WO2017041572A1 - 改进型配电变压器能效计量检测方法及装置、存储介质 - Google Patents

改进型配电变压器能效计量检测方法及装置、存储介质 Download PDF

Info

Publication number
WO2017041572A1
WO2017041572A1 PCT/CN2016/088019 CN2016088019W WO2017041572A1 WO 2017041572 A1 WO2017041572 A1 WO 2017041572A1 CN 2016088019 W CN2016088019 W CN 2016088019W WO 2017041572 A1 WO2017041572 A1 WO 2017041572A1
Authority
WO
WIPO (PCT)
Prior art keywords
distribution transformer
voltage
current
transformer
energy efficiency
Prior art date
Application number
PCT/CN2016/088019
Other languages
English (en)
French (fr)
Inventor
熊博
雷民
周峰
殷小东
姜春阳
熊魁
袁建平
陈松
Original Assignee
中国电力科学研究院
国家电网公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国电力科学研究院, 国家电网公司 filed Critical 中国电力科学研究院
Priority to GB1804041.0A priority Critical patent/GB2556308B/en
Priority to DE112016004054.7T priority patent/DE112016004054T5/de
Publication of WO2017041572A1 publication Critical patent/WO2017041572A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/62Testing of transformers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R21/00Arrangements for measuring electric power or power factor
    • G01R21/06Arrangements for measuring electric power or power factor by measuring current and voltage
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere

Definitions

  • the invention relates to the field of transformer detection, in particular to an improved distribution transformer energy efficiency metering detection method and device, and a storage medium.
  • the loss of the distribution transformer in the power grid occupies a large part of the loss in the entire power grid, and in the long-term operation of the distribution transformer, there are many factors affecting its efficiency, such as load size, harmonic content and so on.
  • the efficiency measurement is not carried out during the operation of the transformer, and the long-running transformer has a load-bearing capacity decreased due to various factors, thereby increasing the loss, thus causing electric energy. A huge waste.
  • the loss of the distribution transformer is not affected by the magnitude and type of the load, it is not a fixed value.
  • the method of judging whether it is a high-loss distribution transformer at home and abroad generally measures the copper loss and iron loss by the no-load test and the short-circuit test. Furthermore, compared with the distribution transformer standard, this way of evaluating the static energy efficiency of the transformer is only tested when the transformer is shipped from the factory, and no energy efficiency test is performed during the operation.
  • an embodiment of the present invention provides an improved distribution transformer energy efficiency metering detection method and device, and a storage medium.
  • the energy efficiency detecting device of the distribution transformer under actual working conditions is constructed according to the energy efficiency calculation model, thereby measuring the energy efficiency value of the distribution transformer under actual working conditions.
  • the equivalent two-port network model includes a distribution transformer, a virtual current source, and a virtual voltage source;
  • the virtual current is connected in parallel at both ends of the output end of the distribution transformer
  • the virtual voltage source is connected in series on the output end;
  • the current I * of the virtual current source is calculated as:
  • I 1 is the input current of the distribution transformer
  • I 2 is the output current of the distribution transformer
  • K 2 is a proportional constant
  • I 1 /K 2 is the output current of the equivalent two-port network model
  • the voltage V * of the virtual voltage source is calculated as:
  • V * V 1 /K 1 -V 2
  • V 1 is the voltage between the two input terminals of the distribution transformer
  • V 2 is the voltage between the two output terminals of the distribution transformer
  • K 1 is the proportional constant
  • V 1 /K 1 is the equivalent two port The output voltage of the network model
  • the energy efficiency calculation model includes an energy efficiency value ⁇ and a loss value P LOSS of the distribution transformer;
  • the formula for calculating the energy efficiency value ⁇ is:
  • the loss value P LOSS is calculated as:
  • the energy efficiency detecting device includes a current detecting unit, a voltage detecting unit, a power tester, and a host computer;
  • the current detecting unit is configured to collect all current signals of the distribution transformer under actual working conditions, and send the voltage signal to the power tester;
  • the voltage detecting unit is configured to collect all voltage signals of the distribution transformer under actual working conditions, and send the voltage signal to the power tester;
  • the power tester calculates an energy efficiency value ⁇ and a loss value P LOSS of the distribution transformer according to the voltage signal and the current signal;
  • the upper computer is configured to record, display and store the energy efficiency value, and output a test report of the energy efficiency metering detection of the distribution transformer;
  • the current detecting unit includes a first current transformer and a second current transformer; the first current transformer is used to measure an output current of the equivalent two-port network model of the distribution transformer under actual working conditions; Two current transformers are used to measure the input current of the equivalent two-port network model of the distribution transformer under actual working conditions;
  • the primary winding of the first current transformer is connected in series to the primary winding of the distribution transformer, and the secondary winding of the first current transformer is connected in series to the high voltage end of the secondary winding of the distribution transformer;
  • the primary winding of the second current transformer is connected in series between the primary winding of the first current transformer and the connection point of the high voltage end, and the high voltage end; the secondary winding of the second current transformer is connected to the power tester ;
  • the voltage detecting unit includes a first voltage transformer and a second voltage transformer; the first voltage transformer is used to measure the equivalent two-port network of the distribution transformer under actual working conditions. The input voltage of the network model; the second voltage transformer is used to measure the output voltage of the distribution transformer under actual working conditions;
  • the primary winding of the first voltage transformer is connected to the input end of the distribution transformer, the low voltage end of the secondary winding is short-circuited with the low voltage end of the secondary winding of the distribution transformer, and the high voltage end of the secondary winding is respectively connected with the distribution transformer The high voltage end of the secondary winding is connected to the power tester;
  • the primary winding of the second voltage transformer is connected to the output end of the distribution transformer, and the low voltage end of the secondary winding is connected to the power tester;
  • the ratio of the first current transformer is K 2 :1;
  • the ratio of the second current transformer is 1:1, and the current of the secondary winding is set to the current value of the virtual current source in the equivalent two-port network model;
  • the ratio of the first voltage transformer is K 1 :1, and the voltage between the high voltage end of the secondary winding and the high voltage end of the secondary winding of the distribution transformer is set as the virtual voltage source in the equivalent two-port network model. Voltage value
  • the ratio of the second voltage transformer is 1:1;
  • K 1 and K 2 are both proportional constants.
  • a first building block configured to construct an equivalent two-port network model of the distribution transformer
  • a determining unit configured to determine an energy efficiency calculation model of the distribution transformer according to the equivalent two-port network model
  • a second building unit configured to construct an energy efficiency detecting device of the distribution transformer under actual working conditions according to the energy efficiency calculation model
  • a measuring unit configured to measure an energy efficiency value of the distribution transformer under actual operating conditions.
  • the equivalent two-port network model includes a distribution transformer, a virtual current source, and a virtual voltage source;
  • the virtual current is connected in parallel at both ends of the output end of the distribution transformer
  • the virtual voltage source is connected in series at the output.
  • the energy efficiency detecting device includes a current detecting unit, a voltage detecting unit, a power tester, and a host computer;
  • the current detecting unit is configured to collect all current signals of the distribution transformer under actual working conditions, and send the voltage signal to the power tester;
  • the voltage detecting unit is configured to collect all voltage signals of the distribution transformer under actual working conditions, and send the voltage signal to the power tester;
  • the power tester is configured to calculate an energy efficiency value ⁇ and a loss value P LOSS of the distribution transformer according to the voltage signal and the current signal;
  • the upper computer is configured to record, display and store the energy efficiency value, and output a test report of the energy distribution metering detection of the distribution transformer.
  • the storage medium provided by the embodiment of the present invention stores a computer program for executing the improved energy distribution metering detection method of the distribution transformer.
  • the measurement instrument introduced by the transformer has small uncertainty, strong adaptability and high practical application value. It can be used as an important reference for energy-saving data. It can be applied to the accurate analysis, calculation and judgment of energy efficiency level of energy distribution metering of distribution transformers.
  • FIG. 1 is a schematic diagram of an equivalent two-port network model of a distribution transformer according to an embodiment of the present invention
  • FIG. 2 is a schematic structural view of an energy efficiency detecting device of a distribution transformer according to an embodiment of the present invention
  • FIG. 3 is a schematic flow chart of an improved energy distribution metering detection method for a distribution transformer according to an embodiment of the present invention
  • FIG. 4 is a schematic structural diagram of an improved energy distribution metering and detecting device for a distribution transformer according to an embodiment of the present invention.
  • the improved energy distribution metering detection method of the distribution transformer provided by the embodiment of the invention can provide technical support for the energy loss and energy efficiency rating judgment of the actual running distribution transformer.
  • FIG. 3 The implementation of the energy-efficient metering detection method for the improved distribution transformer in the present invention is as shown in FIG. 3, specifically:
  • Step 301 Construct an equivalent two-port network model of the distribution transformer.
  • the equivalent two-port network model includes a distribution transformer, a virtual current source, and a virtual voltage source, wherein
  • the virtual current is connected in parallel across the output of the distribution transformer, and a virtual voltage source is connected in series at the output.
  • the current I * of the virtual current source is calculated as:
  • the voltage V * of the virtual voltage source is calculated as:
  • V * V 1 /K 1 -V 2 (2)
  • I 1 is the input current of the distribution transformer
  • I 2 is the output current of the distribution transformer
  • V 1 is the voltage between the two inputs of the distribution transformer
  • V 2 is the two outputs of the distribution transformer
  • the voltage between the terminals, K 1 and K 2 is a proportionality constant.
  • the input voltage of the equivalent two-port network model is the voltage V 1 between the two input terminals of the distribution transformer
  • the input current of the equivalent two-port network model is the input current I 1 of the distribution transformer.
  • the output current of the equivalent two-port network model is I 1 /K 2
  • the output voltage of the equivalent two-port network model is V 1 /K 1 .
  • Step 302 Determine an energy efficiency calculation model of the distribution transformer according to the equivalent two-port network model.
  • the energy efficiency calculation model in this embodiment includes an energy efficiency value ⁇ and a loss value P LOSS of the distribution transformer, wherein
  • the formula for calculating the energy efficiency value ⁇ is:
  • the loss value P LOSS is calculated as:
  • P 1 V 1 ⁇ I 1 ;
  • the difference between the input power and the output power of the equivalent two-port network model consisting of the distribution transformer, the virtual voltage source, and the virtual current source is equal to the loss value inside the distribution transformer, the power absorbed by the virtual voltage source, and the virtual The sum of the power absorbed by the current source.
  • Step 303 Construct an energy efficiency detecting device of the distribution transformer under actual working conditions according to the energy efficiency calculation model, and measure the actual value of the energy efficiency of the distribution transformer by using the energy efficiency detecting device.
  • the energy efficiency detecting device in this embodiment includes a current detecting unit, a voltage detecting unit, a power tester and a host computer:
  • the current detecting unit includes a first current transformer and a second current transformer for collecting all voltage signals of the distribution transformer under actual working conditions, and transmitting the voltage signal to the power tester. As shown in FIG. 2, the current detecting unit includes a first current transformer CT1 and a second current transformer CT2.
  • the current transformer CT1 is used to measure the output current of the equivalent two-port network model of the distribution transformer under actual operating conditions.
  • the primary winding of the first current transformer CT1 is connected in series to the primary winding of the distribution transformer, and the secondary winding of the first current transformer CT1 is connected in series to the high voltage end of the secondary winding of the distribution transformer.
  • the ratio of the first current transformer CT1 is K 2 :1.
  • the voltage transformer CT2 is used to measure the input current of the equivalent two-port network model of the distribution transformer under actual operating conditions.
  • the primary winding of the second current transformer CT2 is connected in series between the high voltage end of the secondary winding of the distribution transformer and the connection point between the primary winding of the first current transformer CT1 and the high voltage end;
  • the secondary winding of the second current transformer CT2 is connected to the power tester.
  • the ratio of the second current transformer CT2 is 1:1, and the current of the secondary winding of the second current transformer CT2 is set to the current value of the virtual current source in the equivalent two-port network model.
  • the voltage detecting unit includes a first voltage transformer and a second voltage transformer for collecting all voltage signals of the distribution transformer under actual working conditions, and transmitting the voltage signal to the power tester. As shown in FIG. 2, the voltage detecting unit includes a first voltage transformer VT1 and a second voltage flow mutual Sensor VT2.
  • the transformer VT1 is used to measure the input voltage of the equivalent two-port network model of the distribution transformer under actual operating conditions.
  • the primary winding of the first voltage transformer VT1 is connected to the input end of the distribution transformer;
  • the low voltage end of the secondary winding of the first voltage transformer VT1 is short-circuited with the low voltage end of the secondary winding of the distribution transformer;
  • the high voltage end of the secondary winding of the first voltage transformer VT1 is respectively connected to the high voltage end of the secondary winding of the distribution transformer and the power tester.
  • the ratio of the first voltage transformer VT1 is K 1 :1
  • the voltage between the high voltage end of the secondary winding of the first voltage transformer VT1 and the high voltage end of the secondary winding of the distribution transformer is set to The voltage value of the virtual voltage source in the two-port network model.
  • the transformer VT2 is used to measure the output voltage of the distribution transformer under actual operating conditions.
  • the primary winding of the second voltage transformer VT2 is connected to the output of the distribution transformer, and the low voltage end of the secondary winding is connected to the power tester.
  • the ratio of the second voltage transformer VT2 is 1:1.
  • the power tester calculates the energy efficiency value of the distribution transformer based on the voltage signal and the current signal.
  • the power tester receives the current signal I 1 /K 2 output by the first current transformer CT1, the current signal I 1 /K 2 -I 2 output by the second current transformer CT2, and the output of the first voltage transformer VT1.
  • the power tester calculates the energy efficiency value ⁇ of the distribution transformer according to formula (3), and calculates the loss value P LOSS of the distribution transformer according to formula (4).
  • the upper computer is used to record, display and store the energy efficiency value, and the test report of the energy distribution metering test of the output distribution transformer.
  • the upper computer receives the energy efficiency value ⁇ and the loss value P LOSS sent by the power tester, and performs real-time waveform display and harmonic analysis on the above data.
  • FIG. 4 is a schematic structural diagram of an improved energy distribution metering and detecting device for a distribution transformer according to an embodiment of the present invention. As shown in FIG. 4, the device includes:
  • a first building unit 41 configured to construct an equivalent two-port network model of the distribution transformer
  • the determining unit 42 is configured to determine an energy efficiency calculation model of the distribution transformer according to the equivalent two-port network model
  • the second constructing unit 43 is configured to construct an energy efficiency detecting device of the distribution transformer under actual working conditions according to the energy efficiency calculation model;
  • the measuring unit 44 is configured to measure the energy efficiency value of the distribution transformer under actual operating conditions.
  • the equivalent two-port network model includes a distribution transformer, a virtual current source, and a virtual voltage source;
  • the virtual current is connected in parallel at both ends of the output end of the distribution transformer
  • the virtual voltage source is connected in series at the output.
  • the energy efficiency detecting device comprises a current detecting unit, a voltage detecting unit, a power tester and a host computer;
  • the current detecting unit is configured to collect all current signals of the distribution transformer under actual working conditions, and send the voltage signal to the power tester;
  • the voltage detecting unit is configured to collect all voltage signals of the distribution transformer under actual working conditions, and send the voltage signal to the power tester;
  • the power tester is configured to calculate an energy efficiency value ⁇ and a loss value P LOSS of the distribution transformer according to the voltage signal and the current signal;
  • the upper computer configured to record, display, and store the energy efficiency value, and output Test report on energy efficiency measurement of electric transformers.
  • each unit in the energy-efficient metering and detecting device of the improved distribution transformer may be implemented by a central processing unit (CPU) or a microprocessor located in the neighboring area optimization device ( Micro Processor Unit (MPU), or Digital Signal Processor (DSP), or Field Programmable Gate Array (FPGA).
  • CPU central processing unit
  • MPU Micro Processor Unit
  • DSP Digital Signal Processor
  • FPGA Field Programmable Gate Array
  • Embodiments of the Invention can also be stored in a computer readable storage medium if it is implemented in the form of a software function module and sold or used as a standalone product. Based on such understanding, the technical solution of the embodiments of the present invention may be embodied in the form of a software product in essence or in the form of a software product stored in a storage medium, including a plurality of instructions.
  • a computer device (which may be a personal computer, server, or network device, etc.) is caused to perform all or part of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes various media that can store program codes, such as a USB flash drive, a mobile hard disk, a read only memory (ROM), a magnetic disk, or an optical disk.
  • program codes such as a USB flash drive, a mobile hard disk, a read only memory (ROM), a magnetic disk, or an optical disk.
  • an embodiment of the present invention further provides a storage medium, wherein a computer program for performing an improved energy distribution metering detection method of the distribution transformer of the embodiment of the present invention is stored.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)
  • Measurement Of Current Or Voltage (AREA)

Abstract

一种改进型配电变压器能效计量检测方法及装置、存储介质,所述的检测方法包括:构建配电变压器的等效二端口网络模型(301);依据等效二端口网络模型确定配电变压器的能源效率计算模型(302);依据能源效率计算模型构建配电变压器在实际工况下的能效检测装置,从而测量配电变压器在实际工况下的能源效率值(303)。所述检测方法能够准确测量配电变压器在实际工况下的能源效率值,可以作为节能数据的重要参考依据,同时也可以应用于配电变压器对能效计量的精确分析、计算和能效等级的判断。

Description

改进型配电变压器能效计量检测方法及装置、存储介质 技术领域
本发明涉及变压器检测领域,具体涉及一种改进型配电变压器能效计量检测方法及装置、存储介质。
背景技术
电网中配电变压器的损耗占据了整个电网中损耗的很大一部分,并且配电变压器长期运行的过程中,有很多因素影响其效率,比如负载大小,谐波含量等等。而对于使用试验合格的变压器,在其运行过程中没有对其进行效率测量,而长期运行的变压器由于各种的因素的影响导致其带负载能力下降,由此损耗加大,这样就造成电能的巨大浪费。
由于配电变压器的损耗受负载大小和类型的影响,不是一个固定值,长期以来,国内外判断是否为高损耗配电变压器的方法一般通过空载试验和短路试验测量其铜耗和铁耗大小,进而与配电变压器标准比较,这种评估变压器静态能效的方式也只是在变压器出厂时进行试验,而后运行的过程中就没有进行能效试验。
因此需要提供一种实际工况下变压器能效计量的检测方法,以对实际运行的变压器的降损节能以及变压器的能效等级判定提供技术支撑。
发明内容
为解决上述技术问题,本发明实施例提供了一种改进型配电变压器能效计量检测方法及装置、存储介质。
本发明实施例提供的改进型配电变压器能效计量检测方法,包括:
构建配电变压器的等效二端口网络模型;
依据所述等效二端口网络模型确定所述配电变压器的能源效率计算模型;
依据所述能源效率计算模型构建所述配电变压器在实际工况下的能效检测装置,从而测量配电变压器在实际工况下的能源效率值。
本发明实施例中,所述等效二端口网络模型包括配电变压器、虚拟电流源和虚拟电压源;
所述虚拟电流并联在配电变压器输出端的两端;
所述虚拟电压源串联在所述输出端上;
本发明实施例中,所述虚拟电流源的电流I*计算公式为:
I*=I1/K2-I2
其中,I1为所述配电变压器的输入端电流,I2为配电变压器的输出端电流,K2为比例常数,I1/K2为所述等效二端口网络模型的输出电流;
所述虚拟电压源的电压V*计算公式为:
V*=V1/K1-V2
其中,V1为配电变压器中两个输入端之间的电压,V2为配电变压器中两个输出端之间的电压,K1为比例常数,V1/K1为等效二端口网络模型的输出电压;
本发明实施例中,所述能源效率计算模型包括配电变压器的能源效率值η和损耗值PLOSS
能源效率值η的计算公式为:
Figure PCTCN2016088019-appb-000001
损耗值PLOSS的计算公式为:
PLOSS=P1-P2+P'+P”
其中,P1为所述等效二端口网络模型的输入功率,P1=V1×I1
P2为等效二端口网络模型的输出功率,P2=V1I1/(K1K2);
P'为等效二端口网络模型中虚拟电流源提供的功率,P'=(I1/K2-I2)×V2
P”为等效二端口网络模型中虚拟电压源提供的功率,P”=(V1/K1-V2)×I1/K2
本发明实施例中,所述能效检测装置包括电流检测单元、电压检测单元、功率测试仪和上位机;
所述电流检测单元,用于采集配电变压器在实际工况下的所有电流信号,并将该电压信号发送到功率测试仪;
所述电压检测单元,用于采集配电变压器在实际工况下的所有电压信号,并将该电压信号发送到功率测试仪;
所述功率测试仪,依据所述电压信号和电流信号计算配电变压器的能源效率值η和损耗值PLOSS
所述上位机,用于记录、显示和存储所述能源效率值,以及输出配电变压器能效计量检测的试验报告;
本发明实施例中,所述电流检测单元包括第一电流互感器和第二电流互感器;第一电流互感器用于测量配电变压器在实际工况下等效二端口网络模型的输出电流;第二电流互感器用于测量配电变压器在实际工况下等效二端口网络模型的输入电流;
所述第一电流互感器的一次绕组串联接入配电变压器一次绕组中,第一电流互感器的二次绕组串联接入配电变压器二次绕组的高压端;
所述第二电流互感器的一次绕组串联于第一电流互感器的一次绕组与所述高压端的连接点,以及所述高压端之间;第二电流互感器的二次绕组与功率测试仪连接;
本发明实施例中,所述电压检测单元包括第一电压互感器和第二电压互感器;第一电压互感器用于测量配电变压器在实际工况下等效二端口网 络模型的输入电压;第二电压互感器用于测量实际工况下配电变压器的输出电压;
所述第一电压互感器的一次绕组与配电变压器的输入端连接,二次绕组的低压端与配电变压器二次绕组的低压端短接,二次绕组的高压端分别与配电变压器二次绕组的高压端和功率测试仪连接;
所述第二电压互感器的一次绕组与配电变压器的输出端连接,二次绕组的低压端与功率测试仪连接;
本发明实施例中,所述第一电流互感器的变比为K2:1;
所述第二电流互感器的变比为1:1,其二次绕组的电流设定为等效二端口网络模型中虚拟电流源的电流值;
所述第一电压互感器的变比为K1:1,其二次绕组的高压端与配电变压器二次绕组的高压端之间的电压设定为等效二端口网络模型中虚拟电压源的电压值;
所述第二电压互感器的变比为1:1;
其中,K1和K2均为比例常数。
本发明实施例提供的改进型配电变压器能效计量检测装置,包括:
第一构建单元,配置为构建配电变压器的等效二端口网络模型;
确定单元,配置为依据所述等效二端口网络模型确定所述配电变压器的能源效率计算模型;
第二构建单元,配置为依据所述能源效率计算模型构建所述配电变压器在实际工况下的能效检测装置;
测量单元,配置为测量配电变压器在实际工况下的能源效率值。
本发明实施例中,所述等效二端口网络模型包括配电变压器、虚拟电流源和虚拟电压源;
所述虚拟电流并联在配电变压器输出端的两端;
所述虚拟电压源串联在所述输出端上。
本发明实施例中,所述能效检测装置包括电流检测单元、电压检测单元、功率测试仪和上位机;
所述电流检测单元,配置为采集配电变压器在实际工况下的所有电流信号,并将该电压信号发送到功率测试仪;
所述电压检测单元,配置为采集配电变压器在实际工况下的所有电压信号,并将该电压信号发送到功率测试仪;
所述功率测试仪,配置为依据所述电压信号和电流信号计算配电变压器的能源效率值η和损耗值PLOSS
所述上位机,配置为记录、显示和存储所述能源效率值,以及输出配电变压器能效计量检测的试验报告。
本发明实施例提供的存储介质存储有计算机程序,该计算机程序用于执行上述改进型配电变压器能效计量检测方法。
本发明实施例至少存在以下优异效果:
1、采用电流互感器检测配电变压器的一、二次电流的差值信号,采用电压互感器测量配电变压器的一、二次电压的差值信号,可以测量并计算出实际运行情况下配电变压器的总的有功功率损耗值,从而得到配电变压器的能效值;
2、能够准确测量配电变压器在实际工况下的能源效率值,互感器等测量仪表引入的不确定度小,适应性强,实际应用价值高,可以作为节能数据的重要参考依据,同时也可以应用于配电变压器对能效计量的精确分析、计算和能效等级的判断。
附图说明
下面结合附图对本发明实施例进一步说明。
图1为本发明实施例中配电变压器的等效二端口网络模型示意图;
图2为本发明实施例中配电变压器的能效检测装置结构示意图;
图3为本发明实施例的改进型配电变压器能效计量检测方法的流程示意图;
图4为本发明实施例的改进型配电变压器能效计量检测装置的结构组成示意图。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明实施例,而不能理解为对本发明实施例的限制。
本发明实施例提供的一种改进型配电变压器能效计量检测方法,能够对实际运行的配电变压器的降损节能和能效等级判断提供技术支撑。
本发明中改进型配电变压器能效计量检测方法的实施例如图3所示,具体为:
步骤301:构建配电变压器的等效二端口网络模型。
如图1所示,等效二端口网络模型包括配电变压器、虚拟电流源和虚拟电压源,其中,
虚拟电流并联在配电变压器的输出端两端,虚拟电压源串联在所述输出端上。
虚拟电流源的电流I*计算公式为:
I*=I1/K2-I2            (1)
虚拟电压源的电压V*计算公式为:
V*=V1/K1-V2            (2)
其中,I1为配电变压器的输入端电流,I2为配电变压器的输出端电流,V1为配电变压器中两个输入端之间的电压,V2为配电变压器中两个输出端之间的电压,K1和K2为比例常数。
本实施例中,等效二端口网络模型的输入电压为配电变压器中两个输入端之间的电压V1,等效二端口网络模型的输入电流为配电变压器的输入端电流I1,等效二端口网络模型的输出电流为I1/K2,等效二端口网络模型的输出电压为V1/K1
步骤302:依据等效二端口网络模型确定配电变压器的能源效率计算模型。
本实施例中能源效率计算模型包括配电变压器的能源效率值η和损耗值PLOSS,其中,
能源效率值η的计算公式为:
Figure PCTCN2016088019-appb-000002
损耗值PLOSS的计算公式为:
PLOSS=P1-P2+P'+P”                 (4)
其中,P1为等效二端口网络模型的输入功率,P1=V1×I1
P2为等效二端口网络模型的输出功率,P2=V1I1/(K1K2);
P'为等效二端口网络模型中虚拟电流源提供的功率,P'=(I1/K2-I2)×V2
P”为等效二端口网络模型中虚拟电压源提供的功率,P”=(V1/K1-V2)×I1/K2
本实施例中由配电变压器、虚拟电压源和虚拟电流源组成的等效二端口网络模型的输入功率与输出功率之差,等于配电变压器内部的损耗值、虚拟电压源吸收的功率和虚拟电流源吸收的功率三者的和。
步骤303:依据能源效率计算模型构建配电变压器在实际工况下的能效检测装置,利用该能效检测装置测量配电变压器的能源效率的实际值。
本实施例中能效检测装置包括电流检测单元、电压检测单元、功率测试仪和上位机:
(1)电流检测单元包括第一电流互感器和第二电流互感器,用于采集配电变压器在实际工况下的所有电压信号,并将该电压信号发送到功率测试仪。如图2所示,电流检测单元包括第一电流互感器CT1和第二电流互感器CT2。
①:第一电流互感器
电流互感器CT1用于测量配电变压器在实际工况下等效二端口网络模型的输出电流。
第一电流互感器CT1的一次绕组串联接入配电变压器一次绕组中,第一电流互感器CT1的二次绕组串联接入配电变压器二次绕组的高压端。
本实施例中第一电流互感器CT1的变比为K2:1。
②:第二电流互感器
该电压互感器CT2用于测量配电变压器在实际工况下等效二端口网络模型的输入电流。
第二电流互感器CT2的一次绕组串联于配电变压器二次绕组的高压端,以及第一电流互感器CT1的一次绕组与该高压端的连接点之间;
第二电流互感器CT2的二次绕组与功率测试仪连接。
本实施例中第二电流互感器CT2的变比为1:1,第二电流互感器CT2的二次绕组的电流设定为等效二端口网络模型中虚拟电流源的电流值。
(2)电压检测单元包括第一电压互感器和第二电压互感器,用于采集配电变压器在实际工况下的所有电压信号,并将该电压信号发送到功率测试仪。如图2所示,电压检测单元包括第一电压互感器VT1和第二压流互 感器VT2。
①:第一电压互感器
该互感器VT1用于测量配电变压器在实际工况下等效二端口网络模型的输入电压。
第一电压互感器VT1的一次绕组与配电变压器的输入端连接;
第一电压互感器VT1的二次绕组的低压端与配电变压器二次绕组的低压端短接;
第一电压互感器VT1的二次绕组的高压端分别与配电变压器二次绕组的高压端和功率测试仪连接。
本实施例中第一电压互感器VT1的变比为K1:1,第一电压互感器VT1的二次绕组的高压端与配电变压器二次绕组的高压端之间的电压设定为等效二端口网络模型中虚拟电压源的电压值。
②:第二电压互感器
该互感器VT2用于测量实际工况下配电变压器的输出电压。
第二电压互感器VT2的一次绕组与配电变压器的输出端连接,二次绕组的低压端与功率测试仪连接。
本实施例中第二电压互感器VT2的变比为1:1。
(3)功率测试仪,依据电压信号和电流信号计算配电变压器的能源效率值。
本实施例中功率测试仪接收第一电流互感器CT1输出的电流信号I1/K2、第二电流互感器CT2输出的电流信号I1/K2-I2、第一电压互感器VT1输出的电压信号V1/K1、第二电压互感器VT2输出的电压信号V2,以及电压信号V1/K1-V2
功率测试仪依据公式(3)计算配电变压器的能源效率值η,依据公式(4)计算配电变压器的损耗值PLOSS
(4)上位机,用于记录、显示和存储能源效率值,以及输出配电变压器能效计量检测的试验报告。
本实施例中上位机接收功率测试仪发送的能源效率值η和损耗值PLOSS,对上述数据进行实时波形显示和谐波分析。
图4为本发明实施例的改进型配电变压器能效计量检测装置的结构组成示意图,如图4所示,所述装置包括:
第一构建单元41,配置为构建配电变压器的等效二端口网络模型;
确定单元42,配置为依据所述等效二端口网络模型确定所述配电变压器的能源效率计算模型;
第二构建单元43,配置为依据所述能源效率计算模型构建所述配电变压器在实际工况下的能效检测装置;
测量单元44,配置为测量配电变压器在实际工况下的能源效率值。
其中,所述等效二端口网络模型包括配电变压器、虚拟电流源和虚拟电压源;
所述虚拟电流并联在配电变压器输出端的两端;
所述虚拟电压源串联在所述输出端上。
其中,所述能效检测装置包括电流检测单元、电压检测单元、功率测试仪和上位机;
所述电流检测单元,配置为采集配电变压器在实际工况下的所有电流信号,并将该电压信号发送到功率测试仪;
所述电压检测单元,配置为采集配电变压器在实际工况下的所有电压信号,并将该电压信号发送到功率测试仪;
所述功率测试仪,配置为依据所述电压信号和电流信号计算配电变压器的能源效率值η和损耗值PLOSS
所述上位机,配置为记录、显示和存储所述能源效率值,以及输出配 电变压器能效计量检测的试验报告。
在实际应用中,所述改进型配电变压器能效计量检测装置中的各个单元所实现的功能,均可由位于邻区优化装置中的中央处理器(Central Processing Unit,CPU)、或微处理器(Micro Processor Unit,MPU)、或数字信号处理器(Digital Signal Processor,DSP)、或现场可编程门阵列(Field Programmable Gate Array,FPGA)等实现。
本发明实施例上述改进型配电变压器能效计量检测装置如果以软件功能模块的形式实现并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明实施例的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机、服务器、或者网络设备等)执行本发明各个实施例所述方法的全部或部分。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read Only Memory)、磁碟或者光盘等各种可以存储程序代码的介质。这样,本发明实施例不限制于任何特定的硬件和软件结合。
相应地,本发明实施例还提供一种存储介质,其中存储有计算机程序,该计算机程序用于执行本发明实施例的改进型配电变压器能效计量检测方法。
最后应当说明的是:所描述的实施例仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。

Claims (12)

  1. 一种改进型配电变压器能效计量检测方法,所述方法包括:
    构建配电变压器的等效二端口网络模型;
    依据所述等效二端口网络模型确定所述配电变压器的能源效率计算模型;
    依据所述能源效率计算模型构建所述配电变压器在实际工况下的能效检测装置,从而测量配电变压器在实际工况下的能源效率值。
  2. 如权利要求1所述的方法,其中,所述等效二端口网络模型包括配电变压器、虚拟电流源和虚拟电压源;
    所述虚拟电流并联在配电变压器输出端的两端;
    所述虚拟电压源串联在所述输出端上。
  3. 如权利要求2所述的方法,其中,所述虚拟电流源的电流I*计算公式为:
    I*=I1/K2-I2
    其中,I1为所述配电变压器的输入端电流,I2为配电变压器的输出端电流,K2为比例常数,I1/K2为所述等效二端口网络模型的输出电流;
    所述虚拟电压源的电压V*计算公式为:
    V*=V1/K1-V2
    其中,V1为配电变压器中两个输入端之间的电压,V2为配电变压器中两个输出端之间的电压,K1为比例常数,V1/K1为等效二端口网络模型的输出电压。
  4. 如权利要求1或3所述的方法,其中,所述能源效率计算模型包括配电变压器的能源效率值η和损耗值PLOSS
    能源效率值η的计算公式为:
    Figure PCTCN2016088019-appb-100001
    损耗值PLOSS的计算公式为:
    PLOSS=P1-P2+P′+P″
    其中,P1为所述等效二端口网络模型的输入功率,P1=V1×I1
    P2为等效二端口网络模型的输出功率,P2=V1I1/(K1K2);
    P'为等效二端口网络模型中虚拟电流源提供的功率,P'=(I1/K2-I2)×V2
    P″为等效二端口网络模型中虚拟电压源提供的功率,P″=(V1/K1-V2)×I1/K2
  5. 如权利要求1所述的方法,其中,所述能效检测装置包括电流检测单元、电压检测单元、功率测试仪和上位机;
    所述电流检测单元,用于采集配电变压器在实际工况下的所有电流信号,并将该电压信号发送到功率测试仪;
    所述电压检测单元,用于采集配电变压器在实际工况下的所有电压信号,并将该电压信号发送到功率测试仪;
    所述功率测试仪,依据所述电压信号和电流信号计算配电变压器的能源效率值η和损耗值PLOSS
    所述上位机,用于记录、显示和存储所述能源效率值,以及输出配电变压器能效计量检测的试验报告。
  6. 如权利要求5所述的方法,其中,所述电流检测单元包括第一电流互感器和第二电流互感器;第一电流互感器用于测量配电变压器在实际工况下等效二端口网络模型的输出电流;第二电流互感器用于测量配电变压器在实际工况下等效二端口网络模型的输入电流;
    所述第一电流互感器的一次绕组串联接入配电变压器一次绕组中,第一电流互感器的二次绕组串联接入配电变压器二次绕组的高压端;
    所述第二电流互感器的一次绕组串联于第一电流互感器的一次绕组与所述高压端的连接点,以及所述高压端之间;第二电流互感器的二次绕组与功率测试仪连接。
  7. 如权利要求5所述的方法,其中,所述电压检测单元包括第一电压互感器和第二电压互感器;第一电压互感器用于测量配电变压器在实际工况下等效二端口网络模型的输入电压;第二电压互感器用于测量实际工况下配电变压器的输出电压;
    所述第一电压互感器的一次绕组与配电变压器的输入端连接,二次绕组的低压端与配电变压器二次绕组的低压端短接,二次绕组的高压端分别与配电变压器二次绕组的高压端和功率测试仪连接;
    所述第二电压互感器的一次绕组与配电变压器的输出端连接,二次绕组的低压端与功率测试仪连接。
  8. 如权利要求6或7所述的方法,其中,所述第一电流互感器的变比为K2:1;
    所述第二电流互感器的变比为1:1,其二次绕组的电流设定为等效二端口网络模型中虚拟电流源的电流值;
    所述第一电压互感器的变比为K1:1,其二次绕组的高压端与配电变压器二次绕组的高压端之间的电压设定为等效二端口网络模型中虚拟电压源的电压值;
    所述第二电压互感器的变比为1:1;
    其中,K1和K2均为比例常数。
  9. 一种改进型配电变压器能效计量检测装置,所述装置包括:
    第一构建单元,配置为构建配电变压器的等效二端口网络模型;
    确定单元,配置为依据所述等效二端口网络模型确定所述配电变压器的能源效率计算模型;
    第二构建单元,配置为依据所述能源效率计算模型构建所述配电变压器在实际工况下的能效检测装置;
    测量单元,配置为测量配电变压器在实际工况下的能源效率值。
  10. 如权利要求9所述的装置,其中,所述等效二端口网络模型包括配电变压器、虚拟电流源和虚拟电压源;
    所述虚拟电流并联在配电变压器输出端的两端;
    所述虚拟电压源串联在所述输出端上。
  11. 如权利要求9所述的装置,其中,所述能效检测装置包括电流检测单元、电压检测单元、功率测试仪和上位机;
    所述电流检测单元,配置为采集配电变压器在实际工况下的所有电流信号,并将该电压信号发送到功率测试仪;
    所述电压检测单元,配置为采集配电变压器在实际工况下的所有电压信号,并将该电压信号发送到功率测试仪;
    所述功率测试仪,配置为依据所述电压信号和电流信号计算配电变压器的能源效率值η和损耗值PLOSS
    所述上位机,配置为记录、显示和存储所述能源效率值,以及输出配电变压器能效计量检测的试验报告。
  12. 一种存储介质,所述存储介质中存储有计算机可执行指令,该计算机可执行指令配置为执行权利要求1-8任一项所述的改进型配电变压器能效计量检测方法。
PCT/CN2016/088019 2015-09-08 2016-06-30 改进型配电变压器能效计量检测方法及装置、存储介质 WO2017041572A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
GB1804041.0A GB2556308B (en) 2015-09-08 2016-06-30 Improved distribution transformer energy efficiency measurement testing method, device and storage medium
DE112016004054.7T DE112016004054T5 (de) 2015-09-08 2016-06-30 Verbessertes Netztransformator-Energiewirkungsgrad-Mess-Prüf-Verfahren, - Vorrichtung und Speichermedium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510565978.7A CN105182126B (zh) 2015-09-08 2015-09-08 一种改进型配电变压器能效计量检测方法
CN201510565978.7 2015-09-08

Publications (1)

Publication Number Publication Date
WO2017041572A1 true WO2017041572A1 (zh) 2017-03-16

Family

ID=54904341

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/088019 WO2017041572A1 (zh) 2015-09-08 2016-06-30 改进型配电变压器能效计量检测方法及装置、存储介质

Country Status (4)

Country Link
CN (1) CN105182126B (zh)
DE (1) DE112016004054T5 (zh)
GB (1) GB2556308B (zh)
WO (1) WO2017041572A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114924153A (zh) * 2022-05-30 2022-08-19 国网湖北省电力有限公司鄂州供电公司 一种电力变压器能效智能判断系统及智能判断方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105182126B (zh) * 2015-09-08 2020-01-24 中国电力科学研究院 一种改进型配电变压器能效计量检测方法
CN106291432A (zh) * 2016-08-26 2017-01-04 广东电网有限责任公司佛山供电局 电流互感器饱和度的检验方法和系统
CN109387804B (zh) * 2017-08-09 2021-06-04 国网浙江省电力公司电力科学研究院 一种柔直系统计量方法、计量装置精度检测方法及系统
CN109085430A (zh) * 2018-08-07 2018-12-25 中国电力科学研究院有限公司 一种用于在线监测电力变压器损耗的方法及系统
CN109613347B (zh) * 2018-10-17 2021-01-19 云南电网有限责任公司曲靖供电局 一种变压器的励磁特性检测方法及装置
JP7328601B2 (ja) * 2020-12-17 2023-08-17 日新電機株式会社 リアクトルの温度上昇試験方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050212506A1 (en) * 2004-02-04 2005-09-29 Khalin Vladimir M Testing of current transformers
US7106078B1 (en) * 2005-08-03 2006-09-12 James G. Biddle Company Method and apparatus for measuring transformer winding resistance
CN102393494A (zh) * 2011-09-15 2012-03-28 重庆大学 变压器容量在线测量方法及系统
CN102914706A (zh) * 2012-07-20 2013-02-06 中国电力科学研究院 一种配电变压器更换的节能量测量与验证方法
WO2014035325A1 (en) * 2012-08-29 2014-03-06 Megger Sweden Ab Method and apparatus for measuring load tap changer characteristics
CN103926491A (zh) * 2014-04-21 2014-07-16 国家电网公司 一种计及直流偏磁影响的变压器状态评估方法
CN104076226A (zh) * 2014-07-14 2014-10-01 武汉大学 基于电压差值和电流差值测量变压器能效的装置及方法
CN104407209A (zh) * 2014-10-30 2015-03-11 国家电网公司 一种配电变压器能效计量检测方法
CN104502691A (zh) * 2014-12-24 2015-04-08 镇江长河电力技术有限公司 一种配电变压器能效在线监测分析装置
CN104515919A (zh) * 2014-12-24 2015-04-15 镇江长河电力技术有限公司 一种配电变压器能效在线监测分析系统
CN104569664A (zh) * 2014-12-24 2015-04-29 镇江长河电力技术有限公司 一种具有配电变压器能效在线监测分析装置的分析系统
CN105182126A (zh) * 2015-09-08 2015-12-23 中国电力科学研究院 一种改进型配电变压器能效计量检测方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101865960A (zh) * 2010-06-04 2010-10-20 中兴通讯股份有限公司 一种设备能效性能监测方法和装置
KR102045968B1 (ko) * 2011-10-04 2019-11-18 삼성전자 주식회사 전자 기기의 성능 측정 장치 및 방법
CN202351347U (zh) * 2011-11-17 2012-07-25 南京因泰莱配电自动化设备有限公司 配电变压器监测终端装置
CN204116451U (zh) * 2014-10-30 2015-01-21 国家电网公司 一种配电变压器能效计量检测装置
CN204269808U (zh) * 2014-11-25 2015-04-15 浙江涵普电力科技有限公司 一种带有虚拟电流源的三相电能表现场校验仪

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050212506A1 (en) * 2004-02-04 2005-09-29 Khalin Vladimir M Testing of current transformers
US7106078B1 (en) * 2005-08-03 2006-09-12 James G. Biddle Company Method and apparatus for measuring transformer winding resistance
CN102393494A (zh) * 2011-09-15 2012-03-28 重庆大学 变压器容量在线测量方法及系统
CN102914706A (zh) * 2012-07-20 2013-02-06 中国电力科学研究院 一种配电变压器更换的节能量测量与验证方法
WO2014035325A1 (en) * 2012-08-29 2014-03-06 Megger Sweden Ab Method and apparatus for measuring load tap changer characteristics
CN103926491A (zh) * 2014-04-21 2014-07-16 国家电网公司 一种计及直流偏磁影响的变压器状态评估方法
CN104076226A (zh) * 2014-07-14 2014-10-01 武汉大学 基于电压差值和电流差值测量变压器能效的装置及方法
CN104407209A (zh) * 2014-10-30 2015-03-11 国家电网公司 一种配电变压器能效计量检测方法
CN104502691A (zh) * 2014-12-24 2015-04-08 镇江长河电力技术有限公司 一种配电变压器能效在线监测分析装置
CN104515919A (zh) * 2014-12-24 2015-04-15 镇江长河电力技术有限公司 一种配电变压器能效在线监测分析系统
CN104569664A (zh) * 2014-12-24 2015-04-29 镇江长河电力技术有限公司 一种具有配电变压器能效在线监测分析装置的分析系统
CN105182126A (zh) * 2015-09-08 2015-12-23 中国电力科学研究院 一种改进型配电变压器能效计量检测方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114924153A (zh) * 2022-05-30 2022-08-19 国网湖北省电力有限公司鄂州供电公司 一种电力变压器能效智能判断系统及智能判断方法

Also Published As

Publication number Publication date
DE112016004054T5 (de) 2018-06-07
GB2556308A (en) 2018-05-23
CN105182126A (zh) 2015-12-23
GB201804041D0 (en) 2018-04-25
CN105182126B (zh) 2020-01-24
GB2556308B (en) 2021-09-15

Similar Documents

Publication Publication Date Title
WO2017041572A1 (zh) 改进型配电变压器能效计量检测方法及装置、存储介质
RU2613584C2 (ru) Способ и устройство анализа качества электрической энергии в трехфазной электрической сети
CN104316822A (zh) 一种快速准确判断计量装置错误接线的方法
WO2021109517A1 (zh) 一种检测负荷辨识设备的结果可信度的方法
CN201654130U (zh) 一种高阻抗测量仪器自动测量、校准装置
CN208818818U (zh) 一种低功耗程控式电流互感器现场检定装置
CN108761375A (zh) 一种低功耗程控式电流互感器现场检定装置
WO2017113754A1 (zh) 一种检测电网动态无功功率的方法以及无功功率检测装置
CN104062618A (zh) 一种双信号源的容性设备在线监测装置校验方法
CN103293504A (zh) 现场电流互感器综合检测装置及其测试方法
CN115825633B (zh) 光伏逆变器整机测试系统的评估方法、装置及上位机
CN105068035B (zh) 一种电压互感器误差水平动态检测方法及系统
CN104407209A (zh) 一种配电变压器能效计量检测方法
CN114879122A (zh) 三相三线智能电能表的运行异常检测方法、装置及设备
CN205656293U (zh) 示波器探头校准装置
CN105203865B (zh) 分布式电源并网逆变器及电容的在线测试系统的工作方法
CN202939297U (zh) 接地电阻测试仪的检定系统
CN108761371B (zh) 基于线性度分析的冲击电压发生器校准方法
CN105022012B (zh) 数字式电能质量监测终端的闪变精度检测方法及系统
CN203572957U (zh) 现场式校表系统
JP5912884B2 (ja) 等価回路解析装置および等価回路解析方法
CN105092980B (zh) 一种输入输出阻抗智能化测试方法
CN104062619A (zh) 一种双信号源的容性设备在线监测装置校验系统
CN201319063Y (zh) 继电保护测试仪检测分析装置
CN204439819U (zh) 交流型避雷器在线监测装置检测仪

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16843510

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112016004054

Country of ref document: DE

ENP Entry into the national phase

Ref document number: 201804041

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20160630

122 Ep: pct application non-entry in european phase

Ref document number: 16843510

Country of ref document: EP

Kind code of ref document: A1