端沿刀丝通道到达切开刀操作部,并与操作手柄连接,其中远端为远离切开刀操作部的一端,切开刀的刀丝在远端露出切开刀的部分,在松弛状态下呈弧形,当切开刀的操作手柄拉出时,该弧形部分的刀丝被拉直,从而带动切开刀远端发生弯曲,进而调整远端的方向,便于向不同方向的胆管和胰管进行前进,当刀丝拉直时,电极连接点插入刀丝通道内的部分与刀丝连通,通过电极连接点向刀丝通电可以让刀丝实现切开十二指肠乳头的功能;
所述可视化导丝一侧为成像端,另一侧为连接器端,成像端使用光学镜头获取图像,并提供照明,可视化导丝外部包裹着保护层,连接器端用于连接成像控制器主机。
所述电极连接点一端为垂直插入刀丝通道内的电极,另一端为位于操作部主体外部的球形连接点,在切开刀需要通电时,将电刀主机的线缆连接至此电极连接点上,再将电刀激发,使得金属刀丝通电,通电后可以将十二指肠乳头 切开。电极与刀丝的导通性通过操作手柄控制,形成一个安全互锁装置,只有操作手柄拉出(此时金属刀丝被拉直)的状态下,电极连接点和刀丝接通,可以通电,否则二者断开,不能通电。
所述切开刀插入部为软性绝缘材料,可盘绕起来便于收纳和操作。
所述导丝通道尺寸适配普通导丝和本公开提出的可视化导丝,传统ERCP标准导丝有2种规格:0.035英寸和0.025英寸,以0.035英寸最常用,约为0.89mm,可视化导丝根据其结构组成不同,有不同的直径:对于纯光学结构的导丝,直径可以做到与传统0.035英寸导丝一致,甚至可以略细;使用光电混合结构的导丝,直径受到光电传感器(CMOS芯片)的限制,会略粗,应该在1mm~1.3mm左右,因此本公开可视化导丝的直径与标准导丝直径存在差异,本公开的切开刀与现有技术其他切开刀也有所不同。
所述导丝通道截面形状为圆形或一侧开口的C形,C形开口可在保证导向性的同时,使得切开刀直径更细,并且导丝可以从侧面取出;
所述可视化导丝截面为圆形,或一侧为圆弧形另一侧与为C形开口配合的凸起的不对称形状,不对称形状的可视化导丝结构用来对可视化导丝插入的角度进行限位,从而保证可视化导丝观察到的目标角度始终与设计意图一致。
所述可视化导丝为纯光学结构,使用光纤传像束同时实现照明和图像传输,导丝的外部有一层保护层用来保护内部的元器件;远端是一个光学镜头,光学镜头与光纤传像束相连接,通过光学连接器与成像控制器主机连接,成像控制器主机内设有照明光源、分光器件和聚焦器件,照明光源发出的光,经分光器件反射后,通过聚焦器件进入光纤传像束,并从光学镜头中发出,照射到观察目标上实现照明,目标图像通过光学镜头成像到光纤传像束上,再由光纤 传像束将图像传递到成像控制器主机内部,经多个聚焦器件,并透射通过分光器件后,到达图像传感器,实现成像。
所述可视化导丝为纯光学结构,使用光纤传像束传输图像和独立的照明光纤实现照明,导丝的外部有一层保护层用来保护内部的元器件,导丝远端是一个光学镜头,光学镜头与光纤传像束相连接;光纤传像束通过光学连接器连接到成像控制器主机上,成像控制器主机内设有照明光源和图像传感器,光纤传像束外部设有照明光纤,照明光源将光照射到照明光纤上,经由照明光纤到达导丝远端,对目标进行照明,目标图像经由光学镜头成像到光纤传像束上,再由光纤传像束将图像传递到成像控制器内部,到达图像传感器,实现成像。
所述可视化导丝为光电混合结构,使用电缆传输图像,并使用照明光纤实现照明,导丝的外部有一层保护层用来保护内部的元器件,保护层内设有照明光纤和电缆,导丝远端是一个光学镜头,光学镜头与电缆之间设有图像传感器;可视化导丝通过光电混合连接器与成像控制器主机连接,成像控制器主机内设有照明光源,照明光源将光照射到照明光纤上,经由照明光纤到达导丝远端,对目标进行照明,目标图像经由光学镜头成像到位于光学镜头后方的图像传感器上,将图像转换为电信号后经由电缆传输至成像控制器主机,连接器为光电混合连接器,可同时传输照明的光信号与图像传感器的电信号。
所述可视化导丝为光电混合结构,使用电缆传输图像,并使用照明光纤实现照明,可视化导丝的外部有一层保护层用来保护内部的元器件,保护层内设有照明光纤和电缆,导丝远端是一个光学镜头,光学镜头与电缆之间设有图像传感器;可视化导丝分别通过两个独立的光学连接器和电气连接器与成像控制器主机连接,其中电缆通过电气连接器与成像控制器主机连接,照明光纤通过光学连接器与成像控制器主机连接,成像控制器主机内设有照明光源,照明光 源将光照射到照明光纤上,经由照明光纤到达导丝远端,对目标进行照明,目标图像经由光学镜头成像到位于光学镜头后方的图像传感器上,将图像转换为电信号后经由电缆传输至成像控制器主机。
所述可视化导丝为光电混合结构,使用电缆传输图像,并使用照明光纤实现照明,可视化导丝的外部有一层保护层用来保护内部的元器件,保护层内设有照明光源、聚焦器件、照明光纤和电缆,可视化导丝远端是一个光学镜头,光学镜头与电缆之间设有图像传感器;可视化导丝通过电气连接器与成像控制器主机连接,通过在可视化导丝内部内置照明光源与聚焦器件,通过电缆将照明光源与成像控制器主机连接,利用成像控制器主机的电信号来控制照明光源发光,从而实现照明,目标图像经由光学镜头成像到位于光学镜头后方的图像传感器上,将图像转换为电信号后经由电缆传输至成像控制器主机。
所述可视化导丝在使用时,会沿着切开刀的导丝通道前进,到达导丝通道的切开刀插入部远端,二者协同工作时的最佳状态是,可视化导丝到达切开刀远端,但并不伸出来,而是借助导丝的光学镜头前面的空隙进行观察,从而避免镜头与观察目标距离过近导致成像不清晰,目前常用的成像镜头,视场角有90°和120°两种,导丝通道的直径用D表示,如果是90°的镜头,这个最佳距离是0~D/2,如果是120°的镜头,这个最佳距离是0~D/3.46;在观察的过程中,可通过造影剂通道注水,起到对可视化导丝镜头进行清洁,并且扩张镜头前部胰胆管通道的作用,使得可视化导丝可以更清楚的观察到前端的目标。
所述可视化插管装置的使用方法,其特征在于,包括如下步骤:
步骤1、将十二指肠镜插入十二指肠降部,找到十二指肠乳头,并同时为病人注射吲哚菁绿;
步骤2、从十二指肠镜的活检孔道中插入所述可视化插管装置,并沿十二指肠乳头插入;
步骤3、在插入的过程中,可视化导丝实时获得胰胆管中的图像,并根据图像中是否存在荧光信号来判断此时正对的目标是胰管还是胆管,从而适时调整切开刀的角度和方向,进而在图像引导下将切开刀安全的插入目标通道;在插入的过程中,可按需激发切开刀的切割功能,将十二指肠乳头切开至合适大小;可同步在X射线下观察切开刀前进的方向作为辅助确认;
步骤4、当切开刀已经安全抵达目标位置后,可退出可视化导丝,重新插入一根普通的导丝,或者其他器械;
步骤5、此时插管工作已经完成,医生可以在导丝和切开刀的辅助下,开展后续的手术操作。
本公开具有如下优点:
1、改变了现有ERCP插管只能在X射线照射下“盲操”的问题,实现在摄像头直视下进行胰胆管的导丝插入工作,大大降低了手术中插管错误或者穿孔的风险,减小了手术难度,可促进ERCP手术开展量的提高。
2、可减少ERCP术中X射线的照射频次和持续时间,降低手术过程对医生和病人的射线伤害。
附图说明
图1为切开刀整体结构示意图;
图2为切开刀操作部刀丝与电极连接点切断状态剖面示意图;
图3为切开刀操作部刀丝与电极连接点接通状态剖面示意图;
图4为切开刀插入部刀丝松弛状态结构示意图;
图5为切开刀插入部刀丝拉紧状态结构示意图;
图6为实施例1切开刀插入部截面示意图示例一;
图7为实施例2切开刀插入部截面示意图示例二;
图8为实施例3切开刀插入部截面示意图示例三;
图9为实施例1可视化导丝结构示意图;
图10为实施例2可视化导丝结构示意图;
图11为实施例3可视化导丝结构示意图;
图12为实施例4可视化导丝结构示意图;
图13为实施例5可视化导丝结构示意图;
图14为可视化导丝与切开刀配合状态结构示意图;
其中:1-切开刀操作部,2-切开刀插入部,3-操作手柄,4-操作部主体,5-电极连接点,6-导丝通道口,7-造影剂通道口,8-刀丝,9-电极与刀丝断开状态,10-电极与刀丝连通,11-刀丝通道,12-导丝通道,13-造影剂通道,14-导丝,15、图像传感器,16-聚焦器件,17-分光器件,18-照明光源,19-光学连接器,20保护层,21-光纤传像束,22-光学镜头,23-照明光纤,24-光电混合连接器,25-电缆,26-电气连接器,27-通过造影剂通道注水,28-可视化导丝观察范围,A成像控制器主机,B可视化导丝。
具体实施方式
下面详细描述本公开的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本公开,而不能理解为对本公开的限制。
下面通过实施例,并结合附图,对本公开的技术方案作进一步具体的说明,如图1-3所示,一种可视化插管装置,包括切开刀和可视化导丝,所述切开刀包括切开刀操作部1和切开刀插入部2,切开刀操作部1包括操作部主体4,与操作部主体4一侧端部连接的操作手柄3,位于操作部主体内的刀丝通道11、导丝通道12和造影剂通道13,操作手柄3一端插入刀丝通道11内,与位于刀丝通道11内的刀丝8连通,操作部主体4上设有与导丝通道12连通的导丝通道口6,与造影剂通道13连通的造影剂通道口7,操作部主体4上靠近操作手柄端部设有一个电极连接点5,电极连接点一端插入刀丝通道内,另一端位于操作部主体外部,导丝通道口6用于向导丝通道内插入导丝14,造影剂通道口7用于连接液体供给装置,向造影剂通道13注入造影剂或其他液体,液体会从切开刀插入部2的远端流出,起到辅助显影、冲洗等作用;切开刀插入部2包括导丝通道12、刀丝通道11和造影剂通道13,导丝通道12与切开刀操作部1的导丝通道口6连通,用于导丝的输送,导丝可以从导丝通道口6插入,沿导丝通道前进直至到达远端出口处;造影剂通道13与位于切开刀操作部1的造影剂通道口7连通,用于造影剂的输送,刀丝通道11中设有一根切开刀的刀丝8,刀丝8在切开刀插入部远端露出切开刀外部,并与切开刀远端固定连接,刀丝8另一端沿刀丝通道11到达切开刀操作部,并与操作手柄3连接,其中远端为远离切开刀操作部的一端,如图4所示,切开刀的刀丝在远端露出切开刀的部分,在松弛状态下呈弧形,当切开刀的操作手柄拉出时,该弧形部分的刀丝被拉直,如图5所示,从而带动切开刀远端发生弯曲,进而调整远端的方向,便于向不同方向的胆管和胰管进行前进,当刀丝拉直时,电极连接点5插入刀丝通道内的部分与刀丝连通,通过电极连接点向刀丝通电可以让刀丝实现切开十二指肠乳头的功能;
电极连接点5一端为垂直插入刀丝通道内的电极,另一端为位于操作部主体外部的球形连接点,在切开刀需要通电时,将电刀主机的线缆连接至此电极连接点上,再将电刀激发,使得金属刀丝通电,通电后可以将十二指肠乳头切开。电极与刀丝的导通性通过操作手柄控制,形成一个安全互锁装置,只有操作手柄拉出(此时金属刀丝被拉直)的状态下,电极连接点和刀丝接通,可以通电,否则二者断开,不能通电。
切开刀插入部为软性绝缘材料,可盘绕起来便于收纳和操作。
导丝通道尺寸适配普通导丝和本公开提出的可视化导丝,传统ERCP标准导丝有2种规格:0.035英寸和0.025英寸,以0.035英寸最常用,约为0.89mm,可视化导丝根据其结构组成不同,有不同的直径:对于纯光学结构的导丝,直径可以做到与传统0.035英寸导丝一致,甚至可以略细;使用光电混合结构的导丝,直径受到光电传感器(CMOS芯片)的限制,会略粗,应该在1mm~1.3mm左右,因此本公开可视化导丝的直径与标准导丝直径存在差异,本公开的切开刀与现有技术其他切开刀也有所不同。
如图6-8所示,导丝通道截面形状为圆形或一侧开口的C形,C形开口可在保证导向性的同时,使得切开刀直径更细,并且导丝可以从侧面取出,可视化导丝截面为圆形,或一侧为圆弧形一侧与为C形开口配合的凸起的不对称形状,不对称形状的可视化导丝结构用来对可视化导丝插入的角度进行限位,从而保证可视化导丝观察到的目标角度始终与设计意图一致。
如图9-13所示,可视化导丝B一侧为成像端,另一侧为连接器端,成像端使用光学镜头获取图像,并提供照明,可视化导丝外部包裹着保护层,连接器端用于连接成像控制器主机。
实施例1、如图9所示,可视化导丝为纯光学结构,使用光纤传像束21同时实现照明和图像传输,导丝的外部有一层保护层20用来保护内部的元器件;远端是一个光学镜头22,光学镜头22与光纤传像束21相连接,通过光学连接器19与成像控制器主机连接,成像控制器主机内设有照明光源18、分光器件17和聚焦器件16,照明光源18发出的光,经分光器件17反射后,通过聚焦器件16进入光纤传像束21,并从光学镜头22中发出,照射到观察目标上实现照明,目标图像通过光学镜,22成像到光纤传像束21上,再由光纤传像束21将图像传递到成像控制器主机内部,经多个聚焦器件,并透射通过分光器件后,到达图像传感器15,实现成像。
实施例2、如图10所示,可视化导丝为纯光学结构,使用光纤传像束21传输图像和独立的照明光纤23实现照明,导丝的外部有一层保护层20用来保护内部的元器件,导丝远端是一个光学镜头22,光学镜头22与光纤传像束21相连接;光纤传像束21通过光学连接器19连接到成像控制器主机上,成像控制器主机内设有照明光源18和图像传感器15,光纤传像束外部设有照明光纤23,照明光源18将光照射到照明光纤23上,经由照明光纤23到达导丝远端,对目标进行照明,目标图像经由光学镜头22成像到光纤传像束21上,再由光纤传像束将图像传递到成像控制器内部,到达图像传感器15,实现成像。
实施例3、如图11所示,可视化导丝为光电混合结构,使用电缆25传输图像,并使用照明光纤23实现照明,导丝的外部有一层保护层20用来保护内部的元器件,保护层内设有照明光纤23和电缆25,导丝远端是一个光学镜头22,光学镜头22与电缆25之间设有图像传感器15;可视化导丝通过光电混合连接器24与成像控制器主机连接,成像控制器主机内设有照明光源18,照明光源18将光照射到照明光纤23上,经由照明光纤23到达导丝远端,对目标 进行照明,目标图像经由光学镜头22成像到位于光学镜头22后方的图像传感器15上,将图像转换为电信号后经由电缆25传输至成像控制器主机,连接器为光电混合连接器,可同时传输照明的光信号与图像传感器的电信号。
实施例4、如图12所示,可视化导丝为光电混合结构,使用电缆25传输图像,并使用照明光纤23实现照明,可视化导丝的外部有一层保护层20用来保护内部的元器件,保护层内设有照明光纤23和电缆25,导丝远端是一个光学镜头22,光学镜头22与电缆25之间设有图像传感器15;可视化导丝分别通过两个独立的光学连接器19和电气连接器26与成像控制器主机连接,其中电缆通过电气连接器26与成像控制器主机连接,照明光纤通过光学连接器19与成像控制器主机连接,成像控制器主机内设有照明光源18,照明光源18将光照射到照明光纤23上,经由照明光纤23到达导丝远端,对目标进行照明,目标图像经由光学镜头22成像到位于光学镜头22后方的图像传感器15上,将图像转换为电信号后经由电缆25传输至成像控制器主机。
实施例5、如图13所示,可视化导丝为光电混合结构,使用电缆25传输图像,并使用照明光纤23实现照明,可视化导丝的外部有一层保护层20用来保护内部的元器件,保护层内设有照明光源18、聚焦器件16、照明光纤23和电缆25,可视化导丝远端是一个光学镜头22,光学镜头22与电缆25之间设有图像传感器15;可视化导丝通过电气连接器26与成像控制器主机连接,通过在可视化导丝内部内置照明光源与聚焦器件,通过电缆将照明光源与成像控制器主机连接,利用成像控制器主机的电信号来控制照明光源发光,从而实现照明,目标图像经由光学镜头22成像到位于光学镜头22后方的图像传感器15上,将图像转换为电信号后经由电缆25传输至成像控制器主机。
如图14所示,可视化导丝在使用时,会沿着切开刀的导丝通道12前进,到达导丝通道12的切开刀插入部远端,二者协同工作时的最佳状态是,可视化导丝到达切开刀远端,但并不伸出来,而是借助导丝的光学镜头前面的空隙进行观察,从而避免镜头与观察目标距离过近导致成像不清晰,目前常用的成像镜头,视场角有90°和120°两种,导丝通道的直径用D表示,如果是90°的镜头,这个最佳距离是0~D/2,如果是120°的镜头,这个最佳距离是0~D/3.46;在观察的过程中,可通过造影剂通道注水,起到对可视化导丝镜头进行清洁,并且扩张镜头前部胰胆管通道的作用,使得可视化导丝可以更清楚的观察到前端的目标。
一种可视化插管装置的使用方法,包括如下步骤:
步骤1、将十二指肠镜插入十二指肠降部,找到十二指肠乳头,并同时为病人注射吲哚菁绿;
步骤2、从十二指肠镜的活检孔道中插入所述可视化插管装置,并沿十二指肠乳头插入;
步骤3、在插入的过程中,可视化导丝实时获得胰胆管中的图像,并根据图像中是否存在荧光信号来判断此时正对的目标是胰管还是胆管,从而适时调整切开刀的角度和方向,进而在图像引导下将切开刀安全的插入目标通道;在插入的过程中,可按需激发切开刀的切割功能,将十二指肠乳头切开至合适大小;可同步在X射线下观察切开刀前进的方向作为辅助确认;
步骤4、当切开刀已经安全抵达目标位置后,可退出可视化导丝,重新插入一根普通的导丝,或者其他器械;
步骤5、此时插管工作已经完成,医生可以在导丝和切开刀的辅助下,开展后续的手术操作。
手术时需要使用一种特殊的荧光指示剂叫做吲哚菁绿。该荧光剂会吸收780nm左右的近红外光,并发出荧光。注射入人体后,吲哚菁绿在胆汁中会高度富集,在胰腺分泌物中不会富集,因此能够作为一种分辨胆管和胰管的指示剂。
本公开的保护范围并不限于上述的实施例,显然,本领域的技术人员可以对本公开进行各种改动和变形而不脱离本公开的范围和精神。倘若这些改动和变形属于本公开权利要求及其等同技术的范围内,则本公开的意图也包含这些改动和变形在内。

Claims (8)

  1. 一种可视化插管装置,包括切开刀和可视化导丝,其特征在于:所述切开刀包括切开刀操作部和切开刀插入部,切开刀操作部包括操作部主体,与操作部主体一侧端部连接的操作手柄,位于操作部主体内的刀丝通道、导丝通道和造影剂通道,所述操作手柄一端插入刀丝通道内,与位于刀丝通道内的刀丝连通,操作部主体上设有与导丝通道连通的导丝通道口,与造影剂通道连通的造影剂通道口,操作部主体上靠近操作手柄端部设有一个电极连接点,电极连接点一端插入刀丝通道内,另一端位于操作部主体外部;
    所述切开刀插入部包括导丝通道、刀丝通道和造影剂通道,导丝通道与切开刀操作部的导丝通道口连通,用于导丝的输送,导丝从导丝通道口插入,沿导丝通道前进直至到达远端出口处;
    所述导丝通道截面形状为一侧开口的C形,所述可视化导丝截面为一侧为圆弧形另一侧为与C形开口配合的凸起的不对称形状,不对称形状的可视化导丝结构对可视化导丝插入的角度进行限位,保证可视化导丝观察到的目标角度始终与设计意图一致;
    造影剂通道与位于切开刀操作部的造影剂通道口连通,用于造影剂的输送,刀丝通道中设有一根切开刀的刀丝,刀丝在切开刀插入部远端露出切开刀外部,并与切开刀远端固定连接,刀丝另一端沿刀丝通道到达切开刀操作部,并与操作手柄连接,其中远端为远离切开刀操作部的一端,切开刀的刀丝在远端露出切开刀的部分,在松弛状态下呈弧形,当切开刀的操作手柄拉出时,该弧形部分的刀丝被拉直,带动切开刀远端发生弯曲,当刀丝拉直时,电极连接点插入刀丝通道内的部分与刀丝连通;
    所述可视化导丝一侧为成像端,另一侧为连接器端,成像端使用光学镜头获取图像,并提供照明,可视化导丝外部包裹着保护层,连接器端用于连接成像控制器主机。
  2. 如权利要求1所述的一种可视化插管装置,其特征在于:所述电极连接点一端为垂直插入刀丝通道内的电极,另一端为位于操作部主体外部的球形连接点,在切开刀需要通电时,将电刀主机的线缆连接至电极连接点上,再将电刀激发,使得金属刀丝通电,通电后将十二指肠乳头切开;所述切开刀插入部为软性绝缘材料。
  3. 如权利要求1所述的一种可视化插管装置,其特征在于:所述导丝通道尺寸适配所述可视化导丝,所述可视化导丝为纯光学结构导丝,直径与传统0.035英寸导丝一致;或者所述可视化导丝为光电混合结构导丝,直径为1mm~1.3mm。
  4. 如权利要求1所述的一种可视化插管装置,其特征在于:所述可视化导丝为纯光学结构,使用光纤传像束同时实现照明和图像传输,导丝的外部有一层保护层用来保护内部的元器件;可视化导丝远端是一个光学镜头,光学镜头与光纤传像束相连接,可视化导丝通过光学连接器与成像控制器主机连接,成像控制器主机内设有照明光源、分光器件和聚焦器件,照明光源发出的光,经分光器件反射后,通过聚焦器件进入光纤传像束,并从光学镜头中发出,照射到观察目标上实现照明,目标图像通过光学镜头成像到光纤传像束上,再由光纤传像束将图像传递到成像控制器主机内部,经多个聚焦器件,并透射通过分光器件后,到达图像传感器,实现成像。
  5. 如权利要求1所述的一种可视化插管装置,其特征在于:所述可视化导丝为纯光学结构,使用光纤传像束传输图像和独立的照明光纤实现照明,导 丝的外部有一层保护层用来保护内部的元器件,导丝远端是一个光学镜头,光学镜头与光纤传像束相连接;可视化导丝通过光学连接器连接到成像控制器主机上,成像控制器主机内设有照明光源和图像传感器,光纤传像束外部设有照明光纤,照明光源将光照射到照明光纤上,经由照明光纤到达导丝远端,对目标进行照明,目标图像经由光学镜头成像到光纤传像束上,再由光纤传像束将图像传递到成像控制器内部,到达图像传感器,实现成像。
  6. 如权利要求1所述的一种可视化插管装置,其特征在于:所述可视化导丝为光电混合结构,使用电缆传输图像,并使用照明光纤实现照明,导丝的外部有一层保护层用来保护内部的元器件,保护层内设有照明光纤和电缆,导丝远端是一个光学镜头,光学镜头与电缆之间设有图像传感器;可视化导丝通过光电混合连接器与成像控制器主机连接,成像控制器主机内设有照明光源,照明光源将光照射到照明光纤上,经由照明光纤到达导丝远端,对目标进行照明,目标图像经由光学镜头成像到位于光学镜头后方的图像传感器上,将图像转换为电信号后经由电缆传输至成像控制器主机。
  7. 如权利要求1所述的一种可视化插管装置,其特征在于:所述可视化导丝为光电混合结构,使用电缆传输图像,并使用照明光纤实现照明,可视化导丝的外部有一层保护层用来保护内部的元器件,保护层内设有照明光纤和电缆,导丝远端是一个光学镜头,光学镜头与电缆之间设有图像传感器;可视化导丝分别通过两个独立的光学连接器和电气连接器与成像控制器主机连接,其中电缆通过电气连接器与成像控制器主机连接,照明光纤通过光学连接器与成像控制器主机连接,成像控制器主机内设有照明光源,照明光源将光照射到照明光纤上,经由照明光纤到达导丝远端,对目标进行照明,目标图像经由光学 镜头成像到位于光学镜头后方的图像传感器上,将图像转换为电信号后经由电缆传输至成像控制器主机。
  8. 如权利要求1所述的一种可视化插管装置,其特征在于:所述可视化导丝为光电混合结构,使用电缆传输图像,并使用照明光纤实现照明,可视化导丝的外部有一层保护层用来保护内部的元器件,保护层内设有照明光源、聚焦器件、照明光纤和电缆,可视化导丝远端是一个光学镜头,光学镜头与电缆之间设有图像传感器;可视化导丝通过电气连接器与成像控制器主机连接,通过在可视化导丝内部内置照明光源与聚焦器件,通过电缆将照明光源与成像控制器主机连接,利用成像控制器主机的电信号来控制照明光源发光,从而实现照明,目标图像经由光学镜头成像到位于光学镜头后方的图像传感器上,将图像转换为电信号后经由电缆传输至成像控制器主机。
PCT/CN2023/090936 2022-05-09 2023-04-26 一种可视化插管装置及其使用方法 WO2023216887A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210496452.8A CN114849021B (zh) 2022-05-09 2022-05-09 一种可视化插管装置及其使用方法
CN202210496452.8 2022-05-09

Publications (1)

Publication Number Publication Date
WO2023216887A1 true WO2023216887A1 (zh) 2023-11-16

Family

ID=82637751

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/090936 WO2023216887A1 (zh) 2022-05-09 2023-04-26 一种可视化插管装置及其使用方法

Country Status (2)

Country Link
CN (1) CN114849021B (zh)
WO (1) WO2023216887A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114849021B (zh) * 2022-05-09 2023-03-24 精微致远医疗科技(武汉)有限公司 一种可视化插管装置及其使用方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001089624A1 (en) * 2000-05-19 2001-11-29 C.R. Bard, Inc. Steerable biliary catheter
CN101919725A (zh) * 2010-08-03 2010-12-22 安瑞医疗器械(杭州)有限公司 一种用于胰胆管的微创介入性治疗的医疗器械
CN202699275U (zh) * 2012-05-17 2013-01-30 杭州安杰思医学科技有限公司 一种高频切开刀
CN104434269A (zh) * 2014-11-28 2015-03-25 姚俊 一种双导丝乳头切开刀
KR20180076204A (ko) * 2016-12-27 2018-07-05 (주)비엠에이 내시경용 유두괄약근 절개도
CN112806949A (zh) * 2021-02-01 2021-05-18 邢媛媛 一种可视化的多功能ercp插管导管及其插管方法
CN214912456U (zh) * 2021-02-22 2021-11-30 石益海 一种可视化导管及带有该可视化导管的切开刀
CN114849021A (zh) * 2022-05-09 2022-08-05 精微致远医疗科技(武汉)有限公司 一种可视化插管装置及其使用方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4026486A1 (en) * 2004-03-23 2022-07-13 Boston Scientific Medical Device Limited In-vivo visualization system
JP2016086998A (ja) * 2014-10-31 2016-05-23 テルモ株式会社 アブレーションカテーテル
CN105194789B (zh) * 2015-08-18 2018-11-06 王秀珉 可使导管体固定并高抬设置的导管固定贴及其使用方法
CN105455767A (zh) * 2015-12-22 2016-04-06 佛山市南海区欧谱曼迪科技有限责任公司 一种显微内窥镜系统
CN206120437U (zh) * 2016-07-04 2017-04-26 南京微创医学科技股份有限公司 一种双极高频电刀
CN109481008A (zh) * 2018-12-17 2019-03-19 锐志微创医疗科技(常州)有限公司 一种可拆卸结构组织闭合切割电极走线装置
CN212015718U (zh) * 2020-02-28 2020-11-27 杭州市第一人民医院 一种组合切开刀
CN111450388A (zh) * 2020-04-02 2020-07-28 刘强 一种心脏介入手术的导管导丝自动对接装置、方法及系统
CN111419158B (zh) * 2020-04-07 2023-03-21 中国人民解放军总医院第四医学中心 立体内镜组件及立体神经内镜
CN114569874A (zh) * 2022-05-09 2022-06-03 精微致远医疗科技(武汉)有限公司 一种应用于可视化导丝的成像控制器主机及图像处理方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001089624A1 (en) * 2000-05-19 2001-11-29 C.R. Bard, Inc. Steerable biliary catheter
CN101919725A (zh) * 2010-08-03 2010-12-22 安瑞医疗器械(杭州)有限公司 一种用于胰胆管的微创介入性治疗的医疗器械
CN202699275U (zh) * 2012-05-17 2013-01-30 杭州安杰思医学科技有限公司 一种高频切开刀
CN104434269A (zh) * 2014-11-28 2015-03-25 姚俊 一种双导丝乳头切开刀
KR20180076204A (ko) * 2016-12-27 2018-07-05 (주)비엠에이 내시경용 유두괄약근 절개도
CN112806949A (zh) * 2021-02-01 2021-05-18 邢媛媛 一种可视化的多功能ercp插管导管及其插管方法
CN214912456U (zh) * 2021-02-22 2021-11-30 石益海 一种可视化导管及带有该可视化导管的切开刀
CN114849021A (zh) * 2022-05-09 2022-08-05 精微致远医疗科技(武汉)有限公司 一种可视化插管装置及其使用方法

Also Published As

Publication number Publication date
CN114849021A (zh) 2022-08-05
CN114849021B (zh) 2023-03-24

Similar Documents

Publication Publication Date Title
US4836189A (en) Video hysteroscope
US7645229B2 (en) Instrument and method for endoscopic visualization and treatment of anorectal fistula
EP0148034B1 (en) Laser endoscope apparatus
US5454782A (en) Translumenal circumferential energy delivery device
JP5191615B2 (ja) 湾曲カテーテル
US20080228085A1 (en) Sinus illumination lightwire device
CN113316428A (zh) 高效的多功能的内窥镜器械
US20080281308A1 (en) Device and method for improved vascular laser treatment
US20090221994A1 (en) Device and Method for Improved Vascular Laser Treatment
WO2023216887A1 (zh) 一种可视化插管装置及其使用方法
JP2013544112A (ja) 副鼻洞照明ライトワイヤデバイス
US5421323A (en) Endoscope with additional viewing aperture
WO1983003189A1 (en) Surgical device for internal operations
US20090030409A1 (en) Methods and devices for facilitating visualization in a surgical environment
JP4716939B2 (ja) 内視鏡用処置具
CN216317512U (zh) 一种医用导管探头及医用导管、医用装置及系统
CN214912456U (zh) 一种可视化导管及带有该可视化导管的切开刀
CN112806949A (zh) 一种可视化的多功能ercp插管导管及其插管方法
WO2023083206A1 (zh) 一种医用导管探头及医用导管、医用装置及系统
WO2022174693A1 (zh) 一种可视化导管及带有该可视化导管的切开刀
WO1989011818A1 (en) Catheter for diagnosis and therapy
WO2021176570A1 (ja) 内視鏡システム、および内視鏡の操作方法
JPH04354926A (ja) 内視鏡用ガイドカテーテル
JP2993355B2 (ja) 体内検査装置の処置具挿通路
CN219000537U (zh) 一种镜刀装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23802660

Country of ref document: EP

Kind code of ref document: A1