WO2019168378A1 - 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자 - Google Patents

헤테로고리 화합물 및 이를 포함하는 유기 발광 소자 Download PDF

Info

Publication number
WO2019168378A1
WO2019168378A1 PCT/KR2019/002434 KR2019002434W WO2019168378A1 WO 2019168378 A1 WO2019168378 A1 WO 2019168378A1 KR 2019002434 W KR2019002434 W KR 2019002434W WO 2019168378 A1 WO2019168378 A1 WO 2019168378A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
substituted
unsubstituted
formula
same
Prior art date
Application number
PCT/KR2019/002434
Other languages
English (en)
French (fr)
Inventor
차용범
홍성길
장분재
서상덕
이재구
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN201980005092.3A priority Critical patent/CN111225904B/zh
Publication of WO2019168378A1 publication Critical patent/WO2019168378A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D251/00Heterocyclic compounds containing 1,3,5-triazine rings
    • C07D251/02Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings
    • C07D251/12Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members
    • C07D251/14Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members with hydrogen or carbon atoms directly attached to at least one ring carbon atom
    • C07D251/24Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members with hydrogen or carbon atoms directly attached to at least one ring carbon atom to three ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/77Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D307/91Dibenzofurans; Hydrogenated dibenzofurans
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D333/00Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
    • C07D333/50Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom condensed with carbocyclic rings or ring systems
    • C07D333/76Dibenzothiophenes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1059Heterocyclic compounds characterised by ligands containing three nitrogen atoms as heteroatoms
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/18Carrier blocking layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present specification relates to a heterocyclic compound and an organic light emitting device formed using the heterocyclic compound.
  • organic light emitting phenomenon refers to a phenomenon of converting electrical energy into light energy using an organic material.
  • An organic light emitting device using an organic light emitting phenomenon usually has a structure including an anode, a cathode, and an organic material layer therebetween.
  • the organic material layer is often made of a multi-layered structure composed of different materials to increase the efficiency and stability of the organic light emitting device, for example, it may be made of a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer.
  • the present specification provides a heterocyclic compound and an organic light emitting device including the same.
  • X1 to X3 are the same as or different from each other, and each independently N or CR,
  • At least one of X1 to X3 is N,
  • R and R1 to R4 are the same as or different from each other, and each independently hydrogen, deuterium, nitrile group, halogen group, substituted or unsubstituted alkyl group, substituted or unsubstituted silyl group, substituted or unsubstituted phosphine oxide group, A substituted or unsubstituted amine group, a substituted or unsubstituted aryl group, or a substituted or unsubstituted heteroaryl group, or adjacent substituents may combine with each other to form a substituted or unsubstituted ring,
  • L 1 is a direct bond or a substituted or unsubstituted arylene group
  • A1 and A2 are the same as or different from each other, and each independently a substituted or unsubstituted aryl group, or a substituted or unsubstituted heteroaryl group,
  • a and b are each an integer of 0 to 5, when a and b are each 2 or more, R1 is the same as or different from each other, R2 is the same as or different from each other,
  • c is an integer of 0 to 3, when c is 2 or more, R 3 is the same as or different from each other,
  • d is an integer of 0 to 8, and when d is 2 or more, R 4 is the same as or different from each other.
  • the present specification is a first electrode; A second electrode provided to face the first electrode; And one or more organic material layers provided between the first electrode and the second electrode, wherein one or more layers of the organic material layers include the heterocyclic compound.
  • the heterocyclic compound according to the exemplary embodiment of the present specification may be used as a material of the organic material layer of the organic light emitting device, and by using the same, it is possible to improve efficiency, low driving voltage, and / or lifespan characteristics in the organic light emitting device.
  • FIG. 1 illustrates an organic light emitting device according to an exemplary embodiment of the present specification.
  • FIG. 2 illustrates an organic light emitting device according to an exemplary embodiment of the present specification.
  • the present specification provides a heterocyclic compound represented by Chemical Formula 1.
  • the present specification provides a compound characterized in that the N-containing heterocycle and the condensed ring core are bonded.
  • substituted means that a hydrogen atom bonded to a carbon atom of the compound is replaced with another substituent, and the position to be substituted is not limited to a position where the hydrogen atom is substituted, that is, a position where a substituent can be substituted, if two or more substituted , Two or more substituents may be the same or different from each other.
  • substituted or unsubstituted is deuterium; Nitrile group; Substituted or unsubstituted alkyl group; A substituted or unsubstituted cycloalkyl group; Substituted or unsubstituted silyl group; Substituted or unsubstituted aryl group; And it is substituted with one or two or more substituents selected from the group consisting of a substituted or unsubstituted heterocyclic group, or two or more of the substituents exemplified above are substituted with a substituent, or means that do not have any substituents.
  • a substituent to which two or more substituents are linked may be an aryl group substituted with an aryl group, an aryl group substituted with a heteroaryl group, a heterocyclic group substituted with an aryl group, an aryl group substituted with an alkyl group, or the like.
  • examples of the halogen group include fluorine, chlorine, bromine, or iodine.
  • the alkyl group may be linear or branched chain, carbon number is not particularly limited, but is preferably 1 to 30.
  • Specific examples include methyl, ethyl, propyl, n-propyl, isopropyl, butyl, n-butyl, isobutyl, tert-butyl, sec-butyl, 1-methyl-butyl, 1-ethyl-butyl, pentyl, n-pentyl , Isopentyl, neopentyl, tert-pentyl, hexyl, n-hexyl, 1-methylpentyl, 2-methylpentyl, 4-methyl-2-pentyl, 3,3-dimethylbutyl, 2-ethylbutyl, heptyl, n -Heptyl, 1-methylhexyl, cyclopentylmethyl, cyclohexylmethyl, octyl, n-o
  • the cycloalkyl group is not particularly limited, but preferably has 3 to 30 carbon atoms, specifically, cyclopropyl, cyclobutyl, cyclopentyl, 3-methylcyclopentyl, 2,3-dimethylcyclopentyl, cyclohexyl, 3-methylcyclohexyl, 4-methylcyclohexyl, 2,3-dimethylcyclohexyl, 3,4,5-trimethylcyclohexyl, 4-tert-butylcyclohexyl, cycloheptyl, cyclooctyl, and the like, but are not limited thereto. It is not.
  • the silyl group is a substituent including Si and the Si atom is directly connected as a radical, represented by -SiR 104 R 105 R 106 , R 104 to R 106 are the same as or different from each other, and each independently hydrogen; heavy hydrogen; Halogen group; An alkyl group; Alkenyl groups; An alkoxy group; Cycloalkyl group; Aryl group; And it may be a substituent consisting of at least one of a heterocyclic group.
  • silyl group examples include trimethylsilyl group, triethylsilyl group, t-butyldimethylsilyl group, vinyldimethylsilyl group, propyldimethylsilyl group, triphenylsilyl group, diphenylsilyl group, phenylsilyl group, and the like. It is not limited.
  • phosphine oxide groups include, but are not limited to, diphenylphosphine oxide group, dinaphthylphosphine oxide, and the like.
  • the aryl group is not particularly limited, but preferably has 6 to 30 carbon atoms, and the aryl group may be monocyclic or polycyclic.
  • the aryl group is a monocyclic aryl group
  • carbon number is not particularly limited, but is preferably 6 to 30 carbon atoms.
  • the monocyclic aryl group may be a phenyl group, a biphenyl group, a terphenyl group, etc., but is not limited thereto.
  • Carbon number is not particularly limited when the aryl group is a polycyclic aryl group. It is preferable that it is C10-30.
  • the polycyclic aryl group may be a naphthyl group, anthracenyl group, phenanthryl group, triphenyl group, pyrenyl group, penalenyl group, perylenyl group, chrysenyl group, fluorenyl group, etc., but is not limited thereto. no.
  • the fluorenyl group may be substituted, and adjacent groups may combine with each other to form a ring.
  • examples of the arylamine group include a substituted or unsubstituted monoarylamine group, a substituted or unsubstituted diarylamine group, or a substituted or unsubstituted triarylamine group.
  • the aryl group in the arylamine group may be a monocyclic aryl group, may be a polycyclic aryl group.
  • the arylamine group including two or more aryl groups may simultaneously include a monocyclic aryl group, a polycyclic aryl group, or a monocyclic aryl group and a polycyclic aryl group.
  • the aryl group in the arylamine group may be selected from the examples of the aryl group described above.
  • the heteroaryl group includes one or more atoms other than carbon and heteroatoms, and specifically, the heteroatoms may include one or more atoms selected from the group consisting of O, N, Se, and S, and the like. Although carbon number is not particularly limited, it is preferably 2 to 30 carbon atoms, the heteroaryl group may be monocyclic or polycyclic.
  • heterocyclic group examples include thiophene group, furanyl group, pyrrole group, imidazolyl group, thiazolyl group, oxazolyl group, oxadiazolyl group, pyridyl group, bipyridyl group, pyrimidyl group, triazinyl group, tria Zolyl group, acridil group, pyridazinyl group, pyrazinyl group, quinolinyl group, quinazolinyl group, quinoxalinyl group, phthalazinyl group, pyrido pyrimidyl group, pyrido pyrazinyl group, pyrazino pyrazinyl group , Isoquinolinyl group, indolyl group, carbazolyl group, benzoxazolyl group, benzimidazolyl group, benzothiazolyl group, benzocarbazolyl group, benzothiophene
  • arylene group is the same as the definition of an aryl group except that it is divalent.
  • heteroarylene group is the same as the definition of the heteroaryl group, except that it is divalent.
  • Q is any one of the following Formulas 1-1 to 1-3.
  • Chemical Formula 1 is represented by the following Chemical Formula 2.
  • R1 to R4, X1 to X3, A1, A2, L1, and a to d are the same as defined in Formula 1.
  • X1 to X3 is N.
  • X1 and X2 are N, and X3 is CR.
  • X1 and X3 are N, and X2 is CR.
  • X2 and X3 are N, X1 is CR.
  • L1 is a direct bond or a substituted or unsubstituted arylene group having 6 to 30 carbon atoms.
  • L1 is a direct bond, an alkyl group having 1 to 10 carbon atoms or an arylene group having 6 to 30 carbon atoms unsubstituted or substituted with an aryl group having 6 to 30 carbon atoms.
  • L1 is a C6 to C30 monocyclic arylene group unsubstituted or substituted with an alkyl group having 1 to 10 carbon atoms or an aryl group having 6 to 30 carbon atoms or a direct bond.
  • L1 is a C6 to C30 polycyclic arylene group unsubstituted or substituted with an alkyl group having 1 to 10 carbon atoms or an aryl group having 6 to 30 carbon atoms or a direct bond.
  • L1 is a direct bond, a phenylene group, a biphenylene group, a terphenylene group, a quarterphenylene group, a naphthylene group, a phenanthrenylene group, a dimethylfluorenylene group, a pyrenylene group, a triphenylene group, or Anthracenylene group.
  • L1 is a direct bond, a phenylene group, a biphenylylene group, a naphthylene group, or an anthracenylene group.
  • L1 is any one of the following substituents.
  • L1 is a direct bond
  • L1 is a phenylene group.
  • L1 is a biphenylylene group.
  • L1 is a naphthylene group.
  • L1 is an anthracenylene group.
  • R1 to R4 and R are the same as or different from each other, and each independently hydrogen, deuterium, nitrile group, halogen group, substituted or unsubstituted alkyl group, substituted or unsubstituted aryl group, Or a substituted or unsubstituted heteroaryl group, or adjacent substituents may be bonded to each other to form a substituted or unsubstituted ring.
  • R1 to R4 and R are the same as or different from each other, and each independently hydrogen, deuterium, nitrile group, halogen group, substituted or unsubstituted C1-10 alkyl group, substituted or unsubstituted A substituted C6-C30 aryl group, or a substituted or unsubstituted C3-C20 heteroaryl group, or adjacent substituents may be bonded to each other to form a substituted or unsubstituted ring.
  • the R1 to R4 and R is hydrogen.
  • A1 and A2 are the same as each other, a substituted or unsubstituted aryl group, or a substituted or unsubstituted heteroaryl group.
  • A1 and A2 are the same as each other, and are a substituted or unsubstituted aryl group.
  • A1 and A2 are the same as each other, and a heteroaryl group including any one or more of substituted, unsubstituted N, O, and S.
  • A1 and A2 are different from each other, each independently represent a substituted or unsubstituted aryl group, or a substituted or unsubstituted heteroaryl group.
  • A1 and A2 are different from each other, each independently represent a substituted or unsubstituted aryl group.
  • A1 and A2 are different from each other, and each independently a heteroaryl group including any one or more of N, O, and S substituted or unsubstituted.
  • A1 is a substituted or unsubstituted aryl group
  • A2 is a substituted or unsubstituted heteroaryl group.
  • A2 is a substituted or unsubstituted aryl group
  • A1 is a substituted or unsubstituted heteroaryl group.
  • A1 and A2 are the same as or different from each other, and each independently a substituted or unsubstituted aryl group having 6 to 30 carbon atoms, or a substituted or unsubstituted N, O, and S Heteroaryl group having 3 to 20 carbon atoms containing at least one,
  • the substituted or unsubstituted aryl group having 6 to 30 carbon atoms or the substituted or unsubstituted heteroaryl group having 3 to 20 carbon atoms including any one or more of N, O, and S may be a deuterium, nitrile, halogen, or alkyl group.
  • An aryl group, or a heteroaryl group including any one or more of N, O, and S may be substituted or unsubstituted.
  • A1 and A2 are the same as each other, and a substituted or unsubstituted aryl group having 6 to 30 carbon atoms, or a substituted or unsubstituted carbon number including any one or more of N, O, and S 3 to 20 heteroaryl group,
  • the substituted or unsubstituted aryl group having 6 to 30 carbon atoms or the substituted or unsubstituted heteroaryl group having 3 to 20 carbon atoms including any one or more of N, O, and S may be a deuterium, nitrile, halogen, or alkyl group.
  • An aryl group, or a heteroaryl group including any one or more of N, O, and S may be substituted or unsubstituted.
  • A1 and A2 are different from each other, and a substituted or unsubstituted aryl group having 6 to 30 carbon atoms, or a substituted or unsubstituted carbon number including any one or more of N, O, and S 3 to 20 heteroaryl group,
  • the substituted or unsubstituted aryl group having 6 to 30 carbon atoms or the substituted or unsubstituted heteroaryl group having 3 to 20 carbon atoms including any one or more of N, O, and S may be a deuterium, nitrile, halogen, or alkyl group.
  • An aryl group, or a heteroaryl group including any one or more of N, O, and S may be substituted or unsubstituted.
  • A1 and A2 are the same as each other, and have a substituted or unsubstituted aryl group having 6 to 30 carbon atoms, and a substituted or unsubstituted N, O, and S having at least one of 3 to 20 carbon atoms May be selected from the group consisting of heteroaryl groups,
  • the substituted or unsubstituted aryl group having 6 to 30 carbon atoms, and the heteroaryl group having 3 to 20 carbon atoms including any one or more of substituted or unsubstituted N, O, and S are deuterium, nitrile group, halogen group, carbon number It may be substituted or unsubstituted with 1 to 10 alkyl groups, aryl groups having 6 to 30 carbon atoms, or heteroaryl groups having 3 to 30 carbon atoms including any one or more of N, O, and S.
  • A1 and A2 are the same as each other, and have a substituted or unsubstituted aryl group having 6 to 30 carbon atoms, and a substituted or unsubstituted N, O, and S having at least one of 3 to 20 carbon atoms May be selected from the group consisting of heteroaryl groups,
  • the substituted or unsubstituted aryl group having 6 to 30 carbon atoms, and the substituted or unsubstituted heteroaryl group having 3 to 20 carbon atoms including any one or more of N, O, and S are deuterium, nitrile group, methyl group, terbutyl Phenyl groups unsubstituted or substituted with a group, a phenyl group, a trimethylsilyl group, a dibenzothiophene group, a dibenzofuran group, a carbazole group, an anthracene group, a naphthyl group, a triphenylene group or a dimethylfluorene group; A biphenyl group unsubstituted or substituted with a nitrile group; Terphenyl group; Naphthyl group; Anthracene groups; Phenanthrene group; Triphenylene group; A fluorene group unsubstituted or substituted with a methyl
  • A1 and A2 are the same as or different from each other, and each independently deuterium, methyl group, nitrile group, terbutyl group, phenyl group, trimethylsilyl group, dibenzothiophene group, dibenzofuran group, carbazole group, anthracene
  • a phenyl group unsubstituted or substituted with a group, a naphthyl group, a triphenylene group, or a dimethylfluorene group
  • a biphenyl group unsubstituted or substituted with a nitrile group; Terphenyl group; Naphthyl group; Anthracene groups; Phenanthrene group; Triphenylene group; Dimethyl fluorene group; Diphenyl fluorene group; Spirobifluorene group; Pyridine group; Pyrimidine groups; Triazine group; Carbazole groups unsubstituted or substituted with a phenyl group;
  • A1 and A2 are the same as each other deuterium, methyl group, nitrile group, terbutyl group, phenyl group, trimethylsilyl group, dibenzothiophene group, dibenzofuran group, carbazole group, anthracene group, naphthyl group, tri A phenyl group unsubstituted or substituted with a phenylene group or a dimethylfluorene group; A biphenyl group unsubstituted or substituted with a nitrile group; Terphenyl group; Naphthyl group; Anthracene groups; Phenanthrene group; Triphenylene group; Dimethyl fluorene group; Diphenyl fluorene group; Spirobifluorene group; Pyridine group; Pyrimidine groups; Triazine group; Carbazole groups unsubstituted or substituted with a phenyl group; Dibenzofuran group unsubstitute
  • A1 and A2 are different from each other and each independently deuterium, methyl group, nitrile group, terbutyl group, phenyl group, trimethylsilyl group, dibenzothiophene group, dibenzofuran group, carbazole group, anthracene group, A phenyl group unsubstituted or substituted with a naphthyl group, triphenylene group, or dimethylfluorene group; A biphenyl group unsubstituted or substituted with a nitrile group; Terphenyl group; Naphthyl group; Anthracene groups; Phenanthrene group; Triphenylene group; Dimethyl fluorene group; Diphenyl fluorene group; Spirobifluorene group; Pyridine group; Pyrimidine groups; Triazine group; Carbazole groups unsubstituted or substituted with a phenyl group; Dibenzofuran group unsubstitute
  • A1 and A2 are the same as or different from each other, and each independently a deuterium, methyl group, terbutyl group, phenyl group, trimethylsilyl group, or a phenyl group unsubstituted or substituted with a nitrile group;
  • a biphenyl group unsubstituted or substituted with a nitrile group; Naphthyl group; Phenanthrene group; Dimethyl fluorene group; Diphenyl fluorene group; Pyridine group; Carbazole groups unsubstituted or substituted with a phenyl group; Dibenzofuran group unsubstituted or substituted with a phenyl group; Or a dibenzothiophene group unsubstituted or substituted with a phenyl group.
  • A1 and A2 are the same as or different from each other, and each independently a deuterium, methyl group, terbutyl group, phenyl group, trimethylsilyl group, or a phenyl group unsubstituted or substituted with a nitrile group;
  • a fluorene group unsubstituted or substituted with a methyl group or a phenyl group; Pyridine group; Carbazole groups unsubstituted or substituted with a phenyl group; Dibenzofuran group unsubstituted or substituted with a phenyl group; Dibenzothiophene group unsubstituted or substituted with a phenyl group; Phenanthrene group; Or a terphenyl group.
  • A1 and A2 may be the same as or different from each other, and each independently any one of the following substituents.
  • heterocyclic compound of Formula 1 may be represented by any one selected from the following structural formula.
  • the organic light emitting display device includes a first electrode; A second electrode provided to face the first electrode; And one or two or more organic material layers provided between the first electrode and the second electrode, wherein one or more layers of the organic material layers include a heterocyclic compound represented by Chemical Formula 1.
  • the organic light emitting device of the present invention may be manufactured by a conventional method and material for manufacturing an organic light emitting device, except that at least one organic material layer is formed using the above-described compound.
  • the organic material layer of the organic light emitting device of the present invention may have a single layer structure, but may have a multilayer structure in which two or more organic material layers are stacked.
  • the organic light emitting device of the present invention may have a structure including a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer and the like as an organic material layer.
  • the structure of the organic light emitting device is not limited thereto and may include a smaller number of organic material layers.
  • the organic material layer may include one or more layers of an electron transport layer, an electron injection layer, and a layer for simultaneously transporting and transporting electrons, and one or more of the layers may include the compound.
  • a first electrode, an organic material layer, and a second electrode are sequentially stacked on a substrate.
  • a first electrode, a light emitting layer, a hole blocking layer, and a second electrode are sequentially stacked on a substrate.
  • a first electrode, a hole transport layer, a light emitting layer, a hole blocking layer, and a second electrode are sequentially stacked on a substrate.
  • a first electrode, a light emitting layer, a hole blocking layer, an electron injection and transport layer, and a second electrode are sequentially stacked on a substrate.
  • a first electrode, a hole injection layer, a hole transport layer, a light emitting layer, a hole blocking layer, an electron injection and transport layer, and a second electrode are sequentially stacked on a substrate.
  • a first electrode, a hole injection layer, a hole transport layer, an electron blocking layer, a light emitting layer, a hole blocking layer, an electron injection and transport layer, and a second electrode are sequentially stacked on a substrate.
  • FIG. 1 illustrates a structure of an organic light emitting device in which a first electrode 2, an organic material layer 3, and a second electrode 4 are sequentially stacked on a substrate 1.
  • FIG. 2 shows a first electrode 2, a hole injection layer 5, a hole transport layer 6, an electron blocking layer 7, a light emitting layer 8, a hole blocking layer 9, an electron injection and the like on a substrate 1.
  • the structure of the organic light emitting device in which the transport layer 10 and the second electrode 4 are sequentially stacked is illustrated.
  • 1 and 2 illustrate an organic light emitting diode and are not limited thereto.
  • the organic material layer may include a light emitting layer, and the light emitting layer may include a heterocyclic compound of Chemical Formula 1.
  • the organic material layer may include a hole injection layer, a hole transport layer or an electron blocking layer, and the hole injection layer, the hole transport layer or the electron blocking layer may include the heterocyclic compound of Formula 1 above. .
  • the organic material layer may include an electron injection layer, an electron transport layer, or a hole blocking layer, and the electron injection layer, an electron transport layer, or a hole blocking layer may include a heterocyclic compound of Formula 1 above.
  • the organic material layer may include a hole blocking layer, and the hole blocking layer may include a heterocyclic compound of Formula 1.
  • the organic light emitting device uses a metal vapor deposition (PVD) method such as sputtering or e-beam evaporation, and has a metal oxide or a metal oxide or an alloy thereof on a substrate.
  • PVD metal vapor deposition
  • an organic material layer including a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer and an organic material layer containing a heterocyclic compound of the formula (1), and then used as a cathode thereon It can be prepared by depositing.
  • an organic light emitting device may be manufactured by sequentially depositing a cathode material, an organic material layer, and an anode material on a substrate.
  • the anode material a material having a large work function is usually preferred to facilitate hole injection into the organic material layer.
  • the positive electrode material that can be used in the present invention include metals such as vanadium, chromium, copper, zinc and gold or alloys thereof; Metal oxides such as zinc oxide, indium oxide, indium tin oxide (ITO), indium zinc oxide (IZO); ZnO: Al or SnO 2 : Combination of metals and oxides such as Sb; Conductive polymers such as poly (3-methyl compound), poly [3,4- (ethylene-1,2-dioxy) compound] (PEDT), polypyrrole and polyaniline, and the like, but are not limited thereto.
  • the cathode material is a material having a small work function to facilitate electron injection into the organic material layer.
  • the negative electrode material include metals such as magnesium, calcium, sodium, potassium, titanium, indium, yttrium, lithium, gadolinium, aluminum, silver, tin, and lead or alloys thereof; Multilayer structure materials such as LiF / Al or LiO 2 / Al, and the like, but are not limited thereto.
  • the hole injection material is a material capable of well injecting holes from the anode at a low voltage, and the highest occupied molecular orbital (HOMO) of the hole injection material is preferably between the work function of the anode material and the HOMO of the surrounding organic material layer.
  • hole injecting materials include metal porphyrine, oligothiophene, arylamine-based organics, hexanitrile hexaazatriphenylene-based organics, quinacridone-based organics, and perylene-based Organic compounds, anthraquinones and polyaniline and poly-compounds of conductive polymers, and the like, but are not limited thereto.
  • the hole transporting material a material capable of transporting holes from the anode or the hole injection layer to be transferred to the light emitting layer is suitable.
  • a material capable of transporting holes from the anode or the hole injection layer to be transferred to the light emitting layer is suitable.
  • Specific examples thereof include an arylamine-based organic material, a conductive polymer, and a block copolymer having a conjugated portion and a non-conjugated portion together, but are not limited thereto.
  • the light emitting material is a material capable of emitting light in the visible region by transporting and combining holes and electrons from the hole transport layer and the electron transport layer, respectively, and a material having good quantum efficiency with respect to fluorescence or phosphorescence is preferable.
  • Specific examples thereof include 8-hydroxyquinoline aluminum complex (Alq 3 ); Carbazole series compounds; Dimerized styryl compounds; BAlq; 10-hydroxybenzoquinoline-metal compound; Benzoxazole, benzthiazole and benzimidazole series compounds; Poly (p-phenylenevinylene) (PPV) -based polymers; Spiro compounds; Polyfluorene, rubrene and the like, but are not limited thereto.
  • the light emitting layer may include a host material and a dopant material.
  • the host material is a condensed aromatic ring derivative or a heterocyclic containing compound.
  • the condensed aromatic ring derivatives include anthracene derivatives, pyrene derivatives, naphthalene derivatives, pentacene derivatives, phenanthrene compounds, and fluoranthene compounds
  • the heterocyclic compounds include heterocyclic compounds, dibenzofuran derivatives, and ladder types. Furan compounds, pyrimidine derivatives, and the like, but are not limited thereto.
  • the organic material layers may be formed of the same material or different materials.
  • the organic light emitting device of the present specification may be manufactured by materials and methods known in the art, except that at least one layer of the organic material layer is formed using the heterocyclic compound.
  • the organic light emitting device of the present specification may be manufactured by sequentially stacking an anode, an organic material layer, and a cathode on a substrate.
  • the anode is formed by depositing a metal or conductive metal oxide or an alloy thereof on the substrate by using a physical vapor deposition (PVD) method such as sputtering or e-beam evaporation.
  • PVD physical vapor deposition
  • an organic material layer including a hole injection layer, a hole transporting layer, a light emitting layer, and an electron transporting layer thereon, and then depositing a material that can be used as a cathode thereon.
  • an organic light emitting device may be manufactured by sequentially depositing a cathode material, an organic material layer, and an anode material on a substrate.
  • the present specification also provides a method of manufacturing an organic light emitting device formed using the heterocyclic compound.
  • preparing a substrate Forming a cathode or anode on the substrate; Forming at least one organic layer on the cathode or anode; And forming an anode or a cathode on the organic layer, wherein at least one layer of the organic layer is formed using the heterocyclic compound.
  • Dopant materials include aromatic heterocyclic compounds, styrylamine compounds, boron complexes, fluoranthene compounds, metal complexes, and the like.
  • the aromatic heterocyclic compound is a condensed aromatic ring derivative having a substituted or unsubstituted arylamino group, and includes pyrene, anthracene, chrysene and periplanthene having an arylamino group, and a styrylamine compound is substituted or unsubstituted.
  • At least one arylvinyl group is substituted with the substituted arylamine, and one or two or more substituents selected from the group consisting of an aryl group, a silyl group, an alkyl group, a cycloalkyl group and an arylamino group are substituted or unsubstituted.
  • substituents selected from the group consisting of an aryl group, a silyl group, an alkyl group, a cycloalkyl group and an arylamino group are substituted or unsubstituted.
  • the metal complex includes, but is not limited to, an iridium complex, a platinum complex, and the like.
  • the electron transport layer is a layer that receives electrons from the electron injection layer and transports electrons to the light emitting layer.
  • the electron transporting material a material capable of injecting electrons from the cathode and transferring them to the light emitting layer is suitable. Do. Specific examples thereof include Al complexes of 8-hydroxyquinoline; Complexes including Alq 3 ; Organic radical compounds; Hydroxyflavone-metal complexes and the like, but are not limited thereto.
  • the electron transport layer can be used with any desired cathode material as used in accordance with the prior art.
  • suitable cathode materials are conventional materials having a low work function followed by an aluminum or silver layer. Specifically cesium, barium, calcium, ytterbium and samarium, followed by aluminum layers or silver layers in each case.
  • the electron injection layer is a layer that injects electrons from an electrode, has an ability to transport electrons, has an electron injection effect from a cathode, an electron injection effect with respect to a light emitting layer or a light emitting material, and hole injection of excitons generated in the light emitting layer
  • the compound which prevents the movement to a layer and is excellent in thin film formation ability is preferable.
  • fluorenone anthraquinodimethane, diphenoquinone, thiopyran dioxide, oxazole, oxadiazole, triazole, imidazole, perylenetetracarboxylic acid, preorenylidene methane, anthrone and the like and derivatives thereof, metal Complex compounds, nitrogen-containing five-membered ring derivatives, and the like, but are not limited thereto.
  • Examples of the metal complex compound include 8-hydroxyquinolinato lithium, bis (8-hydroxyquinolinato) zinc, bis (8-hydroxyquinolinato) copper, bis (8-hydroxyquinolinato) manganese, Tris (8-hydroxyquinolinato) aluminum, tris (2-methyl-8-hydroxyquinolinato) aluminum, tris (8-hydroxyquinolinato) gallium, bis (10-hydroxybenzo [h] Quinolinato) beryllium, bis (10-hydroxybenzo [h] quinolinato) zinc, bis (2-methyl-8-quinolinato) chlorogallium, bis (2-methyl-8-quinolinato) ( o-cresolato) gallium, bis (2-methyl-8-quinolinato) (1-naphtolato) aluminum, bis (2-methyl-8-quinolinato) (2-naphtolato) gallium, It is not limited to this.
  • the organic light emitting device may be a top emission type, a bottom emission type, or a double side emission type according to a material used.
  • the heterocyclic compound of Formula 1 may be prepared according to the following reaction scheme, but is not limited thereto.
  • the type and number of substituents can synthesize various kinds of intermediates as those skilled in the art appropriately select known starting materials.
  • Reaction type and reaction conditions may be used those known in the art.
  • a glass substrate coated with a thin film of ITO (indium tin oxide) at a thickness of 1,000 ⁇ was placed in distilled water in which detergent was dissolved and ultrasonically cleaned.
  • ITO indium tin oxide
  • Fischer Co. product was used as the detergent
  • distilled water filtered secondly as a filter of Millipore Co. product was used as the distilled water.
  • ultrasonic washing was performed twice with distilled water for 10 minutes.
  • ultrasonic washing with a solvent of isopropyl alcohol, acetone, methanol dried and transported to a plasma cleaner.
  • the substrate was cleaned for 5 minutes using an oxygen plasma, and then the substrate was transferred to a vacuum evaporator.
  • the compound of the following compound HI1 and the following compound HI2 was thermally vacuum deposited to a thickness of 100 kPa so that the ratio of 98: 2 (molar ratio) was formed on the ITO transparent electrode as the anode thus prepared, thereby forming a hole injection layer.
  • Compound (1150.) Represented by the following formula HT1 was vacuum deposited on the hole injection layer to form a hole transport layer.
  • an electron blocking layer was formed by vacuum depositing a compound of EB1 on the hole transport layer with a film thickness of 50 GPa.
  • the light emitting layer was formed by evaporating a compound represented by the following formula BH and a compound represented by the following formula BD in a weight ratio of 25: 1 on the electronic blocking layer at a film thickness of 200 kPa.
  • Compound 1 was vacuum deposited on the light emitting layer with a film thickness of 50 GPa to form a hole blocking layer.
  • the compound represented by the following formula ET1 and the compound represented by the following formula LiQ were vacuum-deposited at a weight ratio of 1: 1 on the hole blocking layer to form an electron injection and transport layer at a thickness of 310 ⁇ .
  • Lithium fluoride (LiF) and aluminum were deposited on the electron injection and transport layer sequentially to a thickness of 12 ⁇ and 1,000 ⁇ to form a cathode.
  • the deposition rate of the organic material was maintained at 0.4 ⁇ 0.7 ⁇ / sec
  • the lithium fluoride of the cathode was maintained at 0.3 ⁇ / sec
  • the aluminum was maintained at the deposition rate of 2 ⁇ / sec
  • the vacuum degree during deposition is 2x10 -7 ⁇
  • the organic light emitting device was manufactured by maintaining 5 ⁇ 10 ⁇ 6 torr.
  • An organic light-emitting device was manufactured in the same manner as in Example 1-1, except for using the compound shown in Table 1 instead of Compound 1.
  • An organic light-emitting device was manufactured in the same manner as in Example 1-1, except for using the compound shown in Table 1 instead of Compound 1.
  • the compounds of HB1 to HB8 used in Table 1 below are as follows.
  • T95 means the time it takes for the luminance to decrease to 95% from the initial luminance (1600 nit).
  • Example 1-1 Compound 1 3.52 6.30 (0.140, 0.047) 285
  • Example 1-2 Compound 2 3.54 6.25 (0.141, 0.047)
  • Example 1-3 Compound 3 3.43 6.57 (0.143, 0.047)
  • Example 1-4 Compound 4 3.51 6.28 (0.139, 0.046)
  • Example 1-5 Compound 5 3.55 6.39 (0.140, 0.047) 285
  • Example 1-6 Compound 6 3.56 6.21 (0.141, 0.047) 275
  • Example 1-7 Compound 7 3.59 6.25 (0.140, 0.046) 280
  • Example 1-8 Compound 8 3.58 6.43 (0.139, 0.045) 290
  • Example 1-9 Compound 9 3.58 6.45 (0.141, 0.046) 285
  • Example 1-10 Compound 10 3.45 6.54 (0.142, 0.046) 255
  • Example 1-10 Compound 10 3.45 6.54 (0.142, 0.046) 255
  • Example 1-10 Compound 10 3.45 6.54 (0.142, 0.046)
  • the organic light emitting device using the compound of the present invention as a hole blocking layer exhibited excellent characteristics in terms of efficiency, driving voltage and stability of the organic light emitting device.
  • Comparative Example 1-1 Compounds of Comparative Example 1-1 in which methyl groups were substituted at positions 9 and 10 of the fluorene core of the present invention and Triazine and pyridine connected at positions 2, 3 and 4 of the benzofluorene core, Comparative Examples 1-2 to
  • the organic light emitting device manufactured by using 1-4 as the hole blocking layer exhibits low voltage, high efficiency, and long life.
  • Comparative Example 1-5 used a compound in which a portion corresponding to Q was benzene. Unlike Comparative Example 1-6 and Comparative Example 1-7, a compound in which a methyl group was substituted at the 9th position of the fluorene core was used. In Comparative Example 8, a compound in which only an aryl group was substituted in the core was used.
  • the present invention showed low voltage, high efficiency, and long life when compared with Comparative Examples 1-5 to 1-8.
  • the compound according to the present invention was confirmed that the hole blocking ability is excellent can be applied to the organic light emitting device.

Abstract

본 명세서는 화학식 1의 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자에 관한 것이다.

Description

헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
본 명세서는 2018년 2월 28일에 한국 특허청에 제출된 한국 특허 출원 제 10-2018-0024543 호의 출원일의 이익을 주장하며, 그 내용 전부는 본 명세서에 포함된다.
본 명세서는 헤테로고리 화합물, 및 헤테로고리 화합물을 이용하여 형성된 유기 발광 소자에 관한 것이다.
일반적으로 유기 발광 현상이란 유기 물질을 이용하여 전기에너지를 빛에너지로 전환시켜주는 현상을 말한다. 유기 발광 현상을 이용하는 유기 발광 소자는 통상 양극과 음극 및 이 사이에 유기물층을 포함하는 구조를 가진다. 여기서 유기물층은 유기 발광 소자의 효율과 안정성을 높이기 위하여 각기 다른 물질로 구성된 다층의 구조로 이루어진 경우가 많으며, 예컨대 정공주입층, 정공수송층, 발광층, 전자수송층, 전자주입층 등으로 이루어 질 수 있다. 이러한 유기 발광 소자의 구조에서 두 전극 사이에 전압을 걸어주게 되면 양극에서는 정공이, 음극에서는 전자가 유기물층에 주입되게 되고, 주입된 정공과 전자가 만났을 때 엑시톤(exciton)이 형성되며, 이 엑시톤이 다시 바닥상태로 떨어질 때 빛이 나게 된다.
상기와 같은 유기 발광 소자를 위한 새로운 재료의 개발이 계속 요구되고 있다.
본 명세서는 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자를 제공한다.
본 명세서의 일 실시상태에 따르면 하기 화학식 1로 표시되는 헤테로고리 화합물을 제공한다.
[화학식 1]
Figure PCTKR2019002434-appb-I000001
상기 화학식 1에서
Q는
Figure PCTKR2019002434-appb-I000002
이고,
X1 내지 X3은 서로 같거나 상이하며, 각각 독립적으로 N 또는 CR이고,
X1 내지 X3 중 어느 하나 이상은 N이며,
R 및 R1 내지 R4는 서로 같거나 상이하며, 각각 독립적으로 수소, 중수소, 니트릴기, 할로겐기, 치환 또는 비치환된 알킬기, 치환 또는 비치환된 실릴기, 치환 또는 비치환된 포스핀옥사이드기, 치환 또는 비치환된 아민기, 치환 또는 비치환된 아릴기, 또는 치환 또는 비치환된 헤테로아릴기이거나, 인접한 치환기가 서로 결합하여 치환 또는 비치환된 고리를 형성할 수 있으며,
L1은 직접결합, 또는 치환 또는 비치환된 아릴렌기이고,
A1 및 A2는 서로 같거나 상이하며, 각각 독립적으로 치환 또는 비치환된 아릴기, 또는 치환 또는 비치환된 헤테로아릴기이고,
a 및 b는 각각 0 내지 5의 정수이고, 상기 a 및 b가 각각 2 이상일 때, R1은 서로 같거나 상이하고, R2은 서로 같거나 상이하며,
c는 0 내지 3의 정수이고, 상기 c가 2 이상일 때, R3은 서로 같거나 상이하고,
d는 0 내지 8의 정수이고, 상기 d가 2 이상일 때, R4는 서로 같거나 상이하다.
또한, 본 명세서는 제1 전극; 상기 제1 전극에 대향하여 구비된 제2 전극; 및 상기 제1 전극과 제2 전극 사이에 구비된 1층 이상의 유기물층을 포함하는 유기 발광 소자로서, 상기 유기물층 중 1 층 이상은 상기 헤테로고리 화합물을 포함하는 것인 유기 발광 소자를 제공한다.
본 명세서의 일 실시상태에 따른 헤테로고리 화합물은 유기 발광 소자의 유기물층의 재료로서 사용될 수 있고, 이를 사용함으로써 유기 발광 소자에서 효율의 향상, 낮은 구동전압 및/또는 수명 특성의 향상이 가능하다.
도 1은 본 명세서의 일 실시상태에 따르는 유기 발광 소자를 도시한 것이다.
도 2는 본 명세서의 일 실시상태에 따르는 유기 발광 소자를 도시한 것이다.
[부호의 설명]
1: 기판
2: 제1 전극
3: 유기물층
4: 제2 전극
5: 정공주입층
6: 정공수송층
7: 전자저지층
8: 발광층
9: 정공저지층
10: 전자주입 및 수송층
이하, 본 명세서에 대하여 더욱 상세하게 설명한다.
본 명세서는 상기 화학식 1로 표시되는 헤테로고리 화합물을 제공한다.
본 명세서는 N함유 헤테로고리와 축합고리 코어가 결합된 것을 특징으로 하는 화합물을 제공한다.
본 명세서에 있어서, 어떤 부분이 어떤 구성요소를 "포함" 한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다.
본 명세서에 있어서 치환기의 예시들은 아래에서 설명하나, 이에 한정되는 것은 아니다.
상기 "치환"이라는 용어는 화합물의 탄소 원자에 결합된 수소 원자가 다른 치환기로 바뀌는 것을 의미하며, 치환되는 위치는 수소 원자가 치환되는 위치, 즉 치환기가 치환 가능한 위치라면 한정하지 않으며, 2 이상 치환되는 경우, 2 이상의 치환기는 서로 동일하거나 상이할 수 있다.
본 명세서에서 "치환 또는 비치환된" 이라는 용어는 중수소; 니트릴기; 치환 또는 비치환된 알킬기; 치환 또는 비치환된 시클로알킬기; 치환 또는 비치환된 실릴기; 치환 또는 비치환된 아릴기; 및 치환 또는 비치환된 헤테로고리기로 이루어진 군에서 선택된 1 또는 2 이상의 치환기로 치환되었거나 상기 예시된 치환기 중 2 이상의 치환기가 연결된 치환기로 치환되거나, 또는 어떠한 치환기도 갖지 않는 것을 의미한다. 예컨대, "2 이상의 치환기가 연결된 치환기"는 아릴기로 치환된 아릴기, 헤테로아릴기로 치환된 아릴기, 아릴기로 치환된 헤테로고리기, 알킬기로 치환된 아릴기 등일 수 있다.
본 명세서에 있어서, 할로겐기의 예로는 불소, 염소, 브롬, 또는 요오드가 있다.
본 명세서에 있어서, 상기 알킬기는 직쇄 또는 분지쇄일 수 있고, 탄소수는 특별히 한정되지 않으나 1 내지 30인 것이 바람직하다. 구체적인 예로는 메틸, 에틸, 프로필, n-프로필, 이소프로필, 부틸, n-부틸, 이소부틸, tert-부틸, sec-부틸, 1-메틸-부틸, 1-에틸-부틸, 펜틸, n-펜틸, 이소펜틸, 네오펜틸, tert-펜틸, 헥실, n-헥실, 1-메틸펜틸, 2-메틸펜틸, 4-메틸-2-펜틸, 3,3-디메틸부틸, 2-에틸부틸, 헵틸, n-헵틸, 1-메틸헥실, 시클로펜틸메틸, 시클로헥실메틸, 옥틸, n-옥틸, tert-옥틸, 1-메틸헵틸, 2-에틸헥실, 2-프로필펜틸, n-노닐, 2,2-디메틸헵틸, 1-에틸-프로필, 1,1-디메틸-프로필, 이소헥실, 2-메틸펜틸, 4-메틸헥실, 5-메틸헥실 등이 있으나, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 시클로알킬기는 특별히 한정되지 않으나, 탄소수 3 내지 30인 것이 바람직하며, 구체적으로 시클로프로필, 시클로부틸, 시클로펜틸, 3-메틸시클로펜틸, 2,3-디메틸시클로펜틸, 시클로헥실, 3-메틸시클로헥실, 4-메틸시클로헥실, 2,3-디메틸시클로헥실, 3,4,5-트리메틸시클로헥실, 4-tert-부틸시클로헥실, 시클로헵틸, 시클로옥틸 등이 있으나, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 실릴기는 Si를 포함하고 상기 Si 원자가 라디칼로서 직접 연결되는 치환기이며, -SiR104R105R106로 표시되고, R104 내지 R106은 서로 동일하거나 상이하며, 각각 독립적으로 수소; 중수소; 할로겐기; 알킬기; 알케닐기; 알콕시기; 시클로알킬기; 아릴기; 및 헤테로고리기 중 적어도 하나로 이루어진 치환기일 수 있다. 실릴기의 구체적인 예로는 트리메틸실릴기, 트리에틸실릴기, t-부틸디메틸실릴기, 비닐디메틸실릴기, 프로필디메틸실릴기, 트리페닐실릴기, 디페닐실릴기, 페닐실릴기 등이 있으나, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 포스핀옥사이드기는 구체적으로 디페닐포스핀옥사이드기, 디나프틸포스핀옥사이드 등이 있으나, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 아릴기는 특별히 한정되지 않으나, 탄소수 6 내지 30인 것이 바람직하며, 상기 아릴기는 단환식 또는 다환식일 수 있다.
상기 아릴기가 단환식 아릴기인 경우 탄소수는 특별히 한정되지 않으나, 탄소수 6 내지 30인 것이 바람직하다. 구체적으로 단환식 아릴기로는 페닐기, 바이페닐기, 터페닐기 등이 될 수 있으나, 이에 한정되는 것은 아니다.
상기 아릴기가 다환식 아릴기인 경우 탄소수는 특별히 한정되지 않으나. 탄소수 10 내지 30인 것이 바람직하다. 구체적으로 다환식 아릴기로는 나프틸기, 안트라세닐기, 페난트릴기, 트리페닐기, 파이레닐기, 페날레닐기, 페릴레닐기, 크라이세닐기, 플루오레닐기 등이 될 수 있으나, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 상기 플루오레닐기는 치환될 수 있으며, 인접한 기들이 서로 결합하여 고리를 형성할 수 있다.
상기 플루오레닐기가 치환되는 경우,
Figure PCTKR2019002434-appb-I000003
,
Figure PCTKR2019002434-appb-I000004
,
Figure PCTKR2019002434-appb-I000005
,
Figure PCTKR2019002434-appb-I000006
,
Figure PCTKR2019002434-appb-I000007
Figure PCTKR2019002434-appb-I000008
등이 될 수 있다. 다만, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 아릴아민기의 예로는 치환 또는 비치환된 모노아릴아민기, 치환 또는 비치환된 디아릴아민기, 또는 치환 또는 비치환된 트리아릴아민기가 있다. 상기 아릴아민기 중의 아릴기는 단환식 아릴기일 수 있고, 다환식 아릴기일 수 있다. 상기 아릴기가 2 이상을 포함하는 아릴아민기는 단환식 아릴기, 다환식 아릴기, 또는 단환식 아릴기와 다환식 아릴기를 동시에 포함할 수 있다. 예컨대, 상기 아릴아민기 중의 아릴기는 전술한 아릴기의 예시 중에서 선택될 수 있다.
본 명세서에 있어서, 헤테로아릴기는 탄소가 아닌 원자, 이종원자를 1 이상 포함하는 것으로서, 구체적으로 상기 이종 원자는 O, N, Se 및 S 등으로 이루어진 군에서 선택되는 원자를 1 이상 포함할 수 있다. 탄소수는 특별히 한정되지 않으나, 탄소수 2 내지 30인 것이 바람직하며, 상기 헤테로아릴기는 단환식 또는 다환식일 수 있다. 헤테로고리기의 예로는 티오펜기, 퓨라닐기, 피롤기, 이미다졸릴기, 티아졸릴기, 옥사졸릴기, 옥사디아졸릴기, 피리딜기, 바이피리딜기, 피리미딜기, 트리아지닐기, 트리아졸릴기, 아크리딜기, 피리다지닐기, 피라지닐기, 퀴놀리닐기, 퀴나졸리닐기, 퀴녹살리닐기, 프탈라지닐기, 피리도 피리미딜기, 피리도 피라지닐기, 피라지노 피라지닐기, 이소퀴놀리닐기, 인돌릴기, 카바졸릴기, 벤즈옥사졸릴기, 벤즈이미다졸릴기, 벤조티아졸릴기, 벤조카바졸릴기, 벤조티오펜기, 디벤조티오펜기, 벤조퓨라닐기, 페난쓰롤리닐기(phenanthroline), 이소옥사졸릴기, 티아디아졸릴기, 페노티아지닐기 및 디벤조퓨라닐기 등이 있으나, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 아릴렌기는 2가인 점을 제외하고, 아릴기의 정의와 같다.
본 명세서에 있어서, 헤테로아릴렌기는 2가인 점을 제외하고, 헤테로아릴기의 정의와 같다.
본 명세서에 있어서, Q는 하기 화학식 1-1 내지 1-3 중 어느 하나이다.
[화학식 1-1]
Figure PCTKR2019002434-appb-I000009
[화학식 1-2]
Figure PCTKR2019002434-appb-I000010
[화학식 1-3]
Figure PCTKR2019002434-appb-I000011
상기 화학식 1-1 내지 1-3에서, 상기 점선은 상기 화학식 1의 코어와 결합하는 부위이고, 상기 R4 및 d는 상기 화학식 1 에서 정의한 바와 같다.
본 명세서에 있어서, 상기 화학식 1은 하기 화학식 2로 표시된다.
[화학식 2]
Figure PCTKR2019002434-appb-I000012
상기 화학식 2에서, 상기 R1 내지 R4, X1 내지 X3, A1, A2, L1, 및 a 내지 d는 상기 화학식 1의 정의와 같다.
본 명세서에 있어서, 상기 X1 내지 X3은 N이다.
본 명세서에 있어서, 상기 X1 및 X2는 N이고, X3은 CR이다.
본 명세서에 있어서, 상기 X1 및 X3은 N이고, X2는 CR이다.
본 명세서에 있어서, 상기 X2 및 X3은 N이고, X1은 CR이다.
본 명세서에 있어서, 상기 L1은 직접결합이거나, 치환 또는 비치환된 탄소수 6 내지 30의 아릴렌기이다.
본 명세서에 있어서, 상기 L1은 직접결합이거나, 탄소수 1 내지 10의 알킬기 또는 탄소수 6 내지 30의 아릴기로 치환 또는 비치환된 탄소수 6 내지 30의 아릴렌기이다.
본 명세서에 있어서, 상기 L1은 직접결합이거나, 탄소수 1 내지 10의 알킬기 또는 탄소수 6 내지 30의 아릴기로 치환 또는 비치환된 탄소수 6 내지 30의 단환의 아릴렌기이다.
본 명세서에 있어서, 상기 L1은 직접결합이거나, 탄소수 1 내지 10의 알킬기 또는 탄소수 6 내지 30의 아릴기로 치환 또는 비치환된 탄소수 6 내지 30의 다환의 아릴렌기이다.
본 명세서에 있어서, 상기 L1은 직접결합, 페닐렌기, 비페닐렌기, 터페닐렌기, 쿼터페닐렌기, 나프틸렌기, 페난트레닐렌기, 디메틸플루오레닐렌기, 파이레닐렌기, 트리페닐렌기, 또는 안트라세닐렌기이다.
본 명세서에 있어서, 상기 L1은 직접결합, 페닐렌기, 비페닐릴렌기, 나프틸렌기, 또는 안트라세닐렌기이다.
본 명세서에 있어서, 상기 L1은 하기의 치환기 중 어느 하나이다.
Figure PCTKR2019002434-appb-I000013
본 명세서에 있어서, 상기 L1은 직접결합이다.
본 명세서에 있어서, 상기 L1은 페닐렌기이다.
본 명세서에 있어서, 상기 L1은 비페닐릴렌기이다.
본 명세서에 있어서, 상기 L1은 나프틸렌기이다.
본 명세서에 있어서, 상기 L1은 안트라세닐렌기이다.
본 명세서의 일 실시상태에 따르면, 상기 R1 내지 R4 및 R는 서로 같거나 상이하고, 각각 독립적으로 수소, 중수소, 니트릴기, 할로겐기, 치환 또는 비치환된 알킬기, 치환 또는 비치환된 아릴기, 또는 치환 또는 비치환된 헤테로아릴기이거나, 인접한 치환기가 서로 결합하여 치환 또는 비치환된 고리를 형성할 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 R1 내지 R4 및 R는 서로 같거나 상이하고, 각각 독립적으로 수소, 중수소, 니트릴기, 할로겐기, 치환 또는 비치환된 탄소수 1 내지 10의 알킬기, 치환 또는 비치환된 탄소수 6 내지 30의 아릴기, 또는 치환 또는 비치환된 탄소수 3 내지 20의 헤테로아릴기이거나, 인접한 치환기가 서로 결합하여 치환 또는 비치환된 고리를 형성할 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 R1 내지 R4 및 R는 수소이다.
본 명세서의 일 실시상태에 따르면, 상기 A1 및 A2는 서로 같고, 치환 또는 비치환된 아릴기, 또는 치환 또는 비치환된 헤테로아릴기이다.
본 명세서의 일 실시상태에 따르면, 상기 A1 및 A2는 서로 같고, 치환 또는 비치환된 아릴기이다.
본 명세서의 일 실시상태에 따르면, 상기 A1 및 A2는 서로 같고, 치환 또는 비치환된 N, O, 및 S 중 어느 하나 이상을 포함하는 헤테로아릴기이다.
본 명세서의 일 실시상태에 따르면, 상기 A1 및 A2는 서로 상이하고, 각각 독립적으로 치환 또는 비치환된 아릴기, 또는 치환 또는 비치환된 헤테로아릴기이다.
본 명세서의 일 실시상태에 따르면, 상기 A1 및 A2는 서로 상이하고, 각각 독립적으로 치환 또는 비치환된 아릴기이다.
본 명세서의 일 실시상태에 따르면, 상기 A1 및 A2는 서로 상이하고, 각각 독립적으로 치환 또는 비치환된 N, O, 및 S 중 어느 하나 이상을 포함하는 헤테로아릴기이다.
본 명세서의 일 실시상태에 따르면, 상기 A1는 치환 또는 비치환된 아릴기이고, A2는 치환 또는 비치환된 헤테로아릴기이다.
본 명세서의 일 실시상태에 따르면, 상기 A2는 치환 또는 비치환된 아릴기이고, A1는 치환 또는 비치환된 헤테로아릴기이다.
본 명세서의 일 실시상태에 따르면, 상기 A1 및 A2는 서로 같거나 상이하고, 각각 독립적으로 치환 또는 비치환된 탄소수 6 내지 30의 아릴기, 또는 치환 또는 비치환된 N, O, 및 S 중 어느 하나 이상을 포함하는 탄소수 3 내지 20의 헤테로아릴기이고,
상기 치환 또는 비치환된 탄소수 6 내지 30의 아릴기, 또는 치환 또는 비치환된 N, O, 및 S 중 어느 하나 이상을 포함하는 탄소수 3 내지 20의 헤테로아릴기는 중수소, 니트릴기, 할로겐기, 알킬기, 아릴기, 또는 N, O, 및 S 중 어느 하나 이상을 포함하는 헤테로아릴기로 치환 또는 비치환될 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 A1 및 A2는 서로 같고, 치환 또는 비치환된 탄소수 6 내지 30의 아릴기, 또는 치환 또는 비치환된 N, O, 및 S 중 어느 하나 이상을 포함하는 탄소수 3 내지 20의 헤테로아릴기이고,
상기 치환 또는 비치환된 탄소수 6 내지 30의 아릴기, 또는 치환 또는 비치환된 N, O, 및 S 중 어느 하나 이상을 포함하는 탄소수 3 내지 20의 헤테로아릴기는 중수소, 니트릴기, 할로겐기, 알킬기, 아릴기, 또는 N, O, 및 S 중 어느 하나 이상을 포함하는 헤테로아릴기로 치환 또는 비치환될 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 A1 및 A2는 서로 다르고, 치환 또는 비치환된 탄소수 6 내지 30의 아릴기, 또는 치환 또는 비치환된 N, O, 및 S 중 어느 하나 이상을 포함하는 탄소수 3 내지 20의 헤테로아릴기이고,
상기 치환 또는 비치환된 탄소수 6 내지 30의 아릴기, 또는 치환 또는 비치환된 N, O, 및 S 중 어느 하나 이상을 포함하는 탄소수 3 내지 20의 헤테로아릴기는 중수소, 니트릴기, 할로겐기, 알킬기, 아릴기, 또는 N, O, 및 S 중 어느 하나 이상을 포함하는 헤테로아릴기로 치환 또는 비치환될 수 있다.
본 명세서에 있어서, 상기 A1 및 A2는 서로 같고, 치환 또는 비치환된 탄소수 6 내지 30의 아릴기, 및 치환 또는 비치환된 N, O, 및 S 중 어느 하나 이상을 포함하는 탄소수 3 내지 20의 헤테로아릴기로 이루어진 군에서 선택될 수 있고,
상기 치환 또는 비치환된 탄소수 6 내지 30의 아릴기, 및 치환 또는 비치환된 N, O, 및 S 중 어느 하나 이상을 포함하는 탄소수 3 내지 20의 헤테로아릴기는 중수소, 니트릴기, 할로겐기, 탄소수 1 내지 10 알킬기, 탄소수 6 내지 30의 아릴기, 또는 N, O, 및 S 중 어느 하나 이상을 포함하는 탄소수 3 내지 30의 헤테로아릴기로 치환 또는 비치환될 수 있다.
본 명세서에 있어서, 상기 A1 및 A2는 서로 같고, 치환 또는 비치환된 탄소수 6 내지 30의 아릴기, 및 치환 또는 비치환된 N, O, 및 S 중 어느 하나 이상을 포함하는 탄소수 3 내지 20의 헤테로아릴기로 이루어진 군에서 선택될 수 있고,
상기 치환 또는 비치환된 탄소수 6 내지 30의 아릴기, 및 치환 또는 비치환된 N, O, 및 S 중 어느 하나 이상을 포함하는 탄소수 3 내지 20의 헤테로아릴기는 중수소, 니트릴기, 메틸기, 터부틸기, 페닐기, 트리메틸실릴기, 디벤조티오펜기, 디벤조퓨란기, 카바졸기, 안트라센기, 나프틸기, 트리페닐렌기 또는 디메틸플루오렌기로 치환 또는 비치환된 페닐기; 니트릴기로 치환 또는 비치환된 비페닐기; 터페닐기; 나프틸기; 안트라센기; 페난트렌기; 트리페닐렌기; 메틸기 또는 페닐기로 치환 또는 비치환된 플루오렌기; 스피로비플루오렌기; 피리딘기; 페닐기로 치환 또는 비치환된 카바졸기; 페닐기로 치환 또는 비치환된 디벤조퓨란기; 페닐기로 치환 또는 비치환된 디벤조티오펜기; 벤조나프토퓨란기; 또는 벤조나프토티오펜기이다.
본 명세서에 있어서, 상기 A1 및 A2는 서로 같거나 상이하고 각각 독립적으로 중수소, 메틸기, 니트릴기, 터부틸기, 페닐기, 트리메틸실릴기, 디벤조티오펜기, 디벤조퓨란기, 카바졸기, 안트라센기, 나프틸기, 트리페닐렌기 또는 디메틸플루오렌기로 치환 또는 비치환된 페닐기; 니트릴기로 치환 또는 비치환된 비페닐기; 터페닐기; 나프틸기; 안트라센기; 페난트렌기; 트리페닐렌기; 디메틸플루오렌기; 디페닐플루오렌기; 스피로비플루오렌기; 피리딘기; 피리미딘기; 트리아진기; 페닐기로 치환 또는 비치환된 카바졸기; 페닐기로 치환 또는 비치환된 디벤조퓨란기; 페닐기로 치환 또는 비치환된 디벤조티오펜기; 벤조나프토퓨란기; 또는 벤조나프토티오펜기이다.
본 명세서에 있어서, 상기 A1 및 A2는 서로 같고 중수소, 메틸기, 니트릴기, 터부틸기, 페닐기, 트리메틸실릴기, 디벤조티오펜기, 디벤조퓨란기, 카바졸기, 안트라센기, 나프틸기, 트리페닐렌기 또는 디메틸플루오렌기로 치환 또는 비치환된 페닐기; 니트릴기로 치환 또는 비치환된 비페닐기; 터페닐기; 나프틸기; 안트라센기; 페난트렌기; 트리페닐렌기; 디메틸플루오렌기; 디페닐플루오렌기; 스피로비플루오렌기; 피리딘기; 피리미딘기; 트리아진기; 페닐기로 치환 또는 비치환된 카바졸기; 페닐기로 치환 또는 비치환된 디벤조퓨란기; 페닐기로 치환 또는 비치환된 디벤조티오펜기; 벤조나프토퓨란기; 또는 벤조나프토티오펜기이다.
본 명세서에 있어서, 상기 A1 및 A2는 서로 상이하고 각각 독립적으로 중수소, 메틸기, 니트릴기, 터부틸기, 페닐기, 트리메틸실릴기, 디벤조티오펜기, 디벤조퓨란기, 카바졸기, 안트라센기, 나프틸기, 트리페닐렌기 또는 디메틸플루오렌기로 치환 또는 비치환된 페닐기; 니트릴기로 치환 또는 비치환된 비페닐기; 터페닐기; 나프틸기; 안트라센기; 페난트렌기; 트리페닐렌기; 디메틸플루오렌기; 디페닐플루오렌기; 스피로비플루오렌기; 피리딘기; 피리미딘기; 트리아진기; 페닐기로 치환 또는 비치환된 카바졸기; 페닐기로 치환 또는 비치환된 디벤조퓨란기; 페닐기로 치환 또는 비치환된 디벤조티오펜기; 벤조나프토퓨란기; 또는 벤조나프토티오펜기이다.
본 명세서에 있어서, 상기 A1 및 A2는 서로 같거나 상이하고 각각 독립적으로 중수소, 메틸기, 터부틸기, 페닐기, 트리메틸실릴기, 또는 니트릴기로 치환 또는 비치환된 페닐기; 니트릴기로 치환 또는 비치환된 비페닐기; 나프틸기; 페난트렌기; 디메틸플루오렌기; 디페닐플루오렌기; 피리딘기; 페닐기로 치환 또는 비치환된 카바졸기; 페닐기로 치환 또는 비치환된 디벤조퓨란기; 또는 페닐기로 치환 또는 비치환된 디벤조티오펜기이다.
본 명세서에 있어서, 상기 A1 및 A2는 서로 같거나 상이하고 각각 독립적으로 중수소, 메틸기, 터부틸기, 페닐기, 트리메틸실릴기, 또는 니트릴기로 치환 또는 비치환된 페닐기; 니트릴기로 치환 또는 비 치환된 비페닐기; 나프틸기; 메틸기 또는 페닐기로 치환 또는 비치환된 플루오렌기; 피리딘기; 페닐기로 치환 또는 비치환된 카바졸기; 페닐기로 치환 또는 비치환된 디벤조퓨란기; 페닐기로 치환 또는 비치환된 디벤조티오펜기; 페난트렌기; 또는 터페닐기이다.
본 명세서에 있어서, 상기 A1 및 A2는 서로 같거나 상이하고 각각 독립적으로 하기의 치환기 중 어느 하나일 수 있다.
Figure PCTKR2019002434-appb-I000014
상기 치환기에서
Figure PCTKR2019002434-appb-I000015
는 코어와 연결되는 부위이다.
본 명세서의 또 하나의 실시상태에 따르면, 상기 화학식 1의 헤테로고리 화합물은 하기 구조식들 중에서 선택되는 어느 하나로 표시될 수 있다.
Figure PCTKR2019002434-appb-I000016
Figure PCTKR2019002434-appb-I000017
Figure PCTKR2019002434-appb-I000018
Figure PCTKR2019002434-appb-I000019
Figure PCTKR2019002434-appb-I000020
Figure PCTKR2019002434-appb-I000021
Figure PCTKR2019002434-appb-I000022
Figure PCTKR2019002434-appb-I000023
Figure PCTKR2019002434-appb-I000024
또한, 본 발명에 따른 유기전계발광소자는 제1 전극; 상기 제1 전극에 대향하여 구비된 제2 전극; 및 상기 제1 전극과 제2 전극 사이에 구비된 1층 또는 2층 이상의 유기물층을 포함하고, 상기 유기물층 중 1 층 이상은 상기 화학식 1로 표시되는 헤테로고리 화합물을 포함하는 것을 특징으로 한다.
본 발명의 유기 발광 소자는 전술한 화합물을 이용하여 한 층 이상의 유기물층을 형성하는 것을 제외하고는, 통상의 유기 발광 소자의 제조방법 및 재료에 의하여 제조될 수 있다.
본 발명의 유기 발광 소자의 유기물층은 단층 구조로 이루어질 수도 있으나, 2층 이상의 유기물층이 적층된 다층 구조로 이루어질 수 있다. 예컨대, 본 발명의 유기 발광 소자는 유기물층으로서 정공 주입층, 정공 수송층, 발광층, 전자 수송층, 전자 주입층 등을 포함하는 구조를 가질 수 있다. 그러나, 유기 발광 소자의 구조는 이에 한정되지 않고 더 적은 수의 유기물층을 포함할 수 있다. 또한, 상기 유기물층은 전자 수송층, 전자 주입층, 및 전자 수송 및 전자 주입을 동시에 하는 층 중 1층 이상을 포함할 수 있고, 상기 층들 중 1층 이상이 상기 화합물을 포함할 수 있다.
본 발명의 유기 발광 소자는 기판 위에 제1 전극, 유기물층, 제2전극이 순차적으로 적층된다.
본 발명의 유기 발광 소자는 기판 위에 제1 전극, 발광층, 정공저지층, 제2전극이 순차적으로 적층된다.
본 발명의 유기 발광 소자는 기판 위에 제1 전극, 정공수송층, 발광층, 정공저지층, 제2전극이 순차적으로 적층된다.
본 발명의 유기 발광 소자는 기판 위에 제1 전극, 발광층, 정공저지층, 전자주입 및 수송층, 제2전극이 순차적으로 적층된다.
본 발명의 유기 발광 소자는 기판 위에 제1 전극, 정공주입층, 정공수송층, 발광층, 정공저지층, 전자주입 및 수송층, 제2전극이 순차적으로 적층된다.
본 발명의 유기 발광 소자는 기판 위에 제1 전극, 정공주입층, 정공수송층, 전자저지층, 발광층, 정공저지층, 전자주입 및 수송층, 제2전극이 순차적으로 적층된다.
도 1에는 기판(1) 위에 제1 전극(2), 유기물층(3), 및 제2 전극(4)이 순차적으로 적층된 유기 발광 소자의 구조가 예시되어 있다.
도 2에는 기판(1) 위에 제1 전극(2), 정공주입층(5), 정공수송층(6), 전자저지층(7), 발광층(8), 정공저지층(9), 전자주입 및 수송층(10) 및 제2 전극(4)이 순차적으로 적층된 유기 발광 소자의 구조가 예시되어 있다.
상기 도 1 및 도 2는 유기 발광 소자를 예시한 것이며 이에 한정되지 않는다.
본 발명의 일 실시상태에 있어서, 상기 유기물층은 발광층을 포함하고, 상기 발광층에 상기 화학식 1의 헤테로고리 화합물을 포함할 수 있다.
본 발명의 일 실시상태에 있어서, 상기 유기물층은 정공주입층, 정공수송층 또는 전자저지층을 포함하고, 상기 정공주입층, 정공수송층 또는 전자저지층은 상기 화학식 1의 헤테로고리 화합물을 포함할 수 있다.
본 발명의 일 실시상태에 있어서, 상기 유기물층은 전자주입층, 전자수송층 또는 정공저지층을 포함하고, 상기 전자주입층, 전자수송층 또는 정공저지층은 상기 화학식 1의 헤테로고리 화합물을 포함할 수 있다.
본 발명의 일 실시상태에 있어서, 상기 유기물층은 정공저지층을 포함하고, 상기 정공저지층은 상기 화학식 1의 헤테로고리 화합물을 포함할 수 있다.
예컨대, 본 발명에 따른 유기 발광 소자는 스퍼터링(sputtering)이나 전자빔 증발(e-beam evaporation)과 같은 PVD(physical vapor deposition) 방법을 이용하여, 기판 상에 금속 또는 전도성을 가지는 금속 산화물 또는 이들의 합금을 증착시켜 양극을 형성하고, 그 위에 정공 주입층, 정공 수송층, 발광층, 전자 수송층을 포함하는 유기물층 및 상기 화학식 1의 헤테로고리 화합물을 포함하는 유기물층을 형성한 후, 그 위에 음극으로 사용할 수 있는 물질을 증착시킴으로써 제조될 수 있다. 이와 같은 방법 외에도, 기판 상에 음극 물질부터 유기물층, 양극 물질을 차례로 증착시켜 유기 발광 소자를 만들 수도 있다.
상기 양극 물질로는 통상 유기물층으로 정공 주입이 원활할 수 있도록 일함수가 큰 물질이 바람직하다. 본 발명에서 사용될 수 있는 양극 물질의 구체적인 예로는 바나듐, 크롬, 구리, 아연, 금과 같은 금속 또는 이들의 합금; 아연 산화물, 인듐 산화물, 인듐주석 산화물(ITO), 인듐아연 산화물(IZO)과 같은 금속 산화물; ZnO:Al 또는 SnO2 : Sb와 같은 금속과 산화물의 조합; 폴리(3-메틸화합물의), 폴리[3,4-(에틸렌-1,2-디옥시)화합물의](PEDT), 폴리피롤 및 폴리아닐린과 같은 전도성 고분자 등이 있으나, 이들에만 한정되는 것은 아니다.
상기 음극 물질로는 통상 유기물층으로 전자 주입이 용이하도록 일함수가 작은 물질인 것이 바람직하다. 음극 물질의 구체적인 예로는 마그네슘, 칼슘, 나트륨, 칼륨, 티타늄, 인듐, 이트륨, 리튬, 가돌리늄, 알루미늄, 은, 주석 및 납과 같은 금속 또는 이들의 합금; LiF/Al 또는 LiO2/Al과 같은 다층 구조 물질 등이 있으나, 이들에만 한정되는 것은 아니다.
상기 정공 주입 물질로는 낮은 전압에서 양극으로부터 정공을 잘 주입 받을 수 있는 물질로서, 정공 주입 물질의 HOMO(highest occupied molecular orbital)가 양극 물질의 일함수와 주변 유기물층의 HOMO 사이인 것이 바람직하다. 정공 주입 물질의 구체적인 예로는 금속 포피린(porphyrine), 올리고티오펜, 아릴아민 계열의 유기물, 헥사니트릴헥사아자트리페닐렌 계열의 유기물, 퀴나크리돈(quinacridone) 계열의 유기물, 페릴렌(perylene) 계열의 유기물, 안트라퀴논 및 폴리아닐린과 폴리화합물의 계열의 전도성 고분자 등이 있으나, 이들에만 한정되는 것은 아니다.
상기 정공 수송 물질로는 양극이나 정공 주입층으로부터 정공을 수송받아 발광층으로 옮겨줄 수 있는 물질로 정공에 대한 이동성이 큰 물질이 적합하다. 구체적인 예로는 아릴아민 계열의 유기물, 전도성 고분자, 및 공액 부분과 비공액 부분이 함께 있는 블록 공중합체 등이 있으나, 이들에만 한정되는 것은 아니다.
상기 발광 물질로는 정공 수송층과 전자 수송층으로부터 정공과 전자를 각각 수송받아 결합시킴으로써 가시광선 영역의 빛을 낼 수 있는 물질로서, 형광이나 인광에 대한 양자 효율이 좋은 물질이 바람직하다. 구체적인 예로는 8-히드록시-퀴놀린 알루미늄 착물(Alq3); 카르바졸 계열 화합물; 이량체화 스티릴(dimerized styryl) 화합물; BAlq; 10-히드록시벤조 퀴놀린-금속 화합물; 벤족사졸, 벤즈티아졸 및 벤즈이미다졸 계열의 화합물; 폴리(p-페닐렌비닐렌)(PPV) 계열의 고분자; 스피로(spiro) 화합물; 폴리플루오렌, 루브렌등이 있으나, 이들에만 한정되는 것은 아니다.
상기 발광층은 호스트 재료 및 도펀트 재료를 포함할 수 있다. 호스트 재료는 축합 방향족환 유도체 또는 헤테로환 함유 화합물 등이 있다. 구체적으로 축합방향족환 유도체로는 안트라센 유도체, 피렌 유도체, 나프탈렌 유도체, 펜타센 유도체, 페난트렌 화합물, 플루오란텐 화합물 등이 있고, 헤테로환 함유 화합물로는 헤테로고리 화합물, 디벤조퓨란 유도체, 래더형 퓨란 화합물, 피리미딘 유도체 등이 있으나, 이에 한정되지 않는다.
상기 유기 발광 소자가 복수개의 유기물층을 포함하는 경우, 상기 유기물층은 동일한 물질 또는 다른 물질로 형성될 수 있다.
본 명세서의 유기 발광 소자는 유기물층 중 1층 이상이 상기 헤테로고리 화합물을 이용하여 형성되는 것을 제외하고는 당 기술분야에 알려져 있는 재료와 방법으로 제조될 수 있다.
예컨대, 본 명세서의 유기 발광 소자는 기판 상에 애노드, 유기물층 및 캐소드를 순차적으로 적층시킴으로써 제조할 수 있다. 이 때 스퍼터링법(sputtering)이나 전자빔 증발법(e-beam evaporation)과 같은 PVD(physical Vapor Deposition)방법을 이용하여, 기판 상에 금속 또는 전도성을 가지는 금속 산화물 또는 이들의 합금을 증착시켜 애노드를 형성하고, 그 위에 정공 주입층, 정공 수송층, 발광층 및 전자 수송층을 포함하는 유기물층을 형성한 후, 그 위에 캐소드로 사용할 수 있는 물질을 증착시킴으로써 제조될 수 있다. 이와 같은 방법 외에도, 기판 상에 캐소드 물질부터 유기물층, 애노드 물질을 차례로 증착시켜 유기 발광 소자를 만들 수 있다.
본 명세서는 또한, 상기 헤테로고리 화합물을 이용하여 형성된 유기 발광 소자의 제조 방법을 제공한다.
구체적으로 본 명세서의 일 실시상태에 있어서, 기판을 준비하는 단계; 상기 기판 상에 캐소드 또는 애노드를 형성하는 단계; 상기 캐소드 또는 애노드 상에 1층 이상의 유기물층을 형성하는 단계; 및 상기 유기물층 상에 애노드 또는 캐소드를 형성하는 단계를 포함하고, 상기 유기물층 중 1 층 이상은 상기 헤테로고리 화합물을 이용하여 형성된다.
도펀트 재료로는 방향족 헤테로고리 화합물, 스트릴아민 화합물, 붕소 착체, 플루오란텐 화합물, 금속 착체 등이 있다. 구체적으로 방향족 헤테로고리 화합물로는 치환 또는 비치환된 아릴아미노기를 갖는 축합 방향족환 유도체로서, 아릴아미노기를 갖는 피렌, 안트라센, 크리센, 페리플란텐 등이 있으며, 스티릴아민 화합물로는 치환 또는 비치환된 아릴아민에 적어도 1개의 아릴비닐기가 치환되어 있는 화합물로, 아릴기, 실릴기, 알킬기, 시클로알킬기 및 아릴아미노기로 이루어진 군에서 1 또는 2이상 선택되는 치환기가 치환 또는 비치환된다. 구체적으로 스티릴아민, 스티릴디아민, 스티릴트리아민, 스티릴테트라아민 등이 있으나, 이에 한정되지 않는다. 또한, 금속 착체로는 이리듐 착체, 백금 착체 등이 있으나, 이에 한정되지 않는다.
상기 전자수송층은 전자주입층으로부터 전자를 수취하여 발광층까지 전자를 수송하는 층으로 전자 수송 물질로는 캐소드로부터 전자를 잘 주입 받아 발광층으로 옮겨줄 수 있는 물질로서, 전자에 대한 이동성이 큰 물질이 적합하다. 구체적인 예로는 8-히드록시퀴놀린의 Al착물; Alq3를 포함한 착물; 유기 라디칼 화합물; 히드록시플라본-금속 착물 등이 있으나, 이들에만 한정되는 것은 아니다. 전자 수송층은 종래기술에 따라 사용된 바와 같이 임의의 원하는 캐소드 물질과 함께 사용할 수 있다. 특히, 적절한 캐소드 물질의 예는 낮은 일함수를 가지고 알루미늄층 또는 실버층이 뒤따르는 통상적인 물질이다. 구체적으로 세슘, 바륨, 칼슘, 이테르븀 및 사마륨이고, 각 경우 알루미늄 층 또는 실버층이 뒤따른다.
상기 전자주입층은 전극으로부터 전자를 주입하는 층으로, 전자를 수송하는 능력을 갖고, 캐소드로부터의 전자주입 효과, 발광층 또는 발광 재료에 대하여 우수한 전자주입 효과를 가지며, 발광층에서 생성된 여기자의 정공 주입층에의 이동을 방지하고, 또한, 박막형성능력이 우수한 화합물이 바람직하다. 구체적으로는 플루오레논, 안트라퀴노다이메탄, 다이페노퀴논, 티오피란 다이옥사이드, 옥사졸, 옥사다이아졸, 트리아졸, 이미다졸, 페릴렌테트라카복실산, 프레오레닐리덴 메탄, 안트론 등과 그들의 유도체, 금속 착체 화합물 및 함질소 5원환 유도체 등이 있으나, 이에 한정되지 않는다.
상기 금속 착체 화합물로서는 8-하이드록시퀴놀리나토 리튬, 비스(8-하이드록시퀴놀리나토)아연, 비스(8-하이드록시퀴놀리나토)구리, 비스(8-하이드록시퀴놀리나토)망간, 트리스(8-하이드록시퀴놀리나토)알루미늄, 트리스(2-메틸-8-하이드록시퀴놀리나토)알루미늄, 트리스(8-하이드록시퀴놀리나토)갈륨, 비스(10-하이드록시벤조[h]퀴놀리나토)베릴륨, 비스(10-하이드록시벤조[h]퀴놀리나토)아연, 비스(2-메틸-8-퀴놀리나토)클로로갈륨, 비스(2-메틸-8-퀴놀리나토)(o-크레졸라토)갈륨, 비스(2-메틸-8-퀴놀리나토)(1-나프톨라토)알루미늄, 비스(2-메틸-8-퀴놀리나토)(2-나프톨라토)갈륨 등이 있으나, 이에 한정되지 않는다.
본 명세서에 따른 유기 발광 소자는 사용되는 재료에 따라 전면 발광형, 후면 발광형 또는 양면 발광형일 수 있다.
본 명세서의 일 실시상태에 따르면, 상기 화학식 1의 헤테로고리 화합물은 하기 반응식에 따라 제조될 수 있으나, 이에만 한정되는 것은 아니다. 하기 반응식에 있어서, 치환기의 종류 및 개수는 당업자가 공지된 출발물질을 적절히 선택함에 따라 다양한 종류의 중간체를 합성할 수 있다. 반응 종류 및 반응 조건은 당기술분야에 알려져 있는 것들이 이용될 수 있다.
Figure PCTKR2019002434-appb-I000025
Figure PCTKR2019002434-appb-I000026
상기 식에서 X1 내지 X3, L, A1 및 A2은 화학식 1에서 정의한 바와 같다.
상기 화학식 1의 헤테로고리 화합물의 제조방법 및 이들을 이용한 유기 발광 소자의 제조는 이하의 실시예에서 구체적으로 설명한다. 그러나, 하기 실시예는 본 발명을 예시하기 위한 것이며, 본 발명의 범위가 이들에 의하여 한정되는 것은 아니다.
본 명세서의 실시예에 기재된 제조식과 상기 중간체들을 통상의 기술상식을 바탕으로 적절히 조합하면, 본 명세서에 기재되어 있는 상기 화학식 1의 헤테로고리 화합물들을 모두 제조할 수 있다.
제조예 1
Figure PCTKR2019002434-appb-I000027
질소 분위기에서 500 mL 둥근 바닥 플라스크에 화합물 A(7.50 g, 15.12 mmol), 및 화합물 a1(5.87 g, 16.63 mmol)을 테트라하이드로퓨란 240 mL에 완전히 녹인 후 2M 탄산칼륨수용액(120 mL)을 첨가하고, 테트라키스-(트리페닐포스핀)팔라듐(0.52 g, 0.45 mmol)을 넣은 후 3시간 동안 가열 교반하였다. 상온으로 온도를 낮추고 물 층을 제거하고 무수황산마그네슘으로 건조한 후 감압농축 시키고 에틸아세테이트 220 mL로 재결정하여 화합물 1(7.56 g, 69%)을 제조하였다.
MS[M+H]+= 726
제조예 2
Figure PCTKR2019002434-appb-I000028
질소 분위기에서 500 mL 둥근 바닥 플라스크에 화합물 A(7.50 g, 15.12 mmol), 및 화합물 a2(5.87 g, 16.63 mmol)를 테트라하이드로퓨란 240 mL에 완전히 녹인 후 2M 탄산칼륨수용액(120 mL)을 첨가하고, 테트라키스-(트리페닐포스핀)팔라듐(0.52 g, 0.45 mmol)을 넣은 후 3시간 동안 가열 교반하였다. 상온으로 온도를 낮추고 물 층을 제거하고 무수황산마그네슘으로 건조한 후 감압농축 시키고 에틸아세테이트 220 mL로 재결정하여 화합물 2(6.82 g, 62%)를 제조하였다.
MS[M+H]+= 726
제조예 3
Figure PCTKR2019002434-appb-I000029
질소 분위기에서 500 mL 둥근 바닥 플라스크에 화합물 A(7.50 g, 15.12 mmol), 및 화합물 a3(5.87 g, 16.63 mmol)을 테트라하이드로퓨란 240 mL에 완전히 녹인 후 2M 탄산칼륨수용액(120 mL)을 첨가하고, 테트라키스-(트리페닐포스핀)팔라듐(0.52 g, 0.45 mmol)을 넣은 후 3시간 동안 가열 교반하였다. 상온으로 온도를 낮추고 물 층을 제거하고 무수황산마그네슘으로 건조한 후 감압농축 시키고 에틸아세테이트 220 mL로 재결정하여 화합물 3(6.28 g, 57%)을 제조하였다.
MS[M+H]+= 725
제조예 4
Figure PCTKR2019002434-appb-I000030
질소 분위기에서 500 mL 둥근 바닥 플라스크에 화합물 A(7.50 g, 15.12 mmol), 및 화합물 a4(7.14 g, 16.63 mmol)를 테트라하이드로퓨란 240 mL에 완전히 녹인 후 2M 탄산칼륨수용액(120 mL)을 첨가하고, 테트라키스-(트리페닐포스핀)팔라듐(0.52 g, 0.45 mmol)을 넣은 후 3시간 동안 가열 교반하였다. 상온으로 온도를 낮추고 물 층을 제거하고 무수황산마그네슘으로 건조한 후 감압농축 시키고 테트라하이드로퓨란 220 mL로 재결정하여 화합물 4(9.54 g, 79%)을 제조하였다.
MS[M+H]+= 802
제조예 5
Figure PCTKR2019002434-appb-I000031
질소 분위기에서 500 mL 둥근 바닥 플라스크에 화합물 A-1(10.01 g, 18.44 mmol), 및 화합물 a5(5.50 g, 16.03 mmol)를 테트라하이드로퓨란 240 mL에 완전히 녹인 후 2M 탄산칼륨수용액(120 mL)을 첨가하고, 테트라키스-(트리페닐포스핀)팔라듐(0.56 g, 0.48 mmol)을 넣은 후 3시간 동안 가열 교반하였다. 상온으로 온도를 낮추고 물 층을 제거하고 무수황산마그네슘으로 건조한 후 감압농축 시키고 에틸아세테이트 310 mL로 재결정하여 화합물 5(8.82 g, 76%)를 제조하였다.
MS[M+H]+= 726
제조예 6
Figure PCTKR2019002434-appb-I000032
질소 분위기에서 500 mL 둥근 바닥 플라스크에 화합물 A-1(9.33 g, 17.19 mmol), 및 화합물 a6(5.50 g, 14.95 mmol)을 테트라하이드로퓨란 240 mL에 완전히 녹인 후 2M 탄산칼륨수용액(120 mL)을 첨가하고, 테트라키스-(트리페닐포스핀)팔라듐(0.52 g, 0.45 mmol)을 넣은 후 3시간 동안 가열 교반하였다. 상온으로 온도를 낮추고 물 층을 제거하고 무수황산마그네슘으로 건조한 후 감압농축 시키고 에틸아세테이트 210 mL로 재결정하여 화합물 6(5.49 g, 49%)을 제조하였다.
MS[M+H]+= 751
제조예 7
Figure PCTKR2019002434-appb-I000033
질소 분위기에서 500 mL 둥근 바닥 플라스크에 화합물 A-1(9.33 g, 17.19 mmol), 및 화합물 a7(5.50 g, 14.95 mmol)을 테트라하이드로퓨란 240 mL에 완전히 녹인 후 2M 탄산칼륨수용액(120 mL)을 첨가하고, 테트라키스-(트리페닐포스핀)팔라듐(0.52 g, 0.45 mmol)을 넣은 후 3시간 동안 가열 교반하였다. 상온으로 온도를 낮추고 물 층을 제거하고 무수황산마그네슘으로 건조한 후 감압농축 시키고 에틸아세테이트 210 mL로 재결정하여 화합물 7(5.49 g, 49%)을 제조하였다.
MS[M+H]+= 751
제조예 8
Figure PCTKR2019002434-appb-I000034
질소 분위기에서 500 mL 둥근 바닥 플라스크에 화합물 B-1(10.01 g, 18.44 mmol), 및 화합물 a5(5.50 g, 16.03 mmol)를 테트라하이드로퓨란 240 mL에 완전히 녹인 후 2M 탄산칼륨수용액(120 mL)을 첨가하고, 테트라키스-(트리페닐포스핀)팔라듐(0.56 g, 0.48 mmol)을 넣은 후 3시간 동안 가열 교반하였다. 상온으로 온도를 낮추고 물 층을 제거하고 무수황산마그네슘으로 건조한 후 감압농축 시키고 에틸아세테이트 230 mL로 재결정하여 화합물 8(7.12 g, 61%)을 제조하였다.
MS[M+H]+= 726
제조예 9
Figure PCTKR2019002434-appb-I000035
질소 분위기에서 500 mL 둥근 바닥 플라스크에 화합물 B(7.50 g, 15.12 mmol), 및 화합물 a1(6.31 g, 17.39 mmol)을 테트라하이드로퓨란 240 mL에 완전히 녹인 후 2M 탄산칼륨수용액(120 mL)을 첨가하고, 테트라키스-(트리페닐포스핀)팔라듐(0.52 g, 0.45 mmol)을 넣은 후 5시간 동안 가열 교반하였다. 상온으로 온도를 낮추고 물 층을 제거하고 무수황산마그네슘으로 건조한 후 감압농축 시키고 에틸아세테이트 230 mL로 재결정하여 화합물 9(7.12 g, 61%)를 제조하였다.
MS[M+H]+= 726
제조예 10
Figure PCTKR2019002434-appb-I000036
질소 분위기에서 500 mL 둥근 바닥 플라스크에 화합물 B(7.50 g, 15.12 mmol), 및 화합물 a3(5.87 g, 16.63 mmol)을 테트라하이드로퓨란 240 mL에 완전히 녹인 후 2M 탄산칼륨수용액(120 mL)을 첨가하고, 테트라키스-(트리페닐포스핀)팔라듐(0.52 g, 0.45 mmol)을 넣은 후 3시간 동안 가열 교반하였다. 상온으로 온도를 낮추고 물 층을 제거하고 무수황산마그네슘으로 건조한 후 감압농축 시키고 에틸아세테이트 220 mL로 재결정하여 화합물 10(5.37 g, 49%)을 제조하였다.
MS[M+H]+= 725
제조예 11
Figure PCTKR2019002434-appb-I000037
질소 분위기에서 500 mL 둥근 바닥 플라스크에 화합물 A-1(13.14 g, 24.16 mmol), 및 화합물 a6(7.50 g, 21.01 mmol)을 테트라하이드로퓨란 240 mL에 완전히 녹인 후 2M 탄산칼륨수용액(120 mL)을 첨가하고, 테트라키스-(트리페닐포스핀)팔라듐(0.73 g, 0.63 mmol)을 넣은 후 3시간 동안 가열 교반하였다. 상온으로 온도를 낮추고 물 층을 제거하고 무수황산마그네슘으로 건조한 후 감압농축 시키고 에틸아세테이트 250 mL로 재결정하여 화합물 11(10.44 g, 68%)을 제조하였다.
MS[M+H]+= 726
제조예 12
Figure PCTKR2019002434-appb-I000038
질소 분위기에서 500 mL 둥근 바닥 플라스크에 화합물 A-1(12.58 g, 23.12 mmol), 및 화합물 a7(7.50 g, 20.11 mmol)을 테트라하이드로퓨란 240 mL에 완전히 녹인 후 2M 탄산칼륨수용액(120 mL)을 첨가하고, 테트라키스-(트리페닐포스핀)팔라듐(0.70 g, 0.60 mmol)을 넣은 후 3시간 동안 가열 교반하였다. 상온으로 온도를 낮추고 물 층을 제거하고 무수황산마그네슘으로 건조한 후 감압농축 시키고 에틸아세테이트 250 mL로 재결정하여 화합물 12(9.36 g, 62%)를 제조하였다.
MS[M+H]+= 756
제조예 13
Figure PCTKR2019002434-appb-I000039
질소 분위기에서 500 mL 둥근 바닥 플라스크에 화합물 B-1(14.80 g, 27.21 mmol), 및 화합물 a8(7.50 g, 23.66 mmol)을 테트라하이드로퓨란 240 mL에 완전히 녹인 후 2M 탄산칼륨수용액(120 mL)을 첨가하고, 테트라키스-(트리페닐포스핀)팔라듐(0.82 g, 0.71 mmol)을 넣은 후 3시간 동안 가열 교반하였다. 상온으로 온도를 낮추고 물 층을 제거하고 무수황산마그네슘으로 건조한 후 감압농축 시키고 에틸아세테이트 230 mL로 재결정하여 화합물 13(10.75 g, 65%)을 제조하였다.
MS[M+H]+= 700
실시예 1-1
ITO(indium tin oxide)가 1,000Å의 두께로 박막 코팅된 유리 기판을 세제를 녹인 증류수에 넣고 초음파로 세척하였다. 이때, 세제로는 피셔사(Fischer Co.) 제품을 사용하였으며, 증류수로는 밀러포어사(Millipore Co.) 제품의 필터(Filter)로 2차로 걸러진 증류수를 사용하였다. ITO를 30분간 세척한 후 증류수로 2회 반복하여 초음파 세척을 10분간 진행하였다. 증류수 세척이 끝난 후, 이소프로필알콜, 아세톤, 메탄올의 용제로 초음파 세척을 하고 건조시킨 후 플라즈마 세정기로 수송시켰다. 또한, 산소 플라즈마를 이용하여 상기 기판을 5분간 세정한 후 진공 증착기로 기판을 수송시켰다.
이렇게 준비된 양극인 ITO 투명 전극 위에 하기 화합물 HI1 및 하기 화합물 HI2의 화합물을 98:2(몰비)의 비가 되도록 100Å의 두께로 열 진공 증착하여 정공주입층을 형성하였다. 상기 정공주입층 위에 하기 화학식 HT1으로 표시되는 화합물(1150Å)을 진공 증착하여 정공수송층을 형성하였다. 이어서, 상기 정공수송층 위에 막 두께 50Å으로 EB1의 화합물을 진공 증착하여 전자저지층을 형성하였다. 이어서, 상기 전자저지층 위에 막 두께 200Å으로 하기 화학식 BH로 표시되는 화합물 및 하기 화학식 BD로 표시되는 화합물을 25:1의 중량비로 진공증착하여 발광층을 형성하였다. 상기 발광층 위에 막 두께 50Å으로 화합물 1을 진공 증착하여 정공저지층을 형성하였다. 이어서, 상기 정공저지층 위에 하기 화학식 ET1으로 표시되는 화합물과 하기 화학식 LiQ로 표시되는 화합물을 1:1의 중량비로 진공증착하여 310Å의 두께로 전자 주입 및 수송층을 형성하였다. 상기 전자 주입 및 수송층 위에 순차적으로 12Å두께로 리튬플로라이드(LiF)와 1,000Å 두께로 알루미늄을 증착하여 음극을 형성하였다.
Figure PCTKR2019002434-appb-I000040
상기의 과정에서 유기물의 증착속도는 0.4~0.7Å/sec를 유지하였고, 음극의 리튬플로라이드는 0.3Å/sec, 알루미늄은 2Å/sec의 증착 속도를 유지하였으며, 증착시 진공도는 2x10-7 ~ 5x10-6 torr를 유지하여, 유기 발광 소자를 제작하였다.
실시예 1-2 내지 실시예 1-13
화합물 1 대신 하기 표 1에 기재된 화합물을 사용하는 것을 제외하고는, 상기 실시예 1-1과 동일한 방법으로 유기 발광 소자을 제조하였다.
비교예 1-1 내지 1-8
화합물 1 대신 하기 표 1에 기재된 화합물을 사용하는 것을 제외하고는, 상기 실시예 1-1과 동일한 방법으로 유기 발광 소자을 제조하였다. 하기 표 1에서 사용한 HB1 내지 HB8 의 화합물을 하기와 같다.
Figure PCTKR2019002434-appb-I000041
실험예 1
상기 실시예 및 비교예에서 제조한 유기 발광 소자에 전류를 인가하였을 때, 전압, 효율, 색좌표 및 수명을 측정하고 그 결과를 하기 표 1에 나타내었다. T95은 휘도가 초기 휘도(1600 nit)에서 95%로 감소되는데 소요되는 시간을 의미한다.
화합물(정공저지층) 전압(V@20mA/cm2) 효율(cd/A@20mA/cm2) 색좌표(x,y) T95(hr)
실시예 1-1 화합물 1 3.52 6.30 (0.140, 0.047) 285
실시예 1-2 화합물 2 3.54 6.25 (0.141, 0.047) 280
실시예 1-3 화합물 3 3.43 6.57 (0.143, 0.047) 290
실시예 1-4 화합물 4 3.51 6.28 (0.139, 0.046) 280
실시예 1-5 화합물 5 3.55 6.39 (0.140, 0.047) 285
실시예 1-6 화합물 6 3.56 6.21 (0.141, 0.047) 275
실시예 1-7 화합물 7 3.59 6.25 (0.140, 0.046) 280
실시예 1-8 화합물 8 3.58 6.43 (0.139, 0.045) 290
실시예 1-9 화합물 9 3.58 6.45 (0.141, 0.046) 285
실시예 1-10 화합물 10 3.45 6.54 (0.142, 0.046) 255
실시예 1-11 화합물 11 3.57 6.46 (0.140, 0.047) 275
실시예 1-12 화합물 12 3.54 6.45 (0.141, 0.045) 280
실시예 1-13 화합물 13 3.60 6.47 (0.140, 0.046) 275
비교예 1-1 HB1 4.17 5.71 (0.139, 0.041) 115
비교예 1-2 HB2 3.95 5.93 (0.141, 0.042) 220
비교예 1-3 HB3 4.15 6.03 (0.139, 0.041) 145
비교예 1-4 HB4 3.85 5.95 (0.141, 0.042) 65
비교예 1-5 HB5 4.25 5.68 (0.142, 0.043) 115
비교예 1-6 HB6 3.94 5.82 (0.142, 0.044) 220
비교예 1-7 HB7 4.03 5.93 (0.143, 0.043) 145
비교예 1-8 HB8 5.11 4.86 (0.143, 0.043) 65
상기 표 1을 보면, 본 발명의 화합물을 정공저지층으로 사용한 유기 발광 소자는, 유기 발광 소자의 효율, 구동 전압 및 안정성 면에서 우수한 특성을 나타내었다.
본원 발명의 플루오렌 코어의 9, 10번 위치에 메틸기가 치환된 비교예 1-1 의 화합물 및 벤조플루오렌 코어의 2, 3, 4번 위치에 트리아진, 피리딘이 연결된 비교예 1-2 내지 1-4를 정공저지층으로 사용하여 제조된 유기 발광 소자보다 저전압, 고효율 및 장수명의 특성을 보인다.
본 발명의 Q가 페난트렌기임에 반해, 비교예 1-5는 Q에 해당하는 부분이 벤젠인 화합물을 사용하였다. 비교예 1-6 및 비교예 1-7은 본 발명과 달리, 플루오렌 코어의 9번 위치에 메틸기가 치환되어 있는 화합물을 사용하였습니다. 비교예 8은 코어에 아릴기만 치환된 화합물을 사용하였다.
본 발명은 상기 비교예 1-5 내지 1-8과 비교하였을 때도 저전압, 고효율, 장수명의 특성을 보였다.
상기 표 1의 결과와 같이, 본 발명에 따른 화합물은 정공저지 능력이 우수하여 유기 발광 소자에 적용 가능함을 확인할 수 있었다.
이상을 통해 본 발명의 바람직한 실시예(정공저지층)에 대하여 설명하였지만, 본 발명은 이에 한정되는 것이 아니고 특허청구범위와 발명의 상세한 설명의 범위 안에서 여러 가지로 변형하여 실시하는 것이 가능하고 이 또한 발명의 범주에 속한다.

Claims (8)

  1. 하기 화학식 1로 표시되는 헤테로고리 화합물:
    [화학식 1]
    Figure PCTKR2019002434-appb-I000042
    상기 화학식 1에서
    Q는
    Figure PCTKR2019002434-appb-I000043
    이고,
    X1 내지 X3은 서로 같거나 상이하며, 각각 독립적으로 N 또는 CR이고,
    X1 내지 X3 중 어느 하나 이상은 N이며,
    R 및 R1 내지 R4는 서로 같거나 상이하며, 각각 독립적으로 수소, 중수소, 니트릴기, 할로겐기, 치환 또는 비치환된 알킬기, 치환 또는 비치환된 실릴기, 치환 또는 비치환된 포스핀옥사이드기, 치환 또는 비치환된 아민기, 치환 또는 비치환된 아릴기, 또는 치환 또는 비치환된 헤테로아릴기이거나, 인접한 치환기가 서로 결합하여 치환 또는 비치환된 고리를 형성할 수 있으며,
    L1은 직접결합, 또는 치환 또는 비치환된 아릴렌기이고,
    A1 및 A2는 서로 같거나 상이하며, 각각 독립적으로 치환 또는 비치환된 아릴기, 또는 치환 또는 비치환된 헤테로아릴기이고,
    a 및 b는 각각 0 내지 5의 정수이고, 상기 a 및 b가 각각 2 이상일 때, R1은 서로 같거나 상이하고, R2은 서로 같거나 상이하며,
    c는 0 내지 3의 정수이고, 상기 c가 2 이상일 때, R3은 서로 같거나 상이하고,
    d는 0 내지 8의 정수이고, 상기 d가 2 이상일 때, R4는 서로 같거나 상이하다.
  2. 청구항 1에 있어서, 상기 Q는 하기 화학식 1-1 내지 1-3 중 어느 하나인 것인 헤테로고리 화합물:
    [화학식 1-1]
    Figure PCTKR2019002434-appb-I000044
    [화학식 1-2]
    Figure PCTKR2019002434-appb-I000045
    [화학식 1-3]
    Figure PCTKR2019002434-appb-I000046
    상기 화학식 1-1 내지 1-3에서, 상기 점선은 상기 화학식 1의 코어와 결합하는 부위이고, 상기 R4 및 d는 상기 화학식 1 에서 정의한 바와 같다.
  3. 청구항 1에 있어서, 상기 화학식 1은 하기 화학식 2로 표시되는 것인 헤테로고리 화합물:
    [화학식 2]
    Figure PCTKR2019002434-appb-I000047
    상기 화학식 2에서, 상기 R1 내지 R4, X1 내지 X3, A1, A2, L1, 및 a 내지 d는 상기 화학식 1의 정의와 같다.
  4. 청구항 1에 있어서, 상기 L1은 직접결합이거나, 탄소수 1 내지 10의 알킬기 또는 탄소수 6 내지 30의 아릴기로 치환 또는 비치환된 탄소수 6 내지 30의 아릴렌기인 것인 헤테로고리 화합물.
  5. 청구항 1에 있어서, 상기 A1 및 A2는 서로 같거나 상이하고, 각각 독립적으로 치환 또는 비치환된 탄소수 6 내지 30의 아릴기, 또는 치환 또는 비치환된 N, O, 및 S 중 어느 하나 이상을 포함하는 탄소수 3 내지 20의 헤테로아릴기이고, 상기 아릴기, 또는 헤테로아릴기는 탄소수 1 내지 10 알킬기, 또는 탄소수 6 내지 30의 아릴기로 치환 또는 비치환되는 것인 헤테로고리 화합물.
  6. 청구항 1에 있어서, 상기 화학식 1은 하기 구조식 중에서 선택되는 어느 하나인 것인 헤테로고리 화합물:
    Figure PCTKR2019002434-appb-I000048
    Figure PCTKR2019002434-appb-I000049
    Figure PCTKR2019002434-appb-I000050
    Figure PCTKR2019002434-appb-I000051
    Figure PCTKR2019002434-appb-I000052
    Figure PCTKR2019002434-appb-I000053
    Figure PCTKR2019002434-appb-I000054
    Figure PCTKR2019002434-appb-I000055
    Figure PCTKR2019002434-appb-I000056
  7. 제1 전극; 상기 제1 전극에 대향하여 구비된 제2 전극; 및 상기 제1 전극과 제2 전극 사이에 구비된 1층 또는 2층 이상의 유기물층을 포함하는 유기 발광 소자로서, 상기 유기물층 중 1 층 이상은 청구항 1 내지 6 중 어느 한 항의 헤테로고리 화합물을 포함하는 것인 유기 발광 소자.
  8. 청구항 7에 있어서, 상기 유기물층은 정공저지층을 포함하고, 상기 정공저지층은 상기 헤테로고리 화합물을 포함하는 것인 유기 발광 소자.
PCT/KR2019/002434 2018-02-28 2019-02-28 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자 WO2019168378A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201980005092.3A CN111225904B (zh) 2018-02-28 2019-02-28 杂环化合物及包含其的有机发光装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20180024543 2018-02-28
KR10-2018-0024543 2018-02-28

Publications (1)

Publication Number Publication Date
WO2019168378A1 true WO2019168378A1 (ko) 2019-09-06

Family

ID=67805119

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/002434 WO2019168378A1 (ko) 2018-02-28 2019-02-28 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자

Country Status (3)

Country Link
KR (1) KR102280866B1 (ko)
CN (1) CN111225904B (ko)
WO (1) WO2019168378A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115485871A (zh) * 2021-03-31 2022-12-16 京东方科技集团股份有限公司 显示基板和显示装置
KR102552268B1 (ko) * 2022-02-24 2023-07-07 삼성디스플레이 주식회사 헤테로고리 화합물을 포함한 발광 소자, 상기 발광 소자를 포함한 전자 장치 및 상기 헤테로고리 화합물

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120066390A (ko) * 2010-12-14 2012-06-22 에스에프씨 주식회사 안트라센 유도체 및 이를 포함하는 유기전계발광소자.
KR20150115648A (ko) * 2014-04-04 2015-10-14 주식회사 엘지화학 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
JP2015216245A (ja) * 2014-05-12 2015-12-03 Tdk株式会社 有機電界発光素子用化合物およびこれを用いた有機電界発光素子
JP2016150920A (ja) * 2015-02-18 2016-08-22 Tdk株式会社 有機電界発光素子用化合物およびこれを用いた有機電界発光素子
KR20170056431A (ko) * 2015-11-13 2017-05-23 에스에프씨 주식회사 신규한 헤테로 고리 화합물 및 이를 포함하는 유기 발광 소자

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10135513B4 (de) 2001-07-20 2005-02-24 Novaled Gmbh Lichtemittierendes Bauelement mit organischen Schichten
KR20110077871A (ko) * 2009-12-30 2011-07-07 주식회사 두산 유기 발광 화합물 및 이를 포함하는 유기 전계 발광 소자

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120066390A (ko) * 2010-12-14 2012-06-22 에스에프씨 주식회사 안트라센 유도체 및 이를 포함하는 유기전계발광소자.
KR20150115648A (ko) * 2014-04-04 2015-10-14 주식회사 엘지화학 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
JP2015216245A (ja) * 2014-05-12 2015-12-03 Tdk株式会社 有機電界発光素子用化合物およびこれを用いた有機電界発光素子
JP2016150920A (ja) * 2015-02-18 2016-08-22 Tdk株式会社 有機電界発光素子用化合物およびこれを用いた有機電界発光素子
KR20170056431A (ko) * 2015-11-13 2017-05-23 에스에프씨 주식회사 신규한 헤테로 고리 화합물 및 이를 포함하는 유기 발광 소자

Also Published As

Publication number Publication date
CN111225904B (zh) 2023-07-18
CN111225904A (zh) 2020-06-02
KR20190103997A (ko) 2019-09-05
KR102280866B1 (ko) 2021-07-23

Similar Documents

Publication Publication Date Title
WO2019164331A1 (ko) 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
WO2020045924A1 (ko) 신규한 화합물 및 이를 이용한 유기발광 소자
WO2017142310A1 (ko) 헤테로고리 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2021080368A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2017061779A1 (ko) 아민 화합물 및 이를 포함하는 유기 발광 소자
WO2017061832A1 (ko) 신규 화합물 및 이를 포함하는 유기 발광 소자
WO2019160315A1 (ko) 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
WO2019172649A1 (ko) 다중고리 화합물 및 이를 포함하는 유기 발광 소자
WO2017138755A1 (ko) 헤테로고리 화합물 및 이를 포함하는 유기전계발광소자
WO2017142304A1 (ko) 헤테로고리 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2020040514A1 (ko) 유기 발광 소자
WO2020106098A1 (ko) 화합물 및 이를 포함하는 유기 발광 소자
WO2019164301A1 (ko) 화합물 및 이를 포함하는 유기 발광 소자
WO2021091173A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2019168378A1 (ko) 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
WO2017142308A1 (ko) 헤테로고리 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2020111586A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2020130529A1 (ko) 화합물 및 이를 포함하는 유기 발광 소자
WO2020080720A1 (ko) 신규한 헤테로 고리 화합물 및 이를 이용한 유기발광 소자
WO2020013657A1 (ko) 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
WO2019194616A1 (ko) 아민 화합물 및 이를 포함하는 유기 발광 소자
WO2021162227A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2021066350A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2020130327A1 (ko) 신규한 화합물 및 이를 이용한 유기발광 소자
WO2020080729A1 (ko) 신규한 헤테로 고리 화합물 및 이를 이용한 유기발광 소자

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19760724

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19760724

Country of ref document: EP

Kind code of ref document: A1