WO2023216053A1 - 用于制备电池单体的设备和方法 - Google Patents

用于制备电池单体的设备和方法 Download PDF

Info

Publication number
WO2023216053A1
WO2023216053A1 PCT/CN2022/091658 CN2022091658W WO2023216053A1 WO 2023216053 A1 WO2023216053 A1 WO 2023216053A1 CN 2022091658 W CN2022091658 W CN 2022091658W WO 2023216053 A1 WO2023216053 A1 WO 2023216053A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery cell
roller
central axis
reinforcement
curling structure
Prior art date
Application number
PCT/CN2022/091658
Other languages
English (en)
French (fr)
Inventor
潘有成
姜亮
罗志新
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to CN202280038642.3A priority Critical patent/CN117413413A/zh
Priority to PCT/CN2022/091658 priority patent/WO2023216053A1/zh
Publication of WO2023216053A1 publication Critical patent/WO2023216053A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D19/00Flanging or other edge treatment, e.g. of tubes
    • B21D19/12Edge-curling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers
    • H01M50/166Lids or covers characterised by the methods of assembling casings with lids
    • H01M50/167Lids or covers characterised by the methods of assembling casings with lids by crimping

Definitions

  • the present application relates to the field of battery technology, and in particular to an equipment and method for preparing battery cells.
  • Embodiments of the present application provide an equipment and method for preparing battery cells, which can improve the processing efficiency of battery cells and improve the safety of battery cells.
  • an equipment for preparing a battery cell includes: a roller moving mechanism for controlling the first roller to move in the direction of the central axis of the battery cell.
  • the battery cell includes a casing. and a cover plate, the housing and the cover plate are sealingly connected and formed with a curling structure that is turned outward; a first roller, the first roller has a first processing surface, and the first roller is used to When the roller moving mechanism controls the first roller to move in the direction of the central axis of the battery cell, the curling structure is squeezed through the first processing surface so that the curling structure moves closer to the battery cell.
  • the central axis of the body is tilted.
  • the roller moving mechanism controls the first roller to move toward the central axis of the battery cell
  • the first processing surface of the first roller squeezes the curling structure, so that the curling structure moves closer to The inclined direction of the central axis of the battery cell not only compacts the curling structure, but also causes the curling structure to tilt toward the direction close to the central axis of the battery cell, thereby improving the pressure resistance of the curling structure and improving the Sealing effect of rolled edge structure.
  • the first roller is located on a side of the curling structure away from the central axis of the battery cell.
  • the reinforcement is arranged on one side of the curling structure close to the central axis of the battery cell, and the first roller is arranged on the other side of the curling structure so that the first processing surface of the first roller can squeeze the curling structure. , so that the crimping structure is in contact with the reinforcement.
  • the device further includes: a roller rotation mechanism for controlling the first roller to rotate around the central axis of the battery cell.
  • a roller rotation mechanism for controlling the first roller to rotate around the central axis of the battery cell.
  • the first roller is controlled to rotate around the central axis of the battery cell through the roller rotation mechanism, so that the first processing surface of the first roller can be aligned with the curling edge. Different areas of the structure are in contact, so that each area of the curling structure can be evenly stressed, thereby producing uniform deformation and improving the processing efficiency of the curling structure.
  • the roller rotating mechanism is used to: when the roller moving mechanism controls the first roller to move toward the central axis direction of the battery unit, control the first roller to move around the battery unit.
  • the central axis of the body is rotated to increase the processing speed.
  • the battery cell further includes a reinforcement member disposed on a side of the cover plate away from the interior of the battery cell; the first roller is configured to squeeze the The curling structure is such that the curling structure is inclined in a direction close to the central axis of the battery cell, and at least part of the reinforcement is located between the inner side of the curling structure and the cover plate.
  • the crimp structure is pressed toward the reinforcement so that at least part of the reinforcement is accommodated between the crimp structure and the cover.
  • the reinforcing member It can resist at least part of the pressure, thereby reducing the pressure directly acting on the curling structure, thereby increasing the pressure resistance of the curling structure, so as to improve the processing efficiency of the battery cell and at the same time improve the processing efficiency of the battery cell. safety performance.
  • the first processing surface includes an inclined surface consistent with the inclination direction of the first surface of the reinforcement, and the first surface is the surface of the reinforcement that contacts the curling structure. , so that the curling structure can be evenly stressed between the inclined surface and the first surface, and the curling structure deforms more uniformly, so as to improve the strength of the curling structure.
  • the first pressure head is used to limit the movement of the reinforcement member of the battery cell in a first plane, and the first plane is perpendicular to the central axis of the battery cell.
  • the first pressure head can limit the movement of the reinforcement on the first plane to avoid dislocation of the reinforcement causing inconsistent deformation in different areas of the curling structure, resulting in uneven structural strength of the curling structure.
  • the first processed surface is an inner surface of a groove surrounding the first roller, so that when the first roller rotates around the central axis of the battery cell, the first processed surface is always present. For extruded hemming structures.
  • the reinforcement member is annular, and the first pressure head is disposed inside the reinforcement member, so that the first pressure head and the reinforcement member are close to the center of the battery cell.
  • the second surface of the axis contacts to fix and limit the movement of the reinforcement along the first plane perpendicular to the central axis of the battery cell.
  • the angle between the surface of the first pressure head in contact with the reinforcement and the central axis of the battery cell ranges from [0°, 10°] to improve the first
  • the stability of the indenter can also improve the stability of the reinforcement.
  • the device further includes: a second roller, the second roller has a second processing surface, and the roller moving mechanism is also used to: control the second roller to move toward the center of the battery cell.
  • the second roller is used to: when the roller moving mechanism controls the second roller to move in the direction of the central axis of the battery cell, the second roller is used to squeeze and wind the battery through the second processing surface.
  • the first edge portion of the cover plate and the second edge portion of the housing form the curling structure. Through the extrusion of the second roller, the rolled edge structure can be formed. This process is simple and easy to implement.
  • the device further includes: a second pressure head, the second pressure head is in contact with the first surface of the reinforcement member of the battery cell, and the reinforcement member is disposed away from the cover plate.
  • the first surface is the surface of the reinforcement member facing the curling structure
  • the second pressure head is used to limit the reinforcement member and the cover plate. The relative movement between them is to facilitate the formation of a curling structure between the second processing surface and the second press head.
  • the device further includes: a pressure head moving mechanism for controlling the second pressure head to move along the battery cell before the housing and the cover plate form the crimping structure.
  • a pressure head moving mechanism for controlling the second pressure head to move along the battery cell before the housing and the cover plate form the crimping structure.
  • the reinforcement member In the direction of the central axis, the reinforcement member is extruded toward the inside of the battery cell, so that at least part of the cover plate is accommodated in the opening of the housing, and the first edge portion is in contact with the third edge portion. The two edges are in contact.
  • the first pressure head and the second pressure head can not only be used to limit the movement of the reinforcement, but can also be used to squeeze the cover plate so that the first edge portion of the cover plate and the second edge portion of the housing quickly merge, so that Helps speed up the formation of curling structures.
  • the pressure head moving mechanism is also used to: when controlling the second pressure head to leave the battery cell, control the first pressure head not to leave the battery cell to facilitate crimping.
  • the structure deforms to provide space.
  • the second roller is located outside the battery cell, so that the second processing surface of the second roller causes the battery cell to form a counterclockwise rolled edge structure. Moreover, the second roller is located on the outside of the battery cell, which does not affect the setting position of the reinforcement. There is no need to constantly move the reinforcement during different processing processes, which improves processing efficiency.
  • the roller rotation mechanism is also used to control the second roller to rotate around the central axis of the battery cell so that the first edge portion and the second edge portion are evenly stressed and deformed evenly. , thereby producing a uniform curling structure.
  • the roller rotating mechanism is used to control the second roller to move around the battery unit when the roller moving mechanism controls the second roller to move toward the central axis direction of the battery unit.
  • the central axis of the battery cell is rotated to accelerate the formation of a circumferential annular curling structure surrounding the battery cell.
  • the roller moving mechanism is also used to: when controlling the first roller to move to the first processing surface to contact the battery cell, control the second roller to move to the third The second processing surface is not in contact with the battery cell.
  • the first roller is controlled to move to the first processing surface. No contact with the battery cells. This can prevent the curling structure from being affected by the second processing surface when the first processing surface squeezes the curling structure, and also prevents the curling structure from being affected by the second processing surface when the second processing surface rolls the housing and the cover to form a curling structure.
  • the structure is affected by the second machined surface.
  • the second processing surface is the inner surface of the groove surrounding the second roller. This annular second processing surface facilitates the rotation of the second roller around the central axis of the battery cell. , there is always a second processing surface for extruding and bending the first edge portion and the second edge portion to form a curling structure.
  • the battery cell is a cylinder
  • the first roller is a cylinder
  • the device includes a plurality of first rollers, and the plurality of first rollers are evenly distributed along the circumferential direction of the battery cell, so that the curling structures in different areas are stressed more evenly.
  • a method for preparing a battery cell includes a case and a cover plate.
  • the case and the cover plate are sealingly connected and formed with a curled edge structure that is turned outward.
  • the method includes: controlling the first roller to move in the direction of the central axis of the battery cell, and squeezing the curling structure through the first processing surface of the first roller, so that the curling structure moves closer to The central axis direction of the battery cell is inclined.
  • the method further includes: controlling the first roller to rotate around the central axis of the battery cell.
  • controlling the first roller to rotate around the central axis of the battery cell includes: controlling the first roller to move in the direction of the central axis of the battery cell. The first roller rotates around the central axis of the battery cell.
  • the battery cell further includes a reinforcing member, the reinforcing member is disposed on a side of the cover plate away from the interior of the battery cell; the first roller passing through the first roller The processing surface squeezes the curling structure so that the curling structure tilts in a direction close to the central axis of the battery cell, including: pressing the curling structure through the first processing surface of the first roller, The crimp structure is tilted toward the central axis of the battery cell, and at least part of the reinforcement is located between the inner side of the crimp structure and the cover plate.
  • the method further includes: limiting the movement of the reinforcement member of the battery cell in a first plane through a first pressure head, the first plane being perpendicular to a central axis of the battery cell.
  • the method further includes: controlling the second roller to move toward the central axis of the battery cell, and pressing and wrapping the cover plate through the second processing surface of the second roller.
  • the first edge portion and the second edge portion of the housing form the curling structure.
  • the method further includes: contacting the second pressure head with the first surface of the reinforcement member of the battery cell and restricting relative movement between the reinforcement member and the cover plate, so that The reinforcement member is disposed on a side of the cover plate away from the interior of the battery cell, and the first surface is a surface of the reinforcement member facing the curling structure.
  • the method further includes: before the housing and the cover plate form the curling structure, controlling the second pressure head toward the center axis of the battery cell along the direction of the central axis of the battery cell.
  • the interior of the battery cell presses the reinforcement member so that at least part of the cover plate is accommodated in the opening of the housing, and the first edge portion contacts the second edge portion.
  • the method further includes: controlling the first pressure head not to leave the battery cell when controlling the second pressure head to leave the battery cell.
  • the method further includes: controlling the second roller to rotate around the central axis of the battery cell.
  • controlling the second roller to rotate around the central axis of the battery cell includes: controlling the second roller to move in the direction of the central axis of the battery cell. The second roller rotates around the central axis of the battery cell.
  • the method further includes: controlling the second roller to move to the second processing surface while controlling the first roller to move to the first processing surface to contact the battery cell. Not in contact with the battery cell; when controlling the second roller to move to the second processing surface and contacting the battery cell, control the first roller to move to the first processing surface and the The battery cells are not in contact.
  • Figure 1 is a schematic structural diagram of a vehicle disclosed in an embodiment of the present application.
  • Figure 2 is a schematic side view of a battery cell disclosed in an embodiment of the present application.
  • Figure 3 is a schematic cross-sectional view of a battery cell disclosed in an embodiment of the present application.
  • Figure 4 is a schematic block diagram of a device for preparing battery cells disclosed in an embodiment of the present application.
  • Figure 5 is a schematic block diagram of another device for preparing battery cells disclosed in an embodiment of the present application.
  • Figure 6 is a schematic block diagram of yet another device for preparing battery cells disclosed in an embodiment of the present application.
  • Figure 7 is a partial structural schematic diagram of the curling structure of the battery cell processed by the equipment used to prepare the battery cell disclosed in one embodiment of the present application;
  • Figure 8 is a partial top view of a crimping structure of a battery cell processed by equipment used to prepare battery cells disclosed in an embodiment of the present application;
  • Figure 9 is a partial cross-sectional schematic diagram of the curling structure of the battery cell processed by the equipment used to prepare the battery cell disclosed in one embodiment of the present application;
  • Figure 10 is another partial cross-sectional schematic diagram of the curling structure of the battery cell processed by the equipment used to prepare the battery cell disclosed in an embodiment of the present application;
  • Figure 11 is another partial cross-sectional schematic diagram of the curling structure of the battery cell processed by the equipment used to prepare the battery cell disclosed in an embodiment of the present application;
  • Figure 12 is another partial cross-sectional schematic diagram of the curling structure of the battery cell processed by the equipment used to prepare the battery cell disclosed in an embodiment of the present application;
  • Figure 13 is a partial cross-sectional schematic diagram of a battery cell disclosed in an embodiment of the present application.
  • Figure 14 is a schematic flow chart of a method for preparing battery cells disclosed in an embodiment of the present application.
  • the battery cells may include lithium ion secondary batteries, lithium ion primary batteries, lithium-sulfur batteries, sodium lithium ion batteries, sodium ion batteries or magnesium ion batteries, etc., which are not limited in the embodiments of this application.
  • the battery cell may be in the shape of a cylinder, a flat body, a rectangular parallelepiped or other shapes, and the embodiments of the present application are not limited to this.
  • Battery cells are generally divided into three types according to packaging methods: cylindrical battery cells, square battery cells and soft-pack battery cells, and the embodiments of the present application are not limited to this.
  • the battery mentioned in the embodiments of this application refers to a single physical module including one or more battery cells to provide higher voltage and capacity.
  • the battery mentioned in this application may include a battery module or a battery pack.
  • Batteries generally include a box for packaging one or more battery cells. The box can prevent liquid or other foreign matter from affecting the charging or discharging of the battery cells.
  • the battery cell includes an electrode assembly and an electrolyte.
  • the electrode assembly consists of a positive electrode plate, a negative electrode plate and a separator. Battery cells mainly rely on the movement of metal ions between the positive and negative electrodes to work.
  • the positive electrode sheet includes a positive electrode current collector and a positive electrode active material layer.
  • the positive electrode active material layer is coated on the surface of the positive electrode current collector.
  • the positive electrode current collector that is not coated with the positive electrode active material layer protrudes from the positive electrode collector that is coated with the positive electrode active material layer. Fluid, the positive electrode current collector without the positive electrode active material layer is used as the positive electrode tab.
  • the material of the positive electrode current collector can be aluminum, and the positive electrode active material can be lithium cobalt oxide, lithium iron phosphate, ternary lithium or lithium manganate, etc.
  • the negative electrode sheet includes a negative electrode current collector and a negative electrode active material layer.
  • the negative electrode active material layer is coated on the surface of the negative electrode current collector.
  • the negative electrode current collector that is not coated with the negative electrode active material layer protrudes from the negative electrode collector that is coated with the negative electrode active material layer.
  • Fluid, the negative electrode current collector that is not coated with the negative electrode active material layer serves as the negative electrode tab.
  • the material of the negative electrode current collector can be copper, and the negative electrode active material can be carbon or silicon.
  • the number of positive electrode tabs is multiple and stacked together, and the number of negative electrode tabs is multiple and stacked together.
  • the material of the isolation film can be polypropylene (PP) or polyethylene (polyethylene, PE).
  • the electrode assembly may have a rolled structure or a laminated structure, and the embodiments of the present application are not limited thereto.
  • the development of battery technology must consider multiple design factors at the same time, such as energy density, cycle life, discharge capacity, charge and discharge rate and other performance parameters.
  • the processing efficiency and safety of the battery also need to be considered.
  • the main safety risk comes from the charging and discharging process.
  • the temperature of the battery cell rises and expands, and the internal pressure of the battery cell increases. Therefore, the gap between the cover and the casing The seal between them needs to have a certain strength to ensure that the battery cells are not prone to failure. So, how to improve the processing efficiency of battery cells while ensuring the safety performance of battery cells is an urgent problem that needs to be solved.
  • inventions of the present application provide an equipment for preparing battery cells, including a roller moving mechanism and a first roller.
  • the battery cell includes a casing and a cover plate.
  • the casing and the cover plate are sealingly connected and form a curling structure that is turned outward; when the roller moving mechanism controls the first roller to move toward the central axis of the battery cell, the first The first processing surface of the roller presses the curling structure, so that the curling structure tilts toward the direction close to the central axis of the battery cell.
  • the curling structure can be compacted, but also the curling structure can be tilted in a direction close to the central axis of the battery cell, thereby improving the pressure resistance performance of the curling structure and improving the curling structure.
  • the sealing effect of the edge structure is not only the curling structure can be compacted, but also the curling structure can be tilted in a direction close to the central axis of the battery cell, thereby improving the pressure resistance performance of the curling structure and improving the curling structure.
  • Power-consuming devices can be vehicles, mobile phones, portable devices, laptops, ships, spacecraft, electric toys and power tools, etc.
  • Vehicles can be fuel vehicles, gas vehicles or new energy vehicles, and new energy vehicles can be pure electric vehicles, hybrid vehicles or extended-range vehicles, etc.
  • spacecraft include aircraft, rockets, space shuttles, spaceships, etc.
  • electric toys include fixed Type or mobile electric toys, such as game consoles, electric car toys, electric ship toys and electric airplane toys, etc.
  • electric tools include metal cutting electric tools, grinding electric tools, assembly electric tools and railway electric tools, for example, Electric drills, electric grinders, electric wrenches, electric screwdrivers, electric hammers, impact drills, concrete vibrators, planers and more.
  • Electric drills Electric grinders, electric wrenches, electric screwdrivers, electric hammers, impact drills, concrete vibrators, planers and more.
  • the following embodiments take the electrical equipment as a vehicle as an example.
  • FIG. 1 it is a schematic structural diagram of a vehicle 1 according to an embodiment of the present application.
  • the vehicle 1 can be a fuel vehicle, a gas vehicle or a new energy vehicle.
  • the new energy vehicle can be a pure electric vehicle, a hybrid vehicle or a new energy vehicle. Extended range vehicles, etc.
  • a motor 12 , a controller 11 and a battery 10 may be disposed inside the vehicle 1 .
  • the controller 11 is used to control the battery 10 to provide power to the motor 12 .
  • the battery 10 may be disposed at the bottom, front or rear of the vehicle 1 .
  • the battery 10 can be used to supply power to the vehicle 1 .
  • the battery 10 can be used as an operating power source of the vehicle 1 and used in the circuit system of the vehicle 1 , for example, to meet the power requirements for starting, navigation, and operation of the vehicle 1 .
  • the battery 10 can not only be used as an operating power source of the vehicle 1 , but also can be used as a driving power source of the vehicle 1 , replacing or partially replacing fuel or natural gas to provide driving power for the vehicle 1 .
  • the battery may include multiple battery cells, wherein the multiple battery cells may be connected in series, in parallel, or in mixed connection.
  • Hybrid connection refers to a mixture of series and parallel connection.
  • Batteries may also be called battery packs.
  • multiple battery cells can be first connected in series, parallel, or mixed to form a battery module, and then multiple battery modules can be connected in series, parallel, or mixed to form a battery.
  • multiple battery cells can directly form a battery, or they can first form a battery module, and then the battery module can form a battery.
  • Figure 2 shows a schematic diagram of the battery cell 20 according to the embodiment of the present application
  • Figure 3 shows a schematic cross-sectional view of the battery cell 20 according to the embodiment of the present application, wherein Figure 3 can be the battery cell 20 shown in Figure 2
  • a possible schematic cross-sectional view which may be a schematic cross-section of the battery cell 20 along a plane passing through the central axis 201 of the battery cell 20 as shown in Figure 2
  • Figure 4 shows the implementation of the present application
  • the device 30 in the embodiment of the present application may include: a roller moving mechanism 33 for controlling the first roller 32 to move in the direction of the central axis 201 of the battery cell 20 .
  • the body 20 includes a shell 21 and a cover 22, which are sealed and connected and formed with a curling structure 24 that is turned outward; a first roller 32, which has a first processing surface 321.
  • the first roller 32 is used to squeeze the curling structure 24 through the first processing surface 321 when the roller moving mechanism 33 controls the first roller 32 to move in the direction of the central axis 201 of the battery cell 20, so that The curling structure 24 is inclined toward the central axis 201 of the battery cell 20 .
  • the case 21 and the cover 22 are sealed and formed with a curling structure 24 that is turned outward.
  • the curling structure 24 is located outside the battery cell 20 , that is, the case 21 and the cover are formed. 22 are merged and turned toward the outside of the battery cell to form a curled structure 24 .
  • first roller 32 in the embodiment of the present application is connected to the roller moving mechanism 33 so that the roller moving mechanism 33 can control the movement of the first roller 32 .
  • the roller moving mechanism 33 can be directly or indirectly connected to the first roller 32, and the embodiment of the present application is not limited thereto.
  • the roller moving mechanism 33 controls the first roller 32 to move in the direction of the central axis 201 of the battery cell 20
  • the first processing surface 321 of the first roller 32 squeezes the curling structure 24 , so that the curling structure 24 can tilt toward the direction close to the central axis 201 of the battery cell 20 .
  • the curling structure 24 can tilt toward the direction close to the central axis 201 of the battery cell 20 .
  • the curling structure 24 can be tilted in a direction close to the central axis 201 of the battery cell 20, thereby improving the durability of the curling structure 24. pressure performance, and the sealing effect of the crimping structure 24.
  • the battery cell 20 in the embodiment of the present application may further include: a reinforcing member 23 disposed on a side of the cover 22 away from the interior of the battery cell 20 .
  • the reinforcement 23 in the embodiment of the present application is disposed on the side of the cover 22 away from the interior of the battery cell 20 , which may include: the reinforcement 23 is directly disposed on the cover 22
  • the surface of the cover plate 22 that is away from the inside of the battery cell 20 , or the reinforcing member 23 is indirectly provided on the surface of the cover plate 22 that is away from the inside of the battery cell 20 through other components.
  • other components may be provided between the reinforcing member 23 and the cover plate 22 , such as adhesives and other fixing structures, but the embodiment of the present application is not limited thereto.
  • the first roller 32 in the embodiment of the present application is also used to: squeeze the curling structure 24 so that the curling structure 24 tilts toward the direction close to the central axis 201 of the battery cell 20 and makes at least part of the reinforcement 23 Located between the inner side of the curling structure 24 and the cover plate 22 .
  • the first processing surface 321 of the first roller 32 in the embodiment of the present application presses the curling structure 24, so that at least part of the reinforcement 23 is located between the inside of the curling structure 24 and the cover plate 22, wherein,
  • the inner side of the curling structure 24 represents the side of the curling structure 24 facing the central axis 201 of the battery cell 20 .
  • At least a partial area of the reinforcement 23 may contact the surface 241 of the curling structure 24 facing the central axis 201 of the battery cell 20, And it is also in contact with the outer surface of the cover body 222 .
  • the device 30 provided in the embodiment of the present application can press the crimp structure 24 toward the reinforcement 23 and also allow at least part of the reinforcement 23 to be accommodated between the crimp structure 24 and the cover 22 .
  • the battery cell is
  • the reinforcement 23 can resist at least part of the pressure, thereby reducing the pressure directly acting on the curling structure 24, thereby increasing the pressure on the curling structure 24.
  • the voltage resistance performance of the battery unit 20 is improved, so as to improve the processing efficiency of the battery unit 20 and at the same time improve the safety performance of the battery unit 20.
  • the compressive strength of the curling structure is usually only 0.8Mpa to 0.9Mpa, and it is provided by scoring.
  • the pressure-resistant strength of the pressure relief mechanism is usually 1.7Mpa, which is higher than the pressure-resistant strength of the crimping structure.
  • the housing 21 in the embodiment of the present application is a component used to accommodate the electrode assembly 25, and the housing 21 may be a hollow structure with an opening formed at at least one end.
  • the housing 21 is a hollow structure with an opening formed at one end
  • one cover plate 22 can be provided to cover the opening of the housing 21.
  • the casing 21 can also be a hollow structure with openings formed at opposite ends.
  • there can be two cover plates 22 and the two cover plates 22 cover the two sides of the casing 21 respectively. end opening.
  • the case 21 is mainly a hollow structure with openings formed at two opposite ends. That is, the case 21 is a hollow structure with openings at both ends.
  • the battery cell 20 includes two cover plates 22 .
  • the two cover plates 22 They are respectively used to cover the openings at both ends, so that the electrode assembly 25 can be assembled into the housing 21 through any opening, and also facilitate the assembly of other components in the housing 21 to improve assembly efficiency.
  • the housing 21 in the embodiment of the present application may be made of a variety of materials, such as copper, iron, aluminum, steel, aluminum alloy, etc.
  • the housing 21 can be in various shapes, such as cylinder, rectangular parallelepiped, etc.
  • the housing 21 has a cylindrical structure.
  • the cover plate 22 in the embodiment of the present application is a component that covers the opening of the housing 21 to isolate the internal environment of the battery cell 20 from the external environment.
  • the cover plate 22 can also be made of a variety of materials, such as copper, iron, aluminum, steel, aluminum alloy, etc.
  • the cover plate 22 and the housing 21 can be made of the same material or different.
  • the shape of the cover 22 can be adapted to the shape of the housing 21 .
  • the cover plate 22 can be a plate-shaped structure that matches the casing 21 , or it can also be a hollow rectangular parallelepiped structure with one end opening 213 , so that the cover plate 22 and the casing 21 are closed.
  • a rectangular parallelepiped battery cell 20 is formed.
  • the cover 22 can also be a circular plate, or the bottom wall can be a circular groove structure, so that the cover can The plate 22 and the case 21 are covered to form a cylindrical battery cell 20 .
  • the following description mainly takes the cover plate 22 as a circular plate as an example, but the embodiment of the present application is not limited thereto.
  • the case 21 is sealingly connected to the cover 22 and forms a crimp structure 24 , and the crimp structure 24 surrounds the opening of the case 21 , that is, the crimp structure 24 surrounds the opening of the battery cell 20 .
  • the crimp structure 24 is generally annular in shape.
  • FIG. 5 shows another schematic block diagram of the equipment 30 for preparing the battery cell 20 according to the embodiment of the present application.
  • the equipment 30 shown in FIG. 5 can also be used to prepare the battery cell 20 as shown in FIG. 2 and the battery cell shown in Figure 3.
  • the device 30 in the embodiment of the present application may further include: a roller rotation mechanism 34 for controlling the first roller 32 to rotate around the central axis 201 of the battery cell 20 .
  • the first roller 32 can be controlled to rotate around the central axis 201 of the battery cell 20 through the roller rotation mechanism 34 so that the first roller can
  • the first processing surface 321 of 32 is in contact with different areas of the curling structure 24 .
  • the annular curling structure 24 during the rotation of the first roller 32, it can contact and squeeze each area of the circumferential surface of the curling structure 24, so that each area of the curling structure 24 can be uniform.
  • the force is applied to produce uniform deformation, thereby improving the processing efficiency of the hemming structure 24 .
  • the device 30 of the embodiment of the present application may include: a first pressure head 31, used to limit the movement of the reinforcement 23 of the battery cell 20 in a first plane, the first plane being perpendicular to The central axis 201 of the battery cell 20 .
  • the first plane can be the surface of the cover plate 22 facing the outside of the battery cell 20 , that is, the first pressure head 31 can limit the movement of the reinforcement member 23 on the surface of the cover plate 22 to avoid dislocation of the reinforcement member 23 .
  • the deformation of different areas of the curling structure 24 is inconsistent, resulting in uneven structural strength of the curling structure 24 .
  • FIGS. 4 and 5 can extrude the hem structure 24 .
  • the equipment 30 can also be used to process the housing 21 and the cover 22 to form the hem structure 24 .
  • FIG. 6 shows another schematic block diagram of the equipment 30 for preparing the battery cells 20 according to the embodiment of the present application.
  • the equipment 30 shown in FIG. 6 can also be used to prepare the battery cells as shown in FIGS. 2 and 3 . battery cells shown.
  • the device 30 of the embodiment of the present application can also include: a second roller 36.
  • the second roller 36 has a second processing surface 361, and the roller moving mechanism 33 is also used to: control the second The second roller 36 moves toward the central axis 201 of the battery cell 20; the second roller 36 is used to pass the second processing surface when the roller moving mechanism 33 controls the second roller 36 to move toward the central axis 201 of the battery cell 20.
  • 361 press and roll the first edge portion 221 of the cover 22 and the second edge portion 211 of the housing 21 to form the curling structure 24 .
  • the device 30 in the embodiment of the present application can be rolled to form the curling structure 24 through the extrusion of the second roller 36. This process is simple and easy to implement.
  • the device 30 may include: a second pressure head 35 , the second pressure head 35 is in contact with the first surface 231 of the reinforcement 23 , and the first surface 231 is the curling edge of the reinforcement 23 .
  • the second pressure head 35 is used to limit the relative movement between the reinforcement 23 and the cover plate 22.
  • the second press head can also be used to cooperate with the second roller 36 to form the curling structure 24 between the second processing surface 361 and the second press head 35 .
  • the device 30 also includes: a pressure head moving mechanism 37 for controlling the second pressure head 35 to move along the central axis 201 of the battery cell 20 before the housing 21 and the cover plate 22 form the crimping structure 24 .
  • the interior of the battery cell 20 presses the reinforcement 23 so that at least part of the cover plate 22 is accommodated in the opening of the housing 21 and the first edge portion 221 contacts the second edge portion 211 .
  • the pressure head moving mechanism 37 can also be used to control the first pressure head 31 and the second pressure head 35 to jointly squeeze the reinforcement 23 toward the inside of the battery cell 20 along the direction of the central axis 201 of the battery cell 20,
  • the first pressure head 31 and/or the second pressure head 35 are not only used to limit the movement of the reinforcement 23, but also can be used to squeeze the cover plate 22 so that the first edge portion 221 of the cover plate 22 is in contact with the housing.
  • the second edge portion 221 of 21 merges quickly, which helps to speed up the formation of the curling structure 24 .
  • the relative positions of the various components included in the device 30 and the battery cell 20 can be set according to the actual application, and due to the different settings of the relative positions of the various components of the device 30 and the battery cell 20, the The directions of rotation and movement of various components of the device 30 can also be flexibly adjusted.
  • the device 30 in the embodiment of the present application will be described in detail below with reference to the accompanying drawings.
  • FIG. 7 shows a partial structural schematic diagram of the equipment 30 processing the curling structure 24 of the battery cell 20 according to the embodiment of the present application, where FIG. 7 only shows part of the battery cell 20 .
  • FIG. 8 shows a partial top view of the device 30 processing the crimping structure 24 of the battery cell 20 according to the embodiment of the present application, where FIG. 8 can be the top view of FIG. 7 .
  • FIG. 7 shows a partial structural schematic diagram of the equipment 30 processing the curling structure 24 of the battery cell 20 according to the embodiment of the present application, where FIG. 7 only shows part of the battery cell 20 .
  • FIG. 8 shows a partial top view of the device 30 processing the crimping structure 24 of the battery cell 20 according to the embodiment of the present application, where FIG. 8 can be the top view of FIG. 7 .
  • FIG. 9 shows a partial cross-sectional schematic view of the equipment 30 processing the crimping structure 24 of the battery cell 20 according to the embodiment of the present application, where the cross-section may be a schematic cross-sectional view along the A-A’ direction shown in FIG. 8 .
  • FIG. 10 shows a partial cross-sectional view of the equipment 30 processing the crimping structure 24 of the battery cell 20 according to the embodiment of the present application. This FIG. 10 can be an enlarged view of the area C in FIG. 9 .
  • the cover 22 of the embodiment of the present application includes a first edge part 221 located in the edge area and a cover main body part 222 located in the central area.
  • the first edge part 221 surrounds the cover main part 22;
  • the housing 21 includes a second edge portion 211 and a housing main portion 212 .
  • the second edge portion 211 is an area of the housing 21 close to the opening of the housing 21 .
  • the second edge portion 211 and the first edge portion 221 are used for rolling to form the curling structure 24 .
  • the curling structure 24 formed by rolling not only facilitates processing, improves the processing efficiency of the battery cells 20 , but also ensures the sealing of the case 21 and the cover 22 sex.
  • the winding direction of the curling structure 24 formed in the embodiment of the present application can be counterclockwise, that is, the first edge portion 221 and the second edge portion 211 merge and then bend in a direction away from the central axis 201 of the battery cell 20 Folding and winding; or, differently, the winding direction of the winding structure 24 can also be a clockwise direction, that is, the first edge portion 221 and the second edge portion 211 merge and then move closer to the center of the battery cell 20
  • the direction of the axis 201 is bending and winding, and the embodiments of the present application are not limited to this.
  • the embodiment of the present application takes the counterclockwise direction as shown in FIG. 8 as an example for description.
  • the second roller 36 is located outside the battery cell 20 so that the second processing surface 362 of the second roller 36 causes the battery cell 20 to form a counterclockwise winding roll. Edge structure 24. Since the battery cell 20 in the embodiment of the present application is provided with a reinforcement 23, the second roller 36 is located outside the battery cell 20 to form a counterclockwise curling structure 24, which does not affect the position of the reinforcement 23 and does not require The reinforcement 23 is continuously moved during different processing processes, thereby improving processing efficiency.
  • the reinforcement 23 is provided on the side of the cover plate 22 away from the interior of the battery cell 20 , and the first pressure head 31 and the second pressure head 35 are controlled by the pressure head moving mechanism 37 Along the direction of the central axis 201 of the battery cell 20, move toward the inside of the battery cell 20, that is, the first pressure head 31 and the second pressure head 35 are controlled by the pressure head moving mechanism 37 to move in the direction X as shown in Figure 9, So that the first pressure head 31 and the second pressure head 35 are in contact with the reinforcement member 23 .
  • the shape of the reinforcement 23 in the embodiment of the present application can be set according to actual applications.
  • the shape of the reinforcing member 23 is related to the shape of the curling structure 24.
  • the curling structure 24 surrounds the opening of the casing 21, that is, the curling structure 24 is a ring, then the reinforcing member 23 is an annular ring.
  • the outer contour of the piece 23 may also be rounded to cooperate with the crimp structure 24 .
  • the outer contour of the reinforcement 23 can also be rectangular.
  • the reinforcing member 23 may be annular, which not only facilitates processing, but also reduces the weight of the reinforcing member 23, thereby reducing the overall weight of the battery cell 20, thereby reducing the weight of the battery 10; and also facilitates the first pressing process.
  • the head 31 fixes the reinforcement 23 .
  • the reinforcing member 23 is annular as an example.
  • the first pressing head 31 is disposed inside the reinforcing member 23 so that the first pressing head 31 and the second end of the reinforcing member 23 close to the central axis 201 of the battery cell 20 Surface 232 contacts.
  • the first pressure head 31 has a first end surface 311 , and the first end surface 311 is the outer surface of the first pressure head 31 .
  • the first end surface 311 is in contact with the second surface 232 of the reinforcement 23 , that is, the reinforcement 23 can be fixed through the first end surface 311 to limit the movement of the reinforcement 23 along the first plane perpendicular to the central axis 201 of the battery cell 20 . move.
  • the second pressure head 35 can be in contact with the first surface 231 of the reinforcement 23 .
  • the second pressure head 35 has a second end surface 351 , and when the second pressure head 35 moves in the direction X, the second end surface 351 contacts the first surface 231 .
  • the first surface 231 is opposite to the second surface 232 , and the second surface 231 is the surface of the reinforcement 23 away from the central axis 201 of the battery cell 20 .
  • the first pressure head 31 and the second pressure head 35 can limit the movement of the reinforcement 23 , that is, the relative movement between the reinforcement 23 and the cover plate 22 to prevent misalignment from affecting the processing of the curling structure 24 .
  • the inclination angle of the first end surface 311 can be substantially consistent with the second surface 232, and the inclination angle can be set to any value according to actual applications.
  • the angle between the surface 311 of the first pressure head 31 that is in contact with the reinforcement 23 and the central axis 201 of the battery cell 20 is in the range of [0°, 10°], that is, the angle between the first end surface 311 and the battery cell 20 is [0°, 10°].
  • the value range of the angle between the central axis 201 of the battery cell 20 is [0°, 10°].
  • the value range of the angle between the second surface 232 and the central axis 201 of the battery cell 20 can also be [0 °, 10°], to improve the stability of the first pressure head 31 and also to improve the stability of the reinforcement 23.
  • the second end surface 352 is in contact with the first surface 231. Therefore, the inclination angle of the second end surface 352 can be substantially consistent with the first surface 231 to improve the stability between the second end surface 352 and the first surface 231. ; Moreover, the tilt angle can also be set to any value according to the actual application. For example, the range of the angle between the first surface 231 and the central axis 201 of the battery cell 20 can usually be set to (0°, 90°).
  • the angle between the second end surface 352 and the central axis 201 of the battery cell 20 The angle range of the axis 201 can usually be set to (0°, 90°); further, in order to improve the structural strength and stability of the reinforcement 23, the first surface 231 and the central axis of the battery cell 20
  • the value range of the angle 201 can be set to [30°, 90°).
  • the value range of the angle between the second end face 352 and the central axis 201 of the battery cell 20 can usually be set to [30 °, 90°), but the embodiments of the present application are not limited thereto.
  • the pressure head moving mechanism 37 can also continue to control the first pressure head 31 and the second pressure head 31 .
  • the head 35 presses the reinforcement 23 toward the interior of the battery cell 20 along the direction of the central axis 201 of the battery cell 20 so that at least part of the cover plate 22 is accommodated in the opening of the housing 21 , and the first part of the cover plate 22
  • the edge portion 221 is in contact with the second edge portion 211 of the housing 21, so that the first edge portion 221 and the second edge portion 222 can be merged to facilitate subsequent winding of the first edge portion 221 and the second edge portion 222, and thus A curling structure 24 is formed.
  • the roller moving mechanism 33 controls the second roller 36 to move in the direction of the central axis 201 of the battery cell 20 through the second processing surface 361 Squeezing and rolling the first edge portion 221 of the cover plate 22 and the second edge portion 211 of the housing 21 to form the curling structure 24 between the second processing surface 361 and the second press head 35 , this process is easy to implement. , and the curling structure 24 is formed quickly.
  • the roller rotation mechanism 34 is also used to control the second roller 36 to rotate around the central axis 201 of the battery cell 20 so that the first edge portion 221 and the second edge portion 211 are evenly stressed and deformed. A uniform crimp structure 24 is produced.
  • the roller rotating mechanism 34 can be used to control the second roller 36 to move around the central axis 201 of the battery cell 20 when the roller moving mechanism 33 controls the second roller 36 to move in the direction of the central axis 201 of the battery cell 20 .
  • Rotation that is, the second roller 36 is close to the central axis 201 of the battery cell 20 and rotates around the central axis 201 of the battery cell 20 to accelerate the formation of an annular curling structure surrounding the circumference of the battery cell 20 twenty four.
  • the second processing surface 361 in the embodiment of the present application is the inner surface of the groove surrounding the second roller 36 .
  • a groove surrounding the second roller 36 is formed on the outer surface of the second roller 36 , and the inner surface of the groove is the second processing of the second roller 36 .
  • surface 361 so that when the second roller 36 rotates around the central axis 201 of the battery cell 20, there is always a second processing surface 361 for squeezing and bending the first edge portion 221 and the second edge portion 211, To form the curling structure 24.
  • the shape of the second processing surface 361 in the embodiment of the present application can be set according to actual applications to facilitate rolling the first edge portion 221 and the second edge portion 211 to form the curling structure 24 .
  • the device 30 of the embodiment of the present application may include one or more second rollers 36, and each second roller 36 may be a cylinder.
  • the device 30 may include two cylindrical second rollers 36 to improve the processing efficiency of the hemming structure 24 .
  • the second rollers 36 can be evenly distributed around the circumferential outer surface of the cylindrical battery cell 20, so that the first edge portion 221 and the second edge portion 211 are in different areas.
  • the device 30 may include two second rollers 36 arranged oppositely.
  • the plurality of second rollers 36 can move synchronously, that is, through the roller moving mechanism 33 to control the plurality of second rollers 36 to move synchronously; similarly, the plurality of second rollers 36 can also rotate synchronously, that is, through the roller rotation mechanism 34 Controlling the plurality of second rollers 36 to roll synchronously can simplify the equipment 30 and improve the processing efficiency of the hemming structure 24 .
  • the second pressure head 35 and the second roller 36 in the embodiment of the present application can be used to realize the rolling of the housing 21 and the cover 22 to initially form the curling structure 24, that is, to complete the head of the battery cell 20.
  • the rolling sealing process can be used.
  • the embodiment of the present application can also use other methods to form the curling structure 24 instead of the second press head 35 and the second roller 36, and the embodiment of the present application is not limited thereto.
  • FIG. 11 shows a partial cross-sectional schematic view of the equipment 30 processing the crimping structure 24 of the battery cell 20 according to the embodiment of the present application, wherein the cross-section may be a schematic cross-sectional view along a plane passing through the central axis 201 of the battery cell 20, and , the plane passing through the central axis 201 of the battery cell 20 is perpendicular to the cross section of FIG. 9 .
  • Figure 12 shows a partial cross-sectional view of the equipment 30 processing the crimping structure 24 of the battery cell 20 according to the embodiment of the present application.
  • Figure 12 can be an enlarged view of area D in Figure 11 .
  • the curling structure 24 as shown in the figure can be formed.
  • the number of winding layers of the first edge portion 221 and the second edge portion 211 can be set according to actual applications. For example, if the number of winding layers of the curling structure 24 is too many, the volume and weight of the curling structure 24 will be larger, which will not only increase the space occupied by the battery cell 20, but also increase the weight of the battery cell 20. The weight also reduces the energy density of the battery 10. On the contrary, if the number of winding layers of the curling structure 24 is too few, the curling structure 24 may be unstable and the sealing effect may be poor.
  • the number of rolling layers of the curling structure 24 can usually be set to five or six layers.
  • the curling structure 24 shown in Figures 12 and 13 includes a total of five layers, wherein the curling structure 24 includes Three layers of first edge parts 221 and two layers of second edge parts 211 are provided to ensure the sealing effect.
  • the pressure head moving mechanism 37 is also used to control the first pressure head 31 not to leave the battery cell 20 when controlling the second pressure head 35 to leave the battery cell 20. 20. Specifically, after the first winding process, the pressure head moving mechanism 37 can control the first pressure head 31 to remain stationary, that is, the first end surface 311 of the first pressure head 31 and the second surface 232 of the reinforcement 23 The contact state is still maintained, and in the subsequent two-pass crimping process, the movement of the reinforcement 23 is continued to be restricted by the first pressure head 31. Therefore, the relevant description of the first indenter 31 during the second-pass crimping process is the same as that of the first pressure head 31. The sealing process is the same, so for the sake of brevity, I won’t go into details here.
  • the pressure head moving mechanism 37 controls the second pressure head 35 to leave the battery cell 20.
  • the pressure head moving mechanism 37 can be used to control the second pressure head 35 to leave the reinforcement 23 in the direction of the central axis 201 of the battery cell 20. , also away from the battery cell 20 and not in contact with the battery cell 20 .
  • the design of the double-head structure of the first pressure head 31 and the second pressure head 35 in the embodiment of the present application not only ensures the supporting effect of the two pressure heads on the curling structure 24 generated during the first pass crimping, but also ensures that The fixing effect of the reinforcing member 23 also provides space for the deformation of the crimping structure 24 during the second crimping process.
  • a gap may be provided between the first pressure head 31 and the second pressure head 35 to prevent the second pressure head 35 from affecting the first pressure head 31 when it leaves the battery cell 20. The pressure head 31 interferes.
  • the roller moving mechanism 33 can also be used to control the second roller 36 to leave the battery cell 20 .
  • the roller moving mechanism 33 can control the second roller 36 to leave the curling structure 24 of the battery unit 20 in a direction perpendicular to the central axis 201 of the battery unit 20, and also to leave the battery unit 20 and not interact with the battery unit. Body 20 contact.
  • the roller rotation mechanism 34 may stop the rotation of the second roller 36 .
  • the second pressure head 35 and the second roller 36 leave the battery cell, and then the crimping structure 24 can enter the second-pass crimping process.
  • the first pressure head 31 is in the second rolling process.
  • the first roller 32 is located on a side of the curling structure 24 away from the central axis 201 of the battery cell 20 .
  • the reinforcement 23 is arranged on one side of the curling structure 24 close to the central axis 201 of the battery cell 20 , and the first roller 32 is arranged on the other side of the curling structure 24 to facilitate the first processing surface of the first roller 32 321 can squeeze the curling structure 24 so that the curling structure 24 contacts the reinforcing member 23 .
  • the roller moving mechanism 33 controls the first roller 32 to gradually approach the central axis 201 of the battery cell 20 .
  • the first processing surface 321 and the center of the curling structure 24 away from the battery cell 20 One side of the axis 201 contacts and squeezes the curling structure 24, so that the curling structure 24 surfaces, that is, the side surface 241 of the curling structure 24 close to the central axis 201 of the battery cell 20 gradually approaches the reinforcement.
  • the first surface 231 of 23 is in contact with the first surface 231; and the curling structure 24 can also be compacted to ensure the sealing effect of the curling structure 24.
  • the roller rotation mechanism 34 is used to control the first roller 32 to rotate around the central axis 201 of the battery cell 20 so that the annular curling structure 24 is away from the central axis 201 of the battery cell 20 .
  • One side can receive force uniformly, thereby causing the curling structure 24 to deform relatively uniformly.
  • the roller rotation mechanism 34 can be specifically used to: control the first roller 32 to move around the central axis 201 of the battery unit 20 when the roller moving mechanism 33 controls the first roller 32 to move toward the central axis 201 of the battery unit 20 .
  • Rotation that is, the first roller 32 gradually approaches the central axis 201 of the battery cell 20 and rotates around the central axis 201 of the battery cell 20 so that the first processing surface 321 can squeeze the annular roll evenly and quickly.
  • Each area of the edge structure 24 improves processing efficiency.
  • the first processing surface 321 is an inner surface of the groove surrounding the first roller 32 .
  • a groove surrounding the first roller 32 is formed on the outer surface of the first roller 32 , and the inner surface of the groove is the first processed surface of the first roller 32 .
  • surface 321 so that when the first roller 32 rotates around the central axis 201 of the battery cell 20 , there is always a first processing surface 321 for squeezing the curling structure 24 .
  • the shape of the first processing surface 321 in the embodiment of the present application can be set according to actual applications to facilitate extrusion of the curling structure 24 .
  • the first processing surface 321 includes an inclined surface 3211 consistent with the inclination direction of the first surface 231 of the reinforcement 23 , and the first surface 231 is the surface of the reinforcement 23 that contacts the curling structure 24 .
  • the inclined surface 3211 of the first processing surface 321 with the curling structure 24 and squeezing the curling structure 24
  • not only the curling structure can be compacted, but also the curling structure 24 can be pushed toward the reinforcement. Bending deformation occurred in the 23 direction.
  • the surface 241 of the crimping structure 24 facing the central axis 201 of the battery cell 20 will be in contact with the first surface 231 of the reinforcement 23 until the second crimping process is completed, and the battery as shown in FIGS. 2 and 3 is obtained.
  • the cell 20 that is, at least part of the reinforcement 23 of the battery cell 20 is located between the inner side of the crimp structure 24 and the cover 22 .
  • FIG. 13 shows a partial cross-sectional schematic view of the battery cell 20 according to the embodiment of the present application.
  • FIG. 13 may be an enlarged view of the area Q of the battery cell 20 shown in FIG. 3 .
  • the first processing surface 321 includes The inclined surface 3211 is consistent with the inclined direction of the first surface 231, so that the curling structure 24 during the second rolling process can be evenly stressed between the inclined surface 3211 and the first surface 231, and the curling structure 24 is more deformed. uniform to improve the strength of the curling structure 24 .
  • the first processing surface 321 can also include an extension surface 3212 connected to the inclined surface 3211.
  • the extension surface 3212 can be used to contact part of the surface of the curling structure 24, and can be used between the curling structure 24 and the extended surface.
  • the inclined surface 3211 cooperates to accelerate the deformation of the curling structure 24 toward the reinforcement 23 .
  • the device 30 in the embodiment of the present application may include one or more first rollers 32, and each first roller 32 may be a cylinder.
  • each first roller 32 may be a cylinder.
  • the device 30 may include two first rollers 32 to improve the processing efficiency of the two-pass crimping process of the crimping structure 24 .
  • the first rollers 32 can be evenly distributed around the circumferential outer surface of the battery cell 20, so that the curling structures 24 in different areas are stressed more evenly.
  • the device 30 may include two first rollers 32 disposed oppositely.
  • the plurality of first rollers 32 can move synchronously, that is, the plurality of first rollers 32 can be controlled to move synchronously through the roller moving mechanism 33; similarly, the plurality of first rollers 32 can also rotate synchronously, that is, through the roller rotation mechanism 34 Controlling the plurality of first rollers 32 to roll synchronously can simplify the equipment 30 and improve the processing efficiency of the hemming structure 24 .
  • the device 30 includes a plurality of first rollers 32 and a plurality of second rollers 36
  • the number of the plurality of first rollers 32 and the number of the plurality of second rollers 36 may be set to be equal or unequal, and the number of A first roller 32 and a plurality of second rollers 36 may be arranged spaced apart from each other, and the embodiment of the present application is not limited thereto.
  • the device 30 includes two first rollers 32 and two rollers 36.
  • the two first rollers 32 and the two rollers 36 can be They are spaced apart from each other and evenly distributed in the circumferential direction of the battery cell 20 to facilitate the operation and processing of the curling structure 24 of the battery cell 20 and improve processing efficiency.
  • the roller moving mechanism 33 is also used to: when controlling the second roller 36 to move to the second processing surface 361 to contact the battery cell 20, control the first The roller 32 moves to the first processing surface 321 and is not in contact with the battery cell 20 so as to complete the first winding process through the second processing surface 361 and wind the first edge portion 221 and the second edge portion 211 to form a curling structure. 24;
  • the roller moving mechanism 33 is also used to: when controlling the first roller 32 to move to the first processing surface 321 and contact with the battery cell 20, control the second roller 36 to move to the second processing surface 361 and not to contact the battery cell 20. , so as to squeeze the curling structure 24 through the first processing surface 321, so that the curling structure 24 is deformed and contacted with the first surface of the reinforcement 23 to complete the second curling process.
  • the first roller 31 and the second roller 36 do not affect each other.
  • the roller rotating mechanism 34 is different from the roller moving mechanism 33.
  • the roller rotating mechanism 34 controls the second roller 36 to surround the battery cell 20 during the first winding process.
  • the first roller 31 can be synchronously controlled to rotate; and during the second winding process, the roller rotating mechanism 34 can synchronously control the second roller 31 to rotate around the central axis 201 of the battery cell 20 .
  • the two rollers 36 rotate to simplify the design difficulty of the device 30 and the design difficulty of the roller rotation mechanism 34 .
  • the curling structure 24 is gradually squeezed on the first processing surface 321 , so that the curling structure 24 is bent toward the central axis 201 of the battery cell 20 until the surface of the curling structure 24 is bent.
  • 241 is parallel to and in contact with the first surface 231 of the reinforcement 23, thereby completing the processing and fixing of the curling structure 24 and the reinforcement 23.
  • the first pressure head 31 and the first roller 32 of the device 30 cooperate with each other, which can not only compact the curling structure 24, but also make the surface 241 of the curling structure 24 tilt relative to the central axis 201 of the battery cell 20 , rather than parallel.
  • the cover plate 22 when the pressure inside the battery cell 20 gradually increases, the cover plate 22 will be deformed under the action of the internal pressure.
  • the cover plate main part 222 of the cover plate 22 will arch toward the outside of the battery cell 20 .
  • the reinforcement 23 provided will also change, that is, the reinforcement 23 will flip toward the outside of the battery cell 20.
  • the reinforcement 23 can offset most of the internal pressure and reduce the deformation of the cover 22, that is, reduce the arching of the cover 22. rise.
  • the reinforcing member 23 when the reinforcing member 23 is everted, the reinforcing member 23 will exert a force on the curling structure 24 , and this force will increase the friction between the layers of the curling structure 24 , that is, the first edge structure 221 and the second edge structure 221 .
  • the increased friction between the edge structures 211 can prevent failure caused by misalignment between the housing 21 and the cover 22 , and can increase the air tightness between the housing 21 and the cover 22 .
  • the internal pressure of the battery cell 20 will first act on the reinforcement 23 instead of directly acting on the curling structure 24 .
  • the reinforcement member 23 in the process of the internal pressure of the battery cell 20 gradually increasing, only when the reinforcement member 23 is completely turned up under the action of the internal pressure, that is, the surface 231 of the reinforcement member 23 is turned outward from an inclination.
  • the reinforcement 23 will fail only when the surface 231 of the reinforcement 23 is parallel to the central axis 201 of the battery cell 20 .
  • the curling structure 23 will also fail due to direct internal pressure.
  • the curling structure 23 in the embodiment of the present application fails is related to the compressive strength of the reinforcement 23 , where the compressive strength of the reinforcement 23 refers to the minimum internal pressure required when the reinforcement 23 is completely turned over. .
  • the curling structure 23 fails is only related to the compressive strength of the curling structure 23 itself, where the compressive strength of the curling structure 23 itself refers to the battery cell.
  • the internal pressure of 20 directly acts on the curling structure 23, the minimum internal pressure required when the curling structure 23 deforms and fails.
  • the roller moving mechanism 33 is also used to: control the first roller 32 to gradually move away from the curling structure 24 in a direction away from the central axis 201 of the battery cell 20;
  • the roller rotation mechanism 34 can also be used to control the first roller 32 and the second roller 36 to stop rotating;
  • the pressure head moving mechanism 37 is also used to: control the first pressure head 31 along the central axis 201 of the battery cell 20 direction, gradually away from the device 23, thereby causing the device 30 to leave the battery cell 20 to complete the processing of the curling structure 24.
  • FIG. 14 shows a schematic flow chart of a method 400 for preparing the battery cell 20 according to an embodiment of the present application.
  • the method 400 can be performed by the aforementioned device 30, and the method 400 can be used to prepare the aforementioned battery cell 20.
  • the battery cell 20 includes a housing 21 and a cover 22 .
  • the housing 21 and the cover 22 are sealed and connected to form a curling structure 24 that is turned outward.
  • the method 400 includes: S410, controlling the first roller 32 to move toward the central axis 201 of the battery cell 20, and pressing the curling structure 24 through the first processing surface 321 of the first roller 32, so that The curling structure 24 is inclined toward the central axis 201 of the battery cell 20 .
  • the method 400 further includes: controlling the first roller 32 to rotate around the central axis 201 of the battery cell 20 .
  • controlling the first roller 32 to rotate around the central axis 201 of the battery cell 20 includes: controlling the first roller 32 to move toward the central axis 201 of the battery cell 20 .
  • the first roller 32 rotates around the central axis 201 of the battery cell 20 .
  • the battery cell 20 further includes a reinforcing member 23 disposed on a side of the cover 22 away from the interior of the battery cell 20 ; the first roller passing through the first roller 32
  • the processing surface 321 presses the curling structure 24 so that the curling structure 24 tilts in a direction close to the central axis 201 of the battery cell 20 , including: pressing the curling structure through the first processing surface 321 of the first roller 32
  • the structure 24 is tilted toward the central axis 201 of the battery cell 20 , and at least part of the reinforcement 23 is located between the inner side of the curling structure 24 and the cover 22 .
  • the method 400 further includes: using the first pressure head 31 to limit the movement of the reinforcement 23 of the battery cell 20 in a first plane, the first plane being perpendicular to the central axis of the battery cell 20 201.
  • the method 400 further includes: controlling the second roller 36 to move toward the central axis 201 of the battery cell 20 , and pressing and rolling the cover through the second processing surface 361 of the second roller 36
  • the first edge portion 221 of the plate 22 and the second edge portion 211 of the housing 21 form the curling structure 24 .
  • the method 400 further includes: contacting the second pressure head 35 with the first surface 231 of the reinforcement 23 of the battery cell 20 and limiting the relative position between the reinforcement 23 and the cover 22 .
  • the reinforcing member 23 is disposed on a side of the cover 22 away from the interior of the battery unit 20
  • the first surface 231 is a surface of the reinforcing member 23 facing the curling structure 24 .
  • the method 400 further includes: before the housing 21 and the cover 22 form the curling structure 24, controlling the second pressure head 35 along the direction of the central axis 201 of the battery cell 20, toward The interior of the battery cell 20 presses the reinforcement 23 so that at least part of the cover 22 is accommodated in the opening of the housing 21 and the first edge 221 contacts the second edge 211 .
  • the method 400 further includes: controlling the second pressure head 35 to leave the battery cell 20 after forming the crimp structure 24 .
  • the method 400 further includes: controlling the second roller 36 to rotate around the central axis 201 of the battery cell 20 .
  • controlling the second roller 36 to rotate around the central axis 201 of the battery cell 20 includes: controlling the second roller 36 to move toward the central axis 201 of the battery cell 20 .
  • the second roller 36 rotates around the central axis 201 of the battery cell 20 .
  • the method 400 also includes: when controlling the first roller 32 to move to the first processing surface 321 and contacting the battery cell 20 , controlling the second roller 36 to move to the second processing surface 361 and contacting the battery cell 20 No contact; when the second roller 36 is controlled to move to the second processing surface 361 and contacts the battery cell 20 , the first roller 32 is controlled to move to the first processing surface 321 and does not contact the battery cell 20 .
  • the device 30 in the embodiment of the present application can be used to perform the method 400 in the embodiment of the present application.
  • the method 400 includes the corresponding process of preparing the battery cells 20 through the device 30. For the sake of brevity, the details will not be described again.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

本申请实施例提供一种用于制备电池单体的设备和方法。该设备包括:滚轮移动机构,用于控制第一滚轮向电池单体的中轴线方向移动,该电池单体包括壳体和盖板,该壳体和该盖板密封连接且形成有向外侧翻转的卷边结构;第一滚轮,该第一滚轮用于在该滚轮移动机构控制该第一滚轮向该电池单体的中轴线方向移动时,通过第一加工面挤压该卷边结构,使得该卷边结构朝靠近该电池单体的中轴线方向倾斜。本申请实施例的用于制备电池单体的设备和方法,能够提高电池单体的加工效率,并且提高电池单体的安全性。

Description

用于制备电池单体的设备和方法 技术领域
本申请涉及电池技术领域,特别是涉及一种用于制备电池单体的设备和方法。
背景技术
节能减排是汽车产业可持续发展的关键。在这种情况下,电动车辆由于其节能环保的优势成为汽车产业可持续发展的重要组成部分。而对于电动车辆而言,电池技术又是关乎其发展的一项重要因素。
在电池技术的发展中,除了提高电池的性能外,安全问题也是一个不可忽视的问题。如果电池的安全问题不能保证,那该电池就无法使用。因此,如何在保证电池的加工效率的情况下,增强电池的安全性,是电池技术中一个亟待解决的技术问题。
发明内容
本申请实施例提供了一种用于制备电池单体的设备和方法,能够提高电池单体的加工效率,并且提高电池单体的安全性。
第一方面,提供了一种用于制备电池单体的设备,所述设备包括:滚轮移动机构,用于控制第一滚轮向电池单体的中轴线方向移动,所述电池单体包括壳体和盖板,所述壳体和所述盖板密封连接且形成有向外侧翻转的卷边结构;第一滚轮,所述第一滚轮具有第一加工面,所述第一滚轮用于在所述滚轮移动机构控制所述第一滚轮向所述电池单体的中轴线方向移动时,通过所述第一加工面挤压所述卷边结构,使得所述卷边结构朝靠近所述电池单体的中轴线方向倾斜。
因此,本申请实施例提供的设备,在滚轮移动机构控制第一滚轮向电池单体的中轴线方向移动时,第一滚轮的第一加工面挤压卷边结构,以使卷边结构朝靠近电池单体的中轴线方向倾斜,不仅能够压实卷边结构,还可以使得该卷边结构朝靠近该电池单体的中轴线方向倾斜,进而提高该卷边结构的耐压性能,并提高该卷边结构的密封效果。
在一些实施例中,所述第一滚轮位于所述卷边结构的远离所述电池单体的中轴线的一侧。加强件设置在卷边结构的靠近电池单体的中轴线的一侧,将第一滚轮设置在卷边结构的另一侧,便于该第一滚轮的第一加工面能够挤压该卷边结构,以使该卷边结构与加强件接触。
在一些实施例中,所述设备还包括:滚轮旋转机构,用于控制所述第一滚轮围绕所述电池单体的中轴线旋转。考虑到壳体与盖板之间的卷边结构一般环绕电池单体,因此,通过滚轮旋转机构控制第一滚轮绕电池单体中轴线旋转,可以使得第一滚轮的 第一加工面与卷边结构的不同区域接触均有接触,以使卷边结构的各个区域能够均匀受力,进而产生均匀的变形,提高该卷边结构的加工效率。
在一些实施例中,所述滚轮旋转机构用于:在所述滚轮移动机构控制所述第一滚轮向所述电池单体的中轴线方向移动时,控制所述第一滚轮围绕所述电池单体的中轴线旋转,以提高加工速度。
在一些实施例中,所述电池单体还包括加强件,所述加强件设置在所述盖板的远离所述电池单体的内部的一侧;所述第一滚轮被配置为挤压所述卷边结构,使得所述卷边结构朝靠近所述电池单体的中轴线方向倾斜,并使得所述加强件的至少部分位于所述卷边结构内侧和所述盖板之间。
将卷边结构向加强件挤压,使得加强件的至少部分容纳在卷边结构和盖板之间,这样,在电池单体的内部发生膨胀而导致对盖板的压力增加时,该加强件能够抵抗至少部分压力,进而减小了直接作用于卷边结构的压力,也就增加了该卷边结构的耐压性能,以在提高电池单体的加工效率的同时,提高了该电池单体的安全性能。
在一些实施例中,所述第一加工面包括与所述加强件的第一表面的倾斜方向一致的倾斜面,所述第一表面为所述加强件的与所述卷边结构接触的表面,以使卷边结构能够在该倾斜面与第一表面之间均匀受力,该卷边结构变形更加均匀,以提高该卷边结构的强度。
在一些实施例中,第一压头,用于限制所述电池单体的加强件在第一平面内的移动,所述第一平面垂直于所述电池单体的中轴线。第一压头可以限制加强件在第一平面上的移动,避免加强件错位导致卷边结构不同区域变形不一致,导致卷边结构的结构强度不均匀。
在一些实施例中,所述第一加工面为环绕所述第一滚轮的凹槽的内表面,以便于该第一滚轮绕电池单体的中轴线旋转的过程中,始终存在第一加工面用于挤压卷边结构。
在一些实施例中,所述加强件为环形,所述第一压头设置在所述加强件的内侧,以使所述第一压头与所述加强件的靠近所述电池单体的中轴线的第二表面接触,以固定和限制该加强件沿垂直于电池单体的中轴线的第一平面的移动。
在一些实施例中,所述第一压头的与所述加强件接触的表面与所述电池单体的中轴线的夹角的取值范围为[0°,10°],以提高第一压头的稳定性,也可以提高加强件的稳定性。
在一些实施例中,所述设备还包括:第二滚轮,所述第二滚轮具有第二加工面,所述滚轮移动机构还用于:控制所述第二滚轮向所述电池单体的中轴线方向移动;所述第二滚轮用于:在所述滚轮移动机构控制所述第二滚轮向所述电池单体的中轴线方向移动时,通过所述第二加工面挤压并卷绕所述盖板的第一边缘部和所述壳体的第二边缘部,以形成所述卷边结构。通过第二滚轮的挤压,即可卷绕形成卷边结构,该过程简单且易于实现。
在一些实施例中,所述设备还包括:第二压头,所述第二压头与所述电池单体的加强件的第一表面接触,所述加强件设置在所述盖板的远离所述电池单体的内部的 一侧,所述第一表面为所述加强件的朝向所述卷边结构的表面,所述第二压头用于:限制所述加强件与所述盖板之间的相对移动,以便于在第二加工面和该第二压头之间形成卷边结构。
在一些实施例中,所述设备还包括:压头移动机构,用于在所述壳体与所述盖板形成所述卷边结构之前,控制所述第二压头沿所述电池单体的中轴线方向,朝向所述电池单体的内部挤压所述加强件,以使所述盖板至少部分区域容纳在所述壳体的开口内,且所述第一边缘部与所述第二边缘部接触。
该第一压头与第二压头不但可以用于限制加强件的移动,还可以用于挤压盖板,以使盖板的第一边缘部与壳体的第二边缘部快速汇合,有助于加快形成卷边结构。
在一些实施例中,所述压头移动机构还用于:在控制所述第二压头离开所述电池单体时,控制所述第一压头不离开所述电池单体,以为卷边结构发生变形提供空间。
在一些实施例中,所述第二滚轮位于所述电池单体的外侧,以使该第二滚轮的第二加工面使电池单体形成逆时针卷绕的卷边结构。并且,第二滚轮位于电池单体的外侧,可以不影响加强件的设置位置,无需在不同加工过程中不断移动加强件,提高了加工效率。
在一些实施例中,所述滚轮旋转机构还用于:控制所述第二滚轮围绕所述电池单体的中轴线旋转,以使第一边缘部和第二边缘部受力均匀,变形也均匀,进而产生均匀的卷边结构。
在一些实施例中,所述滚轮旋转机构用于:在所述滚轮移动机构控制所述第二滚轮向所述电池单体的中轴线方向移动时,控制所述第二滚轮围绕所述电池单体的中轴线旋转,以加快形成环绕电池单体的周向的环形卷边结构。
在一些实施例中,所述滚轮移动机构还用于:在控制所述第一滚轮移动至所述第一加工面与所述电池单体接触时,控制所述第二滚轮移动至所述第二加工面与所述电池单体不接触,在控制所述第二滚轮移动至所述第二加工面与所述电池单体接触时,控制所述第一滚轮移动至所述第一加工面与所述电池单体不接触。这样可以避免第一加工面挤压卷边结构时,该卷边结构受到第二加工面的影响,也可以避免第二加工面卷绕壳体和盖板以形成卷边结构时,该卷边结构受到第二加工面的影响。
在一些实施例中,所述第二加工面为环绕所述第二滚轮的凹槽的内表面,这种环形的第二加工面便于该第二滚轮绕电池单体的中轴线旋转的过程中,始终存在第二加工面用于挤压和弯折第一边缘部和第二边缘部,以形成卷边结构。
在一些实施例中,所述电池单体为圆柱体,所述第一滚轮为圆柱体。
在一些实施例中,所述设备包括多个所述第一滚轮,多个所述第一滚轮沿所述电池单体的周向均匀分布,以使不同区域的卷边结构受力更加均匀。
第二方面,提供了一种用于制备电池单体的方法,所述电池单体包括壳体和盖板,所述壳体和所述盖板密封连接且形成有向外侧翻转的卷边结构,所述方法包括:控制第一滚轮向所述电池单体的中轴线方向移动,并通过所述第一滚轮的第一加工面挤压所述卷边结构,使得所述卷边结构朝靠近所述电池单体的中轴线方向倾斜。
在一些实施例中,所述方法还包括:控制所述第一滚轮围绕所述电池单体的中 轴线旋转。
在一些实施例中,所述控制所述第一滚轮围绕所述电池单体的中轴线旋转,包括:在控制所述第一滚轮向所述电池单体的中轴线方向移动时,控制所述第一滚轮围绕所述电池单体的中轴线旋转。
在一些实施例中,所述电池单体还包括加强件,所述加强件设置在所述盖板的远离所述电池单体的内部的一侧;所述通过所述第一滚轮的第一加工面挤压所述卷边结构,使得所述卷边结构朝靠近所述电池单体的中轴线方向倾斜,包括:通过所述第一滚轮的第一加工面挤压所述卷边结构,使得所述卷边结构朝靠近所述电池单体的中轴线方向倾斜,并使得所述加强件的至少部分位于所述卷边结构内侧和所述盖板之间。
在一些实施例中,所述方法还包括:通过第一压头限制所述电池单体的加强件在第一平面内的移动,所述第一平面垂直于所述电池单体的中轴线。
在一些实施例中,所述方法还包括:控制第二滚轮向所述电池单体的中轴线方向移动,并通过所述第二滚轮的第二加工面挤压并卷绕所述盖板的第一边缘部和所述壳体的第二边缘部,以形成所述卷边结构。
在一些实施例中,所述方法还包括:将第二压头与所述电池单体的加强件的第一表面接触,并限制所述加强件与所述盖板之间的相对移动,所述加强件设置在所述盖板的远离所述电池单体的内部的一侧,所述第一表面为所述加强件的朝向所述卷边结构的表面。
在一些实施例中,所述方法还包括:在所述壳体与所述盖板形成所述卷边结构之前,控制所述第二压头沿所述电池单体的中轴线方向,朝向所述电池单体的内部挤压所述加强件,以使所述盖板至少部分区域容纳在所述壳体的开口内,且所述第一边缘部与所述第二边缘部接触。
在一些实施例中,所述方法还包括:在控制所述第二压头离开所述电池单体时,控制所述第一压头不离开所述电池单体。
在一些实施例中,所述方法还包括:控制所述第二滚轮围绕所述电池单体的中轴线旋转。
在一些实施例中,所述控制所述第二滚轮围绕所述电池单体的中轴线旋转,包括:在控制所述第二滚轮向所述电池单体的中轴线方向移动时,控制所述第二滚轮围绕所述电池单体的中轴线旋转。
在一些实施例中,所述方法还包括:在控制所述第一滚轮移动至所述第一加工面与所述电池单体接触时,控制所述第二滚轮移动至所述第二加工面与所述电池单体不接触;在控制所述第二滚轮移动至所述第二加工面与所述电池单体接触时,控制所述第一滚轮移动至所述第一加工面与所述电池单体不接触。
附图说明
图1是本申请一实施例公开的一种车辆的结构示意图;
图2是本申请一实施例公开的一种电池单体的侧视示意图;
图3是本申请一实施例公开的一种电池单体的截面示意图;
图4是本申请一实施例公开的一种用于制备电池单体的设备的示意性框图;
图5是本申请一实施例公开的另一种用于制备电池单体的设备的示意性框图;
图6是本申请一实施例公开的再一种用于制备电池单体的设备的示意性框图;
图7是本申请一实施例公开的用于制备电池单体的设备加工电池单体的卷边结构的局部结构示意图;
图8是本申请一实施例公开的用于制备电池单体的设备加工电池单体的卷边结构的局部俯视示意图;
图9是本申请一实施例公开的用于制备电池单体的设备加工电池单体的卷边结构的局部截面示意图;
图10是本申请一实施例公开的用于制备电池单体的设备加工电池单体的卷边结构的另一局部截面示意图;
图11是本申请一实施例公开的用于制备电池单体的设备加工电池单体的卷边结构的再一局部截面示意图;
图12是本申请一实施例公开的用于制备电池单体的设备加工电池单体的卷边结构的再一局部截面示意图;
图13是本申请一实施例公开的一种电池单体的局部截面示意图;
图14是本申请一实施例公开的一种用于制备电池单体的方法的示意性流程图。
在附图中,附图并未按照实际的比例绘制。
具体实施方式
下面结合附图和实施例对本申请的实施方式作进一步详细描述。以下实施例的详细描述和附图用于示例性地说明本申请的原理,但不能用来限制本申请的范围,即本申请不限于所描述的实施例。
在本申请的描述中,需要说明的是,除非另有说明,“多个”的含义是两个以上;术语“上”、“下”、“左”、“右”、“内”、“外”等指示的方位或位置关系仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”、“第三”等仅用于描述目的,而不能理解为指示或暗示相对重要性。“垂直”并不是严格意义上的垂直,而是在误差允许范围之内。“平行”并不是严格意义上的平行,而是在误差允许范围之内。
下述描述中出现的方位词均为图中示出的方向,并不是对本申请的具体结构进行限定。在本申请的描述中,还需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可视具体情况理解上述术语在本申请中的具体含义。
在本申请的实施例中,相同的附图标记表示相同的部件,并且为了简洁,在不 同实施例中,省略对相同部件的详细说明。应理解,附图示出的本申请实施例中的各种部件的厚度、长宽等尺寸,以及集成装置的整体厚度、长宽等尺寸仅为示例性说明,而不应对本申请构成任何限定。
本申请中,电池单体可以包括锂离子二次电池、锂离子一次电池、锂硫电池、钠锂离子电池、钠离子电池或镁离子电池等,本申请实施例对此并不限定。电池单体可呈圆柱体、扁平体、长方体或其它形状等,本申请实施例对此也不限定。电池单体一般按封装的方式分成三种:柱形电池单体、方形电池单体和软包电池单体,本申请实施例对此也不限定。
本申请的实施例所提到的电池是指包括一个或多个电池单体以提供更高的电压和容量的单一的物理模块。例如,本申请中所提到的电池可以包括电池模块或电池包等。电池一般包括用于封装一个或多个电池单体的箱体。箱体可以避免液体或其他异物影响电池单体的充电或放电。
电池单体包括电极组件和电解液,电极组件由正极极片、负极极片和隔离膜组成。电池单体主要依靠金属离子在正极极片和负极极片之间移动来工作。正极极片包括正极集流体和正极活性物质层,正极活性物质层涂覆于正极集流体的表面,未涂敷正极活性物质层的正极集流体凸出于已涂覆正极活性物质层的正极集流体,未涂敷正极活性物质层的正极集流体作为正极极耳。以锂离子电池为例,正极集流体的材料可以为铝,正极活性物质可以为钴酸锂、磷酸铁锂、三元锂或锰酸锂等。负极极片包括负极集流体和负极活性物质层,负极活性物质层涂覆于负极集流体的表面,未涂敷负极活性物质层的负极集流体凸出于已涂覆负极活性物质层的负极集流体,未涂敷负极活性物质层的负极集流体作为负极极耳。负极集流体的材料可以为铜,负极活性物质可以为碳或硅等。为了保证通过大电流而不发生熔断,正极极耳的数量为多个且层叠在一起,负极极耳的数量为多个且层叠在一起。隔离膜的材质可以为聚丙烯(polypropylene,PP)或聚乙烯(polyethylene,PE)等。此外,电极组件可以是卷绕式结构,也可以是叠片式结构,本申请实施例并不限于此。
电池技术的发展要同时考虑多方面的设计因素,例如,能量密度、循环寿命、放电容量、充放电倍率等性能参数,另外,还需要考虑电池的加工效率以及安全性。对于电池来说,主要的安全危险来自于充电和放电过程,例如,在充电和放电过程中,电池单体温度升高并发生膨胀,电池单体内部压强增加,因此,盖板与壳体之间的密封需要具有一定强度,以保证电池单体不易发生失效。那么,如何既提高电池单体的加工效率,又可以保证电池单体的安全性能是目前亟待解决的问题。
因此,本申请实施例提供了一种用于制备电池单体的设备,包括滚轮移动机构和第一滚轮。电池单体包括壳体和盖板,该壳体和盖板密封连接且形成有向外侧翻转的卷边结构;在滚轮移动机构控制第一滚轮向电池单体的中轴线方向移动时,第一滚轮的第一加工面挤压卷边结构,以使该卷边结构朝靠近该电池单体的中轴线方向倾斜。通过第一滚轮的挤压,不仅能够压实卷边结构,还可以使得该卷边结构朝靠近该电池单体的中轴线方向倾斜,进而提高该卷边结构的耐压性能,并提高该卷边结构的密封效果。
本申请实施例描述的技术方案均适用于各种使用电池的用电设备。
用电设备可以是车辆、手机、便携式设备、笔记本电脑、轮船、航天器、电动玩具和电动工具等等。车辆可以是燃油汽车、燃气汽车或新能源汽车,新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等;航天器包括飞机、火箭、航天飞机和宇宙飞船等等;电动玩具包括固定式或移动式的电动玩具,例如,游戏机、电动汽车玩具、电动轮船玩具和电动飞机玩具等等;电动工具包括金属切削电动工具、研磨电动工具、装配电动工具和铁道用电动工具,例如,电钻、电动砂轮机、电动扳手、电动螺丝刀、电锤、冲击电钻、混凝土振动器和电刨等等。本申请实施例对上述用电设备不做特殊限制。
以下实施例为了方便说明,以用电设备为车辆为例进行说明。
例如,如图1所示,为本申请一个实施例的一种车辆1的结构示意图,车辆1可以为燃油汽车、燃气汽车或新能源汽车,新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等。车辆1的内部可以设置马达12、控制器11以及电池10,控制器11用来控制电池10为马达12的供电。例如,在车辆1的底部或车头或车尾可以设置电池10。电池10可以用于车辆1的供电,例如,电池10可以作为车辆1的操作电源,用于车辆1的电路系统,例如,用于车辆1的启动、导航和运行时的工作用电需求。在本申请的另一实施例中,电池10不仅仅可以作为车辆1的操作电源,还可以作为车辆1的驱动电源,替代或部分地替代燃油或天然气为车辆1提供驱动动力。
为了满足不同的使用电力需求,电池可以包括多个电池单体,其中,多个电池单体之间可以串联或并联或混联,混联是指串联和并联的混合。电池也可以称为电池包。可选地,多个电池单体可以先串联或并联或混联组成电池模块,多个电池模块再串联或并联或混联组成电池。也就是说,多个电池单体可以直接组成电池,也可以先组成电池模块,电池模块再组成电池。
图2示出了本申请实施例的电池单体20的示意图;图3示出了本申请实施例的电池单体20的截面示意图,其中,图3可以为图2所示的电池单体20的一种可能的截面示意图,该截面示意图可以为如图2所示的电池单体20的沿着经过电池单体20的中轴线201的平面的截面的示意图;图4示出了本申请实施例的用于制备电池单体20的设备30的示意性框图,其中,该设备30可以用于制备出如图2和图3所示的电池单体。具体地,结合图2至图4所示,本申请实施例的设备30可以包括:滚轮移动机构33,用于控制第一滚轮32向该电池单体20的中轴线201方向移动,该电池单体20包括壳体21和盖板22,该壳体21和该盖板22密封连接且形成有向外侧翻转的卷边结构24;第一滚轮32,该第一滚轮32具有第一加工面321,该第一滚轮32用于在该滚轮移动机构33控制该第一滚轮32向该电池单体20的中轴线201方向移动时,通过该第一加工面321挤压该卷边结构24,使得该卷边结构24朝靠近该电池单体20的中轴线201方向倾斜。
本申请实施例的壳体21和盖板22密封连接且形成有向外侧翻转的卷边结构24是指:该卷边结构24位于电池单体20的外部,即该壳体21和该盖板22汇合并向电池单体的外部翻转以形成卷边结构24。
应理解,本申请实施例的第一滚轮32与滚轮移动机构33相连,以使得该滚轮移动机构33能够控制该第一滚轮32移动。例如,该滚轮移动机构33可以与第一滚轮32直接或者间接相连,本申请实施例并不限于此。
因此,本申请实施例的设备30,在滚轮移动机构33控制第一滚32轮向电池单体20的中轴线201方向移动时,第一滚轮32的第一加工面321挤压卷边结构24,以使该卷边结构24能够朝靠近电池单体20的中轴线201方向倾斜。通过该第一滚轮32的挤压,不仅能够压实卷边结构24,还可以使得该卷边结构24朝靠近该电池单体20的中轴线201方向倾斜,进而提高该卷边结构24的耐压性能,以及该卷边结构24的密封效果。
可选地,作为一个实施例,本申请实施例的电池单体20还可以包括:加强件23,该加强件23设置在该盖板22的远离该电池单体20的内部的一侧。具体地,如图2至图4所示,本申请实施例的加强件23设置在盖板22的远离电池单体20的内部的一侧可以包括:该加强件23直接设置在盖板22的远离电池单体20的内部的表面,或者,该加强件23通过其他部件间接设置在盖板22的远离电池单体20的内部的表面。例如,该加强件23与盖板22之间可以设置有其他部件,例如可以设置有粘结剂等固定结构,但本申请实施例并不限于此。
可选地,本申请实施例的第一滚轮32还用于:挤压卷边结构24,使得卷边结构24朝靠近电池单体20的中轴线201方向倾斜,并使得加强件23的至少部分位于卷边结构24内侧和盖板22之间。具体地,本申请实施例的第一滚轮32的第一加工面321挤压卷边结构24,以使加强件23的至少部分位于该卷边结构24内侧和该盖板22之间,其中,该卷边结构24的内侧表示该卷边结构24的朝向电池电单体20的中轴线201的一侧。例如,在第一滚轮32的第一加工面321的挤压作用下,该加强件23的至少部分区域可以与该卷边结构24的朝向电池电单体20的中轴线201的表面241接触,并且也与盖板主体部222的外表面接触。
因此,本申请实施例提供的设备30,将卷边结构24向加强件23挤压,还可以使得加强件23的至少部分容纳在卷边结构24和盖板22之间,这样,在电池单体20的内部发生膨胀而导致对盖板22的压力增加时,该加强件23能够抵抗至少部分压力,进而减小了直接作用于卷边结构24的压力,也就增加了该卷边结构24的耐压性能,以在提高电池单体20的加工效率的同时,提高了该电池单体20的安全性能。
例如,对于64毫米(mm)直径的圆柱型电池单体而言,如果不设置该加强件23,则该卷边结构耐压强度通常仅有0.8Mpa至0.9Mpa,而通过刻痕的方式设置的泄压机构的耐压强度通常为1.7Mpa,高于卷边结构的耐压强度,则电池单体20内部压力超过卷边结构的耐压强度的上限时,卷边结构会先于泄压机构失效,进而导致电池单体失效。而在卷边结构24和盖板22之间增加的加强件23可以抵抗部分压力,当加强件23失效后,卷边结构24才可能失效,进而提高卷边结构24的耐压能力,也可以使得泄压机构先于卷边结构24失效,提高该电池单体20的安全性。
应理解,本申请实施例的壳体21为用于容纳电极组件25的部件,壳体21可以是至少一端形成开口的空心结构。例如,若壳体21为一端形成开口的空心结构,盖板 22则可以设置为一个,以盖合该壳体21的开口。或者,如图2至图5所示,壳体21也可以为相对的两端形成开口的空心结构,则盖板22可以设置为两个,两个盖板22分别盖合于壳体21两端的开口。本申请实施例主要以壳体21为相对的两端形成开口的空心结构为例,即壳体21为两端开口的中空结构,电池单体20包括两个盖板22,两个盖板22分别用于盖合两端开口,以使得电极组件25可以通过任意开口组装至该壳体21内,也便于组装该壳体21内其他部件,以提高组装效率。
可选地,本申请实施例的壳体21的材质可以是多种,比如,铜、铁、铝、钢、铝合金等。壳体21可以是多种形状,比如,圆柱体、长方体等。示例性的,在本申请实施例的各附图中,壳体21为圆柱体结构。
本申请实施例的盖板22是盖合于壳体21的开口以将电池单体20的内部环境与外部环境隔绝的部件。盖板22的材质也可以是多种,比如,铜、铁、铝、钢、铝合金等,盖板22的材质与壳体21的材质可以相同,也可以不同。
应理解,盖板22的形状可以与壳体21的形状相适配。例如,壳体21为长方体结构时,盖板22可以为与壳体21相适配的板状结构,或者也可以为一端开口213的中空长方体结构,以使得盖板22与壳体21盖合后形成长方体的电池单体20。再例如,如图2至图5所示,本申请实施例的壳体21为圆柱时,盖板22也可以为圆形的板状,或者底壁为圆形的凹槽结构,以使得盖板22与壳体21盖合后形成圆柱形的电池单体20。下文主要以该盖板22为圆形板状为例进行说明,但本申请实施例并不限于此。
对于电池单体20,壳体21与盖板22密封连接且形成卷边结构24,则该卷边结构24环绕壳体21的开口的周围,即该卷边结构24围绕在电池单体20的周向形成。例如,对于圆柱形电池单体20,卷边结构24通常为圆环形。
可选地,图5示出了本申请实施例的用于制备电池单体20的设备30的另一示意性框图,其中,该图5所示的设备30也可以用于制备出如图2和图3所示的电池单体。如图5所示,对比图4,本申请实施例的设备30还可以包括:滚轮旋转机构34,用于控制第一滚轮32围绕电池单体20的中轴线201旋转。考虑到壳体21与盖板22之间的卷边结构24一般环绕电池单体20,因此,通过滚轮旋转机构34控制第一滚轮32绕电池单体20中轴线201旋转,可以使得第一滚轮32的第一加工面321与卷边结构24的不同区域接触均有接触。例如,对于圆环形卷边结构24,在第一滚轮32旋转的过程中,可以与卷边结构24的周向表面的各个区域接触并挤压,以使卷边结构24的各个区域能够均匀受力,进而产生均匀的变形,提高该卷边结构24的加工效率。
可选地,如图5所示,本申请实施例的设备30可以包括:第一压头31,用于限制电池单体20的加强件23在第一平面内的移动,第一平面垂直于电池单体20的中轴线201。例如,该第一平面可以为盖板22的朝向电池单体20的外部的表面,即第一压头31可以限制加强件23在该盖板22的表面上的移动,避免加强件23错位导致卷边结构24不同区域变形不一致,导致卷边结构24的结构强度不均匀。
可选地,如图4和图5所示的设备30可以对卷边结构24进行挤压,另外,该设备30还可以用于加工壳体21和盖板22,以形成卷边结构24。图6示出了本申请实施例的用于制备电池单体20的设备30的再一示意性框图,其中,该图6所示的设备 30也可以用于制备出如图2和图3所示的电池单体。如图6所示,对比图4或图5,本申请实施例的设备30还可以包括:第二滚轮36,第二滚轮36具有第二加工面361,滚轮移动机构33还用于:控制第二滚轮36向电池单体20的中轴线201方向移动;第二滚轮36用于:在滚轮移动机构33控制第二滚轮36向电池单体20的中轴线201方向移动时,通过第二加工面361挤压并卷绕盖板22的第一边缘部221和壳体21的第二边缘部211,以形成卷边结构24。本申请实施例的设备30通过第二滚轮36的挤压,即可卷绕形成卷边结构24,该过程简单且易于实现。
可选地,如图6所示,该设备30可以包括:第二压头35,第二压头35与加强件23的第一表面231接触,第一表面231为加强件23的朝向卷边结构24的表面,第二压头35用于:限制加强件23与盖板22之间的相对移动。进一步地,该第二压头还可以用于与第二滚轮36相互配合,以在在第二加工面361与该第二压头35之间形成卷边结构24。
可选地,设备30还包括:压头移动机构37,用于在壳体21与盖板22形成卷边结构24之前,控制第二压头35沿电池单体20的中轴线201方向,朝向电池单体20的内部挤压加强件23,以使盖板22至少部分区域容纳在壳体21的开口内,且第一边缘部221与第二边缘部211接触。进一步地,该压头移动机构37也可以用于控制第一压头31和第二压头35共同沿电池单体20的中轴线201方向,朝向电池单体20的内部挤压加强件23,这样,该第一压头31和/或第二压头35不但用于限制加强件23的移动,还可以用于挤压盖板22,以使盖板22的第一边缘部221与壳体21的第二边缘部221快速汇合,有助于加快形成卷边结构24。
可选地,本申请实施例中设备30包括的各个部件与电池单体20的相对位置可以根据实际应用进行设置,并且由于设备30的各个部件与电池单体20的相对位置的不同设置,该设备30的各个部件的旋转和移动的方向也可以灵活调整。下面将结合附图对本申请实施例的设备30进行详细描述。
首先结合附图,针对卷边结构24的初步形成过程,即针对电池单体20的头道卷封过程,描述本申请实施例的设备30。图7示出了本申请实施例的设备30加工电池单体20的卷边结构24的局部结构示意图,其中,该图7仅示出了电池单体20的局部。图8示出了本申请实施例的设备30加工电池单体20的卷边结构24的局部俯视示意图,其中,该图8可以为图7的俯视示意图。图9示出了本申请实施例的设备30加工电池单体20的卷边结构24的局部截面示意图,其中,该截面可以为沿图8所示的A-A’方向的截面示意图。图10示出了本申请实施例的设备30加工电池单体20的卷边结构24的局部截面示意图,该图10可以为图9中区域C的放大图。
如图7至图10所示,本申请实施例的盖板22包括位于边缘区域的第一边缘部221和位于中心区域的盖板主体部222,第一边缘部221围绕盖板主体部22;壳体21包括第二边缘部211和壳体主体部212,第二边缘部211为壳体21的靠近壳体21的开口的区域。第二边缘部211与第一边缘部221用于卷绕形成卷边结构24。通过卷绕的方式形成的卷边结构24相比于其他方式密封壳体21和盖板22,既便于加工,提高电池单体20的加工效率,又可以保证壳体21和盖板22的密封性。
应理解,本申请实施例形成的卷边结构24的卷绕方向可以为逆时针方向,即第一边缘部221与第二边缘部211汇合后向远离电池单体20的中轴线201的方向弯折和卷绕;或者,与之不同的,该卷绕结构24的卷绕方向也可以为顺时针方向,即第一边缘部221与第二边缘部211汇合后向靠近电池单体20的中轴线201的方向弯折和卷绕,本申请实施例并不限于此。为了便于说明,本申请实施例以如图8所示的逆时针为例进行说明。
对应的,如图7至图10所示,第二滚轮36位于电池单体20的外侧,以使该第二滚轮36的第二加工面362使该电池单体20形成逆时针卷绕的卷边结构24。由于本申请实施例的电池单体20设置有加强件23,第二滚轮36位于电池单体20的外侧以形成逆时针卷绕的卷边结构24,可以不影响加强件23的设置位置,无需在不同加工过程中不断移动加强件23,提高了加工效率。
具体地,如图7至图10所示,加强件23设置在盖板22的远离电池单体20的内部的一侧,通过压头移动机构37控制第一压头31和第二压头35沿电池单体20的中轴线201方向,朝向电池单体20的内部移动,即通过压头移动机构37控制第一压头31和第二压头35沿如图9所示的方向X移动,以使第一压头31和第二压头35与加强件23接触。
可选地,本申请实施例的加强件23的形状可以根据实际应用进行设置。例如,该加强件23的形状与卷边结构24的形状有关,以圆柱形电池单体20为例,卷边结构24环绕壳体21的开口,即卷边结构24为圆环,则该加强件23的外部轮廓也可以为圆形,以与卷边结构24配合。或者,若电池单体20为长方体,卷边结构24环绕壳体21的开口,则卷边结构24为矩形环,对应的,该加强件23的外部轮廓也可以为矩形。再例如,该加强件23可以为环状,既便于加工,又可以减轻加强件23的重量,以减轻电池单体20的整体重量,也就减轻了电池10的重量;并且也便于第一压头31固定该加强件23。
本申请实施例以加强件23为环形为例,第一压头31设置在加强件23的内侧,以使第一压头31与加强件23的靠近电池单体20的中轴线201的第二表面232接触。具体地,如图7至图10所示,该第一压头31具有第一端面311,该第一端面311为第一压头31的外表面,第一压头31沿方向X移动时,该第一端面311与加强件23的第二表面232接触,即可以通过第一端面311固定该加强件23,限制该加强件23沿垂直于电池单体20的中轴线201的第一平面的移动。
而第二压头35可以与加强件23的第一表面231接触。具体地,如图7中图10所示,第二压头35具有第二端面351,在该第二压头35沿方向X移动时,该第二端面351与第一表面231接触。该第一表面231与第二表面232相对,该第二表面231为加强件23的远离电池单体20的中轴线201的表面。
这样,通过第一压头31和第二压头35可以限制加强件23的移动,即限制该加强件23与盖板22之间的相对移动,以避免错位而影响卷边结构24的加工。
可选地,由于第一端面311与第二表面232接触,因此,该第一端面311的倾斜角度可以与第二表面232基本保持一致,并且该倾斜角度可以根据实际应用设置为 任意值。例如,第一压头31的与加强件23接触的表面311与电池单体20的中轴线201的夹角的取值范围为[0°,10°],即第一端面311与电池单体20的中轴线201的夹角的取值范围为[0°,10°],对应的,该第二表面232与电池单体20的中轴线201的夹角的取值范围也可以为[0°,10°],以提高第一压头31的稳定性,也可以提高加强件23的稳定性。
类似地,第二端面352与第一表面231接触,因此,该第二端面352的倾斜角度可以与第一表面231基本保持一致,以提高第二端面352与第一表面231之间的稳定性;并且,该倾斜角度也可以根据实际应用设置为任意值。例如,该第一表面231与电池单体20的中轴线201的夹角的取值范围通常可以设置为(0°,90°),对应的,该第二端面352与电池单体20的中轴线201的夹角的取值范围通常也可以设置为(0°,90°);进一步地,为了提高加强件23的结构强度和稳定性,该第一表面231与电池单体20的中轴线201的夹角的取值范围可以设置为[30°,90°),对应的,该第二端面352与电池单体20的中轴线201的夹角的取值范围通常也可以设置为[30°,90°),但本申请实施例并不限于此。
在本申请实施例中,如图7至图10所示,在壳体21与盖板22形成卷边结构24之前,该压头移动机构37还可以继续控制第一压头31与第二压头35沿电池单体20的中轴线201方向,朝向电池单体20的内部挤压加强件23,以使盖板22至少部分区域容纳在壳体21的开口内,且盖板22的第一边缘部221与壳体21的第二边缘部211接触,这样可以使得该第一边缘部221与第二边缘部222汇合,便于后续卷绕该第一边缘部221与第二边缘部222,进而形成卷边结构24。
具体地,如图7至图10所示,在形成卷边结构24的过程中,滚轮移动机构33控制第二滚轮36向电池单体20的中轴线201方向移动时,通过第二加工面361挤压并卷绕盖板22的第一边缘部221和壳体21的第二边缘部211,以在第二加工面361与第二压头35之间形成卷边结构24,该过程易于实现,且卷边结构24形成速度较快。
可选地,滚轮旋转机构34还用于:控制第二滚轮36围绕电池单体20的中轴线201旋转,以使第一边缘部221和第二边缘部211受力均匀,变形也均匀,进而产生均匀的卷边结构24。
为了加快加工速度,滚轮旋转机构34可以用于:在滚轮移动机构33控制第二滚轮36向电池单体20的中轴线201方向移动时,控制第二滚轮36围绕电池单体20的中轴线201旋转,即该第二滚轮36在靠近电池单体20的中轴线201的同时围绕该电池单体20的中轴线201旋转,以加快形成环绕电池单体20的周向的圆环形卷边结构24。
可选地,本申请实施例的第二加工面361为环绕第二滚轮36的凹槽的内表面。具体地,如图7至图10所示,在该第二滚轮36的外表面上形成有环绕该第二滚轮36的凹槽,该凹槽的内表面即该第二滚轮36的第二加工面361,以便于该第二滚轮36绕电池单体20的中轴线201旋转的过程中,始终存在第二加工面361用于挤压和弯折第一边缘部221和第二边缘部211,以形成卷边结构24。
本申请实施例的第二加工面361的形状可以根据实际应用进行设置,以便于实现卷绕第一边缘部221和第二边缘部211,以形成该卷边结构24。
本申请实施例的设备30可以包括一个或者多个第二滚轮36,每个第二滚轮36可以为圆柱体。例如,如图7至图10所示,设备30可以包括两个圆柱形第二滚轮36,以提高卷边结构24的加工效率。并且,设备30包括多个第二滚轮36时,该第二滚轮36可以围绕圆柱形电池单体20的周向外表面均匀分布,以使不同区域的第一边缘部221和第二边缘部211受力更加均匀,例如,如图7至图10所示,设备30可以包括两个相对设置的第二滚轮36。另外,该多个第二滚轮36可以同步移动,即通过滚轮移动机构33控制多个第二滚轮36同步移动;类似的,该多个第二滚轮36也可以同步旋转,即通过滚轮旋转机构34控制多个第二滚轮36同步滚动,以便于简化设备30,也有利于提高卷边结构24的加工效率。
应理解,本申请实施例的第二压头35和第二滚轮36可以用于实现壳体21和盖板22的卷绕,以初步形成卷边结构24,即完成该电池单体20的头道卷封过程。可选地,本申请实施例还可以通过其他方式,代替第二压头35和第二滚轮36加工形成卷边结构24,本申请实施例并不限于此。
下面将结合附图,针对卷边结构24的继续加工过程,即针对电池单体20的二道卷封过程,描述本申请实施例的设备30。图11示出了本申请实施例的设备30加工电池单体20的卷边结构24的局部截面示意图,其中,该截面可以为沿经过电池单体20的中轴线201的平面的截面示意图,并且,该经过电池单体20的中轴线201的平面垂直于图9的截面。图12示出了本申请实施例的设备30加工电池单体20的卷边结构24的局部截面示意图,该图12可以为图11中区域D的放大图。
如图11至图12所示,在经过头道卷封过程之后,可以形成如图所示的卷边结构24。具体地,第一边缘部221与第二边缘部211的卷绕层数可以根据实际应用进行设置。例如,若卷边结构24的卷绕层数过多,会导致卷边结构24的体积较大,重量也较大,既增加了电池单体20占用的空间,又增加了电池单体20的重量,也就降低了电池10的能量密度。相反的,若卷边结构24的卷绕层数过少,则可能导致卷边结构24不稳定,密封效果也较差。因此,该卷边结构24的卷绕层数通常可以设置为五层或者六层,例如,如图12和图13所示的卷边结构24共包括五层,其中,该卷边结构24包括三层第一边缘部221与两层第二边缘部211,以保证密封效果。
如图11和图12所示,对比图9和图10,压头移动机构37还用于:在控制第二压头35离开电池单体20时,控制第一压头31不离开电池单体20。具体地,在经过头道卷封过程之后,压头移动机构37可以控制该第一压头31保持不动,即该第一压头31的第一端面311与加强件23的第二表面232仍维持接触状态,进而在之后的二道卷封过程中,通过该第一压头31继续限制加强件23的移动,因此,二道卷封过程中该第一压头31的相关描述与头道卷封过程一致,为了简洁,在此不再赘述。
另外,该压头移动机构37控制第二压头35离开电池单体20,例如,可以通过压头移动机构37控制第二压头35沿电池单体20的中轴线201的方向离开加强件23,也离开电池单体20,不与该电池单体20接触。
因此,本申请实施例的第一压头31和第二压头35这种双压头结构的设计,既保证了头道卷封时两个压头对产生的卷边结构24的支撑作用以及对加强件23的固定作 用,同时也为二道卷封过程中卷边结构24发生变形提供了空间。并且,第一压头31与第二压头35之间可以设置有间隙,防止第二压头35离开电池单体20的过程中对第一压头31的影响,例如,可以防止与第一压头31产生干涉。
在经过头道卷封过程之后,滚轮移动机构33还可以用于控制第二滚轮36离开电池单体20。例如,该滚轮移动机构33可以控制第二滚轮36沿垂直于电池单体20的中轴线201的方向,离开电池单体20的卷边结构24,也离开电池单体20,不与该电池单体20接触。并且,滚轮旋转机构34也可以停止第二滚轮36的旋转。
应理解,在经过头道卷封过程之后,第二压头35和第二滚轮36离开电池单体,之后该该卷边结构24可以进入二道卷封过程。其中,该第一压头31在该二道卷封过程中
具体地,如图11至图12所示,与第二滚轮32的设置方式类似,第一滚轮32位于卷边结构24的远离电池单体20的中轴线201的一侧。加强件23设置在卷边结构24的靠近电池单体20的中轴线201的一侧,将第一滚轮32设置在卷边结构24的另一侧,便于该第一滚轮32的第一加工面321能够挤压该卷边结构24,以使该卷边结构24与加强件23接触。
如图11至图12所述,滚轮移动机构33控制第一滚轮32向电池单体20的中轴线201逐渐靠近,这样,第一加工面321与卷边结构24的远离电池单体20的中轴线201的一侧接触并挤压该卷边结构24,以使该卷边结构24发生表面,即该卷边结构24的靠近电池单体20的中轴线201的一侧表面241逐渐靠近加强件23的第一表面231,并与该第一表面231接触;并且,还可以压实该卷边结构24,以保证该卷边结构24的密封效果。
在本申请实施例中,滚轮旋转机构34用于:控制第一滚轮32围绕电池单体20的中轴线201旋转,以使该环形的卷边结构24的远离电池单体20的中轴线201的一侧能够均匀受力,进而使得该卷边结构24发生较为均匀的变形。
可选地,滚轮旋转机构34可以具体用于:在滚轮移动机构33控制第一滚轮32向电池单体20的中轴线201方向移动时,控制第一滚轮32围绕电池单体20的中轴线201旋转,即该第一滚轮32在逐渐靠近电池单体20的中轴线201的同时围绕该该电池单体20的中轴线201旋转,以使第一加工面321均匀快速地挤压圆环形卷边结构24的各个区域,提高加工效率。
可选地,第一加工面321为环绕第一滚轮32的凹槽的内表面。具体地,如图11至图12所示,在该第一滚轮32的外表面上形成有环绕该第一滚轮32的凹槽,该凹槽的内表面即该第一滚轮32的第一加工面321,以便于该第一滚轮32绕电池单体20的中轴线201旋转的过程中,始终存在第一加工面321用于挤压卷边结构24。
可选地,本申请实施例的第一加工面321的形状可以根据实际应用进行设置,以便于挤压该卷边结构24。例如,第一加工面321包括与加强件23的第一表面231的倾斜方向一致的倾斜面3211,第一表面231为加强件23的与卷边结构24接触的表面。具体地,通过第一加工面321的倾斜面3211与卷边结构24接触,并挤压该卷边结构24,则不但可以压实该卷边结构,还可以使得该卷边结构24向加强件23方向发生弯折 变形。该卷边结构24的朝向电池单体20的中轴线201的表面241会与加强件23的第一表面231接触,直至完成该二道卷封过程,获得如图2和图3所示的电池单体20,即该电池单体20的加强件23的至少部分位于卷边结构24的内侧和盖板22之间。
图13示出了本申请实施例的电池单体20的局部截面示意图,例如,该图13可以为图3所示的电池单体20的区域Q的放大图。如图13所示,经过二道卷封过程之后,卷边结构24的表面241与加强件23的第一表面231接触,因此,如图11和图12所示,该第一加工面321包括倾斜面3211与第一表面231的倾斜方向一致,以使二道卷封过程中的卷边结构24能够在该倾斜面3211与第一表面231之间均匀受力,该卷边结构24变形更加均匀,以提高该卷边结构24的强度。
可选地,该第一加工面321还可以包括与该倾斜面3211相连的延伸面3212,该延伸面3212可以用于与卷边结构24的部分表面接触,并在该卷边结构24与延伸面3212接触时,配合倾斜面3211加快该卷边结构24向加强件23的变形。
本申请实施例的设备30可以包括一个或者多个第一滚轮32,每个第一滚轮32可以为圆柱体。例如,如图7-8和图11-12所示,与第二滚轮36类似,该设备30可以包括两个第一滚轮32,以提高卷边结构24的二道卷封过程的加工效率。并且,设备30包括多个第一滚轮32时,该第一滚轮32可以围绕该电池单体20的周向外表面均匀分布,以使不同区域的卷边结构24受力更加均匀。例如,如图7-8和图11-12所示,设备30可以包括两个相对设置的第一滚轮32。另外,该多个第一滚轮32可以同步移动,即通过滚轮移动机构33控制多个第一滚轮32同步移动;类似的,该多个第一滚轮32也可以同步旋转,即通过滚轮旋转机构34控制多个第一滚轮32同步滚动,以便于简化设备30,也有利于提高卷边结构24的加工效率。
可选地,若设备30包括多个第一滚轮32和多个第二滚轮36时,可以设置该多个第一滚轮32的数量和多个第二滚轮36的数量相等或者不等,并且多个第一滚轮32和多个第二滚轮36可以相互间隔设置,本申请实施例并不限于此。例如,如图7-8和图11-12所示,本申请实施例以设备30包括两个第一滚轮32和两个滚轮36为例,该两个第一滚轮32和两个滚轮36可以相互间隔设置,并且在电池单体20的周向均匀分布,以便于操作和加工电池单体20的卷边结构24,提高加工效率。
具体地,根据头道卷封过程和二道卷封过程的区别,滚轮移动机构33还用于:在控制第二滚轮36移动至第二加工面361与电池单体20接触时,控制第一滚轮32移动至第一加工面321与电池单体20不接触,以便于通过第二加工面361完成头道卷封过程,卷绕第一边缘部221和第二边缘部211以形成卷边结构24;滚轮移动机构33还用于:在控制第一滚轮32移动至第一加工面321与电池单体20接触时,控制第二滚轮36移动至第二加工面361与电池单体20不接触,以便于通过第一加工面321挤压卷边结构24,使该卷边结构24变形并与加强件23的第一表面接触,完成二道卷封过程。第一滚轮31和第二滚轮36相互不影响。
可选地,如图7-8和图11-12所示,滚轮旋转机构34与滚轮移动机构33不同,滚轮旋转机构34在头道卷封过程中,控制第二滚轮36绕电池单体20的中轴线201旋转时,可以同步控制第一滚轮31旋转;而二道卷封过程中,滚轮旋转机构34在控制第 一滚轮31绕电池单体20的中轴线201旋转时,可以同步控制第二滚轮36旋转,以便于简化设备30的设计难度,简化滚轮旋转机构34的设计难度。
如图11至图13所示,在第一加工面321逐渐挤压卷边结构24,以使卷边结构24朝向电池单体20的中轴线201方向弯折,直至该卷边结构24的表面241与加强件23的第一表面231平行及接触,进而完成该卷边结构24和加强件23的加工和固定。这样,设备30的第一压头31和第一滚轮32相互配合,既能够压实该卷边结构24,还可以使得该卷边结构24的表面241相对于电池单体20的中轴线201倾斜,而非平行的。
这样,当电池单体20内部的压力逐渐增加时,盖板22在内压作用下会发生变形,例如,盖板22的盖板主体部222会向电池单体20外部拱起。而设置的加强件23也会发生变化,即该加强件23会朝向电池单体20外部翻转,加强件23可以抵消大部分的内压,减轻盖板22的变形,即减轻盖板22的拱起。另外,在加强件23发生外翻时,加强件23会对卷边结构24产生作用力,该作用力使得卷边结构24的各层之间摩擦力增加,即第一边缘结构221和第二边缘结构211之间的摩擦力增加,能够防止壳体21和盖板22之间产生错动引起的失效,可以增加壳体21和盖板22之间的气密性。
并且,电池单体20的内部压力会先作用于加强件23,而不会直接作用于卷边结构24。具体地,对于设置加强件23的情况,在电池单体20内部压力逐渐增大的过程中,只有当加强件23在内压作用下完全翻起,即加强件23的表面231由倾斜外翻至该加强件23的表面231与电池单体20的中轴线201平行的情况下,加强件23才会失效,对应的,卷边结构23也会因为直接承受内压而失效。因此,本申请实施例的卷边结构23是否发生失效,与加强件23的耐压强度有关,其中,加强件23的耐压强度是指该加强件23完全翻起时所需的最小内压。而不设置加强件23的情况下,卷边结构23是否发生失效,仅与该卷边结构23的自身的耐压强度相关,其中,该卷边结构23自身的耐压强度是指电池单体20的内压直接作用于卷边结构23时,该卷边结构23变形失效时所需的最小内压。那么,在卷边结构23本身的耐压强度相同的情况下,相比于不设置加强件23的情况,本申请实施例的卷边结构23是否发生失效与加强件23的强度有关,可以通过增加加强件23的耐压强度来避免卷边结构23发生失效。
可选地,在设备30完成该卷边结构24的加工后,滚轮移动机构33还用于:控制第一滚轮32沿远离电池单体20的中轴线201的方向,逐渐远离卷边结构24;类似的,滚轮旋转机构34也可以用于控制第一滚轮32和第二滚轮36停止旋转;另外,压头移动机构37还用于:控制第一压头31沿电池单体20的中轴线201的方向,逐渐远离器件23,进而使得设备30离开电池单体20,以结束该卷边结构24的加工。
上文中结合图1至图13,详细描述了本申请实施例的用于制备电池单体20的设备30,下面将结合图14,描述本申请实施例的用于制备电池单体20的方法400。图14示出了本申请实施例的用于制备电池单体20的方法400的示意性流程图,该方法400可以由前述设备30执行,并且该方法400可以用于制备前述电池单体20,其中,该电池单体20包括壳体21和盖板22,该壳体21和该盖板22密封连接且形成有向外侧翻转的卷边结构24。具体地,该方法400包括:S410,控制第一滚轮32向该电池单 体20的中轴线201方向移动,并通过该第一滚轮32的第一加工面321挤压该卷边结构24,使得该卷边结构24朝靠近该电池单体20的中轴线201方向倾斜。
在一些实施例中,该方法400还包括:控制该第一滚轮32围绕该电池单体20的中轴线201旋转。
在一些实施例中,该控制该第一滚轮32围绕该电池单体20的中轴线201旋转,包括:在控制该第一滚轮32向该电池单体20的中轴线201方向移动时,控制该第一滚轮32围绕该电池单体20的中轴线201旋转。
在一些实施例中,该电池单体20还包括加强件23,该加强件23设置在该盖板22的远离该电池单体20的内部的一侧;该通过该第一滚轮32的第一加工面321挤压该卷边结构24,使得该卷边结构24朝靠近该电池单体20的中轴线201方向倾斜,包括:通过该第一滚轮32的第一加工面321挤压该卷边结构24,使得该卷边结构24朝靠近该电池单体20的中轴线201方向倾斜,并使得该加强件23的至少部分位于该卷边结构24内侧和该盖板22之间。
在一些实施例中,该方法400还包括:通过第一压头31限制该电池单体20的加强件23在第一平面内的移动,该第一平面垂直于该电池单体20的中轴线201。
在一些实施例中,该方法400还包括:控制第二滚轮36向该电池单体20的中轴线201方向移动,并通过该第二滚轮36的第二加工面361挤压并卷绕该盖板22的第一边缘部221和该壳体21的第二边缘部211,以形成该卷边结构24。
在一些实施例中,该方法400还包括:将第二压头35与该电池单体20的加强件23的第一表面231接触,并限制该加强件23与该盖板22之间的相对移动,该加强件23设置在该盖板22的远离该电池单体20的内部的一侧,该第一表面231为该加强件23的朝向该卷边结构24的表面。
在一些实施例中,该方法400还包括:在该壳体21与该盖板22形成该卷边结构24之前,控制该第二压头35沿该电池单体20的中轴线201方向,朝向该电池单体20的内部挤压该加强件23,以使该盖板22至少部分区域容纳在该壳体21的开口内,且该第一边缘部221与该第二边缘部211接触。
在一些实施例中,该方法400还包括:在形成该卷边结构24后,控制该第二压头35离开该电池单体20。
在一些实施例中,该方法400还包括:控制该第二滚轮36围绕该电池单体20的中轴线201旋转。
在一些实施例中,该控制该第二滚轮36围绕该电池单体20的中轴线201旋转,包括:在控制该第二滚轮36向该电池单体20的中轴线201方向移动时,控制该第二滚轮36围绕该电池单体20的中轴线201旋转。
该方法400还包括:在控制该第一滚轮32移动至该第一加工面321与该电池单体20接触时,控制该第二滚轮36移动至该第二加工面361与该电池单体20不接触;在控制该第二滚轮36移动至该第二加工面361与该电池单体20接触时,控制该第一滚轮32移动至该第一加工面321与该电池单体20不接触。
应理解,本申请实施例的设备30可用于执行本申请实施例中的方法400,方法 400包括通过设备30制备电池单体20的相应流程,为了简洁,在此不再赘述。
虽然已经参考优选实施例对本申请进行了描述,但在不脱离本申请的范围的情况下,可以对其进行各种改进并且可以用等效物替换其中的部件。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (33)

  1. 一种用于制备电池单体的设备,其特征在于,包括:
    滚轮移动机构(33),用于控制第一滚轮(32)向电池单体(20)的中轴线(201)方向移动,所述电池单体(20)包括壳体(21)和盖板(22),所述壳体(21)和所述盖板(22)密封连接且形成有向外侧翻转的卷边结构(24);
    第一滚轮(32),所述第一滚轮(32)具有第一加工面(321),所述第一滚轮(32)用于在所述滚轮移动机构(33)控制所述第一滚轮(32)向所述电池单体(20)的中轴线(201)方向移动时,通过所述第一加工面(321)挤压所述卷边结构(24),使得所述卷边结构(24)朝靠近所述电池单体(20)的中轴线(201)方向倾斜。
  2. 根据权利要求1所述的设备,其特征在于,所述第一滚轮(32)位于所述卷边结构(24)的远离所述电池单体(20)的中轴线(201)的一侧。
  3. 根据权利要求1或2所述的设备,其特征在于,所述设备还包括:
    滚轮旋转机构(34),用于控制所述第一滚轮(32)围绕所述电池单体(20)的中轴线(201)旋转。
  4. 根据权利要求3所述的设备,其特征在于,所述滚轮旋转机构(34)用于:
    在所述滚轮移动机构(33)控制所述第一滚轮(32)向所述电池单体(20)的中轴线(201)方向移动时,控制所述第一滚轮(32)围绕所述电池单体(20)的中轴线(201)旋转。
  5. 根据权利要求1至4中任一项所述的设备,其特征在于,所述第一加工面(321)为环绕所述第一滚轮(32)的凹槽的内表面。
  6. 根据权利要求1至5中任一项所述的设备,其特征在于,所述电池单体(20)还包括加强件(23),所述加强件(23)设置在所述盖板(22)的远离所述电池单体(20)的内部的一侧;所述第一滚轮(32)被配置为挤压所述卷边结构(24),使得所述卷边结构(24)朝靠近所述电池单体(20)的中轴线(201)方向倾斜,并使得所述加强件(23)的至少部分位于所述卷边结构(24)内侧和所述盖板(22)之间。
  7. 根据权利要求6所述的设备,其特征在于,所述第一加工面(321)包括与所述加强件(23)的第一表面(231)的倾斜方向一致的倾斜面(3211),所述第一表面(231)为所述加强件(23)的与所述卷边结构(24)接触的表面。
  8. 根据权利要求6或7所述的设备,其特征在于,所述设备还包括:
    第一压头(31),用于限制所述电池单体(20)的加强件(23)在第一平面内的移动,所述第一平面垂直于所述电池单体(20)的中轴线(201)。
  9. 根据权利要求8所述的设备,其特征在于,所述加强件(23)为环形,所述第一压头(31)设置在所述加强件(23)的内侧,以使所述第一压头(31)与所述加强件(23)的靠近所述电池单体(20)的中轴线(201)的第二表面(232)接触。
  10. 根据权利要求9所述的设备,其特征在于,所述第一压头(31)的与所述加强件(23)接触的表面(311)与所述电池单体(20)的中轴线(201)的夹角的取值范 围为[0°,10°]。
  11. 根据权利要求1至10中任一项所述的设备,其特征在于,所述设备还包括:
    第二滚轮(36),所述第二滚轮(36)具有第二加工面(361),
    所述滚轮移动机构(33)还用于:控制所述第二滚轮(36)向所述电池单体(20)的中轴线(201)方向移动;
    所述第二滚轮(36)用于:在所述滚轮移动机构(33)控制所述第二滚轮(36)向所述电池单体(20)的中轴线(201)方向移动时,通过所述第二加工面(361)挤压并卷绕所述盖板(22)的第一边缘部(221)和所述壳体(21)的第二边缘部(211),以形成所述卷边结构(24)。
  12. 根据权利要求11所述的设备,其特征在于,所述设备还包括:
    第二压头(35),所述第二压头(35)与所述电池单体(20)的加强件(23)的第一表面(231)接触,所述加强件(23)设置在所述盖板(22)的远离所述电池单体(20)的内部的一侧,所述第一表面(231)为所述加强件(23)的朝向所述卷边结构(24)的表面,所述第二压头(35)用于:限制所述加强件(23)与所述盖板(22)之间的相对移动。
  13. 根据权利要求12所述的设备,其特征在于,所述设备还包括:
    压头移动机构(37),用于在所述壳体(21)与所述盖板(22)形成所述卷边结构(24)之前,控制所述第二压头(35)沿所述电池单体(20)的中轴线(201)方向,朝向所述电池单体(20)的内部挤压所述加强件(23),以使所述盖板(22)至少部分区域容纳在所述壳体(21)的开口内,且所述第一边缘部(221)与所述第二边缘部(211)接触。
  14. 根据权利要求13所述的设备,其特征在于,所述压头移动机构(37)还用于:
    在控制所述第二压头(35)离开所述电池单体(20)时,控制所述设备的第一压头(31)不离开所述电池单体(20)。
  15. 根据权利要求11至14中任一项所述的设备,其特征在于,所述第二滚轮(36)位于所述电池单体(20)的外侧。
  16. 根据权利要求11至15中任一项所述的设备,其特征在于,所述滚轮旋转机构(34)还用于:
    控制所述第二滚轮(36)围绕所述电池单体(20)的中轴线(201)旋转。
  17. 根据权利要求16所述的设备,其特征在于,所述滚轮旋转机构(34)用于:
    在所述滚轮移动机构(33)控制所述第二滚轮(36)向所述电池单体(20)的中轴线(201)方向移动时,控制所述第二滚轮(36)围绕所述电池单体(20)的中轴线(201)旋转。
  18. 根据权利要求11至17中任一项所述的设备,其特征在于,所述滚轮移动机构(33)还用于:
    在控制所述第一滚轮(32)移动至所述第一加工面(321)与所述电池单体(20)接触时,控制所述第二滚轮(36)移动至所述第二加工面(361)与所述电池单体(20)不接触,
    在控制所述第二滚轮(36)移动至所述第二加工面(361)与所述电池单体(20)接触时,控制所述第一滚轮(32)移动至所述第一加工面(321)与所述电池单体(20)不接触。
  19. 根据权利要求11至18中任一项所述的设备,其特征在于,所述第二加工面(361)为环绕所述第二滚轮(36)的凹槽的内表面。
  20. 根据权利要求1至19中任一项所述的设备,其特征在于,所述电池单体(20)为圆柱体,所述第一滚轮(32)为圆柱体。
  21. 根据权利要求20所述的设备,其特征在于,所述设备包括多个所述第一滚轮(32),多个所述第一滚轮(32)沿所述电池单体(20)的周向均匀分布。
  22. 一种用于制备电池单体的方法,其特征在于,所述电池单体(20)包括壳体(21)和盖板(22),所述壳体(21)和所述盖板(22)密封连接且形成有向外侧翻转的卷边结构(24),所述方法包括:
    控制第一滚轮(32)向所述电池单体(20)的中轴线(201)方向移动,并通过所述第一滚轮(32)的第一加工面(321)挤压所述卷边结构(24),使得所述卷边结构(24)朝靠近所述电池单体(20)的中轴线(201)方向倾斜。
  23. 根据权利要求22所述的方法,其特征在于,所述方法还包括:
    控制所述第一滚轮(32)围绕所述电池单体(20)的中轴线(201)旋转。
  24. 根据权利要求23所述的方法,其特征在于,所述控制所述第一滚轮(32)围绕所述电池单体(20)的中轴线(201)旋转,包括:
    在控制所述第一滚轮(32)向所述电池单体(20)的中轴线(201)方向移动时,控制所述第一滚轮(32)围绕所述电池单体(20)的中轴线(201)旋转。
  25. 根据权利要求22至24中任一项所述的方法,其特征在于,所述电池单体(20)还包括加强件(23),所述加强件(23)设置在所述盖板(22)的远离所述电池单体(20)的内部的一侧;
    所述通过所述第一滚轮(32)的第一加工面(321)挤压所述卷边结构(24),使得所述卷边结构(24)朝靠近所述电池单体(20)的中轴线(201)方向倾斜,包括:
    通过所述第一滚轮(32)的第一加工面(321)挤压所述卷边结构(24),使得所述卷边结构(24)朝靠近所述电池单体(20)的中轴线(201)方向倾斜,并使得所述加强件(23)的至少部分位于所述卷边结构(24)内侧和所述盖板(22)之间。
  26. 根据权利要求25所述的方法,其特征在于,所述方法还包括:
    通过第一压头(31)限制所述电池单体(20)的加强件(23)在第一平面内的移动,所述第一平面垂直于所述电池单体(20)的中轴线(201)。
  27. 根据权利要求22至26中任一项所述的方法,其特征在于,所述方法还包括:
    控制第二滚轮(36)向所述电池单体(20)的中轴线(201)方向移动,并通过所述第二滚轮(36)的第二加工面(361)挤压并卷绕所述盖板(22)的第一边缘部(221)和所述壳体(21)的第二边缘部(211),以形成所述卷边结构(24)。
  28. 根据权利要求27所述的方法,其特征在于,所述方法还包括:
    将第二压头(35)与所述电池单体(20)的加强件(23)的第一表面(231)接触, 并限制所述加强件(23)与所述盖板(22)之间的相对移动,所述加强件(23)设置在所述盖板(22)的远离所述电池单体(20)的内部的一侧,所述第一表面(231)为所述加强件(23)的朝向所述卷边结构(24)的表面。
  29. 根据权利要求28所述的方法,其特征在于,所述方法还包括:
    在所述壳体(21)与所述盖板(22)形成所述卷边结构(24)之前,控制所述第二压头(35)沿所述电池单体(20)的中轴线(201)方向,朝向所述电池单体(20)的内部挤压所述加强件(23),以使所述盖板(22)至少部分区域容纳在所述壳体(21)的开口内,且所述第一边缘部(221)与所述第二边缘部(211)接触。
  30. 根据权利要求28或29所述的方法,其特征在于,所述方法还包括:
    在控制所述第二压头(35)离开所述电池单体(20)时,控制所述设备的第一压头(31)不离开所述电池单体(20)。
  31. 根据权利要求27至30中任一项所述的方法,其特征在于,所述方法还包括:
    控制所述第二滚轮(36)围绕所述电池单体(20)的中轴线(201)旋转。
  32. 根据权利要求31所述的方法,其特征在于,所述控制所述第二滚轮(36)围绕所述电池单体(20)的中轴线(201)旋转,包括:
    在控制所述第二滚轮(36)向所述电池单体(20)的中轴线(201)方向移动时,控制所述第二滚轮(36)围绕所述电池单体(20)的中轴线(201)旋转。
  33. 根据权利要求27至32中任一项所述的方法,其特征在于,所述方法还包括:
    在控制所述第一滚轮(32)移动至所述第一加工面(321)与所述电池单体(20)接触时,控制所述第二滚轮(36)移动至所述第二加工面(361)与所述电池单体(20)不接触;
    在控制所述第二滚轮(36)移动至所述第二加工面(361)与所述电池单体(20)接触时,控制所述第一滚轮(32)移动至所述第一加工面(321)与所述电池单体(20)不接触。
PCT/CN2022/091658 2022-05-09 2022-05-09 用于制备电池单体的设备和方法 WO2023216053A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280038642.3A CN117413413A (zh) 2022-05-09 2022-05-09 用于制备电池单体的设备和方法
PCT/CN2022/091658 WO2023216053A1 (zh) 2022-05-09 2022-05-09 用于制备电池单体的设备和方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/091658 WO2023216053A1 (zh) 2022-05-09 2022-05-09 用于制备电池单体的设备和方法

Publications (1)

Publication Number Publication Date
WO2023216053A1 true WO2023216053A1 (zh) 2023-11-16

Family

ID=88729432

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/091658 WO2023216053A1 (zh) 2022-05-09 2022-05-09 用于制备电池单体的设备和方法

Country Status (2)

Country Link
CN (1) CN117413413A (zh)
WO (1) WO2023216053A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10255730A (ja) * 1997-03-13 1998-09-25 Fuji Photo Film Co Ltd 円筒形電池のビーディング方法および装置
DE102013215736A1 (de) * 2013-08-09 2015-02-12 Robert Bosch Gmbh Batteriezelle und Verfahren zum Verschließen der Batteriezelle
CN105552259A (zh) * 2016-02-22 2016-05-04 浙江野马电池有限公司 一种刻线卷边封口装置及卷边封口方法
CN113399521A (zh) * 2021-06-07 2021-09-17 杭州大轶科技有限公司 一种铝板自动卷边机及其生产方法
CN214898615U (zh) * 2021-06-29 2021-11-26 宁波市万恒电池配件有限公司 一种防爆型扣式微型圆柱软壳电池
CN215544022U (zh) * 2021-07-30 2022-01-18 南京盛又电子技术有限公司 一种用于制造锂电池负极盖帽的卷边设备
CN215644688U (zh) * 2021-09-26 2022-01-25 中航锂电科技有限公司 电池盖板组件及电池

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10255730A (ja) * 1997-03-13 1998-09-25 Fuji Photo Film Co Ltd 円筒形電池のビーディング方法および装置
DE102013215736A1 (de) * 2013-08-09 2015-02-12 Robert Bosch Gmbh Batteriezelle und Verfahren zum Verschließen der Batteriezelle
CN105552259A (zh) * 2016-02-22 2016-05-04 浙江野马电池有限公司 一种刻线卷边封口装置及卷边封口方法
CN113399521A (zh) * 2021-06-07 2021-09-17 杭州大轶科技有限公司 一种铝板自动卷边机及其生产方法
CN214898615U (zh) * 2021-06-29 2021-11-26 宁波市万恒电池配件有限公司 一种防爆型扣式微型圆柱软壳电池
CN215544022U (zh) * 2021-07-30 2022-01-18 南京盛又电子技术有限公司 一种用于制造锂电池负极盖帽的卷边设备
CN215644688U (zh) * 2021-09-26 2022-01-25 中航锂电科技有限公司 电池盖板组件及电池

Also Published As

Publication number Publication date
CN117413413A (zh) 2024-01-16

Similar Documents

Publication Publication Date Title
WO2023050969A1 (zh) 一种电池单体、电池及用电装置
WO2023020088A1 (zh) 电池单体、电池及用电设备
CN215989012U (zh) 电池单体、电池以及用电装置
US20230369734A1 (en) Battery cell, battery, and electric apparatus
US20160072119A1 (en) Sealed secondary battery
WO2023216425A1 (zh) 电池单体及制造方法、电池及用电装置
WO2023004833A1 (zh) 电池单体、电池、用电装置及制备电池单体的方法和设备
WO2022246840A1 (zh) 端盖组件、电池单体、电池及用电设备
WO2023216053A1 (zh) 用于制备电池单体的设备和方法
WO2023197858A1 (zh) 电池单体、电池以及用电装置
WO2023216056A1 (zh) 用于制备电池单体的设备和方法
WO2023185327A1 (zh) 端盖、电池单体、电池及用电设备
US20230155262A1 (en) Housing, battery cell, battery and electric apparatus
WO2023185251A1 (zh) 电极组件、电池单体、电池及用电装置
WO2023071538A1 (zh) 电极组件、电池、用电装置及制造电极组件的方法
WO2023201880A1 (zh) 集流体及其制造方法和设备、及集流体预制件
WO2023168954A1 (zh) 电芯、电芯的制造方法、电池单体、电池及用电设备
WO2024020830A1 (zh) 导向抚平机构及导向抚平装置
WO2023240746A1 (zh) 外壳、电池单体、电池及用电设备
WO2024016453A1 (zh) 电池单体、电池及用电装置
WO2023236220A1 (zh) 电池单体、电池及用电设备
CN116014305A (zh) 电池单体、电池、用电装置及电池单体的制造方法
EP4383431A1 (en) Pressure relief apparatus, cell, battery and electrical device
WO2023060517A1 (zh) 一种极片、电极组件、电池单体、电池以及用电设备
WO2023216055A1 (zh) 电池单体、电池和用电设备

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202280038642.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22941021

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022941021

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022941021

Country of ref document: EP

Effective date: 20240507