WO2023216542A1 - 一种电化学阻抗谱等效模拟电路选取方法及系统 - Google Patents
一种电化学阻抗谱等效模拟电路选取方法及系统 Download PDFInfo
- Publication number
- WO2023216542A1 WO2023216542A1 PCT/CN2022/132124 CN2022132124W WO2023216542A1 WO 2023216542 A1 WO2023216542 A1 WO 2023216542A1 CN 2022132124 W CN2022132124 W CN 2022132124W WO 2023216542 A1 WO2023216542 A1 WO 2023216542A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- test
- impedance
- data
- analog circuit
- equivalent analog
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 28
- 238000000157 electrochemical-induced impedance spectroscopy Methods 0.000 title claims abstract description 10
- 238000012360 testing method Methods 0.000 claims abstract description 109
- 238000010586 diagram Methods 0.000 claims abstract description 54
- 238000006243 chemical reaction Methods 0.000 claims abstract description 26
- 238000005260 corrosion Methods 0.000 claims abstract description 24
- 230000007797 corrosion Effects 0.000 claims abstract description 22
- 230000008569 process Effects 0.000 claims abstract description 12
- 230000000007 visual effect Effects 0.000 claims abstract description 12
- 229910000831 Steel Inorganic materials 0.000 claims description 60
- 239000010959 steel Substances 0.000 claims description 60
- 238000001453 impedance spectrum Methods 0.000 claims description 37
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 claims description 24
- 238000004088 simulation Methods 0.000 claims description 18
- 238000010187 selection method Methods 0.000 claims description 16
- 230000007423 decrease Effects 0.000 claims description 15
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 claims description 10
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 claims description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 6
- 239000004567 concrete Substances 0.000 claims description 6
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 6
- 239000011780 sodium chloride Substances 0.000 claims description 5
- 230000008859 change Effects 0.000 claims description 4
- 238000000840 electrochemical analysis Methods 0.000 claims description 4
- 239000007788 liquid Substances 0.000 claims description 4
- 238000012546 transfer Methods 0.000 claims description 4
- ZOMNIUBKTOKEHS-UHFFFAOYSA-L dimercury dichloride Chemical class Cl[Hg][Hg]Cl ZOMNIUBKTOKEHS-UHFFFAOYSA-L 0.000 claims description 3
- 229910052697 platinum Inorganic materials 0.000 claims description 3
- 230000010287 polarization Effects 0.000 claims description 3
- 229920006395 saturated elastomer Polymers 0.000 claims description 3
- 230000009466 transformation Effects 0.000 claims description 3
- 238000004364 calculation method Methods 0.000 claims description 2
- 238000007405 data analysis Methods 0.000 abstract description 5
- 230000003014 reinforcing effect Effects 0.000 abstract 2
- 238000001566 impedance spectroscopy Methods 0.000 abstract 1
- 230000006872 improvement Effects 0.000 description 8
- 238000005516 engineering process Methods 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 2
- 238000004590 computer program Methods 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 238000003487 electrochemical reaction Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000000546 chi-square test Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000011150 reinforced concrete Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000000844 transformation Methods 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
- 238000011179 visual inspection Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N17/00—Investigating resistance of materials to the weather, to corrosion, or to light
- G01N17/006—Investigating resistance of materials to the weather, to corrosion, or to light of metals
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N17/00—Investigating resistance of materials to the weather, to corrosion, or to light
- G01N17/02—Electrochemical measuring systems for weathering, corrosion or corrosion-protection measurement
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A90/00—Technologies having an indirect contribution to adaptation to climate change
- Y02A90/30—Assessment of water resources
Definitions
- the invention relates to the technical field of impedance spectrum analysis, and specifically relates to an electrochemical impedance spectrum equivalent analog circuit selection method and system.
- Corrosion of steel bars is one of the main causes of damage to reinforced concrete structures. Surveys show that in 2014 alone, my country's losses caused by corrosion were as high as 2.1 trillion yuan, accounting for approximately 3.34% of the gross national product, and infrastructure failure losses caused by corrosion of steel bars accounted for approximately 40% of the total corrosion losses. Therefore, the monitoring and detection of steel bar corrosion has important theoretical and practical engineering significance. Since I. Epelboin et al. first applied electrochemical impedance spectroscopy technology to the field of corrosion science, this technology has become one of the important means for studying the mechanism of metal corrosion behavior.
- the impedance spectrum is a comprehensive reflection of multiple processes and interfaces, and the effects of each part are coupled together. Analyzing impedance spectrum data and obtaining electrochemical parameters must be done with the help of an equivalent analog circuit (EC).
- EC equivalent analog circuit
- the purpose of the present invention is to provide an electrochemical impedance spectrum equivalent analog circuit selection method and system, solve the under-matching and over-matching problems in the equivalent circuit selection process, and provide electrochemical impedance spectrum decoupling and data analysis in corrosion science. Effective methods and tools.
- the present invention provides an electrochemical impedance spectrum equivalent analog circuit selection method, which includes the following steps:
- the impedance spectrum test data includes the corresponding test frequency and test impedance data after the steel bar electrode sample gradually increases the corrosion degree;
- step S6 Calculate the component parameter values of each equivalent analog circuit selected in step S5, and finally select an equivalent analog circuit whose evolution pattern of each component parameter value is consistent with the change logic of the impedance spectrum test data during the test process.
- step S1 before step S1, it also includes the following steps: take several steel bar electrode samples with the same length and diameter, grind and polish one end of each steel bar electrode sample to a mirror state, and wash away the steel bar electrode samples with alcohol and acetone. The oil stain on the surface was then stored in alcohol, and several steel electrode samples with the same parameters were obtained.
- step S1 specifically includes the following steps:
- the linear polarization scanning potential tested by the three-electrode method is ⁇ 0.01V vs. OCP, the scanning rate is 10mV/min, the EIS disturbance voltage is a sinusoidal voltage signal with an amplitude of 10mv, and the scanning frequency is 10mHz ⁇ 100kHz.
- x is the integral independent variable
- ⁇ is the angular frequency of the test impedance data
- Z r (x) and Z i (x) are the real part of the impedance and the imaginary part of the impedance of the test impedance data respectively
- Z r ( ⁇ ) and Z i ( ⁇ ) are respectively the real part of the impedance and the imaginary part of the impedance of the converted data after KK transformation.
- the residual error is used to verify the reliability of the conversion data and the test impedance data.
- the formula of the residual error is:
- Z r,exp ( ⁇ ) and Z i,exp ( ⁇ ) are the real part and imaginary part of the impedance of the test impedance data respectively;
- Z exp ( ⁇ ) and Z K-Ktran ( ⁇ ) respectively represent the test impedance data and The corresponding converted data after KK conversion;
- test data itself is highly reliable.
- the calculation formula of the chi-square value is:
- Z re,i and Z im,i represent the real part and imaginary part of the test impedance data respectively
- Z re ( ⁇ i ) and Z im ( ⁇ i ) are the real and imaginary parts of the corresponding simulated impedance data respectively
- is the test impedance data modulus.
- the component parameter values include solution resistance value R S , charge transfer resistance value R ct , resistance value R 1 and each CPE component value; the component parameters have the following evolution rules:
- the solution resistance value R S gradually decreases as the chloride ion concentration increases
- the charge transfer impedance value R ct decreases in the initial stage.
- the decrease amplitude changes by orders of magnitude
- the resistance value R 1 gradually decreases as the chloride ion concentration increases.
- the decrease amplitude changes by orders of magnitude
- the CPE element value gradually increases as the chloride ion concentration increases.
- An electrochemical impedance spectrum equivalent analog circuit selection system uses an electrochemical impedance spectrum equivalent analog circuit selection method as described above to select equivalent analog circuits.
- the present invention Based on the reliability of the impedance data itself, the present invention selects the equivalent simulation circuit of steel corrosion through the process from qualitative visual inspection to quantitative chi-square value detection, and finally to core simulation parameter inspection.
- the electrochemical impedance equivalent analog circuit can be selected with good fit and in line with the experimental rules, which provides a favorable basis for the selection of equivalent analog circuits and provides an effective method for electrochemical impedance spectrum decoupling and data analysis in corrosion science. and tools, and overcomes the traditional phenomenological use of whether the analog diagram matches or not as a criterion to evaluate and select equivalent circuits, avoiding "undermatching" (analog circuits are too simple) or “overmatching" (analog circuits are too complex) question.
- Figure 1 is a schematic flow diagram of the method of the present invention
- Figure 2 is a K-K conversion diagram of the real part to the imaginary part in the corroded steel bar test impedance data according to the embodiment of the present invention
- Figure 3 is a K-K conversion diagram of the imaginary part to the real part in the corroded steel bar test impedance data according to the embodiment of the present invention
- Figure 4 is a diagram of the residual value of the real part converted to the imaginary part in the K-K conversion according to the embodiment of the present invention.
- Figure 5 is a diagram of the residual value of converting the imaginary part into the real part in the K-K conversion according to the embodiment of the present invention.
- Figure 6 is a schematic structural diagram of equivalent analog circuit A in the embodiment of the present invention.
- Figure 7 is a schematic structural diagram of equivalent analog circuit B in the embodiment of the present invention.
- Figure 8 is a schematic structural diagram of equivalent analog circuit C in the embodiment of the present invention.
- Figure 9 is a Nyquist diagram in the full frequency domain of equivalent analog circuit A and measured data according to the embodiment of the present invention.
- Figure 10 is an enlarged view of details of the high-frequency part of Figure 9 of the present invention.
- Figure 11 is a Bode modulus diagram of equivalent analog circuit A and measured data according to the embodiment of the present invention.
- Figure 12 is a phase angle diagram of Figure 11 of the present invention.
- Figure 13 is a Nyquist diagram in the full frequency domain of equivalent analog circuit B and measured data according to the embodiment of the present invention
- Figure 14 is an enlarged view of details of the high-frequency part of Figure 13 of the present invention.
- Figure 15 is a Bode modulus diagram of equivalent analog circuit B and measured data according to the embodiment of the present invention.
- Figure 16 is a phase angle diagram of Figure 15 of the present invention.
- Figure 17 is a Nyquist diagram in the full frequency domain of the equivalent analog circuit C and the measured data according to the embodiment of the present invention.
- Figure 18 is an enlarged view of details of the high-frequency part of Figure 17 of the present invention.
- Figure 19 is a diagram of the equivalent analog circuit C and the measured data Bode modulus of the embodiment of the present invention.
- Figure 20 is a phase angle diagram of Figure 19 of the present invention.
- the present invention provides an electrochemical impedance spectrum equivalent analog circuit selection method, which includes the following steps:
- the impedance spectrum test data includes the corresponding test frequency and test impedance data after the steel bar electrode sample gradually increases the corrosion degree;
- step S6 Calculate the component parameter values of each equivalent analog circuit selected in step S5, and finally select an equivalent analog circuit whose evolution pattern of each component parameter value is consistent with the logic of the test process.
- the present invention requires a set of at least three steel bar electrode samples.
- the corrosion degree of the steel bar electrode samples is gradually increased to obtain the steel bar self-corrosion potential and corrosion current density change curves with corrosive ion concentration and
- the evolution diagram of the steel corrosion electrochemical impedance spectrum with the corrosion ion content that is, the corresponding test frequency and test impedance data; before formally selecting the equivalent analog circuit, the present invention first conducts the reliability verification of its own impedance data. Therefore, the KK conversion relationship is used To verify its reliability, in the KK conversion relationship, if the real part (imaginary part) data obtained by KK conversion agrees well with the real part (imaginary part) data measured by the test, the test data itself is highly reliable.
- the chi-square value is required to be no higher than the order of magnitude 1 ⁇ 10 -4 ; on the basis of meeting the above conditions, the circuit parameters obtained from the simulation are determined Only when the value is reliable can we calculate the parameter values of each component in the equivalent analog circuit, consider whether the evolution law of the parameters of the equivalent analog circuit is consistent with the logic of the test process, and finally select the equivalent analog circuit whose parameter value evolution rule is consistent with the logic of the test process. , effectively simulates and reflects the corrosion situation of steel bars in real concrete pore solution, and provides effective methods and tools for electrochemical impedance spectrum decoupling and data analysis in corrosion science.
- a set of steel bars with a length of 5 mm and a diameter of 16 mm is taken, and the cross section of one end of the steel bar is gradually ground and polished to a mirror surface using 400#, 800#, and 1000# SiC sandpaper, and alcohol and acetone are used to wash away the oil stains on the surface.
- a steel electrode sample store it in alcohol.
- a set of tests takes three parallel steel bar electrode samples.
- a P4000 electrochemical workstation was used to conduct the classic three-electrode method test, in which the steel electrode sample was used as the working electrode, the saturated calomel electrode was used as the reference electrode, and the platinum electrode was used as the counter electrode.
- Linear polarization scanning potential ⁇ 0.01V vs. OCP, scanning rate 10mV/min;
- EIS disturbance voltage is a sinusoidal voltage signal with amplitude 10mv, scanning frequency 10mHz ⁇ 100kHz;
- the solution impedance value RS gradually decreases as the chloride ion concentration increases;
- the charge impedance value R ct decreases in the initial stage.
- the chloride ion concentration reaches 0.06mol/L, the decrease is larger and changes in order of magnitude;
- the resistance value R 1 increases with the chloride ion concentration. It gradually decreases as the concentration increases.
- the chloride ion concentration reaches 0.06mol/L, the decrease is larger and changes in order of magnitude appear.
- the CPE component value gradually increases as the chloride ion concentration increases. Therefore, the equivalent analog circuit C is finally selected in this embodiment.
- the invention also provides an electrochemical impedance spectrum equivalent analog circuit selection system, which uses an electrochemical impedance spectrum equivalent analog circuit selection method as described above to select equivalent analog circuits.
- embodiments of the present application may be provided as methods, systems, or computer program products. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment that combines software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media (including, but not limited to, disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
- computer-usable storage media including, but not limited to, disk storage, CD-ROM, optical storage, etc.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Biodiversity & Conservation Biology (AREA)
- Ecology (AREA)
- Environmental & Geological Engineering (AREA)
- Environmental Sciences (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
Abstract
一种电化学阻抗谱等效模拟电路选取方法及系统,包括以下步骤:获取具有相同参数的若干钢筋电极样品的阻抗谱测试数据;利用K-K转换关系验证测试阻抗数据可靠性,选取测试阻抗数据可靠的钢筋电极样品;得到各自对应的等效模拟电路;通过Nyquist图和Bode图比较模拟阻抗数据和对应的测试阻抗数据两者之间的视觉差异,计算两者的卡方值,选取无视觉差异且卡方值小于等于1×10 -4数量级的等效模拟电路;计算选取后的各等效模拟电路的元件参数值,最终选取各元件参数值演变规律与试验过程逻辑相符的等效模拟电路。解决等效电路选取过程中的欠匹配和过匹配问题,为腐蚀科学中电化学阻抗谱解耦和数据分析提供有效方法和工具。
Description
本发明涉及阻抗谱分析技术领域,具体涉及一种电化学阻抗谱等效模拟电路选取方法及系统。
钢筋腐蚀是钢筋混凝土结构破坏的最主要原因之一。调查显示,仅2014年我国由腐蚀导致的损失高达2.1万亿元,约占国民生产总值3.34%,而钢筋锈蚀所引起的基础设施失效损失约占总腐蚀损失的40%。因此,钢筋锈蚀的监测和检测具有重要的理论和实际工程意义。自I.Epelboin等人首次将电化学阻抗谱技术应用于腐蚀科学领域以来,该技术已成为金属腐蚀行为机理研究重要手段之一。
阻抗谱是多个过程和界面的综合反映,各部分效应耦合在一起。解析阻抗谱数据、得到电化学参数,须借助等效模拟电路(Equivalent circuit,EC)来进行。以往研究多唯象地以模拟图谱吻合与否作为判定标准来评价和选取等效电路,易造成“欠匹配”(模拟电路过于简单)或“过匹配”(模拟电路过于复杂)等现象,致使模拟结果不能反映真实情况。且在研究对象愈发复杂的情况下,现有技术只注重对阻抗解耦过程进行分析,忽略了阻抗数据本身的可靠性,也可能导致等效电路的“欠匹配”或“过匹配”,模拟结果不理想。
发明内容
本发明的目的是提供一种电化学阻抗谱等效模拟电路选取方法及系统,解决等效电路选取过程中的欠匹配和过匹配问题,为腐蚀科学中电化学阻抗谱解 耦和数据分析提供有效方法和工具。
为了解决上述技术问题,本发明提供了一种电化学阻抗谱等效模拟电路选取方法,包括以下步骤:
S1、获取具有相同参数的若干钢筋电极样品的阻抗谱测试数据,所述阻抗谱测试数据包括钢筋电极样品逐级增加腐蚀度后对应的测试频率及测试阻抗数据;
S2、利用K-K转换关系验证每个钢筋电极样品的测试阻抗数据可靠性,选取测试阻抗数据可靠的钢筋电极样品;
S3、对选取后的钢筋电极样品的测试阻抗数据进行分析解耦得到各自对应的等效模拟电路;
S4、利用阻抗谱测试数据绘制选取后的各钢筋电极样品的Nyquist图和Bode图,并将各等效模拟电路的模拟阻抗数据绘制在相应的钢筋电极样品的Nyquist图和Bode图中;
S5、通过Nyquist图和Bode图比较模拟阻抗数据和对应的测试阻抗数据两者之间的视觉差异,计算两者的卡方值,选取无视觉差异且卡方值小于等于1×10
-4数量级的等效模拟电路;
S6、计算经步骤S5选取后的各等效模拟电路的元件参数值,最终选取各元件参数值演变规律与试验过程中阻抗谱测试数据变化逻辑相符的等效模拟电路。
作为本发明的进一步改进,在步骤S1前还包括步骤:取长度和直径均相同的若干钢筋电极样品,将各钢筋电极样品的一端打磨并抛光至镜面状态,并用酒精和丙酮洗去钢筋电极样品表面的油污后于酒精中保存,得到具有相同参数的若干钢筋电极样品。
作为本发明的进一步改进,所述步骤S1具体包括以下步骤:
S11、配制饱和Ca(OH)
2溶液作为混凝土模拟液并注入试验池中;
S12、采用P4000电化学工作站进行三电极法测试:在试验池中,将钢筋电极样品作为工作电极,饱和甘汞电极作为参比电极,铂电极作为对电极,工作电极与Ca(OH)
2溶液接触;
S13、将钢筋电极样品在混凝土模拟液中钝化7d后,开始电化学测试,测得初始电化学参数;
S14、将等量的NaCl逐级加入试验池中,每加入一级NaCl均在24小时后进行一次对应的电化学测试,得到每级对应的测试频率及测试阻抗数据;
S15、对所有钢筋电极样品均进行步骤S11-S14,得到所有钢筋电极样品每级对应的测试频率及测试阻抗数据。
作为本发明的进一步改进,所述三电极法测试的线性极化扫描电位±0.01V vs.OCP,扫描速率10mV/min,EIS扰动电压为幅度10mv的正弦电压信号,扫描频率10mHz~100kHz。
作为本发明的进一步改进,所述K-K转换关系的关系式为:
其中,x为积分自变量,ω为测试阻抗数据角频率,Z
r(x)和Z
i(x)分别为测试阻抗数据的阻抗实部和阻抗虚部;Z
r(ω)和Z
i(ω)分别为经过K-K转换后转换数据的阻抗实部和阻抗虚部。
利用K-K转换关系验证每个钢筋电极样品的测试阻抗数据可靠性;
作为本发明的进一步改进,利用残余误差对转换数据与测试阻抗数据进行可靠性验证,残余误差的公式为:
其中,Z
r,exp(ω)和Z
i,exp(ω)分别为测试阻抗数据的阻抗实部和阻抗虚部;Z
exp(ω)和Z
K-Ktran(ω)分别代表测试阻抗数据和相应的K-K转换后的转换数据;
若转换数据与试测试阻抗数据的残余误差绝对值小于等于1%,则试验数据本身可靠性较高。
作为本发明的进一步改进,在同一Nyquist图和Bode图中,采用各类型符号表示测试阻抗数据,实现表示模拟阻抗数据;在比较模拟阻抗数据和对应的测试阻抗数据时,放大Nyquist图中高频数据部分以及将Bode图转为相角图同时进行比较。
作为本发明的进一步改进,所述卡方值的计算公式为:
其中,i=1,2…N表示不同氯离子浓度下的实验样本,Z
re,i和Z
im,i分别代表测试阻抗数据的实部和虚部,Z
re(ω
i)和Z
im(ω
i)分别为对应的模拟阻抗数据的实部和虚部,|Z(ω
i)|为测试阻抗数据模量。
作为本发明的进一步改进,所述元件参数值包括溶液阻抗值R
S、传荷阻抗值R
ct、电阻值R
1及各CPE元件值;所述元件参数具有如下演变规律:
所述溶液阻抗值R
S随着氯离子浓度增加而逐渐降低;
所述传荷阻抗值R
ct随着氯离子浓度增加,其阻抗值在初始阶段降低,当氯离子浓度达到一定浓度时,降低幅度出现数量级变化;
电阻值R
1随着氯离子浓度增加而逐渐降低,当氯离子浓度达到一定浓度时,降低幅度出现数量级变化;
CPE元件值随着氯离子浓度增加而逐渐升高。
一种电化学阻抗谱等效模拟电路选取系统,采用如上所述的一种电化学阻抗谱等效模拟电路选取方法对等效模拟电路进行选取。
本发明的有益效果:本发明通过在阻抗数据本身可靠的基础上,通过从定性视觉检验到定量卡方值检测,最终到核心模拟参数检验的过程,对钢筋腐蚀的等效模拟电路进行选取,可选出拟合良好且符合试验规律的电化学阻抗等效模拟电路,为等效模拟电路的选取提供了有利依据,实现了为腐蚀科学中电化学阻抗谱解耦和数据分析提供有效的方法和工具,并克服了传统只唯象地以模拟图谱吻合与否作为判定标准来评价和选取等效电路,避免“欠匹配”(模拟电路过于简单)或“过匹配”(模拟电路过于复杂)问题。
图1是本发明方法流程示意图;
图2是本发明实施例腐蚀钢筋测试阻抗数据中实部转为虚部的K-K转换图;
图3是本发明实施例腐蚀钢筋测试阻抗数据中虚部转为实部的K-K转换图;
图4是本发明实施例K-K转换中实部转为虚部残差值图;
图5是本发明实施例K-K转换中虚部转为实部残差值图;
图6是本发明实施例中等效模拟电路A结构示意图;
图7是本发明实施例中等效模拟电路B结构示意图;
图8是本发明实施例中等效模拟电路C结构示意图;
图9是本发明实施例等效模拟电路A与实测数据全频域内Nyquist图;
图10是本发明图9高频部分细节放大图;
图11是本发明实施例等效模拟电路A与实测数据Bode模量图;
图12是本发明图11的相角图;
图13是本发明实施例等效模拟电路B与实测数据全频域内Nyquist图;
图14是本发明图13高频部分细节放大图;
图15是本发明实施例等效模拟电路B与实测数据Bode模量图;
图16是本发明图15的相角图;
图17是本发明实施例等效模拟电路C与实测数据全频域内Nyquist图;
图18是本发明图17高频部分细节放大图;
图19是本发明实施例等效模拟电路C与实测数据Bode模量图;
图20是本发明图19的相角图。
下面结合附图和具体实施例对本发明作进一步说明,以使本领域的技术人员可以更好地理解本发明并能予以实施,但所举实施例不作为对本发明的限定。
参考图1,本发明提供了一种电化学阻抗谱等效模拟电路选取方法,包括以下步骤:
S1、获取具有相同参数的若干钢筋电极样品的阻抗谱测试数据,所述阻抗谱测试数据包括钢筋电极样品逐级增加腐蚀度后对应的测试频率及测试阻抗数据;
S2、利用K-K转换关系验证每个钢筋电极样品的测试阻抗数据可靠性,选取测试阻抗数据可靠的钢筋电极样品;
S3、对选取后的钢筋电极样品的测试阻抗数据进行分析解耦得到各自对应的等效模拟电路;
S4、利用阻抗谱测试数据绘制选取后的各钢筋电极样品的Nyquist图和Bode图,并将各等效模拟电路的模拟阻抗数据绘制在相应的钢筋电极样品的Nyquist图和Bode图中;
S5、通过Nyquist图和Bode图比较模拟阻抗数据和对应的测试阻抗数据两者之间的视觉差异,计算两者的卡方值,选取无视觉差异且卡方值小于等于1×10
-4数量级的等效模拟电路;
S6、计算经步骤S5选取后的各等效模拟电路的元件参数值,最终选取各元件参数值演变规律与试验过程逻辑相符的等效模拟电路。
本发明为得到更准确的等效模拟电路,所需钢筋电极样品一组至少为3个,对钢筋电极样品逐级增加腐蚀度以得到钢筋自腐蚀电位和腐蚀电流密度随腐蚀离子浓度变化曲线以及钢筋腐蚀电化学阻抗谱随腐蚀离子含量演变图,即对应的测试频率及测试阻抗数据;本发明在正式选取等效模拟电路前,首先进行自身阻抗数据的可靠性验证,因此,采用K-K转换关系验证其可靠性,在K-K转换关系中若K-K转换所得实部(虚部)数据与试验测得实部(虚部)数据吻合良好,则试验数据本身可靠性较高。在本身数据可靠的前提基础下,对模拟等效电路和选取才负有意义,因此,本步骤为选取电路的必要基础。各钢筋电极样品经过数据分析解耦后得到电化学反应参数,这些参数可能不同,因此,根据得到的参数选取其对应的等效模拟电路,对这些等效模拟电路进行选取:首先,定性判定等效电路模拟数据与测试阻抗数据的视觉误差,即在Nyquist图和Bode图中直接比较两者吻合度,排除视觉误差较大的等效模拟电路,对无视觉误差 的等效电路模拟数据与测试阻抗数据定量计算卡方值,表征效电路模拟数据与测试阻抗数据值的吻合度,要求卡方值数量级不高于1×10
-4数量级;在满足上述条件的基础上,判定模拟所得电路参数值才具有可靠度,计算等效模拟电路中各元件参数值,考量等效模拟电路参数演变规律与试验过程逻辑是否相符,最终选取各元件参数值演变规律与试验过程逻辑相符的等效模拟电路,有效模拟反映真实混凝土孔溶液中钢筋腐蚀情况,为腐蚀科学中电化学阻抗谱解耦和数据分析提供有效方法和工具。
实施例
本实施例取一组长度5mm直径为16mm的钢筋,将钢筋片一端横截面用400#、800#、1000#的SiC砂纸逐级打磨、抛光至镜面状态,并用酒精和丙酮洗去表面沾染油污作为钢筋电极样品,于酒精中保存。本实施例一组试验取三个平行钢筋电极样品。
对本组钢筋选取等效模拟电路,具体包括以下步骤:
(1)配制饱和Ca(OH)
2溶液并注入容量为450mL的试验池中,试验池侧面开孔面积1cm
2,溶液通过开孔与钢筋电极样品接触,留少许固体Ca(OH)
2作为缓冲;
(2)采用P4000电化学工作站进行经典三电极法测试,其中,钢筋电极样品作为工作电极,饱和甘汞电极为参比电极,铂电极为对电极。线性极化扫描电位±0.01V vs.OCP,扫描速率10mV/min;EIS扰动电压为幅度10mv的正弦电压信号,扫描频率10mHz~100kHz;
(3)钢筋电极样品在混凝土模拟液中钝化7d,测试初始电化学参数后,用分析天平称取0.2633g(0.01mol/L/d)分析纯NaCl加入试验池内;24h后进行下一阶段电化学参数测试,以此类推;电化学测试在每次添加侵蚀离子前进行,得到钢筋自腐蚀电位Ecorr和腐蚀电流密度Icorr随氯离子浓度变化曲线以及典型钢筋腐蚀电化学阻抗谱随氯离子含量演变图,即测试阻抗数据;
(4)运用K-K转换关系式验证本试验阻抗数据,转换结果如图2和图3所示,引入残余误差对K-K转换数据与试验测试数据进行评价,得到对应的残差值,可制成残差图进行比较,如图4和图5,K-K转换所得实部(虚部)数据与试验测得实部(虚部)数据吻合良好,a为实部转虚部,b为虚部转实部,本实施例中残余误差值均在±1%内,试验数据本身可靠性较高;
(5)对3个样品的测试阻抗数据进行分析、解耦以获得电化学反应参数,选取对应的等效模拟电路,选取的等效模拟电路分别为图6的等效模拟电路A、图7的等效模拟电路B和图8的等效模拟电路C;
(6)定性判定等效电路模拟数据与测试数据视觉差异,通过Nyquist图和Bode图中等效模电路的模拟数据和测试数据吻合度对比,图9-图12为等效模拟电路A与实测数据的对比;图13-图16为等效模拟电路B与实测数据的对比图17-图20为等效模拟电路C与实测数据的对比;其中,a为测试全频域内Nyquist图,b为高频部分细节放大,c为Bode模量图,d为Bode相角图,且图中符号表示测试数据,不同的符号代表不同的氯离子浓度,而实线代表模拟所得数据;
(7)定量计算卡方值,表征等效电路的模拟值与测试值吻合度,卡方值数量级不高于1×10
-4数量级,如表1为各等效模拟电路的卡方检验结果:
表1:
(8)在满足上述条件基础上,计算得到模拟电路A、B、C中各元件参数 值,考量各等效模拟电路参数演变规律与试验过程逻辑是否相符,如表2、3、4所示,分别为等效模拟电路A、等效模拟电路B和等效模拟电路C的模拟参数值。
表2:
表3:
表4:
经过上述步骤过程,即根据图2-图5可知k-k转换所得的实部(虚部)数据与试验测得实部(虚部)数据吻合良好,试验数据本身可靠性较高。根据图17-图20所示选取的等效模拟电路C在整个实验周期内均可以较好地模拟阻抗高频和低频的演变规律和趋势,其余的两组电路A、B模拟抗阻数据均有差异;对于模拟电路拟合数据和实验测试数据的吻合度,可利用卡方值定量表征二者 的离散程度,因此,根据表1所示等效模拟电路C的拟合数据卡方值数量级均在1×10
-4级别,离散程度最小;准确的选择合理模拟电路、进而得到电化学参数,需进一步考量各等效电路模拟参数演变规律,根据表2、表3、表4对比可知,等效模拟电路路C拟合参数数值随氯离子浓度变化的规律性好,与实验进程中阻抗谱测试数据变化逻辑相符,即,溶液阻抗值R
S随着氯离子浓度增加而逐渐降低;传荷阻抗值R
ct随着氯离子浓度增加,其阻抗值在初始阶段有所降低,当氯离子浓度达到0.06mol/L时,降低幅度较大,出现数量级变化;电阻值R
1随着氯离子浓度增加而逐渐降低,当氯离子浓度达到0.06mol/L时,降低幅度较大,出现数量级变化;CPE元件值随着氯离子浓度增加而逐渐升高。因此,本实施例中最终选取的等效模拟电路C。
本发明还提供了一种电化学阻抗谱等效模拟电路选取系统,采用如上所述的一种电化学阻抗谱等效模拟电路选取方法对等效模拟电路进行选取。
其解决问题的原理与所述一种电化学阻抗谱等效模拟电路选取方法类似,重复之处不再赘述。本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
以上所述实施例仅是为充分说明本发明而所举的较佳的实施例,本发明的保护范围不限于此。本技术领域的技术人员在本发明基础上所作的等同替代或变换,均在本发明的保护范围之内。本发明的保护范围以权利要求书为准。
Claims (10)
- 一种电化学阻抗谱等效模拟电路选取方法,其特征在于:包括以下步骤:S1、获取具有相同参数的若干钢筋电极样品的阻抗谱测试数据,所述阻抗谱测试数据包括钢筋电极样品逐级增加腐蚀度后对应的测试频率及测试阻抗数据;S2、利用K-K转换关系验证每个钢筋电极样品的测试阻抗数据可靠性,选取测试阻抗数据可靠的钢筋电极样品;S3、对选取后的钢筋电极样品的测试阻抗数据进行分析解耦得到各自对应的等效模拟电路;S4、利用阻抗谱测试数据绘制选取后的各钢筋电极样品的Nyquist图和Bode图,并将各等效模拟电路的模拟阻抗数据绘制在相应的钢筋电极样品的Nyquist图和Bode图中;S5、通过Nyquist图和Bode图比较模拟阻抗数据和对应的测试阻抗数据两者之间的视觉差异,计算两者的卡方值,选取无视觉差异且卡方值小于等于1×10 -4数量级的等效模拟电路;S6、计算经步骤S5选取后的各等效模拟电路的元件参数值,最终选取各元件参数值演变规律与试验过程中阻抗谱测试数据变化逻辑相符的等效模拟电路。
- 如权利要求1所述的一种电化学阻抗谱等效模拟电路选取方法,其特征在于:在步骤S1前还包括步骤:取长度和直径均相同的若干钢筋电极样品,将各钢筋电极样品的一端打磨并抛光至镜面状态,并用酒精和丙酮洗去钢筋电极样品表面的油污后于酒精中保存,得到具有相同参数的若干钢筋电极样品。
- 如权利要求1所述的一种电化学阻抗谱等效模拟电路选取方法,其特征在于:所述步骤S1具体包括以下步骤:S11、配制饱和Ca(OH) 2溶液作为混凝土模拟液并注入试验池中;S12、采用P4000电化学工作站进行三电极法测试:在试验池中,将钢筋电极样品作为工作电极,饱和甘汞电极作为参比电极,铂电极作为对电极,工作电极与Ca(OH) 2溶液接触;S13、将钢筋电极样品在混凝土模拟液中钝化7d后,开始电化学测试,测得初始电化学参数;S14、将等量的NaCl逐级加入试验池中,每加入一级NaCl均在24小时后进行一次对应的电化学测试,得到每级对应的测试频率及测试阻抗数据;S15、对所有钢筋电极样品均进行步骤S11-S14,得到所有钢筋电极样品每级对应的测试频率及测试阻抗数据。
- 如权利要求3所述的一种电化学阻抗谱等效模拟电路选取方法,其特征在于:所述三电极法测试的线性极化扫描电位±0.01V vs.OCP,扫描速率10mV/min,EIS扰动电压为幅度10mv的正弦电压信号,扫描频率10mHz~100kHz。
- 如权利要求1所述的一种电化学阻抗谱等效模拟电路选取方法,其特征在于:在同一Nyquist图和Bode图中,采用各类型符号表示测试阻抗数据,实现表示模拟阻抗数据;在比较模拟阻抗数据和对应的测试阻抗数据时,放大Nyquist图中高频数据部分以及将Bode图转为相角图同时进行比较。
- 如权利要求1所述的一种电化学阻抗谱等效模拟电路选取方法,其特征在于:所述元件参数值包括溶液阻抗值R S、传荷阻抗值R ct、电阻值R 1及各CPE元件值;所述元件参数具有如下演变规律:所述溶液阻抗值R S随着氯离子浓度增加而逐渐降低;所述传荷阻抗值R ct随着氯离子浓度增加,其阻抗值在初始阶段降低,当氯离子浓度达到一定浓度时,降低幅度出现数量级变化;电阻值R 1随着氯离子浓度增加而逐渐降低,当氯离子浓度达到一定浓度时,降低幅度出现数量级变化;CPE元件值随着氯离子浓度增加而逐渐升高。
- 一种电化学阻抗谱等效模拟电路选取系统,其特征在于:采用如权利要求1-9中任一项所述的一种电化学阻抗谱等效模拟电路选取方法对等效模拟电路进行选取。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210492961.3 | 2022-05-07 | ||
CN202210492961.3A CN115015092A (zh) | 2022-05-07 | 2022-05-07 | 一种电化学阻抗谱等效模拟电路选取方法及系统 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023216542A1 true WO2023216542A1 (zh) | 2023-11-16 |
Family
ID=83069948
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/132124 WO2023216542A1 (zh) | 2022-05-07 | 2022-11-16 | 一种电化学阻抗谱等效模拟电路选取方法及系统 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN115015092A (zh) |
WO (1) | WO2023216542A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115015092A (zh) * | 2022-05-07 | 2022-09-06 | 苏州科技大学 | 一种电化学阻抗谱等效模拟电路选取方法及系统 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104914312A (zh) * | 2015-06-18 | 2015-09-16 | 哈尔滨工业大学 | 一种计算交流阻抗谱弛豫时间分布的方法 |
CN105137362A (zh) * | 2015-10-19 | 2015-12-09 | 清华大学 | 一种电堆的无损在线检测和故障诊断方法 |
US20170089851A1 (en) * | 2015-09-30 | 2017-03-30 | King Saud University | Method of ascertaining fully grown passive film formation on steel rebar embedded in concrete |
CN109374519A (zh) * | 2018-11-09 | 2019-02-22 | 南京航空航天大学 | 一种基于交流阻抗谱法表征混凝土中钢筋锈蚀速率的检测方法 |
CN111337843A (zh) * | 2020-02-21 | 2020-06-26 | 清华大学 | 动力电池差分电容的生成方法及容量估计方法、系统 |
CN115015092A (zh) * | 2022-05-07 | 2022-09-06 | 苏州科技大学 | 一种电化学阻抗谱等效模拟电路选取方法及系统 |
-
2022
- 2022-05-07 CN CN202210492961.3A patent/CN115015092A/zh active Pending
- 2022-11-16 WO PCT/CN2022/132124 patent/WO2023216542A1/zh unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104914312A (zh) * | 2015-06-18 | 2015-09-16 | 哈尔滨工业大学 | 一种计算交流阻抗谱弛豫时间分布的方法 |
US20170089851A1 (en) * | 2015-09-30 | 2017-03-30 | King Saud University | Method of ascertaining fully grown passive film formation on steel rebar embedded in concrete |
CN105137362A (zh) * | 2015-10-19 | 2015-12-09 | 清华大学 | 一种电堆的无损在线检测和故障诊断方法 |
CN109374519A (zh) * | 2018-11-09 | 2019-02-22 | 南京航空航天大学 | 一种基于交流阻抗谱法表征混凝土中钢筋锈蚀速率的检测方法 |
CN111337843A (zh) * | 2020-02-21 | 2020-06-26 | 清华大学 | 动力电池差分电容的生成方法及容量估计方法、系统 |
CN115015092A (zh) * | 2022-05-07 | 2022-09-06 | 苏州科技大学 | 一种电化学阻抗谱等效模拟电路选取方法及系统 |
Non-Patent Citations (1)
Title |
---|
LIU GUOJIAN, ZHANG YUNSHENG, LIU CHENG, WU MENG, PANG BO: "Corrosion of Steel in Simulated Concrete Pore Solution and Equivalent Circuits Selection", MATERIALS REPORTS., vol. 35, no. 14, 28 October 2020 (2020-10-28), pages 14072 - 14078, XP093107172, DOI: 10.11896/cldb.20040138 * |
Also Published As
Publication number | Publication date |
---|---|
CN115015092A (zh) | 2022-09-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2023216542A1 (zh) | 一种电化学阻抗谱等效模拟电路选取方法及系统 | |
CN111123188A (zh) | 基于改进最小二乘法的电能表综合检定方法及系统 | |
CN102622473A (zh) | 基于贝叶斯理论的步进应力加速退化试验优化设计方法 | |
WO2013086933A1 (zh) | 基于Beremin模型的材料脆性断裂评定参量的标定方法 | |
CN102426137B (zh) | 一种轴向加载低周疲劳裂纹萌生的试验测量方法 | |
WO2017041572A1 (zh) | 改进型配电变压器能效计量检测方法及装置、存储介质 | |
CN105843870A (zh) | 重复性和再现性的分析方法及其应用 | |
CN104615517A (zh) | 一种利用halt测试服务器产品的方法 | |
WO2024000731A1 (zh) | 晶圆缺陷评估方法、装置、存储器芯片和可读存储介质 | |
CN105136596B (zh) | 具有恒位移载荷的裂尖应力腐蚀开裂状态测试系统及方法 | |
CN112287297A (zh) | 基于随机采样的电能表质量一致性评价方法与介质 | |
WO2022160600A1 (zh) | 模拟晶圆芯片的电性的方法 | |
CN110850358A (zh) | 基于逐步回归算法的电能表综合检定方法及系统 | |
CN113793057A (zh) | 一种基于回归分析模型的建筑招投标数据生成方法 | |
CN116187053A (zh) | 基于蒙特卡洛法的臂架应力测量不确定度方法及装置 | |
CN111337417A (zh) | 一种变电站接地网腐蚀状态检测方法 | |
Sun et al. | Performance assessment of corroded stiffened steel plates considering non-Gaussian spatial correlated corrosion random field | |
CN118258750B (zh) | 一种非金属密封衬垫板防腐性能检测方法及系统 | |
CN111007220A (zh) | 一种生猪养殖污水水质敏捷监测的方法 | |
CN114462210B (zh) | 基于高维表征模型的随机-区间混合可靠性分析方法 | |
CN114441344A (zh) | 存储器、准静态j积分求解方法、系统和装置 | |
CN113092318B (zh) | 一种基于Nernst-Einstein方程的混凝土结构氯离子扩散预测方法 | |
WO2023236928A1 (zh) | 仪器化压痕测试金属材料强度性能的方法 | |
He et al. | Harmonic contribution assessment on the condition of background harmonic fluctuations | |
CN106855841B (zh) | 一种系统内存分析方法和装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22941477 Country of ref document: EP Kind code of ref document: A1 |