WO2023212924A1 - 用于感知会话建立的通信方法和通信装置 - Google Patents

用于感知会话建立的通信方法和通信装置 Download PDF

Info

Publication number
WO2023212924A1
WO2023212924A1 PCT/CN2022/091196 CN2022091196W WO2023212924A1 WO 2023212924 A1 WO2023212924 A1 WO 2023212924A1 CN 2022091196 W CN2022091196 W CN 2022091196W WO 2023212924 A1 WO2023212924 A1 WO 2023212924A1
Authority
WO
WIPO (PCT)
Prior art keywords
supported
message frame
communication method
information
qam
Prior art date
Application number
PCT/CN2022/091196
Other languages
English (en)
French (fr)
Inventor
董贤东
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to CN202280001412.XA priority Critical patent/CN115039465A/zh
Priority to PCT/CN2022/091196 priority patent/WO2023212924A1/zh
Publication of WO2023212924A1 publication Critical patent/WO2023212924A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present disclosure relates to the field of wireless communications, and more specifically, to a communication method and communication device for sensing session establishment.
  • Wireless Local Area Network has the characteristics of flexibility, mobility and low cost.
  • WLAN sensing is currently being researched. Its main application scenarios are: location discovery in dense environments (home environment and enterprise environment), proximity detection (proximity detection), and presence detection (presence detection), etc. .
  • Example embodiments according to the present disclosure provide a communication method for aware session establishment.
  • the communication method includes: determining a first message frame, wherein the first message frame includes sensing operation parameter capability information supported by a device executing the communication method; and sending the first message frame.
  • Example embodiments according to the present disclosure provide a communication method for aware session establishment.
  • the communication method includes: receiving a first message frame, wherein the first message frame includes sensing operation parameter capability information supported by the device that sends the first message frame; performing sensing measurement based on the first message frame. operate.
  • a communication device includes: a processing module configured to: determine a first message frame, wherein the first message frame includes sensing operation parameter capability information supported by the device applied by the communication device; a transceiver module configured to : Send the first message frame.
  • a communication device includes: a transceiver module configured to: receive a first message frame, wherein the first message frame includes sensing operation parameter capability information supported by the device that sends the first message frame; a processing module configured To: control execution of operations related to perceptual measurement based on the first message frame.
  • the electronic device includes a memory, a processor, and a computer program stored on the memory and executable on the processor.
  • the processor implements the method as described above when executing the computer program.
  • An example embodiment according to the present disclosure provides a computer-readable storage medium.
  • Computer programs are stored on the computer-readable storage medium.
  • the computer program when executed by the processor, implements the method described above.
  • the technical solution provided by the exemplary embodiments of the present disclosure improves the sensing operation parameter capability information supported by the device during the sensing session establishment process, making it suitable for WLAN sensing measurement.
  • Figure 1 is an exemplary manner illustrating WLAN awareness.
  • FIG. 2 is a flowchart illustrating a communication method for aware session establishment according to an example embodiment.
  • Figure 3 is a flowchart illustrating interactive communication between an initiator and a recipient according to an example embodiment.
  • 4 to 6 are flowcharts illustrating interactive communications between an initiator and a recipient according to example embodiments.
  • FIG. 7 is a flowchart illustrating another communication method according to an example embodiment.
  • FIG. 8 is a block diagram illustrating a communication device according to an example embodiment.
  • Figure 1 is an exemplary manner illustrating WLAN awareness.
  • the process of WLAN awareness may be: the initiator initiates WLAN awareness (for example, initiates a WLAN awareness session), and there may be multiple responders responding to it.
  • the specific possible methods may be as shown in Figure 1 ( shown in a), (b) and (c).
  • a WLAN awareness initiator eg, a client
  • multiple associated or non-associated WLAN awareness responders eg, three access points (APs), access point
  • APs access points
  • Associated here may mean that an associated connection for communication has been established between the initiator and the responder
  • non-associated may mean that no associated connection for communication has been established between the initiator and the responder.
  • clients may include, but are not limited to: cellular phones, smartphones, wearable devices, computers, personal digital assistants (PDAs), personal communications system (PCS) devices, personal information managers (PIMs), personal Navigation equipment (PND), global positioning system, multimedia equipment, Internet of Things (IoT) equipment, etc.
  • PDAs personal digital assistants
  • PCS personal communications system
  • PIMs personal information managers
  • PND personal Navigation equipment
  • IoT Internet of Things
  • An AP can be a wireless switch used for a wireless network or an access device for a wireless network.
  • the AP may include software applications and/or circuitry to enable other types of nodes in the wireless network to communicate through the AP both outside and within the wireless network.
  • the AP may be a terminal device or a network device equipped with a Wi-Fi (Wireless Fidelity, Wireless Fidelity) chip.
  • both the WLAN-aware initiator and the WLAN-aware responder can be clients, and they can communicate by connecting to the same AP.
  • the client serves as the initiator and the AP serves as the responder
  • the present disclosure is not limited thereto.
  • the AP may serve as the initiator and the client may serve as the responder.
  • the client may also be called a non-AP station (non-AP STA), referred to as a "station (STA)" for short.
  • non-AP STA non-AP station
  • STA station
  • the number of initiators and responders is not limited to those shown in (a), (b) and (c) in Figure 1 .
  • An awareness session is a protocol between an awareness initiator and an awareness responder participating in the WLAN awareness process.
  • the awareness session is established, and operating parameters associated with the awareness session can be determined and exchanged between devices.
  • perceptual measurement setup perceptual measurements and/or reporting of the measurement results may be performed.
  • perception measurement requirements may have different perception measurement requirements.
  • the process of establishing a perception session is the process of interaction of perception operation parameter capability information between the initiator and the responder. Therefore, in the perception measurement establishment, based on the interactive perception operation parameter capability information, the requirements are established. Perceptual measurement of different needs.
  • a communication method and a communication device for aware session establishment are provided according to concepts of embodiments of the present disclosure.
  • FIG. 2 is a flowchart illustrating a communication method for aware session establishment according to an example embodiment.
  • the communication method shown in Figure 2 can be applied to the initiator or responder of WLAN awareness, that is, the communication method shown in Figure 2 can be performed by the initiator or the responder.
  • a first message frame is determined, wherein the first message frame may include sensing operation parameter capability information supported by the device executing the communication method.
  • the first message frame may be generated or configured according to at least one of the following conditions: channel status, network conditions, load conditions, device Hardware capabilities, service types, and relevant protocol provisions; the embodiments of the present disclosure do not impose specific restrictions on this.
  • the first message frame can also be obtained from an external device, and this embodiment of the present disclosure does not impose any specific limitation.
  • the first message frame may include at least one of the following:
  • the bandwidth information supported by the device may include: minimum bandwidth information and/or maximum bandwidth information supported by the device for perception measurement.
  • the minimum bandwidth information and/or the maximum bandwidth information may be the bandwidth used in the perception measurement process or the perception measurement result reporting process.
  • the perception measurement frame used in the perception measurement process can be designed based on the bandwidth information supported by the device, such as an NDP (null data packet) frame.
  • the minimum bandwidth information may refer to 20 MHz and the maximum bandwidth information may refer to 320 MHz.
  • the present disclosure is not limited thereto, and the minimum bandwidth information and/or the maximum bandwidth information may be determined among bandwidth sizes such as 20MHz, 40MHz, 80MHz, 160MHz, 320MHz, etc. according to the hardware capabilities of the device or relevant protocols/standards.
  • one bit may be used to identify the minimum bandwidth information supported by the device (for example, 20MHz). For example, when the bit is set to a first value (for example, but not limited to, 1), It can be identified that the device supports sensing measurements using a minimum bandwidth of 20MHz.
  • a first value for example, but not limited to, 1
  • two or more bits may be used to identify the minimum bandwidth information supported by the device.
  • multiple bits eg, three bits
  • the maximum bandwidth information eg, 320MHz
  • the device supports using the maximum bandwidth of 320MHz for sensing measurements.
  • this is only exemplary, and the present disclosure is not limited thereto.
  • fewer or more bits may be used to identify the maximum bandwidth information supported by the device.
  • the information on the number of spatial streams supported by the device may include: the minimum number of spatial streams (NSS) and/or the maximum number of spatial streams supported by the device for perception measurement.
  • the minimum NSS and/or the maximum NSS may be the NSS used in the perception measurement process or the perception measurement result reporting process.
  • the perception measurement frame used in the perception measurement process can be designed according to the NSS supported by the device, such as an NDP frame.
  • the minimum NSS may be 1, and the maximum NSS may be 16 or 8.
  • the present disclosure is not limited thereto, and NSS of other sizes are also included within the scope of the present disclosure.
  • a bit may be used to identify the minimum NSS supported. For example, when the bit is set to a first value (such as, but not limited to, 1), it may be identified that the device supports a minimum of 1 NSS. Perform perceptual measurements. However, this is only exemplary and the present disclosure is not limited thereto. For example, two or more bits may be utilized to identify the minimum NSS supported by the device.
  • a plurality of bits may be utilized to identify the maximum NSS supported, for example, when the four bits are set to a third value (eg, but not limited to, 1111) , it can be identified that the device supports a maximum of 16 NSS for perceptual measurement; for example, when four bits are set to a fourth value (such as, but not limited to, 0111), it can be identified that the device supports a maximum of 8 NSS for perceptual measurement.
  • a third value eg, but not limited to, 1111
  • a fourth value such as, but not limited to, 0111
  • modulation and coding scheme (MCS) information supported by the device may be associated with bandwidth information supported by the device.
  • the index value of the MCS may be set in the first message frame to identify the transmission resources that the device can support in sensing measurements.
  • the MCS identified by the index value may include various parameters corresponding to the transmission resources, such as the number of spatial streams, modulation mode, rate, etc.
  • the MCS under different bandwidths can be different, therefore, the MCS included in the first message frame can be associated with the bandwidth supported by the device.
  • the receiving and transmitting capability information supported by the device may refer to the device's support for 4096-QAM (Quadrature Amplitude Modulation: QAM, Quadrature Amplitude Modulation), 1024-QAM under different resource unit (RU) allocations.
  • the receiving and transmitting capability information supported by the device may refer to the device's ability to support 4096-QAM, 1024-QAM, 256-QAM, 64-QAM, 16-QAM, QBSK and/or under the minimum bandwidth (for example, 20MHz).
  • BPSK receive and send capabilities are supported.
  • the receiving and transmitting capability information supported by the device may also refer to the receiving and transmitting capabilities of various modulation modes of the device in other bandwidths.
  • the RU can be a single resource unit (SRU) or a composite resource unit (SRU) of various sizes such as 26-tone, 52-tone, 106-tone, 52+26-tone, 106+26-tone, etc. MRU).
  • the device in the first message frame, whether the device supports 4096-QAM transmission, 4096-QAM reception, 1024-QAM transmission, 1024-QAM reception, 256 - QAM transmission, 256-QAM reception, 64-QAM transmission, 64-QAM reception, 16-QAM transmission, 16-QAM reception, QBSK transmission, QBSK reception, BPSK transmission, and/or BPSK reception.
  • one or more bits may be used to identify receiving and transmitting capability information supported by the device.
  • the initiator it can be identified in the first message frame that the initiator supports 4096-QAM transmission, 1024-QAM transmission, 256-QAM transmission, 64-QAM transmission, and 16-QAM transmission.
  • a first message frame is sent.
  • the initiator may send a first message frame to the responder in step 220, and the sensing operation parameter capability information included in the first message frame in step 210 may refer to the initiator.
  • the ability to sense operating parameters When the communication method of Figure 2 is applied to the responder, the responder may send a first message frame to the initiator in step 220, and the sensing operation parameter capability information included in the first message frame in step 210 may refer to the responder.
  • the first message frame may have different forms depending on the communication phase at which the sensing session establishment occurs.
  • the first message frame may be a frame in the probing or association phase, such as a beacon frame, association request frame, association response frame, probe response frame; or the first message frame may be a newly defined sensing session setup.
  • frame or sensing session notification (sensing session notification) frame, etc. for example, considering security and privacy, the first message frame can be after the initiator and responder complete key negotiation (for example, through a four-step handshake) Newly defined frame sent. A more detailed description will be given later in conjunction with FIGS. 4 to 6 .
  • Figure 3 is a flowchart illustrating interactive communication between an initiator and a recipient according to an example embodiment.
  • the initiator may be an AP
  • the responder may be a STA.
  • the initiator AP may send a first message frame to the responder STA, where the first message frame may include sensing operation parameter capability information supported by the initiator AP.
  • the first message frame may include: bandwidth information supported by the initiating AP, information on the number of spatial streams supported by the initiating AP, modulation and coding strategy information supported by the initiating AP, and receiving and transmitting capability information supported by the initiating AP. at least one of them.
  • the responder STA can parse the received first message frame and learn the sensing operation parameter capability information of the initiator AP.
  • the bandwidth information, spatial stream number information, modulation and coding strategy information, and receiving and transmitting capability information have been described above with reference to various embodiments in Figure 2.
  • the above-mentioned sensing operation parameter capability information supported by the initiating AP may be carried in the first message frame in the form of a sensing session information element.
  • the responder STA may send a second message frame to the initiator AP, where the second message frame may include sensing operation parameter capability information supported by the responder STA.
  • the first message frame may include: bandwidth information supported by the responding STA, information on the number of spatial streams supported by the responding STA, modulation and coding strategy information supported by the responding STA, and receiving and transmitting capability information supported by the responding STA. at least one of them.
  • the initiator AP can parse the received first message frame and learn the sensing operation parameter capability information of the responder STA.
  • the bandwidth information, spatial stream number information, modulation and coding strategy information, and receiving and transmitting capability information have been described above with reference to various embodiments in Figure 2.
  • the above-mentioned sensing operation parameter capability information supported by the responder STA may be carried in the second message frame in the form of a sensing session information element.
  • the initiating AP and the responder STA should identify the perception operation parameter capability information they support to the other party, so that their capability information can be used in the subsequent perception measurement process or perception measurement result reporting process. Perceptual measurement of different needs.
  • the first message frame and the second message frame may have different forms depending on the communication phase at which the sensing session establishment occurs.
  • FIG. 4 shows a flow chart of interactive communication for sensing measurement session establishment when the AP sends a beacon frame to establish an associated connection between the AP and the STA.
  • the AP may broadcast a beacon frame to the STA, and the beacon frame may include sensing operation parameter capability information supported by the AP.
  • the beacon frame may correspond to the first message frame in Figures 2 and 3.
  • the beacon frame may include at least one of: bandwidth information supported by the AP, spatial stream number information supported by the AP, modulation and coding strategy information supported by the AP, and receiving and transmitting capability information supported by the AP.
  • the sensing operation parameter capability information supported by the AP can be encrypted in the beacon frame to ensure communication security.
  • the STA can parse the received beacon frame and learn the AP's sensing operation parameter capability information.
  • the bandwidth information, spatial stream number information, modulation and coding strategy information, and receiving and transmitting capability information have been described above with reference to various embodiments in Figure 2. For the sake of simplicity, repeated descriptions are omitted here.
  • the STA may send an association request frame to the AP, and the association request frame may include sensing operation parameter capability information supported by the STA.
  • the association request frame may correspond to the second message frame in FIG. 3 .
  • the association request frame may include at least one of: bandwidth information supported by the STA, spatial stream number information supported by the STA, modulation and coding strategy information supported by the STA, and receiving and transmitting capability information supported by the STA.
  • the AP can parse the received association request frame and learn the STA's sensing operation parameter capability information.
  • the bandwidth information, spatial stream number information, modulation and coding strategy information, and receiving and transmitting capability information have been described above with reference to various embodiments in Figure 2. For the sake of simplicity, repeated descriptions are omitted here.
  • the AP may send an association response frame to the STA, thereby establishing an association connection between the AP and the STA.
  • the AP and STA can complete the exchange of sensing operation parameter capability information for sensing measurement during the association establishment phase, thereby saving signaling and being suitable for WLAN sensing measurement.
  • the AP can broadcast beacon frames to multiple STAs, thereby establishing associations with multiple STAs. This stage implements the exchange of capability information of the sensing operation parameters supported by the device during the establishment of the sensing session.
  • Figure 5 shows a flow chart of interactive communication for sensing measurement session establishment when the STA sends a probe request frame to establish an associated connection between the AP and the STA.
  • the STA may send a probe request frame to the AP; in S520, the AP may reply to the STA with a probe response (probe response) frame, and the probe response frame may include sensing operation parameter capability information supported by the AP.
  • the probe response frame may correspond to the first message frame in FIGS. 2 and 3 .
  • the probe response frame may include at least one of: bandwidth information supported by the AP, spatial stream number information supported by the AP, modulation and coding strategy information supported by the AP, and receiving and transmitting capability information supported by the AP.
  • the STA can parse the received probe response frame and learn the AP's sensing operation parameter capability information.
  • the bandwidth information, spatial stream number information, modulation and coding strategy information, and receiving and transmitting capability information have been described above with reference to various embodiments in Figure 2. For the sake of simplicity, repeated descriptions are omitted here.
  • the STA may send an association request frame to the AP, and the association request frame may include sensing operation parameter capability information supported by the STA.
  • the association request frame may correspond to the second message frame in Figure 3.
  • the association request frame may include at least one of: bandwidth information supported by the STA, spatial stream number information supported by the STA, modulation and coding strategy information supported by the STA, and receiving and transmitting capability information supported by the STA.
  • the AP can parse the received association request frame and learn the STA's sensing operation parameter capability information.
  • the bandwidth information, spatial stream number information, modulation and coding strategy information, and receiving and transmitting capability information have been described above with reference to various embodiments in Figure 2. For the sake of simplicity, repeated descriptions are omitted here.
  • the AP may send an association response frame to the STA, thereby establishing an association connection between the AP and the STA.
  • the AP and STA can complete the exchange of sensing operation parameter capability information for sensing measurement during the association establishment phase, thereby saving signaling and being suitable for WLAN sensing measurement.
  • the AP carries the sensing operation parameter capability information supported by the AP in the probe response frame
  • the STA carries the sensing operation parameter capability information supported by the STA in the association request frame, however, this This is only an example. If the security of communication can be ensured, respective capability information can also be carried in other frames.
  • Figure 6 shows a flow chart of interactive communication for establishing a sensing measurement session after the AP and STA complete the four-step handshake.
  • the AP and STA can implement a four-step handshake operation through S610 to S640 to complete key negotiation between devices.
  • the AP may send a newly defined sensing session establishment frame or sensing session notification frame to the STA, and the sensing session establishment frame or sensing session notification frame may include sensing operation parameter capability information supported by the AP.
  • the sensing session establishment frame or the sensing session notification frame may correspond to the first message frame in FIGS. 2 and 3 .
  • the sensing session establishment frame or the sensing session notification frame may include at least: bandwidth information supported by the AP, spatial stream number information supported by the AP, modulation and coding strategy information supported by the AP, and receiving and transmitting capability information supported by the AP.
  • the STA can parse the received sensing session establishment frame or sensing session notification frame, and learn the AP's sensing operation parameter capability information.
  • the bandwidth information, spatial stream number information, modulation and coding strategy information, and receiving and transmitting capability information have been described above with reference to various embodiments in Figure 2. For the sake of simplicity, repeated descriptions are omitted here.
  • the STA may send a sensing session response frame to the AP, and the sensing session response frame may include sensing operation parameter capability information supported by the STA.
  • the awareness session response frame may correspond to the second message frame in FIG. 3 .
  • the sensing session response frame may include: at least one of the bandwidth information supported by the STA, the number of spatial streams supported by the STA, the modulation and coding strategy information supported by the STA, and the receiving and transmitting capability information supported by the STA.
  • the AP can parse the received sensing session response frame and learn the STA's sensing operation parameter capability information.
  • the bandwidth information, spatial stream number information, modulation and coding strategy information, and receiving and transmitting capability information have been described above with reference to various embodiments in Figure 2. For the sake of simplicity, repeated descriptions are omitted here.
  • FIG. 7 is a flowchart illustrating another communication method according to an example embodiment.
  • the communication method shown in Figure 7 can be applied to the responder or the initiator.
  • the communication method of Figure 7 can be performed by the responder; when the communication method of Figure 2 is performed by the responder, the communication method of Figure 7 can be performed by the initiator. implement.
  • a first message frame is received, where the first message frame includes sensing operation parameter capability information supported by the device that sends the first message frame.
  • the first message frame may include sensing operation parameter capability information supported by the initiator.
  • the first message frame may include sensing operation parameter capability information supported by the responder.
  • the first message frame may include at least one of the following:
  • Modulation and coding strategy information supported by the device sending the first message frame
  • the bandwidth information supported by the device that sends the first message frame may include: minimum bandwidth information and/or maximum bandwidth information supported by the device for perception measurement.
  • the information on the number of spatial streams supported by the device that sends the first message frame may include: the minimum number of spatial streams and/or the maximum number of spatial streams supported by the device for perception measurement.
  • supported modulation and coding strategy information for sending the first message frame may be associated with bandwidth information supported by the device.
  • the receiving and transmitting capability information supported by the device that sends the first message frame may refer to the device's ability to support 4096-QAM, 1024-QAM, 256-QAM, 64-QAM, and 16-QAM under different resource unit allocations. , QBSK and/or BPSK receive and transmit capabilities supported.
  • bandwidth information The bandwidth information, spatial stream number information, modulation and coding strategy information, and receiving and transmitting capability information have been described above with reference to various embodiments in Figure 2. For the sake of simplicity, repeated descriptions are omitted here.
  • step 720 operations related to perception measurement are performed based on the first message frame.
  • the responder can determine and send a second message frame (as described in Figure 3) , so that the initiator obtains the sensing operation parameter capability information supported by the responder.
  • the initiator can initiate a perception measurement establishment, thereby performing between the initiator and the responder Perception measurement operation and/or perception measurement result reporting operation.
  • the communication device 800 of FIG. 8 may include a processing module 810 and a transceiver module 820.
  • the processing module 810 shown in FIG. 8 may be configured to: determine a first message frame, where the first message frame may include sensing operation parameter capability information supported by the device to which the communication device is applied;
  • the transceiver module 820 may be configured to: send the first message frame. That is to say, the communication device 800 shown in FIG. 8 can be applied to a device that sends a first message frame, and performs the communication method described with reference to FIG. 2 , and can be applied thereto. In order to avoid redundancy, repeated descriptions are omitted here.
  • the transceiver module 820 may be configured to: receive a first message frame, where the first message frame may include sensing operation parameter capability information supported by the device that sends the first message frame; the processing module 810 It may be configured to: control execution of operations related to perception measurement based on the first message frame. That is to say, the communication device 800 shown in FIG. 8 can be applied to a device that receives the first message frame, and performs the communication method described with reference to FIG. 7. In order to avoid redundancy, repeated descriptions are omitted here.
  • the communication device 800 shown in FIG. 8 is only exemplary, and the embodiments of the present disclosure are not limited thereto.
  • the communication device 800 may also include other modules, such as a memory module and the like.
  • individual modules in communication device 800 may be combined into more complex modules, or may be divided into more individual modules.
  • the communication method and communication device improve the sensing operation parameter capability information supported by the device during the sensing session establishment process, making it suitable for WLAN sensing measurement.
  • inventions of the present disclosure also provide an electronic device.
  • the electronic device includes a processor and a memory; wherein the memory stores machine-readable instructions (also can (referred to as a "computer program”); a processor for executing machine-readable instructions to implement the methods described with reference to Figures 2 to 7.
  • machine-readable instructions also can (referred to as a "computer program”
  • processor for executing machine-readable instructions to implement the methods described with reference to Figures 2 to 7.
  • Embodiments of the present disclosure also provide a computer-readable storage medium that stores a computer program.
  • the computer program is executed by a processor, the method described with reference to FIGS. 2 to 7 is implemented.
  • the processor may be used to implement or execute various exemplary logical blocks, modules and circuits described in conjunction with the present disclosure, such as a CPU (Central Processing Unit, central processing unit), a general-purpose processing unit processor, DSP (Digital Signal Processor, data signal processor), ASIC (Application Specific Integrated Circuit, application specific integrated circuit), FPGA (Field Programmable Gate Array, field programmable gate array) or other programmable logic devices, transistor logic devices, Hardware components or any combination thereof.
  • the processor can also be a combination that implements computing functions, such as a combination of one or more microprocessors, a combination of a DSP and a microprocessor, etc.
  • the memory may be, for example, ROM (Read Only Memory), RAM (Random Access Memory), EEPROM (Electrically Erasable Programmable Read Only Memory). read memory), CD-ROM (Compact Disc Read Only Memory) or other optical disc storage, optical disc storage (including compressed optical discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media or other magnetic A storage device, or any other medium that can be used to carry or store program code in the form of instructions or data structures that can be accessed by a computer, but is not limited thereto.
  • ROM Read Only Memory
  • RAM Random Access Memory
  • EEPROM Electrically Erasable Programmable Read Only Memory
  • read memory read memory
  • CD-ROM Compact Disc Read Only Memory
  • optical disc storage including compressed optical discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.
  • magnetic disk storage media or other magnetic A storage device, or any other medium that can be used to carry or store program code in the form of instructions

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提供一种用于感知会话建立的通信方法和通信装置。通信方法可以包括:确定第一消息帧,其中,第一消息帧包括执行通信方法的设备支持的感知操作参数能力信息;发送第一消息帧。

Description

用于感知会话建立的通信方法和通信装置 技术领域
本公开涉及无线通信领域,更具体地说,涉及一种用于感知会话建立的通信方法和通信装置。
背景技术
无线局域网(WLAN,Wireless Local Area Network)具有灵活性、可移动性及低成本等特点。随着通信技术的发展以及用户需求的增长,正在逐步加深对WLAN的应用研究。例如,目前正在对WLAN感知(WLAN sensing)进行研究,其主要的应用场景为:在密集环境下的位置发现(家庭环境及企业环境)、接近检测(proximity detection)以及存在检测(presence detection)等。
发明内容
本公开的各种实施例提供以下技术方案:
根据本公开的示例实施例提供了一种用于感知会话建立的通信方法。所述通信方法包括:确定第一消息帧,其中,所述第一消息帧包括执行所述通信方法的设备支持的感知操作参数能力信息;发送所述第一消息帧。
根据本公开的示例实施例提供了一种用于感知会话建立的通信方法。所述通信方法包括:接收第一消息帧,其中,所述第一消息帧包括发送所述第一消息帧的设备支持的感知操作参数能力信息;基于所述第一消息帧执行关于感知测量的操作。
根据本公开的示例实施例提供了一种通信装置。所述通信装置包括:处理模块,被配置为:确定第一消息帧,其中,所述第一消息帧包括所述通信装置应用到的设备支持的感知操作参数能力信息;收发模块,被配置为:发送所述第一消息帧。
根据本公开的示例实施例提供了一种通信装置。所述通信装置包括:收发模块,被配置为:接收第一消息帧,其中,所述第一消息帧包括发送所述第一消息帧的设备支持的感知操作参数能力信息;处理模块,被配置为:基于所述第一消息帧控制关于感知测量的操作的执行。
根据本公开的示例实施例提供了一种电子装置。所述电子装置包括存储器、处理器及存储在所述存储器上并在所述处理器上可运行的计算机程序。所述处理器执行所述计算机程序时实现如上所述的方法。
根据本公开的示例实施例提供了一种计算机可读存储介质。所述计算机可读存储介质上存储有计算机程序。该计算机程序被处理器执行时实现如上所述的方法。
本公开的示例实施例提供的技术方案完善了在感知会话建立过程中设备支持的感知操作参数能力信息,使之适用WLAN感知测量。
附图说明
通过参照附图详细描述本公开的示例实施例,本公开实施例的上述以及其他特征将更加明显,其中:
图1是示出WLAN感知的示例性方式。
图2是示出根据示例实施例的用于感知会话建立的通信方法的流程图。
图3是示出根据示例实施例的发起方与接收方之间的交互通信的流程图。
图4至图6是示出根据示例实施例的发起方与接收方之间的交互通信的流程图。
图7是示出根据示例实施例的另一通信方法的流程图。
图8是示出根据示例实施例的通信装置的框图。
具体实施方式
提供以下参照附图的描述,以帮助全面理解由所附权利要求及其等同物限定的本公开的各种实施例。本公开的各种实施例包括各种具体细节,但是这些具体细节仅被认为是示例性的。此外,为了清楚和简洁,可以省略对公知的技术、功能和构造的描述。
在本公开中使用的术语和词语不限于书面含义,而是仅被发明人所使用,以能够清楚和一致的理解本公开。因此,对于本领域技术人员而言,提供本公开的各种实施例的描述仅是为了说明的目的,而不是为了限制的目的。
应当理解,除非上下文另外清楚地指出,否则这里使用的单数形式“一”、“一个”、“所述”和“该”也可以包括复数形式。应该进一步理解的是,本公开中使用的措辞“包括”是指存在所描述的特征、整数、步骤、操作、元件和/或组件,但是并不排除存在或添加一个或多个其他特征、整数、步骤、操作、元件、组件和/或它们的组。
将理解的是,尽管术语“第一”、“第二”等在本文中可以用于描述各种元素,但是这些元素不应受这些术语的限制。这些术语仅用于将一个元素与另一个元素区分开。因此,在不脱离示例实施例的教导的情况下,下面讨论的第一元素可以被称为第二元素。
应该理解,当元件被称为“连接”或“耦接”到另一元件时,它可以直接连接或耦接到其他元件,或者也可以存在中间元件。此外,这里使用的“连接”或“耦接”可以包括无线连接或无线耦接。这里使用的术语“和/或”或者表述“……中的至少一个/至少一者”包括一个或多个相关列出的项目的任何和所有组合。
除非另外定义,这里使用的所有术语(包括技术术语和科学术语),具有与本公开所属领域中的普通技术人员的一般理解相同的意义。
图1是示出WLAN感知的示例性方式。
WLAN感知的流程可以是:发起方(initiator)发起WLAN感知(例如,发起WLAN感知会话),可能存在着多个响应方(responder)对其进行响应,具体的可能方式可以如图1中的(a)、(b)和(c)所示。
参照图1中的(a),当WLAN感知发起方(例如,客户端(client))发起WLAN感知时,多个关联或者非关联的WLAN感知响应方(例如,三个接入点(AP,access point))可以进行响应。这里的“关联”可以指发起方与响应方之间建立了用于通信的关联连接,“非关联”可以指发起方与响应方之间未建立用于通信的关联连接。
作为示例,客户端(client)可以包括但不限于:蜂窝电话、智能电话、可穿戴设备、计算机、个人数字助理(PDA)、个人通信系统(PCS)设备、个 人信息管理器(PIM)、个人导航设备(PND)、全球定位系统、多媒体设备、物联网(IoT)设备等。
AP可以是用于无线网络的无线交换机,也可以是无线网络的接入设备。AP可以包括软件应用和/或电路,以使无线网络中的其他类型节点可以通过AP与无线网络外部及内部进行通信。作为示例,AP可以是配备有Wi-Fi(Wireless Fidelity,无线保真)芯片的终端设备或网络设备。
图1中的(b)与图1中的(a)相似,但是在图1中的(b)中,各个响应方(AP)之间可以进行通信。
参照图1中的(c),WLAN感知发起方和WLAN感知的响应方均可以是客户端,并且二者可以通过连接到同一AP进行通信。
虽然在图1中的(a)、(b)和(c)中示出了,客户端作为发起方,AP作为响应方,然而本公开不限于此。例如,在本公开的各种实施例中,AP可以作为发起方,客户端可以作为响应方。此外,在本公开的各种实施例中,客户端也可以被称为非AP的站点(non-AP STA),简称为“站点(STA)”。此外,发起方和响应方的数目不受限于图1中的(a)、(b)和(c)所示。
在WLAN感知中,可以存在着感知会话(sensing session)建立以及感知测量建立两个阶段。感知会话是参与WLAN感知过程的感知发起方与感知响应方之间的协议。在WLAN感知过程的感知会话建立中,感知会话被建立,并且与感知会话相关联的操作参数可以被确定,并在设备之间进行交换。在感知测量建立中,可以执行感知测量和/或测量结果的报告。
不同的感知测量可能存在着不同的感知测量需求,感知会话建立的过程就是发起方和响应方感知操作参数能力信息交互的过程,从而在感知测量建立中基于交互的感知操作参数能力信息来建立满足不同的需求的感知测量。然而,在现有的标准中,对于设备支持何种感知操作参数能力以及以何种信令去标识感知操作参数能力信息,并没有定义,需加以增强。
有鉴于此,根据本公开的实施例的构思提供了一种用于感知会话建立的通信方法和通信装置。
图2是示出根据示例实施例的用于感知会话建立的通信方法的流程图。图2所示的通信方法可以应用于WLAN感知的发起方或响应方,即,图2所示的通信方法可以由发起方或响应方来执行。
参照图2,在步骤210中,确定第一消息帧,其中,第一消息帧可以包 括执行通信方法的设备支持的感知操作参数能力信息。
在本公开的实施例中,确定第一消息帧的方式可以有很多种,例如:可以根据以下的至少一种情况来生成或配置第一消息帧:信道状态、网络情况、负载情况、设备的硬件能力、业务类型、相关协议规定;对此本公开实施例不作具体限制。在本公开的实施例中,还可以从外部设备获取该第一消息帧,对此本公开实施例不作具体限制。
根据本公开的实施例,第一消息帧可以包括以下至少一项:
设备支持的带宽信息;
设备支持的空间流数量信息;
设备支持的调制与编码策略信息;
设备支持的接收和发送的能力信息。
下面分别在各个实施例中描述第一消息帧中所包括的各种信息。
在本公开的一个实施例中,设备支持的带宽信息可以包括:设备支持的用于感知测量的最小带宽信息和/或最大带宽信息。例如,最小带宽信息和/或最大带宽信息可以是在感知测量过程或者感知测量结果报告过程中使用的带宽。例如,可以依据设备支持的带宽信息来设计感知测量过程所使用的感知测量帧,例如,NDP(空数据分组:null data packet)帧。
作为非限制性实施例,最小带宽信息可以指20MHz,最大带宽信息可以指320MHz。然而,本公开不限于此,可以根据设备的硬件能力或相关协议/标准规定在20MHz、40MHz、80MHz、160MHz、320MHz等带宽大小之中确定最小带宽信息和/或最大带宽信息。此外,在第一消息帧中,可以利用一个比特位来标识设备支持的最小带宽信息(例如,20MHz),例如,当该比特位被设置为第一值(例如但不限于,1)时,可以标识设备支持利用20MHz的最小带宽进行感知测量。然而,这仅是示例性的,本公开不限于此,例如,可以利用两个或更多个比特位来标识设备支持的最小带宽信息。此外,在第一消息帧中,可以利用多个比特位(例如,三个比特位)来标识设备支持的最大带宽信息(例如,320MHz),例如,当三个比特位被设置为第二值(例如但不限于,111)时,可以标识设备支持利用320MHz的最大带宽进行感知测量。然而,这仅是示例性的,本公开不限于此,例如,可以利用更少或更多个比特位来标识设备支持的最大带宽信息。
在本公开的一个实施例中,设备支持的空间流数量信息可以包括:设备 支持的用于感知测量的最小空间流数量(NSS)和/或最大空间流数量。例如,最小NSS和/或最大NSS可以是在感知测量过程或者感知测量结果报告过程中使用的NSS。例如,可以依据设备支持的NSS来设计感知测量过程所使用的感知测量帧,例如,NDP帧。
作为非限制性实施例,最小NSS可以为1,最大NSS可以为16或者8,然而本公开不限于此,其他大小的NSS也包括在本公开的范围内。在第一消息帧中,可以利用一个比特位来标识支持的最小NSS,例如,当该比特位被设置为第一值(例如但不限于,1)时,可以标识设备支持最小利用1个NSS进行感知测量。然而,这仅是示例性的,本公开不限于此,例如,可以利用两个或更多个比特位来标识设备支持的最小NSS。在第一消息帧中,可以利用多个比特位(例如,四个比特位)来标识支持的最大NSS,例如,当四个比特位被设置为第三值(例如但不限于,1111)时,可以标识设备最大支持利用16个NSS进行感知测量;例如,当四个比特位被设置为第四值(例如但不限于,0111)时,可以标识设备最大支持利用8个NSS进行感知测量。然而,这仅是示例性的,本公开不限于此,例如,可以利用更少或更多个比特位来标识设备支持的最大NSS。
在本公开的一个实施例中,设备支持的调制与编码策略(MCS,modulation and coding scheme)信息可以与设备支持的带宽信息相关联。可以在第一消息帧中设置MCS的索引值,以标识设备在感知测量中可以支持使用的传输资源。例如,以索引值标识的MCS可以包括与传输资源对应的各种参数,例如,空间流数量、调制方式、速率等。不同带宽下的MCS可以不同,因此,第一消息帧中包括的MCS可以与设备支持的带宽相关联。
在本公开的一个实施例中,设备支持的接收和发送的能力信息可以指设备在不同的资源单元(RU)分配下对4096-QAM(正交幅度调制:QAM,Quadrature Amplitude Modulation)、1024-QAM、256-QAM、64-QAM、16-QAM、QBSK和/或BPSK接收和发送能力的支持。例如,设备支持的接收和发送的能力信息可以指设备在最小带宽(例如,20MHz)的情况下对4096-QAM、1024-QAM、256-QAM、64-QAM、16-QAM、QBSK和/或BPSK接收和发送能力的支持。然而,本公开不限于此,设备支持的接收和发送的能力信息也可以指设备在其他带宽下的各种调制方式的接收和发送能力。作为非限制性的实施例,RU可以为26-tone、52-tone、106-tone、52+26- tone、106+26-tone等各种大小的单资源单元(SRU)或复合资源单元(MRU)。例如,在第一消息帧中,可以通过设备支持的接收和发送的能力信息来标识设备是否支持4096-QAM的发送、4096-QAM的接收、1024-QAM的发送、1024-QAM的接收、256-QAM的发送、256-QAM的接收、64-QAM的发送、64-QAM的接收、16-QAM的发送、16-QAM的接收、QBSK的发送、QBSK的接收、BPSK的发送、和/或BPSK的接收。例如,可以利用一个或更多个比特位来标识设备支持的接收和发送的能力信息。例如,在设备为发起方的情况下,可以在第一消息帧中标识发起方支持4096-QAM的发送、1024-QAM的发送、256-QAM的发送、64-QAM的发送、16-QAM的发送、QBSK的发送、和/或BPSK的发送;在设备为响应方的情况下,可以在第一消息帧中标识发起方支持4096-QAM的接收、1024-QAM的接收、256-QAM的接收、64-QAM的接收、16-QAM的接收、QBSK的接收、和/或BPSK的接收。
在步骤220中,发送第一消息帧。在图2的通信方法应用于发起方的情况下,发起方可以在步骤220中向响应方发送第一消息帧,并且上述步骤210中第一消息帧包括的感知操作参数能力信息可以指发起方的感知操作参数能力。在图2的通信方法应用于响应方的情况下,响应方可以在步骤220中向发起方发送第一消息帧,并且上述步骤210中第一消息帧包括的感知操作参数能力信息可以指响应方的感知操作参数能力。
在本公开的实施例中,根据感知会话建立发生的通信阶段,第一消息帧可以具有不同的形式。例如,第一消息帧可以是探测或关联阶段中的帧,例如信标帧、关联请求帧、关联响应帧、探测响应帧;或者第一消息帧可以是新定义的感知会话建立(sensing session setup)帧或感知会话通知(sensing session Notification)帧等,例如,考虑到安全性和隐私性,第一消息帧可以是在发起方和响应方完成密钥协商后(例如,通过四步握手方式)发送的新定义的帧。稍后将结合图4至图6进行更详细的描述。
图3是示出根据示例实施例的发起方与接收方之间的交互通信的流程图。在图3中,作为非限制的实施例,发起方可以是AP,响应方可以是STA。
参照图3,发起方AP可以向响应方STA发送第一消息帧,其中,第一消息帧可以包括发起方AP支持的感知操作参数能力信息。例如,第一消息帧可以包括:发起方AP支持的带宽信息、发起方AP支持的空间流数量信息、发起方AP支持的调制与编码策略信息、以及发起方AP支持 的接收和发送的能力信息中的至少一项。响应方STA可以解析接收到的第一消息帧,并且获知发起方AP的感知操作参数能力信息。上文已经参照图2的各个实施例对带宽信息、空间流数量信息、调制与编码策略信息以及接收和发送的能力信息分别进行了描述,为了简明,在此省略重复的描述。此外,仅作为描述性的实施例,发起方AP支持的上述感知操作参数能力信息可以以感知会话信息元素的形式携带在第一消息帧中。
继续参照图3,响应方STA可以向发起方AP发送第二消息帧,其中,第二消息帧可以包括响应方STA支持的感知操作参数能力信息。例如,第一消息帧可以包括:响应方STA支持的带宽信息、响应方STA支持的空间流数量信息、响应方STA支持的调制与编码策略信息、以及响应方STA支持的接收和发送的能力信息中的至少一项。发起方AP可以解析接收到的第一消息帧,并且获知响应方STA的感知操作参数能力信息。上文已经参照图2的各个实施例对带宽信息、空间流数量信息、调制与编码策略信息以及接收和发送的能力信息分别进行了描述,为了简明,在此省略重复的描述。此外,仅作为描述性的实施例,响应方STA支持的上述感知操作参数能力信息可以以感知会话信息元素的形式携带在第二消息帧中。
发起方AP与响应方STA在感知测量会话建立的过程中,应向对方标识其支持的感知操作参数能力信息,从而可以在后续的感知测量过程或者感知测量结果报告过程中利用他们能力信息来实现不同需求的感知测量。
在本公开的实施例中,根据感知会话建立发生的通信阶段,第一消息帧和第二消息帧可以具有不同的形式。
图4示出了在AP发送信标(beacon)帧以在AP与STA之间建立关联连接时进行感知测量会话建立的交互通信的流程图。
参照图4,在S410中,AP可以向STA广播信标帧,并且信标帧可以包括AP支持的感知操作参数能力信息。换言之,信标帧可以对应于图2和图3中的第一消息帧。例如,信标帧可以包括:AP支持的带宽信息、AP支持的空间流数量信息、AP支持的调制与编码策略信息、以及AP支持的接收和发送的能力信息中的至少一项。可以在信标帧中对AP支持的感知操作参数能力信息进行加密,以保证通信安全性。STA可以解析接收到的信标帧,并且获知AP的感知操作参数能力信息。上文已经参照图2 的各个实施例对带宽信息、空间流数量信息、调制与编码策略信息以及接收和发送的能力信息分别进行了描述,为了简明,在此省略重复的描述。
在S420中,STA可以向AP发送关联请求帧,并且关联请求帧可以包括STA支持的感知操作参数能力信息。换言之,关联请求帧可以对应于图3中的第二消息帧。例如,关联请求帧可以包括:STA支持的带宽信息、STA支持的空间流数量信息、STA支持的调制与编码策略信息、以及STA支持的接收和发送的能力信息中的至少一项。AP可以解析接收到的关联请求帧,并且获知STA的感知操作参数能力信息。上文已经参照图2的各个实施例对带宽信息、空间流数量信息、调制与编码策略信息和接收和发送的能力信息分别进行了描述,为了简明,在此省略重复的描述。
在S430中,AP可以向STA发送关联响应帧,从而在AP与STA之间建立关联连接。
在图4中,AP和STA可以在建立关联阶段完成用于感知测量的感知操作参数能力信息的交换,从而能够节省信令并且适用于WLAN感知测量。此外,虽然图4中仅示出了一个STA,但这仅是为了描述的简洁,而不是对本公开的限制,例如,AP可以向多个STA广播信标帧,从而在与多个STA建立关联阶段实现感知会话建立过程中设备支持的感知操作参数的能力信息的交换。
图5示出了在STA发送探测请求(probe request)帧以在AP与STA之间建立关联连接时进行感知测量会话建立的交互通信的流程图。
参照图5,在S510中,STA可以向AP发送探测请求帧;在S520中,AP可以向STA回复探测响应(probe response)帧,并且探测响应帧可以包括AP支持的感知操作参数能力信息。换言之,探测响应帧可以对应于图2和图3中的第一消息帧。例如,探测响应帧可以包括:AP支持的带宽信息、AP支持的空间流数量信息、AP支持的调制与编码策略信息、以及AP支持的接收和发送的能力信息中的至少一项。STA可以解析接收到的探测响应帧,并且获知AP的感知操作参数能力信息。上文已经参照图2的各个实施例对带宽信息、空间流数量信息、调制与编码策略信息以及接收和发送的能力信息分别进行了描述,为了简明,在此省略重复的描述。
在S530中,STA可以向AP发送关联请求帧,并且关联请求帧可以包括STA支持的感知操作参数能力信息。换言之,关联请求帧可以对应 于图3中的第二消息帧。例如,关联请求帧可以包括:STA支持的带宽信息、STA支持的空间流数量信息、STA支持的调制与编码策略信息、以及STA支持的接收和发送的能力信息中的至少一项。AP可以解析接收到的关联请求帧,并且获知STA的感知操作参数能力信息。上文已经参照图2的各个实施例对带宽信息、空间流数量信息、调制与编码策略信息以及接收和发送的能力信息分别进行了描述,为了简明,在此省略重复的描述。
在S540中,AP可以向STA发送关联响应帧,从而在AP与STA之间建立关联连接。
在图5中,AP和STA可以在建立关联阶段完成用于感知测量的感知操作参数能力信息的交换,从而能够节省信令并且适用于WLAN感知测量。此外,将理解,虽然在图5中示出了,AP在探测响应帧中携带AP支持的感知操作参数能力信息,并且STA在关联请求帧中携带STA支持的感知操作参数能力信息,然而,这仅是示例性的,在可以保证通信的安全性的情况下,也可以在其他帧中携带各自的能力信息。
图6示出了在AP和STA完成了四步握手之后进行感知测量会话建立的交互通信的流程图。
参照图6,AP和STA可以通过S610至S640实现四步握手操作,从而完成设备间的密钥协商。
在S650中,AP可以向STA发送新定义的感知会话建立帧或者感知会话通知帧,并且感知会话建立帧或者感知会话通知帧可以包括AP支持的感知操作参数能力信息。换言之,感知会话建立帧或者感知会话通知帧可以对应于图2和图3中的第一消息帧。例如,感知会话建立帧或者感知会话通知帧可以包括:AP支持的带宽信息、AP支持的空间流数量信息、AP支持的调制与编码策略信息、以及AP支持的接收和发送的能力信息中的至少一项。STA可以解析接收到的感知会话建立帧或者感知会话通知帧,并且获知AP的感知操作参数能力信息。上文已经参照图2的各个实施例对带宽信息、空间流数量信息、调制与编码策略信息以及接收和发送的能力信息分别进行了描述,为了简明,在此省略重复的描述。
在S660中,STA可以向AP发送感知会话响应帧,并且感知会话响应帧可以包括STA支持的感知操作参数能力信息。换言之,感知会话响应帧可以对应于图3中的第二消息帧。例如,感知会话响应帧可以包括: STA支持的带宽信息、STA支持的空间流数量信息、STA支持的调制与编码策略信息、以及STA支持的接收和发送的能力信息中的至少一项。AP可以解析接收到的感知会话响应帧,并且获知STA的感知操作参数能力信息。上文已经参照图2的各个实施例对带宽信息、空间流数量信息、调制与编码策略信息以及接收和发送的能力信息分别进行了描述,为了简明,在此省略重复的描述。
在图6中,AP和STA在完成四步握手操作之后再进行感知操作参数能力信息的交换,从而可以保证感知测量的隐私性和安全性。
图7是示出根据示例实施例的另一通信方法的流程图。图7所示的通信方法可以应用于响应方或者发起方。例如,在图2的通信方法由发起方执行的情况下,图7的通信方法可以由响应方执行;在图2的通信方法由响应方执行的情况下,图7的通信方法可以由发起方执行。
参照图7,在步骤710中,接收第一消息帧,其中,第一消息帧包括发送第一消息帧的设备支持的感知操作参数能力信息。例如,在图2的通信方法由发起方执行并且图7的通信方法可以由响应方执行的情况下,第一消息帧可以包括发起方支持的感知操作参数能力信息。例如,在图2的通信方法由响应方执行并且图7的通信方法可以由发起方执行的情况下,第一消息帧可以包括响应方支持的感知操作参数能力信息。
可选择地,第一消息帧可以包括以下至少一项:
发送第一消息帧的设备支持的带宽信息;
发送第一消息帧的设备支持的空间流数量信息;
发送第一消息帧的设备支持的调制与编码策略信息;
发送第一消息帧的设备支持的接收和发送的能力信息。
可选择地,发送第一消息帧的设备支持的带宽信息可以包括:该设备支持的用于感知测量的最小带宽信息和/或最大带宽信息。
可选择地,发送第一消息帧的设备支持的空间流数量信息可以包括:该设备支持的用于感知测量的最小空间流数量和/或最大空间流数量。
可选择地,发送第一消息帧的支持的调制与编码策略信息可以与该设备支持的带宽信息相关联。
可选择地,发送第一消息帧的设备支持的接收和发送的能力信息可以 指该设备在不同的资源单元分配下对4096-QAM、1024-QAM、256-QAM、64-QAM、16-QAM、QBSK和/或BPSK接收和发送能力的支持。
上文已经参照图2的各个实施例对带宽信息、空间流数量信息、调制与编码策略信息以及接收和发送的能力信息分别进行了描述,为了简明,在此省略重复的描述。
在步骤720中,基于第一消息帧执行关于感知测量的操作。例如,在图2的通信方法由发起方执行并且图7的通信方法可以由响应方执行的情况下,在步骤720中,响应方可以确定并且发送第二消息帧(如图3所描述的),以使得发起方获得响应方支持的感知操作参数能力信息。例如,在图2的通信方法由响应方执行并且图7的通信方法可以由发起方执行的情况下,在步骤720中,发起方可以发起感知测量建立,从而在发起方与响应方之间执行感知测量操作和/或感知测量结果报告操作。
图8是示出根据示例实施例的通信装置的框图。图8的通信装置800可以包括处理模块810和收发模块820。
在本公开的一个实施例中,图8所示的处理模块810可以被配置为:确定第一消息帧,其中,第一消息帧可以包括通信装置应用到的设备支持的感知操作参数能力信息;收发模块820可以被配置为:发送第一消息帧。也就是说,图8所示的通信装置800可以应用于发送第一消息帧的设备,并且执行参照图2描述的通信方法,可以应用于此,为了避免冗余,在此省略重复的描述。
在本公开的另一个实施例中,收发模块820可以被配置为:接收第一消息帧,其中,第一消息帧可以包括发送第一消息帧的设备支持的感知操作参数能力信息;处理模块810可以被配置为:基于第一消息帧控制关于感知测量的操作的执行。也就是说,图8所示的通信装置800可以应用于接收第一消息帧的设备,并且执行参照图7描述的通信方法,为了避免冗余,在此省略重复的描述。
将理解,图8所示的通信装置800仅是示例性的,本公开的实施例不限于此,例如,通信装置800还可以包括其他模块,例如,存储器模块等。此外,通信装置800中的各个模块可以组合成更复杂的模块,或者可以划分为更多单独的模块。
根据本公开的实施例的通信方法和通信装置完善了在感知会话建立过程中设备支持的感知操作参数能力信息,使之适用WLAN感知测量。
基于与本公开的实施例所提供的方法相同的原理,本公开的实施例还提供了一种电子装置,该电子装置包括处理器和存储器;其中,存储器中存储有机器可读指令(也可以称为“计算机程序”);处理器,用于执行机器可读指令以实现参照图2至图7描述的方法。
本公开的实施例还提供了一种计算机可读存储介质,该计算机可读存储介质上存储有计算机程序,计算机程序被处理器执行时实现参照图2至图7描述的方法。
在示例实施例中,处理器可以是用于实现或执行结合本公开内容所描述的各种示例性的逻辑方框、模块和电路,例如,CPU(Central Processing Unit,中央处理器)、通用处理器、DSP(Digital Signal Processor,数据信号处理器)、ASIC(Application Specific Integrated Circuit,专用集成电路)、FPGA(Field Programmable Gate Array,现场可编程门阵列)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合、DSP和微处理器的组合等。
在示例实施例中,存储器可以是,例如,ROM(Read Only Memory,只读存储器)、RAM(Random Access Memory,随机存取存储器)、EEPROM(Electrically Erasable Programmable Read Only Memory,电可擦可编程只读存储器)、CD-ROM(Compact Disc Read Only Memory,只读光盘)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的程序代码并能够由计算机存取的任何其他介质,但不限于此。
应该理解的是,虽然附图的流程图中的各个步骤按照箭头的指示依次显示,但是这些步骤并不是必然按照箭头指示的顺序依次执行。除非本文中有明确的说明,这些步骤的执行并没有严格的顺序限制,其可以以其他的顺序执行。此外,附图的流程图中的至少一部分步骤可以包括多个子步 骤或者多个阶段,这些子步骤或者阶段并不必然是在同一时刻执行完成,而是可以在不同的时刻执行,其执行顺序也不必然是依次进行,而是可以与其他步骤或者其他步骤的子步骤或者阶段的至少一部分轮流或者交替地执行。
虽然已经参照本公开的某些实施例示出和描述了本公开,但是本领域技术人员将理解,在不脱离本公开的范围的情况下,可以在形式和细节上进行各种改变。因此,本公开的范围不应被限定为受限于实施例,而是应由所附权利要求及其等同物限定。

Claims (16)

  1. 一种用于感知会话建立的通信方法,包括:
    确定第一消息帧,其中,所述第一消息帧包括执行所述通信方法的设备支持的感知操作参数能力信息;
    发送所述第一消息帧。
  2. 根据权利要求1所述的通信方法,其中,所述第一消息帧包括以下至少一项:
    所述设备支持的带宽信息;
    所述设备支持的空间流数量信息;
    所述设备支持的调制与编码策略信息;
    所述设备支持的接收和发送的能力信息。
  3. 根据权利要求2所述的通信方法,其中,所述设备支持的带宽信息包括:所述设备支持的用于感知测量的最小带宽信息和/或最大带宽信息。
  4. 根据权利要求2所述的通信方法,其中,所述设备支持的空间流数量信息包括:所述设备支持的用于感知测量的最小空间流数量和/或最大空间流数量。
  5. 根据权利要求2所述的通信方法,其中,所述调制与编码策略信息与所述带宽信息相关联。
  6. 根据权利要求2所述的通信方法,其中,所述设备支持的接收和发送的能力信息指所述设备在不同的资源单元分配下对4096-QAM、1024-QAM、256-QAM、64-QAM、16-QAM、QBSK和/或BPSK接收和发送能力的支持。
  7. 一种用于感知会话建立的通信方法,包括:
    接收第一消息帧,其中,所述第一消息帧包括发送所述第一消息帧的设备支持的感知操作参数能力信息;
    基于所述第一消息帧执行关于感知测量的操作。
  8. 根据权利要求7所述的通信方法,其中,所述第一消息帧包括以下至少一项:
    所述设备支持的带宽信息;
    所述设备支持的空间流数量信息;
    所述设备支持的调制与编码策略信息;
    所述设备支持的接收和发送的能力信息。
  9. 根据权利要求8所述的通信方法,其中,所述设备支持的带宽信息包括:所述设备支持的用于感知测量的最小带宽信息和/或最大带宽信息。
  10. 根据权利要求8所述的通信方法,其中,所述设备支持的空间流数量信息包括:所述设备支持的用于感知测量的最小空间流数量和/或最大空间流数量。
  11. 根据权利要求8所述的通信方法,其中,所述调制与编码策略信息与所述带宽信息相关联。
  12. 根据权利要求8所述的通信方法,其中,所述设备支持的接收和发送的能力信息指所述设备在不同的资源单元分配下对4096-QAM、1024-QAM、256-QAM、64-QAM、16-QAM、QBSK和/或BPSK接收和发送能力的支持。
  13. 一种通信装置,包括:
    处理模块,被配置为:确定第一消息帧,其中,所述第一消息帧包括 所述通信装置应用到的设备支持的感知操作参数能力信息;
    收发模块,被配置为:发送所述第一消息帧。
  14. 一种通信装置,包括:
    收发模块,被配置为:接收第一消息帧,其中,所述第一消息帧包括发送所述第一消息帧的设备支持的感知操作参数能力信息;
    处理模块,被配置为:基于所述第一消息帧控制关于感知测量的操作的执行。
  15. 一种电子装置,包括存储器、处理器及存储在所述存储器上并在所述处理器上可运行的计算机程序,其中,所述处理器执行所述计算机程序时实现权利要求1至6中的任一项或者权利要求7至12中的任一项所述的方法。
  16. 一种计算机可读存储介质,其中,所述计算机可读存储介质上存储有计算机程序,该计算机程序被处理器执行时实现权利要求1至6中的任一项或者权利要求7至12中的任一项所述的方法。
PCT/CN2022/091196 2022-05-06 2022-05-06 用于感知会话建立的通信方法和通信装置 WO2023212924A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280001412.XA CN115039465A (zh) 2022-05-06 2022-05-06 用于感知会话建立的通信方法和通信装置
PCT/CN2022/091196 WO2023212924A1 (zh) 2022-05-06 2022-05-06 用于感知会话建立的通信方法和通信装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/091196 WO2023212924A1 (zh) 2022-05-06 2022-05-06 用于感知会话建立的通信方法和通信装置

Publications (1)

Publication Number Publication Date
WO2023212924A1 true WO2023212924A1 (zh) 2023-11-09

Family

ID=83130174

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/091196 WO2023212924A1 (zh) 2022-05-06 2022-05-06 用于感知会话建立的通信方法和通信装置

Country Status (2)

Country Link
CN (1) CN115039465A (zh)
WO (1) WO2023212924A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024077524A1 (zh) * 2022-10-12 2024-04-18 北京小米移动软件有限公司 感知测量方法、电子设备及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112491750A (zh) * 2019-09-12 2021-03-12 华为技术有限公司 用于感知测量的方法和装置
CN112689300A (zh) * 2021-03-16 2021-04-20 成都极米科技股份有限公司 管理应用和执行单元的方法、装置、系统及介质
WO2021236439A2 (en) * 2020-05-18 2021-11-25 Google Llc Energy-aware traffic management for multi-access data sessions
WO2022077268A1 (zh) * 2020-10-14 2022-04-21 北京小米移动软件有限公司 一种无线感知方法、无线感知装置及存储介质

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020232700A1 (zh) * 2019-05-23 2020-11-26 北京小米移动软件有限公司 数据传输方法、装置、设备及存储介质
US20210203435A1 (en) * 2021-03-12 2021-07-01 Intel Corporation Method and apparatus used in wlans
CN113115341B (zh) * 2021-04-15 2022-06-21 成都极米科技股份有限公司 一种协商无线感知进程的方法、装置、设备及存储介质

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112491750A (zh) * 2019-09-12 2021-03-12 华为技术有限公司 用于感知测量的方法和装置
WO2021236439A2 (en) * 2020-05-18 2021-11-25 Google Llc Energy-aware traffic management for multi-access data sessions
WO2022077268A1 (zh) * 2020-10-14 2022-04-21 北京小米移动软件有限公司 一种无线感知方法、无线感知装置及存储介质
CN112689300A (zh) * 2021-03-16 2021-04-20 成都极米科技股份有限公司 管理应用和执行单元的方法、装置、系统及介质

Also Published As

Publication number Publication date
CN115039465A (zh) 2022-09-09

Similar Documents

Publication Publication Date Title
WO2023155074A1 (zh) 通信方法及装置、电子设备及存储介质
WO2023155072A1 (zh) 通信方法和通信装置
WO2023212927A1 (zh) 用于感知测量建立的通信方法和通信装置
WO2023151077A1 (zh) 通信方法及装置、电子设备及存储介质
WO2023201663A1 (zh) 感知代理sbp终止方法及装置、电子设备及存储介质
WO2023212924A1 (zh) 用于感知会话建立的通信方法和通信装置
US9609676B1 (en) Efficient transition from discovery to link establishment
CN115023964A (zh) Wlan感知测量建立终止方法及装置、电子设备及存储介质
WO2023197315A1 (zh) 感知测量方法和通信装置
WO2023201633A1 (zh) 用于感知测量报告的通信方法和通信装置
WO2023130329A1 (zh) 通信方法和通信装置
WO2016015464A1 (zh) 一种网络及组建网络的方法和设备
WO2023193250A1 (zh) 通信方法和通信装置
WO2023279266A1 (zh) 一种通信方法和通信装置
WO2024036625A1 (zh) 信息指示方法及电子设备、存储介质
WO2023133818A1 (zh) 通信方法及装置、电子设备及存储介质
WO2024007227A1 (zh) 通信方法、装置、设备以及存储介质
WO2023197314A1 (zh) 通信方法和通信装置
WO2023197267A1 (zh) 用于感知测量建立终止的通信方法和通信装置
WO2023168675A1 (zh) 通信方法和通信装置
WO2024011363A1 (zh) 通信方法及装置、电子设备及存储介质
WO2023092499A1 (zh) Wlan感知方法及装置、电子设备及存储介质
WO2024020735A1 (zh) 通信方法及电子设备、存储介质
WO2024040400A1 (zh) 代理感知测量方法、电子设备及存储介质
WO2023201732A1 (zh) 通信方法及装置、电子设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22940618

Country of ref document: EP

Kind code of ref document: A1