WO2023216703A1 - 负极极片及其制作方法和相关装置 - Google Patents

负极极片及其制作方法和相关装置 Download PDF

Info

Publication number
WO2023216703A1
WO2023216703A1 PCT/CN2023/080687 CN2023080687W WO2023216703A1 WO 2023216703 A1 WO2023216703 A1 WO 2023216703A1 CN 2023080687 W CN2023080687 W CN 2023080687W WO 2023216703 A1 WO2023216703 A1 WO 2023216703A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
area
insulating material
negative electrode
width
Prior art date
Application number
PCT/CN2023/080687
Other languages
English (en)
French (fr)
Inventor
陈宇杰
葛销明
范玉磊
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to EP23802479.8A priority Critical patent/EP4425618A1/en
Publication of WO2023216703A1 publication Critical patent/WO2023216703A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/72Grids
    • H01M4/74Meshes or woven material; Expanded metal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the field of battery technology, and more specifically, to a negative electrode plate, a manufacturing method of the negative electrode plate, an electrode assembly, a battery cell, a battery and electrical equipment.
  • the embodiments of the present application provide a negative electrode sheet, a method for manufacturing the negative electrode sheet, an electrode assembly, a battery cell, a battery and an electrical equipment, which can make the tab in a battery using foam metal as the negative electrode.
  • There is no metal particle deposition in the area which avoids battery cell short circuit caused by dendrites caused by excessive deposition of metal particles in the tab area, thereby improving the safety performance of the battery; at the same time, the tab area can maintain the characteristics of the metal, making it easy to weld and Maintain high overcurrent capability.
  • a negative electrode plate including: a current collector, the material of the current collector is a foam metal material; the current collector includes a first region, a second region and a third region arranged sequentially along a first direction. area, the first area is provided with negative electrode active material, the second area is filled with insulating material, and the third area is not provided with negative electrode Active substances.
  • the first area, the second area and the third area are arranged in sequence along the first direction.
  • a negative active material is provided inside the first region to facilitate metal nucleation and growth; the second region is filled with an insulating material to physically isolate the first region and the third region; the third region is not provided Negative active material, so that the third region maintains the characteristics of metal.
  • the tab area can maintain the metal's Features, can facilitate welding and maintain high overcurrent capability.
  • the surface of the first region is covered with the insulating material.
  • a negative active material is provided inside the first region to allow better growth of metal particles therein.
  • metal particles are more likely to grow on the surface of the first area than inside the first area, and this will lead to the deposition of metal particles only on the surface of the first area.
  • the metal particles are only deposited inside the first area, which can avoid the deposition of metal particles on the surface, thereby avoiding dendrite penetration and isolation caused by excessive metal deposition on the surface of the first area. film phenomenon, thereby improving the safety performance of the battery cells.
  • the insulating material is aluminum oxide or zirconium oxide.
  • the surface of the first area is covered with an insulating material so that the metal particles are not deposited on the surface but inside the first area.
  • Aluminum oxide and zirconium oxide are both materials with good insulation properties and stable in all aspects. Covering the surface of the first area with alumina and zirconium oxide can effectively prevent metal particles from depositing on the surface of the first area.
  • the width of the second region in the first direction is not less than the thickness of the current collector.
  • the second area is filled with insulating material to separate the first area and the third area and prevent metal particles deposited inside the first area from entering the third area. If the width of the second region is smaller than the thickness of the current collector, metal particles may still be deposited in the third region, and metal dendrites will still grow in the third region. That is to say, if the width of the second region in the first direction is smaller than the thickness of the current collector, the second region cannot effectively separate the first region and the third region. Specifying the width of the second region in the first direction to be no less than the thickness of the current collector can allow the second region to better isolate the first region and the third region to ensure No metal particles are deposited in the third area.
  • the width of the second area is no greater than 10% of the width of the first area.
  • the width of the second region in the first direction is not less than the thickness of the current collector.
  • the width of the second region in the first direction is too large, too much current collector material will be wasted, which will lead to an increase in the cost of the battery cells and a decrease in energy density. Therefore, in the first direction, the width of the second area is not greater than 10% of the width of the first area. In this way, the second area can well separate the first area and the third area to ensure that the third area There is no metal particle deposition inside, and no excessive current collector material is wasted to ensure low production cost and high energy density of battery cells.
  • the width of the third region is no greater than 20% of the width of the first region.
  • the width of the third region in the first direction is not greater than 20% of the width of the first region, so as not to waste too much current collector material to ensure lower production costs and higher battery cells. Energy Density.
  • the second region includes a first part and a second part, the first part and the first region form the main body of the pole piece, and the second part and the third part A region forms a tab of the pole piece, and the width of the first portion in the first direction is no greater than half the thickness of the pole piece.
  • the tab in order to prevent short circuit in the tab area, facilitate welding and maintain high overcurrent capability, the tab needs to include part of the second area and the third area.
  • the second area includes a first part and a second part.
  • the first part is in the main body area of the pole piece, and the second part is in the tab area of the pole piece. If the width of the first part included in the main body region in the first direction is not greater than half of the thickness of the pole piece, the first part of the main body region cannot truly protect the third region. Therefore, the width of the first part of the second region in the first direction is not less than half of the thickness of the pole piece, so that metal particles will not be deposited in the third region, and the pole tab can also be easily welded and maintain a high overcurrent capability.
  • the width of the first part in the first direction is not less than 6um.
  • the second area filled with insulating material includes a first part and a second part.
  • the first part is in the main body area of the pole piece, and the second part is in the tab area of the pole piece. If included in the first part of the main body area If the width of the part in the first direction is less than 6um, the first part of the main area cannot truly protect the third area. Therefore, the width of the first part of the second area in the first direction is not less than 6um, so that metal particles will not be deposited in the third area, and the tab can also facilitate welding and maintain high overcurrent capability.
  • the width of the first part is no greater than 5% of the width of the first region.
  • the width of the first part in the first direction is not less than the thickness of the current collector, and is not less than 6um.
  • the width of the first part in the first direction is not greater than 5% of the width of the first region.
  • the first part can well separate the first region and the tab to ensure that metal particles will not be in the third region. Internal deposition can avoid wasting too much current collector material to ensure lower production costs and higher energy density of battery cells.
  • the pole piece includes two sections of the second area, and the two sections of the second area are distributed on both sides of the first area.
  • the positive electrode in the battery cell surrounds the negative electrode. Furthermore, the positive electrode completely surrounds the first area of the negative electrode, so the edge of the positive electrode rests on the second area of the negative electrode.
  • the pole piece can include two sections of the second area, and the two sections of the second area are distributed on both sides of the first area. In this way, there is no special restriction on the matching method of the negative electrode and the positive electrode, which can save production costs and Improve production efficiency.
  • the metal foam is copper foam.
  • foam metal is used as the negative electrode material of the battery cell.
  • the foam metal is copper foam, which is used as the negative electrode material of the battery cell.
  • copper foam is used as the negative electrode material of the battery cell, the performance of the battery cell can be improved.
  • the thickness of the pole piece is 50um to 400um.
  • maintaining the thickness of the pole piece between 50um and 400um can provide sufficient deposition space for metal particles, thereby maintaining good performance of the battery cells.
  • a method for manufacturing a negative electrode sheet including: providing a current collector, the current collector including a first region, a second region and a third region sequentially arranged along a first direction, the current collector having The material is foam metal material; a first insulating material is provided in the first area, a second insulating material is filled in the second area, and a third insulating material is provided in the third area; the first insulating material is removed from the first area the first insulator quality, a negative active material is provided in the first region; the third insulating material in the third region is removed, and a negative active material is provided inside the first region, and the second region is filled with the The second insulating material, the negative electrode piece of the negative electrode active material is not provided in the third area.
  • the inside of the first region is conducive to metal nucleation and growth; by filling the second region with a second insulating material, the second region is separated from the first region and
  • the third area is to ensure that there is no metal particle deposition in the third area; by not setting the negative active material in the third area, the third area maintains its metallic characteristics, which facilitates subsequent welding and maintains high overcurrent capability.
  • the method before removing the first insulating material in the first area, the method further includes: cleaning the first insulating material on the surface of the first area; The surface of the first area covers the second insulating material.
  • the first insulating material is filled in the first area to prevent the second insulating material filled in the second area from entering the first area and thereby affecting the deposition of metal particles in the first area.
  • the first area Before removing the first insulating material in the first area, by covering the surface of the first area with the second insulating material, the first area becomes an internal conductive and surface insulating structure, which can prevent metal particles from depositing on the surface of the first area. Dendrites grow on the surface of one area and pierce the isolation film, thus improving the safety performance of the battery cells.
  • arranging the first insulating material in the first area includes: filling paraffin in the first area.
  • filling the first area with the first insulating material can prevent the insulating material filled in the second area from entering the first area and affecting the conductivity of the first area.
  • paraffin as the first insulating material, paraffin has good insulation and is easy to remove, and can maintain good conductivity in the first area.
  • removing the first insulating substance in the first region includes: heating the first region to remove the paraffin in the first region.
  • the first region is filled with paraffin to maintain the conductivity of the first region. Paraffin is removed by heating. This method is simple to operate and can be widely used in the production process.
  • arranging the third insulating material in the third region includes: filling paraffin in the third region.
  • filling the third region with the third insulating material can prevent the second insulating material filled in the second region and the negative active material filled in the first region from entering the third region.
  • Paraffin wax is used as the third insulating material. Paraffin wax has good insulation and is easy to remove, and can maintain the metallic properties of the third area.
  • arranging the negative active material in the first area includes: plating the negative active material in the first area through chemical plating.
  • the negative active material is disposed in the first region, so that the inside of the first region is conducive to the nucleation and growth of metal particles.
  • the negative active material is plated on the first area through chemical plating, so that the negative active material can be evenly distributed in the first area.
  • removing the third insulating material in the third region includes: heating the third region to remove the paraffin in the third region.
  • the paraffin in the third area is removed by heating, which can maintain good metal properties of the third area, facilitate subsequent welding, and maintain high overcurrent capability.
  • arranging the third insulating material in the third area includes: covering the third area with tape.
  • filling the third region with the third insulating material can prevent the insulating material filled in the second region and the negative active material filled in the first region from entering the third region.
  • Wrapping the third area with tape has an obvious effect of protecting the third area, and the operation is simple and the cost is low.
  • arranging the negative active material in the first area includes: plating the negative active material in the first area through physical plating.
  • the negative active material is disposed in the first region, so that the inside of the first region is conducive to the nucleation and growth of metal particles.
  • the negative active material can be evenly distributed in the first area.
  • removing the third insulating material in the third area includes: removing the tape on the third area.
  • the good metal properties of the third area can be maintained, which facilitates subsequent welding and maintains high overcurrent capability.
  • arranging the second insulating material in the second area includes: filling the second area with the second insulating material through evaporation or magnetron sputtering.
  • a second insulating material is provided in the second area to separate the first area and the third area to ensure that there is no deposition of metal particles in the third area and no dendrite growth. Filling the second area with the second insulating material by evaporation or magnetron sputtering can make the insulating material in the second area evenly distributed and strengthen the isolation effect of the second area.
  • an electrode assembly including the negative electrode piece, the positive electrode piece and the isolation film in the above embodiment.
  • a battery cell including the electrode assembly in the above embodiment; a housing having an opening for accommodating the electrode assembly; and an end cover for closing the opening.
  • a battery including the battery cell in the above embodiment.
  • an electrical device including the battery in the above embodiment, where the battery is used to provide electrical energy.
  • Figure 1 is a schematic structural diagram of a vehicle according to an embodiment of the present application.
  • Figure 2 is an exploded structural diagram of a battery according to an embodiment of the present application.
  • Figure 3 is a schematic diagram of a battery cell according to an embodiment of the present application.
  • Figure 4 is a schematic diagram of a negative electrode plate according to an embodiment of the present application.
  • Figure 5 is a schematic diagram of the manufacturing process of the negative electrode plate according to an embodiment of the present application.
  • Figure 6 is a schematic diagram of the manufacturing process of a negative electrode plate according to another embodiment of the present application.
  • FIG. 7 is a schematic diagram of the manufacturing process of the negative electrode plate according to yet another embodiment of the present application.
  • Vehicle 1 battery 2, battery cell 3;
  • Controller 11 motor 12, box 20, electrode assembly 31, housing 32, electrode terminal 33, connecting member 34, pressure relief mechanism 35, current collector 36;
  • an embodiment means that a particular feature, structure or characteristic described in connection with the embodiment can be included in at least one embodiment of the present application.
  • the appearances of this phrase in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive of other embodiments. Those skilled in the art understand, both explicitly and implicitly, that the embodiments described herein may be combined with other embodiments.
  • multiple refers to more than two (including two).
  • multiple groups refers to two or more groups (including two groups), and “multiple pieces” refers to It is more than two pieces (including two pieces).
  • the battery cells may include lithium metal secondary batteries, sodium metal batteries, magnesium metal batteries, etc., which are not limited in the embodiments of this application.
  • the battery cell may be in the shape of a cylinder, a flat body, or other shapes, and the embodiments of the present application are not limited to this.
  • Battery cells are generally divided into three types according to packaging methods: cylindrical battery cells, square battery cells and soft-pack battery cells, and the embodiments of the present application are not limited to this. For convenience of explanation, the following embodiments take a lithium metal battery as an example.
  • the battery mentioned in the embodiments of this application refers to a single physical module including one or more battery cells to provide higher voltage and capacity.
  • the battery mentioned in this application may include a battery module or a battery pack.
  • Batteries generally include a box for packaging one or more battery cells. The box can prevent liquid or other foreign matter from affecting the charging or discharging of the battery cells.
  • the tabs in the battery are bent, they will short-circuit with other electrodes, which will cause an acute short-circuit of the battery, thereby affecting the safety performance of the battery. Therefore, in the prior art, in order to prevent the short circuit of the tab, the tab is insulated by oxidation or glue coating, which can reduce the probability of short circuit at the tab and thereby improve the safety performance of the battery. Afterwards, the oxide layer is removed through high-frequency vibration of ultrasonic welding, so that the over-current capability of the tab will not be affected.
  • embodiments of the present application provide a negative electrode plate that can maintain the characteristics of the metal material in the tab area on the electrode plate, ensure normal welding and maintain high overcurrent capability, and at the same time prevent metal from growing therein and thus Improve battery safety performance.
  • the negative electrode sheet described in the embodiments of this application is suitable for electrode assemblies, battery cells, batteries, and electrical equipment using batteries.
  • Power-consuming devices can be vehicles, mobile phones, portable devices, laptops, ships, spacecraft, electric toys and power tools, etc.
  • Vehicles can be fuel vehicles, gas vehicles or new energy vehicles, and new energy vehicles can be pure electric vehicles, hybrid vehicles or extended-range vehicles, etc.
  • spacecraft include aircraft, rockets, space shuttles, spaceships, etc.
  • electric toys include fixed Type or mobile electric toys, such as game consoles, electric car toys, electric ship toys and electric airplane toys, etc.
  • electric tools include metal cutting electric tools, grinding electric tools, assembly electric tools and railway electric tools, for example, Electric drills, electric grinders, electric wrenches, electric screwdrivers, electric hammers, impact drills, concrete vibrators, planers and more.
  • Electric drills Electric grinders, electric wrenches, electric screwdrivers, electric hammers, impact drills, concrete vibrators, planers and more.
  • the following embodiments take the electrical device as a vehicle as an example.
  • FIG. 1 is a schematic structural diagram of a vehicle 1 provided by an embodiment of the present application.
  • a battery 2 is provided inside the vehicle 1 , and the battery 2 can be provided at the bottom, head, or tail of the vehicle 1 .
  • the battery 2 may be used to power the vehicle 1 , for example, the battery 2 may be used as an operating power source for the vehicle 1 .
  • the vehicle 1 may also include a controller 11 and a motor 12.
  • the controller 11 is used to control the battery 2 to provide power to the motor 12, for example, for starting, navigating and driving the vehicle 1 to meet its power requirements.
  • the battery 2 can not only be used as the operating power source of the vehicle 1, but also can be used as the driving power source of the vehicle 1, replacing or partially replacing fuel or natural gas to provide driving power for the vehicle 1.
  • FIG. 2 is an exploded schematic diagram of the battery 2 provided by an embodiment of the present application.
  • the battery 2 includes a box 20 and a battery cell 3 .
  • the battery cell 3 is accommodated in the box 20 .
  • the box 20 is used to accommodate the battery cells 3 .
  • the box 20 can be of various structures.
  • the box body 20 may include a first box body part 201 and a second box body part 202.
  • the first box body part 201 and the second box body part 202 cover each other.
  • the first box body part 201 and the second box body part 202 cover each other.
  • the two box parts 202 jointly define an accommodation space 203 for accommodating the battery cells 3 .
  • the second box part 202 may be a hollow structure with one end open, and the first box part 201 may be a plate-like structure,
  • the first box part 201 covers the open side of the second box part 202 to form the box 20 with a receiving space 203; both the first box part 201 and the second box part 202 can also be open on one side.
  • the hollow structure is such that the opening side of the first box part 201 is covered with the opening side of the second box part 202 to form the box 20 having an accommodation space 203 .
  • the first box part 201 and the second box part 202 can be in various shapes, such as cylinder, rectangular parallelepiped, etc.
  • a sealing member may also be provided between the first box part 201 and the second box part 202, such as sealant, sealing ring, etc. .
  • the first box part 201 can also be called an upper box cover, and the second box part 202 can also be called a lower box.
  • the battery 2 has a plurality of battery cells 3 .
  • Multiple battery cells 3 can be connected in series, in parallel, or in mixed connection.
  • Mixed connection means that multiple battery cells 3 are connected in series and in parallel.
  • Multiple battery cells 3 can be directly connected in series or in parallel or mixed together, and then the whole composed of multiple battery cells 3 can be accommodated in the box 20 ; of course, multiple battery cells 3 can also be connected in series first. They may be connected in parallel or mixed to form a battery module (not shown in the figure), and multiple battery modules may be connected in series, parallel or mixed to form a whole, and be accommodated in the box 20 .
  • the plurality of battery cells 3 in the battery module can be electrically connected through bus components to achieve parallel, series or mixed connection of the multiple battery cells 3 in the battery module.
  • FIG. 3 it is a schematic structural diagram of a battery cell 3 according to an embodiment of the present application.
  • the battery cell 3 includes one or more electrode assemblies 31 , a casing 321 and an end cap 322 .
  • Housing 321 and end cap 322 form housing or battery case 32 .
  • the wall of the casing 321 and the end cover 322 are both called the wall of the battery cell 3.
  • the wall of the casing 321 includes a bottom wall and four side walls.
  • the housing 321 is determined according to the combined shape of one or more electrode assemblies 31.
  • the housing 321 can be a hollow rectangular parallelepiped, a cube, or a cylinder, and one surface of the housing 321 has an opening to accommodate one or more electrodes.
  • Component 31 may be placed within housing 321.
  • the housing 321 is a hollow rectangular parallelepiped or a cube
  • one of the planes of the housing 321 is an opening surface, that is, the plane does not have a wall so that the inside and outside of the housing 321 are connected.
  • the housing 321 can be a hollow cylinder
  • the end surface of the housing 321 is an open surface, that is, the end surface does not have a wall so that the inside and outside of the housing 321 are connected.
  • the end cap 322 covers the opening and is connected with the housing 321 to form a closed cavity in which the electrode assembly 31 is placed.
  • the housing 321 is filled with electrolyte, such as electrolytic solution.
  • the battery cell 3 may also include two electrode terminals 33 , and the two electrode terminals 33 may be provided on the end cap 322 .
  • the end cap 322 is usually in the shape of a flat plate, and two electrode terminals 33 are fixed on the flat surface of the end cap 322.
  • the two electrode terminals 33 are respectively a positive electrode terminal 331 and a negative electrode terminal 332.
  • Each electrode terminal 33 is provided with a corresponding A connecting member 34 , which may also be called a current collecting member 34 , is disposed between the end cap 322 and the electrode assembly 31 for electrically connecting the electrode assembly 31 and the electrode terminal 33 .
  • the electrode assembly 31 can be provided as a single or multiple electrode assemblies 31 according to actual usage requirements. As shown in FIG. 3, the battery cell 3 is provided with four independent electrode assemblies 31.
  • the battery cell 3 may also be provided with a pressure relief mechanism 35 .
  • the pressure relief mechanism 35 is used to be activated when the internal pressure or temperature of the battery cell 3 reaches a threshold value to relieve the internal pressure or temperature.
  • the pressure relief mechanism 35 can be any possible pressure relief structure, which is not limited in the embodiments of the present application.
  • the pressure relief mechanism 35 may be a temperature-sensitive pressure relief mechanism configured to melt when the internal temperature of the battery cell 3 provided with the pressure relief mechanism 35 reaches a threshold value; and/or the pressure relief mechanism 35 may be a pressure-sensitive pressure relief mechanism configured to rupture when the internal air pressure of the battery cell 3 provided with the pressure relief mechanism 35 reaches a threshold value.
  • FIG 4 is a schematic structural diagram of a negative electrode plate according to an embodiment of the present application.
  • the negative electrode piece includes a current collector 36, which is made of foam metal material; the current collector 36 includes a first region 361, a second region 362 and a third region 363 arranged sequentially along the first direction X.
  • the first region 361 A negative active material is provided inside, the second region 362 is filled with an insulating material, and the third region 363 is not provided with a negative active material.
  • foam metal refers to a metal material with foam pores.
  • Foam metal has high porosity and large pore size. Therefore, the negative electrode current collector prepared with foam metal can provide growth space for metal particles and allow metal particles to deposit. in foam metal materials.
  • the negative active material is a material whose properties are close to those of metal particles.
  • metal phosphides such as copper phosphide, nickel, titanium, cobalt, and iron
  • oxides such as copper oxide, aluminum oxide, zinc oxide, and silicon dioxide
  • metal elements such as gold, silver, zinc, silicon, magnesium, and calcium
  • carbon Carbon materials such as nanotubes, graphene, fullerene, and activated carbon
  • metal sulfides such as Mo(SxSe1-x)2 and W(SxSe1-x)2
  • lithium-containing substances such as Li2Sy, LiX, Li2O, and Li3N.
  • the above substances are only examples and do not mean that they are only the above substances. Only materials that have properties close to the metals in metal batteries and can help metal particles be deposited in the negative electrode current collector can be used as negative electrode active materials.
  • the first area 361, the second area 362 and the third area 363 are arranged along the first direction X in sequence.
  • a negative active material is provided inside the first region 361 so that the inside of the first region 361 is conducive to the nucleation and growth of metal particles; the second region 362 is filled with insulating material to physically isolate the second region 362 from the first region. 361 and the third region 363; the third region 363 is not provided with negative active material, so that the third region 363 maintains the characteristics of metal.
  • the first area 361 and the third area 363 are isolated to ensure that the third area There is no metal particle deposition in 363, so that in the battery cell 3 with foam metal as the negative electrode, there is no metal particle deposition in the tab area, avoiding battery cells caused by dendrites due to excessive deposition of metal particles in the tab area.
  • the body 3 is short-circuited, thereby improving the safety performance of the battery cell 3; at the same time, the tab area can maintain the characteristics of metal, which can facilitate welding and maintain high overcurrent capability.
  • the surface of the first area 361 is covered with an insulating material.
  • a negative active material is provided inside the first region 361 to allow better growth of metal particles therein.
  • metal particles are more likely to grow on the surface of the first area 361 than inside the first area 361, and this will cause the metal particles to only grow in the first area 361.
  • the phenomenon of surface deposition If too many metal particles are deposited on the surface of the first region 361 , the excess metal particles will generate dendrites and pierce the separator, thereby causing short circuit or open circuit of the battery cell 3 .
  • the surface of the first region 361 is covered with an insulating material so that the metal particles are only deposited inside the first region 361. This can prevent the metal particles from being deposited on the surface of the first region 361, thereby preventing the metal particles from being deposited on the surface of the first region 361.
  • the phenomenon of dendrites piercing the isolation film caused by the deposition of excessive metal particles improves the safety performance of the battery cell 3 .
  • the insulating material is aluminum oxide or zirconium oxide.
  • Alumina is a compound with a melting point of 2054°C, a boiling point of 2980°C, high hardness, and high stability.
  • Zirconia is a chemically inactive, high-temperature resistant material with a high melting point.
  • Aluminum oxide and zirconium oxide are both preferred insulating materials. In the embodiment of the present application, covering the surface of the first region 361 with alumina or zirconium oxide can prevent metal particles from being deposited on the surface of the first region 361 .
  • the insulating material can also be other materials, which is not limited in this application.
  • the surface of the first region 361 is covered with an insulating material so that the metal particles are not on the surface of the first region 361 but inside the first region 361 deposition.
  • Alumina and zirconium oxide are both materials with good insulation properties and very stable performance in all aspects. Covering the surface of the first area 361 with alumina or zirconium oxide can effectively prevent metal particles from depositing on the surface of the first area 361, making the The first region 361 becomes a surface insulating and internal conductive structure.
  • the width of the second region 362 in the first direction X is not less than the thickness of the current collector 36 .
  • the second region 362 is filled with insulating material to separate the first region 361 and the third region 363 to prevent metal particles from depositing in the third region 363 . If the width of the second region 362 in the first direction X is smaller than the thickness of the current collector 36 , metal particles may still be deposited in the third region 363 , and metal dendrites may still grow in the third region 363 . That is to say, if the width of the second region 362 in the first direction X is smaller than the thickness of the current collector 36 , the second region 362 cannot effectively separate the first region 361 and the third region 363 .
  • the width of the second region 362 in the first direction There is no possibility of metal dendrite growth in the third area 363, and the third area 363 is protected from metal particle deposition.
  • the width of the second area 362 is no greater than 10% of the width of the first area 361 .
  • the width of the second region 362 in the first direction X needs to be no less than the thickness of the current collector 36 .
  • the width of the second region 362 in the first direction Decrease in density.
  • the width of the second region 362 is not greater than 10% of the width of the first region 361 .
  • the second area 362 can effectively separate the first area 361 and the third area 363 to ensure that no metal particles are deposited in the third area 363, and can also avoid wasting too much current collector material to ensure that the battery cell 3 has a lower production costs and higher energy density.
  • the width of the third area 363 is no greater than 20% of the first area 361 .
  • the width of the third region 363 is not greater than 20% of the width of the first region 361 . This avoids wasting too much current collector material and ensures lower production cost and higher energy density of the battery cells 3 .
  • the second region 362 includes a first part and a second part.
  • the first part and the first region 361 form the main body of the pole piece.
  • the second part and the third region 363 form the pole tab of the pole piece.
  • the first part is in the first direction.
  • the width on X is not greater than half the thickness of the pole piece.
  • the second region 362 filled with insulating material includes a first part and a second part, the first part is in the main body region of the pole piece, and the second part is in the tab region of the pole piece.
  • the tab part needs to have a part of the second region 362; in order to prevent the tab region from directly overlapping the first region 361 and causing a short circuit, the main body region needs to have Part of the second area 362; in order to make the tab area convenient for welding and maintain high overcurrent capability, the tab area needs to include a third area 363.
  • the negative electrode piece is composed of a main body region and a tab region.
  • the main body region is composed of the first region 361 and the first part
  • the tab region is composed of the third region 363 and the second part. If the width of the first part included in the main body region in the first direction X is less than half of the thickness of the pole piece, the second part of the tab region cannot truly protect the third region 363 . Therefore, the width of the first part of the second region 362 in the first direction flow capability.
  • the width of the first part in the first direction X is not less than 6um.
  • the second region 362 filled with insulating material includes a first part and a second part.
  • the first part is in the main body region of the pole piece, and the second part is in the tab region of the pole piece. If the width of the first part included in the main body region in the first direction X is less than 6 ⁇ m, the first part of the main body region cannot truly protect the third region 363 .
  • the width of the first part of the second region 362 in the first direction Can facilitate welding and maintain high overcurrent capability.
  • the width of the first part is no greater than 5% of the width of the first area 361 .
  • the width of the first part in the first direction X is not less than the thickness of the current collector 36 and not less than 6um. However, when the width of the first part in the first direction
  • the pole piece includes two sections of second areas 362 , and the two sections of second areas 362 are distributed on both sides of the first area 361 .
  • the positive electrode in the battery cell 3 wraps the negative electrode. Furthermore, the positive electrode completely wraps the first area 361 of the negative electrode, so the edge of the positive electrode rests on the second area 362 of the negative electrode. . During the production process, it is difficult to make the edge of the positive electrode just rest on the smaller second area 362 instead of the first area 361 and the third area 363 .
  • the pole piece can include two sections of second areas 362.
  • the two sections of second areas 362 are distributed on both sides of the first area 361. In this way, there is no need to have a special matching method of the negative electrode and the positive electrode. limited, thus saving production costs and improving production efficiency.
  • the foam metal is copper foam.
  • foam metal is used as the negative electrode material of the battery cell 3 .
  • the foam metal is copper foam, that is, the copper foam is used as the negative electrode material of the battery cell 3 .
  • copper foam is used as the negative electrode material of the battery cell 3
  • the performance of the battery cell 3 can be improved.
  • the thickness of the pole piece is 50um to 400um.
  • maintaining the thickness of the pole piece between 50um and 400um can provide enough deposition space for metal particles, thereby maintaining good performance of the battery cell 3.
  • Figure 5 is a schematic diagram of the manufacturing process of the negative electrode plate according to an embodiment of the present application. As shown in Figure 5, the manufacturing method includes:
  • the current collector 36 includes a first region 361, a second region 362 and a third region 363 arranged sequentially along the first direction.
  • the material of the current collector 36 is a foam metal material;
  • S506 Remove the third insulating material in the third region 363 to obtain a negative electrode plate in which the negative active material is disposed inside the first region 361, the second region 362 is filled with the second insulating material, and the third region 363 is not provided with a negative active material.
  • the inside of the first region 361 is conducive to metal nucleation and growth; by filling the second region 362 with the second insulating material, the second region 362 is separated from the first region. There are no metal particles deposited in the region 361 and the third region 363.
  • the third region 363 maintains its metallic properties, which facilitates subsequent welding and maintains high overcurrent capability.
  • the method further includes: cleaning the first insulating material on the surface of the first area 361; and covering the surface of the first area 361 with the second insulating material.
  • the first insulating material is filled in the first region 361 to prevent the second insulating material filled in the second region 362 from entering the first region 361 and affecting the deposition of metal particles in the first region 361 .
  • the surface of the first region 361 is covered with an insulating material. Metal particles are not deposited on the surface of the first region 361 .
  • the first region 361 becomes an internal conductive and surface insulating structure, which can prevent metal particles from being deposited on the surface of the first region 361. Dendrites grow on the surface and pierce the isolation film, thereby improving the safety performance of the battery cell 3 .
  • disposing the first insulating material in the first region 361 includes: filling the first region 361 with paraffin wax.
  • Paraffin wax is a kind of non-polar solvent soluble in gasoline, carbon disulfide, carbon tetrachloride and other non-polar solvents. It has a low melting point and can be used as a coating material for baking containers, insulating electrical components, improving the aging resistance and flexibility of rubber, etc. .
  • filling the first insulating material in the first region 361 can prevent the second insulating material filled in the second region 362 from entering the first region 361 and affecting the conductivity of the first region 361 .
  • paraffin as the first insulating material, paraffin has good insulation and is easy to remove, and can maintain good conductivity of the first region 361 .
  • removing the first insulating material in the first region 361 includes: heating the first region 361 to remove paraffin in the first region 361 .
  • the first area 361 is filled with paraffin wax to protect the first area 361 from being filled with the second insulating material.
  • the lower melting point of the paraffin wax is used to remove the paraffin by heating, and the original state of the first area 361 is restored.
  • the first region 361 is filled with paraffin wax to maintain the conductivity of the first region 361 . Paraffin is removed by heating. This method is simple to operate and can be widely used in the production process.
  • disposing a third insulating material in the third region 363 includes: filling the third region 363 with paraffin wax.
  • the second region 362 needs to be provided with a second insulating material to separate the first region 361 and the third region 362 , and the first region 361 needs to be provided with a negative active material to make it easier for metal particles to be deposited in the first region 361 .
  • the third area 363 belongs to the tab area of the battery cell 3. In order to facilitate subsequent welding and maintain a high overcurrent capacity, it is necessary to maintain metallic characteristics without any insulation treatment or active material treatment.
  • filling the third region 363 with the third insulating material can prevent the second insulating material filled in the second region 362 and the negative active material filled in the first region 361 from entering the third region 363 .
  • paraffin As the third insulating material, paraffin has good insulation and is easy to remove, and can maintain the metallic properties of the third region 363 .
  • arranging the negative active material in the first region 361 includes: plating the negative active material in the first region 361 through chemical plating.
  • Chemical plating is a method that uses chemical methods to produce or deposit thin films on materials.
  • the first region 361 may be plated with negative active material through electroplating.
  • the negative active material is arranged in the first region 361, so that the inside of the first region 361 is conducive to the nucleation and growth of metal particles.
  • the negative active material is plated on the first area 361 through chemical plating, so that the negative active material can be evenly distributed in the first area 361 .
  • removing the third insulating material in the third region 363 includes: heating the third region 363 to remove paraffin from the third region 363 .
  • the paraffin in the third region 363 is removed by heating, so that the good metal properties of the third region 363 can be maintained, which facilitates subsequent welding and maintains high overcurrent capability.
  • disposing a third insulating material in the third area 363 includes: covering the third area 363 with tape.
  • the tape can be made of any material, and the application does not have any limitation on the material of the tape.
  • the tape covering the third region 363 can prevent the second insulating material filled in the second region 362 and the negative active material filled in the first region 361 from entering the third region 363 .
  • the third area 363 is covered with tape, which has an obvious effect of protecting the third area 363, is simple to operate, and has low cost.
  • arranging the negative active material in the first region 361 includes: plating the negative active material in the first region 361 through physical plating.
  • the first region 361 can be plated with negative active material by evaporation or magnetron sputtering.
  • the negative active material is arranged in the first region 361, so that the inside of the first region 361 is conducive to the nucleation and growth of metal particles.
  • the negative active material can be uniformly distributed in the first area 361 .
  • removing the third insulating material in the third area 363 includes: removing the tape on the third area 363 .
  • arranging the second insulating material in the second area 362 includes filling the second area 362 with the second insulating material through evaporation or magnetron sputtering.
  • Evaporation refers to a process that uses a certain heating evaporation method to evaporate and vaporize coating materials (or film materials) under vacuum conditions, and the particles fly to the surface of the substrate and condense to form a film.
  • Using evaporation to fill the second area 362 with the second insulating material has the advantages of simple film formation method, high film purity and density, and unique film structure and performance.
  • Magnetron sputtering is a type of physical vapor deposition. General sputtering methods can be used to prepare multiple materials such as metals, semiconductors, and insulators.
  • magnetron sputtering is used to fill the second area 362 with the second insulating material, which has the advantages of simple equipment, easy control, large coating area, and Strong adhesion and other advantages.
  • other methods may also be selected to fill the second area 362 with the second insulating material, and the present application does not impose any limitation on this.
  • FIG. 6 is a schematic diagram of the manufacturing process of a negative electrode plate according to another embodiment of the application. As shown in Figure 6, the negative electrode plate can be prepared through the following steps:
  • S602 Fill the first region 361 and the third region 363 of the negative electrode current collector 36 with paraffin wax;
  • S604 Fill the second area 362 of the negative electrode current collector 36 with the second insulating material through low-temperature evaporation or low-temperature magnetron sputtering, and cover the surface of the first area 361 with the second insulating material;
  • S605 Remove the paraffin in the first area 361 by heating or organic cleaning.
  • S606 Fill the first region 361 with the negative active material through electroplating
  • S607 Remove the paraffin in the third area 363 by heating or organic matter cleaning.
  • FIG. 7 is a schematic diagram of the manufacturing process of the negative electrode plate according to yet another embodiment of the application. As shown in Figure 7, the negative electrode plate can also be prepared through the following steps:
  • S703 Fill the first region 361 with the negative active material through low-temperature evaporation or low-temperature magnetron sputtering;
  • S706 Remove the tape on the second area 362, and provide a second insulating material on the surface of the first area 361 and the second area 362 of the negative electrode current collector 36 by low-temperature evaporation or low-temperature magnetron sputtering.
  • S707 Remove the paraffin in the first area 361 by heating or organic matter cleaning
  • the embodiment of the present application also provides an electrode assembly 31, including the negative electrode piece, the positive electrode piece and the isolation film in the previous embodiment.
  • the embodiment of the present application also provides a battery cell 3, which includes the battery assembly 31 in the previous embodiment; a housing 321 with an opening for accommodating the electrode assembly 31; and an end cover 322 for closing the opening.
  • the embodiment of the present application also provides a battery 2, including the battery cell 3 in the previous embodiment.
  • the embodiment of the present application also provides an electrical device, including the battery 2 in the previous embodiment, and the battery 2 is used to provide electric energy.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

本申请实施例公开了一种负极极片及其制作方法和相关装置。该负极极片包括集流体,集流体的材料为泡沫金属材料;集流体包括沿第一方向依次设置的第一区域、第二区域和第三区域,第一区域内部设置有负极活性物质,第二区域填充绝缘物质,第三区域未设置负极活性物质。本申请实施例的技术方案,可以使得在以泡沫金属为负极的电池中,极耳区域内无金属粒子沉积,避免因极耳区域金属粒子沉积过多而产生枝晶造成的电池单体短路,从而提升电池的安全性能;同时,极耳区域能够保持金属的特性,可以方便焊接和保持高过流能力。

Description

负极极片及其制作方法和相关装置
相关申请的交叉引用
本专利申请要求于2022年5月7日提交的名称为“负极极片及其制作方法和相关装置”的中国专利申请202210490199.5的优先权,该申请的全部内容通过引入并入本文中。
技术领域
本申请涉及电池技术领域,更为具体地,涉及一种负极极片、负极极片的制作方法、电极组件、电池单体、电池和用电设备。
背景技术
随着环境污染的日益加剧,新能源产业越来越受到人们的关注。在新能源产业中,电池技术是关乎其发展的一项重要因素。
在电池技术的发展中,如何提高电池的安全性能,是电池技术中一个亟待解决的技术问题。
发明内容
鉴于上述问题,本申请实施例提供了一种负极极片、负极极片的制作方法、电极组件、电池单体、电池和用电设备,可以使得在以泡沫金属为负极的电池中,极耳区域内无金属粒子沉积,避免因极耳区域金属粒子沉积过多而产生枝晶造成的电池单体短路,从而提升电池的安全性能;同时,极耳区域能够保持金属的特性,可以方便焊接和保持高过流能力。
第一方面,提供了一种负极极片,包括:集流体,所述集流体的材料为泡沫金属材料;所述集流体包括沿第一方向依次设置的第一区域、第二区域和第三区域,第一区域内部设置有负极活性物质,第二区域填充有绝缘物质,第三区域未设置负极 活性物质。
本申请实施例中,第一区域、第二区域和第三区域依次沿第一方向排列。第一区域内部设置有负极活性物质以使第一区域内部有利于金属成核生长;第二区域填充绝缘物质以使第二区域在物理上隔离第一区域和第三区域;第三区域未设置负极活性物质,以使第三区域保持金属的特性。通过将负极极片分成三个不同区域,并且使填充绝缘物质的第二区域位于第一区域和第三区域之间,隔开第一区域和第三区域,这样可以使得在以泡沫金属为负极的电池中,极耳区域内无金属粒子沉积,避免因极耳区域金属粒子沉积过多而产生枝晶造成的电池单体短路,从而提升电池的安全性能;同时,极耳区域能够保持金属的特性,可以方便焊接和保持高过流能力。
在一种可能的实施方式中,所述第一区域的表面覆盖有所述绝缘物质。
本申请实施例中,第一区域内部设置有负极活性物质以让金属粒子在其中更好的生长。在用泡沫金属作为负极的电池单体中,相较于第一区域内部,第一区域表面更容易会有金属粒子生长,并且将会导致金属粒子只在第一区域表面沉积的现象。通过在第一区域的表面覆盖绝缘物质,使金属粒子只在第一区域内部沉积,这样可以避免金属粒子在表面沉积,进而避免因第一区域表面沉积过多金属而造成的枝晶刺穿隔离膜的现象,由此提升了电池单体的安全性能。
在一种可能的实施方式中,所述绝缘物质为氧化铝或氧化锆。
本申请实施例中,为避免在第一区域表面沉积过多金属粒子形成枝晶而刺穿隔离膜的现象,在第一区域表面覆盖绝缘物质使金属粒子不在表面而在第一区域内部沉积。氧化铝和氧化锆都是绝缘性能好和各方面都很稳定的材料,在第一区域表面覆盖氧化铝和氧化锆,可以很好的避免金属粒子在第一区域表面沉积。
在一种可能的实施方式中,所述第二区域在所述第一方向上的宽度不小于所述集流体的厚度。
本申请实施例中,第二区域填充绝缘物质,隔开第一区域和第三区域,防止沉积在第一区域内部的金属粒子进入到第三区域内。如果第二区域的宽度小于集流体的厚度,金属粒子仍然有可能会在第三区域内沉积,第三区域内就仍然会有金属枝晶生长。也就是说,如果第二区域在第一方向上的宽度小于集流体的厚度,第二区域就不能起到有效隔开第一区域和第三区域的作用。将第二区域在第一方向上的宽度规定为不小于集流体的厚度,可以让第二区域更好的隔离第一区域和第三区域,以保证 第三区域内无金属粒子沉积。
在一种可能的实施方式中,在所述第一方向上,所述第二区域的宽度不大于所述第一区域宽度的10%。
本申请实施例中,为了使第二区域更好的隔开第一区域和第三区域,第二区域在第一方向上的宽度不小于集流体的厚度。但是当第二区域在第一方向上的宽度过大,过多的集流体材料就会被浪费,进而导致电池单体的成本上升和能量密度的下降。因此,在第一方向上,使第二区域的宽度不大于所述第一区域宽度的10%,这样,第二区域既可以很好的隔开第一区域和第三区域以保证第三区域内无金属粒子沉积,又可以不浪费过多的集流体材料以保证电池单体较低的生产成本和较高的能量密度。
在一种可能的实施方式中,在所述第一方向上,所述第三区域的宽度不大于所述第一区域宽度的20%。
本申请实施例中,如果第三区域在第一方向上的宽度过大,过多的集流体材料就会被浪费,进而导致电池单体的成本上升和能量密度的下降。因此,在第一方向上,使第三区域的宽度不大于所述第一区域宽度的20%,这样可以不浪费过多的集流体材料以保证电池单体较低的生产成本和较高的能量密度。
在一种可能的实施方式中,所述第二区域包括第一部分和第二部分,所述第一部分和所述第一区域形成所述极片的主体,所述第二部分和所述第三区域形成所述极片的极耳,所述第一部分在所述第一方向上的宽度不大于所述极片厚度的一半。
本申请实施例中,为了让极耳区域不发生短路、方便焊接和保持高过流能力,极耳需包括部分第二区域和第三区域。第二区域包括第一部分和第二部分,第一部分在极片的主体区域,第二部分在极片的极耳区域。若包含在主体区域的第一部分在第一方向上的宽度不大于极片厚度的一半,主体区域的第一部分就不能起到真正的保护第三区域的作用。因此,第二区域的第一部分在第一方向上的宽度不小于极片厚度的一半,这样可以使金属粒子不会在第三区域内沉积,极耳也可以方便焊接和保持高过流能力。
在一种可能的实施方式中,所述第一部分在所述第一方向上的宽度不小于6um。
本申请实施例中,内部填充绝缘材料的第二区域包括第一部分和第二部分,第一部分在极片的主体区域,第二部分在极片的极耳区域。若包含在主体区域的第一 部分在第一方向上的宽度小于6um,主体区域的第一部分就不能起到真正的保护第三区域的作用。因此,第二区域的第一部分在第一方向上的宽度不小于6um,这样可以使金属粒子不会在第三区域内沉积,极耳也可以方便焊接和保持高过流能力。
在一种可能的实施方式中,在所述第一方向上,所述第一部分的宽度不大于所述第一区域宽度的5%。
本申请实施例中,为了使第一部分更好的发挥隔开第一区域和极耳的作用,第一部分在第一方向上的宽度不小于集流体的厚度,且不小于6um。但是当第一部分在第一方向上的宽度过大,过多的集流体材料就会被浪费,进而导致电池单体的成本上升和能量密度的下降。因此,在第一方向上,使第一部分的宽度不大于所述第一区域宽度的5%,第一部分既可以很好的隔开第一区域和极耳以保证金属粒子不会在第三区域内沉积,又可以不浪费过多的集流体材料以保证电池单体较低的生产成本和较高的能量密度。
在一种可能的实施方式中,所述极片包括两段所述第二区域,两段所述第二区域分布在所述第一区域的两侧。
本申请实施例中,电池单体中的正极是包住负极的,更进一步说,正极完全包住负极中的第一区域,因此正极的边缘是搭在负极的第二区域上的。为了生产过程中的方便,极片可以包括两段第二区域,两段第二区域分布在第一区域的两侧,这样负极与正极的搭配方式就不用有特别的限制,可以节省生产成本和提升生产效率。
在一种可能的实施方式中,所述泡沫金属为泡沫铜。
本申请实施例中,泡沫金属作为电池单体的负极材料。泡沫金属为泡沫铜,也就是泡沫铜作为电池单体的负极材料。当泡沫铜作为电池单体的负极材料时,可以提升电池单体的性能。
在一种可能的实施方式中,所述极片的厚度为50um至400um。
本申请实施例中,将极片的厚度维持在50um至400um之间,可以给金属粒子足够的沉积空间,进而维持电池单体良好的性能。
第二方面,提供了一种负极极片的制作方法,包括:提供集流体,所述集流体包括沿第一方向依次设置的第一区域、第二区域和第三区域,所述集流体的材料为泡沫金属材料;在所述第一区域设置第一绝缘物质,在所述第二区域内填充第二绝缘物质,在所述第三区域设置第三绝缘物质;去除所述第一区域内的所述第一绝缘物 质,在所述第一区域内设置负极活性物质;去除所述第三区域的所述第三绝缘物质,得到所述第一区域内部设置有负极活性物质,所述第二区域填充有所述第二绝缘物质,所述第三区域未设置负极活性物质的负极极片。
本申请实施例中,通过在第一区域内设置负极活性物质,使第一区域内部有利于金属成核生长;通过在第二区域填充第二绝缘材料,使第二区域隔开第一区域和第三区域,以保证第三区域内没有金属粒子沉积;通过未在第三区域设置负极活性物质,使第三区域保持金属特性,方便后续焊接和保持高过流能力。
在一种可能的实施方式中,所述去除所述第一区域内的所述第一绝缘物质之前,所述方法还包括:清理所述第一区域表面的所述第一绝缘物质;在所述第一区域的表面覆盖所述第二绝缘物质。
本申请实施例中,在第一区域内填充第一绝缘物质,以防填充在第二区域的第二绝缘物质进入到第一区域,进而影响第一区域沉积金属粒子。去除第一区域内的第一绝缘物质前,通过在第一区域的表面覆盖第二绝缘物质,使第一区域成为内部导电、表面绝缘的结构,能够避免金属粒子沉积在第一区域表面,第一区域的表面长出枝晶而刺穿隔离膜,进而提高电池单体的安全性能。
在一种可能的实施方式中,所述在所述第一区域设置所述第一绝缘物质,包括:在所述第一区域内填充石蜡。
本申请实施例中,在第一区域内填充第一绝缘物质,可以防止填充在第二区域的绝缘物质进入到第一区域,影响第一区域的导电性。将石蜡作为第一绝缘物质,石蜡绝缘性好且易去除,可以保持第一区域良好的导电性。
在一种可能的实施方式中,所述去除所述第一区域内的所述第一绝缘物质,包括:加热所述第一区域,以去除所述第一区域内的所述石蜡。
本申请实施例中,在第一区域内填充石蜡而保持第一区域的导电性。通过加热的方式去除石蜡,该方法操作简单,可以在生产过程中广泛运用。
在一种可能的实施方式中,所述在所述第三区域设置所述第三绝缘物质,包括:在所述第三区域内填充石蜡。
本申请实施例中,在第三区域内填充第三绝缘物质,可以防止填充在第二区域的第二绝缘物质和填充在第一区域内部的负极活性物质进入到第三区域。将石蜡作为第三绝缘物质,石蜡绝缘性好且易去除,可以保持第三区域的金属特性。
在一种可能的实施方式中,所述在所述第一区域内设置负极活性物质,包括:通过化学镀膜方式在所述第一区域镀所述负极活性物质。
本申请实施例中,在第一区域内设置负极活性物质,使第一区域内部有利于金属粒子成核并生长。通过化学镀膜方式在第一区域镀负极活性物质,可以使负极活性物质均匀的分布在第一区域。
在一种可能的实施方式中,所述去除所述第三区域的所述第三绝缘物质,包括:加热所述第三区域,以去除所述第三区域的所述石蜡。
本申请实施例中,通过加热的方式去除第三区域的石蜡,可以保持第三区域良好的金属特性,方便后续焊接和保持高过流能力。
在一种可能的实施方式中,所述在所述第三区域设置所述第三绝缘物质,包括:在所述第三区域上包覆胶带。
本申请实施例中,在第三区域内填充第三绝缘物质,可以防止填充在第二区域的绝缘物质和填充在第一区域内部的负极活性物质进入到第三区域。在第三区域上包覆胶带,保护第三区域的效果明显,并且操作简单,成本较低。
在一种可能的实施方式中,所述在所述第一区域内设置负极活性物质,包括:通过物理镀膜方式在所述第一区域镀所述负极活性物质。
本申请实施例中,在第一区域内设置负极活性物质,使第一区域内部有利于金属粒子成核并生长。通过物理镀膜方式在第一区域镀负极活性物质,可以使负极活性物质均匀的分布在第一区域。
在一种可能的实施方式中,所述去除所述第三区域的所述第三绝缘物质,包括:去除所述第三区域上的所述胶带。
本申请实施例中,通过直接去除第三区域上的胶带,可以保持第三区域良好的金属特性,方便后续焊接和保持高过流能力。
在一种可能的实施方式中,所述在所述第二区域设置所述第二绝缘物质,包括:通过蒸镀或磁控溅射方式在所述第二区域填充所述第二绝缘物质。
本申请实施例中,第二区域设置第二绝缘物质隔开第一区域和第三区域,以保证第三区域内无金属粒子沉积,进而没有枝晶生长。通过蒸镀或磁控溅射方式在第二区域填充第二绝缘物质,可以使第二区域内的绝缘物质均匀分布,加强第二区域的隔离作用。
第三方面,提供了一种电极组件,包括上述实施例中的负极极片,正极极片以及隔离膜。
第四方面,提供了一种电池单体,包括上述实施例中的电极组件;壳体,具有开口,用于容纳所述电极组件;端盖,用于封闭所述开口。
第五方面,提供了一种电池,包括上述实施例中的电池单体。
第六方面,提供了一种用电设备,包括上述实施例中的电池,所述电池用于提供电能。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据附图获得其他的附图。
图1是本申请一实施例的车辆的结构示意图;
图2是本申请一实施例的电池的分解结构示意图;
图3是本申请一实施例的电池单体的示意图;
图4是本申请一实施例的负极极片的示意图;
图5是本申请一实施例的负极极片的制作流程示意图;
图6是本申请另一实施例的负极极片的制作流程示意图;
图7是本申请再一实施例的负极极片的制作流程示意图。
具体实施方式中的附图标号如下:
附图标记:
车辆1,电池2,电池单体3;
控制器11,马达12,箱体20,电极组件31,外壳32,电极端子33,连接构件34,泄压机构35,集流体36;
第一箱体部201,第二箱体部202,容纳空间203,壳体321,端盖322,正电极端子331,负电极端子332,第一区域361,第二区域362,第三区域363,第一方向X。
具体实施方式
下面将结合附图对本申请技术方案的实施例进行详细的描述。以下实施例仅用于更加清楚地说明本申请的技术方案,因此只作为示例,而不能以此来限制本申请的保护范围。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本文中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。
在本申请实施例的描述中,技术术语“第一”“第二”等仅用于区别不同对象,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量、特定顺序或主次关系。在本申请实施例的描述中,“多个”的含义是两个以上,除非另有明确具体的限定。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
在本申请实施例的描述中,术语“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
在本申请实施例的描述中,术语“多个”指的是两个以上(包括两个),同理,“多组”指的是两组以上(包括两组),“多片”指的是两片以上(包括两片)。
在本申请实施例的描述中,技术术语“中心”“纵向”“横向”“长度”“宽度”“厚度”“上”“下”“前”“后”“左”“右”“竖直”“水平”“顶”“底”“内”“外”“顺时针”“逆时针”“轴向”“径向”“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请实施例和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请实施例的限制。
在本申请实施例的描述中,除非另有明确的规定和限定,技术术语“安装”“相连”“连接”“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;也可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请实施例中的具体含义。
本申请中,电池单体可以包括锂金属二次电池、钠金属电池或镁金属电池等,本申请实施例对此并不限定。电池单体可呈圆柱体、扁平体或其它形状等,本申请实施例对此也不限定。电池单体一般按封装的方式分成三种:柱形电池单体、方形电池单体和软包电池单体,本申请实施例对此也不限定。以下实施例为了方便说明,以锂金属电池为例进行说明。
本申请的实施例所提到的电池是指包括一个或多个电池单体以提供更高的电压和容量的单一的物理模块。例如,本申请中所提到的电池可以包括电池模块或电池包等。电池一般包括用于封装一个或多个电池单体的箱体。箱体可以避免液体或其他异物影响电池单体的充电或放电。
在电池组装过程中,电池中的极耳弯折时会与其他电极发生短接,将导致电池的急性短路,进而影响电池的安全性能。所以在现有技术中,为了防止极耳的短路,将极耳处通过氧化或涂胶的方式进行绝缘处理,这样就可以降低极耳处短路的几率,从而提高电池的安全性能。之后再通过超声焊接的高频率震动去除氧化层,这样就不会影响极耳的过流能力。
但是在以泡沫金属为负极的电池中,震动的方式会产生一些绝缘性物质颗粒。这些绝缘性颗粒难以去除,残留在极耳内部,导致电池性能下降,并且也会产生安全问题,所以上述现有技术中通过绝缘处理极耳而提升电池的安全性能的方法并不能用于以泡沫金属为负极的电池中。
同时,在以泡沫金属为负极的电池中,极耳处也不能有活性物质(在锂金属电池中,此处的活性物质是指亲锂活性物质;纳金属电池中,此处活性物质是指亲锂活性物质,以此类推)存在。如果极耳处有活性物质存在,金属粒子就会在极耳处沉积,导致金属粒子在极耳处不受控制的生长。这样,一方面会导致活性金属的耗损, 降低电池性能;另一方面,因为金属生长过多而产生的枝晶会刺穿隔膜,进而造成电池短路和产生安全问题。
鉴于上述问题,本申请实施例提供了一种负极极片,能够使极片上的极耳区域维持金属材料的特性,保证正常焊接、保持高过流能力的同时,也能防止金属在其中生长进而提高电池的安全性能。
本申请实施例描述的负极极片适用于电极组件、电池单体、电池以及使用电池的用电设备。
用电设备可以是车辆、手机、便携式设备、笔记本电脑、轮船、航天器、电动玩具和电动工具等等。车辆可以是燃油汽车、燃气汽车或新能源汽车,新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等;航天器包括飞机、火箭、航天飞机和宇宙飞船等等;电动玩具包括固定式或移动式的电动玩具,例如,游戏机、电动汽车玩具、电动轮船玩具和电动飞机玩具等等;电动工具包括金属切削电动工具、研磨电动工具、装配电动工具和铁道用电动工具,例如,电钻、电动砂轮机、电动扳手、电动螺丝刀、电锤、冲击电钻、混凝土振动器和电刨等等。本申请实施例对上述用电装置不做特殊限制。
以下实施例为了方便说明,以用电装置为车辆为例进行说明。
图1为本申请一实施例提供的车辆1的结构示意图。如图1所示,车辆1的内部设置有电池2,电池2可以设置在车辆1的底部或头部或尾部。电池2可以用于车辆1的供电,例如,电池2可以作为车辆1的操作电源。
车辆1还可以包括控制器11和马达12,控制器11用来控制电池2为马达12供电,例如,用于车辆1的启动、导航和行驶时的工作用电需求。
在本申请一些实施例中,电池2不仅仅可以作为车辆1的操作电源,还可以作为车辆1的驱动电源,代替或部分地代替燃油或天然气为车辆1提供驱动动力。
图2为本申请一实施例提供的电池2的爆炸示意图。如图2所示,电池2包括箱体20,电池单体3,电池单体3容纳于箱体20内。
箱体20用于容纳电池单体3。箱体20可以是多种结构。在一些实施例中,箱体20可以包括第一箱体部201和第二箱体部202,第一箱体部201与第二箱体部202相互盖合,第一箱体部201和第二箱体部202共同限定出用于容纳电池单体3的容纳空间203。第二箱体部202可以是一端开口的空心结构,第一箱体部201为板状结构, 第一箱体部201盖合于第二箱体部202的开口侧,以形成具有容纳空间203的箱体20;第一箱体部201和第二箱体部202也均可以是一侧开口的空心结构,第一箱体部201的开口侧盖合于第二箱体部202的开口侧,以形成具有容纳空间203的箱体20。当然,第一箱体部201和第二箱体部202可以是多种形状,比如,圆柱体、长方体等。
为提高第一箱体部201与第二箱体部202连接后的密封性,第一箱体部201与第二箱体部202之间也可以设置密封件,比如,密封胶、密封圈等。
假设第一箱体部201盖合于第二箱体部202的顶部,第一箱体部201亦可称之为上箱盖,第二箱体部202亦可称之为下箱体。
在电池2中,电池单体3为多个。多个电池单体3之间可串联或并联或混联,混联是指多个电池单体3中既有串联又有并联。多个电池单体3之间可直接串联或并联或混联在一起,再将多个电池单体3构成的整体容纳于箱体20内;当然,也可以是多个电池单体3先串联或并联或混联组成电池模块(图中未示出),多个电池模块再串联或并联或混联形成一个整体,并容纳于箱体20内。电池模块中的多个电池单体3之间可通过汇流部件实现电连接,以实现电池模块中的多个电池单体3的并联或串联或混联。
如图3所示,为本申请一个实施例的一种电池单体3的结构示意图,电池单体3包括一个或多个电极组件31、壳体321和端盖322。壳体321和端盖322形成外壳或电池盒32。壳体321的壁以及端盖322均称为电池单体3的壁,其中对于长方体型电池单体3,壳体321的壁包括底壁和四个侧壁。壳体321根据一个或多个电极组件31组合后的形状而定,例如,壳体321可以为中空的长方体或正方体或圆柱体,且壳体321的其中一个面具有开口以便一个或多个电极组件31可以放置于壳体321内。例如,当壳体321为中空的长方体或正方体时,壳体321的其中一个平面为开口面,即该平面不具有壁体而使得壳体321内外相通。当壳体321可以为中空的圆柱体时,壳体321的端面为开口面,即该端面不具有壁体而使得壳体321内外相通。端盖322覆盖开口并且与壳体321连接,以形成放置电极组件31的封闭的腔体。壳体321内填充有电解质,例如电解液。
该电池单体3还可以包括两个电极端子33,两个电极端子33可以设置在端盖322上。端盖322通常是平板形状,两个电极端子33固定在端盖322的平板面上,两个电极端子33分别为正电极端子331和负电极端子332。每个电极端子33各对应设 置一个连接构件34,或者也可以称为集流构件34,其位于端盖322与电极组件31之间,用于将电极组件31和电极端子33实现电连接。
在该电池单体3中,根据实际使用需求,电极组件31可设置为单个,或多个,如图3所示,电池单体3内设置有4个独立的电极组件31。
电池单体3上还可设置泄压机构35。泄压机构35用于电池单体3的内部压力或温度达到阈值时致动以泄放内部压力或温度。
泄压机构35可以为各种可能的泄压结构,本申请实施例对此并不限定。例如,泄压机构35可以为温敏泄压机构,温敏泄压机构被配置为在设有泄压机构35的电池单体3的内部温度达到阈值时能够熔化;和/或,泄压机构35可以为压敏泄压机构,压敏泄压机构被配置为在设有泄压机构35的电池单体3的内部气压达到阈值时能够破裂。
图4是本申请一实施例的负极极片的结构示意图。该负极极片包括集流体36,集流体36的材料为泡沫金属材料;集流体36包括沿第一方向X依次设置的第一区域361、第二区域362和第三区域363,第一区域361内部设置有负极活性物质,第二区域362填充有绝缘物质,第三区域363未设置负极活性物质。
本申请实施例中,泡沫金属是指有泡沫气孔的金属材料,泡沫金属的气孔率高、孔径尺寸较大,因此用泡沫金属制备的负极集流体可以给金属粒子提供生长空间,让金属粒子沉积在泡沫金属材料中。
本申请实施例中,负极活性物质为与金属粒子性质较亲近的材料。例如,磷化铜、镍、钛、钴、铁等金属磷化物;氧化铜、氧化铝、氧化锌、二氧化硅等氧化物;金、银、锌、硅、镁、钙等金属单质;碳纳米管、石墨烯、富勒烯、活性炭等碳材料;Mo(SxSe1-x)2、W(SxSe1-x)2等金属硫化物;Li2Sy、LiX、Li2O、Li3N等含锂物质,LiX中,X=F,Cl,Br,I;Li2Sy中,y=1~8;或者Li2+2xZn1-xGeO4、Li14Zn(GeO4)4等无机固态电解质等。以上物质仅是举例说明,并不代表仅为上述物质,只有是与金属电池中的金属有较亲近性质、能够帮助金属粒子沉积在负极集流体中的材料都可以为负极活性物质。
上述方案中,第一区域361、第二区域362和第三区域363依次沿第一方向X排列。第一区域361内部设置有负极活性物质以使第一区域361内部有利于金属粒子成核并生长;第二区域362填充绝缘材料以使第二区域362在物理上隔离第一区域 361和第三区域363;第三区域363未设置负极活性材料,以使第三区域363保持金属的特性。通过将负极集流体36分成三个不同区域,并且使填充绝缘物质的第二区域362位于第一区域361和第三区域363之间,隔离第一区域361和第三区域363,保证第三区域363内无金属粒子沉积,这样可以使得在以泡沫金属为负极的电池单体3中,极耳区域内无金属粒子沉积,避免因极耳区域金属粒子沉积过多而产生枝晶造成的电池单体3短路,从而提升电池单体3的安全性能;同时,极耳区域能够保持金属的特性,可以方便焊接和保持高过流能力。
可选地,第一区域361的表面覆盖有绝缘物质。
第一区域361内部设置有负极活性物质以让金属粒子在其中更好的生长。在用泡沫金属作为负极的电池单体3中,相较于第一区域361内部,第一区域361的表面更容易会有金属粒子在其中生长,并且将会导致金属粒子只在第一区域361表面沉积的现象。如果在第一区域361表面沉积过多的金属粒子,过多的金属粒子就会产生枝晶,刺穿隔膜,进而导致电池单体3的短路或断路。
上述方案中,通过在第一区域361的表面覆盖绝缘物质,使金属粒子只在第一区域361内部沉积,这样可以避免金属粒子在第一区域361的表面沉积,进而避免因第一区域361表面沉积过多金属粒子而造成的枝晶刺穿隔离膜的现象,由此提升了电池单体3的安全性能。
可选地,绝缘物质为氧化铝或氧化锆。
氧化铝是一种熔点为2054℃、沸点为2980℃、高硬度、高稳定性的化合物,氧化锆是一种化学性质不活泼,具有高熔点的耐高温材料。氧化铝和氧化锆都为较佳的绝缘材料,本申请实施例中,用氧化铝或氧化锆覆盖第一区域361的表面,可以使金属粒子不在第一区域361的表面沉积。但绝缘物质也可为其他物质,本申请对此不作任何限定。
上述方案中,为避免在第一区域361的表面沉积金属形成枝晶而刺穿隔离膜,在第一区域361表面覆盖绝缘物质以使金属粒子不在第一区域361表面而在第一区域361内部沉积。氧化铝和氧化锆都是绝缘性能较好,各方面性能都很稳定的材料,在第一区域361表面覆盖氧化铝或氧化锆,可以很好的避免金属粒子在第一区域361表面沉积,使第一区域361变成表面绝缘,内部导电的结构。
可选地,第二区域362在第一方向X上的宽度不小于集流体36的厚度。
第二区域362填充绝缘物质,隔开第一区域361和第三区域363,防止金属粒子在第三区域363内沉积。如果第二区域362的在第一方向X上的宽度小于集流体36的厚度,金属粒子仍然有可能会在第三区域363内沉积,第三区域363内仍然会有金属枝晶生长。也就是说,如果第二区域362在第一方向X上的宽度小于集流体36的厚度,第二区域362就不能有效隔开第一区域361和第三区域363的作用。
上述方案中,将第二区域362在第一方向X上的宽度规定为不小于集流体36的厚度,可以让第二区域362有效隔开离第一区域361和第三区域363,以保证第三区域363内不会有金属枝晶生长的可能,保护第三区域363内无金属粒子沉积。
可选地,在第一方向X上,第二区域362的宽度不大于第一区域361宽度的10%。
如上文所述,为了使第二区域362更好的隔开第一区域361和第三区域363,第二区域362在第一方向X上的宽度需不小于集流体36的厚度。但是当第二区域362在第一方向X上的宽度过大时,虽然可以起到很好的隔开作用,但是会造成过多的集流体浪费,进而导致电池单体3的成本上升和能量密度的下降。
上述方案中,在第一方向X上,在保证第二区域362的宽度不小于集流体36的厚度的前提下,使第二区域362的宽度不大于第一区域361宽度的10%。这样,第二区域362既可以有效隔开第一区域361和第三区域363以保证第三区域363内无金属粒子沉积,又可以不浪费过多的集流体材料以保证电池单体3较低的生产成本和较高的能量密度。
可选地,在第一方向X上,第三区域363的宽度不大于第一区域361的20%。
在电池单体3中,如果第三区域363在第一方向X上的宽度过大,会造成过多的集流体浪费,进而导致电池单体3的成本上升和能量密度的下降。
上述方案中,在第一方向X上,使第三区域363的宽度不大于第一区域361宽度的20%。这样可以不浪费过多的集流体材料以保证电池单体3较低的生产成本和较高的能量密度。
可选地,第二区域362包括第一部分和第二部分,第一部分和第一区域361形成极片的主体,第二部分和第三区域363形成极片的极耳,第一部分在第一方向X上的宽度不大于极片厚度的一半。
填充绝缘材料的第二区域362包括第一部分和第二部分,第一部分在极片的主体区域,第二部分在极片的极耳区域。为了让第三区域363保持金属特性,内部无金属粒子沉积,极耳部分需要有部分的第二区域362;为了不能让极耳区域直接和第一区域361搭接而发生短路,主体区域需要有部分的第二区域362;为了让极耳区域方便焊接和保持高过流能力,所以极耳区域需包括第三区域363。
上述方案中,负极极片由主体区域和极耳区域组成,主体区域由第一区域361和第一部分组成,极耳区域由第三区域363和第二部分组成。若包含在主体区域的第一部分在第一方向X上的宽度小于极片厚度的一半,极耳区域的第二部分就不能起到真正的保护第三区域363的作用。因此,第二区域362的第一部分在第一方向X上的宽度不小于极片厚度的一半,这样可以使极耳的第三区域363保持金属特性,极耳区域也可以方便焊接和保持高过流能力。
可选地,第一部分在第一方向X上的宽度不小于6um。
内部填充绝缘材料的第二区域362包括第一部分和第二部分,第一部分在极片的主体区域,第二部分在极片的极耳区域。若包含在主体区域的第一部分在第一方向X上的宽度小于6um,主体区域的第一部分就不能起到真正的保护第三区域363的作用。
上述方案中,使第二区域362的第一部分在第一方向X上的宽度不小于6um,这样可以使极耳的第三区域363保持金属特性,也不会有金属粒子沉积在其中,极耳可以方便焊接和保持高过流能力。
可选地,在第一方向X上,第一部分的宽度不大于第一区域361宽度的5%。
为了使第一部分更好的发挥隔开第一区域361和极耳区域的作用,第一部分在第一方向X上的宽度不小于集流体36的厚度,且不小于6um。但是当第一部分在第一方向X上的宽度过大,过多的集流体材料就会被浪费,进而导致电池单体3的成本上升和能量密度的下降。
上述方案中,在第一方向X上,使第一部分的宽度不大于所述第一区域361宽度的5%,第一部分既可以很好的隔开第一区域361和极耳以保证极耳中第三区域363内无金属粒子沉积,又可以不浪费过多的集流体材料以保证电池单体3较低的生产成本和较高的能量密度。
可选地,极片包括两段第二区域362,两段第二区域362分布在第一区域361的两侧。
本申请实施例中,电池单体3中的正极是包住负极的,更进一步说,正极完全包住负极中的第一区域361,因此正极的边缘是搭在负极的第二区域362上的。在生产过程中,使正极的边缘正好搭在宽度较小第二区域362上而不是第一区域361和第三区域363,具有一定的难度。
上述方案中,为了生产过程中的方便,极片可以包括两段第二区域362,两段第二区域362分布在第一区域361的两侧,这样负极与正极的搭配方式就不用有特别的限定,因此可以节省生产成本和提升生产效率。
可选地,泡沫金属为泡沫铜。
上述方案中,泡沫金属作为电池单体3的负极材料。泡沫金属为泡沫铜,也就是泡沫铜作为电池单体3的负极材料。当泡沫铜作为电池单体3的负极材料时,可以提升电池单体3的性能。
可选地,极片的厚度为50um至400um。
上述方案中,将极片的厚度维持在50um至400um之间,可以给金属粒子足够的沉积空间,进而维持电池单体3良好的性能。
图5是本申请一实施例的负极极片的制作流程示意图,如图5所示,该制作方法包括:
S501:提供集流体36,集流体36包括沿第一方向依次设置的第一区域361、第二区域362和第三区域363,集流体36的材料为泡沫金属材料;
S502:在第一区域361设置第一绝缘物质;
S503:在第二区域362内填充第二绝缘物质;
S504:在第三区域363设置第三绝缘物质;
S505:去除第一区域361内的第一绝缘物质,在第一区域361内设置负极活性物质;
S506:去除第三区域363的第三绝缘物质,得到第一区域361内部设置有负极活性物质,第二区域362填充有第二绝缘物质,第三区域363未设置负极活性物质的负极极片。
上述方案中,通过在第一区域361内设置负极活性物质,使第一区域361内部有利于金属成核生长;通过在第二区域362填充第二绝缘材料,使第二区域362隔开第一区域361和第三区域363,第三区域363内没有金属粒子沉积;通过未在第三区域363设置负极活性物质,使第三区域363保持金属特性,方便后续焊接和保持高过流能力。
可选地,去除第一区域361内的第一绝缘物质之前,方法还包括:清理第一区域361表面的第一绝缘物质;在第一区域361的表面覆盖第二绝缘物质。
在第一区域361内填充第一绝缘物质,是为了防止填充在第二区域362的第二绝缘物质进入到第一区域361,影响第一区域361沉积金属粒子。而为了防止金属粒子沉积在第一区域361的表面,进而在第一区域361的表面生长枝晶对电池单体3的安全性能造成影响,所以要在第一区域361的表面覆盖绝缘材料,让金属粒子不在第一区域361的表面沉积。
上述方案中,通过在第一区域361的表面覆盖第二绝缘物质,使第一区域361成为内部导电、表面绝缘的结构,能够避免金属粒子沉积在第一区域361表面,在第一区域361的表面长出枝晶而刺穿隔离膜,进而提高电池单体3的安全性能。
可选地,在第一区域361设置第一绝缘物质,包括:在第一区域361内填充石蜡。
石蜡,是一种溶于汽油、二硫化碳、四氯化碳等一类非极性溶剂,熔点较低,可用于烘烤容器的涂敷料,电器元件绝缘,提高橡胶抗老化性和增加柔韧性等。
上述方案中,在第一区域361内填充第一绝缘物质,可以防止填充在第二区域362的第二绝缘物质进入到第一区域361,影响第一区域361的导电性。将石蜡作为第一绝缘物质,石蜡绝缘性好且易去除,可以保持第一区域361良好的导电性。
可选地,去除第一区域361内的第一绝缘物质,包括:加热第一区域361,以去除第一区域361内的石蜡。
在第二区域362内设置第二绝缘物质时,用石蜡填充第一区域361,以保护第一区域361不被第二绝缘物质填充。当第二区域362设置结束后,利用石蜡较低的熔点,加热去除石蜡,恢复第一区域361的原始状态。
上述方案中,在第一区域361内填充石蜡而保持第一区域361的导电性。通过加热的方式去除石蜡,该方法操作简单,可以在生产过程中广泛运用。
可选地,在第三区域363设置第三绝缘物质,包括:在第三区域363内填充石蜡。
第二区域362需设置第二绝缘物质以隔开第一区域361和第三区域362,第一区域361需设置负极活性物质以使金属粒子更易于在第一区域361内沉积。而第三区域363属于电池单体3的极耳区域,为了方便后续焊接和保持高过流能力,需要保持金属特性而不能有任何的绝缘处理或设置活性物质处理。
上述方案中,在第三区域363内填充第三绝缘物质,可以防止填充在第二区域362的第二绝缘物质和填充在第一区域361内部的负极活性物质进入到第三区域363。将石蜡作为第三绝缘物质,石蜡绝缘性好且易去除,可以保持第三区域363的金属特性。
可选地,在所述第一区域361内设置负极活性物质,包括:通过化学镀膜方式在第一区域361镀负极活性物质。
化学镀膜是利用化学方法在材料上产生或沉积薄膜的方法。例如,本申请实施例中,第一区域361可通过电镀的方式镀负极活性物质。
上述方案中,在第一区域361内设置负极活性物质,使第一区域361内部有利于金属粒子成核并生长。通过化学镀膜方式在第一区域361镀负极活性物质,可以使负极活性物质均匀的分布在第一区域361。
可选地,去除第三区域363的第三绝缘物质,包括:加热第三区域363,以去除第三区域363石蜡。
上述方案中,通过加热的方式去除第三区域363的石蜡,可以保持第三区域363良好的金属特性,方便后续焊接和保持高过流能力。
可选地,在第三区域363设置第三绝缘物质,包括:在第三区域363上包覆胶带。
本申请实施例中,胶带可为任何材质的胶带,本申请对胶带的材料没有任何限定。胶带包覆在第三区域363上,可以防止填充在第二区域362的第二绝缘物质和填充在第一区域361内部的负极活性物质进入到第三区域363。
上述方案中,在第三区域363上包覆胶带,保护第三区域363的效果明显,并且操作简单,成本较低。
可选地,在第一区域361内设置负极活性物质,包括:通过物理镀膜方式在第一区域361镀负极活性物质。
本申请实施例中,第一区域361可通过蒸镀、磁控溅射的方式镀负极活性物质。
上述方案中,在第一区域361内设置负极活性物质,使第一区域361内部有利于金属粒子成核并生长。通过物理镀膜方式在第一区域361镀负极活性物质,可以使负极活性物质均匀的分布在第一区域361。
可选地,去除第三区域363的第三绝缘物质,包括:去除第三区域363上的胶带。
上述方案中,通过直接去除第三区域363上的胶带,可以保持第三区域363良好的金属特性,方便后续焊接和保持高过流能力。
可选地,在第二区域362设置第二绝缘物质,包括:通过蒸镀或磁控溅射方式在第二区域362填充第二绝缘物质。
蒸镀,是指在真空条件下,采用一定的加热蒸发方式蒸发镀膜材料(或称膜料)并使之气化,粒子飞至基片表面凝聚成膜的工艺方法,本申请实施例中,利用蒸镀在第二区域362填充第二绝缘物质具有成膜方法简单、薄膜纯度和致密性高、膜结构和性能独特等优点。磁控溅射是物理气相沉积的一种。一般的溅射法可被用于制备金属、半导体、绝缘体等多材料,本申请实施例中,利用磁控溅射在第二区域362填充第二绝缘物质具有设备简单、易于控制、镀膜面积大和附着力强等优点。本申请实施例中也可选择其他方式在第二区域362内填充第二绝缘物质,本申请对此不作任何限定。
图6是申请另一实施例的负极极片的制作流程示意图,如图6所示,可通过以下步骤来制备负极极片:
S601:准备不含任何处理的泡沫金属材料的负极集流体36;
S602:在负极集流体36的第一区域361和第三区域363内填充石蜡;
S603:刮掉第一区域361表面的石蜡;
S604:通过低温蒸镀或者低温磁控溅射的方式,在负极集流体36的第二区域362填充第二绝缘材料,在第一区域361的表面覆盖第二绝缘材料;
S605:通过加热或者有机物清洗的方式,将第一区域361中的石蜡去除。
S606:通过电镀的方式,在第一区域361内部填充负极活性物质;
S607:通过加热或者有机物清洗的方式,将第三区域363中的石蜡去除。
图7是申请再一实施例的负极极片的制作流程示意图,如图7所示,还可通过以下步骤来制备负极极片:
S701:准备不含任何处理的泡沫金属材料的负极集流体36;
S702:在负极集流体36的第二区域362和第三区域363贴上绝缘胶带;
S703:通过低温蒸镀或者低温磁控溅射的方式,在第一区域361内填充负极活性物质;
S704:在第一区域361内填充石蜡;
S705:刮掉第一区域361表面的石蜡;
S706:去除第二区域362上的胶带,通过低温蒸镀或者低温磁控溅射的方式,在负极集流体36的第一区域361表面和第二区域362设置第二绝缘材料。
S707:通过加热或者有机物清洗的方式,将第一区域361中的石蜡去除;
S708:去除第三区域363上的胶带。
以上制备负极极片的步骤仅为举例说明,只要最后得到上述实施例中所述的负极极片,以上的制备步骤可以自由组合,本申请对此不做任何限定。
本申请实施例还提供了一种电极组件31,包括前述实施例中的负极极片,正极极片以及隔离膜。
本申请实施例还提供了一种电池单体3,包括前述实施例中的电池组件31;壳体321,具有开口,用于容纳电极组件31;端盖322,用于封闭开口。
本申请实施例还提供了一种电池2,包括前述实施例中的电池单体3。
本申请实施例还提供了一种用电设备,包括前述实施例中的电池2,电池2用于提供电能。
虽然已经参考优选实施例对本申请进行了描述,但在不脱离本申请的范围的情况下,可以对其进行各种改进并且可以用等效物替换其中的部件。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (27)

  1. 一种负极极片,其特征在于,包括:
    集流体,所述集流体的材料为泡沫金属材料;
    所述集流体包括沿第一方向依次设置的第一区域、第二区域和第三区域,所述第一区域内部设置有负极活性物质,所述第二区域(362)填充有绝缘物质,所述第三区域未设置负极活性物质。
  2. 根据权利要求1所述的负极极片,其特征在于,所述第一区域的表面覆盖有所述绝缘物质。
  3. 根据权利要求2所述的负极极片,其特征在于,所述绝缘物质为氧化铝或氧化锆。
  4. 根据权利要求1至3中任一项所述的负极极片,其特征在于,所述第二区域在所述第一方向上的宽度不小于所述集流体的厚度。
  5. 根据权利要求1至4中任一项所述的负极极片,其特征在于,在所述第一方向上,所述第二区域的宽度不大于所述第一区域宽度的10%。
  6. 根据权利要求1至5中任一项所述的负极极片,其特征在于,在所述第一方向上,所述第三区域的宽度不大于所述第一区域宽度的20%。
  7. 根据权利要求1至6中任一项所述的负极极片,其特征在于,所述第二区域包括第一部分和第二部分,所述第一部分和所述第一区域形成所述极片的主体,所述第二部分和所述第三区域形成所述极片的极耳,所述第一部分在所述第一方向上的宽度不小于所述极片厚度的一半。
  8. 根据权利要求7所述的负极极片,其特征在于,所述第一部分在所述第一方向上的宽度不小于6um。
  9. 根据权利要求7或8项所述的负极极片,其特征在于,在所述第一方向上,所述第一部分的宽度不大于所述第一区域宽度的5%。
  10. 根据权利要求1至9中任一项所述的负极极片,其特征在于,所述极片包括两段所述第二区域,两段所述第二区域分布在所述第一区域的两侧。
  11. 根据权利要求1至10中任一项所述的负极极片,其特征在于,所述泡沫金属为泡沫铜。
  12. 根据权利要求1至11中任一项所述的负极极片,其特征在于,所述极片的厚度为50um至400um。
  13. 一种负极极片的制作方法,其特征在于,包括:
    提供集流体,所述集流体包括沿第一方向依次设置的第一区域、第二区域和第三区域,所述集流体的材料为泡沫金属材料;
    在所述第一区域设置第一绝缘物质,在所述第二区域内填充第二绝缘物质,在所述第三区域设置第三绝缘物质;
    去除所述第一区域内的所述第一绝缘物质,在所述第一区域内设置负极活性物质;
    去除所述第三区域的所述第三绝缘物质,得到所述第一区域内部设置有负极活性物质,所述第二区域填充有所述第二绝缘物质,所述第三区域未设置负极活性物质的负极极片。
  14. 根据权利要求13所述的方法,其特征在于,所述去除所述第一区域内的所述第一绝缘物质之前,所述方法还包括:
    清理所述第一区域表面的所述第一绝缘物质;
    在所述第一区域的表面覆盖所述第二绝缘物质。
  15. 根据权利要求13或14所述的方法,其特征在于,所述在所述第一区域设置所述第一绝缘物质,包括:
    在所述第一区域内填充石蜡。
  16. 根据权利要求15所述的方法,其特征在于,所述去除所述第一区域内的所述第一绝缘物质,包括:
    加热所述第一区域,以去除所述第一区域内的所述石蜡。
  17. 根据权利要求15或16所述的方法,其特征在于,所述在所述第三区域设置所述第三绝缘物质,包括:
    在所述第三区域内填充石蜡。
  18. 根据权利要求17所述的方法,其特征在于,所述在所述第一区域内设置负极活性物质,包括:
    通过化学镀膜方式在所述第一区域镀所述负极活性物质。
  19. 根据权利要求17或18所述的方法,其特征在于,所述去除所述第三区域的所述第三绝缘物质,包括:
    加热所述第三区域,以去除所述第三区域的所述石蜡。
  20. 根据权利要求15或16所述的方法,其特征在于,所述在所述第三区域设置所述第三绝缘物质,包括:
    在所述第三区域上包覆胶带。
  21. 根据权利要求20所述的方法,其特征在于,所述在所述第一区域内设置负极活性物质,包括:
    通过物理镀膜方式在所述第一区域镀所述负极活性物质。
  22. 根据权利要求20或21所述的方法,其特征在于,所述去除所述第三区域的所述第三绝缘物质,包括:
    去除所述第三区域上的所述胶带。
  23. 根据权利要求13至22中任一项所述的方法,其特征在于,所述在所述第二区域设置所述第二绝缘物质,包括:
    通过蒸镀或磁控溅射方式在所述第二区域填充所述第二绝缘物质。
  24. 一种电极组件,其特征在于,包括:
    如权利要求1-12中任一项所述的负极极片;
    正极极片;以及
    隔离膜。
  25. 一种电池单体,其特征在于,包括:
    如权利要求24所述的电极组件;
    壳体,具有开口,用于容纳所述电极组件;以及
    端盖,用于封闭所述开口。
  26. 一种电池,其特征在于,包括
    多个如权利要求25所述的电池单体。
  27. 一种用电设备,其特征在于,包括:
    如权利要求26所述的电池,所述电池用于提供电能。
PCT/CN2023/080687 2022-05-07 2023-03-10 负极极片及其制作方法和相关装置 WO2023216703A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP23802479.8A EP4425618A1 (en) 2022-05-07 2023-03-10 Negative electrode sheet, preparation method therefor, and related device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210490199.5A CN117059814A (zh) 2022-05-07 2022-05-07 负极极片及其制作方法和相关装置
CN202210490199.5 2022-05-07

Publications (1)

Publication Number Publication Date
WO2023216703A1 true WO2023216703A1 (zh) 2023-11-16

Family

ID=88663199

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/080687 WO2023216703A1 (zh) 2022-05-07 2023-03-10 负极极片及其制作方法和相关装置

Country Status (3)

Country Link
EP (1) EP4425618A1 (zh)
CN (1) CN117059814A (zh)
WO (1) WO2023216703A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0684518A (ja) * 1992-09-03 1994-03-25 Furukawa Electric Co Ltd:The 電池用電極の製造方法
CN101134257A (zh) * 2007-10-12 2008-03-05 西北有色金属研究院 一种金属纤维多孔材料后续加工处理方法
CN103247779A (zh) * 2013-04-16 2013-08-14 谭彬 一种电化学活性极片的制作方法
CN111370705A (zh) * 2018-12-26 2020-07-03 本田技研工业株式会社 固体电池用电极及固体电池
CN112310409A (zh) * 2019-08-14 2021-02-02 宁德时代新能源科技股份有限公司 电极组件和二次电池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0684518A (ja) * 1992-09-03 1994-03-25 Furukawa Electric Co Ltd:The 電池用電極の製造方法
CN101134257A (zh) * 2007-10-12 2008-03-05 西北有色金属研究院 一种金属纤维多孔材料后续加工处理方法
CN103247779A (zh) * 2013-04-16 2013-08-14 谭彬 一种电化学活性极片的制作方法
CN111370705A (zh) * 2018-12-26 2020-07-03 本田技研工业株式会社 固体电池用电极及固体电池
CN112310409A (zh) * 2019-08-14 2021-02-02 宁德时代新能源科技股份有限公司 电极组件和二次电池

Also Published As

Publication number Publication date
EP4425618A1 (en) 2024-09-04
CN117059814A (zh) 2023-11-14

Similar Documents

Publication Publication Date Title
CN114122327B (zh) 一种极片及具备其的二次电池
WO2023246134A1 (zh) 极片、电极组件、电池单体、电池及用电设备
WO2023004823A1 (zh) 卷绕式电极组件、电池单体、电池及用电设备
WO2023240749A1 (zh) 电极组件、电池单体、电池和用电设备
WO2023039883A1 (zh) 电极及其制备方法、电池及用电装置
WO2023216703A1 (zh) 负极极片及其制作方法和相关装置
CN113270571B (zh) 锂离子二次电池的制造方法和负极材料
WO2024087225A1 (zh) 一种电池单体、电池及用电装置
WO2023137673A1 (zh) 电极组件、电化学装置及用电设备
WO2023193335A1 (zh) 电池单体、电池和用电装置
WO2023216076A1 (zh) 极片、电池单体、电池以及用电装置
US20230123434A1 (en) Electrode Plate, Electrode Assembly, Battery Cell, Battery, and Electric Appliance
WO2023155208A1 (zh) 电池、用电设备、制备电池的方法和设备
JP2010251194A (ja) 電池用正極及びその製造方法
WO2023024736A1 (zh) 电极组件、电池单体、电池以及用电装置
WO2024021061A1 (zh) 极片及其制备方法和相关设备
WO2023185205A1 (zh) 电极组件、电池单体、电池和用电设备
WO2023216254A1 (zh) 电极组件、电池单体、电池及用电设备
WO2023045490A1 (zh) 电极组件及制造方法和系统、电池单体、电池和用电装置
WO2023225903A1 (zh) 电池单体、电池以及用电装置
WO2023155211A1 (zh) 电池、用电设备、制备电池的方法和设备
WO2024087055A1 (zh) 正极极片、电极组件、电池单体、电池及用电设备
WO2023151413A1 (zh) 用电设备、电池、电池单体及其制造方法
WO2023216039A1 (zh) 负极极片、电极组件、电池单体、电池及用电装置
WO2024044895A1 (zh) 集流体及其制备方法、电极极片、电池单体、电池模块、电池包及用电装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23802479

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023802479

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2023802479

Country of ref document: EP

Effective date: 20240528