WO2023214815A1 - 유기 화합물 및 이를 포함하는 유기발광소자 - Google Patents

유기 화합물 및 이를 포함하는 유기발광소자 Download PDF

Info

Publication number
WO2023214815A1
WO2023214815A1 PCT/KR2023/006095 KR2023006095W WO2023214815A1 WO 2023214815 A1 WO2023214815 A1 WO 2023214815A1 KR 2023006095 W KR2023006095 W KR 2023006095W WO 2023214815 A1 WO2023214815 A1 WO 2023214815A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
organic
formula
layer
organic compound
Prior art date
Application number
PCT/KR2023/006095
Other languages
English (en)
French (fr)
Inventor
빈종관
현서용
송동진
고은지
Original Assignee
(주)피엔에이치테크
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)피엔에이치테크 filed Critical (주)피엔에이치테크
Publication of WO2023214815A1 publication Critical patent/WO2023214815A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/14Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/14Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing three or more hetero rings
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/18Carrier blocking layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/18Carrier blocking layers
    • H10K50/181Electron blocking layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/624Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing six or more rings
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/636Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising heteroaromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene

Definitions

  • the present invention relates to organic compounds, and more specifically, organic compounds used in organic layers such as electron blocking layers and hole transport layers in organic light-emitting devices, and organic compounds whose device characteristics, such as low-voltage driving, long life, and luminous efficiency, are significantly improved by employing them. It is about light emitting devices.
  • Organic light emitting devices not only can be formed on transparent substrates, but also can be driven at low voltages of 10 V or less compared to plasma display panels or inorganic electroluminescence (EL) displays, and consume relatively little power. , It has the advantage of excellent color and can display three colors of green, blue, and red, so it has recently been the subject of much attention as a next-generation display device.
  • an organic light emitting device In an organic light emitting device, electrons injected from an electron injection electrode (cathode electrode) and holes injected from a hole injection electrode (anode electrode) combine in the light emitting layer to form an exciton, and the exciton produces energy. It is a self-luminous device that emits light while emitting light, and such organic light-emitting devices are attracting attention as next-generation light sources due to the advantages of low driving voltage, high luminance, wide viewing angle, fast response speed, and applicability to full-color flat panel light-emitting displays. .
  • the structure of the organic layer within the device must be optimized, and the materials that make up each organic layer: hole injection material, hole transport material, hole blocking material, light-emitting material, electron transport material, and electron.
  • injection materials, electron blocking materials, etc. must be supported by stable and efficient materials, there is still a need for the development of stable and efficient organic layer structures and materials for organic light-emitting devices.
  • the present invention provides an organic compound that can be used as an organic layer material such as an electron blocking layer and a hole transport layer in an organic light emitting device to significantly improve device characteristics such as low voltage driving characteristics, long life, and luminous efficiency, and an organic light emitting device containing the same. We would like to provide.
  • the present invention provides an organic compound represented by the following [Chemical Formula I] and an organic light-emitting device containing the same.
  • the organic compound according to the present invention has excellent hole injection and transport performance, high triplet exciton confinement performance, excellent electron blocking performance, and excellent stability in a thin film state, and is used as an electron blocking layer, hole transport layer, etc.
  • Organic light-emitting devices used in the organic layer have significantly superior device characteristics such as low-voltage operation, long lifespan, and luminous efficiency compared to conventional devices, and can be usefully used in various lighting devices and display devices.
  • the present invention relates to an organic compound represented by the following [Chemical Formula I], which has device characteristics such as low voltage driving, long life, and luminous efficiency when employed in various organic layers in an organic light-emitting device, preferably in an electron blocking layer and a hole transport layer. It is possible to implement this significantly improved organic light emitting device.
  • X 1 and X 2 are each independently O or S.
  • Ar is selected from a substituted or unsubstituted aryl group having 6 to 30 carbon atoms and a substituted or unsubstituted heteroaryl group having 3 to 30 carbon atoms.
  • R is each hydrogen or deuterium, and m is an integer from 0 to 4.
  • D is deuterium
  • n means the number of hydrogens in [Chemical Formula I] replaced with deuterium (D)
  • n is an integer from 0 to 60.
  • the compound represented by [Formula I] is structurally characterized by (i) introducing dibenzofuran or dibenzothiophene at the 1 carbon position of carbazole, and (ii) carbazole -It is characterized by introducing an amine group connected to meta by using a phenylene group as a linking group at the N terminal.
  • the amine group is a diaryl (heteroaryl) amine, and is characterized in that it contains a dibenzofuran or dibenzothiophene structure.
  • the compound represented by [Formula I] according to the present invention may contain at least one or more deuterium in [Formula I], and accordingly, the [Formula I] has a skeletal structure
  • Ar and R introduced herein are each partially substituted with deuterium (D), and according to one embodiment of the present invention, the deuterium (D) substitution rate may be 10 to 90%.
  • the compound according to the present invention replaces some of the hydrogen in the structure of [Formula I] with deuterium, making it possible to implement an organic light-emitting device with a longer lifespan by compensating for the shortcomings of the low lifespan of organic light-emitting devices found according to the conventional moiety structure. do.
  • substituted or unsubstituted means that Ar is deuterium, cyano group, halogen group, hydroxy group, nitro group, alkyl group, alkoxy group, cycloalkyl group, heterocycloalkyl group, aryl group, fluorenyl group, heteroaryl. It means being substituted with one or two or more substituents selected from a group, a silyl group, and an amine group, or being substituted with a substituent where two or more of the above substituents are connected, or not having any substituents.
  • a substituted aryl group refers to a phenyl group, biphenyl group, naphthalene group, fluorenyl group, pyrenyl group, phenanthrenyl group, perylene group, tetracenyl group, anthracenyl group, etc. substituted with another substituent such as deuterium.
  • substituted heteroaryl group refers to pyridyl group, thiophenyl group, triazine group, quinoline group, phenanthroline group, imidazole group, thiazole group, oxazole group, carbazole group and condensed heterocyclic groups thereof, such as This means that benzquinoline group, benzimidazole group, benzoxazole group, benzthiazole group, benzcarbazole group, dibenzothiophenyl group, dibenzofuran group, etc. are also substituted with other substituents such as deuterium.
  • the alkyl group may be straight chain or branched, and the number of carbon atoms is not particularly limited, but is preferably 1 to 20. Specific examples include methyl group, ethyl group, propyl group, n-propyl group, isopropyl group, butyl group, n-butyl group, isobutyl group, tert-butyl group, sec-butyl group, 1-methyl-butyl group, 1- Ethyl-butyl group, pentyl group, n-pentyl group, isopentyl group, neopentyl group, tert-pentyl group, hexyl group, n-hexyl group, 1-methylpentyl group, 2-methylpentyl group, 4-methyl- 2-pentyl group, 3,3-dimethylbutyl group, 2-ethylbutyl group, heptyl group, n-heptyl group, 1-methylhexyl group, 2-e
  • the alkoxy group may be straight chain or branched chain.
  • the number of carbon atoms in the alkoxy group is not particularly limited, but is preferably 1 to 20, which is within a range that does not cause steric hindrance.
  • neopentyloxy group isopentyloxy group, n-hexyloxy group, 3,3-dimethylbutyloxy group, 2-ethylbutyloxy group, n-octyloxy group, n-nonyloxy group, n-decyloxy group , benzyloxy group, p-methylbenzyloxy group, etc., but is not limited thereto.
  • a deuterated alkyl group or alkoxy group, and a halogenated alkyl group or alkoxy group mean an alkyl group or alkoxy group in which the alkyl group or alkoxy group is substituted with a deuterium or halogen group.
  • the aryl group may be monocyclic or polycyclic, and the number of carbon atoms is not particularly limited, but is preferably 6 to 30. It also includes a polycyclic aryl group structure fused with cycloalkyl, etc., and the monocyclic aryl group Examples of phenyl group, biphenyl group, terphenyl group, stilbene group, etc. Examples of polycyclic aryl groups include naphthyl group, anthracenyl group, phenanthrenyl group, pyrenyl group, perylenyl group, tetracenyl group, and chrysenyl group. , fluorenyl group, acenaphthacenyl group, triphenylene group, fluoranthrene group, etc., but the scope of the present invention is not limited to these examples.
  • fluorene in a fluorenyl group or fluorene moiety is a structure in which two ring organic compounds are connected through one atom, for example , , etc.
  • open fluorene structure where open fluorene is a structure in which one ring compound is disconnected from a structure in which two ring organic compounds are connected through one atom, for example , etc.
  • the carbon atom of the ring may be substituted with one or more heteroatoms selected from N, S, and O, for example , , , etc.
  • the fluorenyl group may have a structure in which a monocyclic or polycyclic aromatic ring and a monocyclic or polycyclic alicyclic ring, etc. are further condensed to the above linked structure or open structure.
  • the heteroaryl group is a heterocyclic group containing O, N or S as a heteroatom, and the number of carbon atoms is not particularly limited, but is preferably 2 to 30 carbon atoms, and is a polycyclic group fused with cycloalkyl or heterocycloalkyl, etc. It contains a heteroaryl group structure, and specific examples thereof in the present invention include thiophene group, furan group, pyrrole group, imidazole group, thiazole group, oxazole group, oxadiazole group, triazole group, pyridyl group, and bipyridyl group.
  • pyrimidyl group triazine group, triazole group, acridyl group, pyridazine group, pyrazinyl group, quinolinyl group, quinazoline group, quinoxalinyl group, phthalazinyl group, pyrido pyrimidinyl group, pyrido pyrazinyl group, pyrazino pyrazinyl group, isoquinoline group, indole group, carbazole group, benzoxazole group, benzoimidazole group, benzothiazole group, benzocarbazole group, benzothiophene group, dibenzothiophene group, benzofuranyl group, Dibenzofuranyl group, phenanthroline group, thiazolyl group, isoxazolyl group, oxadiazolyl group, thiadiazolyl group, benzothiazolyl group, phenothiazinyl group, phenoxaziny
  • the silyl group is an unsubstituted silyl group or a silyl group substituted with an alkyl group, an aryl group, etc.
  • Specific examples of such silyl groups include trimethylsilyl, triethylsilyl, triphenylsilyl, trimethoxysilyl, and dimethoxysilyl.
  • Examples include phenylsilyl, diphenylmethylsilyl, diphenylvinylsilyl, methylcyclobutylsilyl, dimethylfurylsilyl, etc., but are not limited thereto.
  • halogen group used in the present invention include fluorine (F), chlorine (Cl), and bromine (Br).
  • cycloalkyl groups refer to and include monocyclic, polycyclic and spiro alkyl radicals, and preferably contain ring carbon atoms having 3 to 20 carbon atoms, such as cyclopropyl, cyclopentyl, cyclohexyl, and bicyclo. It includes heptyl, spirodecyl, spiroundecyl, adamantyl, etc., and the cycloalkyl group may be optionally substituted.
  • heterocycloalkyl groups refer to and include aromatic and non-aromatic cyclic radicals containing one or more heteroatoms, wherein one or more heteroatoms are O, S, N, P, B, Si and Se, It is preferably selected from O, N or S, and specifically, when it contains N, it may be aziridine, pyrrolidine, piperidine, azepane, azocan, etc.
  • the amine group may be -NH 2 , an alkylamine group, an arylamine group, an arylheteroarylamine group, etc.
  • an arylamine group refers to an amine substituted with aryl
  • an alkylamine group refers to an amine substituted with alkyl.
  • the arylheteroarylamine group refers to an amine substituted with aryl and heteroaryl groups.
  • arylamine group examples include a substituted or unsubstituted monoarylamine group, a substituted or unsubstituted diarylamine group, or a substituted or There is an unsubstituted triarylamine group, and the aryl group and heteroaryl group in the arylamine group and arylheteroarylamine group may be a monocyclic aryl group, a monocyclic heteroaryl group, or a polycyclic aryl group or a polycyclic heteroaryl group.
  • the arylamine group containing two or more heteroaryl groups, and the arylheteroarylamine group include a monocyclic aryl group (heteroaryl group), a polycyclic aryl group (heteroaryl group), or a monocyclic aryl group (heteroaryl group). It may contain both an aryl group) and a polycyclic aryl group (heteroaryl group).
  • the aryl group and heteroaryl group of the arylamine group and the arylheteroarylamine group may be selected from examples of the above-mentioned aryl group and heteroaryl group.
  • the organic compound according to the present invention represented by [Chemical Formula I] can be used as an organic layer of an organic light-emitting device due to its structural specificity, and more specifically, electron blocking of the organic layer depending on the characteristics of various substituents introduced. It can be used as a material for layers, etc.
  • Preferred specific examples of the compound represented by [Chemical Formula I] according to the present invention include the following compounds, but are not limited to these.
  • organic compounds with unique characteristics of the skeletal structure and substituents can be synthesized.
  • the conditions required for each organic layer such as a hole transport layer and an electron blocking layer can be met.
  • Organic compound materials that satisfy the requirements can be manufactured, and in particular, when the compound of [Chemical Formula I] according to the present invention is used in the electron blocking layer, etc., device characteristics such as luminous efficiency of the device can be further improved.
  • the organic compound according to the present invention can be applied to an organic light-emitting device according to a conventional manufacturing method.
  • the organic light emitting device may have a structure including a first electrode, a second electrode, and an organic layer disposed between them, except that the organic compound according to the present invention is used in the organic layer of the device. It can be manufactured using conventional device manufacturing methods and materials.
  • the organic layer of the organic light emitting device according to the present invention may have a single-layer structure, or may have a multi-layer structure in which two or more organic layers are stacked.
  • it may have a structure including a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer, an electron blocking layer, etc.
  • it is not limited to this and may include fewer or more organic layers.
  • the organic layer may include an electron blocking layer, etc., and one or more of the layers may include the organic compound represented by [Chemical Formula I].
  • the organic light emitting device deposits a metal, a conductive metal oxide, or an alloy thereof on a substrate using a PVD (physical vapor deposition) method such as sputtering or e-beam evaporation. is deposited to form an anode, and an organic layer including a hole injection layer, a hole transport layer, a hole blocking layer, a light emitting layer, an electron blocking layer, an electron transport layer, an electron blocking layer, etc. is formed thereon, and then an organic layer that can be used as a cathode is formed thereon. It can be manufactured by depositing the material.
  • PVD physical vapor deposition
  • an organic light-emitting device can also be made by sequentially depositing a cathode material, an organic layer, and an anode material on a substrate.
  • the organic layer may have a multilayer structure including a hole injection layer, a hole transport layer, a hole blocking layer, a light emitting layer, an electron blocking layer, an electron transport layer, an electron blocking layer, etc., but is not limited to this and may have a single layer structure.
  • the organic layer uses a variety of polymer materials and is formed using a solvent process rather than a deposition method, such as spin coating, dip coating, doctor blading, screen printing, inkjet printing, or thermal transfer, to form a smaller number of layers. It can be manufactured in layers.
  • the anode is usually preferably a material with a large work function to ensure smooth hole injection into the organic layer.
  • anode materials that can be used in the present invention include metals such as vanadium, chromium, copper, zinc, and gold, or alloys thereof, zinc oxide, indium oxide, indium tin oxide (ITO), and indium zinc oxide (IZO).
  • Metal oxides, combinations of metals and oxides such as ZnO:Al or SnO 2 :Sb, poly(3-methylthiophene), poly[3,4-(ethylene-1,2-dioxy)thiophene] (PEDT) , conductive polymers such as polypyrrole and polyaniline, but are not limited to these.
  • the cathode is generally preferably made of a material with a low work function to facilitate electron injection into the organic layer.
  • cathode materials include metals such as magnesium, calcium, sodium, potassium, titanium, indium, yttrium, lithium, gadolinium, aluminum, silver, tin and lead, or alloys thereof, multilayers such as LiF/Al or LiO 2 /Al. Structural materials, etc., but are not limited to these.
  • the hole injection layer is a material that can easily receive holes from the anode at a low voltage, and it is preferable that the HOMO (highest occupied molecular orbital) of the hole injection material is between the work function of the anode material and the HOMO of the surrounding organic layer.
  • hole injection materials include metal porphyrine, oligothiophene, arylamine-based organic substances, hexanitrile hexaazatriphenylene, quinacridone-based organic substances, perylene-based organic substances, Examples include anthraquinone, polyaniline, and polythiophene-based conductive polymers, but are not limited to these.
  • the hole transport layer is a material that can transport holes from the anode or hole injection layer and transfer them to the light emitting layer, and a material with high mobility for holes is suitable.
  • Specific examples include arylamine-based organic materials, conductive polymers, and block copolymers with both conjugated and non-conjugated portions, but are not limited to these.
  • the electron blocking layer is a layer that blocks the movement of electrons and can be formed on the hole transport layer.
  • An electron blocking layer that can block the movement of electrons without affecting the transport of holes can be used.
  • a light-emitting layer may be formed on the electron blocking layer, and a hole blocking layer, an electron transport layer, and an electron injection layer may be formed.
  • the hole blocking layer can be used to prevent the movement of holes without affecting the transport of electrons.
  • An example of such a hole blocking layer is TPBi (1,3,5-tri(1-phenyl-1H-benzo). [d]imidazol-2-yl)phenyl), BCP (2,9-dimethyl4,7-diphenyl-1,10-phenanthroline), CBP (4,4-bis(N-carbazolyl)-1,1'-biphenyl ), PBD (2-(4-biphenyl)-5-(4-t-butylphenyl)-1,3,4-oxadiazole), PTCBI (bisbenzimidazo[2,1-a:1',2-b']anthra [2,1,9-def:6,5,10-d'e'f']diisoguinoline-10,21-dione) or BPhen (4,7-diphenyl-1,10-phenanthroline), etc. It is not limited.
  • the light-emitting layer is a material that can emit light in the visible light range by transporting holes and electrons from the hole transport layer and the electron transport layer, respectively, and combining them, and a material with good quantum efficiency for fluorescence or phosphorescence is preferable.
  • Specific examples include 8-hydroxy-quinoline aluminum complex (Alq 3 ), carbazole-based compounds, dimerized styryl compounds, BAlq, 10-hydroxybenzoquinoline-metal compounds, benzoxazole, benzthiazole, and Examples include benzimidazole-based compounds, poly(p-phenylenevinylene) (PPV)-based polymers, spiro compounds, polyfluorene, and rubrene, but are not limited to these.
  • PV poly(p-phenylenevinylene)
  • the electron injection layer can be one that has high injection efficiency of electrons transferred from the cathode.
  • electron injection layers include, but are not limited to, lithium quinolate (Liq).
  • the electron transport layer is a material that can easily receive electrons from the cathode and transfer them to the light emitting layer, and a material with high electron mobility is suitable.
  • a material with high electron mobility includes, but are not limited to, an Al complex of 8-hydroxyquinoline, a complex containing Alq 3 , an organic radical compound, and a hydroxyflavone-metal complex.
  • the organic light emitting device may be a front emitting type, a back emitting type, or a double-sided emitting type depending on the material used.
  • organic light-emitting compound according to the present invention can function in organic electronic devices, including organic solar cells, organic photoreceptors, and organic transistors, on a principle similar to that applied to organic light-emitting devices.
  • Synthesis example 8 Synthesis of Compound 111
  • the ITO transparent electrode is patterned so that the light emitting area is 2 mm ⁇ 2 mm using an ITO glass substrate to which the ITO transparent electrode is attached on a glass substrate of 25 mm ⁇ 25 mm ⁇ 0.7 mm. and then washed. After the substrate was mounted in a vacuum chamber and the base pressure was set to 1 ⁇ 10 -6 torr, organic materials and metals were deposited on the ITO in the following structure.
  • the compound implemented according to the present invention was employed in the electron blocking layer to manufacture an organic light-emitting device having the following device structure, and then the light emission and driving characteristics of the compound implemented according to the present invention were measured.
  • ITO / hole injection layer HAT-CN, 5 nm
  • hole transport layer HT1, 100 nm
  • electron blocking layer 10 nm
  • emission layer 20 nm
  • electron transport layer E1:Liq, 30 nm
  • LiF LiF ( 1 nm) / Al (100 nm)
  • [HAT-CN] was deposited to a thickness of 5 nm on the top of the ITO transparent electrode to form a hole injection layer, and then [HT1] was deposited to a thickness of 100 nm to form a hole transport layer.
  • the following compound was deposited to a thickness of 10 nm to form an electron blocking layer, and the light-emitting layer was formed by co-depositing to a thickness of 20 nm using [BH1] as a host compound and [BD1] as a dopant compound.
  • an electron transport layer (50% doped with [ET1] compound Liq below) was deposited to a thickness of 30 nm, LiF was deposited to a thickness of 1 nm to form an electron injection layer, and Al was deposited to a thickness of 100 nm to form an organic light emitting device. was produced.
  • the organic light emitting device for Device Comparative Example 1 was manufactured in the same manner as the device structures of Examples 1 to 52, except that [EB1] below was used instead of the compound according to the present invention in the electron blocking layer.
  • the organic light emitting device for Device Comparative Example 2 was manufactured in the same manner as the device structures of Examples 1 to 52, except that [EB2] below was used instead of the compound according to the present invention in the electron blocking layer.
  • the organic light emitting device for Device Comparative Example 3 was manufactured in the same manner as the device structures of Examples 1 to 52, except that [EB3] below was used in the electron blocking layer instead of the compound according to the present invention.
  • the organic light-emitting device for Device Comparative Example 4 was manufactured in the same manner as the device structures of Examples 1 to 52, except that [EB4] below was used in the electron blocking layer instead of the compound according to the present invention.
  • the driving voltage, current efficiency, and color coordinates of the organic light emitting devices manufactured according to the above examples and comparative examples were measured using a source meter (Model 237, Keithley) and a luminance meter (PR-650, Photo Research), and were measured at 1,000 nit.
  • the standard result values are shown in [Table 1] below.
  • Example electronic low layer V cd/A CIEx CIey One Formula 5 4.13 7.46 0.1364 0.1340 2 Formula 10 4.33 7.63 0.1356 0.1347 3 Formula 13 4.26 7.55 0.1360 0.1351 4 Formula 15 4.28 7.66 0.1352 0.1358 5 Formula 16 4.20 7.18 0.1368 0.1338 6 Formula 19 4.21 7.26 0.1372 0.1332 7 Formula 20 4.29 7.50 0.1388 0.1320 8 Formula 26 4.16 7.74 0.1356 0.1351 9 Formula 34 4.27 7.43 0.1348 0.1353 10 Formula 36 4.20 7.48 0.1355 0.1344 11 Formula 40 4.24 7.51 0.1380 0.1329 12 Formula 43 4.00 7.52 0.1386 0.1318 13 Formula 53 4.30 7.68 0.1373 0.1328 14 Formula 66 4.16 7.35 0.1320 0.1382 15 Formula 69 4.01 7.52 0.1356 0.1343 16 Formula 70 4.09 7.86 0.1391 0.1338 17 Formula 72 4.28 7.43 0.1338 0.1393 18 Formula 81 4.11 7.59 0.1328 0.1388
  • the organic compound according to the present invention has excellent hole injection and transport performance, high triplet exciton confinement performance, excellent electron blocking performance, and excellent stability in a thin film state, and is used as an electron blocking layer, hole transport layer, etc.
  • Organic light-emitting devices used in the organic layer have significantly superior device characteristics such as low-voltage operation, long lifespan, and luminous efficiency compared to conventional devices, and can be used industrially in various lighting devices and display devices.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

본 발명은 유기발광소자 내의 전자저지층, 정공수송층 등의 유기층에 채용되는 유기 화합물 및 이를 채용하여 저전압 구동, 장수명, 발광 효율 등의 소자 특성이 현저히 향상된 유기발광소자에 관한 것으로서, 본 발명에 따른 유기 화합물은 정공주입 및 수송 성능이 우수하고, 삼중항 여기자를 가두는 성능이 높으며, 전자저지 성능이 우수하면서 박막 상태에서의 안정성이 우수하여, 이를 전자저지층, 정공수송층 등의 유기층에 채용한 유기발광소자는 종래 소자에 비하여 저전압 구동, 장수명 특성, 발광 효율 등의 소자 특성이 현저히 우수하여 다양한 조명 소자 및 디스플레이 소자 등에 유용하게 사용될 수 있다.

Description

유기 화합물 및 이를 포함하는 유기발광소자
본 발명은 유기 화합물에 관한 것으로서, 보다 구체적으로는 유기발광소자 내의 전자저지층, 정공수송층 등의 유기층에 채용되는 유기 화합물 및 이를 채용하여 저전압 구동, 장수명, 발광 효율 등의 소자 특성이 현저히 향상된 유기발광소자에 관한 것이다.
유기발광소자는 투명 기판 위에도 소자를 형성할 수 있을 뿐 아니라, 플라즈마 디스플레이 패널 (Plasma Display Panel)이나 무기전계발광 (EL) 디스플레이에 비해 10 V 이하의 저전압 구동이 가능하고, 전력 소모가 비교적 적으며, 색감이 뛰어나다는 장점이 있고, 녹색, 청색, 적색의 3가지 색을 나타낼 수가 있어 최근에 차세대 디스플레이 소자로 많은 관심의 대상이 되고 있다.
유기발광소자는 전자 주입 전극 (캐소드 전극)으로부터 주입된 전자 (electron)와 정공 주입 전극 (애노드 전극)으로부터 주입된 정공 (hole)이 발광층에서 결합하여 엑시톤 (exciton)을 형성하고 그 엑시톤이 에너지를 방출하면서 발광하는 자체 발광형 소자이며, 이와 같은 유기발광소자는 낮은 구동 전압, 높은 휘도, 넓은 시야각 및 빠른 응답속도를 가지며 풀-컬러 평판 발광 디스플레이에 적용 가능하다는 이점 때문에 차세대 광원으로서 각광을 받고 있다.
다만, 이러한 유기발광소자가 상기와 같은 특징을 발휘하기 위해서는 소자 내 유기층의 구조를 최적화하고, 각 유기층을 이루는 물질인 정공주입 물질, 정공수송 물질, 정공저지 물질, 발광물질, 전자수송 물질, 전자주입 물질, 전자저지 물질 등이 안정하고 효율적인 재료에 의하여 뒷받침되는 것이 선행되어야 하나, 여전히 안정하고 효율적인 유기발광소자용 유기층의 구조 및 각 재료의 개발이 계속하여 필요한 실정이다.
특히, 보다 높은 발광효율을 구현하기 위하여 정공 이동도도 증가하여 정공주입층 또는 정공수송층에도 이용될 뿐만 아니라, 전자저지층으로 보다 적합하게 활용할 수 있는 재료에 대한 개발이 요구되고 있다.
따라서, 본 발명은 유기발광소자 내의 전자저지층, 정공수송층 등의 유기층 재료로 채용되어 저전압 구동 특성과, 장수명, 발광 효율 등의 소자 특성을 현저히 향상시킬 수 있는 유기 화합물 및 이를 포함하는 유기발광소자를 제공하고자 한다.
본 발명은 상기 과제를 해결하기 위하여, 하기 [화학식 Ⅰ]로 표시되는 유기 화합물 및 이를 포함하는 유기발광소자를 제공한다.
[화학식 Ⅰ]
Figure PCTKR2023006095-appb-img-000001
상기 [화학식 Ⅰ]의 구체적인 구조와 이에 의하여 구현되는 구체적인 화합물, 그리고 X1, X2, R, m, Ar, D (중수소) 및 n의 정의에 대해서는 후술한다.
본 발명에 따른 유기 화합물은 정공주입 및 수송 성능이 우수하고, 삼중항 여기자를 가두는 성능이 높으며, 전자저지 성능이 우수하면서 박막 상태에서의 안정성이 우수하여, 이를 전자저지층, 정공수송층 등의 유기층에 채용한 유기발광소자는 종래 소자에 비하여 저전압 구동, 장수명 특성, 발광 효율 등의 소자 특성이 현저히 우수하여 다양한 조명 소자 및 디스플레이 소자 등에 유용하게 사용될 수 있다.
이하, 본 발명을 더욱 상세하게 설명한다.
본 발명은 하기 [화학식 Ⅰ]로 표시되는 유기 화합물에 관한 것으로서, 유기발광소자 내의 다양한 유기층에, 바람직하게는 전자저지층, 정공수송층 등에 채용하는 경우에 저전압 구동, 장수명, 발광 효율 등의 소자 특성이 현저히 향상된 유기발광소자의 구현이 가능하다.
[화학식 Ⅰ]
Figure PCTKR2023006095-appb-img-000002
상기 [화학식 Ⅰ]에서,
X1 및 X2는 각각 독립적으로 O 또는 S이다.
Ar은 치환 또는 비치환된 탄소수 6 내지 30의 아릴기 및 치환 또는 비치환된 탄소수 3 내지 30의 헤테로아릴기 중에서 선택된다.
R은 각각 수소 또는 중수소이고, m은 0 내지 4의 정수이다.
D는 중수소이고, n은 상기 [화학식 Ⅰ] 내의 수소가 중수소 (D)로 대체된 개수를 의미하고, n은 0 내지 60의 정수이다.
이와 같이 본 발명에 따른 [화학식 Ⅰ]로 표시되는 화합물은 구조적으로 (ⅰ) 카바졸의 1번 탄소 위치에 디벤조퓨란 또는 디벤조티오펜을 도입한 것을 특징으로 하고, (ⅱ) 카바졸의 -N 단에 페닐렌기를 연결기로 하여 메타 (meata)로 연결되는 아민기를 도입한 것을 특징으로 한다.
이때, (ⅲ) 상기 아민기는 디아릴(헤테로아릴) 아민으로서, 디벤조퓨란 또는 디벤조티오펜 구조체를 포함하는 것을 특징으로 한다.
또한, 본 발명의 일 실시예에 의하면, 본 발명에 따른 [화학식 Ⅰ]로 표시되는 화합물은 [화학식 Ⅰ] 내에 적어도 하나 이상의 중수소를 포함할 수 있고, 이에 따라 상기 [화학식 Ⅰ]은 골격 구조는 물론, 이에 도입되는 Ar 및 R이 각각 부분적으로 중수소 (D)로 치환된 화합물인 것을 특징으로 하고, 본 발명의 일 실시예에 의하면, 상기 중수소 (D) 치환율이 10 ~ 90%일 수 있다.
이와 같이 본 발명에 따른 화합물은 [화학식 Ⅰ] 구조 내의 일부 수소를 중수소로 대체함으로써, 종래 모이어티 구조에 따라 확인되는 유기발광소자의 낮은 수명 단점을 보완하여 보다 장수명을 갖는 유기발광소자를 구현 가능케 한다.
한편, 상기 Ar의 정의에서, 치환 또는 비치환이란 상기 Ar이 중수소, 시아노기, 할로겐기, 히드록시기, 니트로기, 알킬기, 알콕시기, 시클로알킬기, 헤테로시클로알킬기, 아릴기, 플루오레닐기, 헤테로아릴기, 실릴기 및 아민기 중에서 선택된 1 또는 2 이상의 치환기로 치환되거나, 상기 치환기 중 2 이상의 치환기가 연결된 치환기로 치환되거나, 또는 어떠한 치환기도 갖지 않는 것을 의미한다.
구체적인 예를 들면, 치환된 아릴기라 함은, 페닐기, 비페닐기, 나프탈렌기, 플루오레닐기, 파이레닐기, 페난트레닐기, 페릴렌기, 테트라세닐기, 안트라센닐기 등이 중수소 등의 다른 치환기로 치환된 것을 의미하고, 치환된 헤테로아릴기라 함은, 피리딜기, 티오페닐기, 트리아진기, 퀴놀린기, 페난트롤린기, 이미다졸기, 티아졸기, 옥사졸기, 카바졸기 및 이들의 축합헤테로고리기, 예컨대 벤즈퀴놀린기, 벤즈이미다졸기, 벤즈옥사졸기, 벤즈티아졸기, 벤즈카바졸기, 디벤조티오페닐기, 디벤조퓨란기 등이 역시 중수소 등의 다른 치환기로 치환된 것을 의미한다.
본 발명에 있어서, 상기 치환기들의 예시들에 대해서 아래에서 구체적으로 설명하나, 이에 한정되는 것은 아니다.
본 발명에 있어서, 상기 알킬기는 직쇄 또는 분지쇄일 수 있고, 탄소수는 특별히 한정되지 않으나 1 내지 20인 것이 바람직하다. 구체적인 예로는 메틸기, 에틸기, 프로필기, n-프로필기, 이소프로필기, 부틸기, n-부틸기, 이소부틸기, tert-부틸기, sec-부틸기, 1-메틸-부틸기, 1-에틸-부틸기, 펜틸기, n-펜틸기, 이소펜틸기, 네오펜틸기, tert-펜틸기, 헥실기, n-헥실기, 1-메틸펜틸기, 2-메틸펜틸기, 4-메틸-2-펜틸기, 3,3-디메틸부틸기, 2-에틸부틸기, 헵틸기, n-헵틸기, 1-메틸헥실기, 시클로펜틸메틸기, 시클로헥틸메틸기, 옥틸기, n-옥틸기, tert-옥틸기, 1-메틸헵틸기, 2-에틸헥실기, 2-프로필펜틸기, n-노닐기, 2,2-디메틸헵틸기, 1-에틸-프로필기, 1,1-디메틸-프로필기, 이소헥실기, 2-메틸펜틸기, 4-메틸헥실기, 5-메틸헥실기 등이 있으나, 이들에 한정되지 않는다.
본 발명에 있어서, 알콕시기는 직쇄 또는 분지쇄일 수 있다. 알콕시기의 탄소수는 특별히 한정되지 않으나, 입체적 방해를 주지 않는 범위인 1 내지 20개인 것이 바람직하다. 구체적으로, 메톡시기, 에톡시기, n-프로폭시기, 이소프로폭시기, i-프로필옥시기, n-부톡시기, 이소부톡시기, tert-부톡시기, sec-부톡시기, n-펜틸옥시기, 네오펜틸옥시기, 이소펜틸옥시기, n-헥실옥시기, 3,3-디메틸부틸옥시기, 2-에틸부틸옥시기, n-옥틸옥시기, n-노닐옥시기, n-데실옥시기, 벤질옥시기, p-메틸벤질옥시기 등이 될 수 있으나, 이에 한정되는 것은 아니다.
본 발명에 있어서, 중수소화된 알킬기 또는 알콕시기, 할로겐화된 알킬기 또는 알콕시기는 상기 알킬기 또는 알콕시기가 중수소 또는 할로겐기로 치환된 알킬기 또는 알콕시기를 의미한다.
본 발명에 있어서, 아릴기는 단환식 또는 다환식일 수 있고, 탄소수는 특별히 한정되지 않으나 6 내지 30인 것이 바람직하며, 또한 시클로알킬 등이 융합된 다환식 아릴기 구조를 포함하고, 단환식 아릴기의 예로는 페닐기, 비페닐기, 터페닐기, 스틸벤기 등이 있고, 다환식 아릴기의 예로는 나프틸기, 안트라세닐기, 페난트레닐기, 파이레닐기, 페릴레닐기, 테트라세닐기, 크라이세닐기, 플루오레닐기, 아세나프타센닐기, 트리페닐렌기, 플루오안트렌기 (fluoranthrene) 등이 있으나, 본 발명의 범위가 이들 예로만 한정되는 것은 아니다.
본 발명에 있어서, 플루오레닐기 또는 플루오렌 모이어티 등에서 플루오렌은 2개의 고리 유기화합물이 1개의 원자를 통하여 연결된 구조로서, 예로는
Figure PCTKR2023006095-appb-img-000003
,
Figure PCTKR2023006095-appb-img-000004
,
Figure PCTKR2023006095-appb-img-000005
등이 있다.
또한, 열린 플루오렌 구조를 포함하며, 여기서 열린 플루오렌은 2개의 고리 유기화합물이 1개의 원자를 통하여 연결된 구조에서 한쪽 고리 화합물의 연결이 끊어진 상태의 구조로서, 예로는
Figure PCTKR2023006095-appb-img-000006
,
Figure PCTKR2023006095-appb-img-000007
등이 있다.
또한, 상기 고리의 탄소원자는 N, S 및 O 중에서 선택되는 어느 하나 이상의 헤테로원자로 치환될 수 있으며, 예로는
Figure PCTKR2023006095-appb-img-000008
,
Figure PCTKR2023006095-appb-img-000009
,
Figure PCTKR2023006095-appb-img-000010
,
Figure PCTKR2023006095-appb-img-000011
등이 있다.
또한, 본 발명에 있어서, 플루오레닐기는 상기 연결된 구조, 열린구조에 단환 또는 다환의 방향족 고리와 단환 또는 다환의 지환족 고리 등이 더 축합된 구조일 수 있다.
본 발명에 있어서, 헤테로아릴기는 이종원자로 O, N 또는 S를 포함하는 헤테로고리기로서, 탄소수는 특별히 한정되지 않으나 탄소수 2 내지 30인 것이 바람직하며, 시클로알킬 또는 헤테로시클로알킬 등이 융합된 다환식 헤테로아릴기 구조를 포함하며, 본 발명에서 이의 구체적인 예를 들면, 티오펜기, 퓨란기, 피롤기, 이미다졸기, 티아졸기, 옥사졸기, 옥사디아졸기, 트리아졸기, 피리딜기, 비피리딜기, 피리미딜기, 트리아진기, 트리아졸기, 아크리딜기, 피리다진기, 피라지닐기, 퀴놀리닐기, 퀴나졸린기, 퀴녹살리닐기, 프탈라지닐기, 피리도 피리미디닐기, 피리도 피라지닐기, 피라지노 피라지닐기, 이소퀴놀린기, 인돌기, 카바졸기, 벤조옥사졸기, 벤조이미다졸기, 벤조티아졸기, 벤조카바졸기, 벤조티오펜기, 디벤조티오펜기, 벤조퓨라닐기, 디벤조퓨라닐기, 페난트롤린기, 티아졸릴기, 이소옥사졸릴기, 옥사디아졸릴기, 티아디아졸릴기, 벤조티아졸릴기, 페노티아지닐기, 페녹사진기, 페노티아진기 등이 있으나, 이들에만 한정되는 것은 아니다.
본 발명에 있어서, 실릴기는 비치환된 실릴기 또는 알킬기, 아릴기 등으로 치환된 실릴기로서, 이러한 실릴기의 구체적인 예로는 트리메틸실릴, 트리에틸실릴, 트리페닐실릴, 트리메톡시실릴, 디메톡시페닐실릴, 디페닐메틸실릴, 디페닐비닐실릴, 메틸사이클로뷰틸실릴, 디메틸퓨릴실릴 등을 들 수 있으며, 이에 한정되는 것은 아니다.
본 발명에서 사용되는 할로겐기의 구체적인 예로는 플루오르(F), 클로린(Cl), 브롬(Br) 등을 들 수 있다.
본 발명에 있어서, 시클로알킬기는 단환, 다환 및 스피로 알킬 라디칼을 지칭하고, 이를 포함하며, 바람직하게는 탄소수 3 내지 20의 고리 탄소 원자를 함유하는 것으로서, 시클로프로필, 시클로펜틸, 시클로헥실, 비시클로헵틸, 스피로데실, 스피로운데실, 아다만틸 등을 포함하며, 시클로알킬기는 임의로 치환될 수 있다.
본 발명에 있어서, 헤테로시클로알킬기는 하나 이상의 헤테로 원자를 함유하는 방향족 및 비방향족 시클릭 라디칼을 지칭하고, 이를 포함하며, 하나 이상의 헤테로원자는 O, S, N, P, B, Si 및 Se, 바람직하게는 O, N 또는 S로부터 선택되며, 구체적으로 N을 포함하는 경우 아지리딘, 피롤리딘, 피페리딘, 아제판, 아조칸 등일 수 있다.
본 발명에 있어서, 아민기는 -NH2, 알킬아민기, 아릴아민기, 아릴헤테로아릴아민기 등일 수 있고, 아릴아민기는 아릴로 치환된 아민을 의미하고, 알킬아민기는 알킬로 치환된 아민을 의미하는 것이며, 아릴헤테로아릴아민기는 아릴 및 헤테로아릴기로 치환된 아민을 의미하는 것으로서, 아릴아민기의 예로는 치환 또는 비치환된 모노아릴아민기, 치환 또는 비치환된 디아릴아민기, 또는 치환 또는 비치환된 트리아릴아민기가 있고, 상기 아릴아민기 및 아릴헤테로아릴아민기 중의 아릴기 및 헤테로아릴기는 단환식 아릴기, 단환식 헤테로아릴기일 수 있고, 다환식 아릴기, 다환식 헤테로아릴기일 수 있으며, 상기 아릴기, 헤테로아릴기를 2 이상을 포함하는 아릴아민기, 아릴헤테로아릴아민기는 단환식 아릴기(헤테로아릴기), 다환식 아릴기(헤테로아릴기), 또는 단환식 아릴기(헤테로아릴기)와 다환식 아릴기(헤테로아릴기)를 동시에 포함할 수 있다. 또한, 상기 아릴아민기 및 아릴헤테로아릴아민기 중의 아릴기, 헤테로아릴기는 전술한 아릴기, 헤테로아릴기의 예시 중에서 선택될 수 있다.
또한, 본 발명에 따른 치환기의 다양한 구체적인 예는 하기 기재된 구체적인 화합물에서 명확하게 확인할 수 있다.
상기 [화학식 Ⅰ]로 표시되는 본 발명에 따른 유기 화합물은 상술한 바와 같이 그 구조적 특이성으로 인하여 유기발광소자의 유기층으로 사용될 수 있고, 보다 구체적으로는 도입되는 다양한 치환기의 특성에 따라 유기층의 전자저지층 등의 재료로 사용될 수 있다.
본 발명에 따른 [화학식 Ⅰ]로 표시되는 화합물의 바람직한 구체예로는 하기 화합물들이 있으나, 이들에만 한정되는 것은 아니다.
Figure PCTKR2023006095-appb-img-000012
Figure PCTKR2023006095-appb-img-000013
Figure PCTKR2023006095-appb-img-000014
Figure PCTKR2023006095-appb-img-000015
Figure PCTKR2023006095-appb-img-000016
Figure PCTKR2023006095-appb-img-000017
Figure PCTKR2023006095-appb-img-000018
Figure PCTKR2023006095-appb-img-000019
Figure PCTKR2023006095-appb-img-000020
Figure PCTKR2023006095-appb-img-000021
Figure PCTKR2023006095-appb-img-000022
Figure PCTKR2023006095-appb-img-000023
Figure PCTKR2023006095-appb-img-000024
Figure PCTKR2023006095-appb-img-000025
Figure PCTKR2023006095-appb-img-000026
Figure PCTKR2023006095-appb-img-000027
Figure PCTKR2023006095-appb-img-000028
Figure PCTKR2023006095-appb-img-000029
Figure PCTKR2023006095-appb-img-000030
Figure PCTKR2023006095-appb-img-000031
Figure PCTKR2023006095-appb-img-000032
Figure PCTKR2023006095-appb-img-000033
Figure PCTKR2023006095-appb-img-000034
상기와 같은 특징적 골격 구조 및 치환기를 통하여 골격 구조 및 치환기의 고유 특성을 갖는 유기 화합물을 합성할 수 있으며, 예컨대, 유기발광소자의 제조시 정공수송층, 전자저지층 등의 각 유기층에서 요구하는 조건들을 충족시키는 유기 화합물 물질을 제조할 수 있으며, 특히, 본 발명에 따른 [화학식 Ⅰ]의 화합물을 전자저지층 등에 채용한 경우 소자의 발광 효율 등의 소자 특성을 더욱 향상시킬 수 있다.
본 발명에 따른 유기 화합물을 이용하여 통상의 제조방법에 따라 유기발광소자에 적용할 수 있다.
본 발명의 일 실시예에 따른 유기발광소자는 제1 전극과 제2 전극 및 이 사이에 배치된 유기층을 포함하는 구조로 이루어질 수 있으며, 본 발명에 따른 유기 화합물을 소자의 유기층에 사용한다는 것을 제외하고는 통상의 소자의 제조 방법 및 재료를 사용하여 제조될 수 있다.
본 발명에 따른 유기발광소자의 유기층은 단층 구조로 이루어질 수도 있으나, 2층 이상의 유기층이 적층된 다층 구조로 이루어질 수 있다. 예컨대, 정공주입층, 정공수송층, 발광층, 전자수송층, 전자주입층, 전자저지층 등을 포함하는 구조를 가질 수 있다. 그러나, 이에 한정되지 않고 더 적은 수 또는 더 많은 수의 유기층을 포함할 수도 있다.
따라서, 본 발명에 따른 유기발광소자에서, 상기 유기층은 전자저지층 등을 포함할 수 있고, 상기 층들 중 1층 이상이 상기 [화학식 Ⅰ]로 표시되는 유기 화합물을 포함할 수 있다.
또한, 본 발명에 따른 유기발광소자는 스퍼터링 (sputtering)이나 전자빔 증발 (e-beam evaporation)과 같은 PVD (physical vapor deposition) 방법을 이용하여, 기판 상에 금속 또는 전도성을 가지는 금속 산화물 또는 이들의 합금을 증착시켜 양극을 형성하고, 그 위에 정공주입층, 정공수송층, 정공저지층, 발광층, 전자저지층, 전자수송층, 전자저지층 등을 포함하는 유기층을 형성한 후, 그 위에 음극으로 사용할 수 있는 물질을 증착시킴으로써 제조될 수 있다.
이와 같은 방법 외에도, 기판 상에 음극 물질부터 유기층, 양극 물질을 차례로 증착시켜 유기발광소자를 만들 수도 있다. 상기 유기층은 정공주입층, 정공수송층, 정공저지층, 발광층, 전자저지층, 전자수송층, 전자저지층 등을 포함하는 다층 구조일 수도 있으나, 이에 한정되지 않고 단층 구조일 수 있다. 또한, 상기 유기층은 다양한 고분자 소재를 사용하여 증착법이 아닌 솔벤트 프로세스(solvent process), 예컨대 스핀 코팅, 딥 코팅, 닥터 블레이딩, 스크린 프린팅, 잉크젯 프린팅 또는 열 전사법 등의 방법에 의하여 더 적은 수의 층으로 제조할 수 있다.
양극은 통상 유기층으로 정공주입이 원활할 수 있도록 일함수가 큰 물질이 바람직하다. 본 발명에서 사용될 수 있는 양극 물질의 구체적인 예로는 바나듐, 크롬, 구리, 아연, 금과 같은 금속 또는 이들의 합금, 아연 산화물, 인듐 산화물, 인듐 주석 산화물(ITO), 인듐 아연 산화물(IZO)과 같은 금속 산화물, ZnO:Al 또는 SnO2:Sb와 같은 금속과 산화물의 조합, 폴리(3-메틸티오펜), 폴리[3,4-(에틸렌-1,2-디옥시)티오펜](PEDT), 폴리피롤 및 폴리아닐린과 같은 전도성 고분자 등이 있으나, 이들에만 한정되는 것은 아니다.
음극은 통상 유기층으로 전자 주입이 용이하도록 일함수가 작은 물질인 것이 바람직하다. 음극 물질의 구체적인 예로는 마그네슘, 칼슘, 나트륨, 칼륨, 타이타늄, 인듐, 이트륨, 리튬, 가돌리늄, 알루미늄, 은, 주석 및 납과 같은 금속 또는 이들의 합금, LiF/Al 또는 LiO2/Al과 같은 다층 구조 물질 등이 있으나, 이들에만 한정되는 것은 아니다.
정공주입층은 낮은 전압에서 양극으로부터 정공을 잘 주입받을 수 있는 물질로서, 정공주입 물질의 HOMO (highest occupied molecular orbital)가 양극 물질의 일함수와 주변 유기층의 HOMO 사이인 것이 바람직하다. 정공주입 물질의 구체적인 예로는 금속 포피린 (porphyrine), 올리고티오펜, 아릴아민 계열의 유기물, 헥사니트릴 헥사아자트리페닐렌, 퀴나크리돈 (quinacridone) 계열의 유기물, 페릴렌 (perylene) 계열의 유기물, 안트라퀴논 및 폴리아닐린과 폴리티오펜 계열의 전도성 고분자 등이 있으나, 이들에만 한정되는 것은 아니다.
정공수송층은 양극이나 정공주입층으로부터 정공을 수송 받아 발광층으로 옮겨줄 수 있는 물질로 정공에 대한 이동성이 큰 물질이 적합하다. 구체적인 예로는 아릴아민 계열의 유기물, 전도성 고분자, 및 공액 부분과 비공액 부분이 함께 있는 블록 공중합체 등이 있으나, 이들에만 한정되는 것은 아니다.
전자저지층은 전자의 이동을 저지하는 층으로, 정공수송층 위에 형성될 수 있으며, 전자저지층으로는 정공의 수송에는 영향을 미치지 않으면서 전자의 이동을 저지시킬 수 있는 것을 사용할 수 있다. 또한, 상기 전자저지층 상에는 발광층이 형성될 수 있고, 정공저지층, 전자수송층 및 전자주입층이 형성될 수 있다.
정공저지층은 전자의 수송에는 영향을 미치지 않으면서 정공의 이동을 저지시킬 수 있는 것을 사용할 수 있으며, 이러한 정공저지층의 예로는 TPBi (1,3,5-tri(1-phenyl-1H-benzo[d]imidazol-2-yl)phenyl), BCP (2,9-dimethyl4,7-diphenyl-1,10-phenanthroline), CBP (4,4-bis(N-carbazolyl)-1,1'-biphenyl), PBD (2-(4-biphenyl)-5-(4-t-butylphenyl)-1,3,4-oxadiazole), PTCBI (bisbenzimidazo[2,1-a:1',2-b']anthra[2,1,9-def:6,5,10-d'e'f']diisoguinoline-10,21-dione) 또는 BPhen (4,7-diphenyl-1,10-phenanthroline) 등이 있으며, 이에 한정되는 것은 아니다.
발광층은 정공수송층과 전자수송층으로부터 정공과 전자를 각각 수송받아 결합시킴으로써 가시광선 영역의 빛을 낼 수 있는 물질로서, 형광이나 인광에 대한 양자효율이 좋은 물질이 바람직하다. 구체적인 예로는 8-히드록시-퀴놀린 알루미늄 착물 (Alq3), 카르바졸 계열 화합물, 이량체화 스티릴 (dimerized styryl) 화합물, BAlq, 10-히드록시벤조 퀴놀린-금속 화합물, 벤족사졸, 벤즈티아졸 및 벤즈이미다졸 계열의 화합물, 폴리(p-페닐렌비닐렌) (PPV) 계열의 고분자, 스피로 (spiro) 화합물, 폴리플루오렌, 루브렌 등이 있으나, 이들에만 한정되는 것은 아니다.
전자주입층은 음극으로부터 전달된 전자의 주입 효율이 높은 것을 사용할 수 있다. 이러한 전자 주입층의 예로는 리튬 퀴놀레이트(Liq) 등이 있으며, 이에 한정되는 것은 아니다.
전자수송층은 음극으로부터 전자를 잘 주입 받아 발광층으로 옮겨줄 수 있는 물질로서, 전자에 대한 이동성이 큰 물질이 적합하다. 구체적인 예로는 8-히드록시퀴놀린의 Al 착물, Alq3를 포함한 착물, 유기 라디칼 화합물, 히드록시플라본-금속 착물 등이 있으나, 이들에만 한정되는 것은 아니다.
본 발명에 따른 유기발광소자는 사용되는 재료에 따라 전면 발광형, 후면 발광형 또는 양면 발광형일 수 있다.
또한, 본 발명에 따른 유기발광 화합물은 유기 태양 전지, 유기 감광체, 유기 트랜지스터 등을 비롯한 유기전자소자에서도 유기발광소자에 적용되는 것과 유사한 원리로 작용할 수 있다.
이하, 본 발명의 이해를 돕기 위하여 바람직한 화합물의 합성예 및 소자 실시예를 제시한다. 그러나, 하기의 실시예는 본 발명을 예시하기 위한 것이며, 이에 의하여 본 발명의 범위가 한정되는 것은 아니다.
합성예 1 : 화합물 13의 합성
(1) 제조예 1 : 중간체 13-1의 합성
Figure PCTKR2023006095-appb-img-000035
1-Bromo-9H-carbazole (10.0 g, 0.041 mol), 1-Chloro-3-fluorobenzene (6.4 g, 0.049 mol), Cs2CO3 (8.4 g, 0.061 mol)에 DMF를 넣고 150 ℃에서 12시간 동안 환류 교반하여 반응시켰다. 반응 종료 후 추출하여 농축한 후 컬럼하여 <중간체 13-1>을 9.2 g (수율 63.5%) 수득하였다.
(2) 제조예 2 : 중간체 13-2의 합성
Figure PCTKR2023006095-appb-img-000036
중간체 13-1 (10.0 g, 0.028 mol), dibenzo[b,d]furan-1-ylboronic acid (7.1 g, 0.034 mol), K2CO3 (11.6 g, 0.084 mol), Pd(PPh3)4 (0.7 g, 0.0006 mol)에 toluene 200 mL, ethanol 50 mL, H2O 50 mL를 넣고 6시간 동안 80 ℃에서 교반하여 반응시켰다. 반응 종료 후 추출하여 농축한 후 컬럼 및 재결정하여 <중간체 13-2>를 8.9 g (수율 71.5%) 수득하였다.
(3) 제조예 3 : 화합물 13의 합성
Figure PCTKR2023006095-appb-img-000037
중간체 13-2 (10.0 g, 0.023 mol), N,N-(di-2-dibenzofuranyl)amine (11.8 g, 0.034 mol), NaOtBu (6.5 g, 0.068 mol), Pd(dba)2 (0.5 g, 0.9 mmol), t-Bu3P (0.4 g, 1.8 mmol)에 Xylene 150 mL를 넣고 4시간 동안 110 ℃에서 교반하여 반응시켰다. 반응 종료 후, 추출하여 농축한 후 컬럼 및 재결정하여 <화합물 13>을 11.3 g (수율 66.3%) 수득하였다.
LC/MS: m/z=756[(M)+]
합성예 2 : 화합물 26의 합성
(1) 제조예 1 : 중간체 26-1의 합성
Figure PCTKR2023006095-appb-img-000038
중간체 13-2 (10.0 g, 0.023 mol), 4-dibenzofuranamine (6.2 g, 0.034 mol), NaOtBu (6.5 g, 0.068 mol), Pd(dba)2 (0.5 g, 0.9 mmol), t-Bu3P (0.4 g, 1.8 mmol)에 Xylene 150 mL를 넣고 4시간 동안 110 ℃에서 교반하여 반응시켰다. 반응 종료 후, 추출하여 농축한 후 컬럼 및 재결정하여 <중간체 26-1>을 7.8 g (수율 58.6%) 수득하였다.
(2) 제조예 2 : 화합물 26의 합성
Figure PCTKR2023006095-appb-img-000039
중간체 26-1 (10.0 g, 0.017 mol), 5'-Bromo-1,1':3',1"-terphenyl (7.9 g, 0.025 mol), NaOtBu (4.9 g, 0.051 mol), Pd(dba)2 (0.4 g, 0.7 mmol), t-Bu3P (0.3 g, 1.4 mmol)에 Xylene 150 mL를 넣고 4시간 동안 110 ℃에서 교반하여 반응시켰다. 반응 종료 후, 추출하여 농축한 후 컬럼 및 재결정하여 <화합물 26>을 9.3 g (수율 67.1%) 수득하였다.
LC/MS: m/z=818[(M)+]
합성예 3 : 화합물 36의 합성
(1) 제조예 1 : 중간체 36-1의 합성
Figure PCTKR2023006095-appb-img-000040
중간체 13-1 (10.0 g, 0.028 mol), dibenzo[b,d]furan-2-ylboronic acid (7.1 g, 0.034 mol), K2CO3 (11.6 g, 0.084 mol), Pd(PPh3)4 (0.7 g, 0.0006 mol)에 toluene 200 mL, ethanol 50 mL, H2O 50 mL를 넣고 6시간 동안 80 ℃에서 교반하여 반응시켰다. 반응 종료 후 추출하여 농축한 후 컬럼 및 재결정하여 <중간체 36-1>을 7.6 g (수율 61.1%) 수득하였다.
(2) 제조예 2 : 화합물 36의 합성
Figure PCTKR2023006095-appb-img-000041
중간체 36-1 (10.0 g, 0.023 mol), N-([1,1'-Biphenyl]-4-yl)dibenzo[b,d]furan-2-amine (11.3 g, 0.034 mol), NaOtBu (6.5 g, 0.068 mol), Pd(dba)2 (0.5 g, 0.9 mmol), t-Bu3P (0.4 g, 1.8 mmol)에 Xylene 150 mL를 넣고 4시간 동안 110 ℃에서 교반하여 반응시켰다. 반응 종료 후, 추출하여 농축한 후 컬럼 및 재결정하여 <화합물 36>을 12.5 g (수율 74.7%) 수득하였다.
LC/MS: m/z=742[(M)+]
합성예 4 : 화합물 43의 합성
(1) 제조예 1 : 화합물 43의 합성
Figure PCTKR2023006095-appb-img-000042
중간체 36-1 (10.0 g, 0.023 mol), N-([1,1'-Biphenyl]-4-yl)dibenzo[b,d]furan-3-amine (11.3 g, 0.034 mol), NaOtBu (6.5 g, 0.068 mol), Pd(dba)2 (0.5 g, 0.9 mmol), t-Bu3P (0.4 g, 1.8 mmol)에 Xylene 150 mL를 넣고 4시간 동안 110 ℃에서 교반하여 반응시켰다. 반응 종료 후, 추출하여 농축한 후 컬럼 및 재결정하여 <화합물 43>을 12.5 g (수율 74.5%) 수득하였다.
LC/MS: m/z=742[(M)+]
합성예 5 : 화합물 53의 합성
(1) 제조예 1 : 화합물 53의 합성
Figure PCTKR2023006095-appb-img-000043
중간체 36-1 (10.0 g, 0.023 mol), N-([1,1'-Biphenyl]-4-yl)dibenzo[b,d]furan-4-amine (11.3 g, 0.034 mol), NaOtBu (6.5 g, 0.068 mol), Pd(dba)2 (0.5 g, 0.9 mmol), t-Bu3P (0.4 g, 1.8 mmol)에 Xylene 150 mL를 넣고 4시간 동안 110 ℃에서 교반하여 반응시켰다. 반응 종료 후, 추출하여 농축한 후 컬럼 및 재결정하여 <화합물 53>을 12.5 g (수율 67.4%) 수득하였다.
LC/MS: m/z=742[(M)+]
합성예 6 : 화합물 73의 합성
(1) 제조예 1 : 중간체 73-1의 합성
Figure PCTKR2023006095-appb-img-000044
중간체 13-1 (10.0 g, 0.028 mol), dibenzo[b,d]furan-3-ylboronic acid (7.1 g, 0.034 mol), K2CO3 (11.6 g, 0.084 mol), Pd(PPh3)4 (0.6 g, 0.0006 mol)에 toluene 200 mL, ethanol 50 mL, H2O 50 mL를 넣고 6시간 동안 80 ℃에서 교반하여 반응시켰다. 반응 종료 후 추출하여 농축한 후 컬럼 및 재결정하여 <중간체 73-1>을 7.5 g (수율 60.3%) 수득하였다.
(2) 제조예 2 : 화합물 73의 합성
Figure PCTKR2023006095-appb-img-000045
중간체 73-1 (10.0 g, 0.023 mol), N-(9,9-dimethyl-9H-fluoren-2-yl)dibenzo[b,d]furan-2-amine (12.7 g, 0.034 mol), NaOtBu (6.5 g, 0.068 mol), Pd(dba)2 (0.5 g, 0.9 mmol), t-Bu3P (0.4 g, 1.8 mmol)에 Xylene 150 mL를 넣고 4시간 동안 110 ℃에서 교반하여 반응시켰다. 반응 종료 후, 추출하여 농축한 후 컬럼 및 재결정하여 <화합물 73>을 11.8 g (수율 66.9%) 수득하였다.
LC/MS: m/z=782[(M)+]
합성예 7 : 화합물 78의 합성
(1) 제조예 1 : 화합물 78의 합성
Figure PCTKR2023006095-appb-img-000046
중간체 73-1 (10.0 g, 0.023 mol), N-(Biphenyl-2-yl)dibenzo[b,d]furan-3-amine (11.3 g, 0.034 mol), NaOtBu (6.5 g, 0.068 mol), Pd(dba)2 (0.5 g, 0.9 mmol), t-Bu3P (0.4 g, 1.8 mmol)에 Xylene 150 mL를 넣고 4시간 동안 110 ℃에서 교반하여 반응시켰다. 반응 종료 후, 추출하여 농축한 후 컬럼 및 재결정하여 <화합물 78>을 10.5 g (수율 62.8%) 수득하였다.
LC/MS: m/z=742[(M)+]
합성예 8 : 화합물 111의 합성
(1) 제조예 1 : 중간체 111-1의 합성
Figure PCTKR2023006095-appb-img-000047
중간체 13-1 (10.0 g, 0.028 mol), dibenzo[b,d]thiophen-1-ylboronic acid (7.7 g, 0.034 mol), K2CO3 (11.6 g, 0.084 mol), Pd(PPh3)4 (0.7 g, 0.0006 mol)에 toluene 200 mL, ethanol 50 mL, H2O 50 mL를 넣고 6시간 동안 80 ℃에서 교반하여 반응시켰다. 반응 종료 후 추출하여 농축한 후 컬럼하여 <중간체 111-1>을 8.3 g (수율 64.4%) 수득하였다.
(2) 제조예 2 : 중간체 111-2의 합성
Figure PCTKR2023006095-appb-img-000048
중간체 111-1 (10.0 g, 0.022 mol), dibenzothiophen-1-amine (6.5 g, 0.033 mol), NaOtBu (6.3 g, 0.065 mol), Pd(dba)2 (0.5 g, 0.9 mmol), t-Bu3P (0.4 g, 1.7 mmol)에 Xylene 150 mL를 넣고 4시간 동안 110 ℃에서 교반하여 반응시켰다. 반응 종료 후, 추출하여 농축한 후 컬럼 및 재결정하여 <중간체 111-2>를 7.8 g (수율 57.6%) 수득하였다.
(3) 제조예 3 : 화합물 111의 합성
Figure PCTKR2023006095-appb-img-000049
중간체 111-2 (10.0 g, 0.016 mol), 4'-bromo-1,1':3',1"-terphenyl (7.5 g, 0.024 mol), NaOtBu (4.6 g, 0.048 mol), Pd(dba)2 (0.4 g, 0.6 mmol), t-Bu3P (0.3 g, 1.3 mmol)에 Xylene 150 mL를 넣고 4시간 동안 70 ℃에서 교반하여 반응시켰다. 반응 종료 후, 추출하여 농축한 후 컬럼 및 재결정하여 <화합물 111>을 10.7 g (수율 78.3%) 수득하였다.
LC/MS: m/z=850[(M)+]
합성예 9 : 화합물 146의 합성
(1) 제조예 1 : 중간체 146-1의 합성
Figure PCTKR2023006095-appb-img-000050
중간체 13-1 (10.0 g, 0.028 mol), dibenzothiophene-2-boronic acid (7.7 g, 0.034 mol), K2CO3 (11.6 g, 0.084 mol), Pd(PPh3)4 (0.7 g, 0.0006 mol)에 toluene 200 mL, ethanol 50 mL, H2O 50 mL를 넣고 6시간 동안 80 ℃에서 교반하여 반응시켰다. 반응 종료 후 추출하여 농축한 후 컬럼하여 <중간체 146-1>을 7.6 g (수율 58.9%) 수득하였다.
(2) 제조예 2 : 중간체 146-2의 합성
Figure PCTKR2023006095-appb-img-000051
중간체 146-1 (10.0 g, 0.022 mol), dibenzo[b,d]thiophen-2-amine (6.5 g, 0.033 mol), NaOtBu (6.3 g, 0.065 mol), Pd(dba)2 (0.5 g, 0.9 mmol), t-Bu3P (0.4 g, 1.7 mmol)에 Xylene 150 mL를 넣고 4시간 동안 110 ℃에서 교반하여 반응시켰다. 반응 종료 후, 추출하여 농축한 후 컬럼 및 재결정하여 <중간체 146-2>를 7.6 g (수율 56.1%) 수득하였다.
(3) 제조예 3 : 화합물 146의 합성
Figure PCTKR2023006095-appb-img-000052
중간체 146-2 (10.0 g, 0.016 mol), 2-(3-Bromophenyl)-9-phenylcarbazole (9.6 g, 0.024 mol), NaOtBu (4.6 g, 0.048 mol), Pd(dba)2 (0.4 g, 0.6 mmol), t-Bu3P (0.3 g, 1.3 mmol)에 Xylene 150 mL를 넣고 4시간 동안 70 ℃에서 교반하여 반응시켰다. 반응 종료 후, 추출하여 농축한 후 컬럼 및 재결정하여 <화합물 146>을 8.1 g (수율 53.7%) 수득하였다.
LC/MS: m/z=939[(M)+]
합성예 10 : 화합물 228의 합성
(1) 제조예 1 : 중간체 228-1의 합성
Figure PCTKR2023006095-appb-img-000053
중간체 73-1 (10.0 g, 0.023 mol), dibenzo[b,d]thiophen-4-amine (6.7 g, 0.034 mol), NaOtBu (6.5 g, 0.068 mol), Pd(dba)2 (0.5 g, 0.9 mmol), t-Bu3P (0.4 g, 1.8 mmol)에 Xylene 150 mL를 넣고 4시간 동안 70 ℃에서 교반하여 반응시켰다. 반응 종료 후, 추출하여 농축한 후 컬럼 및 재결정하여 <중간체 228-1>을 7.6 g (수율 55.6%) 수득하였다.
(2) 제조예 2 : 화합물 228의 합성
Figure PCTKR2023006095-appb-img-000054
중간체 228-1 (10.0 g, 0.017 mol), 5'-bromo-1,1':3',1"-terphenyl (7.6 g, 0.025 mol), NaOtBu (4.8 g, 0.049 mol), Pd(dba)2 (0.4 g, 0.7 mmol), t-Bu3P (0.3 g, 1.3 mmol)에 Xylene 150 mL를 넣고 4시간 동안 70 ℃에서 교반하여 반응시켰다. 반응 종료 후, 추출하여 농축한 후 컬럼 및 재결정하여 <화합물 228>을 10.2 g (수율 74.1%) 수득하였다.
LC/MS: m/z=834[(M)+]
합성예 11 : 화합물 267의 합성
(1) 제조예 1 : 중간체 267-1의 합성
Figure PCTKR2023006095-appb-img-000055
중간체 146-1 (10.0 g, 0.022 mol), 2-dibenzofuranamine (6.0 g, 0.033 mol), NaOtBu (6.3 g, 0.065 mol), Pd(dba)2 (0.5 g, 0.9 mmol), t-Bu3P (0.4 g, 1.7 mmol)에 Xylene 150 mL를 넣고 4시간 동안 110 ℃에서 교반하여 반응시켰다. 반응 종료 후, 추출하여 농축한 후 컬럼 및 재결정하여 <중간체 267-1>을 8.6 g (수율 65.2%) 수득하였다.
(2) 제조예 2 : 화합물 267의 합성
Figure PCTKR2023006095-appb-img-000056
중간체 267-1 (10.0 g, 0.017 mol), 3-bromo-9-(2,3,4,5,6-pentadeuteriophenyl)carbazole (8.1 g, 0.025 mol), NaOtBu (4.8 g, 0.049 mol), Pd(dba)2 (0.4 g, 0.7 mmol), t-Bu3P (0.3 g, 1.3 mmol)에 Xylene 150 mL를 넣고 4시간 동안 70 ℃에서 교반하여 반응시켰다. 반응 종료 후, 추출하여 농축한 후 컬럼 및 재결정하여 <화합물 267>을 10.9 g (수율 77.5%) 수득하였다.
LC/MS: m/z=852[(M)+]
소자 실시예 ( EBL )
본 발명에 따른 실시예에서, ITO 투명 전극은 25 mm × 25 mm × 0.7 mm의 유리 기판 위에, ITO 투명 전극이 부착된 ITO 유리 기판을 이용하여, 발광 면적이 2 mm × 2 mm 크기가 되도록 패터닝한 후 세정하였다. 기판을 진공 챔버에 장착한 후 베이스 압력이 1 × 10-6 torr가 되도록 한 후 유기물을 상기 ITO 위에 하기 구조로 유기물과 금속을 증착하였다.
소자 실시예 1 내지 52
본 발명에 따라 구현되는 화합물을 전자저지층에 채용하여, 하기와 같은 소자 구조를 갖는 유기발광소자를 제작 후, 본 발명에 따라 구현되는 화합물이 갖는 발광 및 구동 특성을 측정하였다.
ITO / 정공주입층 (HAT-CN, 5 nm) / 정공수송층 (HT1, 100 nm) / 전자저지층 (10 nm) / 발광층 (20 nm) / 전자수송층 (ET1:Liq, 30 nm) / LiF (1 nm) / Al (100 nm)
ITO 투명 전극 상부에 [HAT-CN]을 5 nm 두께로 성막하여 정공주입층을 형성한 후에, [HT1]을 100 nm로 성막하여 정공수송층을 형성하였으며, 하기 [표 1]에 기재된 본 발명에 따른 화합물을 10 nm 두께로 성막하여 전자저지층을 형성하였고, 발광층은 호스트 화합물로 [BH1], 도펀트 화합물로 [BD1]을 사용하여 20 nm로 공증착하여 형성하였다. 이후, 전자수송층 (하기 [ET1] 화합물 Liq 50% 도핑)을 30 nm 증착한 후, LiF를 1 nm의 두께로 성막하여 전자주입층을 형성하였으며, Al을 100 nm의 두께로 성막하여 유기발광소자를 제작하였다.
소자 비교예 1
소자 비교예 1을 위한 유기발광소자는 상기 실시예 1 내지 52의 소자구조에서 전자저지층에 본 발명에 따른 화합물 대신에 하기 [EB1]을 사용한 것을 제외하고 동일하게 제작하였다.
소자 비교예 2
소자 비교예 2를 위한 유기발광소자는 상기 실시예 1 내지 52의 소자구조에서 전자저지층에 본 발명에 따른 화합물 대신에 하기 [EB2]를 사용한 것을 제외하고 동일하게 제작하였다.
소자 비교예 3
소자 비교예 3을 위한 유기발광소자는 상기 실시예 1 내지 52의 소자구조에서 전자저지층에 본 발명에 따른 화합물 대신에 하기 [EB3]을 사용한 것을 제외하고 동일하게 제작하였다.
소자 비교예 4
소자 비교예 4를 위한 유기발광소자는 상기 실시예 1 내지 52의 소자구조에서 전자저지층에 본 발명에 따른 화합물 대신에 하기 [EB4]를 사용한 것을 제외하고 동일하게 제작하였다.
실험예 1 : 소자 실시예 1 내지 52의 발광 특성
상기 실시예 및 비교예에 따라 제조된 유기발광소자에 대해서 Source meter (Model 237, Keithley)와 휘도계 (PR-650, Photo Research)를 이용하여 구동 전압, 전류 효율 및 색좌표를 측정하였고, 1,000 nit 기준의 결과값은 하기 [표 1]과 같다.
실시예 전자저지층 V cd/A CIEx CIEy
1 화학식 5 4.13 7.46 0.1364 0.1340
2 화학식 10 4.33 7.63 0.1356 0.1347
3 화학식 13 4.26 7.55 0.1360 0.1351
4 화학식 15 4.28 7.66 0.1352 0.1358
5 화학식 16 4.20 7.18 0.1368 0.1338
6 화학식 19 4.21 7.26 0.1372 0.1332
7 화학식 20 4.29 7.50 0.1388 0.1320
8 화학식 26 4.16 7.74 0.1356 0.1351
9 화학식 34 4.27 7.43 0.1348 0.1353
10 화학식 36 4.20 7.48 0.1355 0.1344
11 화학식 40 4.24 7.51 0.1380 0.1329
12 화학식 43 4.00 7.52 0.1386 0.1318
13 화학식 53 4.30 7.68 0.1373 0.1328
14 화학식 66 4.16 7.35 0.1320 0.1382
15 화학식 69 4.01 7.52 0.1356 0.1343
16 화학식 70 4.09 7.86 0.1391 0.1338
17 화학식 72 4.28 7.43 0.1338 0.1393
18 화학식 81 4.11 7.59 0.1328 0.1388
19 화학식 86 4.06 7.45 0.1337 0.1370
20 화학식 99 4.05 7.42 0.1381 0.1329
21 화학식 105 4.32 7.86 0.1387 0.1319
22 화학식 115 4.27 7.29 0.1364 0.1348
23 화학식 123 4.09 7.86 0.1390 0.1346
24 화학식 125 4.17 7.84 0.1357 0.1380
25 화학식 133 4.12 7.56 0.1318 0.1399
26 화학식 138 4.21 7.33 0.1381 0.1330
27 화학식 140 4.20 7.68 0.1356 0.1350
28 화학식 155 4.05 7.43 0.1367 0.1344
29 화학식 162 3.97 7.83 0.1383 0.1328
30 화학식 170 4.17 7.51 0.1390 0.1339
31 화학식 178 4.13 7.56 0.1354 0.1343
32 화학식 183 4.15 7.87 0.1337 0.1363
33 화학식 185 4.19 7.41 0.1375 0.1323
34 화학식 189 4.04 7.75 0.1378 0.1330
35 화학식 190 4.13 7.89 0.1376 0.1323
36 화학식 192 4.11 7.67 0.1334 0.1371
37 화학식 201 4.28 7.86 0.1327 0.1375
38 화학식 213 4.25 7.43 0.1351 0.1354
39 화학식 222 4.10 7.60 0.1339 0.1366
40 화학식 241 4.16 7.68 0.1304 0.1394
41 화학식 258 4.25 7.37 0.1338 0.1371
42 화학식 260 4.07 7.65 0.1389 0.1321
43 화학식 266 4.22 7.50 0.1306 0.1398
44 화학식 273 3.97 7.84 0.1346 0.1359
45 화학식 279 4.18 7.64 0.1368 0.1340
46 화학식 284 4.34 7.73 0.1345 0.1355
47 화학식 289 4.22 7.89 0.1326 0.1377
48 화학식 291 4.05 7.53 0.1344 0.1354
49 화학식 295 4.28 7.85 0.1381 0.1327
50 화학식 299 4.20 7.82 0.1335 0.1365
51 화학식 301 4.21 7.83 0.1347 0.1360
52 화학식 302 4.13 7.89 0.1346 0.1361
비교예 1 EB1 4.67 6.65 0.1353 0.1517
비교예 2 EB2 4.42 7.02 0.1341 0.1366
비교예 3 EB3 4.49 6.98 0.1336 0.1377
비교예 4 EB4 4.53 7.15 0.1365 0.1347
상기 [표 1]에 나타낸 결과를 살펴보면, 본 발명에 따른 화합물을 유기발광소자 내의 전자저지층에 채용한 경우에 종래 전자저지층 재료로 사용된 화합물로서 본 발명에 따른 화합물의 특징적 구조와 대비되는 화합물을 채용한 소자 (비교예 1 내지 4)에 비하여 저전압 구동 특성과 발광 효율, 양자 효율 등의 발광 특성이 현저히 우수함을 확인할 수 있다.
Figure PCTKR2023006095-appb-img-000057
[HAT-CN] [HT1] [BH1] [BD1] [ET1]
Figure PCTKR2023006095-appb-img-000058
[EB1] [EB2] [EB3] [EB4]
본 발명에 따른 유기 화합물은 정공주입 및 수송 성능이 우수하고, 삼중항 여기자를 가두는 성능이 높으며, 전자저지 성능이 우수하면서 박막 상태에서의 안정성이 우수하여, 이를 전자저지층, 정공수송층 등의 유기층에 채용한 유기발광소자는 종래 소자에 비하여 저전압 구동, 장수명 특성, 발광 효율 등의 소자 특성이 현저히 우수하여 다양한 조명 소자 및 디스플레이 소자 등에 산업적으로 유용하게 사용될 수 있다.

Claims (9)

  1. 하기 [화학식 Ⅰ]로 표시되는 유기 화합물:
    [화학식 Ⅰ]
    Figure PCTKR2023006095-appb-img-000059
    상기 [화학식 Ⅰ]에서,
    X1 및 X2는 각각 독립적으로 O 또는 S이고,
    Ar은 치환 또는 비치환된 탄소수 6 내지 30의 아릴기 및 치환 또는 비치환된 탄소수 3 내지 30의 헤테로아릴기 중에서 선택되는 어느 하나이며,
    R은 각각 수소 또는 중수소이고, m은 0 내지 4의 정수이고,
    D는 중수소이고, n은 상기 [화학식 Ⅰ] 내의 수소가 중수소 (D)로 대체된 개수를 의미하고, n은 0 내지 60의 정수이다.
  2. 제1항에 있어서,
    상기 Ar의 정의에서, 치환 또는 비치환이란 상기 Ar이 중수소, 시아노기, 할로겐기, 히드록시기, 니트로기, 알킬기, 알콕시기, 시클로알킬기, 헤테로시클로알킬기, 아릴기, 플루오레닐기, 헤테로아릴기, 실릴기 및 아민기 중에서 선택된 1 또는 2 이상의 치환기로 치환되거나, 상기 치환기 중 2 이상의 치환기가 연결된 치환기로 치환되거나, 또는 어떠한 치환기도 갖지 않는 것을 의미하는 유기 화합물.
  3. 제1항에 있어서,
    상기 [화학식 Ⅰ]은 [화학식 Ⅰ] 내에 존재하는 수소가 부분적으로 중수소 (D)로 치환된 화합물인 것을 특징으로 하고, 상기 중수소 (D) 치환율이 10 ~ 90%인 것을 특징으로 하는 유기 화합물.
  4. 제3항에 있어서,
    상기 중수소 (D) 치환율이 20 ~ 80%인 것을 특징으로 하는 유기 화합물.
  5. 제3항에 있어서,
    상기 중수소 (D) 치환율이 30 ~ 70%인 것을 특징으로 하는 유기 화합물.
  6. 제1항에 있어서,
    상기 [화학식 Ⅰ]은 하기 [화학식 1] 내지 [화학식 309] 중에서 선택되는 어느 하나인 것을 특징으로 하는 유기 화합물:
    Figure PCTKR2023006095-appb-img-000060
    Figure PCTKR2023006095-appb-img-000061
    Figure PCTKR2023006095-appb-img-000062
    Figure PCTKR2023006095-appb-img-000063
    Figure PCTKR2023006095-appb-img-000064
    Figure PCTKR2023006095-appb-img-000065
    Figure PCTKR2023006095-appb-img-000066
    Figure PCTKR2023006095-appb-img-000067
    Figure PCTKR2023006095-appb-img-000068
    Figure PCTKR2023006095-appb-img-000069
    Figure PCTKR2023006095-appb-img-000070
    Figure PCTKR2023006095-appb-img-000071
    Figure PCTKR2023006095-appb-img-000072
    Figure PCTKR2023006095-appb-img-000073
    Figure PCTKR2023006095-appb-img-000074
    Figure PCTKR2023006095-appb-img-000075
    Figure PCTKR2023006095-appb-img-000076
    Figure PCTKR2023006095-appb-img-000077
    Figure PCTKR2023006095-appb-img-000078
    Figure PCTKR2023006095-appb-img-000079
    Figure PCTKR2023006095-appb-img-000080
    Figure PCTKR2023006095-appb-img-000081
    Figure PCTKR2023006095-appb-img-000082
  7. 제1 전극, 제2 전극, 및 상기 제1 전극과 제2 전극 사이에 배치된 1층 이상의 유기층을 포함하는 유기발광소자로서,
    상기 유기층 중 1 층 이상은 제1항에 따른 [화학식 Ⅰ]로 구현되는 유기 화합물을 하나 이상 포함하는 것을 특징으로 하는 유기발광소자.
  8. 제7항에 있어서,
    상기 유기층은 전자주입층, 전자수송층, 정공주입층, 정공수송층, 전자저지층, 정공저지층 및 발광층 중 1층 이상을 포함하고,
    상기 층들 중 1층 이상이 상기 [화학식 Ⅰ]로 표시되는 유기 화합물을 포함하는 것을 특징으로 하는 유기발광소자.
  9. 제8항에 있어서,
    상기 전자저지층에 상기 [화학식 Ⅰ]로 표시되는 유기 화합물을 포함하는 것을 특징으로 하는 유기발광소자.
PCT/KR2023/006095 2022-05-06 2023-05-04 유기 화합물 및 이를 포함하는 유기발광소자 WO2023214815A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2022-0055991 2022-05-06
KR20220055991 2022-05-06

Publications (1)

Publication Number Publication Date
WO2023214815A1 true WO2023214815A1 (ko) 2023-11-09

Family

ID=88646701

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/006095 WO2023214815A1 (ko) 2022-05-06 2023-05-04 유기 화합물 및 이를 포함하는 유기발광소자

Country Status (2)

Country Link
KR (1) KR20230156888A (ko)
WO (1) WO2023214815A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016105123A2 (ko) * 2014-12-24 2016-06-30 주식회사 두산 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
KR20170088472A (ko) * 2016-01-22 2017-08-02 삼성디스플레이 주식회사 유기 전계 발광 소자용 재료 및 이를 사용한 유기 전계 발광 소자
KR20190058859A (ko) * 2017-11-22 2019-05-30 엘티소재주식회사 헤테로고리 화합물 및 이를 이용한 유기 발광 소자
KR20200051468A (ko) * 2018-11-05 2020-05-13 엘지디스플레이 주식회사 유기화합물 및 이를 포함하는 유기전계발광소자
KR20200076003A (ko) * 2018-12-18 2020-06-29 두산솔루스 주식회사 유기 화합물 및 이를 포함하는 유기 전계 발광 소자

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016105123A2 (ko) * 2014-12-24 2016-06-30 주식회사 두산 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
KR20170088472A (ko) * 2016-01-22 2017-08-02 삼성디스플레이 주식회사 유기 전계 발광 소자용 재료 및 이를 사용한 유기 전계 발광 소자
KR20190058859A (ko) * 2017-11-22 2019-05-30 엘티소재주식회사 헤테로고리 화합물 및 이를 이용한 유기 발광 소자
KR20200051468A (ko) * 2018-11-05 2020-05-13 엘지디스플레이 주식회사 유기화합물 및 이를 포함하는 유기전계발광소자
KR20200076003A (ko) * 2018-12-18 2020-06-29 두산솔루스 주식회사 유기 화합물 및 이를 포함하는 유기 전계 발광 소자

Also Published As

Publication number Publication date
KR20230156888A (ko) 2023-11-15

Similar Documents

Publication Publication Date Title
WO2019164331A1 (ko) 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
WO2020027389A1 (ko) 유기발광 화합물 및 이를 포함하는 유기발광소자
WO2020009519A1 (ko) 다환 화합물 및 이를 포함하는 유기 발광 소자
WO2011059271A2 (ko) 신규한 축합고리 화합물 및 이를 이용한 유기전자소자
WO2010114243A2 (en) Novel compounds for organic electronic material and organic electronic device using the same
WO2016195406A2 (ko) 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
WO2017061832A1 (ko) 신규 화합물 및 이를 포함하는 유기 발광 소자
WO2017061779A1 (ko) 아민 화합물 및 이를 포함하는 유기 발광 소자
WO2020040514A1 (ko) 유기 발광 소자
WO2019240532A1 (ko) 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
WO2020009492A1 (ko) 다환 화합물 및 이를 포함하는 유기 발광 소자
WO2020149666A1 (ko) 유기 발광 소자
WO2020130511A1 (ko) 화합물 및 이를 포함하는 유기 발광 소자
WO2019108033A1 (ko) 화합물 및 이를 포함하는 유기 발광 소자
WO2022270835A1 (ko) 유기발광 화합물 및 이를 포함하는 유기발광소자
WO2019177393A1 (ko) 화합물 및 이를 포함하는 유기 발광 소자
WO2023200196A1 (ko) 유기 화합물 및 이를 포함하는 유기발광소자
WO2020111586A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2020101397A1 (ko) 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
WO2019190239A1 (ko) 화합물 및 이를 포함하는 유기 발광 소자
WO2019168378A1 (ko) 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
WO2019078700A1 (ko) 화합물 및 이를 포함하는 유기 발광 소자
WO2022131575A1 (ko) 유기 화합물 및 이를 포함하는 유기발광소자
WO2020171530A1 (ko) 화합물 및 이를 포함하는 유기 발광 소자
WO2022124540A1 (ko) 유기 화합물 및 이를 포함하는 유기발광소자

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23799696

Country of ref document: EP

Kind code of ref document: A1