WO2023213218A1 - 一种高频高功率密度模块电源、并联组合、制作方法及软硬结合组件 - Google Patents

一种高频高功率密度模块电源、并联组合、制作方法及软硬结合组件 Download PDF

Info

Publication number
WO2023213218A1
WO2023213218A1 PCT/CN2023/090989 CN2023090989W WO2023213218A1 WO 2023213218 A1 WO2023213218 A1 WO 2023213218A1 CN 2023090989 W CN2023090989 W CN 2023090989W WO 2023213218 A1 WO2023213218 A1 WO 2023213218A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
power
hard
flexible
carrier element
Prior art date
Application number
PCT/CN2023/090989
Other languages
English (en)
French (fr)
Inventor
曾剑鸿
Original Assignee
上海沛塬电子有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海沛塬电子有限公司 filed Critical 上海沛塬电子有限公司
Publication of WO2023213218A1 publication Critical patent/WO2023213218A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/49Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions wire-like arrangements or pins or rods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4885Wire-like parts or pins
    • H01L21/4896Mechanical treatment, e.g. cutting, bending
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/60Attaching or detaching leads or other conductive members, to be used for carrying current to or from the device in operation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76895Local interconnects; Local pads, as exemplified by patent document EP0896365
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/538Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates
    • H01L23/5386Geometry or layout of the interconnection structure
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/003Constructional details, e.g. physical layout, assembly, wiring or busbar connections
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2039Modifications to facilitate cooling, ventilating, or heating characterised by the heat transfer by conduction from the heat generating element to a dissipating body

Definitions

  • the invention belongs to the field of semiconductor packaging technology, and in particular relates to a high-frequency and high-power-density module power supply, its parallel power supply combination, its manufacturing method and a combination of soft and hard components.
  • the power semiconductor component of the Buck circuit consists of two switching devices.
  • a decoupling capacitor Cin1 needs to be placed nearby to suppress the loss of reliability caused by voltage spikes. Due to module height and space limitations, the capacity of Cin1 is usually relatively small, such as 1uF, which is only used to reduce the loop inductance Lloop1. Therefore, customers need to place more capacitors Cin2 close to the module pins for filtering.
  • the conductive pin is fixed on the inductor, and then combined with the power semiconductor component IPM welding. Due to the height of the module, the loops of Vin Pin and GND Pin are larger, and Lloop2 is larger, up to more than 5nH. Lloop2 resonates with Cin1, causing increased loss and even system instability.
  • one of the purposes of the present invention is to provide a high-frequency, high-power-density module power supply, which not only ensures heat dissipation capabilities, but also greatly reduces the loop inductance, enabling high-power and high-frequency implementation, and upgrading its performance. Provides application foundation.
  • Another object of the present invention is to provide a manufacturing method that can realize the above-mentioned high-frequency and high-power density module power supply.
  • the first aspect of the present invention provides a high-frequency high-power density module power supply, including:
  • a hard-soft combination component the soft-hard combination component includes at least one hard part and at least one flexible part, at least one of the hard parts includes a power semiconductor component, and the hard part is electrically connected to the flexible part;
  • At least one of the soft-hard combination components is electrically connected to the surface power pin of the carrier element
  • the soft-hard combination component is bent using the surface of the carrier element as a carrier, and the bending part is a flexible part;
  • the hard part and the flexible part are interconnected by the same flexible part, and at least one of the hard part and/or the flexible part has at least one power pin.
  • the flexible component is a flexible board, and each hard part is disposed at different positions on the flexible board.
  • the position of each hard part on the flexible board can be set as needed.
  • the center line of the flexible board can be located above, in the middle or below the flexible board.
  • the thickness of each hard part can also be set as needed; the length and width of each flexible part can also be set as needed.
  • the number of hard parts and flexible parts can also be set as needed. It can also be freely adjusted, and the built-in components of each hard part can also be freely adjusted according to circuit needs.
  • the hard part containing the power semiconductor component is disposed on the upper surface of the carrier element and is power interconnected with the carrier element on the upper surface of the carrier element.
  • the hard part containing the power semiconductor component is arranged on the side of the carrier element, and is power interconnected with the carrier element on the side of the carrier element.
  • At least two of said hard parts comprise power semiconductor components and are respectively arranged on two different sides of the carrier element.
  • the hard part containing the power semiconductor component is disposed on the lower surface of the carrier element, and is power interconnected with the carrier element on the lower surface of the carrier element.
  • the flexible component includes at least one insulating layer and at least two conductive layers separated by the insulating layer, the flexible component includes at least one overlapping area, and in the overlapping area, two of the insulating layers Both sides have conductive layers, And the electrodes of the conductive layer have opposite electrical properties. Among them, the electrodes are electrically opposite, specifically one end is connected to the ground, and the other end is connected to the input power or output power terminal.
  • the flexible component has at least one power pin, specifically: the end of the flexible component is provided with an end pin, and the end pin includes at least one power pin.
  • the end pin is formed on a surface of the carrier element after being bent by a flexible component.
  • a surface of the carrier element is provided with a space for accommodating the terminal pins.
  • the hard part and/or the flexible part have at least one power ground pin, and the power pins and power ground pins are arranged alternately.
  • the conductive layer provided on the side of the flexible component away from the carrier element is an outer conductive layer, and the conductive layers other than the outer conductive layer are inner conductive layers;
  • the flexible component has at least one power pin, specifically: the end of the flexible component is provided with an end pin, and the end pin includes at least one power pin;
  • the inner conductive layer is electrically connected to at least one end pin through the flexible component.
  • the hard part and/or the flexible part has at least one signal pin, and the signal pin and the power pin are respectively arranged on different surfaces of the carrier element.
  • the flexible component has a copper-reduced structure or a copper-removed structure to form a flexible part.
  • the copper-reduced structure is a thinned structure or a stamp hole structure.
  • the power semiconductor component includes a power semiconductor element disposed on the upper surface of a flexible component and a first plastic encapsulation body, the power semiconductor element is electrically connected to the flexible component, and the first plastic encapsulation body covers the power semiconductor element and at least part of it.
  • the upper surface of the flexible part is electrically connected to the flexible component, and the first plastic encapsulation body covers the power semiconductor element and at least part of it.
  • the power semiconductor component includes a first PCB board disposed on the upper surface of the flexible component, a power semiconductor component disposed on the first PCB board, and a first plastic package.
  • the power semiconductor component is connected to the flexible component through the first PCB board.
  • the components are electrically connected, and the first plastic encapsulation body covers the first PCB board and the power semiconductor component.
  • the power semiconductor component further includes a second PCB board disposed on the lower surface of the flexible component, and the first PCB board is electrically connected to the second PCB board through a via electrical connector disposed in the via hole.
  • the power semiconductor component further includes at least one embedded chip, the embedded chip is arranged inside the first PCB board and/or between the first PCB board and the flexible component, and/or inside the flexible PCB board.
  • the embedded chip is electrically connected to the first PCB board and/or the flexible component.
  • the hard part includes a side capacitor arranged on the flexible component.
  • the hard part further includes a second plastic body, and the second plastic body wraps the side capacitor and at least part of the flexible components.
  • the outer conductive layer on at least one side of the flexible component has a first electrical region and a second electrical region with opposite electrical properties, and the second electrical region is electrically connected to the corresponding inner conductive layer, and the At least one side capacitor is provided on the outer conductive layer, and two electrodes of the side capacitor are electrically connected to the first electrical region and the second electrical region respectively.
  • the hard part includes a thickened metal block, and the thickened metal block is electrically connected to the flexible part.
  • the circuit formed by the power semiconductor element includes at least two switch bridge arms, and the high-frequency jump voltage terminals of the switch bridge arms are electrically interconnected through electrical connectors provided on the surface of the carrier element.
  • the circuit formed by the power semiconductor element includes at least one switching bridge arm, and the DC voltage end of the switching bridge arm is electrically connected to the flexible component through an electrical connector provided on the surface of the carrier element.
  • the flexible component extends along at least two sides of the carrier element, and the end pins include a ground pin, an input power pin, and an output power pin; the end pins of the flexible component on one side of the carrier element are respectively are ground pins and input power pins; the end pins of the flexible component on the other side of the carrier element are respectively ground pins and output power pins.
  • At least one of the hard parts is a hard capacitor component
  • the outer conductive layer on at least one side of the flexible component has a first electrical area and a second electrical area with opposite electrical properties, and the second electrical area and the inner conductive layer at the corresponding position electrical connection;
  • the hard capacitor component is arranged on the conductive layer outside the flexible component.
  • the hard capacitor component includes a third plastic package and at least one side capacitor.
  • the two electrodes of the side capacitor are respectively connected to the first electrical region and the second The electrical area is electrically connected, and the third plastic encapsulation body covers the side capacitor and at least part of the conductive layer outside the flexible component.
  • the bottom of the hard capacitor component is flush with the bottom of the carrier element; the at least one hard part has at least one power pin, specifically: the bottom of the hard capacitor component is provided with at least one through electroplating. power pin.
  • At least one of said hard parts is a hard control component
  • the hard control component is disposed on the conductive layer outside the flexible component on at least one side;
  • the hard control component includes a control chip and a fourth plastic package.
  • the fourth plastic package covers the control chip and at least part of the conductive layer outside the flexible component.
  • the control chip is used to provide control signals to the power semiconductor component.
  • the bottom of the hard control component and the bottom of the hard capacitor component are flush with the bottom of the carrier element, and the bottom of the hard control component is provided with at least one signal pin through electroplating; the at least one hard part There is at least one power pin, specifically: the bottom of the hard capacitor component is provided with at least one power pin through electroplating.
  • the bottom of at least one of the hard parts is lower than the bottom of the carrier component, so that when the high-frequency high-power density module power supply is installed on the customer's motherboard, there is room below the carrier component to accommodate the output decoupling capacitor. Space.
  • At least one of the hard parts is an output decoupling capacitor component.
  • the output decoupling capacitor component is arranged at the bottom of the carrier element.
  • the output decoupling capacitor component is used to accommodate the output decoupling capacitor.
  • the decoupling capacitor One electrode is electrically connected to the carrier element, and the other electrode is electrically connected to the flexible component.
  • the power supply flying wire also includes a power supply flying wire.
  • One end of the power supply flying wire is electrically connected to the soft-hard combination component, and the other end is used to electrically connect to the customer's motherboard.
  • the power supply flying wire is used to power the high-frequency high-power density module away from the module. The position supplies power to the high-frequency and high-power-density module.
  • a second aspect of the present invention provides the above-mentioned soft and hard combination assembly.
  • the third aspect of the present invention provides a high-frequency and high-power density module power supply, including:
  • the power semiconductor component includes a power semiconductor element and a first plastic encapsulation body, the first plastic encapsulation body covers the power semiconductor element;
  • a carrier element the carrier element is arranged at the bottom of the high-frequency high-power density module power supply, the power semiconductor component is arranged above the carrier element, and the carrier element is electrically connected to the power semiconductor component;
  • a bottom pin which is set at the bottom of the high-frequency, high-power-density module power supply
  • An electrical connection component the electrical connection component is used to electrically connect the power semiconductor component to the bottom pin;
  • a top heat dissipation structure is provided on the top of the power semiconductor component
  • the top heat dissipation structure includes a top heat dissipation coating and a thermal connector, and the top heat dissipation coating is provided on the upper surface of the first plastic package through electroplating;
  • the thermal connector is disposed inside the first plastic package, and the thermal connector thermally connects at least one power semiconductor element to the top heat dissipation coating.
  • the electrical connection component is a flexible component
  • the flexible component is provided on at least one side of the carrier element
  • the flexible component includes at least one insulating layer and at least two conductive layers separated by the insulating layer
  • the flexible component includes at least one overlapping area, in which both sides of the insulating layer are provided with conductive layers and the electrodes of the conductive layers are electrically opposite.
  • the flexible component is provided with a side hard part, and the side hard part includes at least one of a hard capacitor component and a hard control component;
  • the hard capacitor component includes a third plastic package and at least one side capacitor. Two electrodes of the side capacitor are electrically connected to different conductive layers of the flexible component.
  • the third plastic package covers the side capacitor and at least part of the flexible component. conductive layer on the outside;
  • the hard control component includes a control chip and a fourth plastic package.
  • the fourth plastic package covers the control chip and at least part of the conductive layer outside the flexible component.
  • the control chip is used to provide control signals to the power semiconductor component.
  • the outer side of at least one of the side hard parts is provided with a side metal plating layer through electroplating.
  • the fourth aspect of the present invention provides a parallel high-frequency high-power density module power supply combination, including:
  • At least two high-frequency, high-power-density module power supplies are provided with bottom pins on their bottom surfaces.
  • the bottom pins include signal pins, input power pins, output power pins, and power grounding.
  • Pin, the bottom surface has a first edge, a second edge, a third edge and a fourth edge, the second edge and the fourth edge are opposite;
  • the alternating array of input power pins and power ground pins is arranged on the second edge and the fourth edge of the bottom surface;
  • the high-frequency and high-power-density module power supplies are arranged in parallel so that the second and fourth edges of adjacent high-frequency and high-power density module power supplies are close to each other.
  • a common radiator is provided on the top of the parallel high-frequency high-power density module power supply combination.
  • the high-frequency high-power density module power supply includes:
  • a soft-hard combination component includes at least one hard part and at least one flexible part, at least one of the hard parts includes a power semiconductor component, and the hard part and the flexible part interact with each other through the same flexible component.
  • the hard part is electrically connected to the bottom pin through the flexible component;
  • Carrier element the hard part is arranged on one surface of the carrier element, the flexible part covers the upper surface and at least one side surface of the carrier element and extends to the bottom of the carrier element, and its bend is a flexible part , the carrier element is electrically connected to the power semiconductor component;
  • the flexible component includes at least one insulating layer and at least two conductive layers separated by the insulating layer.
  • the flexible component includes at least one overlapping area. In the overlapping area, both sides of the insulating layer have conductive layers and are conductive. The electrodes of the layers are electrically opposite.
  • the first edge and the fourth edge are parallel, the output pins are arranged on the first edge or not on the bottom surface, and the signal pin array is arranged on the third edge;
  • a customer motherboard input capacitor is provided outside the second edge and the fourth edge of the high-frequency high-power density module power supply, and the two electrodes of the customer motherboard input capacitor are electrically connected to the input power pin and the power ground pin respectively;
  • the input capacitance of the customer's motherboard is shared between two adjacent high-frequency high-power density module power supplies, and one electrode of the shared customer's motherboard input capacitor is connected to the electrode of the two adjacent high-frequency high-power density module power supplies.
  • the input power pins at the corresponding positions are electrically connected, and the other electrode is electrically connected to the power ground pins at the corresponding positions of the two adjacent high-frequency high-power density module power supplies.
  • the fifth aspect of the present invention provides a method for manufacturing a high-frequency, high-power-density module power supply, including:
  • Glue and solder are provided on the surface of the carrier element, the glue is used to fixedly connect the carrier element to the soft-hard combination component, and the solder is used to electrically connect the carrier element to the soft-hard combination component;
  • the power semiconductor component is arranged on the upper surface of the carrier element, and the flexible component is bent and extends along the upper surface and at least one side surface of the carrier element to the bottom, and the bending part is a flexible part;
  • the preformed soft and hard combination components are specifically:
  • the electronic components required for the hard part are provided on or within the flexible part.
  • the method further includes: performing partial molding to form the hard part on the flexible component.
  • a sixth aspect of the present invention provides a method for manufacturing a high-frequency, high-power-density module power supply, including:
  • step S2 is specifically:
  • a multi-layer PCB board at least one layer of the multi-layer PCB board is a flexible PCB board, and at least one layer is a rigid PCB board;
  • Electronic components are arranged on or inside the multi-layer PCB board;
  • Glue and solder are provided on the surface of the carrier element, the glue is used to fixedly connect the carrier element to the soft-hard combination component, and the solder is used to electrically connect the carrier element to the soft-hard combination component;
  • the power semiconductor component is arranged on the upper surface of the carrier element, and the flexible component is bent and extends along the upper surface and at least one side surface of the carrier element to the bottom, and the bending part is a flexible part;
  • the soft-hard combination assembly includes multiple groups of soft-hard combination sub-assemblies that are connected in parallel and achieve the same function.
  • Each group of soft-hard combination sub-assemblies includes a hard part, a flexible part, a flexible part and an end pin; at high temperatures After processing, each group of soft and hard combination sub-assemblies are tested separately. For the soft and hard combination sub-assemblies with poor test results, their corresponding flexible components are cut to open circuit.
  • the seventh aspect of the present invention provides a method for manufacturing a high-frequency, high-power-density module power supply, including:
  • Glue and solder are provided on the surface of the carrier element, the glue is used to fixedly connect the carrier element to the soft-hard combination component, and the solder is used to electrically connect the carrier element to the soft-hard combination component;
  • the power semiconductor component is arranged on the upper surface of the carrier element, and the flexible component is bent and extends along the upper surface and at least one side surface of the carrier element to the bottom, and the bending part is a flexible part;
  • the preformed soft and hard combination components are specifically:
  • a multi-layer PCB board at least one layer of the multi-layer PCB board is a flexible PCB board, and at least one layer is a rigid PCB board;
  • Electronic components are arranged on or inside the multi-layer PCB board;
  • the entire module system has only two main components: the soft-hard component and the carrier component.
  • Each has a large area, is easy to control during assembly, has few interconnections, has high space utilization, and is more beneficial in terms of reliability and assembly space.
  • the loop inductance is greatly reduced, and may be less than 1nH, which allows the heat source to be placed without sacrificing electrical performance to facilitate system heat dissipation;
  • the module pins are all bent by bending the bottom of the flexible PCB board, making the module pins larger in area and easier to weld.
  • the disadvantage is that this bend results in space usage and process challenges.
  • the size of the module electrodes can be as small as 0.2mm or even lower. So, the second part, even if you directly use the end side of the flexible PCB board Electroplating can also achieve electrode extraction. At least one bend is eliminated, greatly reducing process challenges;
  • the top heat dissipation structure directly thermally interconnects the power semiconductor chip with the upper surface of the module, greatly reducing the thermal resistance between the semiconductor and the upper surface of the module.
  • the upper surface after electroplating is smooth and beautiful, and can also effectively prevent moisture, improving product reliability, quality and image.
  • the surface electroplating layer can also be set to GND, which can effectively suppress external radiation interference from the module.
  • FIGS. 1A to 1C are schematic diagrams of high-frequency high-power density module power modules in the prior art
  • Figure 2 is a schematic diagram of a high-frequency high-power density module power module according to an embodiment of the present invention
  • 3A to 3D are schematic diagrams of different placement positions between the hard part and the carrier element of the high-frequency high-power density module power module according to the embodiment of the present invention.
  • 4A and 4B are schematic diagrams of flexible components of a high-frequency high-power density module power module according to an embodiment of the present invention.
  • 5A to 5D are schematic diagrams of the high-frequency high-power density module power module from different perspectives according to the embodiment of the present invention.
  • 6A to 6C are schematic diagrams of the flexible part of the high-frequency high-power density module power module according to the embodiment of the present invention.
  • Figures 7A to 7D show various molding methods of soft and hard combination components of high-frequency high-power density module power modules according to embodiments of the present invention
  • 8A to 8F show the side capacitor structure of the high-frequency high-power density module power supply module according to the embodiment of the present invention
  • Figures 9A and 9 show the pin-out structure of the high-frequency high-power density module power module according to the embodiment of the present invention.
  • Figures 10A and 10B show the pin plating structure of the high-frequency high-power density module power supply module according to the embodiment of the present invention
  • Figures 11A and 11B show the top heat dissipation structure of the high-frequency high-power density module power module according to the embodiment of the present invention
  • Figures 12A and 12B show the controller structure of the high-frequency high-power density module power module according to the embodiment of the present invention
  • Figure 13 is a method for manufacturing a high-frequency high-power density module power supply module according to an embodiment of the present invention
  • Figure 14A and Figure 14B are specific manufacturing methods of the high-frequency high-power density module power supply module according to the embodiment of the present invention.
  • Figure 15 is a typical application of the high-frequency high-power density module power module according to the embodiment of the present invention.
  • Figures 16A to 16D show other typical applications of high-frequency, high-power-density module power modules according to embodiments of the present invention.
  • Figure 17 shows the multi-channel control structure of the high-frequency high-power density module power supply module of this embodiment
  • carrier component 1 hard part 2, flexible part 3, flexible part 4, inner conductive layer 5, outer conductive layer 6, first plastic package 7, first PCB board 8, second PCB board 9 , embedded chip 10, through-hole electrical connector 11, thickened metal block 12, second plastic package 13, top heat dissipation coating 14, thermal connector 15, control chip 16, third plastic package 17.
  • Figure 2 shows the high-frequency high-power density module power module of this embodiment, including:
  • a carrier component 1, at least one surface of the carrier component 1 has surface power pins; the carrier component 1 in this embodiment does not have to be an inductor, it can be a transformer, a combination of capacitors, or even a sub-power module;
  • the soft-hard combination component includes at least one hard part 2 and at least one flexible part 3. At least one hard part 2 includes a power semiconductor component.
  • the power semiconductor component can be used in a power conversion circuit, such as a boost circuit or Buck circuit; the hard part 2 and the flexible part 3 are electrically connected;
  • At least one place of the soft-hard combination component is electrically connected to the surface power pin of the carrier component 1;
  • the soft-hard combination component uses the surface of the carrier element 1 as a carrier for bending, and the bending part is the flexible part 3;
  • the hard part 2 and the flexible part 3 are interconnected by the same flexible part 4, and at least one hard part 2 and/or the flexible part 4 has at least one power pin.
  • the flexible component 4 is a flexible plate, and each hard part 1 is disposed at different positions on the flexible plate 4.
  • each hard part 2 on the flexible plate 4 can be set as needed.
  • each hard part The center lines of the points 2 can be respectively located above, in the middle or below the flexible board 4.
  • the thickness of each hard part 2 can also be set as needed; the length and width of each flexible part 3 can also be set as needed.
  • the hard part 2 The number of flexible parts 3 can also be freely adjusted, and the built-in components of each hard part 2 can also be freely adjusted according to circuit needs.
  • the high-frequency high-power density modular power supply module of this embodiment has only two main components: the carrier component 1 and the soft-hard combination component. Each has a large area, is easy to control during assembly, has few interconnections, has high space utilization, reliability and Assembly space will be more beneficial. Moreover, the loop inductance is greatly reduced, and may be less than 1nH. It can be small without sacrificing electrical performance, and the heat source can be placed to facilitate system heat dissipation.
  • FIG. 3A to 3D show schematic diagrams of different placement positions between the hard part 2 and the carrier element 1 of the high-frequency high-power density module power supply module of this embodiment.
  • the hard part containing the power semiconductor component The mass part 2 is arranged on the upper surface of the carrier element 1, and is power interconnected with the carrier element 1 on the upper surface of the carrier element 1, which is suitable for applications with small floor space; the mass part 2 shown in Figure 3A is arranged on the side of the carrier element 1
  • the hard part 2 is a hard part 2 that does not contain power semiconductor components, and those skilled in the art can set its built-in components as needed.
  • the hard part 2 containing the power semiconductor component is arranged on the side of the carrier element 1, and is power interconnected with the carrier element 1 on the side of the carrier element 1. It is suitable for application scenarios with low module height. That is, the upper surface of the carrier element 1 is not provided with a hard part 2 containing power semiconductor components; as shown in Figure 3C, at least two hard parts 2 include power semiconductor components and are respectively provided on two different sides of the carrier element 1 , suitable for application scenarios with low module height and high power.
  • the carrier component 1 is an integrated inductor.
  • the integrated inductor is an inductor with two windings and reverse coupling; as shown in Figure 3D, the hard part 2 containing the power semiconductor component is arranged on the lower surface of the carrier element 1, and is connected with the carrier element on the lower surface of the carrier element 1 1 for power interconnection, suitable for application scenarios where the heat dissipation channel is under the carrier component 1.
  • FIG. 3A to FIG. 3D are only schematic diagrams showing several different arrangement positions between the hard part 2 and the carrier element 1 as preferred embodiments. Other hard parts 2 and the carrier are not shown. The technical solution of different placement positions between the components 1 is also within the protection scope of the present invention.
  • the flexible component 4 includes at least one insulating layer and at least two conductive layers separated by the insulating layer.
  • Flexible component 4 includes There is at least one overlapping area. In the overlapping area, both sides of the insulating layer are provided with conductive layers, and the electrodes of the conductive layers are electrically opposite. Among them, the electrodes are electrically opposite, specifically one end is connected to the ground, and the other end is connected to the input power or output power end to reduce the loop inductance.
  • the end of the flexible component 4 is provided with an end pin, and the end pin includes at least one power pin.
  • the flexible component 4 is a flexible PCB board, which contains at least two metal layers to lead the electrically low parasitic inductance of the hard part 2 to the end pins.
  • a 2OZ copper-thick flexible PCB board as an example, its total thickness can be less than 0.2mm, and its impact on the overall volume of the module is almost negligible. And the thickness of its insulation layer may be less than 50um, achieving extremely ideal low loop inductance power or signal transmission.
  • the loop inductance of the present invention is so small that it may be as small as 0.5nH or less, and there may even be no need to build Cin1 into the module.
  • the end pins are formed on a surface of the carrier element 1 after being bent through the flexible component 4; preferably, a surface of the carrier element 1 is provided with a receiving
  • the space between the end pins is used as a bending space for the module pins to reduce the increase in module thickness caused by the thickness of the pins.
  • the bending part of the terminal pin is the flexible part 3 .
  • the conductive layer disposed between the flexible component 4 and the carrier element 1 is the inner conductive layer 5, and the conductive layer disposed outside the flexible component 4 is the outer conductive layer 6.
  • the inner conductive layer 5 passes through
  • the through-flexible component 4 is electrically connected to at least one end pin, as shown in the GND portion in the lower right corner of Figure 4A.
  • 5A to 5D show schematic diagrams of the high-frequency high-power density module power module of this embodiment from different perspectives.
  • the power leads can be coupled by the double-layer metal layer of the flexible component 4 to reduce loops, but also the module
  • the signal pins can also be coupled via double layers.
  • the inner metal layer of the double-layer metal layer close to the inductor is GND, which not only reduces the inductance of the signal loop, but also shields the interference of the leakage flux of the magnetic components on the signal transmission.
  • multiple sides of the carrier element 1 can be used to set the flexible component 4, allowing a larger area for power pin transmission, reducing transmission loss, and further reducing loops; the power pins and The signal pins are arranged in separate planes to reduce mutual interference and provide convenience for customers, as shown in Figures 5B and 5D.
  • the end pins also include power ground pins PGND.
  • the power pins and PGND are arranged in a staggered manner, as shown in Figures 5B and 5C, to reduce the number of power pins that are large and few in customer applications. The resulting increase in loop inductance.
  • the inner metal electrode is close to the pin and can become an effective module pin through the penetrating flexible component 4 shown in Figure 4A.
  • most of the metal layer on the side of the flexible component 4 close to the carrier element 1 is a GND layer to reduce the voltage difference formed by each electrode on the carrier element 1 , which may lead to leakage.
  • the carrier component 1 is provided with flexible components 4 on three sides.
  • the left and right sides are a power pin combination (such as input), the upper is a signal pin combination, and the lower is another power pin. pin combination (such as output).
  • Figures 6A to 6C show schematic diagrams of the flexible part 3 of the high-frequency high-power density module power supply module of this embodiment.
  • the soft-hard component needs to be bent, and the processing of the bending involves not only process difficulty, but also It also affects space utilization. Therefore, under the premise that the electrical impact is acceptable, the thickness of the metal layer at the bend should be reduced as much as possible to reduce the force required for molding and the size loss caused by the molding angle.
  • the flexible component 4 has a copper-reduced structure to form a flexible part, where the copper-reduced structure is a thinned structure or a stamp hole structure.
  • the copper of the metal layer of the flexible component 4 is partially etched and removed, and the stamp holes of the inner and outer metal layers of the flexible component 4 at the bend can be arranged crosswise, which not only reduces the equivalent thickness, but also maintains the uniformity of the equivalent thickness. sex.
  • the traditional bending angle usually cannot be greater than 45 degrees, but the present invention can make it greater than 60 degrees, which is greatly improved.
  • the flexible component 4 has a copper-removing structure to form a flexible part.
  • the flexible part 3 is bent and the metal layer close to one side of the carrier component 1 is Removed to reduce bending stress and overall thickness of the module.
  • Figures 7A to 7D show various molding methods of the soft and hard combination components of the high-frequency high-power density module power supply module of this embodiment.
  • the power semiconductor component includes a semiconductor component disposed on the upper surface of the flexible component 4
  • the power semiconductor element and the first plastic encapsulation body 7 are electrically connected to the flexible component 4 .
  • the first plastic encapsulation body 7 covers the power semiconductor element and at least part of the upper surface of the flexible component 4 . Specifically, after placing the power semiconductor components and necessary peripheral devices on a multi-layer flexible board, they are partially plastic-sealed to form the hard part 2 .
  • the flexible board since the flexible board needs to maintain bendability, its number of layers should not be more than two, and the internal electrical interconnection of the hard part 2 often requires more layers. . Therefore, the traditional idea is that an additional PCB board can be placed on the flexible board. For example, welding a multi-layer PCB board on a flexible board, and then placing power semiconductor components and necessary peripheral devices on the multi-layer PCB board.
  • this solution requires welding and forming, and the interconnection accuracy between each layer of PCB boards is low. Therefore, the power semiconductor component of this embodiment includes the first PCB board 8 disposed on the upper surface of the flexible component 4, The power semiconductor component and the first plastic package 7 are arranged on the first PCB board 8.
  • the power semiconductor component is electrically connected to the flexible component 4 through the first PCB board 8.
  • the first plastic package 7 covers the first PCB board 8 and the power semiconductor.
  • this embodiment selects the PCB board production process, which is based on a double-layer flexible board, on which the required PCB board is pressed, and then high-strength and high-precision interconnection is performed through hole plating. The place where the multi-layer PCB board is pressed is the hard part 2 of this embodiment.
  • the power semiconductor component also includes a second PCB board 9 provided on the lower surface of the flexible component 4, and the first PCB board 8 is electrically connected through via holes provided in the via holes.
  • the component 11 is electrically connected to the second PCB board 9.
  • Multi-layer PCB boards are pressed onto the upper and lower surfaces of the flexible PCB board and punched and electroplated for high-strength, high-precision interconnection to achieve structural symmetry and reduce warpage.
  • the flexible component 4 is provided with an embedded chip 10 in the area corresponding to the hard part 2, and the embedded chip 10 is connected to the first PCB through via-hole electrical connectors 11. Board 8, second PCB board electrical 9 connection.
  • This embodiment prevents the embedded chip 10 from being embedded inside the flexible component 4.
  • the embedded chip 10 can make the power semiconductor chip reduce the thickness of the hard part 2, that is, reduce the thickness of the module. This embodiment is especially suitable for a total thickness of Modules below 5mm. That is to say, the power semiconductor component further includes at least one embedded chip 10.
  • the embedded chip 10 is disposed inside the first PCB board 8 and/or between the first PCB board 8 and the flexible component 4 and/or inside the flexible PCB board.
  • the embedded chip 10 is electrically connected to the first PCB board 8 and/or the flexible component 4 .
  • the strength of the hard part 2 has met the requirements due to the increase in the number of PCB layers, but it can still be partially molded to further improve reliability and strength, which is also convenient. Customers have a more friendly cooling interface to install the radiator.
  • the hard component 2 of this embodiment may include a side capacitor disposed on the flexible component 4 .
  • the inner layer PGND of the flexible PCB board is led out to the outer layer in a part of the side area for electrical connection with the pins of the capacitors (multiple capacitors are laid flat on the customer's motherboard, and there is waste above them. .
  • the module part is equivalent to stacking, fully utilizing the height and occupying a smaller area.)
  • the integration of Cin2 greatly reduces the difficulty of customer use.
  • the part where the electronic components are placed on the flexible component 4 can also be plastic-sealed, which improves reliability and insulation capabilities when used by customers, and also greatly improves the utilization rate of the plastic-sealing mold.
  • the hard part 2 of this embodiment includes the side capacitor and the second plastic body 13 arranged on the flexible component 4.
  • the second plastic body 13 wraps the side capacitor and at least part of the flexible component 4.
  • the copper thickness of the flexible PCB is often within 0.1mm and the current carrying capacity is limited, thick copper and other metal blocks can be added to the PCB to increase the current carrying capacity.
  • the thickened metal block 12 can be used only to increase current carrying energy, or can also be used to increase the pin area. That is to say, the hard part 2 of this embodiment includes a thickened metal block 12 disposed on the flexible component 4 , and the thickened metal block 12 is electrically connected to the flexible component 4 .
  • FIGS. 9A and 9B show the pin-out structure of the high-frequency, high-power-density module power module of this embodiment. All pins out of the carrier component 1 are not arranged on the lower surface of the carrier component 1 . That is the lower surface of the module.
  • Buck circuit, or Boost circuit because at least one of its input or output power electrodes is the same electrode as one electrode of the magnetic component, therefore, in order to reduce the interconnection loss caused by the pin, the output electrode of the Buck circuit or the Boost circuit can be The input electrode directly uses the corresponding electrode of the carrier element 1, that is, the magnetic element, as the module electrode.
  • the electrodes of the carrier component 1 are internal electrodes of the module, or in order to reduce the difficulty of module lead flatness processing, it is also chosen not to use the electrodes of the carrier component 1 directly as module electrodes.
  • the carrier component 1 is an inductor, and the two electrodes are arranged on the upper surface and interconnected with the two high-frequency electrical SW1 and SW2 at the bottom of the IPM.
  • the carrier element 1 and the module have the same electrical electrodes, and are electrically interconnected with the flexible component 4 through the side and then lead out.
  • the module pins of the high-frequency high-power density module power module in the above embodiments are obtained by bending the bottom of the flexible PCB board.
  • the advantage of this is that the module pins have a larger area and are easier to solder.
  • the disadvantage is that this bend results in space usage and process challenges.
  • 10A and 10B show the pin plating structure of the high-frequency high-power density module power module of this embodiment.
  • the size of the module electrodes can be as small as 0.2mm or even lower.
  • the end section of the flexible component 4 is electroplated to realize electrode extraction. At least one bend is eliminated, greatly reducing process challenges.
  • the end section of the second plastic package 13 can be used to lead out the module pins through plating.
  • Increase pin area and strength that is to say, at least one hard part 2 is a hard capacitor component, the bottom of the hard capacitor component is flush with the bottom of the carrier component 1, and at least one end pin is arranged on the bottom of the hard capacitor component through electroplating.
  • FIGS 11A and 11B show the top heat dissipation structure of the high-frequency high-power density module power supply module of this embodiment.
  • the heat dissipation structure is formed on the surface through drilling and electroplating after plastic sealing.
  • the structure directly thermally interconnects the power semiconductor chip with the upper surface of the module, greatly reducing the thermal resistance between the semiconductor and the upper surface of the module.
  • the upper surface after electroplating is smooth and beautiful, and can also effectively prevent moisture, improving product reliability, quality and image.
  • the surface electroplating layer can also be set to GND, which can effectively suppress external radiation interference from the module.
  • the thermal resistance from the power semiconductor to the top of the module is greater than 10K/W or even higher.
  • This embodiment can reduce the above thermal resistance to less than 5K/W or even lower, greatly improving the operating power. Or applicable ambient temperature.
  • the power semiconductor component of this embodiment includes a power semiconductor component and a first plastic package 7 .
  • the first plastic package 7 covers the power semiconductor component.
  • a top heat dissipation structure is provided on the top of the power semiconductor component.
  • the top heat dissipation structure includes a top heat dissipation structure.
  • the top heat dissipation plating layer 14 is disposed on the upper surface of the first plastic package 7 through electroplating.
  • the thermal connector 15 is disposed inside the first plastic package 7.
  • the thermal connector 15 connects at least one power semiconductor element with Top heat dissipation plating 14 thermal connections.
  • Figure 12A and Figure 12B show the controller structure of the high-frequency high-power density module power supply module of this embodiment.
  • the controller is provided on the flexible component 4 and directly leads out the signal pin to the module to increase the limited thickness. , greatly improving the convenience of using the module.
  • the main power semiconductor also needs to be implemented by multiple wafers, usually a combination of two main power semiconductors, which accept interleaved parallel control and serve as a module. Then, the corresponding magnetic components are also multi-channel integrated components.
  • each electronic component part of the soft-hard combination component is plastic-sealed or even electroplated.
  • At least one hard part 2 is a hard control component.
  • the hard control component is arranged on the outer conductive layer 6 of at least one side of the flexible component 4.
  • the hard control component includes the control chip 16 and the third plastic encapsulation body. 17.
  • the third plastic encapsulation body 17 covers the control chip 16 and at least part of the outer conductive layer 6 of the flexible component 4.
  • the control chip 16 is used to provide control signals to the power semiconductor component.
  • the bottom of the hard control component is flush with the bottom of the carrier element 1, and at least one end pin is disposed on the bottom of the hard control component through electroplating.
  • Figure 13 shows the manufacturing method of the high-frequency high-power density module power module of this embodiment, which includes the following steps:
  • Step S1 Provide a carrier component 1 .
  • Step S2 Preform the soft and hard combined components.
  • Step S3 Glue and solder are provided on the surface between the soft-hard combination component and the carrier component 1 .
  • Step S4 Place the carrier element 1 at the corresponding position of the soft-hard combination component, bend the soft-hard combination component as required, using the surface of the carrier element 12 as a support; then melt and weld the solder at high temperature, and solidify and bond the glue.
  • Step S5 Optional, if necessary, polish the surface of the module pins and then place solder for fluxing treatment, or place the solder to thicken it and then polish it to ensure the flatness and solderability of the module pins. .
  • FIG 14A shows the specific process of the above step S2, including the following steps:
  • Step S2.1 Provide a flexible component 4, which is a multi-layer PCB substrate embedded with a flexible PCB board; first, the multi-layer PCB substrate embedded with the flexible PCB board is preformed; if there are embedded components in the PCB, they are also This step is done in advance.
  • Step S2.2 Remove part of the hard PCB board on the upper surface of the flexible component 4 to expose the flexible PCB board.
  • Step S2.3 Place and weld electronic components on the flexible component 4.
  • Step S2.4 Plastic seal the electronic components on the flexible component 4 .
  • Step S2.4.1 Optional, if necessary, electroplating on the surface of the plastic package, or drilling holes above the power semiconductor component as shown in Figure 11A and Figure 11B.
  • Step S2.4.2 Optional, if necessary, drill holes at the end pins of the flexible component 4 and perform electroplating to form a conductive metal layer and a thermally conductive metal layer.
  • Step S2.5 In the flexible part 3 and other parts that do not require plastic packaging, remove the plastic packaging body and the hard PCB board, both on the upper and lower surfaces.
  • FIG. 14B shows a schematic diagram of subsequent steps S3 to S5 in this embodiment.
  • Figure 15 shows a typical application of the high-frequency high-power density module power supply module of this embodiment. Since the present invention can stack power semiconductors on magnetic components, pins can be generated on multiple sides with low parasitic inductance. It provides the internal performance basis of the module to further improve system performance. Therefore, when used in customer system applications, there are also more sophisticated implementation methods, which greatly improve system performance.
  • a high-current Buck application is used as an example. A module integrating two Bucks is used, and multiple Bucks are connected in parallel to finally obtain the effect of n-channels. This module sets the input power pins on the left and right sides of the module and leads them out in a staggered manner.
  • the output pin is set in the middle of the bottom of the module or near the lower side so that a large area of copper can be laid nearby and connected in parallel to the load.
  • the modules are placed left and right in parallel, and the input capacitor Cin2 of the customer's motherboard is placed between the two modules to support two adjacent modules at the same time. Since there is a working phase difference between each module, nearby multiplexing can effectively reduce the ripple current of Cin2.
  • Cin2 can be placed on the same motherboard surface as the module on the customer's motherboard, or it can be placed on the back of the motherboard adjacent to the module. Multiple modules share one radiator. Due to the excellent heat dissipation capability and extremely small loop inductance of this embodiment, high frequency, high efficiency, high power and long-term operation can be achieved.
  • FIG 16A to Figure 16D show the typical application of the high-frequency high-power density module power module of this embodiment.
  • large-size data processors such as CPU and GPU
  • a capacitor array that decouples power to the CPU.
  • each pin of the module can be raised so that these CPU capacitors are placed under the module to ensure the required.
  • the pins will still occupy a certain amount of customer motherboard area.
  • the CPU capacitor array can be integrated on the above-mentioned soft and hard combination components, and also placed at the bottom of the module by bending, so that the required Module power pinout.
  • a large CPU has thousands of pins, so the CPU substrate extends the pins to a large area outside the CPU chip area. There are densely packed vias in these locations, which affects the external supply of Vin to the buck.
  • the Vin Pin is drawn from the side of the carrier component 1, and the customer can introduce power supply from the side Vin Pin through the power supply flying wire.
  • the end flexible plate of the soft-hard combination component can be extended to introduce Vin across the region.
  • FIG 17 shows the multi-channel control structure of the high-frequency high-power density module power module of this embodiment. Based on the scheme of Figure 2, multiple bucks are integrated into one module.
  • the heat dissipation surface is friendly, the integration level is high, and the process is simplified (it takes only one bending adjustment from 10 times). But the problem is that the yield rate drops. Then, after testing, you can cut and disconnect the defective part of the Buck, and use this part of the module to derate the specifications.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Geometry (AREA)
  • Thermal Sciences (AREA)
  • Structure Of Printed Boards (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

本发明公开了一种高频高功率密度模块电源及其制作方法,包括一载体元件,载体元件的至少一个表面具有表面功率引脚;一软硬结合组件,软硬结合组件包括至少一硬质部分及至少一柔质部分,至少一硬质部分包括功率半导体组件,硬质部分与柔质部分电性连接;软硬结合组件至少有一处与载体元件的表面功率引脚电性连接;软硬结合组件以载体元件的表面为载体进行折弯,折弯处为柔质部分;硬质部分和柔质部分通过同一柔性部件互连而成,至少一硬质部分和/或柔性部件具有至少一功率引脚。本发明保障散热能力的同时,大幅减小了回路电感,使得大功率高频得以实现,并为其性能的更新换代提供了应用基础。

Description

一种高频高功率密度模块电源、并联组合、制作方法及软硬结合组件 技术领域
本发明属于半导体封装技术领域,尤其涉及一种高频高功率密度模块电源、其并联电源组合、其制作方法及软硬结合组件。
背景技术
随着数据处理量的大幅度提升,服务器的主板越来越多层,越来越珍贵,对电源占地面积要求越来越高。以服务器大量使用的降压电路为例,越来越多的方案,采用将功率半导体元件跟磁性元件堆叠的电源模组方式,来缩小占地面积。但是将半导体放在电感下方,则半导体作为主要热源,很难将热传到散热器上。也越来越多的方案选择将半导体放到电感上面,以方便客户安装散热器,提升整体功率。但是,这样会造成损耗的增加。由于现有技术的不足,上述两个优势,较难同时得到。
如图1A所示,Buck电路的功率半导体元件由两个开关器件组成,高速切换的开关,需要就近放置退耦电容Cin1,以抑制电压尖峰带来的可靠性丢失。由于模组高度和空间的限制,Cin1的容量通常比较小,比如1uF,仅仅用于减小回路电感Lloop1。所以,需要客户在靠近模组引脚的位置,放置更多电容Cin2来滤波。
如图1B所示,将导电引脚固定在电感上,再与功率半导体元件组合IPM焊接。由于模组高度的存在,Vin Pin和GND Pin的回路较大,Lloop2较大,高达5nH以上。Lloop2与Cin1谐振,导致损耗增加甚至系统不稳定。
如图1C所示,一些较佳地现有技术,选择将Vin Pin和GND Pin堆叠,减小Lloop2。这个是行之有效的,可以将Lloop2减小到2nH。但是,实现非常困难。因为模组本身尺寸很小,留给导电引脚的空间更小,在如此小的尺寸下,进行引脚堆叠、折弯,再处理与电感引脚的平整度,再与IPM焊接,工艺复杂,且难以自动化。
因此,如何在保障散热能力的同时,大幅减小损耗、保证系统稳定还有节约模块空间、简化工艺,使得高频高功率得以实现,是一个亟待解决的问题。
发明内容
有鉴于此,本发明的目的之一在于提供一种高频高功率密度模块电源,保障散热能力的同时,大幅减小了回路电感,使得大功率高频得以实现,并为其性能的更新换代提供了应用基础。
本发明的另一目的还在于提供一种能够实现上述高频高功率密度模块电源的制作方法。
为实现上述目的,本发明第一方面提供了一种高频高功率密度模块电源,包括:
一一载体元件,所述载体元件的至少一个表面具有表面功率引脚;
一软硬结合组件,所述软硬结合组件包括至少一硬质部分及至少一柔质部分,至少一所述硬质部分包括功率半导体组件,所述硬质部分与柔质部分电性连接;
所述软硬结合组件至少有一处与载体元件的表面功率引脚电性连接;
所述软硬结合组件以载体元件的表面为载体进行折弯,所述折弯处为柔质部分;
所述硬质部分和柔质部分通过同一柔性部件互连而成,至少一所述硬质部分和/或柔性部件具有至少一功率引脚。
其中,所述柔性部件为柔性板,各个硬质部分分别设置在柔性板的不同位置,本领域技术人员能够理解,各个硬质部分在柔性板上的设置位置可根据需要设置,各个硬质部分的中心线可以分别处于柔性板的上方、中间或下方,各硬质部分的厚度也可以根据需要设置;各个柔质部分的长度和宽度也可以根据需要设置,硬质部分和柔质部分的数量也可以自由调节,各个硬质部分的内置元件也可以根据电路需要自由调节。
优选的,含功率半导体组件的所述硬质部分设置在载体元件的上表面,并在载体元件的上表面与载体元件功率互连。
优选的,含功率半导体组件的所述硬质部分设置在载体元件的侧面,并在载体元件的侧面与载体元件进行功率互连。
优选的,至少两个所述硬质部分包括功率半导体组件,且分别设置在载体元件的两个不同的侧面。
优选的,含功率半导体组件的所述硬质部分设置在载体元件的下表面,并在载体元件的下表面与载体元件进行功率互连。
优选的,所述柔性部件包括至少一层绝缘层及由绝缘层隔开的至少两层导电层,所述柔性部件包括至少一处重叠区域,在所述重叠区域内,所述绝缘层的两侧均具有导电层, 并且所述导电层的电极电性相反。其中,电极电性相反具体为一端接地,另一端接输入功率或者输出功率端。
优选的,所述柔性部件具有至少一功率引脚,具体为:所述柔性部件的末端设置有末端引脚,所述末端引脚包括至少一功率引脚。
优选的,所述末端引脚通过柔性部件折弯后形成于载体元件的一表面上。
优选的,所述载体元件的一表面开设有容纳末端引脚的空间。
优选的,所述硬质部分和/或柔性部分具有至少一功率接地引脚,所述功率引脚和功率接地引脚交替排列设置。
优选的,设置在所述柔性部件远离载体元件方向的一面的导电层为外侧导电层,并非所述外侧导电层的其他导电层为内侧导电层;
所述柔性部件具有至少一功率引脚,具体为:所述柔性部件的末端设置有末端引脚,所述末端引脚包括至少一功率引脚;
所述内层导电层通过贯穿柔性部件与至少一个末端引脚电连接。
优选的,所述硬质部分和/或柔性部分具有至少一信号引脚,所述信号引脚和功率引脚分别设置于载体元件的不同表面。
优选的,所述柔性部件具有减铜结构或去铜结构以形成柔质部分。
优选的,所述减铜结构为减薄结构或者邮票孔结构。
优选的,所述功率半导体组件包括设置于柔性部件上表面的功率半导体元件以及第一塑封体,所述功率半导体元件与柔性部件电连接,所述第一塑封体包覆功率半导体元件及至少一部分柔性部件的上表面。
优选的,所述功率半导体组件包括设置于柔性部件上表面的第一PCB板、设置于第一PCB板上的功率半导体元件及第一塑封体,所述功率半导体元件通过第一PCB板与柔性部件电连接,所述第一塑封体包覆第一PCB板和功率半导体元件。
优选的,所述功率半导体组件还包括设置于柔性部件下表面的第二PCB板,所述第一PCB板通过设置在过孔中的过孔电连接件与第二PCB板电连接。
优选的,所述功率半导体组件还包括至少一内埋晶片,所述内埋晶片设置在第一PCB板内部和/或第一PCB板与柔性部件之间和/或柔性PCB板内部,所述内埋晶片与第一PCB板和/或柔性部件电连接。
优选的,所述硬质部分包括设置在柔性部件上的侧面电容。
优选的,所述硬质部分还包括第二塑封体,所述第二塑封体包裹侧面电容和至少一部分柔性部件。
优选的,所述柔性部件的至少一侧的外侧导电层具有电性相反的第一电性区域和第二电性区域,所述第二电性区域与对应的内侧导电层电连接,所述外侧导电层上设置至少一个侧面电容,所述侧面电容的两个电极分别与第一电性区域、第二电性区域电连接。
优选的,所述硬质部分包括加厚金属块,所述加厚金属块与柔质部分电连接。
优选的,所述功率半导体元件形成的电路包括至少两个开关桥臂,所述开关桥臂的高频跳变电压端通过设置在载体元件表面的电连接件电性互联。
优选的,所述功率半导体元件形成的电路包括至少一个开关桥臂,所述开关桥臂的直流电压端通过设置在载体元件表面的电连接件与柔性部件电连接。其中,所述柔性部件沿载体元件的至少两个侧面延伸,所述末端引脚包括接地引脚、输入功率引脚、输出功率引脚;所述柔性部件在载体元件一个侧面的末端引脚分别为接地引脚、输入功率引脚;所述柔性部件在载体元件的另一个侧面的末端引脚分别为接地引脚、输出功率引脚。
优选的,至少一个所述硬质部分为硬质电容组件;
所述柔性部件装配在载体元件表面时,其至少一侧的外侧导电层具有电性相反的第一电性区域和第二电性区域,所述第二电性区域与对应位置的内侧导电层电连接;
所述硬质电容组件设置在柔性部件外侧的导电层上,所述硬质电容组件包括第三塑封体和至少一个侧面电容,所述侧面电容两个电极分别与第一电性区域、第二电性区域电连接,所述第三塑封体包覆侧面电容和至少一部分柔性部件外侧的导电层。
优选的,所述硬质电容组件的底部与载体元件的底部齐平;所述至少一硬质部分具有至少一功率引脚,具体为:所述硬质电容组件的底部通过电镀设置有至少一功率引脚。
优选的,至少一个所述硬质部分为硬质控制组件;
所述柔性部件装配在载体元件表面时,所述硬质控制组件设置在至少一侧的柔性部件外侧的导电层上;
所述硬质控制组件包括控制芯片和第四塑封体,所述第四塑封体包覆控制芯片和至少一部分柔性部件外侧的导电层,所述控制芯片用于向功率半导体组件提供控制信号。
优选的,所述硬质控制组件底部、硬质电容组件的底部均与载体元件的底部齐平,所述硬质控制组件底部通过电镀设置有至少一信号引脚;所述至少一硬质部分具有至少一功率引脚,具体为:所述硬质电容组件的底部通过电镀设置有至少一功率引脚。
优选的,至少一个所述硬质部分的底部低于载体元件的底部,使得所述高频高功率密度模块电源安装在客户主板上时,所述载体元件的下方留有用于容纳输出退耦电容的空间。
优选的,至少一个所述硬质部分为输出退耦电容组件,所述输出退耦电容组件设置在载体元件底部,所述输出退耦电容组件用于容纳输出退耦电容,所述退耦电容的一个电极与载体元件电连接,另一个电极与柔性部件电连接。
优选的,还包括供电飞线,所述供电飞线的一端与软硬结合组件电连接,另一端用于与客户主板电连接,所述供电飞线用于从远离高频高功率密度模块电源的位置向高频高功率密度模块电源供电。
本发明第二方面提供了一种上述的软硬结合组件。
本发明第三方面提供了一种高频高功率密度模块电源,包括:
至少一个功率半导体组件,所述功率半导体组件包括功率半导体元件以及第一塑封体,所述第一塑封体包覆功率半导体元件;
载体元件,所述载体元件设置在所述高频高功率密度模块电源的底部,所述功率半导体组件设置于所述载体元件的上方,所述载体元件与功率半导体组件电连接;
底部引脚,所述底部引脚设置在高频高功率密度模块电源的底部;
电连接组件,所述电连接组件用于将功率半导体组件与底部引脚电连接;
所述功率半导体组件的顶部设置有顶部散热结构;
所述顶部散热结构包括顶部散热镀层和热连接件,所述顶部散热镀层通过电镀设置在第一塑封体的上表面;
所述热连接件设置在第一塑封体的内部,所述热连接件将至少一个功率半导体元件与顶部散热镀层热连接。
优选的,所述电连接组件为柔性部件,所述柔性部件设置在载体元件的至少一个侧面,所述柔性部件包括至少一层绝缘层和由绝缘层隔开的至少两层导电层,所述柔性部件至少包括一处重叠区域,在所述重叠区域内绝缘层两侧均具有导电层并且导电层的电极电性相反。
优选的,所述柔性部件上设置有侧面硬质部分,所述侧面硬质部分包括硬质电容组件、硬质控制组件中的至少一种;
所述硬质电容组件包括第三塑封体和至少一个侧面电容,所述侧面电容两个电极分别与柔性部件的不同导电层电连接,所述第三塑封体包覆侧面电容和至少一部分柔性部件外侧的导电层;
所述硬质控制组件包括控制芯片和第四塑封体,所述第四塑封体包覆控制芯片和至少一部分柔性部件外侧的导电层,所述控制芯片用于向功率半导体组件提供控制信号。
优选的,至少一个所述侧面硬质部分的外侧通过电镀设置有侧面金属镀层。
本发明第四方面提供了一种并联高频高功率密度模块电源组合,包括:
至少两个高频高功率密度模块电源,所述高频高功率密度模块电源的底面设置有底部引脚,所述底部引脚包括信号引脚、输入功率引脚、输出功率引脚和功率接地引脚,所述底面具有第一边缘、第二边缘、第三边缘和第四边缘,所述第二边缘和第四边缘相对;
所述输入功率引脚与功率接地引脚交替阵列设置在底面的第二边缘、第四边缘;
所述高频高功率密度模块电源并列设置,使相邻的高频高功率密度模块电源的第二边缘、第四边缘相靠近。
优选的,所述并联高频高功率密度模块电源组合顶部设置有共用的散热器。
优选的,所述高频高功率密度模块电源包括:
软硬结合组件,所述软硬结合组件包括至少一个硬质部分及至少一柔质部分,至少一个所述硬质部分包括功率半导体组件,所述硬质部分和柔质部分通过同一柔性部件互连而成,所述硬质部分通过柔性部件与底部引脚电连接;
载体元件,所述硬质部分设置于所述载体元件的一表面,所述柔性部件包覆载体元件的上表面、至少一个侧表面并延伸至载体元件的底部,其折弯处为柔质部分,所述载体元件与功率半导体组件电连接;
所述柔性部件包括至少一层绝缘层和由绝缘层隔开的至少两层导电层,所述柔性部件至少包括一处重叠区域,在所述重叠区域内绝缘层两侧均具有导电层并且导电层的电极电性相反。
优选的,所述第一边缘和第四边缘平行,所述输出引脚设置在第一边缘或者不设置在底面,所述信号引脚阵列设置在第三边缘;
所述高频高功率密度模块电源的第二边缘外侧、第四边缘外侧均设置有客户主板输入电容,所述客户主板输入电容两个电极分别与输入功率引脚、功率接地引脚电连接;
相邻的两个所述高频高功率密度模块电源之间的共用所述客户主板输入电容,共用的客户主板输入电容的一个电极与相邻的两个所述高频高功率密度模块电源的对应位置的输入功率引脚电连接,另一个电极与相邻的两个所述高频高功率密度模块电源的对应位置的功率接地引脚电连接。
本发明第五方面提供了一种高频高功率密度模块电源的制作方法,包括:
提供一所述载体元件;
预成型软硬结合组件;
在载体元件表面上设置胶水及焊料,所述胶水用于将载体元件与软硬结合组件固定连接,所述焊料用于将载体元件与软硬结合组件电连接;
将所述功率半导体组件设置于载体元件上表面,所述柔性部件折弯并且沿载体元件的上表面、至少一个侧表面延伸至底部,其折弯处为柔质部分;
进行高温处理,将焊料融化焊接,将胶水固化粘结;
其中,所述预成型软硬结合组件,具体为:
提供一柔性部件;
在柔性部件上或者在柔性部件上以及内部设置硬质部分所需的电子元件。
优选的,在所述在柔性部件上或者在柔性部件上以及内部设置硬质部分所需的电子元件之后,还包括:进行局部塑封,在柔性部件上形成硬质部分。
本发明第六方面提供了一种高频高功率密度模块电源的制作方法,包括:
提供一所述载体元件;
预成型软硬结合组件;所述步骤S2具体为:
提供一多层PCB板,所述多层PCB板的至少一层为柔性PCB板,至少一层为硬质PCB板;
将部分硬质PCB板去除,露出柔性PCB板作为柔质部分;
在多层PCB板上或者在多层PCB板上以及内部设置电子元件;
进行塑封,得到预塑封体;
去除部分预塑封体,形成硬质部分;
在载体元件表面上设置胶水及焊料,所述胶水用于将载体元件与软硬结合组件固定连接,所述焊料用于将载体元件与软硬结合组件电连接;
将所述功率半导体组件设置于载体元件上表面,所述柔性部件折弯并且沿载体元件的上表面、至少一个侧表面延伸至底部,其折弯处为柔质部分;
进行高温处理,将焊料融化焊接,将胶水固化粘结。
优选的,所述软硬结合组件包括并联且实现相同功能的多组软硬结合子组件,每组软硬结合子组件均包括硬质部分、柔质部分、柔性部件及末端引脚;在高温处理后对每组软硬结合子组件分别进行测试,对于测试结果为不良的软硬结合子组件,切割其所对应的柔性部件使其断路。
本发明第七方面提供了一种高频高功率密度模块电源的制作方法,包括:
提供一所述载体元件;
预成型软硬结合组件;
在载体元件表面上设置胶水及焊料,所述胶水用于将载体元件与软硬结合组件固定连接,所述焊料用于将载体元件与软硬结合组件电连接;
将所述功率半导体组件设置于载体元件上表面,所述柔性部件折弯并且沿载体元件的上表面、至少一个侧表面延伸至底部,其折弯处为柔质部分;
进行高温处理,将焊料融化焊接,将胶水固化粘结;
其中,所述预成型软硬结合组件,具体为:
提供一多层PCB板,所述多层PCB板的至少一层为柔性PCB板,至少一层为硬质PCB板;
将部分硬质PCB板去除,露出柔性PCB板作为柔质部分;
在多层PCB板上或者在多层PCB板上以及内部设置电子元件;
进行塑封,得到预塑封体;
在预塑封体上部打孔,对预塑封体上表面进行电镀;
去除部分预塑封体,形成硬质部分。
本发明具有如下有益效果:
(1)整个模组系统只有两个主要元件:软硬结合组件和载体元件,各自面积较大,组装时易于控制,且互联少,空间利用率高,可靠性和装配空间都会比较有益。且回路电感大大减小,有机会小于1nH,可以在不牺牲电性能的状况小,实现热源置上,方便系统散热处理;
(2)回路电感极小,有机会小至0.5nH以下,甚至有机会无需在模组内置Cin1;
(3)在对电性影响可以接受的前提下,以邮票孔方式去铜处理,尽可能减小折弯处的金属层厚度,以减小成型所需的力,以及成型角导致的尺寸丢失,既实现了等效厚度的减小,又保持了等效厚度的均匀性,使得空间利用率大大提高;
(4)模组引脚均通过柔性PCB板底部折弯而得使得模组引脚的面积较大,方便焊接。不足是,该折弯导致空间的占用和工艺挑战。随着客户使用能力的精进,实施上模组电极的尺寸可以小至0.2mm甚至更低。那么,第二部分,即便直接使用柔性PCB板的末端侧面 电镀,也可实现电极引出。减少了至少一次折弯,大大降低了工艺挑战;
(5)顶部散热结构将功率半导体的晶片直接与模组上表面热互联,大大降低了半导体与模组上表面之间的热阻。并且,电镀之后的上表面平整美观,也可以有效防潮,提升了产品可靠性、品质和形象。该表面电镀层更可设置为GND,可有效抑制模组对外的辐射干扰。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1A至图1C为现有技术中的高频高功率密度模块电源模组的示意图;
图2为本发明实施例的高频高功率密度模块电源模组的示意图;
图3A至图3D为本发明实施例的高频高功率密度模块电源模组的硬质部分与载体元件之间不同设置位置的示意图;
图4A和图4B为本发明实施例的高频高功率密度模块电源模组的柔性部件的示意图,
图5A至图5D为本发明实施例的高频高功率密度模块电源模组的不同视角的示意图;
图6A至图6C为本发明实施例的高频高功率密度模块电源模组的柔质部分的示意图;
图7A至图7D为本发明实施例的高频高功率密度模块电源模组的软硬结合组件的多种成型方式;
图8A至图8F为本发明实施例的高频高功率密度模块电源模组的侧面电容结构;
图9A和图9为本发明实施例的高频高功率密度模块电源模组的出pin结构;
图10A和图10B为本发明实施例的高频高功率密度模块电源模组的引脚电镀结构;
图11A和图11B为本发明实施例的高频高功率密度模块电源模组的顶部散热结构;
图12A和图12B为本发明实施例的高频高功率密度模块电源模组的控制器结构;
图13为本发明实施例的高频高功率密度模块电源模组的制作方法;
图14A和图14B为本发明实施例的高频高功率密度模块电源模组的具体制作方法;
图15本发明实施例的高频高功率密度模块电源模组的一典型应用;
图16A至图16D本发明实施例的高频高功率密度模块电源模组的其他典型应用;
图17示出了本实施例的高频高功率密度模块电源模组的多路控制结构;
图中:载体元件1、硬质部分2、柔质部分3、柔性部件4、内层导电层5、外层导电层6、第一塑封体7、第一PCB板8、第二PCB板9、内埋晶片10、过孔电连接件11、加厚金属块12、第二塑封体13、顶部散热镀层14、热连接件15、控制芯片16、第三塑封体17。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
图2示出了本实施例的高频高功率密度模块电源模组,包括:
一载体元件1,载体元件1的至少一个表面具有表面功率引脚;本实施例中的载体元件1也不必是电感,可以是变压器也可以是电容组合,甚至是一子电源模组;
一软硬结合组件,软硬结合组件包括至少一硬质部分2及至少一柔质部分3,至少一硬质部分2包括功率半导体组件,功率半导体组件可用于功率转换电路,例如升压电路或降压电路;硬质部分2与柔质部分3电性连接;
软硬结合组件至少有一处与载体元件1的表面功率引脚电性连接;
软硬结合组件以载体元件1的表面为载体进行折弯,折弯处为柔质部分3;
硬质部分2和柔质部分3通过同一柔性部件4互连而成,至少一硬质部分2和/或柔性部件4具有至少一功率引脚。
较佳地,柔性部件4为柔性板,各个硬质部分1分别设置在柔性板4的不同位置,本领域技术人员能够理解,各个硬质部分2在柔性板4上的设置位置可根据需要设置,各个硬质部 分2的中心线可以分别处于柔性板4的上方、中间或下方,各硬质部分2的厚度也可以根据需要设置;各个柔质部分3的长度和宽度也可以根据需要设置,硬质部分2和柔质部分3的数量也可以自由调节,各个硬质部分2的内置元件也可以根据电路需要自由调节。
本实施例的高频高功率密度模块电源模组只有两个主要元件:载体元件1和软硬结合组件,各自面积较大,组装时易于控制,且互联少,空间利用率高,可靠性和装配空间都会比较有益。且回路电感大大减小,有机会小于1nH,可以在不牺牲电性能的状况小,实现热源置上,方便系统散热处理。
图3A至图3D示出了本实施例的高频高功率密度模块电源模组的硬质部分2与载体元件1之间不同设置位置的示意图,如图3A所示,含功率半导体组件的硬质部分2设置在载体元件1的上表面,并在载体元件1的上表面与载体元件1功率互连,适用于占地面积小的应用场景;图3A中示出的设置在载体元件1侧面的硬质部分2为不含功率半导体组件的硬质部分2,本领域技术人员可根据需要设置其内置元件。
如图3B所示,含功率半导体组件的硬质部分2设置在载体元件1的侧面,并在载体元件1的侧面与载体元件1进行功率互连,适用于模组高度较矮的应用场景,即载体元件1的上表面不设置含功率半导体组件的硬质部分2;如图3C所示,至少两个硬质部分2包括功率半导体组件,且分别设置在载体元件1的两个不同的侧面,适用于模组高度较矮且功率大的应用场景,在一较佳地实施例中,具体到两个降压电路并联使用时,载体元件1为一集成电感器,为获得优秀动态响应,集成电感为含两个绕组且反向耦合的电感器;如图3D所示,含功率半导体组件的硬质部分2设置在载体元件1的下表面,并在载体元件1的下表面与载体元件1进行功率互连,适用于散热通道为载体元件1下方的应用场景。
本领域技术人员能够理解,图3A至图3D仅作为较佳地实施例示出了几种硬质部分2与载体元件1之间不同设置位置的示意图,其他未示出的硬质部分2与载体元件1之间不同设置位置的技术方案也在本发明的保护范围之内。
图4A和图4B示出了本实施例的高频高功率密度模块电源模组的柔性部件4的示意图,柔性部件4包括至少一层绝缘层及由绝缘层隔开的至少两层导电层,柔性部件4包括 至少一处重叠区域,在重叠区域内,绝缘层的两侧均具有导电层,并且导电层的电极电性相反。其中,电极电性相反具体为一端接地,另一端接输入功率或者输出功率端,以减少回路电感。柔性部件4的末端设置有末端引脚,末端引脚包括至少一功率引脚。
在一较佳地实施例中,柔性部件4为一柔性PCB板,该柔性PCB板至少含双层金属层,将硬质部分2的电性低寄生电感引出到末端引脚。以2OZ铜厚柔性PCB板为例,其总厚度可以小于0.2mm,对模组整体的体积影响几乎可以忽略。且其绝缘层厚度有机会小于50um,实现极为理想的低回路电感功率或者信号传递。本发明回路电感之小,有机会小至0.5nH以下,甚至有机会无需在模组内置Cin1。
在其他的一些实施例中,如图4A和图4B所示,末端引脚通过柔性部件4折弯后形成于载体元件1的一表面上;较佳地,载体元件1的一表面开设有容纳末端引脚的空间,作为模组引脚的折弯空间,减小因引脚厚度导致的模组厚度增加。本领域技术人员能够理解,末端引脚的折弯处为柔质部分3。
在一较佳地实施例中,设置在柔性部件4与载体元件1之间的导电层为内层导电层5,设置在柔性部件4外侧的为外层导电层6,内层导电层5通过贯穿柔性部件4与至少一个末端引脚电连接,如图4A右下角的GND部分所示。
图5A至图5D示出了本实施例的高频高功率密度模块电源模组的不同视角的示意图,不仅仅是功率引可以由柔性部件4的双层金属层重叠耦合减小回路,模组的信号引脚也可通过双层耦合。其中双层金属层靠近电感的内层金属层为GND,减小信号回路电感的同时,也屏蔽了磁性元件漏磁通对信号传递的干扰。
如图5A所示,载体元件1的多个侧面,均可用于设置柔性部件4,可以有更大面积的功率引脚传输,减小传输损耗,以及进一步降低回路;也可以将功率引脚和信号引脚分面设置,减小相互干扰,以及为客户使用提供便利,如图5B和5D所示。
在一较佳地实施例中,末端引脚还包括功率接地引脚PGND,功率引脚和PGND交错排列,如图5B和5C所示,以减小客户应用时,因为功率引脚大而少导致的回路电感增加。其中内层金属电极在接近引脚处,通过图4A所示的贯穿柔性部件4才能成为有效的模组引脚。
如图5B所示,柔性部件4靠近载体元件1一面的金属层大部分为GND层,以减小各电极在载体元件1上形成的电压差,导致漏电可能。
在一个较佳的实施例中,载体元件1共有三个侧面设置有柔性部件4,左右两侧同为一功率引脚组合(如输入),上为信号引脚组合,下为另一功率引脚组合(如输出)。
图6A至图6C示出了本实施例的高频高功率密度模块电源模组的柔质部分3的示意图,软硬结合组件需要折弯,其折弯处的处理,不光涉及到工艺难度,还影响到空间利用率。因此,在对电性影响可以接受的前提下,应尽可能减小折弯处的金属层厚度,以减小成型所需的力以及成型角导致的尺寸丢失。
在本实施例中,柔性部件4具有减铜结构以形成柔质部分,其中,减铜结构为减薄结构或者邮票孔结构。将柔性部件4的金属层铜局部蚀刻去除,且折弯处的柔性部件4内外两层金属层的邮票孔可以交叉设置,既实现了等效厚度的减小,又保持了等效厚度的均匀性。传统折弯角通常不能大于45度,本发明可以大于60度,大幅度提升。
在其他实施例中,柔性部件4具有去铜结构以形成柔质部分,折弯到载体元件1下表面的引脚处时,将柔质部分3折弯处以及靠近载体元件1一面的金属层去除,以减小折弯应力以及模组整体的厚度。
图7A至图7D示出了本实施例的高频高功率密度模块电源模组的软硬结合组件的多种成型方式,如图7A所示,功率半导体组件包括设置于柔性部件4上表面的功率半导体元件以及第一塑封体7,功率半导体元件与柔性部件4电连接,第一塑封体7包覆功率半导体元件及至少一部分柔性部件4的上表面。具体地,在一多层柔性板上,放置功率半导体元件及必要外围器件后,局部塑封,形成硬质部分2。
如图7B所示,在一个较佳的实施例中,由于柔性板需要保持可折弯性,其层数不宜多于两层,而硬质部分2的内部电性互联,常常需要更多层。因此,传统想法通常为可以在柔性板上额外放置PCB板。比如焊接一多层PCB板在柔性板上,再在该多层PCB板上放置功率半导体元件及必要外围器件。但该方案需要焊接成型,各层PCB板之间的互联精度较低。因此,本实施例的功率半导体组件包括设置于柔性部件4上表面的第一PCB板8、 设置于第一PCB板8上的功率半导体元件及第一塑封体7,功率半导体元件通过第一PCB板8与柔性部件4电连接,第一塑封体7包覆第一PCB板8和功率半导体元件,本实施例选择PCB板生产工艺,以双层柔性板为基础,在上面压合所需PCB板,再通过打孔电镀进行高强度、高精度互联。压合多层PCB板处,即为本实施例的硬质部分2。
如图7C所示,在一个较佳的实施例中,功率半导体组件还包括设置于柔性部件4下表面的第二PCB板9,第一PCB板8通过设置在过孔中的过孔电连接件11与第二PCB板9电连接。在柔性PCB板的上下表面均压合多层PCB板并打孔电镀进行高强度、高精度互联,以实现结构的对称性,减小翘曲。
如图7D所示,在一个较佳的实施例中,柔性部件4在硬质部分2对应的区域内部设置有内埋晶片10,内埋晶片10通过过孔电连接件11分别与第一PCB板8、第二PCB板电9连接。本实施例在柔性部件4内部防止内埋晶片10,内埋晶片10可以使功率半导体晶片,减小了硬质部分2的厚度,即减小了模组厚度,该实施例尤其适合总厚度在5mm以下的模组。也就是说,功率半导体组件还包括至少一内埋晶片10,内埋晶片10设置在第一PCB板8内部和/或第一PCB板8与柔性部件4之间和/或柔性PCB板内部,内埋晶片10与第一PCB板8和/或柔性部件4电连接。
如图7B至图7D所示,在其他实施例中,硬质部分2由于PCB板层数的增加,本身强度已符合要求,但仍可选择进行局部塑封,进一步提升可靠性和强度,也方便客户有更友善的散热界面安装散热器。
图8A至图8F示出了本实施例的高频高功率密度模块电源模组的侧面电容结构,在某些应用场合,需要追求模组高度的极致,希望模组集成尽可能多的元件。因此,在本实施例中,由于柔性多层PCB板的引入,柔性部件4上也可以放置电子元件,以在柔性部件4上形成硬质部分2。比如将Cin1从顶部的硬质部分2移到载体元件1侧面的柔性部件4上,以减小模组高度;比如将Cin2从客户主板移到载体元件1侧面的柔性部件4上,以减小客户所需组件,并充分利用客户主板的高度空间,且Lloop2大幅度减小。也就是说,本实施例的硬质部件2可以包括设置在柔性部件4上的侧面电容。
图8B和图8D中,柔性PCB板的内层PGND,在侧面的一部分区域引出至外层,用于与电容的引脚电连接(多个电容,在客户主板是平放,其上方是浪费的。在模组部分等效于堆叠,高度充分利用,占地面积更小)传统的模组,特别是高频大电流模组,由于Lloop2的重要性,导致不同客户使用的效果不同,导致大量的客户服务工作。Cin2的集成,大大降低了客户使用难度。
如图8C所示,在一个较佳的实施例中,柔性部件4上放置电子元件的局部位置,也可以塑封,提升可靠性和客户使用时的绝缘能力,也大大提升了塑封模具的使用率。也就是说,本实施例的硬质部分2包括设置在柔性部件4上的侧面电容及第二塑封体13,第二塑封体13包裹侧面电容和至少一部分柔性部件4。
如图8F所示,在一个较佳的实施例中,由于柔性PCB板铜厚往往在0.1mm以内,载流能力有限,可以在PCB板上增加厚铜等金属块,提升载流能力。该加厚金属块12可以只作为载流增能用,也可以用作引脚面积增大用途。也就是说,本实施例的硬质部分2包括设置在柔性部件4上的加厚金属块12,加厚金属块12与柔性部件4电连接。
图9A和图9B示出了本实施例的高频高功率密度模块电源模组的出pin结构,载体元件1的所有出Pin均不设置在载体元件1的下表面。即模组的下表面。Buck电路,或者Boost电路,由于其输入或者输出的至少一个功率电极与磁性元件的一个电极为同一电极,因此,为了减小引脚导致的互联损失,可以把Buck电路的输出电极或者Boost电路的输入电极,直接以载体元件1即磁性元件的相应电极作为模组电极。但也有很多电路的载体元件1的电极为模组内部电极,或者为了减少模组引脚平整度处理的难度,也选择不直接用载体元件1的电极直接作为模组电极使用。当模组为Buck-boost时,载体元件1为电感,两个电极均设置于上表面与IPM底部两个高频电性SW1、SW2互联。当为解决平整度问题而设置时,载体元件1与模组同电性电极,通过侧面与柔性部件4电性互联再引出。
上述实施例中的高频高功率密度模块电源模组的模组引脚均通过柔性PCB板底部折弯而得。这样的好处是模组引脚的面积较大,方便焊接。不足是,该折弯导致空间的占用和工艺挑战。
图10A和图10B示出了本实施例的高频高功率密度模块电源模组的引脚电镀结构。随着客户使用能力的精进,实施上模组电极的尺寸可以小至0.2mm甚至更低。本实施例对柔性部件4的末端截面电镀,以实现电极引出。减少了至少一次折弯,大大降低了工艺挑战。
如图10B所示,在一个较佳的实施例中,如果柔性部件4已经设置如图8C的第二塑封体13,那么可以使用第二塑封体13的末端截面电镀引出模组引脚,能够增加引脚的面积和强度。也就是说,至少一个硬质部分2为硬质电容组件,硬质电容组件的底部与载体元件1的底部齐平,至少一个末端引脚通过电镀设置在硬质电容组件的底部。
图11A和图11B示出了本实施例的高频高功率密度模块电源模组的顶部散热结构,在预成型软硬结合组件的过程中,塑封后通过打孔、电镀在其表面形成了散热结构,将功率半导体的晶片直接与模组的上表面热互联,大大降低了半导体与模组上表面之间的热阻。并且,电镀之后的上表面平整美观,也可以有效防潮,提升了产品可靠性、品质和形象。该表面电镀层更可设置为GND,可有效抑制模组对外的辐射干扰。传统方案中,由于塑封材料的存在,功率半导体到模组顶部的热阻大于10K/W甚至更高,本实施例可以将上述热阻降低至小于5K/W甚至更低,大大提升了工作功率或者适用环境温度。也就是说,本实施例的功率半导体组件包括功率半导体元件以及第一塑封体7,第一塑封体7包覆功率半导体元件,功率半导体组件的顶部设置有顶部散热结构,顶部散热结构包括顶部散热镀层14和热连接件15,顶部散热镀层14通过电镀设置在第一塑封体7的上表面,热连接件15设置在第一塑封体7的内部,热连接件15将至少一个功率半导体元件与顶部散热镀层14热连接。
现有技术中,在大电流场合中,主功率半导体跟控制器较难在一个晶片上实现。而主功率半导体由于电流大,晶片尺寸的要求也很大。因此,较难在模组顶部的IPM区同时设置控制器和主功率半导体。传统技术由于结构问题,控制器只能由客户在主板上自己解决,大大提升了模组使用的难度。
图12A和图12B示出了本实施例的高频高功率密度模块电源模组的控制器结构,柔性部件4上设置控制器,并直接引出信号引脚给模组,增加有限厚度的状况下,大大提升了模组的使用便利性。
在一个较佳的实施例中,主功率半导体还需要多个晶片共同实现,通常为两个主功率半导体组合,接受交错并联控制,作为一个模组。那么,对应的磁性元件也是多路集成元件。
在一个较佳的实施例中,软硬结合组件各有电子元件部位进行塑封,乃至电镀。但由于各部分高低不同,可以使用阶梯厚度的塑封,或者塑封后局部减薄。
也就是说,至少一个硬质部分2为硬质控制组件,硬质控制组件设置在至少一侧的柔性组件4的外层导电层6上,硬质控制组件包括控制芯片16和第三塑封体17,第三塑封体17包覆控制芯片16和至少一部分柔性组件4的外层导电层6,控制芯片16用于向功率半导体组件提供控制信号。
在一较佳地实施例中,硬质控制组件的底部与载体元件1的底部齐平,至少一个末端引脚通过电镀设置在硬质控制组件的底部。
图13示出了本实施例的高频高功率密度模块电源模组的制作方法,包括如下步骤:
步骤S1:提供一载体元件1。
步骤S2:将软硬组合组件预成型。
步骤S3:在软硬结合组件与载体元件1之间的表面设置胶水及焊料。
步骤S4:将载体元件1放置在软硬结合组件相应位置,将软硬结合组件按需求,以载体元件12表面作为支撑,进行折弯;然后高温将焊料融化焊接,将胶水固化粘结。
步骤S5:可选的,若有必要,在模组引脚表面进行打磨后放置焊料进行助焊处理,或者放置焊料增厚后再进行打磨,保障模组成品的引脚平整度和可焊性。
图14A示出了上述步骤S2的具体过程,包括如下步骤:
步骤S2.1:提供一柔性部件4,柔性部件4为内嵌柔性PCB板的多层PCB基板;先将内嵌柔性PCB板的多层PCB基板预制成型;若有PCB内埋元件,也在此步预先完成。
步骤S2.2:将柔性部件4上表面的部分硬质PCB板去除,露出柔性PCB板。
步骤S2.3:在柔性部件4上放置、焊接电子元件。
步骤S2.4:在柔性部件4上将电子元件进行塑封。
步骤S2.4.1:可选的,若有必要,在塑封体表面电镀,也可如图11A和图11B所示在功率半导体组件上方打孔。
步骤S2.4.2:可选的,若有必要,在柔性部件4的末端引脚位置打孔,电镀,形成导电金属层和导热金属层。
步骤S2.5:在柔质部分3及其他无需塑封体的部位,去除塑封体及硬质PCB板,上下表面均是如此。
图14B示出了本实施例的后续步骤S3至S5的示意图。
图15示出了本实施例的高频高功率密度模块电源模组的典型应用,由于本发明可以在功率半导体堆叠在磁性元件的基础上,可以低寄生电感多边出Pin。为进一步提升系统性能提供了模组内部性能基础。因此,在客户系统应用时,也有更精进的实现方式,是系统性能得到极致提升。本实施例以大电流Buck应用为例,使用集成两路Buck的模组,多个并联,最终得到n路的效果。该模组将输入功率引脚设置在模组左右两侧,并交错引出。输出引脚设置在模组底部中间或者靠近下方侧位置,以便就近大面积铺铜并联给负载。模组左右并联摆放,客户主板的输入电容Cin2置于两个模组之间,就近同时给相邻两个模组适用。由于各模组之间是有工作相位差的,就近复用,可以有效减小Cin2的纹波电流。Cin2在客户主板的位置,可以与模组共同置于同一主板表面,也可以置于模组相邻位置的主板反面。多个模组共用一个散热器。由于本实施例优异的散热能力,以及极小的回路电感,可以实现高频高效率大功率长时间运行。
图16A至图16D示出了本实施例的高频高功率密度模块电源模组的典型应用,在大尺寸数据处理器,比如CPU GPU等场景,往往希望垂直于客户主板的CPU位置,放置大量给CPU供电退偶的电容阵列。为保障这些电容的数量和就近CPU摆放,可以将模组各引脚抬高,让这些CPU电容置于模组之下,保障所需。
上述引脚抬高方案,引脚还是会占用一定数量的客户主板面积,可以将CPU电容阵列,集成在上述软硬结合组件上,同样通过折弯方式,置于模组底部,将各所需模组功率引脚引出。
如图16B所示,在一个较佳的实施例中,大型CPU因为引脚有数千个,所以在CPU晶片区域之外,由CPU基板将引脚扩展至很大面积。这些位置有密密麻麻的过孔,影响外部给buck提供Vin。
如图16C所示,在一个较佳的实施例中,载体元件1的侧面引出Vin Pin,客户可以通过供电飞线,从该侧面Vin Pin引入供电。
如图16D所示,在一个较佳的实施例中,可以延长软硬结合组件的末端柔性板,将Vin跨区引入。
在大CPU场景下,由于电流特别大,需要多路buck,多至10路甚至20路共同提供电流吗,但这些buck需要共用一个控制器。
图17示出了本实施例的高频高功率密度模块电源模组的多路控制结构,在沿用图2方案的基础上,多路buck集成在一个模组之中。散热面友好,集成度高,工艺简化(10次折弯调整为只需一次)。但这样的问题是,成品率下降。那么,可以在测试后,通过切割,断开不良的部分Buck,将这部分模组降额规格使用。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (45)

  1. 一种高频高功率密度模块电源,其特征在于,包括:
    一载体元件,所述载体元件的至少一个表面具有表面功率引脚;
    一软硬结合组件,所述软硬结合组件包括至少一硬质部分及至少一柔质部分,至少一所述硬质部分包括功率半导体组件,所述硬质部分与柔质部分电性连接;
    所述软硬结合组件至少有一处与载体元件的表面功率引脚电性连接;
    所述软硬结合组件以载体元件的表面为载体进行折弯,所述折弯处为柔质部分;
    所述硬质部分和柔质部分通过同一柔性部件互连而成,至少一所述硬质部分和/或柔性部件具有至少一功率引脚。
  2. 根据权利要求1所述的高频高功率密度模块电源,其特征在于,含功率半导体组件的所述硬质部分设置在载体元件的上表面,并在载体元件的上表面与载体元件功率互连。
  3. 根据权利要求1所述的高频高功率密度模块电源,其特征在于,含功率半导体组件的所述硬质部分设置在载体元件的侧面,并在载体元件的侧面与载体元件进行功率互连。
  4. 根据权利要求1所述的高频高功率密度模块电源,其特征在于,至少两个所述硬质部分包括功率半导体组件,且分别设置在载体元件的两个不同的侧面。
  5. 根据权利要求1所述的高频高功率密度模块电源,其特征在于,含功率半导体组件的所述硬质部分设置在载体元件的下表面,并在载体元件的下表面与载体元件进行功率互连。
  6. 根据权利要求1所述的高频高功率密度模块电源,其特征在于,所述柔性部件包括至少一层绝缘层及由绝缘层隔开的至少两层导电层,所述柔性部件包括至少一处重叠区域,在所述重叠区域内,所述绝缘层的两侧均具有导电层,并且所述导电层的电极电性相反。
  7. 根据权利要求1所述的高频高功率密度模块电源,其特征在于,所述柔性部件具有至少一功率引脚,具体为:所述柔性部件的末端设置有末端引脚,所述末端引脚包括至少一功率引脚。
  8. 根据权利要求7所述的高频高功率密度模块电源,其特征在于,所述末端引脚通过 柔性部件折弯后形成于载体元件的一表面上。
  9. 根据权利要求8所述的高频高功率密度模块电源,其特征在于,所述载体元件的一表面开设有容纳末端引脚的空间。
  10. 根据权利要求1所述的高频高功率密度模块电源,其特征在于,所述硬质部分和/或柔性部分具有至少一功率接地引脚,所述功率引脚和功率接地引脚交替排列设置。
  11. 根据权利要求6所述的高频高功率密度模块电源,其特征在于,设置在所述柔性部件远离载体元件方向的一面的导电层为外侧导电层,并非所述外侧导电层的其他导电层为内侧导电层;
    所述柔性部件具有至少一功率引脚,具体为:所述柔性部件的末端设置有末端引脚,所述末端引脚包括至少一功率引脚;
    所述内层导电层通过贯穿柔性部件与至少一个末端引脚电连接。
  12. 根据权利要求1所述的高频高功率密度模块电源,其特征在于,所述硬质部分和/或柔性部分具有至少一信号引脚,所述信号引脚和功率引脚分别设置于载体元件的不同表面。
  13. 根据权利要求1所述的高频高功率密度模块电源,其特征在于,所述柔性部件具有减铜结构或去铜结构以形成柔质部分。
  14. 根据权利要求13所述的高频高功率密度模块电源,其特征在于,所述减铜结构为减薄结构或者邮票孔结构。
  15. 根据权利要求1所述的高频高功率密度模块电源,其特征在于,所述功率半导体组件包括设置于柔性部件上表面的功率半导体元件以及第一塑封体,所述功率半导体元件与柔性部件电连接,所述第一塑封体包覆功率半导体元件及至少一部分柔性部件的上表面。
  16. 根据权利要求1所述的高频高功率密度模块电源,其特征在于,所述功率半导体组件包括设置于柔性部件上表面的第一PCB板、设置于第一PCB板上的功率半导体元件及第一塑封体,所述功率半导体元件通过第一PCB板与柔性部件电连接,所述第一塑封体包覆第一PCB板和功率半导体元件。
  17. 根据权利要求16所述的高频高功率密度模块电源,其特征在于,所述功率半导体组件还包括设置于柔性部件下表面的第二PCB板,所述第一PCB板通过设置在过孔中的过孔电连接件与第二PCB板电连接。
  18. 根据权利要求16所述的高频高功率密度模块电源,其特征在于,所述功率半导体组件还包括至少一内埋晶片,所述内埋晶片设置在第一PCB板内部和/或第一PCB板与柔性部件之间和/或柔性PCB板内部,所述内埋晶片与第一PCB板和/或柔性部件电连接。
  19. 根据权利要求1所述的高频高功率密度模块电源,其特征在于,所述硬质部分包括设置在柔性部件上的侧面电容。
  20. 根据权利要求19所述的高频高功率密度模块电源,其特征在于,所述硬质部分还包括第二塑封体,所述第二塑封体包裹侧面电容和至少一部分柔性部件。
  21. 根据权利要求19所述的高频高功率密度模块电源,其特征在于,所述柔性部件的至少一侧的外侧导电层具有电性相反的第一电性区域和第二电性区域,所述第二电性区域与对应的内侧导电层电连接,所述外侧导电层上设置至少一个侧面电容,所述侧面电容的两个电极分别与第一电性区域、第二电性区域电连接。
  22. 根据权利要求1所述的高频高功率密度模块电源,其特征在于,所述硬质部分包括加厚金属块,所述加厚金属块与柔性部件电连接。
  23. 根据权利要求15或16所述的高频高功率密度模块电源,其特征在于,所述功率半导体元件形成的电路包括至少两个开关桥臂,所述开关桥臂的高频跳变电压端通过设置在载体元件表面的电连接件电性互联。
  24. 根据权利要求15或16所述的高频高功率密度模块电源,其特征在于,所述功率半导体元件形成的电路包括至少一个开关桥臂,所述开关桥臂的直流电压端通过设置在载体元件表面的电连接件与柔性部件电连接。
  25. 根据权利要求1所述的高频高功率密度模块电源,其特征在于,至少一个所述硬质部分为硬质电容组件;
    所述柔性部件装配在载体元件表面时,其至少一侧的外侧导电层具有电性相反的第一 电性区域和第二电性区域,所述第二电性区域与对应位置的内侧导电层电连接;
    所述硬质电容组件设置在柔性部件外侧的导电层上,所述硬质电容组件包括第三塑封体和至少一个侧面电容,所述侧面电容两个电极分别与第一电性区域、第二电性区域电连接,所述第三塑封体包覆侧面电容和至少一部分柔性部件外侧的导电层。
  26. 根据权利要求25所述的高频高功率密度模块电源,其特征在于,所述硬质电容组件的底部与载体元件的底部齐平;所述至少一所述硬质部分具有至少一功率引脚,具体为:所述硬质电容组件的底部通过电镀设置有至少一功率引脚。
  27. 根据权利要求25所述的高频高功率密度模块电源,其特征在于,至少一个所述硬质部分为硬质控制组件;
    所述柔性部件装配在载体元件表面时,所述硬质控制组件设置在至少一侧的柔性部件外侧的导电层上;
    所述硬质控制组件包括控制芯片和第四塑封体,所述第四塑封体包覆控制芯片和至少一部分柔性部件外侧的导电层,所述控制芯片用于向功率半导体组件提供控制信号。
  28. 根据权利要求27所述的高频高功率密度模块电源,其特征在于,所述硬质控制组件底部、硬质电容组件的底部均与载体元件的底部齐平,所述硬质控制组件底部通过电镀设置有至少一信号引脚;所述至少一硬质部分具有至少一功率引脚,具体为:所述硬质电容组件的底部通过电镀设置有至少一功率引脚。
  29. 根据权利要求25所述的高频高功率密度模块电源,其特征在于,至少一个所述硬质部分的底部低于载体元件的底部,使得所述高频高功率密度模块电源安装在客户主板上时,所述载体元件的下方留有用于容纳输出退耦电容的空间。
  30. 根据权利要求25所述的高频高功率密度模块电源,其特征在于,至少一个所述硬质部分为输出退耦电容组件,所述输出退耦电容组件设置在载体元件底部,所述输出退耦电容组件用于容纳输出退耦电容,所述退耦电容的一个电极与载体元件电连接,另一个电极与柔性部件电连接。
  31. 根据权利要求1所述的高频高功率密度模块电源,其特征在于,还包括供电飞线, 所述供电飞线的一端与软硬结合组件电连接,另一端用于与客户主板电连接,所述供电飞线用于从远离高频高功率密度模块电源的位置向高频高功率密度模块电源供电。
  32. 一种如权利要求1至31任一项所述的软硬结合组件。
  33. 一种高频高功率密度模块电源,其特征在于,包括:
    至少一个功率半导体组件,所述功率半导体组件包括功率半导体元件以及第一塑封体,所述第一塑封体包覆功率半导体元件;
    载体元件,所述载体元件设置在所述高频高功率密度模块电源的底部,所述功率半导体组件设置于所述载体元件的上方,所述载体元件与功率半导体组件电连接;
    底部引脚,所述底部引脚设置在高频高功率密度模块电源的底部;
    电连接组件,所述电连接组件用于将功率半导体组件与底部引脚电连接;
    所述功率半导体组件的顶部设置有顶部散热结构;
    所述顶部散热结构包括顶部散热镀层和热连接件,所述顶部散热镀层通过电镀设置在第一塑封体的上表面;
    所述热连接件设置在第一塑封体的内部,所述热连接件将至少一个功率半导体元件与顶部散热镀层热连接。
  34. 根据权利要求33所述的高频高功率密度模块电源,其特征在于,所述电连接组件为柔性部件,所述柔性部件设置在载体元件的至少一个侧面,所述柔性部件包括至少一层绝缘层和由绝缘层隔开的至少两层导电层,所述柔性部件至少包括一处重叠区域,在所述重叠区域内绝缘层两侧均具有导电层并且导电层的电极电性相反。
  35. 根据权利要求34所述的高频高功率密度模块电源,其特征在于,所述柔性部件上设置有侧面硬质部分,所述侧面硬质部分包括硬质电容组件、硬质控制组件中的至少一种;
    所述硬质电容组件包括第三塑封体和至少一个侧面电容,所述侧面电容两个电极分别与柔性部件的不同导电层电连接,所述第三塑封体包覆侧面电容和至少一部分柔性部件外侧的导电层;
    所述硬质控制组件包括控制芯片和第四塑封体,所述第四塑封体包覆控制芯片和至少 一部分柔性部件外侧的导电层,所述控制芯片用于向功率半导体组件提供控制信号。
  36. 根据权利要求35所述的高频高功率密度模块电源,其特征在于,至少一个所述侧面硬质部分的外侧通过电镀设置有侧面金属镀层。
  37. 一种并联高频高功率密度模块电源组合,其特征在于,包括:
    至少两个高频高功率密度模块电源,所述高频高功率密度模块电源的底面设置有底部引脚,所述底部引脚包括信号引脚、输入功率引脚、输出功率引脚和功率接地引脚,所述底面具有第一边缘、第二边缘、第三边缘和第四边缘,所述第二边缘和第四边缘相对;
    所述输入功率引脚与功率接地引脚交替阵列设置在底面的第二边缘或第四边缘;
    所述高频高功率密度模块电源并列设置,使相邻的高频高功率密度模块电源的第二边缘、第四边缘相靠近。
  38. 根据权利要求37所述的并联高频高功率密度模块电源组合,其特征在于,所述并联高频高功率密度模块电源组合顶部设置有共用的散热器。
  39. 根据权利要求37所述的并联高频高功率密度模块电源组合,其特征在于,所述高频高功率密度模块电源包括:
    软硬结合组件,所述软硬结合组件包括至少一个硬质部分及至少一柔质部分,至少一个所述硬质部分包括功率半导体组件,所述硬质部分和柔质部分通过同一柔性部件互连而成,所述硬质部分通过柔性部件与底部引脚电连接;
    载体元件,所述硬质部分设置于所述载体元件的一表面,所述柔性部件包覆载体元件的上表面、至少一个侧表面并延伸至载体元件的底部,其折弯处为柔质部分,所述载体元件与功率半导体组件电连接;
    所述柔性部件包括至少一层绝缘层和由绝缘层隔开的至少两层导电层,所述柔性部件至少包括一处重叠区域,在所述重叠区域内绝缘层两侧均具有导电层并且导电层的电极电性相反。
  40. 根据权利要求37所述的并联高频高功率密度模块电源组合,其特征在于,所述第一边缘和第四边缘平行,所述输出引脚设置在第一边缘或者不设置在底面,所述信号引脚 阵列设置在第三边缘;
    所述高频高功率密度模块电源的第二边缘外侧、第四边缘外侧均设置有客户主板输入电容,所述客户主板输入电容两个电极分别与输入功率引脚、功率接地引脚电连接;
    相邻的两个所述高频高功率密度模块电源之间的共用所述客户主板输入电容,共用的客户主板输入电容的一个电极与相邻的两个所述高频高功率密度模块电源的对应位置的输入功率引脚电连接,另一个电极与相邻的两个所述高频高功率密度模块电源的对应位置的功率接地引脚电连接。
  41. 一种如权利要求1至14、18至31中的任一项所述的高频高功率密度模块电源的制作方法,其特征在于,包括:
    提供一所述载体元件;
    预成型软硬结合组件;
    在载体元件表面上设置胶水及焊料,所述胶水用于将载体元件与软硬结合组件固定连接,所述焊料用于将载体元件与软硬结合组件电连接;
    将所述功率半导体组件设置于载体元件上表面,所述柔性部件折弯并且沿载体元件的上表面、至少一个侧表面延伸至底部,其折弯处为柔质部分;
    进行高温处理,将焊料融化焊接,将胶水固化粘结;
    其中,所述预成型软硬结合组件,具体为:
    提供一柔性部件;
    在柔性部件上或者在柔性部件上以及内部设置硬质部分所需的电子元件。
  42. 根据权利要求41所述的高频高功率密度模块电源的制作方法,其特征在于,在所述在柔性部件上或者在柔性部件上以及内部设置硬质部分所需的电子元件之后,还包括:进行局部塑封,在柔性部件上形成硬质部分。
  43. 一种如权利要求15至17任一项所述的高频高功率密度模块电源的制作方法,其特征在于,包括:
    提供一所述载体元件;
    预成型软硬结合组件;所述步骤S2具体为:
    提供一多层PCB板,所述多层PCB板的至少一层为柔性PCB板,至少一层为硬质PCB板;
    将部分硬质PCB板去除,露出柔性PCB板作为柔质部分;
    在多层PCB板上或者在多层PCB板上以及内部设置电子元件;
    进行塑封,得到预塑封体;
    去除部分预塑封体,形成硬质部分;
    在载体元件表面上设置胶水及焊料,所述胶水用于将载体元件与软硬结合组件固定连接,所述焊料用于将载体元件与软硬结合组件电连接;
    将所述功率半导体组件设置于载体元件上表面,所述柔性部件折弯并且沿载体元件的上表面、至少一个侧表面延伸至底部,其折弯处为柔质部分;
    进行高温处理,将焊料融化焊接,将胶水固化粘结。
  44. 根据权利要求41或43所述的高频高功率密度模块电源的制作方法,其特征在于,所述软硬结合组件包括并联且实现相同功能的多组软硬结合子组件,每组软硬结合子组件均包括硬质部分、柔质部分、柔性部件及末端引脚;在高温处理后对每组软硬结合子组件分别进行测试,对于测试结果为不良的软硬结合子组件,切割其所对应的柔性部件使其断路。
  45. 一种如权利要求33至36任一项所述的高频高功率密度模块电源的制作方法,其特征在于,包括:
    提供一所述载体元件;
    预成型软硬结合组件;
    在载体元件表面上设置胶水及焊料,所述胶水用于将载体元件与软硬结合组件固定连接,所述焊料用于将载体元件与软硬结合组件电连接;
    将所述功率半导体组件设置于载体元件上表面,所述柔性部件折弯并且沿载体元件的上表面、至少一个侧表面延伸至底部,其折弯处为柔质部分;
    进行高温处理,将焊料融化焊接,将胶水固化粘结;
    其中,所述预成型软硬结合组件,具体为:
    提供一多层PCB板,所述多层PCB板的至少一层为柔性PCB板,至少一层为硬质PCB板;
    将部分硬质PCB板去除,露出柔性PCB板作为柔质部分;
    在多层PCB板上或者在多层PCB板上以及内部设置电子元件;
    进行塑封,得到预塑封体;
    在预塑封体上部打孔,对预塑封体上表面进行电镀;
    去除部分预塑封体,形成硬质部分。
PCT/CN2023/090989 2022-05-05 2023-04-26 一种高频高功率密度模块电源、并联组合、制作方法及软硬结合组件 WO2023213218A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210483027.5 2022-05-05
CN202210483027.5A CN115050716A (zh) 2022-05-05 2022-05-05 一种高频高功率密度模块电源及其制作方法

Publications (1)

Publication Number Publication Date
WO2023213218A1 true WO2023213218A1 (zh) 2023-11-09

Family

ID=83158204

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/090989 WO2023213218A1 (zh) 2022-05-05 2023-04-26 一种高频高功率密度模块电源、并联组合、制作方法及软硬结合组件

Country Status (2)

Country Link
CN (2) CN115050716A (zh)
WO (1) WO2023213218A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115050716A (zh) * 2022-05-05 2022-09-13 上海沛塬电子有限公司 一种高频高功率密度模块电源及其制作方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1688019A (zh) * 2005-05-08 2005-10-26 薛萍 内置软硬件系统的芯片及其制作方法
CN107949187A (zh) * 2017-12-19 2018-04-20 维沃移动通信有限公司 一种软硬结合板的制作方法、软硬结合板及移动终端
CN111106074A (zh) * 2018-10-26 2020-05-05 台达电子企业管理(上海)有限公司 功率模块及其制造方法
US20210225753A1 (en) * 2020-01-22 2021-07-22 Delta Electronics (Shanghai) Co., Ltd. Carrier board and power module using same
CN115050716A (zh) * 2022-05-05 2022-09-13 上海沛塬电子有限公司 一种高频高功率密度模块电源及其制作方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105449987B (zh) * 2014-09-02 2019-06-25 台达电子工业股份有限公司 电源装置
CN109980955A (zh) * 2019-04-26 2019-07-05 广东美的制冷设备有限公司 智能功率模块及空调器
CN112448561B (zh) * 2019-08-30 2022-04-15 台达电子企业管理(上海)有限公司 电源模块及电源模块的制备方法
CN113161308A (zh) * 2020-01-22 2021-07-23 台达电子企业管理(上海)有限公司 功率模块

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1688019A (zh) * 2005-05-08 2005-10-26 薛萍 内置软硬件系统的芯片及其制作方法
CN107949187A (zh) * 2017-12-19 2018-04-20 维沃移动通信有限公司 一种软硬结合板的制作方法、软硬结合板及移动终端
CN111106074A (zh) * 2018-10-26 2020-05-05 台达电子企业管理(上海)有限公司 功率模块及其制造方法
US20210225753A1 (en) * 2020-01-22 2021-07-22 Delta Electronics (Shanghai) Co., Ltd. Carrier board and power module using same
CN115050716A (zh) * 2022-05-05 2022-09-13 上海沛塬电子有限公司 一种高频高功率密度模块电源及其制作方法

Also Published As

Publication number Publication date
CN116682799A (zh) 2023-09-01
CN115050716A (zh) 2022-09-13
CN116682799B (zh) 2024-03-29

Similar Documents

Publication Publication Date Title
CN108447857B (zh) 三维空间封装结构及其制造方法
TWI384739B (zh) 組合式電路及電子元件
US10096562B2 (en) Power module package
US9129933B2 (en) Semiconductor module and an inverter mounting said semiconductor module
CN112448561B (zh) 电源模块及电源模块的制备方法
US20070164428A1 (en) High power module with open frame package
CN111952293B (zh) 功率模块及其制造方法
CN111415908B (zh) 电源模块、芯片嵌入式封装模块及制备方法
CN116798967B (zh) 一种高频大功率封装模组及模组的制作方法
US12058814B2 (en) Power module and manufacturing method thereof
WO2023213218A1 (zh) 一种高频高功率密度模块电源、并联组合、制作方法及软硬结合组件
CN101483381B (zh) 组装结构
US9748205B2 (en) Molding type power module
TW201216446A (en) Power module
CN114823644A (zh) 一种低寄生电感和高散热效率的埋入式功率模块封装结构
CN110012590B (zh) 一种基于pcb嵌入工艺的全桥集成模块
CN115050703B (zh) 功率器件封装结构及功率变换器
CN221149993U (zh) 半导体封装和供电模块
CN218351452U (zh) 电源模块的封装堆叠结构
CN102412702B (zh) 负载点组件
CN113013152B (zh) 基板及其所适用的制造方法及功率模块
US20220077772A1 (en) Power module
CN115117012A (zh) 一种表面设置有金属凸点结构的载板的制作方法及其应用
CN118213336A (zh) 半导体封装、封装形成方法和供电模块
CN118431178A (zh) 一种GaN器件并联用混合双面散热功率模块封装

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23799204

Country of ref document: EP

Kind code of ref document: A1