WO2021162227A1 - 신규한 화합물 및 이를 이용한 유기 발광 소자 - Google Patents

신규한 화합물 및 이를 이용한 유기 발광 소자 Download PDF

Info

Publication number
WO2021162227A1
WO2021162227A1 PCT/KR2020/018434 KR2020018434W WO2021162227A1 WO 2021162227 A1 WO2021162227 A1 WO 2021162227A1 KR 2020018434 W KR2020018434 W KR 2020018434W WO 2021162227 A1 WO2021162227 A1 WO 2021162227A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
compound
substituted
layer
unsubstituted
Prior art date
Application number
PCT/KR2020/018434
Other languages
English (en)
French (fr)
Inventor
차용범
조우진
홍성길
이재구
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020200175628A external-priority patent/KR102465242B1/ko
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN202080077208.7A priority Critical patent/CN114728947B/zh
Publication of WO2021162227A1 publication Critical patent/WO2021162227A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/656Aromatic compounds comprising a hetero atom comprising two or more different heteroatoms per ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/12Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings linked by a chain containing hetero atoms as chain links
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers

Definitions

  • the present invention relates to a novel compound and an organic light emitting device comprising the same.
  • the organic light emitting phenomenon refers to a phenomenon in which electric energy is converted into light energy using an organic material.
  • the organic light emitting device using the organic light emitting phenomenon has a wide viewing angle, excellent contrast, fast response time, and excellent luminance, driving voltage, and response speed characteristics, and thus many studies are being conducted.
  • An organic light emitting device generally has a structure including an anode and a cathode and an organic material layer between the anode and the cathode.
  • the organic layer is often formed of a multi-layered structure composed of different materials in order to increase the efficiency and stability of the organic light-emitting device, and may include, for example, a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer, and the like.
  • a voltage is applied between the two electrodes, holes are injected into the organic material layer from the anode and electrons from the cathode. When the injected holes and electrons meet, excitons are formed, and the excitons It will glow when it falls back to the ground state.
  • Patent Document 1 Korean Patent Publication No. 10-2000-0051826
  • the present invention relates to a novel compound and an organic light emitting device comprising the same.
  • the present invention provides a compound represented by the following formula (1):
  • Ar is C 13-60 aryl, wherein Ar is unsubstituted or substituted with one or more deuterium, C 1-18 alkyl, or C 6-18 aryl,
  • R 1 to R 4 are each independently hydrogen; heavy hydrogen; substituted or unsubstituted C 1-60 alkyl; or a substituted or unsubstituted C 6-60 aryl, or two adjacent groups combine with each other to form a substituted or unsubstituted aromatic ring structure,
  • R 5 to R 8 are each independently hydrogen; heavy hydrogen; halogen; nitrile; silyl; substituted or unsubstituted C 1-60 alkyl; substituted or unsubstituted C 6-60 aryl; substituted or unsubstituted C 2-60 alkenyl; Or substituted or unsubstituted C 2-60 heteroaryl containing any one or more heteroatoms selected from the group consisting of N, O and S,
  • n is an integer from 0 to 3
  • n is an integer from 0 to 8
  • p and q are each independently an integer from 0 to 4.
  • the present invention is a first electrode; a second electrode provided to face the first electrode; and at least one organic material layer provided between the first electrode and the second electrode, wherein at least one of the organic material layers comprises a compound represented by Formula 1; to provide.
  • the compound represented by Formula 1 described above may be used as a material for an organic layer of an organic light emitting device, and may improve efficiency, low driving voltage, and/or lifespan characteristics in the organic light emitting device.
  • the compound represented by the above formula (1) may be used as a material for hole injection, hole transport, hole injection and transport, light emission, electron transport, or electron injection.
  • FIG. 1 shows an example of an organic light emitting device including a substrate 1 , an anode 2 , an organic material layer 3 , and a cathode 4 .
  • FIG. 2 is a substrate (1), an anode (2), a hole injection layer (5), a hole transport layer (6), an electron blocking layer (7), a light emitting layer (8), a hole blocking layer (9), an electron injection and transport layer ( 10), and an example of an organic light emitting device including a cathode 4 is shown.
  • substituted or unsubstituted refers to deuterium; halogen group; nitrile group; nitro group; hydroxyl group; carbonyl group; ester group; imid; amino group; phosphine oxide group; alkoxy group; aryloxy group; alkyl thiooxy group; arylthioxy group; an alkyl sulfoxy group; arylsulfoxy group; silyl group; boron group; an alkyl group; cycloalkyl group; alkenyl group; aryl group; aralkyl group; aralkenyl group; an alkylaryl group; an alkylamine group; an aralkylamine group; heteroarylamine group; arylamine group; an arylphosphine group; or N, O, and S atom means that it is substituted or unsubstituted with one or more substituents selected from the group consisting of a heterocyclic group
  • a substituent in which two or more substituents are connected may be a biphenyl group. That is, the biphenyl group may be an aryl group, and may be interpreted as a substituent in which two phenyl groups are connected.
  • the number of carbon atoms in the carbonyl group is not particularly limited, but preferably 1 to 40 carbon atoms. Specifically, it may be a compound having the following structure, but is not limited thereto.
  • the oxygen of the ester group may be substituted with a linear, branched or cyclic alkyl group having 1 to 25 carbon atoms or an aryl group having 6 to 25 carbon atoms.
  • a linear, branched or cyclic alkyl group having 1 to 25 carbon atoms or an aryl group having 6 to 25 carbon atoms may be a compound of the following structural formula, but is not limited thereto.
  • the number of carbon atoms of the imide group is not particularly limited, but it is preferably from 1 to 25 carbon atoms. Specifically, it may be a compound having the following structure, but is not limited thereto.
  • the silyl group specifically includes a trimethylsilyl group, a triethylsilyl group, a t-butyldimethylsilyl group, a vinyldimethylsilyl group, a propyldimethylsilyl group, a triphenylsilyl group, a diphenylsilyl group, a phenylsilyl group, and the like.
  • the present invention is not limited thereto.
  • the boron group specifically includes, but is not limited to, a trimethylboron group, a triethylboron group, a t-butyldimethylboron group, a triphenylboron group, a phenylboron group, and the like.
  • examples of the halogen group include fluorine, chlorine, bromine or iodine.
  • the alkyl group may be linear or branched, and the number of carbon atoms is not particularly limited, but is preferably 1 to 40. According to an exemplary embodiment, the number of carbon atoms in the alkyl group is 1 to 20. According to another exemplary embodiment, the alkyl group has 1 to 10 carbon atoms. According to another exemplary embodiment, the alkyl group has 1 to 6 carbon atoms.
  • alkyl group examples include methyl, ethyl, propyl, n-propyl, isopropyl, butyl, n-butyl, isobutyl, tert-butyl, sec-butyl, 1-methyl-butyl, 1-ethyl-butyl, pentyl, n -pentyl, isopentyl, neopentyl, tert-pentyl, hexyl, n-hexyl, 1-methylpentyl, 2-methylpentyl, 4-methyl-2-pentyl, 3,3-dimethylbutyl, 2-ethylbutyl, heptyl , n-heptyl, 1-methylhexyl, cyclopentylmethyl, cyclohexylmethyl, octyl, n-octyl, tert-octyl, 1-methylheptyl, 2-ethylhexyl
  • the alkenyl group may be linear or branched, and the number of carbon atoms is not particularly limited, but is preferably 2 to 40. According to an exemplary embodiment, the carbon number of the alkenyl group is 2 to 20. According to another exemplary embodiment, the carbon number of the alkenyl group is 2 to 10. According to another exemplary embodiment, the alkenyl group has 2 to 6 carbon atoms.
  • Specific examples include vinyl, 1-propenyl, isopropenyl, 1-butenyl, 2-butenyl, 3-butenyl, 1-pentenyl, 2-pentenyl, 3-pentenyl, 3-methyl-1- Butenyl, 1,3-butadienyl, allyl, 1-phenylvinyl-1-yl, 2-phenylvinyl-1-yl, 2,2-diphenylvinyl-1-yl, 2-phenyl-2-( Naphthyl-1-yl)vinyl-1-yl, 2,2-bis(diphenyl-1-yl)vinyl-1-yl, stilbenyl group, styrenyl group, and the like, but are not limited thereto.
  • the cycloalkyl group is not particularly limited, but preferably has 3 to 60 carbon atoms, and according to an exemplary embodiment, the cycloalkyl group has 3 to 30 carbon atoms. According to another exemplary embodiment, the carbon number of the cycloalkyl group is 3 to 20. According to another exemplary embodiment, the cycloalkyl group has 3 to 6 carbon atoms.
  • the aryl group is not particularly limited, but preferably has 6 to 60 carbon atoms, and may be a monocyclic aryl group or a polycyclic aryl group. According to an exemplary embodiment, the carbon number of the aryl group is 6 to 30. According to an exemplary embodiment, the carbon number of the aryl group is 6 to 20.
  • the aryl group may be a monocyclic aryl group, such as a phenyl group, a biphenyl group, or a terphenyl group, but is not limited thereto.
  • the polycyclic aryl group may be a naphthyl group, an anthracenyl group, a phenanthryl group, a pyrenyl group, a perylenyl group, a chrysenyl group, a fluorenyl group, and the like, but is not limited thereto.
  • the fluorenyl group may be substituted, and two substituents may be bonded to each other to form a spiro structure.
  • the fluorenyl group is substituted, etc. can be
  • the present invention is not limited thereto.
  • the heterocyclic group is a heterocyclic group including at least one of O, N, Si and S as a heterogeneous element, and the number of carbon atoms is not particularly limited, but it is preferably from 2 to 60 carbon atoms.
  • heterocyclic group examples include a thiophene group, a furan group, a pyrrole group, an imidazole group, a thiazole group, an oxazole group, an oxadiazole group, a triazole group, a pyridyl group, a bipyridyl group, a pyrimidyl group, a triazine group, an acridyl group , pyridazine group, pyrazinyl group, quinolinyl group, quinazoline group, quinoxalinyl group, phthalazinyl group, pyrido pyrimidinyl group, pyrido pyrazinyl group, pyrazino pyrazinyl group, isoquinoline group, indole group , carbazole group, benzoxazole group, benzoimidazole group, benzothiazole group, benzocarbazole group, benzothioph
  • the aryl group in the aralkyl group, the aralkenyl group, the alkylaryl group, and the arylamine group is the same as the example of the aryl group described above.
  • the alkyl group among the aralkyl group, the alkylaryl group, and the alkylamine group is the same as the example of the above-described alkyl group.
  • heteroaryl among heteroarylamines the description of the above-described heterocyclic group may be applied.
  • the alkenyl group among the aralkenyl groups is the same as the above-described examples of the alkenyl group.
  • the description of the above-described aryl group may be applied except that arylene is a divalent group.
  • the description of the above-described heterocyclic group may be applied, except that heteroarylene is a divalent group.
  • the hydrocarbon ring is not a monovalent group, and the description of the above-described aryl group or cycloalkyl group may be applied, except that it is formed by combining two substituents.
  • the heterocyclic group is not a monovalent group, and the description of the above-described heterocyclic group may be applied, except that it is formed by combining two substituents.
  • the compound represented by Formula 1 may be preferably represented by any one of the following Formulas 1a to 1d:
  • Ar, R 1 to R 8 , m, n, p, and q are as defined above.
  • Ar is terphenyl, (phenyl) naphthyl, (naphthyl) phenyl, (naphthyl) biphenyl, (phenylnaphthyl) phenyl, dimethyl fluorenyl, diphenyl fluorine nyl, triphenylenyl, phenanthryl or (phenanthryl)phenyl;
  • Ar may be unsubstituted or one or more substituted with deuterium, C 1-18 alkyl, or C 6-18 aryl.
  • Ar may be any one selected from the group consisting of the following formulas:
  • R 11 is the same or different and each is hydrogen, deuterium, C 1-18 alkyl, or C 6-18 aryl, preferably R 11 are the same or different and each is hydrogen, deuterium, methyl, or phenyl;
  • the dotted line indicates the bonding position.
  • R 1 to R 4 may each independently be hydrogen, deuterium, or phenyl.
  • R 1 to R 4 may be all hydrogen or all deuterium.
  • one of R 1 to R 4 may be phenyl, and the other may be hydrogen or deuterium.
  • any one of R 1 and R 2 , R 2 and R 3 , and R 3 and R 4 is combined with each other to form a substituted or unsubstituted phenyl structure, or R 1 and R 2 , and R 3 and Two of R 4 may be combined with each other to form a substituted or unsubstituted phenyl structure, and the remainder may be hydrogen.
  • R 1 and R 2 , and R 3 and Two of R 4 may be combined with each other to form a substituted or unsubstituted phenyl structure, and the remainder may be hydrogen.
  • the phenyl structure is substituted, one or more may be substituted with hydrogen or deuterium.
  • R 5 to R 8 may each independently be hydrogen or deuterium, and preferably, R 5 to R 8 may be all hydrogen, or all deuterium.
  • the present invention provides a method for preparing a compound represented by Chemical Formula 1 as shown in Scheme 1 below as an example.
  • Scheme 1 is an amine substitution reaction, preferably performed in the presence of a palladium catalyst and a base, and the reactor for the amine substitution reaction can be changed as known in the art.
  • the manufacturing method may be more specific in Preparation Examples to be described later.
  • the present invention provides an organic light emitting device including the compound represented by the formula (1).
  • the present invention provides a first electrode; a second electrode provided to face the first electrode; and at least one organic material layer provided between the first electrode and the second electrode, wherein at least one of the organic material layers comprises a compound represented by Formula 1; to provide.
  • the organic material layer of the organic light emitting device of the present invention may have a single-layer structure, but may have a multi-layer structure in which two or more organic material layers are stacked.
  • the organic light emitting device of the present invention has a structure including a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer, an electron suppression layer, an electron injection and transport layer that simultaneously injects and transports electrons as an organic material layer.
  • the structure of the organic light emitting device is not limited thereto and may include a smaller number of organic material layers.
  • the organic layer may include an emission layer, and the emission layer includes the compound represented by Formula 1 above.
  • the organic layer may include an electron transport layer, an electron injection layer, or an electron injection and transport layer, and the electron transport layer, the electron injection layer, or the electron injection and transport layer includes a compound represented by Formula 1 above.
  • the organic layer may include an electron blocking layer, and the electron blocking layer includes the compound represented by Formula 1 above.
  • the organic light emitting device according to the present invention may be a normal type organic light emitting device in which an anode, one or more organic material layers, and a cathode are sequentially stacked on a substrate.
  • the organic light emitting device according to the present invention may be an inverted type organic light emitting device in which a cathode, one or more organic material layers, and an anode are sequentially stacked on a substrate.
  • FIGS. 1 and 2 the structure of an organic light emitting diode according to an embodiment of the present invention is illustrated in FIGS. 1 and 2 .
  • FIG. 1 shows an example of an organic light emitting device including a substrate 1 , an anode 2 , an organic material layer 3 , and a cathode 4 .
  • the compound represented by Formula 1 may be included in the organic layer 3 .
  • the compound represented by Formula 1 is the hole injection layer 5, the hole transport layer 6, the electron blocking layer 7, the light emitting layer 8, the hole blocking layer 9 and the electron injection and It may be included in one or more of the transport layers 10 .
  • the organic light emitting device according to the present invention may be manufactured using materials and methods known in the art, except that at least one layer of the organic material layer includes the compound represented by Formula 1 above. Also, when the organic light emitting device includes a plurality of organic material layers, the organic material layers may be formed of the same material or different materials.
  • the organic light emitting device may be manufactured by sequentially stacking a first electrode, an organic material layer, and a second electrode on a substrate.
  • a PVD (physical vapor deposition) method such as sputtering or e-beam evaporation
  • a metal or conductive metal oxide or an alloy thereof is deposited on a substrate to form an anode.
  • a material that can be used as a cathode is deposited thereon.
  • an organic light emitting device may be manufactured by sequentially depositing a cathode material, an organic material layer, and an anode material on a substrate.
  • the compound represented by Formula 1 may be formed into an organic material layer by a solution coating method as well as a vacuum deposition method when manufacturing an organic light emitting device.
  • the solution coating method refers to spin coating, dip coating, doctor blading, inkjet printing, screen printing, spraying, roll coating, and the like, but is not limited thereto.
  • an organic light emitting device may be manufactured by sequentially depositing an organic material layer and an anode material from a cathode material on a substrate (WO 2003/012890).
  • the manufacturing method is not limited thereto.
  • the first electrode is an anode
  • the second electrode is a cathode
  • the first electrode is a cathode and the second electrode is an anode
  • anode material a material having a large work function is generally preferred so that holes can be smoothly injected into the organic material layer.
  • the anode material include metals such as vanadium, chromium, copper, zinc, gold, or alloys thereof; metal oxides such as zinc oxide, indium oxide, indium tin oxide (ITO), and indium zinc oxide (IZO); combinations of metals and oxides such as ZnO:Al or SnO 2 :Sb; conductive polymers such as poly(3-methylthiophene), poly[3,4-(ethylene-1,2-dioxy)thiophene](PEDOT), polypyrrole, and polyaniline, but are not limited thereto.
  • the cathode material is preferably a material having a small work function to facilitate electron injection into the organic layer.
  • the anode material include metals such as magnesium, calcium, sodium, potassium, titanium, indium, yttrium, lithium, gadolinium, aluminum, silver, tin and lead, or alloys thereof; and a multilayer structure material such as LiF/Al or LiO 2 /Al, but is not limited thereto.
  • the hole injection layer is a layer for injecting holes from the electrode, and as a hole injection material, it has the ability to transport holes, so it has a hole injection effect at the anode, an excellent hole injection effect with respect to the light emitting layer or the light emitting material, and is produced in the light emitting layer
  • a compound which prevents the movement of excitons to the electron injection layer or the electron injection material and is excellent in the ability to form a thin film is preferable.
  • the highest occupied molecular orbital (HOMO) of the hole injection material is between the work function of the positive electrode material and the HOMO of the surrounding organic material layer.
  • the hole injection material examples include metal porphyrin, oligothiophene, arylamine-based organic material, hexanitrile hexaazatriphenylene-based organic material, quinacridone-based organic material, and perylene-based organic material. of organic substances, anthraquinones, polyaniline and polythiophene-based conductive polymers, and the like, but are not limited thereto.
  • the hole transport layer is a layer that receives holes from the hole injection layer and transports the holes to the light emitting layer.
  • a hole transport material a material capable of transporting holes from the anode or hole injection layer to the light emitting layer and transferring them to the light emitting layer. This is suitable. Specific examples include, but are not limited to, an arylamine-based organic material, a conductive polymer, and a block copolymer having a conjugated portion and a non-conjugated portion together.
  • the electron suppression layer is formed on the hole transport layer, preferably provided in contact with the light emitting layer, adjusts hole mobility, prevents excessive movement of electrons, and increases the probability of hole-electron coupling by increasing the efficiency of the organic light emitting device layer that plays a role in improving
  • the electron blocking layer includes an electron blocking material, and as an example of the electron blocking material, a compound represented by Formula 1 may be used, or an arylamine-based organic material may be used, but is not limited thereto.
  • the light emitting material is a material capable of emitting light in the visible ray region by receiving and combining holes and electrons from the hole transport layer and the electron transport layer, respectively, and a material having good quantum efficiency for fluorescence or phosphorescence is preferable.
  • Specific examples include 8-hydroxy-quinoline aluminum complex (Alq 3 ); carbazole-based compounds; dimerized styryl compounds; BAlq; 10-hydroxybenzo quinoline-metal compounds; compounds of the benzoxazole, benzthiazole and benzimidazole series; Poly(p-phenylenevinylene) (PPV)-based polymers; spiro compounds; polyfluorene, rubrene, and the like, but is not limited thereto.
  • the emission layer may include a host material and a dopant material.
  • the host material includes a condensed aromatic ring derivative or a compound containing a hetero ring.
  • condensed aromatic ring derivatives include anthracene derivatives, pyrene derivatives, naphthalene derivatives, pentacene derivatives, phenanthrene compounds, fluoranthene compounds, and the like
  • heterocyclic-containing compounds include carbazole derivatives, dibenzofuran derivatives, ladder type Furan compounds, pyrimidine derivatives, and the like, but are not limited thereto.
  • the dopant material examples include an aromatic amine derivative, a strylamine compound, a boron complex, a fluoranthene compound, and a metal complex.
  • the aromatic amine derivative is a condensed aromatic ring derivative having a substituted or unsubstituted arylamino group, and includes pyrene, anthracene, chrysene, and periflanthene having an arylamino group
  • the styrylamine compound is a substituted or unsubstituted derivative.
  • substituents selected from the group consisting of an aryl group, a silyl group, an alkyl group, a cycloalkyl group and an arylamino group are substituted or unsubstituted.
  • the metal complex includes, but is not limited to, an iridium complex, a platinum complex, and the like.
  • the hole blocking layer is formed on the light emitting layer, preferably provided in contact with the light emitting layer, to improve the efficiency of the organic light emitting device by controlling electron mobility and preventing excessive movement of holes to increase the hole-electron coupling probability layer that plays a role.
  • the hole-blocking layer includes a hole-blocking material, and examples of the hole-blocking material include: azine derivatives including triazine; triazole derivatives; oxadiazole derivatives; phenanthroline derivatives; A compound into which an electron withdrawing group is introduced, such as a phosphine oxide derivative, may be used, but the present invention is not limited thereto.
  • the electron injection and transport layer is a layer that simultaneously serves as an electron transport layer and an electron injection layer for injecting electrons from the electrode and transporting the received electrons to the emission layer, and is formed on the emission layer or the hole blocking layer.
  • the electron injection and transport material a material capable of receiving electrons from the cathode and transferring them to the light emitting layer is suitable, and a material having high electron mobility is suitable.
  • specific electron injection and transport materials include Al complex of 8-hydroxyquinoline; complexes containing Alq 3 ; organic radical compounds; hydroxyflavone-metal complexes; and triazine derivatives, but is not limited thereto.
  • anthraquinodimethane diphenoquinone, thiopyran dioxide, oxazole, oxadiazole, triazole, imidazole, perylenetetracarboxylic acid, preorenylidene methane, anthrone, etc., derivatives thereof, metal complex compounds , or may be used together with a nitrogen-containing 5-membered ring derivative, and the like, but is not limited thereto.
  • Examples of the metal complex compound include 8-hydroxyquinolinato lithium, bis(8-hydroxyquinolinato)zinc, bis(8-hydroxyquinolinato)copper, bis(8-hydroxyquinolinato)manganese, Tris(8-hydroxyquinolinato)aluminum, tris(2-methyl-8-hydroxyquinolinato)aluminum, tris(8-hydroxyquinolinato)gallium, bis(10-hydroxybenzo[h] Quinolinato) beryllium, bis (10-hydroxybenzo [h] quinolinato) zinc, bis (2-methyl-8-quinolinato) chlorogallium, bis (2-methyl-8-quinolinato) ( o-crezolato)gallium, bis(2-methyl-8-quinolinato)(1-naphtolato)aluminum, bis(2-methyl-8-quinolinato)(2-naphtolato)gallium, etc.
  • the present invention is not limited thereto.
  • the organic light emitting device according to the present invention may be a top emission type, a back emission type, or a double side emission type depending on the material used.
  • the compound represented by Formula 1 may be included in an organic solar cell or an organic transistor in addition to the organic light emitting device.
  • a glass substrate coated with indium tin oxide (ITO) to a thickness of 1,000 ⁇ was placed in distilled water in which detergent was dissolved and washed with ultrasonic waves.
  • ITO indium tin oxide
  • a product manufactured by Fischer Co. was used as the detergent
  • distilled water that was secondarily filtered with a filter manufactured by Millipore Co. was used as the distilled water.
  • ultrasonic cleaning was performed for 10 minutes by repeating twice with distilled water.
  • ultrasonic washing was performed with a solvent of isopropyl alcohol, acetone, and methanol, dried, and then transported to a plasma cleaner.
  • the substrate was transported to a vacuum evaporator.
  • a hole injection layer was formed by thermal vacuum deposition of a compound of the following compound HI1 and a compound of the following compound HI2 to a thickness of 100 ⁇ in a ratio of 98:2 (molar ratio) on the prepared anode, ITO transparent electrode.
  • the following compound HT1 (1150 ⁇ ) was vacuum deposited on the hole injection layer to form a hole transport layer.
  • the compound (1) of Preparation Example 1 was vacuum-deposited to a thickness of 50 ⁇ on the hole transport layer to form an electron blocking layer.
  • the following compound BH and the following compound BD were vacuum-deposited in a weight ratio of 25:1 to a film thickness of 200 ⁇ on the electron blocking layer to form a light emitting layer.
  • a hole blocking layer was formed by vacuum-depositing the following compound HB1 to a thickness of 50 ⁇ on the light emitting layer. Then, on the hole blocking layer, the following compound ET1 and the following compound LiQ were vacuum-deposited in a weight ratio of 1:1 to form an electron injection and transport layer to a thickness of 310 ⁇ .
  • a cathode was formed by sequentially depositing lithium fluoride (LiF) to a thickness of 12 ⁇ and aluminum to a thickness of 1,000 ⁇ on the electron injection and transport layer.
  • the deposition rate of organic material was maintained at 0.4 ⁇ 0.7 ⁇ /sec
  • the deposition rate of lithium fluoride of the negative electrode was maintained at 0.3 ⁇ /sec
  • the deposition rate of aluminum was maintained at 2 ⁇ /sec
  • the vacuum degree during deposition was 2 ⁇ 10 -
  • an organic light emitting device was manufactured.
  • An organic light emitting diode was manufactured in the same manner as in Example 1, except that the compound shown in Table 1 was used instead of Compound 1 of Preparation Example 1.
  • An organic light emitting device was manufactured in the same manner as in Example 1, except that the compound shown in Table 1 was used instead of the compound of Preparation Example 1.
  • Compounds EB1, EB2, EB3, EB4, EB5, EB6, and EB7 used in Table 1 are as follows.
  • T95 means the time required for the luminance to decrease from the initial luminance (1600 nit) to 95%.
  • Example 1 Preparation Example 1 4.43 6.71 (0.145, 0.045) 285
  • Example 2 Preparation 2 4.51 6.63 (0.144, 0.044) 270
  • Example 3 Preparation 3 4.55 6.64 (0.146, 0.045) 275
  • Example 4 Preparation 4 4.51 6.79 (0.145, 0.044) 270
  • Example 5 Preparation 5 4.46 6.69 (0.144, 0.044) 265
  • Example 6 Preparation 6 4.49 6.75 (0.146, 0.045) 275
  • Example 7 Preparation 7 4.67 6.51 (0.145, 0.044) 240
  • Example 8 Preparation 8 4.65 6.54 (0.146, 0.045) 245
  • Example 9 Preparation 9 4.61 6.53 (0.145, 0.046) 250 Comparative Example 1 EB1 5.12 6.05 (0.145, 0.046) 125
  • the organic light emitting devices of Examples 1 to 9 using the compound of the present invention as the electron suppression layer exhibited excellent properties in terms of efficiency, driving voltage and stability. Specifically, the organic light emitting devices of Examples 1 to 9 exhibited low voltage, high efficiency, and long lifespan by using a material in which an amine in which dibenzothiophene is directly substituted at the Ortho position of biphenyl was used as an electron suppression layer. .
  • the organic light emitting devices of Comparative Examples 1 and 3 using the compounds EB1 and EB3 having an amine-based substituent connected to the para position of the biphenyl showed deteriorated characteristics compared to the Examples in terms of voltage increase, efficiency decrease, and particularly stability. .
  • Comparative Example 2 in which the compound EB2 containing two functional groups linked to the Ortho position of the biphenyl was used as an electron-suppressing layer, and the compound EB4 in which the bonding position of the carbazole to the biphenyl group was meta was used as the electron-suppressing layer Comparative Example 4, and Comparative Example 5, in which a compound in which dibenzofuranyl is not directly bonded to an amino group but bonded through a linking group such as phenylene is used as an electron suppressing layer, and the number of carbon atoms including biphenyl in the Ar position in Formula 1
  • Substrate 2 Anode
  • organic layer 4 cathode

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

본 발명은 신규한 화합물 및 이를 이용한 유기 발광 소자를 제공한다.

Description

신규한 화합물 및 이를 이용한 유기 발광 소자
관련 출원(들)과의 상호 인용
본 출원은 2020년 2월 13일자 한국 특허 출원 제10-2020-0017590호 및 2020년 12월 15일자 한국 특허 출원 제10-2020-0175628호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 신규한 화합물 및 이를 포함하는 유기 발광 소자에 관한 것이다.
일반적으로 유기 발광 현상이란 유기 물질을 이용하여 전기에너지를 빛에너지로 전환시켜주는 현상을 말한다. 유기 발광 현상을 이용하는 유기 발광 소자는 넓은 시야각, 우수한 콘트라스트, 빠른 응답 시간을 가지며, 휘도, 구동 전압 및 응답 속도 특성이 우수하여 많은 연구가 진행되고 있다.
유기 발광 소자는 일반적으로 양극과 음극 및 상기 양극과 음극 사이에 유기물 층을 포함하는 구조를 가진다. 상기 유기물 층은 유기 발광 소자의 효율과 안정성을 높이기 위하여 각기 다른 물질로 구성된 다층의 구조로 이루어진 경우가 많으며, 예컨대 정공주입층, 정공수송층, 발광층, 전자수송층, 전자주입층 등으로 이루어질 수 있다. 이러한 유기 발광 소자의 구조에서 두 전극 사이에 전압을 걸어주게 되면 양극에서는 정공이, 음극에서는 전자가 유기물 층에 주입되게 되고, 주입된 정공과 전자가 만났을 때 엑시톤(exciton)이 형성되며, 이 엑시톤이 다시 바닥상태로 떨어질 때 빛이 나게 된다.
상기와 같은 유기 발광 소자에 사용되는 유기물에 대하여 새로운 재료의 개발이 지속적으로 요구되고 있다.
[선행기술문헌]
[특허문헌]
(특허문헌 1) 한국특허 공개번호 제10-2000-0051826호
본 발명은 신규한 화합물 및 이를 포함하는 유기 발광 소자에 관한 것이다.
본 발명은 하기 화학식 1로 표시되는 화합물을 제공한다:
[화학식 1]
Figure PCTKR2020018434-appb-img-000001
상기 화학식 1에서,
Ar은 C 13-60 아릴이고, 상기 Ar은 비치환되거나, 또는 중수소, C 1-18 알킬, 또는 C 6-18 아릴로 하나 이상 치환되며,
R 1 내지 R 4는 각각 독립적으로 수소; 중수소; 치환 또는 비치환된 C 1-60 알킬; 또는 치환 또는 비치환된 C 6-60 아릴이거나, 또는 인접한 두 기가 서로 결합하여 치환 또는 비치환된 방향족 고리 구조를 형성하며,
R 5 내지 R 8는 각각 독립적으로, 수소; 중수소; 할로겐; 니트릴; 실릴; 치환 또는 비치환된 C 1-60 알킬; 치환 또는 비치환된 C 6-60 아릴; 치환 또는 비치환된 C 2-60 알케닐; 또는 치환 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상의 헤테로원자를 포함하는 C 2-60 헤테로아릴이고,
m은 0 내지 3의 정수이고,
n은 0 내지 8의 정수이며,
p 및 q는 각각 독립적으로 0 내지 4의 정수이다.
또한, 본 발명은 제1 전극; 상기 제1 전극과 대향하여 구비된 제2 전극; 및 상기 제1 전극과 상기 제2 전극 사이에 구비된 1층 이상의 유기물 층을 포함하는 유기 발광 소자로서, 상기 유기물 층 중 1층 이상은 상기 화학식 1로 표시되는 화합물을 포함하는, 유기 발광 소자를 제공한다.
상술한 화학식 1로 표시되는 화합물은 유기 발광 소자의 유기물 층의 재료로서 사용될 수 있으며, 유기 발광 소자에서 효율의 향상, 낮은 구동전압 및/또는 수명 특성을 향상시킬 수 있다. 특히, 상술한 화학식 1로 표시되는 화합물은 정공주입, 정공수송, 정공주입 및 수송, 발광, 전자수송, 또는 전자주입 재료로 사용될 수 있다.
도 1은 기판(1), 양극(2), 유기물 층(3), 및 음극(4)으로 이루어진 유기 발광 소자의 예를 도시한 것이다.
도 2는 기판(1), 양극(2), 정공주입층(5), 정공수송층(6), 전자억제층(7), 발광층(8), 정공저지층(9), 전자 주입 및 수송층(10), 및 음극(4)으로 이루어진 유기 발광 소자의 예를 도시한 것이다.
이하, 본 발명의 이해를 돕기 위하여 보다 상세히 설명한다.
본 명세서에서,
Figure PCTKR2020018434-appb-img-000002
또는
Figure PCTKR2020018434-appb-img-000003
는 다른 치환기에 연결되는 결합을 의미한다.
본 명세서에서 "치환 또는 비치환된" 이라는 용어는 중수소; 할로겐기; 니트릴기; 니트로기; 히드록시기; 카보닐기; 에스테르기; 이미드기; 아미노기; 포스핀옥사이드기; 알콕시기; 아릴옥시기; 알킬티옥시기; 아릴티옥시기; 알킬술폭시기; 아릴술폭시기; 실릴기; 붕소기; 알킬기; 사이클로알킬기; 알케닐기; 아릴기; 아르알킬기; 아르알케닐기; 알킬아릴기; 알킬아민기; 아랄킬아민기; 헤테로아릴아민기; 아릴아민기; 아릴포스핀기; 또는 N, O 및 S 원자 중 1개 이상을 포함하는 헤테로고리기로 이루어진 군에서 선택된 1개 이상의 치환기로 치환 또는 비치환되거나, 상기 예시된 치환기 중 2 이상의 치환기가 연결된 치환 또는 비치환된 것을 의미한다. 예컨대, "2 이상의 치환기가 연결된 치환기"는 비페닐기일 수 있다. 즉, 비페닐기는 아릴기일 수도 있고, 2개의 페닐기가 연결된 치환기로 해석될 수 있다.
본 명세서에서 카보닐기의 탄소수는 특별히 한정되지 않으나, 탄소수 1 내지 40인 것이 바람직하다. 구체적으로 하기와 같은 구조의 화합물이 될 수 있으나, 이에 한정되는 것은 아니다.
Figure PCTKR2020018434-appb-img-000004
본 명세서에 있어서, 에스테르기는 에스테르기의 산소가 탄소수 1 내지 25의 직쇄, 분지쇄 또는 고리쇄 알킬기 또는 탄소수 6 내지 25의 아릴기로 치환될 수 있다. 구체적으로, 하기 구조식의 화합물이 될 수 있으나, 이에 한정되는 것은 아니다.
Figure PCTKR2020018434-appb-img-000005
본 명세서에 있어서, 이미드기의 탄소수는 특별히 한정되지 않으나, 탄소수 1 내지 25인 것이 바람직하다. 구체적으로 하기와 같은 구조의 화합물이 될 수 있으나, 이에 한정되는 것은 아니다.
Figure PCTKR2020018434-appb-img-000006
본 명세서에 있어서, 실릴기는 구체적으로 트리메틸실릴기, 트리에틸실릴기, t-부틸디메틸실릴기, 비닐디메틸실릴기, 프로필디메틸실릴기, 트리페닐실릴기, 디페닐실릴기, 페닐실릴기 등이 있으나 이에 한정되지 않는다.
본 명세서에 있어서, 붕소기는 구체적으로 트리메틸붕소기, 트리에틸붕소기, t-부틸디메틸붕소기, 트리페닐붕소기, 페닐붕소기 등이 있으나 이에 한정되지 않는다.
본 명세서에 있어서, 할로겐기의 예로는 불소, 염소, 브롬 또는 요오드가 있다.
본 명세서에 있어서, 상기 알킬기는 직쇄 또는 분지쇄일 수 있고, 탄소수는 특별히 한정되지 않으나 1 내지 40인 것이 바람직하다. 일 실시상태에 따르면, 상기 알킬기의 탄소수는 1 내지 20이다. 또 하나의 실시상태에 따르면, 상기 알킬기의 탄소수는 1 내지 10이다. 또 하나의 실시상태에 따르면, 상기 알킬기의 탄소수는 1 내지 6이다. 알킬기의 구체적인 예로는 메틸, 에틸, 프로필, n-프로필, 이소프로필, 부틸, n-부틸, 이소부틸, tert-부틸, sec-부틸, 1-메틸-부틸, 1-에틸-부틸, 펜틸, n-펜틸, 이소펜틸, 네오펜틸, tert-펜틸, 헥실, n-헥실, 1-메틸펜틸, 2-메틸펜틸, 4-메틸-2-펜틸, 3,3-디메틸부틸, 2-에틸부틸, 헵틸, n-헵틸, 1-메틸헥실, 사이클로펜틸메틸,사이클로헥실메틸, 옥틸, n-옥틸, tert-옥틸, 1-메틸헵틸, 2-에틸헥실, 2-프로필펜틸, n-노닐, 2,2-디메틸헵틸, 1-에틸-프로필, 1,1-디메틸-프로필, 이소헥실, 2-메틸펜틸, 4-메틸헥실, 5-메틸헥실 등이 있으나, 이들에 한정되지 않는다.
본 명세서에 있어서, 상기 알케닐기는 직쇄 또는 분지쇄일 수 있고, 탄소수는 특별히 한정되지 않으나, 2 내지 40인 것이 바람직하다. 일 실시상태에 따르면, 상기 알케닐기의 탄소수는 2 내지 20이다. 또 하나의 실시상태에 따르면, 상기 알케닐기의 탄소수는 2 내지 10이다. 또 하나의 실시상태에 따르면, 상기 알케닐기의 탄소수는 2 내지 6이다. 구체적인 예로는 비닐, 1-프로페닐, 이소프로페닐, 1-부테닐, 2-부테닐, 3-부테닐, 1-펜테닐, 2-펜테닐, 3-펜테닐, 3-메틸-1-부테닐, 1,3-부타디에닐, 알릴, 1-페닐비닐-1-일, 2-페닐비닐-1-일, 2,2-디페닐비닐-1-일, 2-페닐-2-(나프틸-1-일)비닐-1-일, 2,2-비스(디페닐-1-일)비닐-1-일, 스틸베닐기, 스티레닐기 등이 있으나 이들에 한정되지 않는다.
본 명세서에 있어서, 사이클로알킬기는 특별히 한정되지 않으나, 탄소수 3 내지 60인 것이 바람직하며, 일 실시상태에 따르면, 상기 사이클로알킬기의 탄소수는 3 내지 30이다. 또 하나의 실시상태에 따르면, 상기 사이클로알킬기의 탄소수는 3 내지 20이다. 또 하나의 실시상태에 따르면, 상기 사이클로알킬기의 탄소수는 3 내지 6이다. 구체적으로 사이클로프로필, 사이클로부틸, 사이클로펜틸, 3-메틸사이클로펜틸, 2,3-디메틸사이클로펜틸, 사이클로헥실, 3-메틸사이클로헥실, 4-메틸사이클로헥실, 2,3-디메틸사이클로헥실, 3,4,5-트리메틸사이클로헥실, 4-tert-부틸사이클로헥실, 사이클로헵틸, 사이클로옥틸 등이 있으나, 이에 한정되지 않는다.
본 명세서에 있어서, 아릴기는 특별히 한정되지 않으나 탄소수 6 내지 60인 것이 바람직하며, 단환식 아릴기 또는 다환식 아릴기일 수 있다. 일 실시상태에 따르면, 상기 아릴기의 탄소수는 6 내지 30이다. 일 실시상태에 따르면, 상기 아릴기의 탄소수는 6 내지 20이다. 상기 아릴기가 단환식 아릴기로는 페닐기, 비페닐기, 터페닐기 등이 될 수 있으나, 이에 한정되는 것은 아니다. 상기 다환식 아릴기로는 나프틸기, 안트라세닐기, 페난트릴기, 파이레닐기, 페릴레닐기, 크라이세닐기, 플루오레닐기 등이 될 수 있으나, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 플루오레닐기는 치환될 수 있고, 치환기 2개가 서로 결합하여 스피로 구조를 형성할 수 있다. 상기 플루오레닐기가 치환되는 경우,
Figure PCTKR2020018434-appb-img-000007
등이 될 수 있다. 다만, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 헤테로고리기는 이종 원소로 O, N, Si 및 S 중 1개 이상을 포함하는 헤테로고리기로서, 탄소수는 특별히 한정되지 않으나, 탄소수 2 내지 60인 것이 바람직하다. 헤테로고리기의 예로는 티오펜기, 퓨란기, 피롤기, 이미다졸기, 티아졸기, 옥사졸기, 옥사디아졸기, 트리아졸기, 피리딜기, 비피리딜기, 피리미딜기, 트리아진기, 아크리딜기, 피리다진기, 피라지닐기, 퀴놀리닐기, 퀴나졸린기, 퀴녹살리닐기, 프탈라지닐기, 피리도 피리미디닐기, 피리도 피라지닐기, 피라지노 피라지닐기, 이소퀴놀린기, 인돌기, 카바졸기, 벤조옥사졸기, 벤조이미다졸기, 벤조티아졸기, 벤조카바졸기, 벤조티오펜기, 디벤조티오펜기, 벤조퓨라닐기, 페난쓰롤린기(phenanthroline), 이소옥사졸릴기, 티아디아졸릴기, 페노티아지닐기 및 디벤조퓨라닐기 등이 있으나, 이들에만 한정되는 것은 아니다.
본 명세서에 있어서, 아르알킬기, 아르알케닐기, 알킬아릴기, 아릴아민기 중의 아릴기는 전술한 아릴기의 예시와 같다. 본 명세서에 있어서, 아르알킬기, 알킬아릴기, 알킬아민기 중 알킬기는 전술한 알킬기의 예시와 같다. 본 명세서에 있어서, 헤테로아릴아민 중 헤테로아릴은 전술한 헤테로고리기에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 아르알케닐기 중 알케닐기는 전술한 알케닐기의 예시와 같다. 본 명세서에 있어서, 아릴렌은 2가기인 것을 제외하고는 전술한 아릴기에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 헤테로아릴렌은 2가기인 것을 제외하고는 전술한 헤테로고리기에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 탄화수소 고리는 1가기가 아니고, 2개의 치환기가 결합하여 형성한 것을 제외하고는 전술한 아릴기 또는 사이클로알킬기에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 헤테로고리는 1가기가 아니고, 2개의 치환기가 결합하여 형성한 것을 제외하고는 전술한 헤테로고리기에 관한 설명이 적용될 수 있다.
상기 화학식 1로 표시되는 화합물은, 바람직하게는 하기 화학식 1a 내지 1d 중 어느 하나로 표시될 수 있다:
[화학식 1a]
Figure PCTKR2020018434-appb-img-000008
[화학식 1b]
Figure PCTKR2020018434-appb-img-000009
[화학식 1c]
Figure PCTKR2020018434-appb-img-000010
[화학식 1d]
Figure PCTKR2020018434-appb-img-000011
상기 화학식 1a 내지 1d에 있어서,
Ar, R 1 내지 R 8, m, n, p, 및 q는 앞서 정의한 바와 같다.
또, 상기 화학식 1에 있어서 바람직하게는 Ar은 터페닐, (페닐)나프틸, (나프틸)페닐, (나프틸)비페닐, (페닐나프틸)페닐, 디메틸플루오레닐, 디페닐플루오레닐, 트리페닐레닐, 페난트릴 또는 (페난트릴)페닐이고,
상기 Ar은 비치환되거나, 또는 중수소, C 1-18 알킬, 또는 C 6-18 아릴로 하나 이상 치환될 수 있다.
보다 바람직하게는 Ar은 하기 화학식들로 구성되는 군으로부터 선택되는 어느 하나일 수 있다:
Figure PCTKR2020018434-appb-img-000012
Figure PCTKR2020018434-appb-img-000013
상기 각 화학식에서,
R 11은 동일하거나 상이하고, 각각 수소, 중수소, C 1-18 알킬, 또는 C 6-18 아릴이고, 바람직하게는 상기 R 11은 동일하거나 상이하고, 각각 수소, 중수소, 메틸, 또는 페닐이며,
점선은 결합 위치를 나타낸다.
또, 상기 화학식 1에 있어서, R 1 내지 R 4는 각각 독립적으로 수소, 중수소 또는 페닐일 수 있다.
바람직하게는 R 1 내지 R 4는 모두 수소이거나 또는 모두 중수소일 수 있다.
바람직하게는 R 1 내지 R 4 중 하나는 페닐이고, 나머지는 수소 또는 중수소일 수 있다.
바람직하게는 R 1과 R 2, R 2와 R 3, 및 R 3과 R 4 중 어느 하나가 서로 결합하여 치환 또는 비치환된 페닐 구조를 형성하거나, 또는 R 1과 R 2, 및 R 3과 R 4의 두 개가 각각 서로 결합하여 치환 또는 비치환된 페닐 구조를 형성하고, 나머지는 수소일 수 있다. 또한 상기 페닐 구조가 치환된 경우, 수소 또는 중수소로 하나 이상 치환될 수 있다.
또, 상기 화학식 1에 있어서 R 5 내지 R 8은 각각 독립적으로 수소 또는 중수소일 수 있으며, 바람직하게는 R 5 내지 R 8은 모두 수소이거나, 또는 모두 중수소일 수 있다.
상기 화학식 1로 표시되는 화합물의 대표적인 예는 하기와 같다:
Figure PCTKR2020018434-appb-img-000014
Figure PCTKR2020018434-appb-img-000015
Figure PCTKR2020018434-appb-img-000016
Figure PCTKR2020018434-appb-img-000017
.
또한, 본 발명은 일례로 하기 반응식 1과 같은 상기 화학식 1로 표시되는 화합물의 제조 방법을 제공한다.
[반응식 1]
Figure PCTKR2020018434-appb-img-000018
상기 반응식 1에서, Ar, R 1 내지 R 8, m, n, p 및 q는 상기 화학식 1에서 정의한 바와 같으며, X는 할로겐이고, 바람직하게는 X는 클로로 또는 브로모이다.
상기 반응식 1은 아민 치환 반응으로서, 팔라듐 촉매와 염기 존재 하에 수행하는 것이 바람직하며, 아민 치환 반응을 위한 반응기는 당업계에 알려진 바에 따라 변경이 가능하다. 상기 제조 방법은 후술할 제조예에서 보다 구체화될 수 있다.
또한, 본 발명은 상기 화학식 1로 표시되는 화합물을 포함하는 유기 발광 소자를 제공한다. 일례로, 본 발명은 제1 전극; 상기 제1 전극과 대향하여 구비된 제2 전극; 및 상기 제1 전극과 상기 제2 전극 사이에 구비된 1층 이상의 유기물 층을 포함하는 유기 발광 소자로서, 상기 유기물 층 중 1층 이상은 상기 화학식 1로 표시되는 화합물을 포함하는, 유기 발광 소자를 제공한다.
본 발명의 유기 발광 소자의 유기물 층은 단층 구조로 이루어질 수도 있으나, 2층 이상의 유기물 층이 적층된 다층 구조로 이루어질 수 있다. 예컨대, 본 발명의 유기 발광 소자는 유기물 층으로서 정공주입층, 정공수송층, 발광층, 전자수송층, 전자주입층, 전자억제층, 전자 주입 및 전자 수송을 동시에 하는 전자 주입 및 수송층 등을 포함하는 구조를 가질 수 있다. 그러나 유기 발광 소자의 구조는 이에 한정되지 않고 더 적은 수의 유기물 층을 포함할 수 있다.
또한, 상기 유기물 층은 발광층을 포함할 수 있고, 상기 발광층은 상기 화학식 1로 표시되는 화합물을 포함한다.
또한, 상기 유기물 층은 전자수송층, 전자주입층, 또는 전자 주입 및 수송층을 포함할 수 있고, 상기 전자수송층, 전자주입층, 또는 전자 주입 및 수송층은 상기 화학식 1로 표시되는 화합물을 포함한다.
또한, 상기 유기물 층은 전자억제층을 포함할 수 있고, 상기 전자억제층은 상기 화학식 1로 표시되는 화합물을 포함한다.
또한, 본 발명에 따른 유기 발광 소자는, 기판 상에 양극, 1층 이상의 유기물 층 및 음극이 순차적으로 적층된 구조(normal type)의 유기 발광 소자일 수 있다. 또한, 본 발명에 따른 유기 발광 소자는 기판 상에 음극, 1층 이상의 유기물 층 및 양극이 순차적으로 적층된 역방향 구조(inverted type)의 유기 발광 소자일 수 있다. 예컨대, 본 발명의 일 실시예에 따른 유기 발광 소자의 구조는 도 1 및 2에 예시되어 있다.
도 1은 기판(1), 양극(2), 유기물 층(3) 및 음극(4)으로 이루어진 유기 발광 소자의 예를 도시한 것이다. 이와 같은 구조에 있어서, 상기 화학식 1로 표시되는 화합물은 상기 유기물 층(3)에 포함될 수 있다.
도 2는 기판(1), 양극(2), 정공주입층(5), 정공수송층(6), 전자억제층(7), 발광층(8), 정공저지층(9), 전자 주입 및 수송층(10), 및 음극(4)으로 이루어진 유기 발광 소자의 예를 도시한 것이다. 이와 같은 구조에 있어서, 상기 화학식 1로 표시되는 화합물은 상기 정공주입층(5), 정공수송층(6), 전자억제층(7), 발광층(8), 정공저지층(9) 및 전자 주입 및 수송층(10) 중 1층 이상에 포함될 수 있다.
본 발명에 따른 유기 발광 소자는, 상기 유기물 층 중 1층 이상이 상기 화학식 1로 표시되는 화합물을 포함하는 것을 제외하고는 당 기술분야에 알려져 있는 재료와 방법으로 제조될 수 있다. 또한, 상기 유기 발광 소자가 복수개의 유기물 층을 포함하는 경우, 상기 유기물 층은 동일한 물질 또는 다른 물질로 형성될 수 있다.
예컨대, 본 발명에 따른 유기 발광 소자는 기판 상에 제1 전극, 유기물 층 및 제2 전극을 순차적으로 적층시켜 제조할 수 있다. 이때, 스퍼터링법(sputtering)이나 전자빔 증발법(e-beam evaporation)과 같은 PVD(physical Vapor Deposition)방법을 이용하여, 기판 상에 금속 또는 전도성을 가지는 금속 산화물 또는 이들의 합금을 증착시켜 양극을 형성하고, 그 위에 정공주입층, 정공수송층, 전자억제층, 발광층, 정공저지층, 그리고 전자 주입 및 수송층을 포함하는 유기물 층을 형성한 후, 그 위에 음극으로 사용할 수 있는 물질을 증착시켜 제조할 수 있다. 이와 같은 방법 외에도, 기판 상에 음극 물질부터 유기물 층, 양극 물질을 차례로 증착시켜 유기 발광 소자를 만들 수 있다.
또한, 상기 화학식 1로 표시되는 화합물은 유기 발광 소자의 제조시 진공 증착법 뿐만 아니라 용액 도포법에 의하여 유기물 층으로 형성될 수 있다. 여기서, 용액 도포법이라 함은 스핀 코팅, 딥코팅, 닥터 블레이딩, 잉크젯 프린팅, 스크린 프린팅, 스프레이법, 롤 코팅 등을 의미하지만, 이들만으로 한정되는 것은 아니다.
이와 같은 방법 외에도, 기판 상에 음극 물질로부터 유기물 층, 양극 물질을 차례로 증착시켜 유기 발광 소자를 제조할 수 있다(WO 2003/012890). 다만, 제조 방법이 이에 한정되는 것은 아니다.
일례로, 상기 제1 전극은 양극이고, 상기 제2 전극은 음극이거나, 또는 상기 제1 전극은 음극이고, 상기 제2 전극은 양극이다.
상기 양극 물질로는 통상 유기물 층으로 정공 주입이 원활할 수 있도록 일함수가 큰 물질이 바람직하다. 상기 양극 물질의 구체적인 예로는 바나듐, 크롬, 구리, 아연, 금과 같은 금속 또는 이들의 합금; 아연 산화물, 인듐 산화물, 인듐주석 산화물(ITO), 인듐아연 산화물(IZO)과 같은 금속 산화물; ZnO:Al 또는 SnO 2:Sb와 같은 금속과 산화물의 조합; 폴리(3-메틸티오펜), 폴리[3,4-(에틸렌-1,2-디옥시)티오펜](PEDOT), 폴리피롤 및 폴리아닐린과 같은 전도성 고분자 등이 있으나, 이들에만 한정되는 것은 아니다.
상기 음극 물질로는 통상 유기물 층으로 전자 주입이 용이하도록 일함수가 작은 물질인 것이 바람직하다. 상기 음극 물질의 구체적인 예로는 마그네슘, 칼슘, 나트륨, 칼륨, 티타늄, 인듐, 이트륨, 리튬, 가돌리늄, 알루미늄, 은, 주석 및 납과 같은 금속 또는 이들의 합금; LiF/Al 또는 LiO 2/Al과 같은 다층 구조 물질 등이 있으나, 이들에만 한정되는 것은 아니다.
상기 정공주입층은 전극으로부터 정공을 주입하는 층으로, 정공 주입 물질로는 정공을 수송하는 능력을 가져 양극에서의 정공 주입효과, 발광층 또는 발광재료에 대하여 우수한 정공 주입 효과를 갖고, 발광층에서 생성된 여기자의 전자주입층 또는 전자주입재료에의 이동을 방지하며, 또한, 박막 형성 능력이 우수한 화합물이 바람직하다. 정공 주입 물질의 HOMO(highest occupied molecular orbital)가 양극 물질의 일함수와 주변 유기물 층의 HOMO 사이인 것이 바람직하다. 정공 주입 물질의 구체적인 예로는 금속 포피린(porphyrin), 올리고티오펜, 아릴아민 계열의 유기물, 헥사니트릴헥사아자트리페닐렌 계열의 유기물, 퀴나크리돈(quinacridone)계열의 유기물, 페릴렌(perylene) 계열의 유기물, 안트라퀴논 및 폴리아닐린과 폴리티오펜 계열의 전도성 고분자 등이 있으나, 이들에만 한정 되는 것은 아니다.
상기 정공수송층은 정공주입층으로부터 정공을 수취하여 발광층까지 정공을 수송하는 층으로, 정공 수송 물질로 양극이나 정공 주입층으로부터 정공을 수송받아 발광층으로 옮겨줄 수 있는 물질로 정공에 대한 이동성이 큰 물질이 적합하다. 구체적인 예로는 아릴아민 계열의 유기물, 전도성 고분자, 및 공액 부분과 비공액 부분이 함께 있는 블록 공중합체 등이 있으나, 이들에만 한정되는 것은 아니다.
상기 전자억제층은 상기 정공수송층 상에 형성되어, 바람직하게는 발광층에 접하여 구비되어, 정공이동도를 조절하고, 전자의 과다한 이동을 방지하여 정공-전자간 결합 확률을 높여줌으로써 유기 발광 소자의 효율을 개선하는 역할을 하는 층을 의미한다. 상기 전자억제층은 전자저지물질을 포함하고, 이러한 전자저지물질의 예로 상기 화학식 1로 표시되는 화합물을 사용하거나, 또는 아릴아민 계열의 유기물 등을 사용할 수 있으나, 이에 한정되는 것은 아니다.
상기 발광 물질로는 정공 수송층과 전자 수송층으로부터 정공과 전자를 각각 수송받아 결합시킴으로써 가시광선 영역의 빛을 낼 수 있는 물질로서, 형광이나 인광에 대한 양자 효율이 좋은 물질이 바람직하다. 구체적인 예로 8-히드록시-퀴놀린 알루미늄 착물(Alq 3); 카르바졸 계열 화합물; 이량체화 스티릴(dimerized styryl) 화합물; BAlq; 10-히드록시벤조 퀴놀린-금속 화합물; 벤족사졸, 벤즈티아졸 및 벤즈이미다졸 계열의 화합물; 폴리(p-페닐렌비닐렌)(PPV) 계열의 고분자; 스피로(spiro) 화합물; 폴리플루오렌, 루브렌 등이 있으나, 이들에만 한정되는 것은 아니다.
상기 발광층은 호스트 재료 및 도펀트 재료를 포함할 수 있다. 호스트 재료는 축합 방향족환 유도체 또는 헤테로환 함유 화합물 등이 있다. 구체적으로 축합 방향족환 유도체로는 안트라센 유도체, 피렌 유도체, 나프탈렌 유도체, 펜타센 유도체, 페난트렌 화합물, 플루오란텐 화합물 등이 있고, 헤테로환 함유 화합물로는 카바졸 유도체, 디벤조퓨란 유도체, 래더형 퓨란 화합물, 피리미딘 유도체 등이 있으나, 이에 한정되지 않는다.
도펀트 재료로는 방향족 아민 유도체, 스트릴아민 화합물, 붕소 착체, 플루오란텐 화합물, 금속 착체 등이 있다. 구체적으로 방향족 아민 유도체로는 치환 또는 비치환된 아릴아미노기를 갖는 축합 방향족환 유도체로서, 아릴아미노기를 갖는 피렌, 안트라센, 크리센, 페리플란텐 등이 있으며, 스티릴아민 화합물로는 치환 또는 비치환된 아릴아민에 적어도 1개의 아릴비닐기가 치환되어 있는 화합물로, 아릴기, 실릴기, 알킬기, 사이클로알킬기 및 아릴아미노기로 이루어진 군에서 1 또는 2 이상 선택되는 치환기가 치환 또는 비치환된다. 구체적으로 스티릴아민, 스티릴디아민, 스티릴트리아민, 스티릴테트라아민 등이 있으나, 이에 한정되지 않는다. 또한, 금속 착체로는 이리듐 착체, 백금 착체 등이 있으나, 이에 한정되지 않는다.
상기 정공저지층은 발광층 상에 형성되어, 바람직하게는 발광층에 접하여 구비되어, 전자이동도를 조절하고 정공의 과다한 이동을 방지하여 정공-전자간 결합 확률을 높여줌으로써 유기 발광 소자의 효율을 개선하는 역할을 하는 층을 의미한다. 상기 정공저지층은 정공저지물질을 포함하고, 이러한 정공저지물질의 예로 트리아진을 포함한 아진류유도체; 트리아졸 유도체; 옥사디아졸 유도체; 페난트롤린 유도체; 포스핀옥사이드 유도체 등의 전자흡인기가 도입된 화합물을 사용할 수 있으나, 이에 한정되는 것은 아니다.
상기 전자 주입 및 수송층은 전극으로부터 전자를 주입하고, 수취된 전자를 발광층까지 수송하는 전자수송층 및 전자주입층의 역할을 동시에 수행하는 층으로, 상기 발광층 또는 상기 정공저지층 상에 형성된다. 이러한 전자 주입 및 수송물질로는 음극으로부터 전자를 잘 주입 받아 발광층으로 옮겨줄 수 있는 물질로서, 전자에 대한 이동성이 큰 물질이 적합하다. 구체적인 전자 주입 및 수송물질의 예로는 8-히드록시퀴놀린의 Al 착물; Alq 3를 포함한 착물; 유기 라디칼 화합물; 히드록시플라본-금속 착물; 트리아진 유도체 등이 있으나, 이들에만 한정되는 것은 아니다. 또는 플루오레논, 안트라퀴노다이메탄, 다이페노퀴논, 티오피란 다이옥사이드, 옥사졸, 옥사다이아졸, 트리아졸, 이미다졸, 페릴렌테트라카복실산, 프레오레닐리덴 메탄, 안트론 등과 그들의 유도체, 금속 착체 화합물, 또는 질소 함유 5원환 유도체 등과 함께 사용할 수도 있으나, 이에 한정되는 것은 아니다.
상기 금속 착체 화합물로서는 8-하이드록시퀴놀리나토 리튬, 비스(8-하이드록시퀴놀리나토)아연, 비스(8-하이드록시퀴놀리나토)구리, 비스(8-하이드록시퀴놀리나토)망간, 트리스(8-하이드록시퀴놀리나토)알루미늄, 트리스(2-메틸-8-하이드록시퀴놀리나토)알루미늄, 트리스(8-하이드록시퀴놀리나토)갈륨, 비스(10-하이드록시벤조[h]퀴놀리나토)베릴륨, 비스(10-하이드록시벤조[h]퀴놀리나토)아연, 비스(2-메틸-8-퀴놀리나토)클로로갈륨, 비스(2-메틸-8-퀴놀리나토)(o-크레졸라토)갈륨, 비스(2-메틸-8-퀴놀리나토)(1-나프톨라토)알루미늄, 비스(2-메틸-8-퀴놀리나토)(2-나프톨라토)갈륨 등이 있으나, 이에 한정되는 것은 아니다.
본 발명에 따른 유기 발광 소자는 사용되는 재료에 따라 전면 발광형, 후면 발광형 또는 양면 발광형일 수 있다.
또한, 상기 화학식 1로 표시되는 화합물은 유기 발광 소자 외에도 유기 태양 전지 또는 유기 트랜지스터에 포함될 수 있다.
상기 화학식 1로 표시되는 화합물 및 이를 포함하는 유기 발광 소자의 제조는 이하 실시예에서 구체적으로 설명한다. 그러나 하기 실시예는 본 발명을 예시하기 위한 것이며, 본 발명의 범위가 이들에 의하여 한정되는 것은 아니다.
제조예 1
Figure PCTKR2020018434-appb-img-000019
질소 분위기에서 500 mL 둥근 바닥 플라스크에 화합물 A(7.49 g, 21.22mmol), 및 화합물 a1(10.03 g, 24.40 mmol)을 Xylene 280 mL에 완전히 녹인 후 NaOtBu(2.65 g, 27.58 mmol)을 첨가하고, Bis(tri- tert-butylphosphine) palladium(0)(0.24 g, 0.48 mmol)을 넣은 후 3시간 동안 가열 교반하였다. 상온으로 온도를 낮추고 filter하여 base를 제거한 후 Xylene을 감압농축 시키고 에틸아세테이트 260 mL으로 재결정하여 상기 구조의 화합물 1(8.16 g, 수율: 53%)를 제조하였다.
MS[M+H] += 729
제조예 2
Figure PCTKR2020018434-appb-img-000020
질소 분위기에서 500 mL 둥근 바닥 플라스크에 화합물 A(6.85 g, 19.41 mmol), 및 화합물 a2(10.29 g, 22.32 mmol)을 Xylene 240 mL에 완전히 녹인 후 NaOtBu(2.42 g, 25.23 mmol)을 첨가하고, Bis(tri- tert-butylphosphine) palladium(0)(0.20 g, 0.39 mmol)을 넣은 후 5시간 동안 가열 교반하였다. 상온으로 온도를 낮추고 filter하여 base를 제거한 후 Xylene을 감압농축 시키고 에틸아세테이트 220 mL으로 재결정하여 상기 구조의 화합물 2(6.77 g, 수율: 45%)를 제조하였다.
MS[M+H] += 779
제조예 3
Figure PCTKR2020018434-appb-img-000021
질소 분위기에서 500 mL 둥근 바닥 플라스크에 화합물 A(7.11 g, 20.14mmol), 및 화합물 a3(8.31 g, 22.16 mmol)을 Xylene 230 mL에 완전히 녹인 후 NaOtBu(2.52 g, 26.18 mmol)을 첨가하고, Bis(tri- tert-butylphosphine) palladium(0)(0.21 g, 0.40 mmol)을 넣은 후 4시간 동안 가열 교반하였다. 상온으로 온도를 낮추고 filter하여 base를 제거한 후 Xylene을 감압농축 시키고 에틸아세테이트 270 mL으로 재결정하여 상기 구조의 화합물 3(8.49 g, 수율: 61%)을 제조하였다.
MS[M+H] += 693
제조예 4
Figure PCTKR2020018434-appb-img-000022
질소 분위기에서 500 mL 둥근 바닥 플라스크에 화합물 A(6.82 g, 19.32mmol), 및 화합물 a4(9.24 g, 21.25 mmol)을 Xylene 250 mL에 완전히 녹인 후 NaOtBu(2.41 g, 25.12 mmol)을 첨가하고, Bis(tri- tert-butylphosphine) palladium(0)(0.18 g, 0.36 mmol)을 넣은 후 4시간 동안 가열 교반하였다. 상온으로 온도를 낮추고 filter하여 base를 제거한 후 Xylene을 감압농축 시키고 에틸아세테이트 280 mL으로 재결정하여 상기 구조의 화합물 4(6.98 g, 수율: 54%)를 제조하였다.
MS[M+H] += 753
제조예 5
Figure PCTKR2020018434-appb-img-000023
질소 분위기에서 500 mL 둥근 바닥 플라스크에 화합물 A(7.53 g, 21.33mmol), 및 화합물 a5(10.21 g, 23.46 mmol)을 Xylene 260 mL에 완전히 녹인 후 NaOtBu(2.66 g, 27.73 mmol)을 첨가하고, Bis(tri- tert-butylphosphine) palladium(0)(0.22 g, 0.43 mmol)을 넣은 후 5시간 동안 가열 교반하였다. 상온으로 온도를 낮추고 filter하여 base를 제거한 후 Xylene을 감압농축 시키고 에틸아세테이트 270 mL으로 재결정하여 상기 구조의 화합물 5(7.61 g, 수율: 49%)를 제조하였다.
MS[M+H] += 729
제조예 6
Figure PCTKR2020018434-appb-img-000024
질소 분위기에서 500 mL 둥근 바닥 플라스크에 화합물 A(7.34 g, 20.79 mmol), 및 화합물 a6(11.09 g, 22.87 mmol)을 Xylene 240 mL에 완전히 녹인 후 NaOtBu(3.31 g, 34.45 mmol)을 첨가하고, Bis(tri- tert-butylphosphine) palladium(0)(0.21 g, 0.42 mmol)을 넣은 후 3시간 동안 가열 교반하였다. 상온으로 온도를 낮추고 filter하여 base를 제거한 후 Xylene을 감압농축 시키고 에틸아세테이트 240 mL으로 재결정하여 상기 구조의 화합물 6(8.62 g, 수율: 53%)를 제조하였다.
MS[M+H] += 779
제조예 7
Figure PCTKR2020018434-appb-img-000025
질소 분위기에서 500 mL 둥근 바닥 플라스크에 화합물 A(7.55 g, 21.39 mmol), 및 화합물 a7(9.69 g, 23.53 mmol)을 Xylene 230 mL에 완전히 녹인 후 NaOtBu(2.67 g, 27.80 mmol)을 첨가하고, Bis(tri- tert-butylphosphine) palladium(0)(0.22 g, 0.43 mmol)을 넣은 후 5시간 동안 가열 교반하였다. 상온으로 온도를 낮추고 filter하여 base를 제거한 후 Xylene을 감압농축 시키고 에틸아세테이트 250 mL으로 재결정하여 상기 구조의 화합물 7(9.11 g, 수율: 61%)를 제조하였다.
MS[M+H] += 703
제조예 8
Figure PCTKR2020018434-appb-img-000026
질소 분위기에서 500 mL 둥근 바닥 플라스크에 화합물 A(7.78 g, 14.34mmol), 및 화합물 a8(7.44 g, 16.49 mmol)을 Xylene 250 mL에 완전히 녹인 후 NaOtBu(2.07 g, 21.51 mmol)을 첨가하고, Bis(tri- tert-butylphosphine) palladium(0)(0.15 g, 0.29 mmol)을 넣은 후 5시간 동안 가열 교반하였다. 상온으로 온도를 낮추고 filter하여 base를 제거한 후 Xylene을 감압농축 시키고 에틸아세테이트 230 mL으로 재결정하여 상기 구조의 화합물 8(6.79 g, 수율: 58%)를 제조하였다.
MS[M+H] += 803
제조예 9
Figure PCTKR2020018434-appb-img-000027
질소 분위기에서 500 mL 둥근 바닥 플라스크에 화합물 A(7.62 g, 21.59mmol), 및 화합물 a9(12.11 g, 23.75 mmol)을 Xylene 230 mL에 완전히 녹인 후 NaOtBu(2.70 g, 28.06 mmol)을 첨가하고, Bis(tri- tert-butylphosphine) palladium(0)(0.22 g, 0.43 mmol)을 넣은 후 4시간 동안 가열 교반하였다. 상온으로 온도를 낮추고 filter하여 base를 제거한 후 Xylene을 감압농축 시키고 테트라하이드로퓨란 270 mL으로 재결정하여 상기 구조의 화합물 9(10.57 g, 수율: 61%)를 제조하였다.
MS[M+H] += 818
실시예 1
ITO(indium tin oxide)가 1,000Å의 두께로 박막 코팅된 유리 기판을 세제를 녹인 증류수에 넣고 초음파로 세척하였다. 이때, 세제로는 피셔사(Fischer Co.) 제품을 사용하였으며, 증류수로는 밀러포어사(Millipore Co.) 제품의 필터(Filter)로 2차로 걸러진 증류수를 사용하였다. ITO를 30분간 세척한 후 증류수로 2회 반복하여 초음파 세척을 10분간 진행하였다. 증류수 세척이 끝난 후, 이소프로필알콜, 아세톤, 메탄올의 용제로 초음파 세척을 하고 건조시킨 후 플라즈마 세정기로 수송시켰다. 또한, 산소 플라즈마를 이용하여 상기 기판을 5분간 세정한 후 진공 증착기로 기판을 수송시켰다.
이렇게 준비된 양극인 ITO 투명 전극 위에 하기 화합물 HI1 및 하기 화합물 HI2의 화합물을 98:2(몰비)의 비가 되도록 100Å의 두께로 열 진공 증착하여 정공주입층을 형성하였다. 상기 정공주입층 위에 하기 화합물 HT1 (1150Å)을 진공 증착하여 정공수송층을 형성하였다. 이어서, 상기 정공수송층 위에 막 두께 50Å으로 제조예 1의 화합물(1)을 진공 증착하여 전자억제층을 형성하였다. 이어서, 상기 전자억제층 위에 막 두께 200Å으로 하기 화합물 BH 및 하기 화합물 BD를 25:1의 중량비로 진공증착하여 발광층을 형성하였다. 상기 발광층 위에 막 두께 50Å으로 하기 화합물 HB1을 진공 증착하여 정공저지층을 형성하였다. 이어서, 상기 정공저지층 위에 하기 화합물 ET1과 하기 화합물 LiQ를 1:1의 중량비로 진공증착하여 310Å의 두께로 전자 주입 및 수송층을 형성하였다. 상기 전자 주입 및 수송층 위에 순차적으로 12Å두께로 리튬플로라이드(LiF)와 1,000Å 두께로 알루미늄을 증착하여 음극을 형성하였다.
Figure PCTKR2020018434-appb-img-000028
상기의 과정에서 유기물의 증착속도는 0.4~0.7Å/sec를 유지하였고, 음극의 리튬플로라이드는 0.3Å/sec, 알루미늄은 2Å/sec의 증착 속도를 유지하였으며, 증착시 진공도는 2×10 -7 ~ 5×10 -6 torr를 유지하여, 유기 발광 소자를 제작하였다.
실시예 2 내지 9
제조예 1의 화합물 1 대신 하기 표 1에 기재된 화합물을 사용하는 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 유기 발광 소자를 제조하였다.
비교예 1 내지 7
제조예 1의 화합물 대신 하기 표 1에 기재된 화합물을 사용하는 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 유기 발광 소자를 제조하였다. 하기 표 1에서 사용한 화합물 EB1, EB2, EB3, EB4, EB5, EB6, 및 EB7은 하기와 같다.
Figure PCTKR2020018434-appb-img-000029
실험예 1
상기 실시예 및 비교예에서 제조한 유기 발광 소자에 전류를 인가하였을 때, 전압, 효율, 색좌표 및 수명을 측정하고 그 결과를 하기 표 1에 나타내었다. T95은 휘도가 초기 휘도(1600 nit)에서 95%로 감소되는데 소요되는 시간을 의미한다.
화합물
(전자억제층)
전압
(V@10mA
/cm 2)
효율
(cd/A@10mA
/cm 2)
색좌표
(x,y)
T95
(hr)
실시예 1 제조예 1 4.43 6.71 (0.145, 0.045) 285
실시예 2 제조예 2 4.51 6.63 (0.144, 0.044) 270
실시예 3 제조예 3 4.55 6.64 (0.146, 0.045) 275
실시예 4 제조예 4 4.51 6.79 (0.145, 0.044) 270
실시예 5 제조예 5 4.46 6.69 (0.144, 0.044) 265
실시예 6 제조예 6 4.49 6.75 (0.146, 0.045) 275
실시예 7 제조예 7 4.67 6.51 (0.145, 0.044) 240
실시예 8 제조예 8 4.65 6.54 (0.146, 0.045) 245
실시예 9 제조예 9 4.61 6.53 (0.145, 0.046) 250
비교예 1 EB1 5.12 6.05 (0.145, 0.046) 125
비교예 2 EB2 4.86 5.87 (0.146, 0.044) 185
비교예 3 EB3 5.05 6.12 (0.144, 0.046) 105
비교예 4 EB4 4.94 5.98 (0.145, 0.047) 170
비교예 5 EB5 5.03 5.84 (0.144, 0.046) 145
비교예 6 EB6 4.81 6.18 (0.145, 0.047) 210
비교예 7 EB7 4.86 6.19 (0.144, 0.046) 205
상기 표 1에 나타난 바와 같이, 본 발명의 화합물을 전자억제층으로 사용한 실시예 1 내지 9의 유기 발광 소자는, 효율, 구동 전압 및 안정성 면에서 우수한 특성을 나타내었다. 구체적으로 실시예 1 내지 9의 유기 발광 소자는, 비페닐의 Ortho 위치에 디벤조티오펜이 직접 치환된 아민이 연결된 물질을 전자억제층으로 사용함으로써, 저전압, 고효율, 및 장수명의 특성을 나타내었다.
반면, 비페닐의 para 위치에 아민계 치환기가 연결된 화합물 EB1 및 EB3을 사용한 비교예 1 및 3의 유기 발광 소자는, 전압 상승, 효율 저하, 특히 안정성 면에서 실시예에 비해 열화된 특성을 나타내었다. 또, 카바졸이 비페닐의 Ortho 위치에 연결된 작용기를 2개 포함하는 화합물 EB2를 전자억제층으로 사용한 비교예 2, 비페닐기에 대한 카바졸의 결합 위치가 meta인 화합물 EB4을 전자억제층으로 사용한 비교예 4, 그리고 디벤조퓨라닐이 아미노기에 직접 결합되지 않고, 페닐렌 등의 연결기를 통해 결합된 화합물을 전자억제층으로 사용한 비교예 5, 그리고 화학식 1에서 Ar 위치에 비페닐을 포함하여 탄소수 조건을 충족하지 않는 화합물 EB6 및 EB7을 전자 억제층으로 사용한 비교예 6과 7의 유기 발광 소자 역시 실시예에 비해 효율, 구동 전압 및 안정성 면에서 열화된 특성을 나타내었다.
이상을 통해 본 발명의 바람직한 실시예(전자억제층)에 대하여 설명하였지만, 본 발명은 이에 한정되는 것이 아니고 특허청구범위와 발명의 상세한 설명의 범위 안에서 여러 가지로 변형하여 실시하는 것이 가능하고 이 또한 발명의 범주에 속한다.
[부호의 설명]
1: 기판 2: 양극
3: 유기물 층 4: 음극
5: 정공주입층 6: 정공수송층
7: 전자억제층 8: 발광층
9: 정공저지층 10: 전자 주입 및 수송층

Claims (11)

  1. 하기 화학식 1로 표시되는 화합물:
    [화학식 1]
    Figure PCTKR2020018434-appb-img-000030
    상기 화학식 1에서,
    Ar은 C 13-60 아릴이고, 상기 Ar은 비치환되거나, 또는 중수소, C 1-18 알킬, 또는 C 6-18 아릴로 하나 이상 치환되며,
    R 1 내지 R 4는 각각 독립적으로 수소; 중수소; 치환 또는 비치환된 C 1-60 알킬; 또는 치환 또는 비치환된 C 6-60 아릴이거나, 또는 인접한 두 기가 서로 결합하여 치환 또는 비치환된 방향족 고리 구조를 형성하며,
    R 5 내지 R 8는 각각 독립적으로, 수소; 중수소; 할로겐; 니트릴; 실릴; 치환 또는 비치환된 C 1-60 알킬; 치환 또는 비치환된 C 6-60 아릴; 치환 또는 비치환된 C 2-60 알케닐; 또는 치환 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상의 헤테로원자를 포함하는 C 2-60 헤테로아릴이고,
    m은 0 내지 3의 정수이고,
    n은 0 내지 8의 정수이며,
    p 및 q는 각각 독립적으로 0 내지 4의 정수이다.
  2. 제1항에 있어서,
    하기 화학식 1a 내지 1d 중 어느 하나로 표시되는,
    화합물:
    [화학식 1a]
    Figure PCTKR2020018434-appb-img-000031
    [화학식 1b]
    Figure PCTKR2020018434-appb-img-000032
    [화학식 1c]
    Figure PCTKR2020018434-appb-img-000033
    [화학식 1d]
    Figure PCTKR2020018434-appb-img-000034
    상기 화학식 1a 내지 1d에 있어서,
    Ar, R 1 내지 R 8, m, n, p, 및 q는 청구항 1에서 정의한 바와 같다.
  3. 제1항에 있어서,
    Ar은 터페닐, (페닐)나프틸, (나프틸)페닐, (나프틸)비페닐, (페닐나프틸)페닐, 디메틸플루오레닐, 디페닐플루오레닐, 트리페닐레닐, 페난트릴 또는 (페난트릴)페닐이고,
    상기 Ar은 비치환되거나, 또는 중수소, C 1-18 알킬, 또는 C 6-18 아릴로 하나 이상 치환된 것인,
    화합물.
  4. 제1항에 있어서,
    Ar은 하기 화학식들로 구성되는 군으로부터 선택되는 어느 하나인,
    화합물:
    Figure PCTKR2020018434-appb-img-000035
    Figure PCTKR2020018434-appb-img-000036
    상기 각 화학식에서,
    R 11은 동일하거나 상이하고, 각각 수소, 중수소, C 1-18 알킬, 또는 C 6-18 아릴이고,
    점선은 결합 위치를 나타낸다.
  5. 제1항에 있어서,
    R 1 내지 R 4는 모두 수소이거나, 또는 모두 중수소인,
    화합물.
  6. 제1항에 있어서,
    R 1 내지 R 4 중 하나는 페닐이고,
    나머지는 수소 또는 중수소인,
    화합물.
  7. 제1항에 있어서,
    R 1과 R 2, R 2와 R 3, 및 R 3과 R 4 중 어느 하나가 서로 결합하여 치환 또는 비치환된 페닐 구조를 형성하거나, 또는 R 1과 R 2, 및 R 3과 R 4의 두 개가 각각 서로 결합하여 치환 또는 비치환된 페닐 구조를 형성하고,
    나머지는 모두 수소인,
    화합물.
  8. 제1항에 있어서,
    R 5 내지 R 8은 모두 수소이거나, 또는 모두 중수소인,
    화합물.
  9. 제1항에 있어서,
    상기 화학식 1로 표시되는 화합물은 하기로 구성되는 군으로부터 선택되는 어느 하나인,
    화합물:
    Figure PCTKR2020018434-appb-img-000037
    Figure PCTKR2020018434-appb-img-000038
    Figure PCTKR2020018434-appb-img-000039
    Figure PCTKR2020018434-appb-img-000040
    .
  10. 제1 전극; 상기 제1 전극과 대향하여 구비된 제2 전극; 및 상기 제1 전극과 상기 제2 전극 사이에 구비된 1층 이상의 유기물 층을 포함하는 유기 발광 소자로서, 상기 유기물 층 중 1층 이상은 제1항 내지 제9항 중 어느 하나의 항에 따른 화합물을 포함하는 것인, 유기 발광 소자.
  11. 제10항에 있어서,
    상기 유기물 층이 전자 억제층인,
    유기 발광 소자.
PCT/KR2020/018434 2020-02-13 2020-12-16 신규한 화합물 및 이를 이용한 유기 발광 소자 WO2021162227A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202080077208.7A CN114728947B (zh) 2020-02-13 2020-12-16 化合物及利用其的有机发光器件

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2020-0017590 2020-02-13
KR20200017590 2020-02-13
KR10-2020-0175628 2020-12-15
KR1020200175628A KR102465242B1 (ko) 2020-02-13 2020-12-15 신규한 화합물 및 이를 이용한 유기 발광 소자

Publications (1)

Publication Number Publication Date
WO2021162227A1 true WO2021162227A1 (ko) 2021-08-19

Family

ID=77291616

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/018434 WO2021162227A1 (ko) 2020-02-13 2020-12-16 신규한 화합물 및 이를 이용한 유기 발광 소자

Country Status (2)

Country Link
CN (1) CN114728947B (ko)
WO (1) WO2021162227A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116535345B (zh) * 2023-01-10 2024-03-22 江苏三月科技股份有限公司 一种芳香族胺类化合物及包含其的有机电致发光器件

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014030921A1 (en) * 2012-08-21 2014-02-27 Rohm And Haas Electronic Materials Korea Ltd. Novel organic electroluminescence compounds and organic electroluminescence device containing the same
KR20160054855A (ko) * 2014-11-07 2016-05-17 덕산네오룩스 주식회사 유기전기소자용 조성물을 이용한 디스플레이 장치 및 유기전기소자
KR20170136842A (ko) * 2016-06-02 2017-12-12 주식회사 엘지화학 화합물 및 이를 포함하는 유기 전자 소자
KR20180098130A (ko) * 2017-02-24 2018-09-03 주식회사 엘지화학 신규한 화합물 및 이를 이용한 유기발광 소자
WO2018164201A1 (ja) * 2017-03-08 2018-09-13 出光興産株式会社 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、及び電子機器
WO2020111253A1 (ja) * 2018-11-30 2020-06-04 出光興産株式会社 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、及び、電子機器

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102329806B1 (ko) * 2014-11-04 2021-11-22 덕산네오룩스 주식회사 유기전기소자용 조성물을 이용한 디스플레이 장치 및 유기전기소자
CN109096268A (zh) * 2018-09-11 2018-12-28 长春海谱润斯科技有限公司 一种有机电致发光化合物及其有机电致发光器件

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014030921A1 (en) * 2012-08-21 2014-02-27 Rohm And Haas Electronic Materials Korea Ltd. Novel organic electroluminescence compounds and organic electroluminescence device containing the same
KR20160054855A (ko) * 2014-11-07 2016-05-17 덕산네오룩스 주식회사 유기전기소자용 조성물을 이용한 디스플레이 장치 및 유기전기소자
KR20170136842A (ko) * 2016-06-02 2017-12-12 주식회사 엘지화학 화합물 및 이를 포함하는 유기 전자 소자
KR20180098130A (ko) * 2017-02-24 2018-09-03 주식회사 엘지화학 신규한 화합물 및 이를 이용한 유기발광 소자
WO2018164201A1 (ja) * 2017-03-08 2018-09-13 出光興産株式会社 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、及び電子機器
WO2020111253A1 (ja) * 2018-11-30 2020-06-04 出光興産株式会社 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、及び、電子機器

Also Published As

Publication number Publication date
CN114728947A (zh) 2022-07-08
CN114728947B (zh) 2024-09-06

Similar Documents

Publication Publication Date Title
WO2019164331A1 (ko) 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
WO2020046049A1 (ko) 신규한 화합물 및 이를 이용한 유기발광 소자
WO2021080368A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2019164301A1 (ko) 화합물 및 이를 포함하는 유기 발광 소자
WO2017061832A1 (ko) 신규 화합물 및 이를 포함하는 유기 발광 소자
WO2017061779A1 (ko) 아민 화합물 및 이를 포함하는 유기 발광 소자
WO2019160315A1 (ko) 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
WO2021091173A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2021066351A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2024010336A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2021045347A1 (ko) 신규한 화합물 및 이를 포함하는 유기발광 소자
WO2020185038A1 (ko) 신규한 화합물 및 이를 이용한 유기발광 소자
WO2020111780A1 (ko) 신규한 화합물 및 이를 포함하는 유기발광 소자
WO2020111586A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2020080729A1 (ko) 신규한 헤테로 고리 화합물 및 이를 이용한 유기발광 소자
WO2019168378A1 (ko) 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
WO2021162227A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2021210774A1 (ko) 신규한 화합물 및 이를 포함하는 유기발광 소자
WO2022060047A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2022031028A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2021066350A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2021029715A1 (ko) 신규한 화합물 및 이를 포함하는 유기발광 소자
WO2020149656A1 (ko) 신규한 화합물 및 이를 이용한 유기발광 소자
WO2020185054A9 (ko) 신규한 화합물 및 이를 이용한 유기발광 소자
WO2020130327A1 (ko) 신규한 화합물 및 이를 이용한 유기발광 소자

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20918923

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20918923

Country of ref document: EP

Kind code of ref document: A1