WO2023214552A1 - トリフルオロメタンスルホニル化剤組成物、及び、トリフルオロメタンスルホニルオキシ化合物またはトリフルオロメタンスルホニル化合物の製造方法 - Google Patents

トリフルオロメタンスルホニル化剤組成物、及び、トリフルオロメタンスルホニルオキシ化合物またはトリフルオロメタンスルホニル化合物の製造方法 Download PDF

Info

Publication number
WO2023214552A1
WO2023214552A1 PCT/JP2023/016923 JP2023016923W WO2023214552A1 WO 2023214552 A1 WO2023214552 A1 WO 2023214552A1 JP 2023016923 W JP2023016923 W JP 2023016923W WO 2023214552 A1 WO2023214552 A1 WO 2023214552A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
reaction
general formula
mmol
Prior art date
Application number
PCT/JP2023/016923
Other languages
English (en)
French (fr)
Inventor
廉 富田
純基 新田
たか子 山崎
Original Assignee
セントラル硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by セントラル硝子株式会社 filed Critical セントラル硝子株式会社
Publication of WO2023214552A1 publication Critical patent/WO2023214552A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C303/00Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides
    • C07C303/26Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides of esters of sulfonic acids
    • C07C303/28Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides of esters of sulfonic acids by reaction of hydroxy compounds with sulfonic acids or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C303/00Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides
    • C07C303/36Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides of amides of sulfonic acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C309/00Sulfonic acids; Halides, esters, or anhydrides thereof
    • C07C309/63Esters of sulfonic acids
    • C07C309/64Esters of sulfonic acids having sulfur atoms of esterified sulfo groups bound to acyclic carbon atoms
    • C07C309/65Esters of sulfonic acids having sulfur atoms of esterified sulfo groups bound to acyclic carbon atoms of a saturated carbon skeleton
    • C07C309/66Methanesulfonates
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C311/00Amides of sulfonic acids, i.e. compounds having singly-bound oxygen atoms of sulfo groups replaced by nitrogen atoms, not being part of nitro or nitroso groups
    • C07C311/01Sulfonamides having sulfur atoms of sulfonamide groups bound to acyclic carbon atoms
    • C07C311/02Sulfonamides having sulfur atoms of sulfonamide groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton
    • C07C311/08Sulfonamides having sulfur atoms of sulfonamide groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton having the nitrogen atom of at least one of the sulfonamide groups bound to a carbon atom of a six-membered aromatic ring

Definitions

  • the present disclosure relates to a trifluoromethanesulfonylating agent composition capable of trifluoromethanesulfonylating a substrate containing a functional group such as a phenolic hydroxyl group, and a method for producing a trifluoromethanesulfonyloxy compound or a trifluoromethanesulfonyl compound using the composition.
  • Trifluoromethanesulfonylation of substrates having various functional groups is performed. Trifluoromethanesulfonylation of phenolic hydroxyl groups is an important reaction in the synthesis of drug substances or intermediates for pharmaceuticals.
  • Patent Document 1 a method in which a substrate having a phenolic hydroxyl group is reacted with trifluoromethanesulfonic anhydride
  • Patent Document 2 a method in which a substrate having a phenolic hydroxyl group is reacted with trifluoromethanesulfonyl fluoride method
  • Patent Document 3 method of reacting a substrate having a phenolic hydroxyl group with trifluoromethanesulfonyl chloride
  • Patent Document 4 A method of reacting a substrate having a phenolic hydroxyl group with 5-chloro-2-pyridyl triflimide
  • Patent Document 5 a method of reacting a substrate having a phenolic hydroxyl group with 4-nitrophenyltrifluoromethanesulfon
  • Non-Patent Document 6 describes a method of reacting a metalloenolate and N-2-pyridyl triflimide, or a method of reacting a metalloenolate and N-5-chloro-2-pyridyl triflimide.
  • Non-Patent Documents 7 and 8 describe a method of reacting a ketone with trifluoromethanesulfonic anhydride.
  • An object of the present disclosure is to provide a trifluoromethanesulfonylating agent composition that can trifluoromethanesulfonylate a substrate having a functional group such as a phenolic hydroxyl group.
  • Another object of the present invention is to provide an efficient and industrially practicable method for producing a trifluoromethanesulfonyloxy compound or a trifluoromethanesulfonyl compound.
  • a trifluoromethanesulfonyloxy compound can be isolated from the reaction solution after the trifluoromethanesulfonylation reaction using only general post-treatment operations, and that a trifluoromethanesulfonyloxy compound or a trifluoromethanesulfonyl compound can be efficiently obtained. .
  • [1] Contains a compound represented by the following general formula (1) or (11), Trifluoromethanesulfonylating agent composition.
  • R 1 is a hydrogen atom, a linear alkyl group having 1 to 6 carbon atoms, or a branched alkyl group having 3 to 6 carbon atoms
  • R 2 is a hydrogen atom, a linear aliphatic hydrocarbon group having 1 to 6 carbon atoms, a branched aliphatic hydrocarbon group having 3 to 6 carbon atoms, a nitro group, an aromatic group having 6 to 14 carbon atoms
  • X is a nitrogen atom or C(R 3 )
  • Y is a nitrogen atom or C(R 4 )
  • R 3 is a hydrogen atom, a linear aliphatic hydrocarbon group having 1 to 6 carbon atoms, a branched aliphatic hydrocarbon group having 3 to 6 carbon atoms, or an aromatic hydrocarbon group having 6 to 14 carbon atoms;
  • R 3 is a hydrogen atom, a linear aliphatic hydrocarbon group having 1
  • R 2 When a plurality of R 2 exists, R 2 may be the same or different, and when a plurality of R 3 exists, R 3 may be the same or different.
  • R 5 is a hydrogen atom, a linear alkyl group having 1 to 6 carbon atoms, or a branched alkyl group having 3 to 6 carbon atoms, Z - is an anion.
  • a compound represented by the general formula (1) Any base selected from the group consisting of an aliphatic organic base, a heterocyclic group-containing organic base, and an inorganic base, The trifluoromethanesulfonylating agent composition according to [1].
  • organic base is selected from the group of secondary amines, tertiary amines, alkoxides, and organic bases having a nitrogen atom and a heterocyclic group having 4 or more carbon atoms.
  • the base is sodium carbonate, potassium carbonate, sodium bicarbonate, potassium bicarbonate, lithium methoxide, lithium ethoxide, lithium tert-butoxide, sodium methoxide, sodium ethoxide, sodium tert-butoxide, potassium methoxide, potassium ethoxy.
  • trifluoromethanesulfonylating agent composition according to any one of [2] to [5], which is selected from the group consisting of nonene.
  • Ar represents an aromatic ring group or a substituted aromatic ring group.
  • Ar represents a substituted aromatic ring group
  • the substituent of the substituted aromatic ring group is a lower alkyl group, a lower alkoxycarbonyl lower alkyl group, a ⁇ -D-glucopyranoside group, an amino group, a lower
  • R 11 , R 12 , and R 15 are a hydrogen atom, a linear alkyl group having 1 to 6 carbon atoms, or a branched alkyl group having 3 to 6 carbon atoms.
  • Xa is a nitrogen atom or C(R 13 )
  • R 13 is a hydrogen atom, a linear alkyl group having 1 to 6 carbon atoms, or a branched alkyl group having 3 to 6 carbon atoms
  • R 12 and R 13 may be combined to form a ring.
  • Z - is an anion.
  • a trifluoromethanesulfonylating agent composition that can trifluoromethanesulfonylate a substrate having a functional group such as a phenolic hydroxyl group. Furthermore, it is possible to provide an industrially practicable and efficient method for producing a trifluoromethanesulfonyloxy compound or a trifluoromethanesulfonyl compound using the above trifluoromethanesulfonylating agent composition.
  • Trifluoromethanesulfonylating agent composition contains a compound represented by the following general formula (1) or (11) as a trifluoromethanesulfonylating agent.
  • R 1 is a hydrogen atom, a linear alkyl group having 1 to 6 carbon atoms, or a branched alkyl group having 3 to 6 carbon atoms
  • R 2 is a hydrogen atom, a linear aliphatic hydrocarbon group having 1 to 6 carbon atoms, a branched aliphatic hydrocarbon group having 3 to 6 carbon atoms, a nitro group, an aromatic group having 6 to 14 carbon atoms
  • X is a nitrogen atom or C(R 3 )
  • Y is a nitrogen atom or C(R 4 )
  • R 3 is a hydrogen atom, a linear aliphatic hydrocarbon group having 1 to 6 carbon atoms, a branched aliphatic hydrocarbon group having 3 to 6 carbon atoms, or an aromatic hydrocarbon group having 6 to 14 carbon atoms
  • R 4 is a hydrogen atom, a linear aliphatic hydrocarbon group having 1 to
  • R 2 When a plurality of R 2 exists, R 2 may be the same or different, and when a plurality of R 3 exists, R 3 may be the same or different.
  • R 5 is a hydrogen atom, a linear alkyl group having 1 to 6 carbon atoms, or a branched alkyl group having 3 to 6 carbon atoms, Z - is an anion.
  • R 1 represents a hydrogen atom, a linear alkyl group having 1 to 6 carbon atoms, or a branched alkyl group having 3 to 6 carbon atoms.
  • Examples of the linear alkyl group having 1 to 6 carbon atoms include methyl group, ethyl group, n-propyl group, n-butyl group, n-pentyl group, n-hexyl group, and the like.
  • Examples of the branched alkyl group having 3 to 6 carbon atoms include isopropyl group, isobutyl group, sec-butyl group, and tert-butyl group.
  • R 1 is preferably a hydrogen atom, a methyl group, an ethyl group, an n-propyl group, or an isopropyl group because of ease of synthesis.
  • R 2 is a hydrogen atom, a linear aliphatic hydrocarbon group having 1 to 6 carbon atoms, a branched aliphatic hydrocarbon group having 3 to 6 carbon atoms, Represents a nitro group, an aromatic hydrocarbon group having 6 to 14 carbon atoms, or an aromatic heterocyclic group having 6 to 14 carbon atoms.
  • each R 2 may be the same or different.
  • Examples of the linear aliphatic hydrocarbon group having 1 to 6 carbon atoms include a linear alkyl group having 1 to 6 carbon atoms, a linear alkenyl group having 2 to 6 carbon atoms, and a linear alkenyl group having 2 to 6 carbon atoms.
  • Examples include straight-chain alkynyl groups.
  • Examples of the straight-chain alkyl group having 1 to 6 carbon atoms include those described for the straight-chain alkyl group having 1 to 6 carbon atoms as R 1 .
  • R 2 is preferably a hydrogen atom, a linear alkyl group having 1 to 6 carbon atoms, a branched alkyl group having 3 to 6 carbon atoms, or a nitro group; A linear alkyl group or a branched alkyl group having 3 to 6 carbon atoms is preferable.
  • R 2 is preferably a hydrogen atom, methyl group, ethyl group, n-propyl group, isopropyl group, or nitro group, and is a hydrogen atom, methyl group, ethyl group, n-propyl group, or isopropyl group. is more preferable.
  • X is a nitrogen atom or C(R 3 )
  • Y is a nitrogen atom or C(R 4 ).
  • R 3 is a hydrogen atom, a linear aliphatic hydrocarbon group having 1 to 6 carbon atoms, a branched aliphatic hydrocarbon group having 3 to 6 carbon atoms, or an aromatic hydrocarbon group having 6 to 14 carbon atoms; , or represents an aromatic heterocyclic group having 6 to 14 carbon atoms.
  • each R 3 may be the same or different.
  • Straight chain aliphatic hydrocarbon group having 1 to 6 carbon atoms straight chain aliphatic hydrocarbon group having 1 to 6 carbon atoms, branched aliphatic hydrocarbon group having 3 to 6 carbon atoms, aromatic hydrocarbon group having 6 to 14 carbon atoms, and 6 to 14 carbon atoms
  • aromatic heterocyclic group as R 2 include a linear aliphatic hydrocarbon group having 1 to 6 carbon atoms, a branched aliphatic hydrocarbon group having 3 to 6 carbon atoms, and a branched aliphatic hydrocarbon group having 6 to 14 carbon atoms.
  • Examples include aromatic hydrocarbon groups and aromatic heterocyclic groups having 6 to 14 carbon atoms.
  • R 3 is preferably a hydrogen atom, a linear alkyl group having 1 to 6 carbon atoms, or a branched alkyl group having 3 to 6 carbon atoms, and is preferably a hydrogen atom, a methyl group, an ethyl group, or an n- More preferably, it is a propyl group or an isopropyl group.
  • R 4 is a hydrogen atom, a linear aliphatic hydrocarbon group having 1 to 6 carbon atoms, a branched aliphatic hydrocarbon group having 3 to 6 carbon atoms, or an aromatic hydrocarbon group having 6 to 14 carbon atoms; , or represents an aromatic heterocyclic group having 6 to 14 carbon atoms.
  • each R 4 may be the same or different.
  • Straight chain aliphatic hydrocarbon group having 1 to 6 carbon atoms straight chain aliphatic hydrocarbon group having 1 to 6 carbon atoms, branched aliphatic hydrocarbon group having 3 to 6 carbon atoms, aromatic hydrocarbon group having 6 to 14 carbon atoms, and 6 to 14 carbon atoms
  • aromatic heterocyclic group as R 2 include a linear aliphatic hydrocarbon group having 1 to 6 carbon atoms, a branched aliphatic hydrocarbon group having 3 to 6 carbon atoms, and a branched aliphatic hydrocarbon group having 6 to 14 carbon atoms.
  • Examples include aromatic hydrocarbon groups and aromatic heterocyclic groups having 6 to 14 carbon atoms.
  • R 4 is preferably a hydrogen atom, a linear alkyl group having 1 to 6 carbon atoms, or a branched alkyl group having 3 to 6 carbon atoms, such as a hydrogen atom, a methyl group, an ethyl group, or an n- More preferably, it is a propyl group or an isopropyl group.
  • n is an integer from 1 to 3. It is preferable that n is 1.
  • R 5 is preferably bonded to X or Y, more preferably bonded to Y. In one preferred embodiment, R 5 combines with the nitrogen atom in X to form a cation moiety. Furthermore, in a preferred embodiment, R 5 combines with the nitrogen atom in Y to form a cation moiety.
  • Z - represents an anion.
  • Z - is preferably an anion of a strong acid or a super strong acid, such as a tetrafluoroborate anion, a hexafluorophosphate anion, a hexafluoroantimonate anion, a fluorosulfonate anion, a trifluoroacetate anion, a trifluoromethanesulfonate anion, or a fluoromethanesulfone.
  • a strong acid or a super strong acid such as a tetrafluoroborate anion, a hexafluorophosphate anion, a hexafluoroantimonate anion, a fluorosulfonate anion, a trifluoroacetate anion, a trifluoromethanesulfonate anion, or a fluoromethanesulfone.
  • the compound represented by the above general formula (11) is preferably a compound represented by the following general formula (11a).
  • the linear alkyl group having 1 to 6 carbon atoms and the branched alkyl group having 3 to 6 carbon atoms as R 11 , R 12 and R 15 include R 1 and R in the general formula (11). Examples of straight-chain alkyl groups having 1 to 6 carbon atoms and branched alkyl groups having 3 to 6 carbon atoms as R 5 and R 5 are mentioned.
  • Xa is a nitrogen atom or C(R 13 ), preferably C(R 13 ).
  • the linear alkyl group having 1 to 6 carbon atoms as R 13 and the branched alkyl group having 1 to 6 carbon atoms as R 3 in general formula (11) are Examples include chain alkyl groups and branched alkyl groups having 3 to 6 carbon atoms.
  • Z - in general formula (11a) has the same meaning as Z - in general formula (11), and preferred examples are also the same.
  • a substrate having a phenolic hydroxyl group etc. can be trifluoromethanesulfonylated.
  • a compound represented by the above general formula (1) and a compound selected from the group consisting of an aliphatic organic base, a heterocyclic group-containing organic base, and an inorganic base are preferred embodiments of the present disclosure.
  • a trifluoromethanesulfonylating agent composition comprising any one of the following bases.
  • a trifluoromethanesulfonylating agent composition (hereinafter also referred to as a first trifluoromethanesulfonylating agent composition or simply a first composition) containing a compound represented by general formula (1) and a specific base.
  • a compound represented by general formula (1) and a specific base.
  • the trifluoromethanesulfonyloxy compound can be isolated from the reaction solution after the trifluoromethanesulfonylation reaction by only general post-treatment operations, and the trifluoromethanesulfonyloxy compound can be obtained industrially and efficiently.
  • the trifluoromethanesulfonylating agent selectively reacts with respect to phenolic hydroxyl groups means that the trifluoromethanesulfonylation reaction proceeds preferentially with respect to phenolic hydroxyl groups.
  • the content of the compound represented by general formula (1) is preferably 80% or more, more preferably 90% or more, based on the total mass of the first composition.
  • the inorganic base is preferably a base selected from the group consisting of sodium salts and potassium salts, such as sodium carbonate, potassium carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate, and the like. Further, hydrides of alkali metals are also preferable, and examples thereof include sodium hydride, potassium hydride, and the like.
  • Bases include sodium carbonate, potassium carbonate, sodium bicarbonate, potassium bicarbonate, lithium methoxide, lithium ethoxide, lithium tert-butoxide, sodium methoxide, sodium ethoxide, sodium tert-butoxide, potassium methoxide, potassium ethoxide. , potassium tert-butoxide, triethylamine, tri-n-propylamine, tributylamine, diisopropylethylamine, N,N-diethylcyclohexylamine, 1,8-diazabicyclo[5.4.0]undecene, and 1,5-diazabicyclo[4 .3.0] nonene is preferable.
  • sodium carbonate, potassium carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate, sodium tert-butoxide, or potassium tert-butoxide is preferred, and potassium carbonate, potassium hydrogen carbonate, or potassium tert-butoxide is particularly preferred.
  • sodium carbonate, potassium carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate, sodium tert-butoxide, or potassium tert-butoxide is preferred, and potassium carbonate, potassium hydrogen carbonate, or potassium tert-butoxide is particularly preferred.
  • These bases can be used alone or in combination.
  • the amount of the base to be used is not particularly limited, but it is usually preferably 0.01 to 20 mol, particularly preferably 0.05 to 5 mol, per 1 mol of the trifluoromethanesulfonyl compound to be described below.
  • the first composition of the present disclosure may further contain a solvent.
  • the solvent is not particularly limited as long as it dissolves the compound represented by the general formula (1) and the base, and examples include the reaction solvent for trifluoromethanesulfonylation described below. Note that the first composition of the present disclosure may or may not contain a solvent.
  • a method for producing a trifluoromethanesulfonyloxy compound using the first composition of the present disclosure is to convert the first trifluoromethanesulfonylating agent composition described above to the following general formula ( 2) includes a step of reacting with the compound represented by 2).
  • Ar represents an aromatic ring group or a substituted aromatic ring group.
  • Ar of the aromatic ring hydroxyl compound represented by the general formula (2) represents an aromatic ring group or a substituted aromatic ring group.
  • the aromatic ring group is not particularly limited, but may be monocyclic or polycyclic, preferably having 1 to 18 carbon atoms, such as aromatic ring groups such as phenyl group, naphthyl group, and anthryl group.
  • Ar represents an aromatic ring group, and the aromatic ring group is preferably an aromatic heterocyclic group.
  • the substituted aromatic ring group has any number of substituents and any combination of substituents on any carbon atom or nitrogen atom of the aromatic ring group.
  • substituents include halogen atoms such as fluorine, chlorine, bromine, and iodine, lower alkyl groups such as methyl, ethyl, and propyl groups, lower unsaturated groups such as vinyl, allyl, and propargyl, fluoromethyl, and chloro.
  • Lower haloalkyl groups such as methyl and bromomethyl groups, C(CF 3 ) 2 OH groups (including protected hydroxyl groups), lower alkoxy groups such as methoxy, ethoxy and propoxy groups, fluoromethoxy groups, chloromethoxy groups, and Lower haloalkoxy groups such as bromomethoxy groups, lower acyloxy groups such as formyloxy groups, acetyloxy groups, propionyloxy groups and butyryloxy groups, lower alkoxycarbonyl groups such as cyano groups, methoxycarbonyl groups, ethoxycarbonyl groups and propoxycarbonyl groups.
  • lower alkoxycarbonyl lower alkyl groups such as methoxycarbonylmethyl group, ethoxycarbonylethyl group and propoxycarbonylpropyl group, ⁇ -D-glucopyranoside group, phenyl group, naphthyl group, anthryl group, pyrrolyl group (including nitrogen-protected group), Aromatic ring groups such as pyridyl group, furyl group, thienyl group, indolyl group (including nitrogen protected groups), quinolyl group, benzofuryl group and benzothienyl group, protected forms of carboxyl groups, amino groups, protected forms of amino groups, lower These include an alkylamino group, a lower alkylamino lower alkyl group, a hydroxyl group, a protected form of a hydroxyl group, and an X'-Ar'-OH group. These substituents may be further substituted, for example, they may be further substituted by the substituents in "such substituents in
  • Ar represents a substituted aromatic ring group
  • the substituent of the substituted aromatic ring group is a lower alkyl group, a lower alkoxycarbonyl lower alkyl group, a ⁇ -D-glucopyranoside group, an amino group, a lower
  • it is an alkylamino group or a hydroxyl group.
  • X' of the X'-Ar'-OH group is a C(CH 3 ) 2 group, a C(CF 3 ) 2 group, an oxygen atom, a nitrogen atom (including a nitrogen protector), a sulfur atom, an SO group, or an SO 2 Ar' represents a phenylene group or a substituted phenylene group.
  • the substitution position of the phenylene group is the 2nd, 3rd or 4th position with respect to the hydroxyl group.
  • the substituents of the substituted phenylene group are the same as the substituents of the substituted aromatic ring group.
  • Specific examples of the aromatic hydroxyl compound represented by the general formula (2) substituted with an X'-Ar'-OH group include the following compounds.
  • the term “lower” refers to a linear or branched chain or cyclic compound having 1 to 6 carbon atoms (if the number of carbon atoms is 3 or more).
  • the aromatic ring group in the above-mentioned "such substituent” includes a halogen atom, a lower alkyl group, a lower unsaturated group, a lower haloalkyl group, a C(CF 3 ) 2 OH group (including a protected hydroxyl group), Lower alkoxy group, lower haloalkoxy group, formyloxy group, lower acyloxy group, cyano group, lower alkoxycarbonyl group, lower alkoxycarbonyl lower alkyl group, protected form of carboxyl group, protected form of amino group, hydroxyl group, hydroxyl group Protective bodies, X'-Ar'-OH groups, etc.
  • aromatic ring groups and substituted aromatic ring groups excluding "hydroxyl group”, “aromatic ring group” and “X'-Ar'-OH group” are preferable as substituents, aromatic hydrocarbon groups and substituted aromatic ring groups as substituents Particularly preferred are substituted aromatic hydrocarbon groups (aromatic hydrocarbon groups having substituents) excluding "hydroxyl group", “aromatic ring group” and "X'-Ar'-OH group”.
  • aromatic ring hydroxyl compounds having multiple hydroxyl groups multiple fluorosulfonylations may proceed depending on the reaction conditions employed.
  • One preferred embodiment includes an embodiment in which the aromatic ring hydroxyl compound represented by the above general formula (2) has at least one selected from an alcoholic hydroxyl group and an amino group as a substituent. These substituents may be further substituted, for example, they may be further substituted by the substituents in "such substituents" above.
  • the aromatic hydroxyl compound represented by the above general formula (2) is used in an amount of 0.7 mol to 1.0 mol per 1.0 mol of the trifluoromethanesulfonyl compound represented by the above general formula (1). It is preferable to use 2 mol. More preferably 0.8 mol to 1.0 mol.
  • reaction solvents for trifluoromethanesulfonylation include ether solvents, aliphatic hydrocarbon solvents, aromatic hydrocarbon solvents, halogenated hydrocarbon solvents, ester solvents, amide solvents, nitrile solvents, and sulfoxide solvents. etc.
  • reaction solvents include diethyl ether, diisopropyl ether, dibutyl ether, tert-butyl methyl ether, tetrahydrofuran, 2-methyltetrahydrofuran, tetrahydropyran, 1,4-dioxane, and cyclopentyl methyl ether. etc. can be exemplified.
  • aliphatic hydrocarbon solvents include n-hexane, n-heptane, n-pentane, n-nonane, and n-decane.
  • aromatic hydrocarbon solvents include toluene, xylene, mesitylene, and ethylbenzene.
  • halogenated hydrocarbon solvent examples include methylene chloride, chloroform, and 1,2-dichloroethane.
  • ester solvents include ethyl acetate, isopropyl acetate, n-butyl acetate, and ⁇ -butyrolactone.
  • amide solvent examples include N,N-dimethylformamide, N,N-dimethylacetamide, N-methylpyrrolidone, and 1,3-dimethyl-2-imidazolidinone.
  • nitrile solvents examples include acetonitrile, propionitrile, benzonitrile, and the like.
  • sulfoxide solvent examples include dimethyl sulfoxide and the like.
  • reaction solvents can be used alone or in combination.
  • reaction temperature The reaction temperature for trifluoromethanesulfonylation is not particularly limited, but it is preferably carried out at a reaction temperature of 150°C or lower, more preferably in the range of -100 to 150°C, and even more preferably -78 to 100°C.
  • reaction time There is no particular restriction on the reaction time for trifluoromethanesulfonylation, but it can be carried out in the range of 0.1 to 72 hours, and it varies depending on the raw materials and reaction conditions, so analytical means such as gas chromatography, liquid chromatography, NMR, etc. It is preferable to monitor the progress of the reaction and determine the end point when most of the raw materials have disappeared.
  • the post-treatment operation for isolating the trifluoromethanesulfonyloxy compound may be carried out by a general operation in organic synthesis.
  • the organic solvent for post-treatment include ether solvents, aliphatic hydrocarbon solvents, aromatic hydrocarbon solvents, halogenated hydrocarbon solvents, and ester solvents.
  • organic solvents for post-treatment include diethyl ether, diisopropyl ether, dibutyl ether, tert-butyl methyl ether, tetrahydrofuran, 2-methyltetrahydrofuran, tetrahydropyran, cyclopentyl methyl ether, n-hexane, n-heptane, n- Examples include pentane, n-nonane, n-decane, toluene, xylene, mesitylene, ethylbenzene, methylene chloride, chloroform, 1,2-dichloroethane, ethyl acetate, and n-butyl acetate.
  • ethyl acetate especially ethyl acetate.
  • the amount of the solvent used in the post-treatment may be used at least 0.05 L (liter) per mole of the trifluoromethanesulfonyl compound to be treated, and usually 0.1 to 20 L is preferable, particularly 0. .1 to 10 L is more preferable.
  • mineral acids for post-treatment include hydrochloric acid, hydrobromic acid, sulfuric acid, phosphoric acid, and nitric acid. Among them, hydrochloric acid and sulfuric acid are preferred, and hydrochloric acid is particularly preferred.
  • alkali metal salt for post-treatment include sodium hydrogen carbonate, potassium hydrogen carbonate, sodium carbonate, sodium hydroxide, potassium hydroxide, and potassium carbonate.
  • the obtained trifluoromethanesulfonyloxy compound can be appropriately and preferably used, for example, in coupling reactions using transition metals.
  • the trifluoromethanesulfonyloxy compound obtained by the first production method of the present disclosure can be isolated from the reaction solution after the reaction is completed with only a simple post-treatment operation, and therefore it is industrially suitable. It is possible to carry out the method, and as a result, the coupling reaction product can be produced much more efficiently than conventional methods.
  • Another preferred embodiment of the present disclosure includes a trifluoromethanesulfonylating agent composition containing the compound represented by the above-mentioned general formula (11).
  • a trifluoromethanesulfonylating agent composition (hereinafter also referred to as a second trifluoromethanesulfonylating agent composition or simply a second composition) containing a compound represented by general formula (11) is used to convert phenolic hydroxyl groups into It is possible to trifluoromethanesulfonylate not only the substrates possessed by the present invention but also a wide range of substrates, and trifluoromethanesulfonyl compounds derived from these substrates can be easily provided under industrially viable conditions.
  • the second composition of the present disclosure may further include a base.
  • the base include bases that can be used in the trifluoromethanesulfonylation described below. Note that the second composition of the present disclosure may or may not contain a base.
  • the amount of the base to be used is not particularly limited, but it is usually preferably 0.01 to 20 mol, particularly preferably 0.05 to 5 mol, per 1 mol of the trifluoromethanesulfonyl compound to be described below.
  • the second composition of the present disclosure may further contain a solvent.
  • the solvent is not particularly limited as long as it dissolves the compound represented by the above general formula (11) and, if the second composition contains a base, the above-mentioned base, but for example, trifluoromethane described below. Mention may be made of reaction solvents for sulfonylation. Note that the second composition of the present disclosure may or may not contain a solvent.
  • a method for producing a trifluoromethanesulfonyl compound using the second composition of the present disclosure is a method for producing a trifluoromethanesulfonyl compound using the second trifluoromethanesulfonylating agent composition described above. It includes a step of reacting with a compound.
  • Trifluoromethanesulfonyl compound Compounds to be trifluoromethanesulfonylated with the second trifluoromethanesulfonylating agent composition (hereinafter also referred to as trifluoromethanesulfonyl compounds) include compounds having a phenolic hydroxyl group, compounds having an alcoholic hydroxyl group, and ketones.
  • the substrate is preferably at least one selected from the group consisting of , primary amines, and secondary amines.
  • Examples of the compound having a phenolic hydroxyl group include aromatic hydroxyl compounds represented by the above-mentioned general formula (2).
  • Examples of compounds having alcoholic hydroxyl groups include alkyl alcohols having 1 to 20 carbon atoms, methyl lactate, phenylethyl alcohol, and tetraacetyl- ⁇ -D-mannose.
  • ketone examples include ethyl acetoacetate, acetylacetone, cyclohexanone, 1,3-cyclohexanedione, and ethyl 2-oxocyclohexanecarboxylate.
  • Examples of primary amines include alkylamines having 1 to 20 carbon atoms, aniline, 1-phenylethylamine, and ⁇ -amino acids.
  • Examples of the secondary amine include alkylamines having 1 to 20 carbon atoms, methylaniline, N-methylphenylethylamine, piperidine, and the like.
  • trifluoromethanesulfonyl compound having not only one functional group but also two or three functional groups in one molecule can be converted into trifluoromethane by the second trifluoromethanesulfonylating agent composition of the present disclosure. Sulfonylation is possible. In a trifluoromethanesulfonyl compound having multiple functional groups, multiple fluorosulfonylations may proceed depending on the reaction conditions employed.
  • the trifluoromethanesulfonyl compound and the second trifluoromethanesulfonylating agent composition of the present disclosure are brought into contact and trifluoromethanesulfonylated, the trifluoromethanesulfonyl compound and the trifluoromethanesulfonylating agent (
  • reaction solvents for trifluoromethanesulfonylation include ether solvents, aliphatic hydrocarbon solvents, aromatic hydrocarbon solvents, halogenated hydrocarbon solvents, ester solvents, amide solvents, nitrile solvents, and sulfoxide solvents. etc.
  • reaction solvents include those described in the reaction solvent in the above-mentioned first production method, and preferred examples are also the same.
  • reaction solvent used for trifluoromethanesulfonylation there is no particular restriction on the amount of the reaction solvent used for trifluoromethanesulfonylation, but it may be used at least 0.05 L (liter) per mole of the trifluoromethanesulfonyl compound, and usually 0.1 to 20 L is preferable. , particularly preferably 0.1 to 10 L.
  • the above trifluoromethanesulfonylation reaction is preferably carried out using a base.
  • the base include the bases described above as bases that can be included in the first composition.
  • triethylamine, sodium hydride, diisopropylethylamine, tributylamine, pyridine, 2,3-lutidine, 2,4-lutidine, 2,5-lutidine, 2,6-lutidine, 3,4-lutidine, 3, 5-lutidine is preferred, and triethylamine and sodium hydride are more preferred.
  • the amount of the base to be used is not particularly limited, but it is usually preferably 0.01 to 20 mol, particularly preferably 0.05 to 5 mol, per 1 mol of the trifluoromethanesulfonyl compound to be described below.
  • reaction temperature The reaction temperature for trifluoromethanesulfonylation is not particularly limited, but it is preferably carried out at a reaction temperature of 150°C or lower, more preferably in the range of -100 to 150°C, and even more preferably -78 to 100°C.
  • reaction time There is no particular restriction on the reaction time for trifluoromethanesulfonylation, but it can be carried out in the range of 0.1 to 72 hours, and it varies depending on the raw materials and reaction conditions, so analytical means such as gas chromatography, liquid chromatography, NMR, etc. It is preferable to monitor the progress of the reaction and determine the end point when most of the raw materials have disappeared.
  • the post-treatment operation for isolating the trifluoromethanesulfonyl compound may be carried out by a general operation in organic synthesis.
  • the organic solvent for post-treatment include ether solvents, aliphatic hydrocarbon solvents, aromatic hydrocarbon solvents, halogenated hydrocarbon solvents, and ester solvents.
  • organic solvent for post-treatment examples include the specific examples described in the above-mentioned organic solvent for post-treatment in the first production method, and preferred examples are also the same.
  • Organic solvents can be used alone or in combination.
  • the amount of the solvent used in the post-treatment may be used at least 0.05 L (liter) per mole of the trifluoromethanesulfonyl compound to be treated, and usually 0.1 to 20 L is preferable, particularly 0. .1 to 10 L is more preferable.
  • mineral acid and alkali metal salt for post-treatment include the specific examples described in the above-mentioned mineral acid and alkali metal salt for post-treatment in the first production method, and preferred examples are also the same.
  • the trifluoromethanesulfonyl compound obtained by the second production method of the present disclosure can be isolated from the reaction solution after the reaction is completed with only a simple post-treatment operation, and can be industrially implemented. and can be manufactured efficiently.
  • the yield (%) is a value obtained by measurement of nuclear magnetic resonance spectrum 19F -NMR.
  • Synthesis Examples 1 to 3 and Examples 1 to 27 are based on the first embodiment using a trifluoromethanesulfonylating agent composition containing the compound represented by the above general formula (1) and a specific base. handle. Furthermore, Synthesis Examples 4 to 7 and Examples 28 to 35 correspond to the second embodiment using a trifluoromethanesulfonylating agent composition containing the compound represented by the above-mentioned general formula (11).
  • reaction solution When a small amount of the reaction solution was concentrated and analyzed by 1 H-NMR, the signal derived from imidazole completely disappeared, and a new signal derived from 1-trifluoromethanesulfonylimidazole was observed.
  • Example 1 195 mg (1.00 mmol, 1.0 eq.) of L-tyrosine methyl ester as a substrate and 5 mL of acetonitrile as a reaction solvent were collected and charged into a 20 mL Schlenk tube containing a stirrer as a reactor. Subsequently, a composition containing 220 mg (1.10 mmol, 1.1 eq.) of 1-trifluoromethanesulfonylimidazole and 28 mg (0.20 mmol, 0.2 eq.) of potassium carbonate was added to the reactor and stirred at room temperature for 2 hours. A reaction solution was obtained.
  • Example 2 196 mg (1.00 mmol, 1.0 eq.) of L-tyrosine methyl ester as a substrate and 5 mL of dimethylformamide (DMF) as a reaction solvent were collected and charged into a Schlenk tube with a capacity of 20 mL and a stirrer, which was a reactor. Subsequently, a composition containing 228 mg (1.14 mmol, 1.1 eq.) of 1-trifluoromethanesulfonylimidazole and 27 mg (0.20 mmol, 0.2 eq.) of potassium carbonate was added to the reactor, and the mixture was stirred at room temperature for 2 hours. A reaction solution was obtained.
  • DMF dimethylformamide
  • Example 3 197 mg (1.01 mmol, 1.0 eq.) of L-tyrosine methyl ester as a substrate and 5 mL of dimethyl sulfoxide (DMSO) as a reaction solvent were collected and charged into a Schlenk tube with a capacity of 20 mL and a stirrer, which was a reactor. Subsequently, a composition containing 228 mg (1.14 mmol, 1.1 eq.) of 1-trifluoromethanesulfonylimidazole and 28 mg (0.20 mmol, 0.2 eq.) of potassium carbonate was added to the reactor, and the mixture was stirred at room temperature for 2 hours. A reaction solution was obtained.
  • DMSO dimethyl sulfoxide
  • Example 4 196 mg (1.00 mmol, 1.0 eq.) of L-tyrosine methyl ester as a substrate and 5 mL of gamma-butyrolactone as a reaction solvent were collected and charged into a 20 mL Schlenk tube containing a stirrer, which was a reactor. Subsequently, a composition containing 223 mg (1.12 mmol, 1.1 eq.) of 1-trifluoromethanesulfonylimidazole and 27 mg (0.20 mmol, 0.2 eq.) of potassium carbonate was added to the reactor, and the mixture was stirred at room temperature for 2 hours. A reaction solution was obtained.
  • Example 5 586 mg (3.00 mmol, 1.0 eq.) of L-tyrosine methyl ester as a substrate and 15 mL of tetrahydrofuran (THF) as a reaction solvent were collected and charged into a 50 mL two-necked flask containing a stirrer, which was a reactor. Subsequently, a composition containing 720 mg (3.60 mmol, 1.2 eq.) of 1-trifluoromethanesulfonylimidazole and 67 mg (0.60 mmol, 0.2 eq.) of potassium tert-butoxide was added to the reactor, and the mixture was heated at room temperature for 16 hours.
  • THF tetrahydrofuran
  • Example 6 196 mg (1.01 mmol, 1.0 eq.) of L-tyrosine methyl ester as a substrate and 5 mL of acetonitrile as a reaction solvent were collected and charged into a Schlenk tube with a capacity of 20 mL and a stirrer, which was a reactor. Subsequently, a composition containing 222 mg (1.11 mmol, 1.1 eq.) of 1-trifluoromethanesulfonylimidazole and 51 mg (0.52 mmol, 0.5 eq.) of triethylamine was added to the reactor and stirred at room temperature for 20 hours. A reaction solution was obtained.
  • Example 7 111 mg (1.02 mmol, 1.0 eq.) of 4-aminophenol as a substrate and 5 mL of acetonitrile as a reaction solvent were collected and charged into a Schlenk tube with a capacity of 20 mL and a stirrer, which was a reactor. Subsequently, a composition containing 222 mg (1.11 mmol, 1.1 eq.) of 1-trifluoromethanesulfonylimidazole and 28 mg (0.20 mmol, 0.2 eq.) of potassium carbonate was added to the reactor, and the mixture was stirred at room temperature for 2 hours. A reaction solution was obtained.
  • Example 8 109 mg (1.00 mmol, 1.0 eq.) of 2-aminophenol as a substrate and 5 mL of acetonitrile as a reaction solvent were collected and charged into a Schlenk tube with a capacity of 20 mL and a stirrer, which was a reactor. Subsequently, a composition containing 202 mg (1.01 mmol, 1.0 eq.) of 1-trifluoromethanesulfonylimidazole and 29 mg (0.21 mmol, 0.2 eq.) of potassium carbonate was added to the reactor, and the mixture was stirred at room temperature for 3 hours. A reaction solution was obtained.
  • Example 9 1.08 g (7.87 mmol, 1.0 eq.) of 4-(2-aminoethyl)phenol as a substrate and 39 mL of tetrahydrofuran as a reaction solvent were collected and charged into a Schlenk tube with a capacity of 20 mL and a stir bar as a reactor. is. Subsequently, a composition containing 1.89 g (9.44 mmol, 1.2 eq.) of 1-trifluoromethanesulfonylimidazole and 177 mg (1.58 mmol, 0.2 eq.) of potassium tert-butoxide was added to the reactor, and the mixture was heated to room temperature.
  • Example 10 276 mg (2.00 mmol, 1.0 eq.) of 2-(4-hydroxyphenyl)ethanol as a substrate and 10 mL of acetonitrile as a reaction solvent were collected and charged into a Schlenk tube with a capacity of 20 mL and a stirrer, which was a reactor. Subsequently, a composition containing 401 mg (2.00 mmol, 1.0 eq.) of 1-trifluoromethanesulfonylimidazole and 14 mg (0.10 mmol, 0.05 eq.) of potassium carbonate was added to the reactor, and the mixture was stirred at room temperature for 22 hours. A reaction solution was obtained.
  • Example 11 139 mg (1.00 mmol, 1.0 eq.) of 2-(4-hydroxyphenyl)ethanol as a substrate and 5 mL of acetonitrile as a reaction solvent were collected and charged into a Schlenk tube with a capacity of 20 mL and a stirrer, which was a reactor. Subsequently, a composition containing 202 mg (1.01 mmol, 1.0 eq.) of 1-trifluoromethanesulfonylimidazole and 20 mg (0.20 mmol, 0.2 eq.) of potassium hydrogen carbonate was added to the reactor, and the mixture was heated at room temperature for 30 hours. The mixture was stirred to obtain a reaction solution.
  • Example 12 335 mg (2.00 mmol, 1.0 eq.) of L-phenylephrine as a substrate and 10 mL of dimethylformamide as a reaction solvent were collected and charged into a 20 mL Schlenk tube containing a stirrer, which was a reactor. Subsequently, a composition containing 400 mg (2.00 mmol, 1.0 eq.) of 1-trifluoromethanesulfonylimidazole and 14 mg (0.10 mmol, 0.05 eq.) of potassium carbonate was added to the reactor and stirred at room temperature for 5 hours. A reaction solution was obtained.
  • Example 13 167 mg (1.00 mmol, 1.0 eq.) of L-phenylephrine as a substrate and 5 mL of dimethylformamide as a reaction solvent were collected and charged into a Schlenk tube with a capacity of 20 mL and a stirrer, which was a reactor. Subsequently, a composition containing 201 mg (1.00 mmol, 1.0 eq.) of 1-trifluoromethanesulfonylimidazole and 20 mg (0.20 mmol, 0.2 eq.) of potassium hydrogen carbonate was added to the reactor, and the mixture was heated at room temperature for 22 hours. The mixture was stirred to obtain a reaction solution.
  • Example 14 666 mg (5.00 mmol, 1.0 eq.) of 5-hydroxyindole as a substrate and 10 mL of acetonitrile as a reaction solvent were collected and charged into a 20 mL Schlenk tube containing a stirrer, which was a reactor. Subsequently, a composition containing 1.00 g (5.00 mmol, 1.0 eq.) of 1-trifluoromethanesulfonylimidazole and 138 mg (1.00 mmol, 0.2 eq.) of potassium carbonate was added to the reactor, and the mixture was heated at room temperature. The mixture was stirred for hours to obtain a reaction solution.
  • Example 15 134 mg (1.00 mmol, 1.0 eq.) of 6-hydroxyindazole as a substrate and 5 mL of acetonitrile as a reaction solvent were collected and charged into a Schlenk tube with a capacity of 20 mL and a stirrer, which was a reactor. Subsequently, a composition containing 201 mg (1.01 mmol, 1.0 eq.) of 1-trifluoromethanesulfonylimidazole and 27 mg (0.19 mmol, 0.2 eq.) of potassium carbonate was added to the reactor, and the mixture was stirred at room temperature for 2 hours. A reaction solution was obtained.
  • Example 16 500 mg (2.73 mmol, 1.0 eq.) of 4-hydroxycarbazole as a substrate and 5.4 mL of acetonitrile as a reaction solvent were collected and charged into a 20 mL Schlenk tube containing a stirrer as a reactor. Subsequently, a composition containing 550 mg (2.75 mmol, 1.0 eq.) of 1-trifluoromethanesulfonylimidazole and 75 mg (0.54 mmol, 0.2 eq.) of potassium carbonate was added to the reactor and stirred at room temperature for 4 hours. A reaction solution was obtained.
  • Example 17 96 mg (1.0 mmol, 1.0 eq.) of 4-hydroxypyridine as a substrate and 5 mL of tetrahydrofuran as a reaction solvent were collected and charged into a Schlenk tube with a capacity of 20 mL and a stirrer, which was a reactor. Subsequently, a composition containing 244 mg (1.22 mmol, 1.2 eq.) of 1-trifluoromethanesulfonylimidazole and 22 mg (0.20 mmol, 0.2 eq.) of potassium tert-butoxide was added to the reactor, and the mixture was heated at 70°C. The mixture was stirred for 5 hours to obtain a reaction solution.
  • Example 18 671 mg (5.00 mmol, 1.0 eq.) of pyrrolo[2,3-b]pyridin-5-ol as a substrate and 25 mL of tetrahydrofuran as a reaction solvent were collected and placed in a 2-neck reactor with a 50 mL capacity and a stirring bar. I put it in a flask. Subsequently, a composition containing 1.20 g (6.00 mmol, 1.2 eq.) of 1-trifluoromethanesulfonylimidazole and 112 mg (1.00 mmol, 0.2 eq.) of potassium tert-butoxide was added to the reactor, and the mixture was heated to room temperature.
  • Example 19 169 mg (1.01 mmol, 1.0 eq.) of methyl 2,4-dihydroxybenzoate as a substrate and 5 mL of acetonitrile as a reaction solvent were collected and charged into a Schlenk tube with a capacity of 20 mL and a stirrer, which was a reactor. Subsequently, a composition containing 202 mg (1.01 mmol, 1.0 eq.) of 1-trifluoromethanesulfonylimidazole and 28 mg (0.20 mmol, 0.2 eq.) of potassium carbonate was added to the reactor and stirred at room temperature for 7 hours. A reaction solution was obtained.
  • Example 20 544 mg (2.00 mmol, 1.0 eq.) of arbutin as a substrate and 10 mL of dimethylformamide as a reaction solvent were collected and charged into a Schlenk tube with a capacity of 20 mL and a stirrer, which was a reactor. Subsequently, a composition containing 400 mg (2.00 mmol, 1.0 eq.) of 1-trifluoromethanesulfonylimidazole and 14 mg (0.10 mmol, 0.05 eq.) of potassium carbonate was added to the reactor and stirred at room temperature for 5 hours. A reaction solution was obtained.
  • Example 21 273 mg (1.00 mmol, 1.0 eq.) of arbutin as a substrate and 5 mL of dimethylformamide as a reaction solvent were collected and charged into a Schlenk tube with a capacity of 20 mL and a stirrer, which was a reactor. Subsequently, a composition containing 201 mg (1.00 mmol, 1.0 eq.) of 1-trifluoromethanesulfonylimidazole and 19 mg (0.19 mmol, 0.2 eq.) of potassium hydrogen carbonate was added to the reactor, and the mixture was heated at room temperature for 22 hours. The mixture was stirred to obtain a reaction solution.
  • Example 22 112 mg (1.03 mmol, 1.0 eq.) of 4-aminophenol as a substrate and 5 mL of acetonitrile as a reaction solvent were collected and charged into a 20 mL Schlenk tube containing a stirrer, which was a reactor. Subsequently, a composition containing 238 mg (1.11 mmol, 1.1 eq.) of 2-methyl-1-trifluoromethanesulfonylimidazole and 27 mg (0.19 mmol, 0.2 eq.) of potassium carbonate was added to the reactor, and the mixture was heated to room temperature. The mixture was stirred for 20 hours to obtain a reaction solution.
  • Example 24 (First reaction) 111 mg (1.02 mmol, 1.0 eq.) of 4-aminophenol as a substrate and 5 mL of acetonitrile as a reaction solvent were collected and charged into a Schlenk tube with a capacity of 20 mL and a stirrer, which was a reactor. Subsequently, a composition containing 222 mg (1.11 mmol, 1.1 eq.) of 1-trifluoromethanesulfonylimidazole and 28 mg (0.20 mmol, 0.2 eq.) of potassium carbonate was added to the reactor, and the mixture was stirred at room temperature for 2 hours. A reaction solution was obtained.
  • the reactor was sealed and stirred at 60°C for 20 hours to obtain a reaction solution. After adding 20 mL of ethyl acetate to the reaction solution and washing with 20 mL of clean water, the organic phase was dried over sodium sulfate and concentrated under reduced pressure. When 1,4-bis(trifluoromethyl)benzene was added as an internal standard to the resulting residue and analyzed by 1 H-NMR, a signal originating from 4-(4-methylphenyl)aniline was confirmed, and its quantitative yield was confirmed. The rate was 99%.
  • Example 25 (First reaction) 196 mg (1.01 mmol, 1.0 eq.) of L-tyrosine methyl ester as a substrate and 5 mL of acetonitrile as a reaction solvent were collected and charged into a Schlenk tube with a capacity of 20 mL and a stirrer, which was a reactor. Subsequently, a composition containing 223 mg (1.11 mmol, 1.1 eq.) of 1-trifluoromethanesulfonylimidazole and 28 mg (0.20 mmol, 0.2 eq.) of potassium carbonate was added to the reactor and stirred at room temperature for 2 hours. A reaction solution was obtained.
  • Nitrogen bubbling was performed in the obtained solution for 15 minutes, and 62 mg (54 ⁇ mol, 0.05 eq.) of tetrakis(triphenylphosphine)palladium, 15 mg (77 ⁇ mol, 0.08 eq.) of copper iodide, and 4-ethynyl were added under a nitrogen stream. 179 mg (1.54 mmol, 1.5 eq.) of toluene was collected and added to the reactor. The reactor was sealed and stirred at 80°C for 20 hours to obtain a reaction solution. After adding 30 mL of ethyl acetate to the reaction solution and washing with 30 mL of clean water, the organic phase was dried over sodium sulfate and concentrated under reduced pressure.
  • Example 25 The first reaction and second reaction in Example 25 are shown below. First reaction Same as Example 23. Second reaction
  • Example 26 The first reaction and second reaction in Example 26 are shown below. First reaction Same as Example 23. Second reaction
  • Example 27 (First reaction) 195 mg (1.00 mmol, 1.0 eq.) of L-tyrosine methyl ester as a substrate and 5 mL of acetonitrile as a reaction solvent were collected and charged into a 20 mL Schlenk tube containing a stirrer as a reactor. Subsequently, a composition containing 221 mg (1.10 mmol, 1.1 eq.) of 1-trifluoromethanesulfonylimidazole and 27 mg (0.20 mmol, 0.2 eq.) of potassium carbonate was added to the reactor, and the mixture was stirred at room temperature for 2 hours. A reaction solution was obtained.
  • Example 27 The first reaction and second reaction in Example 27 are shown below. First reaction Same as Example 23. Second reaction
  • the reactor was stirred for 1 hour while being cooled to -20°C to obtain a reaction solution.
  • benzotrifluoride was added as an internal standard to the reaction solution and analyzed by 19 F-NMR, a signal derived from indol-5-yltrifluoromethanesulfonate was confirmed at -74 ppm, and the quantitative yield was 22%.
  • one type of signal derived from a by-product was observed at -73 ppm, and the quantitative yield was 29%.
  • the reactor was cooled with dry ice, and 10.6 g (69.4 mmol, 1.0 eq.) of trifluoromethanesulfonyl fluoride was charged from a bomb. The reactor was returned to room temperature and stirred for 18 hours to obtain a reaction solution.
  • benzotrifluoride was added as an internal standard to the reaction solution and analyzed by 19 F-NMR, a signal derived from 4-(2-hydroxyethyl)phenyltrifluoromethanesulfonate was confirmed at -74 ppm, and the quantitative yield was 33%. Met.
  • two types of signals derived from by-products were observed at -74 ppm, and the yields were 15% and 11%, respectively.
  • the trifluoromethanesulfonylated compound can be obtained in good yield while suppressing the production of by-products.
  • the phenolic hydroxyl group can be selectively trifluoromethanesulfonylated.
  • reaction 1 When a small amount of the reaction solution was concentrated and analyzed by 1 H-NMR, the signal derived from 2-methylimidazole completely disappeared, and a new signal derived from trifuryl-2-methylimidazole was observed. It was confirmed that reaction 1 was completed.
  • Example 28 93 mg (1.0 mmol, 1.0 eq.) of aniline as a substrate and 5 mL of acetonitrile as a reaction solvent were collected and charged into a 20 mL Schlenk tube containing a stirrer, which was a reactor. While cooling the Schlenk tube in an ice bath, add both components: 0.95 g (2.5 mmol, 2.5 eq.) of triflyl-2,3-dimethylimidazolium triflate and 51 mg (0.5 mmol, 0.5 eq.) of triethylamine. A further composition containing was added into the Schlenk tube. After removing the ice bath, the mixture was stirred at room temperature for 2 hours to obtain a reaction solution. When benzotrifluoride was added as an internal standard to the reaction solution and analyzed by 19 F-NMR, a signal derived from N-phenyltrifluimide was confirmed at -71 ppm, and the quantitative yield was 98%.
  • Example 29 73 mg (1.0 mmol, 1.0 eq.) of butylamine as a substrate and 5 mL of acetonitrile were collected and charged into a 20 mL Schlenk tube containing a stirrer, which was a reactor. While cooling the Schlenk tube in an ice bath, add both components: 0.95 g (2.5 mmol, 2.5 eq.) of triflyl-2,3-dimethylimidazolium triflate and 51 mg (0.5 mmol, 0.5 eq.) of triethylamine. Further compositions were added into the Schlenk tube. After removing the ice bath, the mixture was stirred at room temperature for 24 hours to obtain a reaction solution.
  • Example 30 0.12 g (1.0 mmol, 1.0 eq.) of 1-phenylethylamine as a substrate and 5 mL of acetonitrile were collected and charged into a Schlenk tube with a capacity of 20 mL and a stirrer, which was a reactor. While cooling the Schlenk tube in an ice bath, add both components: 0.95 g (2.5 mmol, 2.5 eq.) of triflyl-2,3-dimethylimidazolium triflate and 51 mg (0.5 mmol, 0.5 eq.) of triethylamine. Further compositions were added into the Schlenk tube.
  • Example 31 0.15 g (1.0 mmol, 1.0 eq.) of 6-isopropyl-3-methylphenol as a substrate and 5 mL of acetonitrile were collected and charged into a 20 mL Schlenk tube containing a stirrer, which was a reactor. While cooling the Schlenk tube in an ice bath, add both components: 0.57 g (1.5 mmol, 1.5 eq.) of triflyl-2,3-dimethylimidazolium triflate and 51 mg (0.5 mmol, 0.5 eq.) of triethylamine. Further compositions were added into the Schlenk tube. After removing the ice bath, the mixture was stirred at room temperature for 2 hours to obtain a reaction solution.
  • Example 32 0.31 g (3.0 mmol, 1.0 eq.) of methyl lactate as a substrate and 15 mL of acetonitrile were collected and charged into a 30 mL two-necked flask containing a stirrer. While cooling the two-necked flask in an ice bath, add both components: 1.70 g (4.5 mmol, 1.5 eq.) of triflyl-2,3-dimethylimidazolium triflate and 91 mg (0.9 mmol, 0.3 eq.) of triethylamine. A composition containing the following was further added into the two-necked flask.
  • Example 33 0.33 g (2.5 mmol, 1.0 eq.) of ethyl acetoacetate as a substrate, 12.5 mL of tetrahydrofuran as a reaction solvent, and 0.10 g (2.5 mmol) of sodium hydride (60% by mass oil dispersion). , 1.0 eq.) was collected and charged into a 30 mL two-necked flask containing a stirrer, and then stirred at room temperature for 10 minutes.
  • Example 34 93 mg (1.0 mmol, 1.0 eq.) of aniline as a substrate and 5 mL of acetonitrile were collected and charged into a Schlenk tube with a capacity of 20 mL and a stirrer, which was a reactor. While cooling the Schlenk tube in an ice bath, prepare a composition containing both 0.91 g (2.5 mmol, 2.5 eq.) of trifuryl-3-methylimidazolium triflate and 51 mg (0.5 mmol, 0.5 eq.) of triethylamine. Additional material was added into the Schlenk tube. The ice bath was removed, and the mixture was stirred at room temperature for 1 hour to obtain a reaction solution. When benzotrifluoride was added to the reaction solution as an internal standard and analyzed by 19 F-NMR, a signal derived from N-phenyltrifluimide was confirmed at -71 ppm, and the quantitative yield was 93%.
  • Example 35 47 mg (0.5 mmol, 1.0 eq.) of aniline as a substrate and 2.5 mL of acetonitrile were collected and charged into a Schlenk tube with a capacity of 20 mL and a stirrer, which was a reactor. While cooling the Schlenk tube in an ice bath, add 0.49 g (1.3 mmol, 2.5 eq.) of trifuryl-3-ethyl-2-methylimidazolium triflate synthesized by the method described in Example 4 and 25 mg (0.2 mmol, 2.5 eq.) of triethylamine. .25 mmol, 0.5 eq.) of the composition containing both components was further added into the Schlenk tube.
  • the trifluoromethanesulfonylating agent composition of the present disclosure can be used as a trifluoromethanesulfonylating agent composition under industrially practicable conditions in the synthesis of drug substances or intermediates for pharmaceuticals.

Abstract

本開示は、明細書中に記載の一般式(1)又は(11)で表される化合物を含むトリフルオロメタンスルホニル化剤組成物、及び上記トリフルオロメタンスルホニル化剤組成物を明細書中に記載の一般式(2)で表される化合物、又は特定の基質と反応させる、トリフルオロメタンスルホニルオキシ化合物の製造方法、又はトリフルオロメタンスルホニル化合物の製造方法を提供する。

Description

トリフルオロメタンスルホニル化剤組成物、及び、トリフルオロメタンスルホニルオキシ化合物またはトリフルオロメタンスルホニル化合物の製造方法
 本開示は、フェノール性水酸基等の官能基を含む基質をトリフルオロメタンスルホニル化できるトリフルオロメタンスルホニル化剤組成物、及び、これを用いたトリフルオロメタンスルホニルオキシ化合物またはトリフルオロメタンスルホニル化合物の製造方法に関するものである。
 医薬品の原薬または中間体の合成において、種々の官能基を有する基質のトリフルオロメタンスルホニル化が行われている。
 フェノール性水酸基のトリフルオロメタンスルホニル化は、医薬品の原薬または中間体の合成における重要な反応である。例えば、フェノール性水酸基を有する基質をトリフルオロメタンスルホン酸無水物と反応させる方法(特許文献1、非特許文献1、非特許文献2)、フェノール性水酸基を有する基質をトリフルオロメタンスルホニルフロライドと反応させる方法(特許文献2)、フェノール性水酸基を有する基質をトリフルオロメタンスルホニルクロライドと反応させる方法(特許文献3)、フェノール性水酸基を有する基質をN-フェニルトリフルイミドと反応させる方法(特許文献4)、フェノール性水酸基を有する基質を5-クロロ-2-ピリジルトリフルイミドと反応させる方法(特許文献5)、フェノール性水酸基を有する基質を4-ニトロフェニルトリフルオロメタンスルホネートと反応させる方法(非特許文献3)、フェノール性水酸基を有する基質を2-ピリジルトリフルイミドと反応させる方法(特許文献6)、が挙げられる。
 フェノール性水酸基を有する基質の他にも、ケトン、1級アミンまたは2級アミンのトリフルオロメタンスルホニル化が行われている。
 トリフルオロメタンスルホニル化反応として、例えば、非特許文献4~5には、メタロエノラート、フェノール性水酸基もしくは2級アミンを有する基質と、N-フェニルトリフルイミドとを反応させる方法が記載されている。
 また、非特許文献6には、メタロエノラートとN-2-ピリジルトリフルイミド、あるいはメタロエノラートとN-5-クロロ-2-ピリジルトリフルイミドとを反応させる方法が記載されている。非特許文献7および8には、ケトンと、トリフルオロメタンスルホン酸無水物を反応させる方法が記載されている。
中国特許出願公開104230960号明細書 日本国特開2002-128752号公報 国際公開第2011/095625号 国際公開第2014/190271号 国際公開第2013/044092号 国際公開第2007/073503号
P.Kancharla.et al, Journal of Medicial Chemistry,2020,63,6179-6202. D.Xi.et al, European Journal of Medicinal Chemistry.2019,178,802-817. M.Lesperance.et.al, Steroids. 2018,140,104-113 J.B;Hendrickson. et al, Tetrahedron Letters,1973,46,4607―4610. J.E.McMurry. et al, Tetrahedron Letters,1983,10,979-982. d.L.Comins. et al, Tetrahedron Letters,1992,42,6299―6302. M.Tranchant. et al, Tetrahedron,2002,58, 8425―8432. P.J.Stang. et al, Synthesis.1980,4,283―284.
 しかしながら、トリフルオロメタンスルホニル化試薬については、その経済性や副生成物削減等の観点から、さらなる検討の余地が残されていた。
 本開示はこのような事情に鑑みてなされたものである。本開示では、フェノール性水酸基等の官能基を有する基質をトリフルオロメタンスルホニル化することができるトリフルオロメタンスルホニル化剤組成物を提供することを課題とする。また、効率的、かつ工業的に実施可能なトリフルオロメタンスルホニルオキシ化合物またはトリフルオロメタンスルホニル化合物の製造方法を提供することを課題とする。
 そこで本発明者らは、上記課題を鑑み、鋭意検討を行った。その結果、本開示の、特定のトリフルオロメタンスルホニル化剤を含むトリフルオロメタンスルホニル化剤組成物により、副生成物の生成を抑制しながら、フェノール性水酸基等の官能基を有する基質をトリフルオロメタンスルホニル化できることを見出した。また、トリフルオロメタンスルホニル化反応後の反応液から一般的な後処理操作のみでトリフルオロメタンスルホニルオキシ化合物を単離でき、効率的にトリフルオロメタンスルホニルオキシ化合物またはトリフルオロメタンスルホニル化合物が得られることを見出した。
 すなわち、本開示は、以下の[1]-[16]に記載する発明を提供する。
[1]
 下記一般式(1)又は(11)で表される化合物を含む、
トリフルオロメタンスルホニル化剤組成物。
Figure JPOXMLDOC01-appb-C000004
(一般式(1)及び(11)中、Rは、水素原子、炭素数1~6の直鎖状アルキル基、または、炭素数3~6の分枝状のアルキル基であり、
は、水素原子、炭素数1~6の直鎖状の脂肪族炭化水素基、炭素数3~6の分枝状の脂肪族炭化水素基、ニトロ基、炭素数6~14の芳香族炭化水素基、または炭素数6~14の芳香族複素環基であり、
Xは、窒素原子又はC(R)であり、Yは、窒素原子又はC(R)であり、
は、水素原子、炭素数1~6の直鎖状の脂肪族炭化水素基、炭素数3~6の分枝状の脂肪族炭化水素基、炭素数6~14の芳香族炭化水素基、または炭素数6~14の芳香族複素環基であり、
は、水素原子、炭素数1~6の直鎖状の脂肪族炭化水素基、炭素数3~6の分枝状の脂肪族炭化水素基、炭素数6~14の芳香族炭化水素基、または炭素数6~14の芳香族複素環基であり、
とRは結合して環を形成していてもよく、RとRは結合して環を形成していてもよく、
nは1~3の整数である。
が複数存在する場合のRは、それぞれ同一であっても、異なっていてもよく、Rが複数存在する場合のRは、それぞれ同一であっても、異なっていてもよい。
一般式(11)中、Rは、水素原子、炭素数1~6の直鎖状アルキル基、または、炭素数3~6の分枝状のアルキル基であり、
はアニオンである。)
[2]
 前記一般式(1)で表される化合物と、
脂肪族系有機塩基、複素環基含有有機塩基、及び無機塩基からなる群より選ばれるいずれかの塩基と、を含む、
[1]に記載のトリフルオロメタンスルホニル化剤組成物。
[3]
 前記一般式(1)中、XがC(R)であり、R、R、及びRが、それぞれ独立に、水素原子、メチル基、エチル基、n-プロピル基、またはイソプロピル基である、[2]に記載のトリフルオロメタンスルホニル化剤組成物。
[4]
 前記有機塩基が、2級アミン、3級アミン、アルコキシド、及び、窒素原子を有し炭素数が4以上である複素環基を有する有機塩基の群から選ばれる、[2]又は[3]に記載のトリフルオロメタンスルホニル化剤組成物。
[5]
 前記無機塩基が、カリウム塩、及びナトリウム塩からなる群より選ばれる、[2]~[4]のいずれか1項に記載の、トリフルオロメタンスルホニル化剤組成物。
[6]
 前記塩基が、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム、炭酸水素カリウム、リチウムメトキシド、リチウムエトキシド、リチウムtert-ブトキシド、ナトリウムメトキシド、ナトリウムエトキシド、ナトリウムtert-ブトキシド、カリウムメトキシド、カリウムエトキシド、カリウムtert-ブトキシド、トリエチルアミン、トリn-プロピルアミン、トリブチルアミン、ジイソプロピルエチルアミン、N,N-ジエチルシクロヘキシルアミン、及び1,8-ジアザビシクロ[5.4.0]ウンデセン、1,5-ジアザビシクロ[4.3.0]ノネンからなる群より選ばれるいずれかである、[2]~[5]のいずれか1項に記載の、トリフルオロメタンスルホニル化剤組成物。
[7]
 [2]~[6]のいずれか1項に記載のトリフルオロメタンスルホニル化剤組成物を、一般式(2):
Figure JPOXMLDOC01-appb-C000005
(一般式(2)中、Arは芳香環基または置換芳香環基を表す。)
で表される芳香族ヒドロキシル化合物と反応させる、
トリフルオロメタンスルホニルオキシ化合物の製造方法。
[8]
 前記一般式(2)中、Arが芳香環基を表し、前記芳香環基が、芳香族複素環基である、[7]に記載のトリフルオロメタンスルホニルオキシ化合物の製造方法。
[9]
 前記一般式(2)中、Arが置換芳香環基を表し、前記置換芳香環基が有する置換基が、低級アルキル基、低級アルコキシカルボニル低級アルキル基、β-D-グルコピラノシド基、アミノ基、低級アルキルアミノ基、又はヒドロキシル基である、[7]に記載のトリフルオロメタンスルホニルオキシ化合物の製造方法。
[10]
 前記反応を150℃以下の反応温度で行う、[7]~[9]のいずれか1項に記載のトリフルオロメタンスルホニルオキシ化合物の製造方法。
[11]
 前記反応終了後の反応液を酸性水溶液で後処理する[7]~[10]のいずれか1項に記載のトリフルオロメタンスルホニルオキシ化合物の製造方法。
[12]
 前記一般式(11)で表される化合物が、下記一般式(11a)で表される化合物である[1]に記載のトリフルオロメタンスルホニル化剤組成物。
Figure JPOXMLDOC01-appb-C000006
(一般式(11a)中、R11、R12、及びR15は、水素原子、炭素数1~6の直鎖状アルキル基、または、炭素数3~6の分枝状のアルキル基であり、
Xaは、窒素原子又はC(R13)であり、
13は、水素原子、炭素数1~6の直鎖状アルキル基、または、炭素数3~6の分枝状のアルキル基であり、
12とR13は結合して環を形成していてもよい。
はアニオンである。)
[13]
 一般式(11a)中のZが、トリフルオロメタンスルホン酸アニオン、フルオロメタンスルホン酸アニオン、メタンスルホン酸アニオン、またはスルホン酸アニオンである、[12]に記載のトリフルオロメタンスルホニル化剤組成物。
[14]
 前記一般式(11a)中のXaがC(R13)である、[12]又は[13]に記載のトリフルオロメタンスルホニル化剤組成物。
[15]
 前記一般式(11a)中のXaがC(R13)であり、R11、R12、R13、及びR15が、それぞれ独立に、水素原子、メチル基、エチル基、n-プロピル基、またはイソプロピル基である、[12]~[14]のいずれか1項に記載のトリフルオロメタンスルホニル化剤組成物。
[16]
 [12]~[15]のいずれか1項に記載のトリフルオロメタンスルホニル化剤組成物を、フェノール性水酸基を有する化合物、アルコール性水酸基を有する化合物、ケトン、1級アミンおよび2級アミンからなる群から選ばれる少なくとも一つの基質と反応させる、トリフルオロメタンスルホニル化合物の製造方法。
 本開示によれば、フェノール性水酸基等の官能基を有する基質をトリフルオロメタンスルホニル化することができるトリフルオロメタンスルホニル化剤組成物を提供することができる。また、上記トリフルオロメタンスルホニル化剤組成物を用いた工業的に実施可能で効率的なトリフルオロメタンスルホニルオキシ化合物またはトリフルオロメタンスルホニル化合物の製造方法を提供することができる。
 以下、本開示を詳細に説明する。以下、本開示の実施態様について説明するが、本開示は以下の実施の態様に限定されるものではなく、本開示の趣旨を損なわない範囲で、当業者の通常の知識に基づいて、適宜実施することができる。
<トリフルオロメタンスルホニル化剤組成物>
(トリフルオロメタンスルホニル化剤)
 本開示のトリフルオロメタンスルホニル化剤組成物(以下、本開示の組成物ともいう)は、トリフルオロメタンスルホニル化剤として、下記一般式(1)又は(11)で表される化合物を含む。
Figure JPOXMLDOC01-appb-C000007
 一般式(1)及び(11)中、Rは、水素原子、炭素数1~6の直鎖状アルキル基、または、炭素数3~6の分枝状のアルキル基であり、
は、水素原子、炭素数1~6の直鎖状の脂肪族炭化水素基、炭素数3~6の分枝状の脂肪族炭化水素基、ニトロ基、炭素数6~14の芳香族炭化水素基、または炭素数6~14の芳香族複素環基であり、
Xは、窒素原子又はC(R)であり、Yは、窒素原子又はC(R)であり、
は、水素原子、炭素数1~6の直鎖状の脂肪族炭化水素基、炭素数3~6の分枝状の脂肪族炭化水素基、炭素数6~14の芳香族炭化水素基、または炭素数6~14の芳香族複素環基であり、
は、水素原子、炭素数1~6の直鎖状の脂肪族炭化水素基、炭素数3~6の分枝状の脂肪族炭化水素基、炭素数6~14の芳香族炭化水素基、または炭素数6~14の芳香族複素環基であり、
とRは結合して環を形成していてもよく、RとRは結合して環を形成していてもよく、
nは1~3の整数である。
が複数存在する場合のRは、それぞれ同一であっても、異なっていてもよく、Rが複数存在する場合のRは、それぞれ同一であっても、異なっていてもよい。
 一般式(11)中、Rは、水素原子、炭素数1~6の直鎖状アルキル基、または、炭素数3~6の分枝状のアルキル基であり、
はアニオンである。
 一般式(1)および(11)中、Rは、水素原子、炭素数1~6の直鎖状アルキル基、または、炭素数3~6の分枝状のアルキル基を表す。
 炭素数1~6の直鎖状アルキル基としては、例えば、メチル基、エチル基、n-プロピル基、n-ブチル基、n-ペンチル基、n-ヘキシル基等が挙げられる。
 炭素数3~6の分枝状のアルキル基としては、例えば、イソプロピル基、イソブチル基、sec-ブチル基、tert-ブチル基等が挙げられる。
 Rは、その中でも合成が容易な事より、水素原子、メチル基、エチル基、n-プロピル基、またはイソプロピル基であることが好ましい。
 一般式(1)および(11)中、Rは、水素原子、炭素数1~6の直鎖状の脂肪族炭化水素基、炭素数3~6の分枝状の脂肪族炭化水素基、ニトロ基、炭素数6~14の芳香族炭化水素基、または、炭素数6~14の芳香族複素環基を表す。Rが複数存在する場合のRは、それぞれ同一であっても、異なっていてもよい。
 炭素数1~6の直鎖状の脂肪族炭化水素基としては、炭素数1~6の直鎖状のアルキル基、炭素数2~6の直鎖状のアルケニル基、及び炭素数2~6の直鎖状のアルキニル基が挙げられる。
 炭素数1~6の直鎖状のアルキル基としては、Rとしての炭素数1~6の直鎖状のアルキル基に記載の例が挙げられる。
 炭素数3~6の分枝状の脂肪族炭化水素基としては、炭素数3~6の分枝状のアルキル基、炭素数3~6の分枝状のアルケニル基、及び炭素数3~6の分枝状のアルキニル基が挙げられる。
 炭素数3~6の分枝状のアルキル基としては、Rとしての炭素数3~6の分枝状のアルキル基に記載の例が挙げられる。
 炭素数6~14の芳香族炭化水素基としては、フェニル基、ナフチル基、アントリル基等が挙げられる。
 炭素数6~14の芳香族複素環基としては、ピロール基、ピラジン基、ピリミジン基、ピリダジン基等が挙げられる。
 Rは、水素原子、炭素数1~6の直鎖状アルキル基、炭素数3~6の分枝状のアルキル基、またはニトロ基であることが好ましく、水素原子、炭素数1~6の直鎖状アルキル基、または、炭素数3~6の分枝状のアルキル基であることが好ましい。
 Rは、水素原子、メチル基、エチル基、n-プロピル基、イソプロピル基、またはニトロ基であることが好ましく、水素原子、メチル基、エチル基、n-プロピル基、またはイソプロピル基であることがより好ましい。
 一般式(1)および(11)中、Xは、窒素原子又はC(R)であり、Yは、窒素原子又はC(R)である。
 Rは、水素原子、炭素数1~6の直鎖状の脂肪族炭化水素基、炭素数3~6の分枝状の脂肪族炭化水素基、炭素数6~14の芳香族炭化水素基、または、炭素数6~14の芳香族複素環基を表す。Rが複数存在する場合のRは、それぞれ同一であっても、異なっていてもよい。
 炭素数1~6の直鎖状の脂肪族炭化水素基、炭素数3~6の分枝状の脂肪族炭化水素基、炭素数6~14の芳香族炭化水素基、及び炭素数6~14の芳香族複素環基としては、Rとしての炭素数1~6の直鎖状の脂肪族炭化水素基、炭素数3~6の分枝状の脂肪族炭化水素基、炭素数6~14の芳香族炭化水素基、及び炭素数6~14の芳香族複素環基に記載の例が挙げられる。
 Rは、水素原子、炭素数1~6の直鎖状アルキル基、または、炭素数3~6の分枝状のアルキル基であることが好ましく、水素原子、メチル基、エチル基、n-プロピル基、またはイソプロピル基であることがより好ましい。
 Rは、水素原子、炭素数1~6の直鎖状の脂肪族炭化水素基、炭素数3~6の分枝状の脂肪族炭化水素基、炭素数6~14の芳香族炭化水素基、または、炭素数6~14の芳香族複素環基を表す。Rが複数存在する場合のRは、それぞれ同一であっても、異なっていてもよい。
 炭素数1~6の直鎖状の脂肪族炭化水素基、炭素数3~6の分枝状の脂肪族炭化水素基、炭素数6~14の芳香族炭化水素基、及び炭素数6~14の芳香族複素環基としては、Rとしての炭素数1~6の直鎖状の脂肪族炭化水素基、炭素数3~6の分枝状の脂肪族炭化水素基、炭素数6~14の芳香族炭化水素基、及び炭素数6~14の芳香族複素環基に記載の例が挙げられる。
 Rは、水素原子、炭素数1~6の直鎖状アルキル基、または、炭素数3~6の分枝状のアルキル基であることが好ましく、水素原子、メチル基、エチル基、n-プロピル基、またはイソプロピル基であることがより好ましい。
 一般式(1)および(11)中、XがC(R)であり、Yが窒素原子であることが好ましい。
 nは1~3の整数である。nは1であることが好ましい。
 RとRは結合して環を形成してもよい。RとRは結合して形成される環は、特に限定されないが、例えば、炭素数6~14の芳香族炭化水素環(例えば、ナフタレン環、アントラセン環)または炭素数6~14の芳香族複素環が挙げられる。
 RとRは結合して環を形成してもよい。RとRは結合して形成される環は、特に限定されないが、例えば、炭素数6~14の芳香族炭化水素環(例えば、ナフタレン環、アントラセン環)または炭素数6~14の芳香族複素環が挙げられる。
 一般式(1)中、XがC(R)であり、R、R、及びRが、それぞれ独立に、水素原子、メチル基、エチル基、n-プロピル基、またはイソプロピル基であることが好ましい。
 一般式(11)中、Rは、水素原子、炭素数1~6の直鎖状アルキル基、または、炭素数3~6の分枝状のアルキル基である。
 Rが表す炭素数1~6の直鎖状アルキル基、及び炭素数3~6の分枝状のアルキル基としては、Rとしての炭素数1~6の直鎖状アルキル基、及び炭素数3~6の分枝状のアルキル基に記載の例が挙げられ、好ましい例も同様である。
 Rは、XまたはYと結合していることが好ましく、Yと結合していることがより好ましい。
 好ましい一態様として、Rは、Xにおける窒素原子と結合して、カチオン部を形成する。
 また、好ましい一態様として、Rは、Yにおける窒素原子と結合して、カチオン部を形成する。
 一般式(11)中、Zはアニオンを表す。
 Zは、強酸又は超強酸のアニオンが好ましく、テトラフルオロホウ酸アニオン、ヘキサフルオロリン酸アニオン、ヘキサフルオロアンチモン酸アニオン、フルオロスルホン酸アニオン、トリフルオロ酢酸アニオン、トリフルオロメタンスルホン酸アニオン、フルオロメタンスルホン酸アニオン、メタンスルホン酸アニオン、トルエンスルホン酸アニオン、またはスルホン酸アニオンであることが好ましく、トリフルオロメタンスルホン酸アニオン、フルオロメタンスルホン酸アニオン、メタンスルホン酸アニオン、トルエンスルホン酸アニオン、またはスルホン酸アニオンであることがより好ましく、トリフルオロメタンスルホン酸アニオンであることがさらに好ましい。
 上記一般式(11)で表される化合物は、下記一般式(11a)で表される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000008
 一般式(11a)中、R11、R12、及びR15は、水素原子、炭素数1~6の直鎖状アルキル基、または、炭素数3~6の分枝状のアルキル基であり、
Xaは、窒素原子又はC(R13)であり、
13は、水素原子、炭素数1~6の直鎖状アルキル基、または、炭素数3~6の分枝状のアルキル基であり、
12とR13は結合して環を形成していてもよい。
はアニオンである。
 R11、R12、及びR15としての炭素数1~6の直鎖状アルキル基、及び炭素数3~6の分枝状のアルキル基としては、一般式(11)中のR、R、及びRとしての炭素数1~6の直鎖状アルキル基、及び炭素数3~6の分枝状のアルキル基に記載の例が挙げられる。
 一般式(11a)中、Xaは、窒素原子又はC(R13)であり、好ましくはC(R13)である。
 R13としての炭素数1~6の直鎖状アルキル基、及び炭素数3~6の分枝状のアルキル基としては、一般式(11)中のRとしての炭素数1~6の直鎖状アルキル基、及び炭素数3~6の分枝状のアルキル基に記載の例が挙げられる。
 一般式(11a)中のXaがC(R13)であり、R11、R12、R13及びR15が、それぞれ独立に、水素原子、メチル基、エチル基、n-プロピル基、またはイソプロピル基であることが、合成が容易であるという観点から好ましく、特に好ましくは水素原子、またはメチル基である。
 一般式(11a)中のZは、一般式(11)中のZと同義であり、好ましい例も同様である。
 以下に一般式(1)で表される化合物を例示するが、これらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000009
 以下に一般式(11)で表される化合物を例示するが、これらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000010

Figure JPOXMLDOC01-appb-I000011
・第1の態様
 上述の一般式(1)または(11)で表される化合物を含むトリフルオロメタンスルホニル化剤組成物を用いることにより、フェノール性水酸基等を有する基質をトリフルオロメタンスルホニル化することが可能となるが、本開示の好ましい態様の1つとして、上述の一般式(1)で表される化合物と、脂肪族系有機塩基、複素環基含有有機塩基、及び無機塩基からなる群より選ばれるいずれかの塩基と、を含むトリフルオロメタンスルホニル化剤組成物が挙げられる。
 一般式(1)で表される化合物と特定の塩基とを含むトリフルオロメタンスルホニル化剤組成物(以下、第1のトリフルオロメタンスルホニル化剤組成物、または単に、第1の組成物ともいう)により、副生成物の生成を抑制しながら、フェノール性水酸基に対して選択的にトリフルオロメタンスルホニル化できる。また、トリフルオロメタンスルホニル化反応後の反応液から一般的な後処理操作のみでトリフルオロメタンスルホニルオキシ化合物を単離でき、工業的に実施可能、かつ、効率的にトリフルオロメタンスルホニルオキシ化合物が得られる。
 なお、本明細書において、トリフルオロメタンスルホニル化剤がフェノール性水酸基に対して「選択的に反応する」とは、フェノール性水酸基に対して優先的にトリフルオロメタンスルホニル化反応が進行することを意味する。
 第1の組成物の全質量に対し、一般式(1)で表される化合物が80%以上含まれることが好ましく、90%以上含まれることがより好ましい。
(塩基)
 本開示の第1のトリフルオロメタンスルホニル化剤組成物は、塩基を含むことが好ましい。
 第1のトリフルオロメタンスルホニル化剤組成物に用いる塩基としては、脂肪族系有機塩基、複素環基含有有機塩基、及び無機塩基からなる群より選ばれるいずれかの塩基が挙げられる。
 有機塩基としては、2級アミン、3級アミン、アルコキシド、及び窒素原子を有し炭素数が4以上である複素環基を有する有機塩基の群から選ばれる塩基であることが好ましい。
 脂肪族系有機塩基は、脂肪族炭化水素基を有し、芳香族基を有しない有機塩基である。
 具体的には、2級アミン、3級アミン、またはアルコキシドが好ましく、例えば、リチウムメトキシド、リチウムエトキシド、リチウムtert-ブトキシド、ナトリウムメトキシド、ナトリウムエトキシド、ナトリウムtert-ブトキシド、カリウムメトキシド、カリウムエトキシド、カリウムtert-ブトキシド、ジプロピルアミン、ジイソブチルアミン、トリメチルアミン、トリエチルアミン、トリn-プロピルアミン、トリブチルアミン、ジイソプロピルエチルアミン、N,N-ジエチルシクロヘキシルアミン等が挙げられる。
 複素環基含有有機塩基は、炭素数が4以上である複素環基を有する化合物であることが好ましく、窒素原子を有し炭素数が4以上である複素環基を有する化合物がより好ましい。
 具体的には、例えば、1,8-ジアザビシクロ[5.4.0]ウンデセン、1,5-ジアザビシクロ[4.3.0]ノネン、ピリジン、2,3-ルチジン、2,4-ルチジン、2,5-ルチジン、2,6-ルチジン、3,4-ルチジン、3,5-ルチジン、2,3,4-コリジン、2,4,5-コリジン、2,5,6-コリジン、2,4,6-コリジン、3,4,5-コリジン、および3,5,6-コリジン等が挙げられる。
 無機塩基としては、ナトリウム塩及びカリウム塩からなる群より選ばれる塩基が好ましく、例えば、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム、炭酸水素カリウム等が挙げられる。
 また、アルカリ金属の水素化物であることも好ましく、例えば、水素化ナトリウム、水素化カリウム等が挙げられる。
 塩基は、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム、炭酸水素カリウム、リチウムメトキシド、リチウムエトキシド、リチウムtert-ブトキシド、ナトリウムメトキシド、ナトリウムエトキシド、ナトリウムtert-ブトキシド、カリウムメトキシド、カリウムエトキシド、カリウムtert-ブトキシド、トリエチルアミン、トリn-プロピルアミン、トリブチルアミン、ジイソプロピルエチルアミン、N,N-ジエチルシクロヘキシルアミン、1,8-ジアザビシクロ[5.4.0]ウンデセン、及び1,5-ジアザビシクロ[4.3.0]ノネンからなる群より選ばれるいずれかであることが好ましい。
 中でも、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム、炭酸水素カリウム、ナトリウムtert-ブトキシド、又はカリウムtert-ブトキシドが好ましく、炭酸カリウム、炭酸水素カリウム、又はカリウムtert-ブトキシドが特に好ましい。これらの塩基は単独または組み合わせて使用することができる。
 また、別の好ましい態様として、塩基が有機塩基である場合、有機塩基は、トリメチルアミン、トリエチルアミン、ジイソプロピルエチルアミン、トリn-プロピルアミン、ピリジン、2,3-ルチジン、2,4-ルチジン、2,5-ルチジン、2,6-ルチジン、3,4-ルチジン、3,5-ルチジン、2,3,4-コリジン、2,4,5-コリジン、2,5,6-コリジン、2,4,6-コリジン、3,4,5-コリジン、および3,5,6-コリジンからなる群より選ばれるいずれかであることが好ましい。
 これらの塩基は単独または組み合わせて使用することができる。
 塩基の使用量としては、特に制限は無いが、後述の被トリフルオロメタンスルホニル化合物1モルに対して通常は0.01~20モルが好ましく、特に0.05~5モルがより好ましい。
 また、本開示の第1の組成物は、さらに溶剤を含んでいても良い。
 溶媒としては、上記一般式(1)で表される化合物、上記塩基を溶解するものであれば特に限定されないが、例えば、後述のトリフルオロメタンスルホニル化の反応溶媒を挙げることができる。
 なお、本開示の第1の組成物は、溶剤を含んでいてもよく、含んでいなくても良い。
<トリフルオロメタンスルホニルオキシ化合物の製造方法>
 本開示の第1の組成物を用いたトリフルオロメタンスルホニルオキシ化合物の製造方法(以下、第1の製造方法ともいう)は、上述の第1のトリフルオロメタンスルホニル化剤組成物を、下記一般式(2)で表される化合物と反応させる工程を含む。
(被トリフルオロメタンスルホニル化合物)
 前記の第1のトリフルオロメタンスルホニル化剤組成物でトリフルオロメタンスルホニル化される化合物(以下、被トリフルオロメタンスルホニル化合物、ともいう)は、下記一般式(2)で表される芳香族ヒドロキシル化合物である。
一般式(2):
Figure JPOXMLDOC01-appb-C000012
 一般式(2)中、Arは芳香環基または置換芳香環基を表す。
 一般式(2)で表される芳香環ヒドロキシル化合物のArは、芳香環基または置換芳香環基を表す。
 該芳香環基は、特に限定されないが、単環であっても多環であってもよく、炭素数1~18の芳香環基が好ましく、例えば、フェニル基、ナフチル基およびアントリル基等の芳香族炭化水素基や、ピロリル基(窒素保護体も含む)、ピリジル基、ピラジル基、ピリミジル基、ピリダジル基、トリアジル基、フリル基、チエニル基、インドリル基(窒素保護体も含む)、インダゾリル基、キノリル基、カルバゾリル基、ピロロピリジル基、ベンゾフリル基およびベンゾチエニル基等の窒素原子、酸素原子もしくは硫黄原子等のヘテロ原子を含む芳香族複素環基が挙げられる。
 上記一般式(2)中、Arが芳香環基を表し、前記芳香環基が、芳香族複素環基であることが好ましい。
 該置換芳香環基は、前記の芳香環基の、任意の炭素原子または窒素原子上に、任意の数および任意の組み合わせで、置換基を有する。係る置換基は、フッ素、塩素、臭素およびヨウ素のハロゲン原子、メチル基、エチル基およびプロピル基等の低級アルキル基、ビニル基、アリル基およびプロパルギル基等の低級不飽和基、フルオロメチル基、クロロメチル基およびブロモメチル基等の低級ハロアルキル基、C(CFOH基(ヒドロキシル基保護体も含む)、メトキシ基、エトキシ基およびプロポキシ基等の低級アルコキシ基、フルオロメトキシ基、クロロメトキシ基およびブロモメトキシ基等の低級ハロアルコキシ基、ホルミルオキシ基、アセチルオキシ基、プロピオニルオキシ基およびブチリルオキシ基等の低級アシルオキシ基、シアノ基、メトキシカルボニル基、エトキシカルボニル基およびプロポキシカルボニル基等の低級アルコキシカルボニル基、メトキシカルボニルメチル基、エトキシカルボニルエチル基およびプロポキシカルボニルプロピル基等の低級アルコキシカルボニル低級アルキル基、β-D-グルコピラノシド基、フェニル基、ナフチル基、アントリル基、ピロリル基(窒素保護体も含む)、ピリジル基、フリル基、チエニル基、インドリル基(窒素保護体も含む)、キノリル基、ベンゾフリル基およびベンゾチエニル基等の芳香環基、カルボキシル基の保護体、アミノ基、アミノ基の保護体、低級アルキルアミノ基、低級アルキルアミノ低級アルキル基、ヒドロキシル基、ヒドロキシル基の保護体、ならびにX’-Ar’-OH基等である。これらの置換基は、さらに置換されていてもよく、例えば、前記の“係る置換基は”の置換基によりさらに置換されていてもよい。
 上記一般式(2)中、Arが置換芳香環基を表し、前記置換芳香環基が有する置換基が、低級アルキル基、低級アルコキシカルボニル低級アルキル基、β-D-グルコピラノシド基、アミノ基、低級アルキルアミノ基、又はヒドロキシル基であることが好ましい。
 X’-Ar’-OH基のX’は、C(CH基、C(CF基、酸素原子、窒素原子(窒素保護体も含む)、硫黄原子、SO基またはSO基を表し、Ar’は、フェニレン基または置換フェニレン基を表す。フェニレン基の置換位置は、ヒドロキシル基に対して2位、3位または4位である。該置換フェニレン基の置換基は、前記の置換芳香環基の置換基と同じである。X’-Ar’-OH基が置換した一般式(2)で表される芳香族ヒドロキシル化合物の具体例として、以下の化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000013
 なお、本明細書において、低級とは、炭素数1~6の、直鎖状もしくは分枝状の鎖式または環式(炭素数3以上の場合)であるものを意味する。また、前記の“係る置換基は”の芳香環基には、ハロゲン原子、低級アルキル基、低級不飽和基、低級ハロアルキル基、C(CFOH基(ヒドロキシル基保護体も含む)、低級アルコキシ基、低級ハロアルコキシ基、ホルミルオキシ基、低級アシルオキシ基、シアノ基、低級アルコキシカルボニル基、低級アルコキシカルボニル低級アルキル基、カルボキシル基の保護体、アミノ基の保護体、ヒドロキシル基、ヒドロキシル基の保護体およびX’-Ar’-OH基等が置換することもできる。さらに、ピロリル基、インドリル基、ヒドロキシル基、カルボキシル基およびアミノ基の保護基は、Protective Groups in Organic Synthesis,Third Edition,1999,John Wiley & Sons,Inc.等に記載された保護基である。その中でも芳香環基、ならびに置換基として“ヒドロキシル基”、“芳香環基”および“X’-Ar’-OH基”を除く置換芳香環基が好ましく、芳香族炭化水素基、ならびに置換基として“ヒドロキシル基”、“芳香環基”および“X’-Ar’-OH基”を除く置換芳香族炭化水素基(置換基を有する芳香族炭化水素基)が特に好ましい。ヒドロキシル基を複数有する芳香環ヒドロキシル化合物では、採用する反応条件により、フルオロスルホニル化が複数進行する場合がある。
 好ましい一態様として、上記一般式(2)で表される芳香族環ヒドロキシル化合物は、アルコール性水酸基及びアミノ基から選択される少なくとも1つを置換基として有する態様が挙げられる。これらの置換基は、さらに置換されていても良く、例えば、前記の“係る置換基は”の置換基によりさらに置換されていてもよい。
 以下に一般式(2)で表される化合物を例示するが、これらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000014
 トリフルオロメタンスルホニル化反応において、上記一般式(2)で表される芳香族ヒドロキシル化合物は、前記一般式(1)で表されるトリフルオロメタンスルホニル化合物1.0molに対して、0.7mol~1.2mol用いられることが好ましい。より好ましくは0.8mol~1.0molである。
(溶媒)
 上述のトリフルオロメタンスルホニル化反応は、反応溶媒を用いて行うことが好ましい。
 トリフルオロメタンスルホニル化の反応溶媒としては、エーテル系溶媒、脂肪族炭化水素系溶媒、芳香族炭化水素系溶媒、ハロゲン化炭化水素系溶媒、エステル系溶媒、アミド系溶媒、ニトリル系溶媒、スルホキシド系溶媒等が挙げられる。
 これらの反応溶媒の具体例としては、エーテル系溶媒としては、ジエチルエーテル、ジイソプロピルエーテル、ジブチルエーテル、tert-ブチルメチルエーテル、テトラヒドロフラン、2-メチルテトラヒドロフラン、テトラヒドロピラン、1,4-ジオキサン、シクロペンチルメチルエーテル等を例示することができる。
 脂肪族炭化水素系溶媒としては、n-ヘキサン、n-ヘプタン、n-ペンタン、n-ノナン、n-デカン等を例示することができる。
 芳香族炭化水素系溶媒としては、トルエン、キシレン、メシチレン、エチルベンゼン等を例示することができる。
 ハロゲン化炭化水素系溶媒としては、塩化メチレン、クロロホルム、1,2-ジクロロエタン等を例示することができる。
 エステル系溶媒としては、酢酸エチル、酢酸イソプロピル、酢酸n-ブチル、γ-ブチロラクトン等を例示することができる。
 アミド系溶媒としては、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン、1,3-ジメチル-2-イミダゾリジノン等を例示することができる。
 ニトリル系溶媒としては、アセトニトリル、プロピオニトリル、ベンゾニトリル等を例示することができる。
 スルホキシド系溶媒としては、ジメチルスルホキシド等を例示することができる。
 これらの中でも、入手しやすく、基質および本開示のトリフルオロメタンスルホニル化剤の溶解性に優れることより、テトラヒドロフラン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、1,3-ジメチル-2-イミダゾリジノン、アセトニトリル、プロピオニトリルおよびジメチルスルホキシドが好ましく、テトラヒドロフラン、N,N-ジメチルホルムアミド、アセトニトリルが特に好ましい。これらの反応溶媒は単独または組み合わせて使用することができる。
 トリフルオロメタンスルホニル化の反応溶媒の使用量としては、特に制限は無いが、被トリフルオロメタンスルホニル化合物1モルに対して0.05L(リットル)以上使用すれば良く、通常は0.1~20Lが好ましく、特に0.1~10Lがより好ましい。
(反応温度)
 トリフルオロメタンスルホニル化の反応温度は特に制限は無いが、150℃以下の反応温度で行うことが好ましく、-100~150℃の範囲がより好ましく、-78~100℃がさらに好ましい。
(反応時間)
 トリフルオロメタンスルホニル化の反応時間としては、特に制限は無いが、0.1~72時間の範囲で行えば良く、原料および反応条件により異なるため、ガスクロマトグラフィー、液体クロマトグラフィー、NMR等の分析手段により、反応の進行状況を追跡して原料が殆ど消失した時点で終点とすることが好ましい。
(後処理操作:分液)
 上記反応後、トリフルオロメタンスルホニルオキシ化合物を単離するための後処理操作としては、有機合成における一般的な操作を行えば良い。
 例えば、トリフルオロメタンスルホニルオキシ化合物を含む反応終了後の反応液を水、酸性水溶液、またはアルカリ水溶液で後処理することが好ましい。すなわち、反応終了後の反応液を有機溶媒で希釈し、水、鉱酸(無機酸)の水溶液、またはアルカリ金属塩の水溶液で洗浄し、反応混合液(有機相)を濃縮することにより行えば良い。
 後処理の有機溶媒としては、エーテル系溶媒、脂肪族炭化水素系溶媒、芳香族炭化水素系溶媒、ハロゲン化炭化水素系溶媒、エステル系溶媒が挙げられる。
 後処理の有機溶媒の具体例としては、ジエチルエーテル、ジイソプロピルエーテル、ジブチルエーテル、tert-ブチルメチルエーテル、テトラヒドロフラン、2-メチルテトラヒドロフラン、テトラヒドロピラン、シクロペンチルメチルエーテル、n-ヘキサン、n-ヘプタン、n-ペンタン、n-ノナン、n-デカン、トルエン、キシレン、メシチレン、エチルベンゼン、塩化メチレン、クロロホルム、1,2-ジクロロエタン、酢酸エチル、酢酸n-ブチル等が挙げられる。
 中でも、ジイソプロピルエーテル、ジブチルエーテル、tert-ブチルメチルエーテル、2-メチルテトラヒドロフラン、シクロペンチルメチルエーテル、トルエン、キシレン、メシチレン、エチルベンゼン、塩化メチレン、クロロホルム、1,2-ジクロロエタン、酢酸エチル、酢酸n-ブチルが好ましく、特に酢酸エチルが好ましい。これらの反応溶媒は単独または組み合わせて使用することができる。
 後処理の溶媒の使用量としては、特に制限は無いが、被トリフルオロメタンスルホニル化合物1モルに対して0.05L(リットル)以上使用すれば良く、通常は0.1~20Lが好ましく、特に0.1~10Lがより好ましい。
 後処理の鉱酸の具体例は、塩酸、臭化水素酸、硫酸、リン酸、硝酸が挙げられる。中でも塩酸、硫酸が好ましく、塩酸が特に好ましい。
 後処理のアルカリ金属塩の具体例としては、炭酸水素ナトリウム、炭酸水素カリウム、炭酸ナトリウム、水酸化ナトリウム、水酸化カリウムまたは炭酸カリウムを例示することができる。
 得られたトリフルオロメタンスルホニルオキシ化合物は、例えば、遷移金属によるカップリング反応等に適宜好ましく用いることができる。
 上述のように、本開示の第1の製造方法により得られるトリフルオロメタンスルホニルオキシ化合物は、簡便な後処理操作のみで反応終了後の反応液から単離することが可能であるため、工業的に実施可能で、かつ、結果として、カップリング反応生成物を従来の方法に比べて格段に効率よく製造することが可能となる。
・第2の態様
 本開示の別の好ましい態様として、上述の一般式(11)で表される化合物を含むトリフルオロメタンスルホニル化剤組成物が挙げられる。
 一般式(11)で表される化合物を含むトリフルオロメタンスルホニル化剤組成物(以下、第2のトリフルオロメタンスルホニル化剤組成物、または単に、第2の組成物ともいう)により、フェノール性水酸基を有する基質のみならず、広範な基質をトリフルオロメタンスルホニル化することができ、工業的に実施可能な条件で、これら基質に由来するトリフルオロメタンスルホニル化合物を簡便に提供できる。
 本開示の第2の組成物は、一般式(11)で表される化合物であるトリフリルイミダゾリウム塩またはトリフリルトリアゾリウム塩を含む。これらは2種類以上を組み合わせてもよい。
 第2の組成物の全質量に対し、一般式(11)で表される化合物が80%以上含まれることが好ましく、90%以上含まれることがより好ましい。
 本開示の第2の組成物は、さらに塩基を含んでいてもよい。
 塩基としては、例えば、後述のトリフルオロメタンスルホニル化に使用し得る塩基を挙げることができる。
 なお、本開示の第2の組成物は、塩基を含んでいてもよく、含んでいなくても良い。
 塩基の使用量としては、特に制限は無いが、後述の被トリフルオロメタンスルホニル化合物1モルに対して通常は0.01~20モルが好ましく、特に0.05~5モルがより好ましい。
 また、本開示の第2の組成物は、さらに溶剤を含んでいても良い。
 溶媒としては、上記一般式(11)で表される化合物、および、第2の組成物が塩基を含む場合には上記塩基を溶解するものであれば特に限定されないが、例えば、後述のトリフルオロメタンスルホニル化の反応溶媒を挙げることができる。
 なお、本開示の第2の組成物は、溶剤を含んでいてもよく、含んでいなくても良い。
<トリフルオロメタンスルホニル化合物の製造方法>
 本開示の第2の組成物を用いたトリフルオロメタンスルホニル化合物の製造方法(以下、単に第2の製造方法ともいう)は、上述の第2のトリフルオロメタンスルホニル化剤組成物を、被トリフルオロメタンスルホニル化合物と反応させる工程を含む。
(被トリフルオロメタンスルホニル化合物)
 前記の第2のトリフルオロメタンスルホニル化剤組成物でトリフルオロメタンスルホニル化される化合物(以下、被トリフルオロメタンスルホニル化合物、ともいう)としては、フェノール性水酸基を有する化合物、アルコール性水酸基を有する化合物、ケトン、1級アミンおよび2級アミンからなる群から選ばれる少なくとも一つの基質であることが好ましい。
 フェノール性水酸基を有する化合物としては、例えば、上述の一般式(2)で表される芳香族ヒドロキシル化合物を挙げることができる。
 アルコール性水酸基を有する化合物としては、例えば、炭素数1~20のアルキルアルコール、乳酸メチル、フェニルエチルアルコール、テトラアセチルーβーDーマンノース等を挙げることができる。
 ケトンとしては、アセト酢酸エチル、アセチルアセトン、シクロヘキサノン、1,3-シクロヘキサンジオン、2-オキソシクロヘキサンカルボン酸エチル等を挙げることができる。
 1級アミンとしては、例えば、炭素数1~20のアルキルアミン、アニリン、1-フェニルエチルアミン、αーアミノ酸等を挙げることができる。
 2級アミンとしては、例えば、炭素数1~20のアルキルアミン、メチルアニリン、N-メチルフェニルエチルアミン、ピぺリジン等を挙げることができる。
 なお、上述の被トリフルオロメタンスルホニル化合物は、1分子内に1個のみならず、2個または3個の官能基を有する化合物も、本開示の第2のトリフルオロメタンスルホニル化剤組成物によりトリフルオロメタンスルホニル化が可能である。官能基を複数有する被トリフルオロメタンスルホニル化合物では、採用する反応条件により、フルオロスルホニル化が複数進行する場合がある。
 上記被トリフルオロメタンスルホニル化合物と本開示の第2のトリフルオロメタンスルホニル化剤組成物とを接触反応させトリフルオロメタンスルホニル化する、トリフルオロメタンスルホニル化反応において、被トリフルオロメタンスルホニル化合物とトリフルオロメタンスルホニル化剤(前記一般式(11)で表される化合物)の割合は、モル比率で表して、好ましくは、被トリフルオロメタンスルホニル化合物:トリフルオロメタンスルホニル化剤=1:0.5~1:5.0であり、より好ましくは、1:1~1:3.0である。
(溶媒)
 上述のトリフルオロメタンスルホニル化反応は、反応溶媒を用いて行うことが好ましい。
 トリフルオロメタンスルホニル化の反応溶媒としては、エーテル系溶媒、脂肪族炭化水素系溶媒、芳香族炭化水素系溶媒、ハロゲン化炭化水素系溶媒、エステル系溶媒、アミド系溶媒、ニトリル系溶媒、スルホキシド系溶媒等が挙げられる。
 これらの反応溶媒の具体例としては、上述の第1の製造方法における反応溶媒に記載の具体例が挙げられ、好ましい例も同様である。
 トリフルオロメタンスルホニル化の反応溶媒の使用量としては、特に制限は無いが、被トリフルオロメタンスルホニル化合物1モルに対して0.05L(リットル)以上使用すれば良く、通常は0.1~20Lが好ましく、特に0.1~10Lがより好ましい。
(塩基)
 上述のトリフルオロメタンスルホニル化反応は、塩基を用いて行うことが好ましい。
 塩基としては、上述の第1の組成物に含みうる塩基として記載した塩基を挙げることができる。
 塩基としては、トリエチルアミン、水素化ナトリウム、ジイソプロピルエチルアミン、トリブチルアミン、ピリジン、2,3-ルチジン、2,4-ルチジン、2,5-ルチジン、2,6-ルチジン、3,4-ルチジン、3,5-ルチジンが好ましく、トリエチルアミン、水素化ナトリウムがより好ましい。
 塩基の使用量としては、特に制限は無いが、後述の被トリフルオロメタンスルホニル化合物1モルに対して通常は0.01~20モルが好ましく、特に0.05~5モルがより好ましい。
(反応温度)
 トリフルオロメタンスルホニル化の反応温度は特に制限は無いが、150℃以下の反応温度で行うことが好ましく、-100~150℃の範囲がより好ましく、-78~100℃がさらに好ましい。
(反応時間)
 トリフルオロメタンスルホニル化の反応時間としては、特に制限は無いが、0.1~72時間の範囲で行えば良く、原料および反応条件により異なるため、ガスクロマトグラフィー、液体クロマトグラフィー、NMR等の分析手段により、反応の進行状況を追跡して原料が殆ど消失した時点で終点とすることが好ましい。
(後処理操作:分液)
 上記反応後、トリフルオロメタンスルホニル化合物を単離するための後処理操作としては、有機合成における一般的な操作を行えば良い。
 例えば、トリフルオロメタンスルホニル化合物を含む反応終了後の反応液を水、酸性水溶液、またはアルカリ水溶液で後処理することが好ましい。すなわち、反応終了後の反応液を有機溶媒で希釈し、水、鉱酸(無機酸)の水溶液、またはアルカリ金属塩の水溶液で洗浄し、反応混合液(有機相)を濃縮することにより行えば良い。
 後処理の有機溶媒としては、エーテル系溶媒、脂肪族炭化水素系溶媒、芳香族炭化水素系溶媒、ハロゲン化炭化水素系溶媒、エステル系溶媒が挙げられる。
 後処理の有機溶媒の具体例としては、上述の第1の製造方法における後処理の有機溶媒に記載の具体例が挙げられ、好ましい例も同様である。有機溶媒は単独または組み合わせて使用することができる。
 後処理の溶媒の使用量としては、特に制限は無いが、被トリフルオロメタンスルホニル化合物1モルに対して0.05L(リットル)以上使用すれば良く、通常は0.1~20Lが好ましく、特に0.1~10Lがより好ましい。
 後処理の鉱酸及びアルカリ金属塩の具体例は、上述の第1の製造方法における後処理の鉱酸及びアルカリ金属塩に記載の具体例が挙げられ、好ましい例も同様である。
 上述のように、本開示の第2の製造方法により得られるトリフルオロメタンスルホニル化合物は、簡便な後処理操作のみで反応終了後の反応液から単離することが可能であり、工業的に実施可能で、かつ、効率よく製造することが可能となる。
 以下、実施例により本開示を詳細に説明するが、本開示はこれらの実施例に限定されるものではない。ここで、実施例1~22、28~35において、収率(%)とは、核磁気共鳴スペクトル19F-NMRの測定により得た値である。
 下記において、合成例1~3及び実施例1~27は、上述の一般式(1)で表される化合物と特定の塩基とを含むトリフルオロメタンスルホニル化剤組成物を用いた第1の態様に対応する。また、合成例4~7及び実施例28~35は、上述の一般式(11)で表される化合物を含むトリフルオロメタンスルホニル化剤組成物を用いた第2の態様に対応する。
(合成例1)
 イミダゾール5.0g(73mmol、1.0eq.=モル当量比、以下同じ)、トリフルオロメタンスルホニルクロライド23.5g(139mmol、1.9eq.)、炭酸ナトリウム15.6g(122mmol、2.0eq.)、および反応溶媒としてのアセトニトリル73mLを採取し、容量200mLの撹拌機付き3口フラスコに仕込んだ。その後、室温(約25℃、以下同じ)にて16時間攪拌した。反応液を少量濃縮し、H-NMRにより分析したところ、イミダゾールに由来するシグナルが完全に消失し、新たに1-トリフルオロメタンスルホニルイミダゾールに由来するシグナルが観測された。
 反応液をセライト濾過(セライト、登録商標=炭酸ナトリウムとともに焼成した珪藻土、以下同じ)し不溶物を除いた濾液からアセトニトリルを除去することにより、1-トリフルオロメタンスルホニルイミダゾール9.7gを得た。
[物性値]
 1-トリフルオロメタンスルホニルイミダゾール;
H-NMR(400MHz,CDCN)δ(ppm):8.15(1H,s),7.56(1H,s),7.29(1H,s)
19F-NMR(373MHz,CDCN)δ(ppm):-77.3(3F,s)
 以下に、合成例1における反応を示す。
Figure JPOXMLDOC01-appb-C000015
(合成例2)
 2-メチルイミダゾール5.0g(61mmol、1.0eq.)、トリフルオロメタンスルホニルクロライド19.5g(116mmol、1.9eq.)、炭酸ナトリウム12.9g(122mmol、2.0eq.)、および反応溶媒としてのアセトニトリル61mLを採取し、容量200mLの攪拌機付き3口フラスコ内に仕込んだ。その後、室温にて22時間攪拌した。反応液を少量濃縮し、H-NMRにより分析したところ、2-メチルイミダゾールに由来するシグナルが完全に消失し、新たに1-トリフルオロメタンスルホニル-2-メチルイミダゾールに由来するシグナルが観測された。
 反応液をセライト濾過し不溶物を除いた濾液からアセトニトリルを除去することにより、1-トリフルオロメタンスルホニル-2-メチルイミダゾール10.2gを得た。
[物性値]
 1-トリフルオロメタンスルホニル-2-メチルイミダゾール;
H-NMR(400MHz,CDCN)δ(ppm):7.42(1H,s),7.05(1H,s),2.56(3H,s)
19F-NMR(373MHz,CDCN)δ(ppm):-76.7(3F,s)
 以下に、合成例2における反応を示す。
Figure JPOXMLDOC01-appb-C000016
(合成例3)
 4-ニトロイミダゾール5.0g(44mmol)、反応溶媒としてジクロロメタン45mLを採取し、反応器である容量100mLの撹拌子入り3口フラスコに仕込んだ。続けてトリフルオロメタンスルホン酸無水物6.3g(22mmol、0.5eq.)を滴下し、室温で21時間撹拌した。反応液をセライト濾過し、不溶物を除いた濾液からジクロロメタンを除去することにより、1-トリフルオロメタンスルホニル-4-ニトロイミダゾール5.2gを得た。
[物性値]
 1-トリフルオロメタンスルホニル-4-ニトロイミダゾール;
H-NMR(400MHz,CDCl)δ(ppm):8.17(1H,d,J=1.2Hz),8.02(1H,d,J=1.6Hz)
19F-NMR(373MHz,CDCl)δ(ppm):-74.6(3F,s)
 以下に、合成例3における反応を示す。
Figure JPOXMLDOC01-appb-C000017
[実施例1]
 基質としてのL-チロシンメチルエステル195mg(1.00mmol、1.0eq.)および反応溶媒としてのアセトニトリル5mLを採取し、反応器である容量20mLの撹拌子入りシュレンクチューブに仕込んだ。続けて1-トリフルオロメタンスルホニルイミダゾール220mg(1.10mmol、1.1eq.)、炭酸カリウム28mg(0.20mmol、0.2eq.)両成分を含む組成物を反応器に加え、室温で2時間撹拌し反応液を得た。反応液に内部標準としてのベンゾトリフルオリドを加え、19F-NMRにより分析すると2-アミノ-3-(4-トリフルオロメタンスルホニルオキシフェニル)プロパン酸メチルに由来するシグナルを-74ppmに確認し、その定量収率は100%であった。
 以下に、実施例1における反応を示す。
Figure JPOXMLDOC01-appb-C000018
[実施例2]
 基質としてのL-チロシンメチルエステル196mg(1.00mmol、1.0eq.)および反応溶媒としてのジメチルホルムアミド(DMF)5mLを採取し、反応器である容量20mLの撹拌子入りシュレンクチューブに仕込んだ。続けて1-トリフルオロメタンスルホニルイミダゾール228mg(1.14mmol、1.1eq.)、炭酸カリウム27mg(0.20mmol、0.2eq.)両成分を含む組成物を反応器に加え、室温で2時間撹拌し反応液を得た。反応液に内部標準としてのベンゾトリフルオリドを加え、19F-NMRにより分析すると2-アミノ-3-(4-トリフルオロメタンスルホニルオキシフェニル)プロパン酸メチルに由来するシグナルを-74ppmに確認し、その定量収率は100%であった。
 以下に、実施例2における反応を示す。
Figure JPOXMLDOC01-appb-C000019
[実施例3]
 基質としてのL-チロシンメチルエステル197mg(1.01mmol、1.0eq.)および反応溶媒としてのジメチルスルホキシド(DMSO)5mLを採取し、反応器である容量20mLの撹拌子入りシュレンクチューブに仕込んだ。続けて1-トリフルオロメタンスルホニルイミダゾール228mg(1.14mmol、1.1eq.)、炭酸カリウム28mg(0.20mmol、0.2eq.)両成分を含む組成物を反応器に加え、室温で2時間撹拌し反応液を得た。反応液に内部標準としてのベンゾトリフルオリドを加え、19F-NMRにより分析すると2-アミノ-3-(4-トリフルオロメタンスルホニルオキシフェニル)プロパン酸メチルに由来するシグナルを-74ppmに確認し、その定量収率は100%であった。
 以下に、実施例3における反応を示す。
Figure JPOXMLDOC01-appb-C000020
[実施例4]
 基質としてのL-チロシンメチルエステル196mg(1.00mmol、1.0eq.)および反応溶媒としてのガンマブチロラクトン5mLを採取し、反応器である容量20mLの撹拌子入りシュレンクチューブに仕込んだ。続けて1-トリフルオロメタンスルホニルイミダゾール223mg(1.12mmol、1.1eq.)、炭酸カリウム27mg(0.20mmol、0.2eq.)両成分を含む組成物を反応器に加え、室温で2時間撹拌し反応液を得た。反応液に内部標準としてのベンゾトリフルオリドを加え、19F-NMRにより分析すると2-アミノ-3-(4-トリフルオロメタンスルホニルオキシフェニル)プロパン酸メチルに由来するシグナルを-74ppmに確認し、その定量収率は100%であった。
 以下に、実施例4における反応を示す。
Figure JPOXMLDOC01-appb-C000021
[実施例5]
 基質としてのL-チロシンメチルエステル586mg(3.00mmol、1.0eq.)および反応溶媒としてのテトラヒドロフラン(THF)15mLを採取し、反応器である容量50mLの撹拌子入り2口フラスコに仕込んだ。続けて1-トリフルオロメタンスルホニルイミダゾール720mg(3.60mmol、1.2eq.)、カリウムtert-ブトキシド67mg(0.60mmol、0.2eq.)両成分を含む組成物を反応器に加え、室温で16時間撹拌し反応液を得た。反応液に内部標準としてのベンゾトリフルオリドを加え、19F-NMRにより分析すると2-アミノ-3-(4-トリフルオロメタンスルホニルオキシフェニル)プロパン酸メチルに由来するシグナルを-74ppmに確認し、その定量収率は99%であった。
 以下に、実施例5における反応を示す。
Figure JPOXMLDOC01-appb-C000022
[実施例6]
 基質としてのL-チロシンメチルエステル196mg(1.01mmol、1.0eq.)および反応溶媒としてのアセトニトリル5mLを採取し、反応器である容量20mLの撹拌子入りシュレンクチューブに仕込んだ。続けて1-トリフルオロメタンスルホニルイミダゾール222mg(1.11mmol、1.1eq.)、トリエチルアミン51mg(0.52mmol、0.5eq.)両成分を含む組成物を反応器に加え、室温で20時間撹拌し反応液を得た。反応液に内部標準としてのベンゾトリフルオリドを加え、19F-NMRにより分析すると2-アミノ-3-(4-トリフルオロメタンスルホニルオキシフェニル)プロパン酸メチルに由来するシグナルを-74ppmに確認し、その定量収率は42%であるが、副反応は観られなかった。具体的には、副生成物に相当し得る「2-トリフルオロメタンスルホニルアミノ-3-(4-トリフルオロメタンスルホニルオキシフェニル)プロパン酸メチル」由来するシグナルを確認することはできなかった。
 以下に、実施例6における反応を示す。
Figure JPOXMLDOC01-appb-C000023
[実施例7]
 基質としての4-アミノフェノール111mg(1.02mmol、1.0eq.)および反応溶媒としてのアセトニトリル5mLを採取し、反応器である容量20mLの撹拌子入りシュレンクチューブに仕込んだ。続けて1-トリフルオロメタンスルホニルイミダゾール222mg(1.11mmol、1.1eq.)、炭酸カリウム28mg(0.20mmol、0.2eq.)両成分を含む組成物を反応器に加え、室温で2時間撹拌し反応液を得た。反応液に内部標準としてのベンゾトリフルオリドを加え、19F-NMRにより分析すると4-アミノフェニルトリフルオロメタンスルホネートに由来するシグナルを-74ppmに確認し、その定量収率は100%であった。
 以下に、実施例7における反応を示す。
Figure JPOXMLDOC01-appb-C000024
[実施例8]
 基質としての2-アミノフェノール109mg(1.00mmol、1.0eq.)および反応溶媒としてのアセトニトリル5mLを採取し、反応器である容量20mLの撹拌子入りシュレンクチューブに仕込んだ。続けて1-トリフルオロメタンスルホニルイミダゾール202mg(1.01mmol、1.0eq.)、炭酸カリウム29mg(0.21mmol、0.2eq.)両成分を含む組成物を反応器に加え、室温で3時間撹拌し反応液を得た。反応液に内部標準としてのベンゾトリフルオリドを加え、19F-NMRにより分析すると2-アミノフェニルトリフルオロメタンスルホネートに由来するシグナルを-75ppmに確認し、その定量収率は48%であった。1,1,1-トリフルオロ-N-(2-ヒドロキシフェニル)メタンスルホンアミドに由来するシグナルを-78ppmに確認し、その定量収率は17%であった。
 以下に、実施例8における反応を示す。
Figure JPOXMLDOC01-appb-C000025
[実施例9]
 基質としての4-(2-アミノエチル)フェノール1.08g(7.87mmol、1.0eq.)および反応溶媒としてのテトラヒドロフラン39mLを採取し、反応器である容量20mLの撹拌子入りシュレンクチューブに仕込んだ。続けて1-トリフルオロメタンスルホニルイミダゾール1.89g(9.44mmol、1.2eq.)、カリウムtert-ブトキシド177mg(1.58mmol、0.2eq.)両成分を含む組成物を反応器に加え、室温で3時間撹拌し反応液を得た。反応液に内部標準としてのベンゾトリフルオリドを加え、19F-NMRにより分析すると4-(2-アミノエチル)フェニルトリフルオロメタンスルホネートに由来するシグナルを-75ppmに確認し、その定量収率は97%であった。
 以下に、実施例9における反応を示す。
Figure JPOXMLDOC01-appb-C000026
[実施例10]
 基質としての2-(4-ヒドロキシフェニル)エタノール276mg(2.00mmol、1.0eq.)および反応溶媒としてのアセトニトリル10mLを採取し、反応器である容量20mLの撹拌子入りシュレンクチューブに仕込んだ。続けて1-トリフルオロメタンスルホニルイミダゾール401mg(2.00mmol、1.0eq.)、炭酸カリウム14mg(0.10mmol、0.05eq.)両成分を含む組成物を反応器に加え、室温で22時間撹拌し反応液を得た。反応液に内部標準としてのベンゾトリフルオリドを加え、19F-NMRにより分析すると4-(2-ヒドロキシエチル)フェニルトリフルオロメタンスルホネートに由来するシグナルを-74ppmに確認し、その定量収率は92%であった。
 以下に、実施例10における反応を示す。
Figure JPOXMLDOC01-appb-C000027
[実施例11]
 基質としての2-(4-ヒドロキシフェニル)エタノール139mg(1.00mmol、1.0eq.)および反応溶媒としてのアセトニトリル5mLを採取し、反応器である容量20mLの撹拌子入りシュレンクチューブに仕込んだ。続けて1-トリフルオロメタンスルホニルイミダゾール202mg(1.01mmol、1.0eq.)、炭酸水素カリウム20mg(0.20mmol、0.2eq.)両成分を含む組成物を反応器に加え、室温で30時間撹拌し反応液を得た。反応液に内部標準としてのベンゾトリフルオリドを加え、19F-NMRにより分析すると4-(2-ヒドロキシエチル)フェニルトリフルオロメタンスルホネートに由来するシグナルを-74ppmに確認し、その定量収率は88%であった。
 以下に、実施例11における反応を示す。
Figure JPOXMLDOC01-appb-C000028
[実施例12]
 基質としてのL-フェニレフリン335mg(2.00mmol、1.0eq.)及び反応溶媒としてのジメチルホルムアミド10mLを採取し、反応器である容量20mLの撹拌子入りシュレンクチューブに仕込んだ。続けて1-トリフルオロメタンスルホニルイミダゾール400mg(2.00mmol、1.0eq.)、炭酸カリウム14mg(0.10mmol、0.05eq.)両成分を含む組成物を反応器に加え、室温で5時間撹拌し反応液を得た。反応液に内部標準としてのベンゾトリフルオリドを加え、19F-NMRにより分析すると3-[(1R)-1-ヒドロキシ-2-(メチルアミノ)エチル]フェニルトリフルオロメタンスルホネートに由来するシグナルを-74ppmに確認し、その定量収率は90%であった。
 以下に、実施例12における反応を示す。
Figure JPOXMLDOC01-appb-C000029
[実施例13]
 基質としてのL-フェニレフリン167mg(1.00mmol、1.0eq.)及び反応溶媒としてのジメチルホルムアミド5mLを採取し、反応器である容量20mLの撹拌子入りシュレンクチューブに仕込んだ。続けて1-トリフルオロメタンスルホニルイミダゾール201mg(1.00mmol、1.0eq.)、炭酸水素カリウム20mg(0.20mmol、0.2eq.)両成分を含む組成物を反応器に加え、室温で22時間撹拌し反応液を得た。反応液に内部標準としてのベンゾトリフルオリドを加え、19F-NMRにより分析すると3-[(1R)-1-ヒドロキシ-2-(メチルアミノ)エチル]フェニルトリフルオロメタンスルホネートに由来するシグナルを-74ppmに確認し、その定量収率は89%であった。
 以下に、実施例13における反応を示す。
Figure JPOXMLDOC01-appb-C000030
[実施例14]
 基質としての5-ヒドロキシインドール666mg(5.00mmol、1.0eq.)および反応溶媒としてのアセトニトリル10mLを採取し、反応器である容量20mLの撹拌子入りシュレンクチューブに仕込んだ。続けて1-トリフルオロメタンスルホニルイミダゾール1.00g(5.00mmol、1.0eq.)、炭酸カリウム138mg(1.00mmol、0.2eq.)両成分を含む組成物を反応器に加え、室温で3時間撹拌し反応液を得た。反応液に内部標準としてのベンゾトリフルオリドを加え、19F-NMRにより分析するとインドール-5-イルトリフルオロメタンスルホネートに由来するシグナルを-74ppmに確認し、その定量収率は87%であった。1-(トリフルオロメタンスルホニル)インドール-5-イルトリフルオロメタンスルホネートに由来するシグナルを-74ppmと-76ppmに確認し、その定量収率は5%であった。
 以下に、実施例14における反応を示す。
Figure JPOXMLDOC01-appb-C000031
[実施例15]
 基質としての6-ヒドロキシインダゾール134mg(1.00mmol、1.0eq.)および反応溶媒としてのアセトニトリル5mLを採取し、反応器である容量20mLの撹拌子入りシュレンクチューブに仕込んだ。続けて1-トリフルオロメタンスルホニルイミダゾール201mg(1.01mmol、1.0eq.)、炭酸カリウム27mg(0.19mmol、0.2eq.)両成分を含む組成物を反応器に加え、室温で2時間撹拌し反応液を得た。反応液に内部標準としてのベンゾトリフルオリドを加え、19F-NMRにより分析するとインダゾール-6-イルトリフルオロメタンスルホネートに由来するシグナルを-74ppmに確認し、その定量収率は74%であった。1-(トリフルオロメタンスルホニル)インダゾール-6-イルトリフルオロメタンスルホネートに由来するシグナルを-73ppmと-75ppmに確認し、その定量収率は6%であった。1-(トリフルオロメタンスルホニル)インダゾール-6-オールに由来するシグナルを-75ppmに確認し、その定量収率は7%であった。
 以下に、実施例15における反応を示す。
Figure JPOXMLDOC01-appb-C000032
[実施例16]
 基質としての4-ヒドロキシカルバゾール500mg(2.73mmol、1.0eq.)および反応溶媒としてのアセトニトリル5.4mLを採取し、反応器である容量20mLの撹拌子入りシュレンクチューブに仕込んだ。続けて1-トリフルオロメタンスルホニルイミダゾール550mg(2.75mmol、1.0eq.)、炭酸カリウム75mg(0.54mmol、0.2eq.)両成分を含む組成物を反応器に加え、室温で4時間撹拌し反応液を得た。反応液に内部標準としてのベンゾトリフルオリドを加え、19F-NMRにより分析するとカルバゾール-4-イルトリフルオロメタンスルホネートに由来するシグナルを-72ppmに確認し、その定量収率は98%であった。
 以下に、実施例16における反応を示す。
Figure JPOXMLDOC01-appb-C000033
[実施例17]
 基質としての4-ヒドロキシピリジン96mg(1.0mmol、1.0eq.)および反応溶媒としてのテトラヒドロフラン5mLを採取し、反応器である容量20mLの撹拌子入りシュレンクチューブに仕込んだ。続けて1-トリフルオロメタンスルホニルイミダゾール244mg(1.22mmol、1.2eq.)、カリウムtert-ブトキシド22mg(0.20mmol、0.2eq.)両成分を含む組成物を反応器に加え、70℃で5時間撹拌し反応液を得た。反応液に内部標準としてのベンゾトリフルオリドを加え、19F-NMRにより分析するとピリジン-4-イルトリフルオロメタンスルホネートに由来するシグナルを-74ppmに確認し、その定量収率は67%であるが、副反応は観られなかった。具体的には、副生成物に相当し得る1―(トリフルオロメタンスルホニル)-4-[(トリフルオロメタンスルホニル)オキシ]ピリジニウムに由来するシグナルを確認することはできなかった。
 以下に、実施例17における反応を示す。
Figure JPOXMLDOC01-appb-C000034
[実施例18]
 基質としてのピロロ[2,3-b]ピリジン-5-オール671mg(5.00mmol、1.0eq.)および反応溶媒としてのテトラヒドロフラン25mLを採取し、反応器である容量50mLの撹拌子入り2口フラスコに仕込んだ。続けて1-トリフルオロメタンスルホニルイミダゾール1.20g(6.00mmol、1.2eq.)、カリウムtert-ブトキシド112mg(1.00mmol、0.2eq.)両成分を含む組成物を反応器に加え、室温で16時間撹拌し反応液を得た。反応液に内部標準としてのベンゾトリフルオリドを加え、19F-NMRにより分析するとピロロ[2,3-b]ピリジン-5-イルトリフルオロメタンスルホネートに由来するシグナルを-74ppmに確認し、その定量収率は91%であるが、副反応は観られなかった。具体的には、副生成物に相当し得る1-(トリフルオロメタンスルホニル)-ピロロ[2,3-b]ピリジン-5-イルトリフルオロメタンスルホネートに由来するシグナルを観測することはできなかった。
 以下に、実施例18における反応を示す。
Figure JPOXMLDOC01-appb-C000035
[実施例19]
 基質としての2,4-ジヒドロキシ安息香酸メチル169mg(1.01mmol、1.0eq.)および反応溶媒としてのアセトニトリル5mLを採取し、反応器である容量20mLの撹拌子入りシュレンクチューブに仕込んだ。続けて1-トリフルオロメタンスルホニルイミダゾール202mg(1.01mmol、1.0eq.)、炭酸カリウム28mg(0.20mmol、0.2eq.)両成分を含む組成物を反応器に加え、室温で7時間撹拌し反応液を得た。反応液に内部標準としてのベンゾトリフルオリドを加え、19F-NMRにより分析すると2-ヒドロキシ-4-(トリフルオロメタンスルホニルオキシ)安息香酸メチルに由来するシグナルを-74ppmに確認し、その定量収率は76%であった。4-ヒドロキシ-2-[(トリフルオロメタンスルホニル)オキシ]安息香酸メチルに由来するシグナルを-75ppmに観測し、その定量収率は5%であった。
 以下に、実施例19における反応を示す。
Figure JPOXMLDOC01-appb-C000036
[実施例20]
 基質としてのアルブチン544mg(2.00mmol、1.0eq.)および反応溶媒としてのジメチルホルムアミド10mLを採取し、反応器である容量20mLの撹拌子入りシュレンクチューブに仕込んだ。続けて1-トリフルオロメタンスルホニルイミダゾール400mg(2.00mmol、1.0eq.)、炭酸カリウム14mg(0.10mmol、0.05eq.)両成分を含む組成物を反応器に加え、室温で5時間撹拌し反応液を得た。反応液に内部標準としてのベンゾトリフルオリドを加え、19F-NMRにより分析すると4-トリフルオロメタンスルホニルオキシフェニルβ-D-グルコピラノシドに由来するシグナルを-74ppmに確認し、その定量収率は76%であった。
 以下に、実施例20における反応を示す。
Figure JPOXMLDOC01-appb-C000037
[実施例21]
 基質としてのアルブチン273mg(1.00mmol、1.0eq.)および反応溶媒としてのジメチルホルムアミド5mLを採取し、反応器である容量20mLの撹拌子入りシュレンクチューブに仕込んだ。続けて1-トリフルオロメタンスルホニルイミダゾール201mg(1.00mmol、1.0eq.)、炭酸水素カリウム19mg(0.19mmol、0.2eq.)両成分を含む組成物を反応器に加え、室温で22時間撹拌し反応液を得た。反応液に内部標準としてのベンゾトリフルオリドを加え、19F-NMRにより分析すると4-トリフルオロメタンスルホニルオキシフェニルβ-D-グルコピラノシドに由来するシグナルを-74ppmに確認し、その定量収率は75%であった。
 以下に、実施例21における反応を示す。
Figure JPOXMLDOC01-appb-C000038
[実施例22]
 基質としての4-アミノフェノール112mg(1.03mmol、1.0eq.)および反応溶媒としてのアセトニトリル5mLを採取し、反応器である容量20mLの撹拌子入りシュレンクチューブに仕込んだ。続けて2-メチル-1-トリフルオロメタンスルホニルイミダゾール238mg(1.11mmol、1.1eq.)、炭酸カリウム27mg(0.19mmol、0.2eq.)両成分を含む組成物を反応器に加え、室温で20時間撹拌し反応液を得た。反応液に内部標準としてのベンゾトリフルオリドを加え、19F-NMRにより分析すると4-アミノフェニルトリフルオロメタンスルホネートに由来するシグナルを-74ppmに確認し、その定量収率は80%であるが、副反応は観られなかった。具体的には、副生成物に相当し得る「1,1,1-トリフルオロ-N-(2-ヒドロキシフェニル)メタンスルホンアミド」に由来するシグナルを確認することはできなかった。
 以下に、実施例22における反応を示す。
Figure JPOXMLDOC01-appb-C000039
[実施例23]
(第1の反応)
 基質としてのL-チロシンメチルエステル196mg(1.00mmol、1.0eq.)および反応溶媒としてのアセトニトリル5mLを採取し、反応器である容量20mLの撹拌子入りシュレンクチューブに仕込んだ。続けて1-トリフルオロメタンスルホニルイミダゾール224mg(1.12mmol、1.1eq.)、炭酸カリウム28mg(0.20mmol、0.2eq.)両成分を含む組成物を反応器に加え、室温で2時間撹拌し反応液を得た。反応液に1mol/L塩酸5mLを加えてpH=1に調節した後、室温で5分撹拌した。得られた溶液に1mol/L炭酸ナトリウム水溶液2.5mLを加えpH=7に調節した後、tert-ブチルメチルエーテル20mL、上水20mLで分液ロートへ移液し、分層した。得られた有機相をさらに上水20mLで洗浄し、硫酸ナトリウムで乾燥した。得られた溶液をろ過し、減圧濃縮することで単離収率100%で(2S)-2-アミノ-3-(4-トリフルオロメタンスルホニルオキシフェニル)プロパン酸メチル327mgを得た。
[物性値]
 (2S)-2-アミノ-3-(4-トリフルオロメタンスルホニルオキシフェニル)プロパン酸メチル;
H-NMR(400MHz,CDCl)δ(ppm):7.30(2H,d,J=9.2Hz),7.22(2H,d,J=9.2Hz),3.74-3.71(4H,m),3.10(1H,dd,J=14.0,5.6Hz),2.90(1H,dd,J=14.0,8.4Hz),1.52(2H,br s).
19F-NMR(373MHz,CDCl)δ(ppm):-73.2(3F,s).
(第2の反応)
 第1の反応で得られた、(2S)-2-アミノ-3-(4-トリフルオロメタンスルホニルオキシフェニル)プロパン酸メチル327mg(1.00mmol、1.0eq.)及び反応溶媒としてのトルエン5mL、純水0.5mLを反応器である容量20mLの撹拌子入りシュレンクチューブに仕込んだ。得られた溶液に窒素バブリングを15分間行い、そのまま窒素気流下で4-メチルフェニルボロン酸204mg(1.50mmol、1.5eq.)、炭酸カリウム276mg(2.00mmol、2.0eq.)、テトラキス(トリフェニルホスフィン)パラジウム60mg(52μmol、0.05eq.)を採取し反応器に加えた。反応器を密閉し、80℃で6時間撹拌し反応液を得た。反応液に酢酸エチル20mLを加え、上水20mLで洗浄した後、有機相を硫酸ナトリウムで乾燥し、減圧濃縮した。得られた残渣に内部標準として1-メチルシクロヘキセンを加え、H-NMRにより分析すると(2S)-2-アミノ-3-(4’-メチル[1,1’-ビフェニル]-4-イル)プロパン酸メチルに由来するシグナルを確認し、その定量収率は82%であった。
[物性値]
 (2S)-2-アミノ-3-(4’-メチル[1,1’-ビフェニル]-4-イル)プロパン酸メチル;
H-NMR(400MHz,CDCl)δ(ppm):7.52(2H,d,J=8.4Hz),7.47(2H,d,J=8.0Hz),7.26-7.23(4H,m),3.79-3.74(4H,m),3.13(1H,dd,J=13.6Hz,4.8Hz),2.89(1H,dd,J=14.0Hz,8.4Hz),2.39(3H,s),1.60(2H,br s).
 以下に、実施例23における第1の反応及び第2の反応を示す。
Figure JPOXMLDOC01-appb-C000040
[実施例24]
(第1の反応)
 基質としての4-アミノフェノール111mg(1.02mmol、1.0eq.)および反応溶媒としてのアセトニトリル5mLを採取し、反応器である容量20mLの撹拌子入りシュレンクチューブに仕込んだ。続けて1-トリフルオロメタンスルホニルイミダゾール222mg(1.11mmol、1.1eq.)、炭酸カリウム28mg(0.20mmol、0.2eq.)両成分を含む組成物を反応器に加え、室温で2時間撹拌し反応液を得た。反応液に1mol/L塩酸5mLを加えてpH=1に調節した後、室温で5分撹拌した。得られた溶液に1mol/L炭酸ナトリウム水溶液2.5mLを加えpH=7に調節した後、tert-ブチルメチルエーテル20mL、上水20mLで分液ロートへ移液し、分層した。得られた有機相をさらに上水20mLで洗浄し、硫酸ナトリウムで乾燥した。得られた溶液をろ過し、減圧濃縮することで単離収率100%で4-アミノフェニルトリフルオロメタンスルホネート241mgを得た。
[物性値]
 4-アミノフェニルトリフルオロメタンスルホネート;
H-NMR(400MHz,CDCl)δ(ppm):7.04(2H,d,J=8.8Hz),6.66(2H,d,J=9.2Hz),3.81(2H,br s).
19F-NMR(373MHz,CDCl)δ(ppm):-73.2(3F,s).
(第2の反応)
 反応器である容量20mLの撹拌子入りシュレンクチューブにフッ化カリウム235mg(4.04mmol、4.0eq.)、反応溶媒としてテトラヒドロフラン5mL、基質として4-アミノフェニルトリフルオロメタンスルホネート241mg(1.00mmol、1.0eq.)を仕込み、窒素バブリングを15分間行った。次にそのまま窒素気流下で4-メチルフェニルボロン酸205mg(1.51mmol、1.5eq.)、ビス(トリシクロヘキシルホスフィン)パラジウムジアセテート39mg(50μmol、0.05eq.)を採取し反応器に加えた。反応器を密閉し、60℃で20時間撹拌し反応液を得た。反応液に酢酸エチル20mLを加え、上水20mLで洗浄した後、有機相を硫酸ナトリウムで乾燥し減圧濃縮した。得られた残渣に内部標準として1,4-ビス(トリフルオロメチル)ベンゼンを加え、H-NMRにより分析すると、4-(4-メチルフェニル)アニリンに由来するシグナルを確認し、その定量収率は99%であった。
[物性値]
 4-(4-メチルフェニル)アニリン;
H-NMR(400MHz,CDCl)δ(ppm):7.43(2H,d,J=8.4Hz),7.39(2H,d,J=8.4Hz),7.20(2H,d,J=8.4Hz),6.75(2H,d,J=8.8Hz),3.71(2H,br s),2.37(3H,s).
 以下に、実施例24における第1の反応及び第2の反応を示す。
Figure JPOXMLDOC01-appb-C000041
[実施例25]
(第1の反応)
 基質としてのL-チロシンメチルエステル196mg(1.01mmol、1.0eq.)および反応溶媒としてのアセトニトリル5mLを採取し、反応器である容量20mLの撹拌子入りシュレンクチューブに仕込んだ。続けて1-トリフルオロメタンスルホニルイミダゾール223mg(1.11mmol、1.1eq.)、炭酸カリウム28mg(0.20mmol、0.2eq.)両成分を含む組成物を反応器に加え、室温で2時間撹拌し反応液を得た。反応液に1mol/L塩酸5mLを加えてpH=1に調節した後、室温で5分撹拌した。得られた溶液に1mol/L炭酸ナトリウム水溶液2.5mLを加えpH=7に調節した後、tert-ブチルメチルエーテル20mL、上水20mLで分液ロートへ移液し、分層した。得られた有機相をさらに上水20mLで洗浄し、硫酸ナトリウムで乾燥した。得られた溶液をろ過し、減圧濃縮することで単離収率100%で(2S)-2-アミノ-3-(4-トリフルオロメタンスルホニルオキシフェニル)プロパン酸メチル328mgを得た。
(第2の反応)
 基質としての(2S)-2-アミノ-3-(4-トリフルオロメタンスルホニルオキシフェニル)プロパン酸メチル328mg(1.00mmol、1.0eq.)及び反応溶媒としてのジメチルホルムアミド3mL、トリエチルアミン3mLを採取し反応器である容量20mLの撹拌子入りシュレンクチューブに仕込んだ。得られた溶液に窒素バブリングを15分間行い、そのまま窒素気流下でテトラキス(トリフェニルホスフィン)パラジウム62mg(54μmol、0.05eq.)、ヨウ化銅15mg(77μmol、0.08eq.)、4-エチニルトルエン179mg(1.54mmol、1.5eq.)を採取し反応器に加えた。反応器を密閉し、80℃で20時間撹拌し反応液を得た。反応液に酢酸エチル30mLを加え、上水30mLで洗浄した後、有機相を硫酸ナトリウムで乾燥し減圧濃縮した。得られた残渣に内部標準として1-メチルシクロヘキセンを加え、H-NMRにより分析すると(2S)-2-アミノ-3-{4-[(4-メチルフェニル)エチニル]フェニル}プロパン酸メチルに由来するシグナルを確認し、その定量収率は91%であった。
[物性値]
 (2S)-2-アミノ-3-{4-[(4-メチルフェニル)エチニル]フェニル}プロパン酸メチル;
H-NMR(400MHz,CDCl)δ(ppm)
:7.46(2H,d,J=8.4Hz),7.42(2H,d,J=8.0Hz),7.18-7.14(4H,m),3.76-3.72(4H,m),3.09(1H,dd,J=13.6,5.6Hz),2.88(1H,dd,J=13.6,8.0Hz),2.37(3H,s),1.50(2H,br s).
 以下に、実施例25における第1の反応及び第2の反応を示す。
第1の反応
 実施例23に同じ。
第2の反応
Figure JPOXMLDOC01-appb-C000042
[実施例26]
(第1の反応)
 基質としてのL-チロシンメチルエステル196mg(1.00mmol、1.0eq.)および反応溶媒としてのアセトニトリル5mLを採取し、反応器である容量20mLの撹拌子入りシュレンクチューブに仕込んだ。続けて1-トリフルオロメタンスルホニルイミダゾール219mg(1.09mmol、1.1eq.)、炭酸カリウム27mg(0.20mmol、0.2eq.)両成分を含む組成物を反応器に加え、室温で2時間撹拌し反応液を得た。反応液に1mol/L塩酸5mLを加えてpH=1に調節した後、室温で5分撹拌した。得られた溶液に1mol/L炭酸ナトリウム水溶液2.5mLを加えpH=7に調節した後、tert-ブチルメチルエーテル20mL、上水20mLで分液ロートへ移液し、分層した。得られた有機相をさらに上水20mLで洗浄し、硫酸ナトリウムで乾燥した。得られた溶液をろ過し、減圧濃縮することで単離収率98%で(2S)-2-アミノ-3-(4-トリフルオロメタンスルホニルオキシフェニル)プロパン酸メチル320mgを得た。
(第2の反応)
 基質としての(2S)-2-アミノ-3-(4-トリフルオロメタンスルホニルオキシフェニル)プロパン酸メチル320mg(0.98mmol、1.0eq.)及び反応溶媒としてのジメチルホルムアミド5mLを採取し反応器である容量20mLの撹拌子入りシュレンクチューブに仕込んだ。得られた溶液に窒素バブリングを15分間行い、そのまま窒素気流下でトリエチルアミン516mg(5.10mmol、5.2eq.)、4-メチルスチレン239mg(2.02mmol、2.1eq.)、テトラキス(トリフェニルホスフィン)パラジウム58mg(50μmol、0.05eq.)を反応器に加えた。反応器を密閉し、80℃で16時間撹拌した後、さらに100℃に昇温し6時間撹拌し反応液を得た。反応液に酢酸エチル30mLを加え、上水30mLで洗浄した後、有機相を硫酸ナトリウムで乾燥し減圧濃縮した。得られた残渣に内部標準として1,4-ビス(トリフルオロメチル)ベンゼンを加え、H-NMRにより分析すると(2S)-2-アミノ-3-{4-[(E)-2-(4-メチルフェニル)エテニル]フェニル}プロパン酸メチルに由来するシグナルを確認し、その定量収率は56%であった
[物性値]
 (2S)-2-アミノ-3-{4-[(E)-2-(4-メチルフェニル)エテニル]フェニル}プロパン酸メチル;
H-NMR(400MHz,CDCl)δ(ppm):7.44(2H,d,J=8.4Hz),7.40(2H,d,J=8.0Hz),7.19-7.16(4H,m),7.05-7.04(2H,m),3.76-3.73(4H,m),3.09(1H,dd,J=13.6,5.2Hz),2.87(1H,dd,J=14.0,8.0Hz),2.36(3H,s),1.48(2H, br s).
 以下に、実施例26における第1の反応及び第2の反応を示す。
第1の反応
 実施例23に同じ。
第2の反応
Figure JPOXMLDOC01-appb-C000043
[実施例27]
(第1の反応)
 基質としてのL-チロシンメチルエステル195mg(1.00mmol、1.0eq.)および反応溶媒としてのアセトニトリル5mLを採取し、反応器である容量20mLの撹拌子入りシュレンクチューブに仕込んだ。続けて1-トリフルオロメタンスルホニルイミダゾール221mg(1.10mmol、1.1eq.)、炭酸カリウム27mg(0.20mmol、0.2eq.)両成分を含む組成物を反応器に加え、室温で2時間撹拌し反応液を得た。反応液に1mol/L塩酸5mLを加えてpH=1に調節した後、室温で5分撹拌した。得られた溶液に1mol/L炭酸ナトリウム水溶液2.5mLを加えpH=7に調節した後、tert-ブチルメチルエーテル20mL、上水20mLで分液ロートへ移液し、分層した。得られた有機相をさらに上水20mLで洗浄し、硫酸ナトリウムで乾燥した。得られた溶液をろ過し、減圧濃縮することで単離収率99%で(2S)-2-アミノ-3-(4-トリフルオロメタンスルホニルオキシフェニル)プロパン酸メチル327mgを得た。
(第2の反応)
 基質としての(2S)-2-アミノ-3-(4-トリフルオロメタンスルホニルオキシフェニル)プロパン酸メチル327mg(1.00mmol、1.0eq.)及び、反応溶媒としてのジメチルスルホキシド5mLを反応器である容量20mLの撹拌子入りシュレンクチューブに仕込んだ。得られた溶液に窒素バブリングを行い、そのまま窒素気流下で1,1’-ビス(ジフェニルホスフィノ)フェロセン(DPPF)31mg(57μmol、0.06eq.)、塩化パラジウム(II)11mg(61μmol、0.06eq.)を仕込み、室温で10分撹拌した。得られた溶液にビス(ピナコラト)ジボロン383mg(1.51mmol、1.5eq.)、酢酸カリウム309mg(3.15mmol、3.2eq.)を仕込んだ後、容器を密閉して80℃で16時間撹拌して反応液を得た。反応液にジクロロメタン30mLを加え、上水30mLで洗浄した。得られた有機相を硫酸ナトリウムで乾燥した後、ろ過、減圧濃縮した。得られた残渣に得られた残渣に内部標準として1-メチルシクロヘキセンを加え、H-NMRにより分析すると(2S)-2-アミノ-3-[4-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)フェニル]プロパン酸メチルに由来するシグナルを確認し、その定量収率は87%であった。
[物性値]
(2S)-2-アミノ-3-[4-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)フェニル]プロパン酸メチル;
H-NMR(400MHz,CDCl)δ(ppm):7.75(2H,d,J=8.0Hz),7.20(2H,d,J=8.0Hz),3.76-3.71(4H,m),3.11(1H,dd,J=13.6,5.6Hz),2.88(1H,dd,J=13.2,8.0Hz),1.73(2H,br s),1.34(12H,s).
 以下に、実施例27における第1の反応及び第2の反応を示す。
第1の反応
 実施例23に同じ。
第2の反応
Figure JPOXMLDOC01-appb-C000044
[参考例1]
 基質としての2-(4-ヒドロキシフェニル)エタノール695mg(5.03mmol、1.0eq.)及び反応溶媒としてのジクロロメタン25mLを採取し容量30mLの撹拌子入り2口ナスフラスコに仕込んだ。続けてトリエチルアミン521mg(5.15mmol、1.0eq.)を反応器に加え、反応器を氷冷しながら撹拌した。トリフルオロメタンスルホン酸無水物1.44g(5.10mmol、1.0eq.)を滴下した後、反応器を室温に戻して2時間撹拌し反応液を得た。反応液に内部標準としてのベンゾトリフルオリドを加え、19F-NMRにより分析すると4-(2-ヒドロキシエチル)フェニルトリフルオロメタンスルホネートに由来するシグナルを-74ppmに確認し、その定量収率は40%であった。また副生成物として4-[2-(トリフルオロメタンスルホニルオキシ)エチル]フェニルトリフルオロメタンスルホネートに由来するシグナルを-73ppm及び-75ppmに観測し、その定量収率は29%であった。
 以下に、参考例1における反応を示す。
Figure JPOXMLDOC01-appb-C000045
[参考例2]
 基質としてのL-チロシンメチルエステル196mg(1.00mmol、1.0eq.)及び反応溶媒としてのジメチルホルムアミド10mLを採取し、反応器である容量20mLの撹拌子入りシュレンクチューブに仕込んだ。続けて4-ニトロフェニルトリフルオロメタンスルホネート273mg(1.00mmol、1.0eq.)、炭酸カリウム278mg(2.01mmol、2.0eq.)を採取し反応器に加え、室温で2時間撹拌し反応液を得た。反応液に内部標準としてのベンゾトリフルオリドを加え、19F-NMRにより分析すると(2S)-2-アミノ-3-(4-トリフルオロメタンスルホニルオキシフェニル)プロパン酸メチルに由来するシグナルを-74ppm、(2S)-2-(4-ニトロアニリノ)-3-[4-(トリフルオロメタンスルホニルオキシ)フェニル]プロパン酸メチルに由来するシグナルを-74ppmに確認し、その定量収率はそれぞれ40%、27%であった。
 以下に、参考例2における反応を示す。
Figure JPOXMLDOC01-appb-C000046
[参考例3]
 基質としてのL-チロシンメチルエステル195mg(1.00mmol、1.0eq.)及び反応溶媒としてのアセトニトリル5mLを採取し、反応器である撹拌子入り20mLシュレンクチューブに仕込んだ。反応器にトリエチルアミン106g(1.05mmol、1.0eq.)を加え、反応器を-20℃に冷却しながら撹拌した。トリフルオロメタンスルホニルクロライド105μL(1.00mmol、1.0eq.)を反応器に滴下し、そのまま-20℃で2時間撹拌して反応液を得た。反応液に内部標準としてのベンゾトリフルオリドを加え、19F-NMRにより分析すると(2S)-2-アミノ-3-(4-トリフルオロメタンスルホニルオキシフェニル)プロパン酸メチルに由来するシグナルを-74ppmに観測し、その定量収率は32%であった。加えて、副生成物に由来するシグナルを-74ppmに2種類観測し、その定量収率はそれぞれ10%、8%であった。
 以下に、参考例3における反応を示す。
Figure JPOXMLDOC01-appb-C000047
[参考例4]
 基質としての5-ヒドロキシインドール134mg(1.00mmol、1.0eq.)及び反応溶媒としてのジクロロメタン4mLを採取し、反応器である撹拌子入り20mLシュレンクチューブに仕込んだ。反応器にトリエチルアミン120mg(1.19mmol、1.2eq)を加え、反応器を-20℃に冷却しながら撹拌した。トリフルオロメタンスルホニルクロライド105μL(1.00mmol、1.0eq.)をジクロロメタン1mLに溶解させ、これを反応器に滴下した。反応器を-20℃に冷却したまま1時間撹拌し、反応液を得た。反応液に内部標準としてのベンゾトリフルオリドを加え、19F-NMRにより分析すると、インドール-5-イルトリフルオロメタンスルホネートに由来するシグナルを-74ppmに確認し、その定量収率は22%であった。加えて副生成物に由来するシグナルを-73ppmに1種類観測し、その定量収率は29%であった。
 以下に、参考例4における反応を示す。
Figure JPOXMLDOC01-appb-C000048
[参考例5]
 基質としての2-(4-ヒドロキシフェニル)エタノール13.8g(99.9mmol、1.4eq.)を採取し、反応器である撹拌子入り300mLSUS製オートクレーブに仕込んだ後、反応器を密閉して真空ポンプにより減圧した。トリエチルアミン10.1g(100mmol、1.4eq.)及び反応溶媒としてのアセトニトリル200mLを採取し、キャニュラーを用いて反応器に移液した。反応器をドライアイスで冷却し、トリフルオロメタンスルホニルフルオリド10.6g(69.4mmol、1.0eq.)をボンベから充填した。反応器を室温にもどし、18時間撹拌し反応液を得た。反応液に内部標準としてのベンゾトリフルオリドを加え、19F-NMRにより分析すると4-(2-ヒドロキシエチル)フェニルトリフルオロメタンスルホネートに由来するシグナルを-74ppmに確認し、その定量収率は33%であった。加えて、副生成物に由来するシグナルを-74ppmに2種類観測し、その収率はそれぞれ15%、11%であった。
 以下に、参考例5における反応を示す。
Figure JPOXMLDOC01-appb-C000049
 第1の態様にかかる実施例において、副生成物の生成を抑えて、良好な収率で、トリフルオロメタンスルホニル化化合物を得ることができる。フェノール性水酸基に対して選択的にトリフルオロメタンスルホニル化することができる。
(合成例4)
[第1の反応]
 2-メチルイミダゾール5.0g(61mmol、1.0eq.=モル当量比、以下同じ)、トリフルオロメタンスルホニルクロライド19.5g(116mmol、1.9eq.)、炭酸ナトリウム12.9g(122mmol、2.0eq.)、および反応溶媒としてのアセトニトリル61mLを採取し、容量200mLの攪拌機付き3口フラスコ内に仕込んだ。その後、室温(約25℃、以下同じ)にて22時間攪拌し、第1の反応液を得た。反応液を少量濃縮し、H-NMRにより分析したところ、2-メチルイミダゾールに由来するシグナルが完全に消失し、新たにトリフリル-2-メチルイミダゾールに由来するシグナルが観測されたことから、第1の反応が終了していることを確認した。
 第1の反応液をセライト濾過(セライト、登録商標=炭酸ナトリウムとともに焼成した珪藻土、以下同じ)し炭酸ナトリウムを除いた濾液からアセトニトリルを除去することにより、トリフリル-2-メチルイミダゾール(「1-トリフルオロメタンスルホニル-2-メチルイミダゾール」ともいう)10.2gを得た。
[物性値]
トリフリル-2-メチルイミダゾール;
H-NMR(400MHz,CDCN)δ(ppm):7.42(1H,s),7.05(1H,s),2.56(3H,s)
19F-NMR(373MHz,CDCN)δ(ppm):-76.7(3F,s)
[第2の反応]
 第1の反応で得たトリフリル-2-メチルイミダゾール10.2gに、塩化メチレン122mLとトリフルオロメタンスルホン酸メチル10.0g(61mmol、1.2eq.)を加えた。その後、室温にて22時間攪拌し、第2の反応液を得た。反応液を少量濃縮し、H-NMRにより分析したところ、トリフリル-2-メチルイミダゾールに由来するシグナルが完全に消失し、第2の反応の目的生成物であるトリフリルイミダゾリウム、すなわちトリフリル-2,3-ジメチルイミダゾリウムトリフレートに由来するシグナルが観測されたことから、第2の反応が終了していることを確認した。
 第2の反応液を濃縮し、tert-ブチルメチルエーテル100mlを加えた。その後、室温にて22時間攪拌した。析出した結晶を吸引濾過し得られた結晶を減圧乾燥することにより、トリフリル-2,3-ジメチルイミダゾリウムトリフレート16.7gを収率72%で得た。
[物性値]
トリフリル-2,3-ジメチルイミダゾリウムトリフレート;
H-NMR(400MHz,CDCN)δ(ppm):7.83(1H,d,J=2.8Hz),7.61(1H,d,J=2.4Hz),3.85(3H,s),2.84(3H,s)
19F-NMR(373MHz,CDCN)δ(ppm):-74.1(3F,s),-79.3(3F,s)
 以下に、合成例4における第1の反応および第2の反応を示す。
Figure JPOXMLDOC01-appb-C000050
(合成例5)
[第1の反応]
 1,2,4-トリアゾール5.0g(72mmol、1.0eq.)、トリフルオロメタンスルホニルクロライド23.0g(137mmol、1.9eq.)、炭酸ナトリウム15.3g(144mmol、2.0eq.)、およびアセトニトリル72mLを採取し、容量200mLの撹拌機付き3口フラスコ内に仕込んだ。その後、室温にて3日間攪拌し、第1の反応液を得た。反応液を少量濃縮し、H-NMRにより分析したところ、1,2,4-トリアゾールに由来するシグナルが完全に消失し、新たにトリフリル-1,2,4-トリアゾールに由来するシグナルが観測されたことから、第1の反応が終了していることを確認した。
 第1の反応液をセライト濾過し得られた濾液からアセトニトリルを除去することにより、トリフリル-1,2,4-トリアゾール12.1gを得た。
[物性値]
トリフリル-1,2,4-トリアゾール;
H-NMR(400MHz,CDCN)δ(ppm):9.05(1H,s),8.38(1H,s)
19F-NMR(373MHz,CDCN)δ(ppm):-75.2(3F,s)
[第2の反応]
 第1の反応で得たトリフリル-1,2,4-トリアゾール12.1gに、塩化メチレン144mLとトリフルオロメタンスルホン酸メチル11.8g(72mmol、1.2eq.)を加えた。その後、室温にて22時間攪拌し、第2の反応液を得た。反応液を少量濃縮し、H-NMRにより分析したところ、トリフリル-1,2,4-トリアゾールに由来するシグナルが完全に消失し、第2の反応の目的生成物であるトリアゾリウム塩、すなわちトリフリル-4-メチル-1,2,4-トリアゾリウムトリフレートに由来するシグナルが観測されたことから、第2の反応が終了していることを確認した。
 第2の反応液を濃縮し、tert-ブチルメチルエーテル100mlを加えた。その後、室温にて22時間攪拌した。析出した結晶を吸引濾過し得られた結晶を減圧乾燥することにより、トリフリル-4-メチル-1,2,4-トリアゾリウムトリフレート16.5gを収率63%で得た。
[物性値]
トリフリル-4-メチル-1,2,4-トリアゾリウムトリフレート;
H-NMR(400MHz,CDCN)δ(ppm):10.40(1H,s),9.00(1H,s),4.07(3H,s)
19F-NMR(373MHz,CDCN)δ(ppm):-71.5(3F,s),-79.3(3F,s)
 以下に、合成例5における第1の反応および第2の反応を示す。
Figure JPOXMLDOC01-appb-C000051
(合成例6)
[第1の反応]
 イミダゾール5.0g(73mmol、1.0eq.)、トリフルオロメタンスルホニルクロライド23.5g(139mmol、1.9eq.)、炭酸ナトリウム15.6g(122mmol、2.0eq.)、および反応溶媒としてのアセトニトリル73mLを採取し、容量200mLの撹拌機付き3口フラスコに仕込んだ。その後、室温にて16時間攪拌し、第1の反応液を得た。反応液を少量濃縮し、H-NMRにより分析したところ、イミダゾールに由来するシグナルが完全に消失し、新たにトリフリルイミダゾールに由来するシグナルが観測されたことから、第1の反応が終了していることを確認した。
 第1の反応液をセライト濾過し炭酸ナトリウムを除いた濾液からアセトニトリルを除去することにより、トリフリルイミダゾール(「1-トリフルオロメタンスルホニルイミダゾール」ともいう)9.7gを得た。
[物性値]
トリフリルイミダゾール;
H-NMR(400MHz,CDCN)δ(ppm):8.15(1H,s),7.56(1H,s),7.29(1H,s)
19F-NMR(373MHz,CDCN)δ(ppm):-77.3(3F,s)
[第2の反応]
 第1の反応で得たトリフリルイミダゾール9.7gに、塩化メチレン50mLとトリフルオロメタンスルホン酸メチル7.9g(48mmol、1.0eq.)を加えた。その後、室温にて14時間攪拌し第2の反応液を得た。反応液を少量濃縮し、H-NMRにより分析したところ、トリフリルイミダゾールに由来するシグナルが完全に消失し、第2の反応の目的生成物であるトリフリルイミダゾリウム、すなわちトリフリル-3-メチルイミダゾリウムトリフレートに由来するシグナルが観測されたことから、第2の反応が終了していることを確認した。
 第2の反応液を濃縮し、tert-ブチルメチルエーテル100mlを加えた。その後、室温にて15時間攪拌した。析出した結晶を吸引濾過し得られた結晶を減圧乾燥することにより、トリフリル-3-メチルイミダゾリウムトリフレート13.6gを収率50%で得た。
[物性値]
トリフリル-3-メチルイミダゾリウムトリフレート;
H-NMR(400MHz,CDCN)δ(ppm):9.45(1H,s),7.97(1H,m),7.74(1H,m),4.01(3H,s)
19F-NMR(373MHz,CDCN)δ(ppm):-73.9(3F,s),-79.3(3F,s)
 以下に、合成例6における第1の反応および第2の反応を示す。
Figure JPOXMLDOC01-appb-C000052
(合成例7)
 合成例4における第1の反応と同様にして得られたトリフリル-2-メチルイミダゾール0.81g(3.8mmol、1.0eq.)と、塩化メチレン4mLを採取し、反応器である容量20mLの撹拌子入りシュレンクチューブ内に仕込んだ。さらにトリフルオロメタンスルホン酸エチル0.68g(3.8mmol、1.0eq.)を加えた後、60℃にて2時間撹拌した。反応液を少量濃縮し、H-NMRにより分析したところ、トリフリル-2-メチルイミダゾールに由来するシグナルが完全に消失し、目的生成物であるトリフリルイミダゾリウム、すなわちトリフリル-3-エチル-2-メチルイミダゾリウムトリフレートに由来するシグナルが観測されたことから、第2の反応が終了していることを確認した。
 前記反応液にtert-ブチルメチルエーテル20mLを加えた後、室温にて1時間撹拌した。析出した結晶を吸引濾過し得られた結晶を減圧乾燥することにより、トリフリル-3-エチル-2-メチルイミダゾリウムトリフレート1.3gを収率88%で得た。
[物性値]
トリフリル-3-エチル-2-メチルイミダゾリウムトリフレート;
H-NMR(400MHz,CDCN)δ(ppm):7.86(1H,d,J=2.8Hz),7.69(1H,d,J=2.4Hz),4.25(2H,q,J=7.6Hz),2.86(3H,s),1.47(3H,t,J=7.6Hz)
19F-NMR(373MHz,CDCN)δ(ppm):-74.1(3F,s),-79.3(3F,s)
 以下に、合成例7における反応を示す。
Figure JPOXMLDOC01-appb-C000053
[実施例28]
 基質としてのアニリン93mg(1.0mmol、1.0eq.)、および反応溶媒としてのアセトニトリル5mLを採取し、反応器である容量20mLの撹拌子入りシュレンクチューブに仕込んだ。シュレンクチューブを氷浴で冷やしながら、トリフリル-2,3-ジメチルイミダゾリウムトリフレート0.95g(2.5mmol、2.5eq.)と、トリエチルアミン51mg(0.5mmol、0.5eq.)の両成分を含む組成物を、シュレンクチューブ内にさらに加えた。前記氷浴を取り除いた後、室温下で2時間撹拌し反応液を得た。反応液に内部標準としてのベンゾトリフルオリドを加え、19F-NMRにより分析するとN-フェニルトリフルイミドに由来するシグナルを-71ppmに確認し、その定量収率は98%であった。
 以下に、実施例28における反応を示す。
Figure JPOXMLDOC01-appb-C000054
[実施例29]
 基質としてのブチルアミン73mg(1.0mmol、1.0eq.)と、アセトニトリル5mLを採取し、反応器である容量20mLの撹拌子入りシュレンクチューブに仕込んだ。シュレンクチューブを氷浴で冷やしながら、トリフリル-2,3-ジメチルイミダゾリウムトリフレート0.95g(2.5mmol、2.5eq.)とトリエチルアミン51mg(0.5mmol、0.5eq.)の両成分を含む組成物を、シュレンクチューブ内にさらに加えた。前記氷浴を取り除いた後、室温下で24時間撹拌し反応液を得た。反応液に内部標準としてベンゾトリフルオリドを加え、19F-NMRにより分析すると、N-ブチルトリフルイミドに由来するシグナルを-73ppmに、またN-ブチルトリフルアミドに由来するシグナルを-78ppmに確認し、その定量収率はN-ブチルトリフルイミドが94%、N-ブチルトリフルアミドが5%であった。
 以下に、実施例29における反応を示す。
Figure JPOXMLDOC01-appb-C000055
[実施例30]
 基質としての1-フェニルエチルアミン0.12g(1.0mmol、1.0eq.)と、アセトニトリル5mLを採取し、反応器である容量20mLの撹拌子入りシュレンクチューブに仕込んだ。シュレンクチューブを氷浴で冷やしながら、トリフリル-2,3-ジメチルイミダゾリウムトリフレート0.95g(2.5mmol、2.5eq.)とトリエチルアミン51mg(0.5mmol、0.5eq.)の両成分を含む組成物を、シュレンクチューブ内にさらに加えた。前記氷浴を取り除いた後、室温下で2時間撹拌し反応液を得た。反応液に内部標準としてベンゾトリフルオリドを加え、19F-NMRにより分析するとN-(1-フェニルエチル)トリフルアミドに由来するシグナルを-79ppmに確認し、その定量収率は100%であった。
 以下に、実施例30における反応を示す。
Figure JPOXMLDOC01-appb-C000056
[実施例31]
 基質としての6-イソプロピル-3-メチルフェノール0.15g(1.0mmol、1.0eq.)と、アセトニトリル5mLを採取し、反応器である容量20mLの撹拌子入りシュレンクチューブに仕込んだ。シュレンクチューブを氷浴で冷やしながら、トリフリル-2,3-ジメチルイミダゾリウムトリフレート0.57g(1.5mmol、1.5eq.)とトリエチルアミン51mg(0.5mmol、0.5eq.)の両成分を含む組成物を、シュレンクチューブ内にさらに加えた。前記氷浴を取り除いた後、室温下で2時間撹拌し反応液を得た。反応液に内部標準としてベンゾトリフルオリドを加え、19F-NMRにより分析すると2-イソプロピル-5-メチルフェニルトリフレートに由来するシグナルを-75ppmに確認し、その定量収率は99%であった。
 以下に、実施例31における反応を示す。
Figure JPOXMLDOC01-appb-C000057
[実施例32]
 基質としての乳酸メチル0.31g(3.0mmol、1.0eq.)と、アセトニトリル15mLを採取し、容量30mLの撹拌子入り2口フラスコに仕込んだ。2口フラスコを氷浴で冷やしながら、トリフリル-2,3-ジメチルイミダゾリウムトリフレート1.70g(4.5mmol、1.5eq.)とトリエチルアミン91mg(0.9mmol、0.3eq.)の両成分を含む組成物を、2口フラスコ内にさらに加えた。前記氷浴を取り除いた後、室温下で3時間撹拌し反応液を得た。反応液に内部標準としてベンゾトリフルオリドを加え、19F-NMRにより分析すると2-トリフルオロメタンスルホニルオキシプロピオン酸メチルに由来するシグナルを-76ppmに確認し、その定量収率は71%であった。
 以下に、実施例32における反応を示す。
Figure JPOXMLDOC01-appb-C000058
[実施例33]
 基質としてのアセト酢酸エチル0.33g(2.5mmol、1.0eq.)と、反応溶媒としてのテトラヒドロフラン12.5mLと、水素化ナトリウム(60質量%オイルディスパ―ジョン)0.10g(2.5mmol、1.0eq.)を採取し、容量30mLの撹拌子入り2口フラスコ内に仕込んだ後、室温下で10分撹拌した。次いで、2口フラスコ内にトリフリル-2,3-ジメチルイミダゾリウムトリフレート1.13g(3.0mmol、1.2eq.)を加え、さらに室温下で1時間撹拌し反応液を得た。反応液に内部標準としてベンゾトリフルオリドを加え、19F-NMRにより分析すると(Z)-3-トリフルオロメタンスルホニルオキシ-2-ブテン酸エチルに由来するシグナルを-76ppmに確認し、その定量収率は87%であった。
 以下に、実施例33における反応を示す。
Figure JPOXMLDOC01-appb-C000059
[実施例34]
 基質してのアニリン93mg(1.0mmol、1.0eq.)と、アセトニトリル5mLを採取し、反応器である容量20mLの撹拌子入りシュレンクチューブに仕込んだ。シュレンクチューブを氷浴で冷やしながら、トリフリル-3-メチルイミダゾリウムトリフレート0.91g(2.5mmol、2.5eq.)とトリエチルアミン51mg(0.5mmol、0.5eq.)の両成分を含む組成物をシュレンクチューブ内にさらに加えた。氷浴を取り除き、室温下で1時間撹拌し反応液を得た。反応液に内部標準としてベンゾトリフルオリドを加え19F-NMRにより分析するとN-フェニルトリフルイミドに由来するシグナルを-71ppmに確認し、その定量収率は93%であった。
 以下に、実施例34における反応を示す。
Figure JPOXMLDOC01-appb-C000060
[実施例35]
 基質としてのアニリン47mg(0.5mmol、1.0eq.)と、アセトニトリル2.5mLを採取し、反応器である容量20mLの撹拌子入りシュレンクチューブに仕込んだ。シュレンクチューブを氷浴で冷やしながら、実施例4に記載の方法で合成したトリフリル-3-エチル-2-メチルイミダゾリウムトリフレート0.49g(1.3mmol、2.5eq.)とトリエチルアミン25mg(0.25mmol、0.5eq.)の両成分を含む組成物をシュレンクチューブ内にさらに加えた。前記氷浴を取り除いた後、室温下で1時間撹拌し反応液を得た。反応液に内部標準としてベンゾトリフルオリドを加え、19F-NMRにより分析するとN-フェニルトリフルイミドに由来するシグナルを-71ppmに確認し、その定量収率は92%であった。
 以下に、実施例35における反応を示す。
Figure JPOXMLDOC01-appb-C000061
 上記のように、合成例4~7で得られたトリフリルイミダゾリウム塩またはトリアゾリウム塩を用いて、トリフルオロメタンスルホニル化を行ったところ、複数の種類の基質に対し、トリフルオロメタンスルホニル化剤としての優れた性能を示した。
 本開示のトリフルオロメタンスルホニル化剤組成物は、医薬品の原薬または中間体の合成において、工業的に実施可能な条件でトリフルオロメタンスルホニル化剤組成物として利用できる。
 本開示を詳細にまた特定の実施態様を参照して説明したが、本開示の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 本出願は、2022年5月2日出願の日本特許出願(特願2022-076302)に基づくものであり、その内容はここに参照として取り込まれる。

Claims (16)

  1.  下記一般式(1)又は(11)で表される化合物を含む、
    トリフルオロメタンスルホニル化剤組成物。
    Figure JPOXMLDOC01-appb-C000001

    (一般式(1)及び(11)中、Rは、水素原子、炭素数1~6の直鎖状アルキル基、または、炭素数3~6の分枝状のアルキル基であり、
    は、水素原子、炭素数1~6の直鎖状の脂肪族炭化水素基、炭素数3~6の分枝状の脂肪族炭化水素基、ニトロ基、炭素数6~14の芳香族炭化水素基、または炭素数6~14の芳香族複素環基であり、
    Xは、窒素原子又はC(R)であり、Yは、窒素原子又はC(R)であり、
    は、水素原子、炭素数1~6の直鎖状の脂肪族炭化水素基、炭素数3~6の分枝状の脂肪族炭化水素基、炭素数6~14の芳香族炭化水素基、または炭素数6~14の芳香族複素環基であり、
    は、水素原子、炭素数1~6の直鎖状の脂肪族炭化水素基、炭素数3~6の分枝状の脂肪族炭化水素基、炭素数6~14の芳香族炭化水素基、または炭素数6~14の芳香族複素環基であり、
    とRは結合して環を形成していてもよく、RとRは結合して環を形成していてもよく、
    nは1~3の整数である。
    が複数存在する場合のRは、それぞれ同一であっても、異なっていてもよく、Rが複数存在する場合のRは、それぞれ同一であっても、異なっていてもよい。
    一般式(11)中、Rは、水素原子、炭素数1~6の直鎖状アルキル基、または、炭素数3~6の分枝状のアルキル基であり、
    はアニオンである。)
  2.  前記一般式(1)で表される化合物と、
    脂肪族系有機塩基、複素環基含有有機塩基、及び無機塩基からなる群より選ばれるいずれかの塩基と、を含む、
    請求項1に記載のトリフルオロメタンスルホニル化剤組成物。
  3.  前記一般式(1)中、XがC(R)であり、R、R、及びRが、それぞれ独立に、水素原子、メチル基、エチル基、n-プロピル基、またはイソプロピル基である、請求項2に記載のトリフルオロメタンスルホニル化剤組成物。
  4.  前記有機塩基が、2級アミン、3級アミン、アルコキシド、及び、窒素原子を有し炭素数が4以上である複素環基を有する有機塩基の群から選ばれる、請求項2に記載のトリフルオロメタンスルホニル化剤組成物。
  5.  前記無機塩基が、カリウム塩、及びナトリウム塩からなる群より選ばれる、請求項2に記載の、トリフルオロメタンスルホニル化剤組成物。
  6.  前記塩基が、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム、炭酸水素カリウム、リチウムメトキシド、リチウムエトキシド、リチウムtert-ブトキシド、ナトリウムメトキシド、ナトリウムエトキシド、ナトリウムtert-ブトキシド、カリウムメトキシド、カリウムエトキシド、カリウムtert-ブトキシド、トリエチルアミン、トリn-プロピルアミン、トリブチルアミン、ジイソプロピルエチルアミン、N,N-ジエチルシクロヘキシルアミン、及び1,8-ジアザビシクロ[5.4.0]ウンデセン、1,5-ジアザビシクロ[4.3.0]ノネンからなる群より選ばれるいずれかである、請求項2に記載の、トリフルオロメタンスルホニル化剤組成物。
  7.  請求項2~6のいずれか1項に記載のトリフルオロメタンスルホニル化剤組成物を、
    一般式(2):
    Figure JPOXMLDOC01-appb-C000002

    (一般式(2)中、Arは芳香環基または置換芳香環基を表す。)
    で表される芳香族ヒドロキシル化合物と反応させる、
    トリフルオロメタンスルホニルオキシ化合物の製造方法。
  8.  前記一般式(2)中、Arが芳香環基を表し、前記芳香環基が、芳香族複素環基である、請求項7に記載のトリフルオロメタンスルホニルオキシ化合物の製造方法。
  9.  前記一般式(2)中、Arが置換芳香環基を表し、前記置換芳香環基が有する置換基が、低級アルキル基、低級アルコキシカルボニル低級アルキル基、β-D-グルコピラノシド基、アミノ基、低級アルキルアミノ基、又はヒドロキシル基である、請求項7に記載のトリフルオロメタンスルホニルオキシ化合物の製造方法。
  10.  前記反応を150℃以下の反応温度で行う、請求項7に記載のトリフルオロメタンスルホニルオキシ化合物の製造方法。
  11.  前記反応終了後の反応液を酸性水溶液で後処理する請求項7に記載のトリフルオロメタンスルホニルオキシ化合物の製造方法。
  12.  前記一般式(11)で表される化合物が、下記一般式(11a)で表される化合物である請求項1に記載のトリフルオロメタンスルホニル化剤組成物。
    Figure JPOXMLDOC01-appb-C000003

    (一般式(11a)中、R11、R12、及びR15は、水素原子、炭素数1~6の直鎖状アルキル基、または、炭素数3~6の分枝状のアルキル基であり、
    Xaは、窒素原子又はC(R13)であり、
    13は、水素原子、炭素数1~6の直鎖状アルキル基、または、炭素数3~6の分枝状のアルキル基であり、
    12とR13は結合して環を形成していてもよい。
    はアニオンである。)
  13.  一般式(11a)中のZが、トリフルオロメタンスルホン酸アニオン、フルオロメタンスルホン酸アニオン、メタンスルホン酸アニオン、またはスルホン酸アニオンである、請求項12に記載のトリフルオロメタンスルホニル化剤組成物。
  14.  前記一般式(11a)中のXaがC(R13)である、請求項12に記載のトリフルオロメタンスルホニル化剤組成物。
  15.  前記一般式(11a)中のXaがC(R13)であり、R11、R12、R13、及びR15が、それぞれ独立に、水素原子、メチル基、エチル基、n-プロピル基、またはイソプロピル基である、請求項12に記載のトリフルオロメタンスルホニル化剤組成物。
  16.  請求項12~15のいずれか1項に記載のトリフルオロメタンスルホニル化剤組成物を、フェノール性水酸基を有する化合物、アルコール性水酸基を有する化合物、ケトン、1級アミンおよび2級アミンからなる群から選ばれる少なくとも一つの基質と反応させる、トリフルオロメタンスルホニル化合物の製造方法。
PCT/JP2023/016923 2022-05-02 2023-04-28 トリフルオロメタンスルホニル化剤組成物、及び、トリフルオロメタンスルホニルオキシ化合物またはトリフルオロメタンスルホニル化合物の製造方法 WO2023214552A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-076302 2022-05-02
JP2022076302 2022-05-02

Publications (1)

Publication Number Publication Date
WO2023214552A1 true WO2023214552A1 (ja) 2023-11-09

Family

ID=88646489

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/016923 WO2023214552A1 (ja) 2022-05-02 2023-04-28 トリフルオロメタンスルホニル化剤組成物、及び、トリフルオロメタンスルホニルオキシ化合物またはトリフルオロメタンスルホニル化合物の製造方法

Country Status (1)

Country Link
WO (1) WO2023214552A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09286771A (ja) * 1996-04-23 1997-11-04 Central Glass Co Ltd トリフルオロメタンスルホンアニリド誘導体の製造方法
JP2003286244A (ja) * 2002-03-27 2003-10-10 Yakult Honsha Co Ltd N−フェニルビス(トリフルオロメタンスルホンイミド)の製造方法
JP2011515379A (ja) * 2008-03-19 2011-05-19 サントル ナスィオナル ド ラ ルシェルシュ スィアンティフィク ホウ素又はアルミニウム錯体
JP2019156781A (ja) * 2018-03-14 2019-09-19 旭化成株式会社 イミダゾリドの製造方法
CN111187219A (zh) * 2020-02-28 2020-05-22 马鞍山南大高新技术研究院有限公司 一种磺酰胺咪唑盐化合物及其制备方法和应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09286771A (ja) * 1996-04-23 1997-11-04 Central Glass Co Ltd トリフルオロメタンスルホンアニリド誘導体の製造方法
JP2003286244A (ja) * 2002-03-27 2003-10-10 Yakult Honsha Co Ltd N−フェニルビス(トリフルオロメタンスルホンイミド)の製造方法
JP2011515379A (ja) * 2008-03-19 2011-05-19 サントル ナスィオナル ド ラ ルシェルシュ スィアンティフィク ホウ素又はアルミニウム錯体
JP2019156781A (ja) * 2018-03-14 2019-09-19 旭化成株式会社 イミダゾリドの製造方法
CN111187219A (zh) * 2020-02-28 2020-05-22 马鞍山南大高新技术研究院有限公司 一种磺酰胺咪唑盐化合物及其制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
EFFENBERGER, F. AND MACK, K.E.: "Trifluoromethanesulfonic imidazolide. A convenient reagent for introducing the triflate group", TETRAHEDRON LETTERS, ELSEVIER, AMSTERDAM , NL, vol. 45., 1 January 1970 (1970-01-01), Amsterdam , NL , pages 3947/3948., XP002110026, ISSN: 0040-4039, DOI: 10.1016/S0040-4039(01)98633-2 *

Similar Documents

Publication Publication Date Title
AU2015282127B2 (en) Method for producing fused heterocyclic compound
US10513506B2 (en) 4-((6-(2-(2,4-difluorophenyl)-1,1-difluoro-2-hydroxy-3-(1H-1,2,4-triazol-1-yl)propyl)pyridin-3-yl and processes of preparation
TWI765942B (zh) 三環化合物之製備方法
US20060155129A1 (en) Processes for preparing aromatic ethers
WO2007094313A1 (ja) 2-(置換フェニル)-3,3,3-トリフルオロプロペン化合物の製造方法
KR100895191B1 (ko) 1,3-프로펜설톤의 제조방법
US8664402B2 (en) Process for preparing 1-(6-methylpyridin-3-yl)-2-[4-(methylsulfonyl)phenyl]ethanone, an intermediate of etoricoxib
JP5689321B2 (ja) 2−アミノ−4−トリフルオロメチルピリジン類の製造方法
JP5679855B2 (ja) ジフルオロメチル化ヘテロアリール化合物の製造方法
WO2023214552A1 (ja) トリフルオロメタンスルホニル化剤組成物、及び、トリフルオロメタンスルホニルオキシ化合物またはトリフルオロメタンスルホニル化合物の製造方法
KR101837072B1 (ko) N-(2,2-디플루오로에틸)프로프-2-엔-1-아민으로부터 2,2-디플루오로에틸아민 유도체의 제조방법
US8030512B2 (en) Polycyclic pentafluorosulfanylbenzene compound and process for producing the compound
JP7385604B2 (ja) ピリドン化合物の製造方法
CN110746336B (zh) 一种n-甲基-2-氰基-3-芳基吡咯化合物的绿色制备方法
JP4239473B2 (ja) ピリドン化合物の製造法およびその中間体
JP7353295B2 (ja) 2,6-ジアルキルフェニル酢酸の製造方法
JP5205971B2 (ja) テトラヒドロピラン化合物の製造方法
JP4547898B2 (ja) 求電子的パーフルオロアルキル化剤、及びパーフルオロアルキル化有機化合物の製造方法
CN108473431B (zh) 2-氨基烟酸苄酯衍生物的制造方法
WO2007072966A1 (ja) テトラフルオロトルエン化合物、その製造方法およびその利用
JP2001247508A (ja) オレフィン化合物の製造方法
TW201823210A (zh) 製備4-胺基-3-氯-5-氟-6-(4-氯-2-氟-3-甲氧基苯基)吡啶甲酸甲酯之方法
CN116535327A (zh) 一种提高芳香二氟甲基化合物在制备和使用时稳定性的方法
WO2018163818A1 (ja) トリアゾール化合物の製造方法
JP2012102123A (ja) 4−アミノ−2−アルキルチオ−5−ピリミジンカルバルデヒドの製法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23799482

Country of ref document: EP

Kind code of ref document: A1