WO2022077268A1 - 一种无线感知方法、无线感知装置及存储介质 - Google Patents

一种无线感知方法、无线感知装置及存储介质 Download PDF

Info

Publication number
WO2022077268A1
WO2022077268A1 PCT/CN2020/120902 CN2020120902W WO2022077268A1 WO 2022077268 A1 WO2022077268 A1 WO 2022077268A1 CN 2020120902 W CN2020120902 W CN 2020120902W WO 2022077268 A1 WO2022077268 A1 WO 2022077268A1
Authority
WO
WIPO (PCT)
Prior art keywords
wireless sensing
period
information element
wireless
station
Prior art date
Application number
PCT/CN2020/120902
Other languages
English (en)
French (fr)
Inventor
董贤东
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to EP20957049.8A priority Critical patent/EP4231698A1/en
Priority to US18/031,348 priority patent/US20230403589A1/en
Priority to CN202080002785.XA priority patent/CN114762381A/zh
Priority to PCT/CN2020/120902 priority patent/WO2022077268A1/zh
Publication of WO2022077268A1 publication Critical patent/WO2022077268A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/005Discovery of network devices, e.g. terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]

Definitions

  • the present disclosure relates to the field of wireless communication technologies, and in particular, to a wireless sensing method, a wireless sensing device, and a storage medium.
  • Wireless Local Area Network Sensing is generally used in application scenarios such as location discovery in dense scenarios, proximity detection (proximity detection) and/or presence detection (presence detection). And the process of WLAN sensing may be that the initiator initiates WLAN sensing, and multiple responders respond.
  • a station acts as an initiator of WLAN sensing
  • a wireless access point acts as a responder of WLAN sensing to communicate with the station.
  • site-to-site communication may occur. Therefore, when a station that supports WLAN sensing under the control of the AP communicates with the station, it is easy to cause mutual interference.
  • the present disclosure provides a wireless sensing method, a wireless sensing device and a storage medium.
  • a wireless sensing method applied to a station, including:
  • the wireless sensing period request frame includes a first period information element for the station to perform wireless sensing, and the first period information element is used for the station to perform periodic wireless sensing; send the wireless sensing period request frame.
  • the method further includes:
  • the wireless sensing period response frame includes a second period information element of the wireless access point AP; in response to the second period information element being the same as the first period information element, determine the periodicity Initiate a wireless sense message.
  • the wireless sensing period request frame includes at least one of the following:
  • Period Information Element ID Byte Length, Radio Perception Period Offset, Radio Perception Duration, Radio Perception Interval, Radio Perception Repeat Number, Connection Information.
  • the wireless sensing period offset is determined based on the first wireless sensing period and the beacon sending interval.
  • the wireless sensing duration is determined based on a wireless sensing period.
  • the radio sensing interval is determined based on an interval of transmissions between consecutive radio sensing periods.
  • the number of radio sensing repetitions is determined based on the number of radio sensing period request frames.
  • the number of times of sending the first periodic information element is determined based on the number of wireless sensing repetitions
  • the number of times of sending the first periodic information element is determined based on the wireless sensing application.
  • the method further includes:
  • the method further includes:
  • the second periodic information element includes at least one of the following:
  • Period information element ID Period information element ID, byte length, wireless sensing period offset, wireless sensing duration, wireless sensing interval, wireless sensing repetition number, connection information and status code.
  • the status code is determined based on the first period information element and the second period information element.
  • a wireless sensing method is provided, applied to a wireless access point AP, including:
  • a wireless sensing period request frame is received, where the wireless sensing period request frame includes a first period information element for the station to perform wireless sensing, and the first period information element is used for the station to perform periodic wireless sensing.
  • the method further includes:
  • the second period information element is set to be the same as the first period information element.
  • the method further includes:
  • a wireless sensing period response frame is sent, where the wireless sensing period response frame includes the second period information element of the wireless access point AP.
  • the wireless sensing period request frame includes at least one of the following:
  • Period Information Element ID Byte Length, Radio Perception Period Offset, Radio Perception Duration, Radio Perception Interval, Radio Perception Repeat Number, Connection Information.
  • the wireless sensing period offset is determined based on the first wireless sensing period and the beacon sending interval.
  • the wireless sensing duration is determined based on a wireless sensing period.
  • the radio sensing interval is determined based on an interval of transmissions between consecutive radio sensing periods.
  • the number of radio sensing repetitions is determined based on the number of radio sensing period request frames.
  • the number of times of sending the first periodic information element is determined based on the number of wireless sensing repetitions
  • the number of times of sending the first periodic information element is determined based on the wireless sensing application.
  • the method further includes:
  • the method further includes:
  • Second information is received, where the second information identifies wireless awareness capability information supported by the station.
  • the second periodic information element includes at least one of the following:
  • Period information element ID Period information element ID, byte length, wireless sensing period offset, wireless sensing duration, wireless sensing interval, wireless sensing repetition number, connection information and status code.
  • the status code is determined based on the first period information element and the second period information element.
  • a wireless sensing device applied to a station, including:
  • a determining module configured to determine a wireless sensing period request frame, where the wireless sensing period request frame includes a first period information element for the station to perform wireless sensing, and the first period information element is used for the station to perform periodic wireless sensing; the sending module, It is used to send the wireless sensing period request frame.
  • the determining module is further configured to:
  • the wireless sensing period response frame includes a second period information element of the wireless access point AP; in response to the second period information element being the same as the first period information element, determine the periodicity Initiate a wireless sense message.
  • the wireless sensing period request frame includes at least one of the following:
  • Period Information Element ID Byte Length, Radio Perception Period Offset, Radio Perception Duration, Radio Perception Interval, Radio Perception Repeat Number, Connection Information.
  • the wireless sensing period offset is determined based on the first wireless sensing period and the beacon sending interval.
  • the wireless sensing duration is determined based on a wireless sensing period.
  • the radio sensing interval is determined based on an interval of transmissions between consecutive radio sensing periods.
  • the number of radio sensing repetitions is determined based on the number of radio sensing period request frames.
  • the number of times of sending the first periodic information element is determined based on the number of wireless sensing repetitions
  • the number of times of sending the first periodic information element is determined based on the wireless sensing application.
  • the apparatus further comprises:
  • the apparatus further comprises:
  • the second periodic information element includes at least one of the following:
  • Period information element ID Period information element ID, byte length, wireless sensing period offset, wireless sensing duration, wireless sensing interval, wireless sensing repetition number, connection information and status code.
  • the status code is determined based on the first period information element and the second period information element.
  • a wireless sensing device which is applied to a wireless access point AP, including:
  • the receiving module is configured to receive a wireless sensing period request frame, where the wireless sensing period request frame includes a first period information element for the station to perform wireless sensing, and the first period information element is used for the station to perform periodic wireless sensing.
  • the apparatus further comprises:
  • the second period information element is set to be the same as the first period information element.
  • the apparatus further comprises:
  • a wireless sensing period response frame is sent, where the wireless sensing period response frame includes the second period information element of the wireless access point AP.
  • the wireless sensing period request frame includes at least one of the following:
  • Period Information Element ID Byte Length, Radio Perception Period Offset, Radio Perception Duration, Radio Perception Interval, Radio Perception Repeat Number, Connection Information.
  • the wireless sensing period offset is determined based on the first wireless sensing period and the beacon sending interval.
  • the wireless sensing duration is determined based on a wireless sensing period.
  • the radio sensing interval is determined based on an interval of transmissions between consecutive radio sensing cycles.
  • the number of radio sensing repetitions is determined based on the number of radio sensing period request frames.
  • the number of times of sending the first periodic information element is determined based on the number of wireless sensing repetitions
  • the number of times of sending the first periodic information element is determined based on the wireless sensing application.
  • the apparatus further comprises:
  • the apparatus further comprises:
  • Second information is received, where the second information identifies wireless awareness capability information supported by the station.
  • the second periodic information element includes at least one of the following:
  • Period information element ID Period information element ID, byte length, wireless sensing period offset, wireless sensing duration, wireless sensing interval, wireless sensing repetition number, connection information and status code.
  • the status code is determined based on the first period information element and the second period information element.
  • a wireless sensing device including:
  • a processor configured to: execute the wireless sensing method according to the first aspect or any one of the implementation manners of the first aspect; or be configured to: The wireless sensing method described in the second aspect or any one of the implementation manners of the second aspect is performed.
  • a non-transitory computer-readable storage medium which, when an instruction in the storage medium is executed by a processor of a mobile terminal, enables the mobile terminal to perform the first aspect or the first aspect
  • the wireless sensing method described in any one of the embodiments in the above; or the mobile terminal can execute the wireless sensing method described in any one of the embodiments of the second aspect or the second aspect.
  • the technical solutions provided by the embodiments of the present disclosure may include the following beneficial effects: through the wireless sensing period negotiation between the station and the AP, the wireless sensing message can be periodically initiated within a preset or defined period, and the reduction of other stations can be realized.
  • the effect of communication interference may include the following beneficial effects: through the wireless sensing period negotiation between the station and the AP, the wireless sensing message can be periodically initiated within a preset or defined period, and the reduction of other stations can be realized.
  • the effect of communication interference through the wireless sensing period negotiation between the station and the AP, the wireless sensing message can be periodically initiated within a preset or defined period, and the reduction of other stations can be realized.
  • FIG. 1 shows a schematic diagram of a wireless cognitive communication system to which an embodiment of the present disclosure is applicable.
  • FIG. 2 shows a schematic diagram of wireless perception between stations under the control of an AP according to an embodiment of the present disclosure.
  • FIG. 3A to FIG. 3B are schematic diagrams showing the format of the silent time mechanism according to the embodiment of the present disclosure.
  • Fig. 4 is a flowchart of a wireless sensing method according to an exemplary embodiment.
  • Fig. 5 is a flowchart of yet another wireless sensing method according to an exemplary embodiment.
  • Fig. 6 is a schematic diagram of a wireless sensing period request frame of a wireless sensing method according to an exemplary embodiment.
  • Fig. 7 is a schematic diagram of a wireless sensing period response frame of a wireless sensing method according to an exemplary embodiment.
  • 8A to 8C are schematic diagrams showing the format of capability information elements of a wireless sensing method according to an exemplary embodiment.
  • Fig. 9 is a flowchart showing another wireless sensing method according to an exemplary embodiment.
  • Fig. 10 is a block diagram of a wireless sensing apparatus according to an exemplary embodiment.
  • Fig. 11 is a block diagram of another wireless sensing apparatus according to an exemplary embodiment.
  • Fig. 12 is a block diagram of a wireless sensing apparatus according to an exemplary embodiment.
  • Fig. 13 is a block diagram of a wireless sensing apparatus according to an exemplary embodiment.
  • FIG. 1 shows a schematic diagram of a wireless cognitive communication system to which an embodiment of the present disclosure is applicable.
  • wireless communication is performed between the station and the AP.
  • the process of wireless sensing may be that the station initiates wireless sensing, and the AP responder responds.
  • the site involved in this disclosure can be understood as a user terminal in a wireless local area network
  • the user terminal can be referred to as user equipment (User Equipment, UE), mobile station (Mobile Station, MS), mobile terminal (Mobile Terminal, MT) ), etc.
  • UE User Equipment
  • UE mobile station
  • MS Mobile Terminal
  • MT mobile terminal
  • a terminal may be a handheld device with a wireless connection function, a vehicle-mounted device, and the like.
  • some examples of terminals are: Smartphone (Mobile Phone), Pocket Personal Computer (PPC), PDA, Personal Digital Assistant (PDA), notebook computer, tablet computer, wearable device, Internet of Things (IoT) clients or in-vehicle devices, etc.
  • an AP refers to a device, a router, etc., for a wireless local area network user terminal to access the network.
  • FIG. 2 shows a schematic diagram of wireless perception between stations under the control of an AP according to an embodiment of the present disclosure.
  • QTP Quiet Time Period
  • FIG. 3A to FIG. 3B are schematic diagrams showing the format of the silent time mechanism according to the embodiment of the present disclosure.
  • FIG. 3A including information element ID, byte length, information element ID extension, control, silent time content.
  • Octets identifies the octet and variable represents the variable.
  • Figure 3B including dialog box, silent time offset, silent time duration, silent time interval, number of repetitions, specific service identifier.
  • Octets identifies octets and variable identifies variables.
  • a station supporting QTP sends a QTP request to an AP supporting QTP, and communication between stations is performed during the QTP period.
  • QTP mechanism in the related art that can be used for communication between sites, there may be one initiator and multiple responders in one process.
  • one 802.11bf process may have one initiator and multiple responders.
  • the QTP mechanism is used for the communication mechanism between stations, all stations are The initiator of communication between sites, that is, it can be understood that each site must send a QTP request. Therefore, it can be understood from the QTP mechanism that when a station supporting WLAN sensing under the control of an AP communicates with a station, it is easy to cause mutual interference.
  • the present disclosure provides a wireless sensing method.
  • Fig. 4 is a flowchart of a wireless sensing method according to an exemplary embodiment. As shown in FIG. 4 , the wireless sensing method is used in a station and includes the following steps.
  • step S11 a wireless sensing period request frame is determined.
  • step S12 a wireless sensing period request frame is sent.
  • the station determines the wireless sensing period request frame according to the specific application of the wireless sensing that it supports.
  • the wireless sensing period request frame includes a first period information element for the station to perform wireless sensing, and the first period information element is used for the station to perform periodic wireless sensing.
  • the station sends the determined radio sensing period request frame.
  • the AP After receiving the wireless sensing period request frame sent by the station, the AP sends a wireless sensing period response frame to the station in response to the received wireless sensing period request frame.
  • the station receives the wireless sensing period response frame sent by the AP, and needs to perform the following steps.
  • Fig. 5 is a flowchart of a wireless sensing method according to an exemplary embodiment. As shown in FIG. 5 , the wireless sensing method further includes the following steps.
  • step S21 a wireless sensing period response frame is received.
  • the wireless sensing period response frame includes the second period information element of the wireless access point AP.
  • step S22 in response to the second period information element being the same as the first period information element, it is determined that the wireless sensing message is periodically initiated.
  • the station determines the second period information element included in the received wireless sensing period response frame, and matches the second period information element with the first period information element of the station. If the second period information element is the same as the first period information element of the station, it is determined that the AP agrees to the wireless sensing period request of the station. At this time, the status code (status code) in the second periodic information element is a response, and the station determines to periodically initiate a wireless sensing message.
  • the wireless sensing period response frame sent by the AP may be a broadcast frame.
  • the status code (status code) in the second cycle information element is the response.
  • the AP does not accept the wireless sensing period request frame sent by the station, it determines the second period information element that is different from the first period information element in the wireless sensing period response frame. In this case, the second period information element The status code in the middle is no response. If the station determines that the second period information element in the wireless sensing period response frame sent by the AP is different from the first period information element, it does not periodically initiate a wireless sensing message.
  • Fig. 6 is a schematic diagram of a wireless sensing period request frame of a wireless sensing method according to an exemplary embodiment.
  • the format of the first period information element included in the wireless sensing period request frame is as shown in FIG. 6 .
  • the wireless sensing period request frame includes at least one of the following:
  • Period Information Element ID Byte Length, Radio Perception Period Offset, Radio Perception Duration, Radio Perception Interval, Radio Perception Repeat Number, Connection Information.
  • the wireless sensing period offset (WLAN sensing period offset) is determined based on the first wireless sensing period (WLAN sensing Period, WSP) and the beacon transmission interval time (target beacon Transmission time, TBTT).
  • the wireless sensing period offset may be set as the offset between the first wireless sensing period (WSP) and the TBTT expressed in Tus.
  • the wireless sensing duration (WLAN sensing duration) is determined based on the wireless sensing period.
  • the wireless sensing duration may be set as the wireless sensing period duration, and the unit may be 32 ⁇ s.
  • the limitation on this unit is only for illustration, and not a specific limitation on the wireless sensing duration of the present disclosure.
  • the wireless sensing interval (WLAN sensing interval) is determined based on the transmission interval between consecutive wireless sensing cycles. In other words, taking two consecutive wireless sensing periods as an example, the wireless sensing interval may be set as a request interval between the start of two consecutive WSPs.
  • the number of WLAN sensing repetitions (WLAN sensing repetition) is determined based on the number of WLAN sensing period request frames. In other words, the number of radio sensing repetitions can be set as the number of radio sensing period request frames.
  • the number of times that the station sends the first period information element may be determined according to the number of wireless sensing repetitions.
  • the number of times that the station sends the first period information element may also be determined according to a specific application that can be implemented by wireless sensing.
  • the specific application that wireless sensing can realize may be identification support location discovery, identification action detection, for example, proximity detection (proximity detection) or presence detection (presence detection).
  • the first period information element may further include the number of times the station performs wireless sensing, which is used to identify the number of times that the station performs wireless sensing within one wireless sensing period.
  • the connection information may identify frequency band information such as 2.4GHz, 5GHz, 6GHz, or 60GHz. It should be noted that, if the first period information element includes connection information, the period information element ID in the first period information element in the above embodiment, the byte length, the wireless sensing period offset, the wireless sensing duration, the wireless sensing Both the sensing interval and the number of wireless sensing repetitions need to be repeated.
  • the first period information element and the second period information element include the same information element.
  • the period information element sent by the station is called the first period information element
  • the period information element sent by the AP is called the second period information element.
  • Fig. 7 is a schematic diagram of a wireless sensing period response frame of a wireless sensing method according to an exemplary embodiment. The format of the second period information element included in the wireless sensing period response frame is shown in FIG. 7 .
  • the AP needs to exchange capability information during the initial association process between the AP and the station.
  • the station sends second information, where the second information identifies the wireless perception capability information supported by the station, so as to inform the AP of the capability information supported by the station.
  • the AP determines the capabilities supported by the station according to the wireless sensing capability information received by the station.
  • the AP sends first information, where the first information identifies the wireless sensing capability information supported by the AP, and has informed the station of the wireless sensing capability information supported by the AP, and the station determines the wireless sensing capability information supported by the AP.
  • the station may carry the second information in the initial association request frame (association request), or carry the second information in the re-association request frame (re-association request).
  • the AP may carry the first information in an initial association response frame (association response), or carry the first information in a re-association response frame (re-association response) or carry the first information in a beacon frame.
  • the format of the second information element of the site or the first information element of the AP may be the frame format shown in FIG. 8A , or the frame format shown in FIG. 8B .
  • the information field included in the frame format shown in FIG. 8B includes the first information or the second information
  • the format of the information field is as follows As shown in FIG. 8C , it includes sub-element ID, byte length, and supported applications (for example, information1 indicates that location discovery is supported, and information2 indicates that proximity detection or presence detection is supported).
  • the wireless sensing method provided by the embodiments of the present disclosure may be applicable to the situation in which the station communicates with the AP one-to-one. If the station and the AP determine to periodically initiate wireless sensing messages, the stations participating in the periodic initiation of wireless sensing messages receive P2P message frames, such as WLAN sensing initial doing request frames. The wireless awareness of other stations that do not participate in periodically sending wireless awareness messages sets their Network Allocation Vector (NAV) to busy.
  • NAV Network Allocation Vector
  • the wireless sensing method provided by the embodiments of the present disclosure may also be applicable to other situations of stations and APs. If there is a retransmission delay value (backoff), it is determined that the backoff is decremented within the line sensing period in which the wireless sensing message is periodically initiated. For a station that does not support wireless sensing, the NAV of the station that does not support wireless sensing is set to busy, and it is decremented within the line sensing period for periodically initiating wireless sensing messages.
  • backoff retransmission delay value
  • the embodiments of the present disclosure also provide a wireless sensing method.
  • Fig. 9 is a flowchart of a wireless sensing method according to an exemplary embodiment. As shown in FIG. 9 , the wireless sensing method used in the wireless access point AP includes the following steps.
  • step S31 a wireless sensing period request frame is received.
  • the wireless sensing period request frame includes a first period information element for the station to perform wireless sensing, and the first period information element is used for the station to perform periodic wireless sensing.
  • the station determines the wireless sensing period request frame according to the specific wireless sensing application it supports.
  • the wireless sensing period request frame includes a first period information element for the station to perform wireless sensing, and the first period information element is used for the station to perform periodic wireless sensing.
  • the station sends the determined radio sensing period request frame.
  • the AP receives the wireless sensing period request frame sent by the station, in response to the received wireless sensing period request frame, if it determines to accept the wireless sensing period request frame, it sets the second period information element to be the same as the first period information element.
  • the station receives the wireless sensing period response frame sent by the AP, and needs to perform the following steps.
  • the wireless sensing period response frame includes the second period information element of the wireless access point AP.
  • the station determines the second period information element included in the received wireless sensing period response frame, and matches the second period information element with the first period information element of the station. If the second period information element is the same as the first period information element of the station, it is determined that the AP agrees to the wireless sensing period request of the station.
  • the status code (status code) in the second periodic information element is a response, and the station determines to periodically initiate a wireless sensing message.
  • the wireless sensing period response frame sent by the AP may be a broadcast frame.
  • the status code (status code) in the second cycle information element is the response.
  • the AP does not accept the wireless sensing period request frame sent by the station, it determines the second period information element that is different from the first period information element in the wireless sensing period response frame. In this case, the second period information element The status code in the middle is no response. If the station determines that the second period information element in the wireless sensing period response frame sent by the AP is different from the first period information element, it does not periodically initiate a wireless sensing message.
  • Fig. 6 is a schematic diagram of a wireless sensing period request frame of a wireless sensing method according to an exemplary embodiment.
  • the format of the first period information element included in the wireless sensing period request frame is as shown in FIG. 6 .
  • the wireless sensing period request frame includes at least one of the following:
  • Period Information Element ID Byte Length, Radio Perception Period Offset, Radio Perception Duration, Radio Perception Interval, Radio Perception Repeat Number, Connection Information.
  • the wireless sensing period offset (WLAN sensing period offset) is determined based on the first wireless sensing period (WLAN sensing Period, WSP) and the beacon transmission interval time (target beacon Transmission time, TBTT).
  • the wireless sensing period offset may be set as the offset between the first wireless sensing period (WSP) and the TBTT expressed in Tus.
  • the wireless sensing duration (WLAN sensing duration) is determined based on the wireless sensing period.
  • the wireless sensing duration may be set as the wireless sensing period duration, and the unit may be 32 ⁇ s.
  • the limitation on this unit is only for illustration, and not a specific limitation on the wireless sensing duration of the present disclosure.
  • the wireless sensing interval (WLAN sensing interval) is determined based on the transmission interval between consecutive wireless sensing cycles. In other words, taking two consecutive wireless sensing periods as an example, the wireless sensing interval may be set as a request interval between the start of two consecutive WSPs.
  • the number of WLAN sensing repetitions (WLAN sensing repetition) is determined based on the number of WLAN sensing period request frames. In other words, the number of radio sensing repetitions can be set as the number of radio sensing period request frames.
  • the number of times that the station sends the first period information element may be determined according to the number of wireless sensing repetitions.
  • the number of times that the station sends the first period information element may also be determined according to a specific application that can be implemented by wireless sensing.
  • the specific application that wireless sensing can realize may be identification support location discovery, identification action detection, for example, proximity detection (proximity detection) or presence detection (presence detection).
  • the first period information element may further include the number of times the station performs wireless sensing, which is used to identify the number of times that the station performs wireless sensing within one wireless sensing period.
  • the connection information may identify frequency band information such as 2.4GHz, 5GHz, 6GHz, or 60GHz. It should be noted that, if the first period information element includes connection information, the period information element ID in the first period information element in the above embodiment, the byte length, the wireless sensing period offset, the wireless sensing duration, the wireless sensing Both the sensing interval and the number of wireless sensing repetitions need to be repeated.
  • the first period information element and the second period information element include the same information element.
  • the period information element sent by the station is called the first period information element
  • the period information element sent by the AP is called the second period information element.
  • Fig. 7 is a schematic diagram of a wireless sensing period response frame of a wireless sensing method according to an exemplary embodiment. The format of the second period information element included in the wireless sensing period response frame is shown in FIG. 7 .
  • the AP needs to exchange capability information during the initial association process between the AP and the station.
  • the station sends second information, where the second information identifies the wireless perception capability information supported by the station, so as to inform the AP of the capability information supported by the station.
  • the AP determines the capabilities supported by the station according to the wireless sensing capability information received by the station.
  • the AP sends first information, where the first information identifies the wireless sensing capability information supported by the AP, and has informed the station of the wireless sensing capability information supported by the AP, and the station determines the wireless sensing capability information supported by the AP.
  • the station may carry the second information in the initial association request frame (association request), or carry the second information in the re-association request frame (re-association request).
  • the AP may carry the first information in an initial association response frame (association response), or carry the first information in a re-association response frame (re-association response).
  • the format of the second information element of the site or the first information element of the AP may be the frame format shown in FIG. 8A , or the frame format shown in FIG. 8B .
  • the information field included in the frame format shown in FIG. 8B includes the first information or the second information
  • the format of the information field is as follows As shown in FIG. 8C , it includes sub-element ID, byte length, and supported applications (for example, information1 indicates that location discovery is supported, and information2 indicates that proximity detection or presence detection is supported).
  • the wireless sensing method provided by the embodiments of the present disclosure may be applicable to the situation in which the station communicates with the AP one-to-one. If the station and the AP determine to periodically initiate a wireless sensing message, the station participating in the periodic initiation of the wireless sensing message receives a P2P message frame, such as a WLAN sensing initial doing request frame. The wireless awareness of other stations that do not participate in periodically sending wireless awareness messages sets their Network Allocation Vector (NAV) to busy.
  • NAV Network Allocation Vector
  • the wireless sensing method provided by the embodiments of the present disclosure may also be applicable to other situations of stations and APs.
  • backoff If there is a retransmission delay value (backoff), it is determined that the backoff is decremented within the line sensing period in which the wireless sensing message is periodically initiated.
  • the NAV of the station that does not support wireless sensing is set to be busy, and the NAV is decremented within the wireless sensing period in which the wireless sensing message is periodically initiated.
  • an embodiment of the present disclosure also provides a wireless sensing device.
  • the wireless sensing apparatus provided by the embodiments of the present disclosure includes corresponding hardware structures and/or software modules for executing each function.
  • the embodiments of the present disclosure can be implemented in hardware or a combination of hardware and computer software. Whether a function is performed by hardware or computer software driving hardware depends on the specific application and design constraints of the technical solution. Those skilled in the art may use different methods to implement the described functions for each specific application, but such implementation should not be considered beyond the scope of the technical solutions of the embodiments of the present disclosure.
  • Fig. 10 is a block diagram of a wireless sensing apparatus 100 according to an exemplary embodiment.
  • the apparatus includes a determining module 101 and a sending module 102 .
  • the determining module 101 is configured to determine a wireless sensing period request frame, where the wireless sensing period request frame includes a first period information element for the station to perform wireless sensing, and the first period information element is used for the station to perform periodic wireless sensing.
  • the sending module 102 is configured to send a wireless sensing period request frame.
  • the determining module 101 is further configured to receive a wireless sensing period response frame, where the wireless sensing period response frame includes the second period information element of the wireless access point AP. In response to the second period information element being the same as the first period information element, it is determined that the wireless sensing message is initiated periodically.
  • the wireless sensing period request frame includes at least one of the following:
  • Period Information Element ID Byte Length, Radio Perception Period Offset, Radio Perception Duration, Radio Perception Interval, Radio Perception Repeat Number, Connection Information.
  • the wireless sensing period offset is determined based on the first wireless sensing period and the beacon sending interval.
  • the wireless sensing duration is determined based on the wireless sensing period.
  • the wireless sensing interval is determined based on the transmission interval between consecutive wireless sensing periods.
  • the number of wireless sensing repetitions is determined based on the number of wireless sensing period request frames.
  • the number of times of sending the first periodic information element is determined based on the number of wireless sensing repetitions.
  • the number of times the first periodic information element is sent is determined based on the wireless sensing application.
  • the wireless sensing apparatus further includes:
  • the wireless sensing apparatus further includes:
  • Second information is sent, where the second information identifies wireless perception capability information supported by the station.
  • the second period information element includes at least one of the following:
  • Period information element ID Period information element ID, byte length, wireless sensing period offset, wireless sensing duration, wireless sensing interval, wireless sensing repetition number, connection information and status code.
  • the status code is determined based on the first period information element and the second period information element.
  • FIG. 11 is a block diagram of a wireless sensing apparatus 200 according to an exemplary embodiment. Referring to FIG. 11 , it is applied to a wireless access point AP, including a receiving module 201 .
  • the receiving module 201 is configured to receive a wireless sensing period request frame, where the wireless sensing period request frame includes a first period information element for the station to perform wireless sensing, and the first period information element is used for the station to perform periodic wireless sensing.
  • the wireless sensing apparatus further includes:
  • a wireless sensing period response frame is sent, and the wireless sensing period response frame includes the second period information element of the wireless access point AP.
  • the wireless sensing apparatus further includes:
  • the second period information element is set to be the same as the first period information element.
  • the wireless sensing period request frame includes at least one of the following:
  • Period Information Element ID Byte Length, Radio Perception Period Offset, Radio Perception Duration, Radio Perception Interval, Radio Perception Repeat Number, Connection Information.
  • the wireless sensing period offset is determined based on the first wireless sensing period and the beacon sending interval.
  • the wireless sensing duration is determined based on the wireless sensing period.
  • the wireless sensing interval is determined based on the transmission interval between consecutive wireless sensing periods.
  • the number of wireless sensing repetitions is determined based on the number of wireless sensing period request frames.
  • the number of times of sending the first periodic information element is determined based on the number of wireless sensing repetitions.
  • the number of times the first periodic information element is sent is determined based on the wireless sensing application.
  • the wireless sensing apparatus further includes:
  • the wireless sensing apparatus further includes:
  • Second information is received, where the second information identifies wireless awareness capability information supported by the station.
  • the second period information element includes at least one of the following:
  • Period information element ID Period information element ID, byte length, wireless sensing period offset, wireless sensing duration, wireless sensing interval, wireless sensing repetition number, connection information and status code.
  • the status code is determined based on the first period information element and the second period information element.
  • FIG. 12 is a block diagram of an apparatus 300 for wireless sensing according to an exemplary embodiment.
  • apparatus 300 may be a mobile phone, computer, digital broadcast terminal, messaging device, game console, tablet device, medical device, fitness device, personal digital assistant, and the like.
  • apparatus 300 may include one or more of the following components: processing component 302, memory 304, power component 306, multimedia component 308, audio component 310, input/output (I/O) interface 312, sensor component 314, and Communication component 316 .
  • the processing component 302 generally controls the overall operation of the device 300, such as operations associated with display, phone calls, data communications, camera operations, and recording operations.
  • the processing component 302 may include one or more processors 320 to execute instructions to perform all or some of the steps of the methods described above. Additionally, processing component 302 may include one or more modules that facilitate interaction between processing component 302 and other components. For example, processing component 302 may include a multimedia module to facilitate interaction between multimedia component 308 and processing component 302 .
  • Memory 304 is configured to store various types of data to support operations at device 300 . Examples of such data include instructions for any application or method operating on device 300, contact data, phonebook data, messages, pictures, videos, and the like. Memory 304 may be implemented by any type of volatile or non-volatile storage device or combination thereof, such as static random access memory (SRAM), electrically erasable programmable read only memory (EEPROM), erasable Programmable Read Only Memory (EPROM), Programmable Read Only Memory (PROM), Read Only Memory (ROM), Magnetic Memory, Flash Memory, Magnetic or Optical Disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read only memory
  • EPROM erasable Programmable Read Only Memory
  • PROM Programmable Read Only Memory
  • ROM Read Only Memory
  • Magnetic Memory Flash Memory
  • Magnetic or Optical Disk Magnetic Disk
  • Power component 306 provides power to various components of device 300 .
  • Power components 306 may include a power management system, one or more power sources, and other components associated with generating, managing, and distributing power to device 300 .
  • Multimedia component 308 includes screens that provide an output interface between the device 300 and the user.
  • the screen may include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen may be implemented as a touch screen to receive input signals from a user.
  • the touch panel includes one or more touch sensors to sense touch, swipe, and gestures on the touch panel. The touch sensor may not only sense the boundaries of a touch or swipe action, but also detect the duration and pressure associated with the touch or swipe action.
  • the multimedia component 308 includes a front-facing camera and/or a rear-facing camera. When the apparatus 300 is in an operation mode, such as a shooting mode or a video mode, the front camera and/or the rear camera may receive external multimedia data. Each of the front and rear cameras can be a fixed optical lens system or have focal length and optical zoom capability.
  • Audio component 310 is configured to output and/or input audio signals.
  • audio component 310 includes a microphone (MIC) that is configured to receive external audio signals when device 300 is in operating modes, such as call mode, recording mode, and voice recognition mode. The received audio signal may be further stored in memory 304 or transmitted via communication component 316 .
  • audio component 310 also includes a speaker for outputting audio signals.
  • the I/O interface 312 provides an interface between the processing component 302 and a peripheral interface module, which may be a keyboard, a click wheel, a button, or the like. These buttons may include, but are not limited to: home button, volume buttons, start button, and lock button.
  • Sensor assembly 314 includes one or more sensors for providing status assessment of various aspects of device 300 .
  • the sensor assembly 314 can detect the open/closed state of the device 300, the relative positioning of components, such as the display and keypad of the device 300, and the sensor assembly 314 can also detect a change in the position of the device 300 or a component of the device 300 , the presence or absence of user contact with the device 300 , the orientation or acceleration/deceleration of the device 300 and the temperature change of the device 300 .
  • Sensor assembly 314 may include a proximity sensor configured to detect the presence of nearby objects in the absence of any physical contact.
  • Sensor assembly 314 may also include a light sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor assembly 314 may also include an acceleration sensor, a gyroscope sensor, a magnetic sensor, a pressure sensor, or a temperature sensor.
  • Communication component 316 is configured to facilitate wired or wireless communication between apparatus 300 and other devices.
  • Device 300 may access wireless networks based on communication standards, such as WiFi, 2G or 3G, or a combination thereof.
  • the communication component 316 receives broadcast signals or broadcast related information from an external broadcast management system via a broadcast channel.
  • the communication component 316 also includes a near field communication (NFC) module to facilitate short-range communication.
  • NFC near field communication
  • the NFC module may be implemented based on radio frequency identification (RFID) technology, infrared data association (IrDA) technology, ultra-wideband (UWB) technology, Bluetooth (BT) technology and other technologies.
  • RFID radio frequency identification
  • IrDA infrared data association
  • UWB ultra-wideband
  • Bluetooth Bluetooth
  • apparatus 300 may be implemented by one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable A gate array (FPGA), controller, microcontroller, microprocessor or other electronic component implementation is used to perform the above method.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGA field programmable A gate array
  • controller microcontroller, microprocessor or other electronic component implementation is used to perform the above method.
  • non-transitory computer-readable storage medium including instructions, such as a memory 304 including instructions, executable by the processor 320 of the apparatus 300 to perform the method described above.
  • the non-transitory computer-readable storage medium may be ROM, random access memory (RAM), CD-ROM, magnetic tape, floppy disk, optical data storage device, and the like.
  • FIG. 13 is a block diagram of an apparatus 400 for wireless sensing according to an exemplary embodiment.
  • the apparatus 400 may be provided as a server. 12, apparatus 400 includes processing component 422, which further includes one or more processors, and a memory resource, represented by memory 432, for storing instructions executable by processing component 422, such as application programs.
  • An application program stored in memory 432 may include one or more modules, each corresponding to a set of instructions.
  • the processing component 422 is configured to execute instructions to perform the wireless sensing method described above.
  • Device 400 may also include a power supply assembly 426 configured to perform power management of device 400 , a wired or wireless network interface 450 configured to connect device 400 to a network, and an input output (I/O) interface 458 .
  • Device 400 may operate based on an operating system stored in memory 432, such as Windows ServerTM, Mac OS XTM, UnixTM, LinuxTM, FreeBSDTM or the like.
  • first, second, etc. are used to describe various information, but the information should not be limited to these terms. These terms are only used to distinguish the same type of information from one another, and do not imply a particular order or level of importance. In fact, the expressions “first”, “second” etc. are used completely interchangeably.
  • the first information may also be referred to as the second information, and similarly, the second information may also be referred to as the first information, without departing from the scope of the present disclosure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Databases & Information Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开是关于一种无线感知方法、无线感知装置及存储介质。其中,一种无线感知方法,应用于站点,包括:确定无线感知周期请求帧,所述无线感知周期请求帧包括站点进行无线感知的第一周期信息元素,所述第一周期信息元素用于站点进行周期性无线感知;发送无线感知周期请求帧。通过本公开可以在预设置或定义的周期内周期性发起无线感知消息,并且可以实现减小其他站点通信干扰的效果。

Description

一种无线感知方法、无线感知装置及存储介质 技术领域
本公开涉及无线通信技术领域,尤其涉及一种无线感知方法、无线感知装置及存储介质。
背景技术
无线感知(Wireless Local Area Network Sensing,WLAN sensing)一般应用于密集场景下的位置发现,近感探测(proximity detection)和/或存在探测(presence detection)等应用场景中。并且WLAN sensing的流程可能是发起者发起WLAN sensing,多个响应者进行响应。
相关技术中,站点(Station,STA)作为WLAN sensing的发起者,无线访问接入点(Access Point,AP)作为WLAN sensing的响应者与站点进行通信。但是,在支持WLAN sensing的站点向支持WLAN sensing的AP发起WLAN sensing期间,可能会出现站点与站点之间的通信。因此,在AP控制下支持WLAN sensing的站点与站点通信时,容易导致出现相互干扰的情况。
发明内容
为克服相关技术中存在的问题,本公开提供一种无线感知方法、无线感知装置及存储介质。
根据本公开实施例的第一方面,提供一种无线感知方法,应用于站点,包括:
确定无线感知周期请求帧,所述无线感知周期请求帧包括站点进行无线感知的第一周期信息元素,所述第一周期信息元素用于站点进行周期性无线感知;发送无线感知周期请求帧。
在一种实施方式中,所述方法还包括:
接收无线感知周期响应帧,所述无线感知周期响应帧包括无线访问接入点AP的第二周期信息元素;响应于所述第二周期信息元素与所述第一周期信息元素相同,确定周期性发起无线感知消息。
在一种实施方式中,所述无线感知周期请求帧包括以下至少一项:
周期信息元素ID,字节长度,无线感知周期偏移量,无线感知持续时间,无线感知间隔,无线感知重复数量,连接信息。
在一种实施方式中,所述无线感知周期偏移量基于第一个无线感知周期和信标发送间隔时间确定。
在一种实施方式中,所述无线感知持续时间基于无线感知周期确定。
在一种实施方式中,所述无线感知间隔基于连续无线感知周期之间发送的间隔确定。
在一种实施方式中,所述无线感知重复数量基于无线感知周期请求帧数量确定。
在一种实施方式中,所述第一周期信息元素的发送次数基于无线感知重复数量确定;
所述第一周期信息元素的发送次数基于无线感知应用确定。
在一种实施方式中,所述方法还包括:
接收第一信息,所述第一信息标识AP支持的无线感知能力信息。
在一种实施方式中,所述方法还包括:
发送第二信息,所述第二信息标识站点支持的无线感知能力信息。
在一种实施方式中,所述第二周期信息元素包括以下至少一项:
周期信息元素ID,字节长度,无线感知周期偏移量,无线感知持续时间,无线感知间隔,无线感知重复数量,连接信息及状态码。
在一种实施方式中,所述状态码基于第一周期信息元素与第二周期信息元素确定。
根据本公开实施例的第二方面,提供一种无线感知方法,应用于无线访问接入点AP,包括:
接收无线感知周期请求帧,所述无线感知周期请求帧包括站点进行无线感知的第一周期信息元素,所述第一周期信息元素用于站点进行周期性无线感知。
在一种实施方式中,所述方法还包括:
确定接受无线感知周期请求帧,设置第二周期信息元素与所述第一周期信息元素相同。
在一种实施方式中,所述方法还包括:
发送无线感知周期响应帧,所述无线感知周期响应帧包括无线访问接入点AP的第二周期信息元素。
在一种实施方式中,所述无线感知周期请求帧包括以下至少一项:
周期信息元素ID,字节长度,无线感知周期偏移量,无线感知持续时间,无线感知间隔,无线感知重复数量,连接信息。
在一种实施方式中,所述无线感知周期偏移量基于第一个无线感知周期和信标发送间隔时间确定。
在一种实施方式中,所述无线感知持续时间基于无线感知周期确定。
在一种实施方式中,所述无线感知间隔基于连续无线感知周期之间发送的间隔确定。
在一种实施方式中,所述无线感知重复数量基于无线感知周期请求帧数量确定。
在一种实施方式中,所述第一周期信息元素的发送次数基于无线感知重复数量确定;
所述第一周期信息元素的发送次数基于无线感知应用确定。
在一种实施方式中,所述方法还包括:
发送第一信息,所述第一信息标识AP支持的无线感知能力信息。
在一种实施方式中,所述方法还包括:
接收第二信息,所述第二信息标识站点支持的无线感知能力信息。
在一种实施方式中,所述第二周期信息元素包括以下至少一项:
周期信息元素ID,字节长度,无线感知周期偏移量,无线感知持续时间,无线感知间隔,无线感知重复数量,连接信息及状态码。
在一种实施方式中,所述状态码基于第一周期信息元素与第二周期信息元素确定。
根据本公开实施例的第三方面,提供一种无线感知装置,应用于站点,包括:
确定模块,用于确定无线感知周期请求帧,所述无线感知周期请求帧包括站点进行无线感知的第一周期信息元素,所述第一周期信息元素用于站点进行周期性无线感知;发送模块,用于发送无线感知周期请求帧。
在一种实施方式中,所述确定模块还用于:
接收无线感知周期响应帧,所述无线感知周期响应帧包括无线访问接入点AP的第二周期信息元素;响应于所述第二周期信息元素与所述第一周期信息元素相同,确定周期性发起无线感知消息。
在一种实施方式中,所述无线感知周期请求帧包括以下至少一项:
周期信息元素ID,字节长度,无线感知周期偏移量,无线感知持续时间,无线感知间隔,无线感知重复数量,连接信息。
在一种实施方式中,所述无线感知周期偏移量基于第一个无线感知周期和信标发送间隔时间确定。
在一种实施方式中,所述无线感知持续时间基于无线感知周期确定。
在一种实施方式中,所述无线感知间隔基于连续无线感知周期之间发送的间隔确定。
在一种实施方式中,所述无线感知重复数量基于无线感知周期请求帧数量确定。
在一种实施方式中,所述第一周期信息元素的发送次数基于无线感知重复数量确定;
所述第一周期信息元素的发送次数基于无线感知应用确定。
在一种实施方式中,所述装置还包括:
接收第一信息,所述第一信息标识AP支持的无线感知能力信息。
在一种实施方式中,所述装置还包括:
发送第二信息,所述第二信息标识站点支持的无线感知能力信息。
在一种实施方式中,所述第二周期信息元素包括以下至少一项:
周期信息元素ID,字节长度,无线感知周期偏移量,无线感知持续时间,无线感知间隔,无线感知重复数量,连接信息及状态码。
在一种实施方式中,所述状态码基于第一周期信息元素与第二周期信息元素确定。
根据本公开实施例的第四方面,提供一种无线感知装置,应用于无线访问接入点AP,包括:
接收模块,用于接收无线感知周期请求帧,所述无线感知周期请求帧包括站点进行无线感知的第一周期信息元素,所述第一周期信息元素用于站点进行周期性无线感知。
在一种实施方式中,所述装置还包括:
确定接受无线感知周期请求帧,设置第二周期信息元素与所述第一周期信息元素相同。
在一种实施方式中,所述装置还包括:
发送无线感知周期响应帧,所述无线感知周期响应帧包括无线访问接入点AP的第二周期信息元素。
在一种实施方式中,所述无线感知周期请求帧包括以下至少一项:
周期信息元素ID,字节长度,无线感知周期偏移量,无线感知持续时间,无线感知间隔,无线感知重复数量,连接信息。
在一种实施方式中,所述无线感知周期偏移量基于第一个无线感知周期和信标发送间隔时间确定。
在一种实施方式中,所述无线感知持续时间基于无线感知周期确定。
在一种实施方式中,所述无线感知间隔基于连续无线感知周期之间发送的间隔确定。
在一种实施方式中,所述无线感知重复数量基于无线感知周期请求帧数量确定。
在一种实施方式中,所述第一周期信息元素的发送次数基于无线感知重复数量确定;
所述第一周期信息元素的发送次数基于无线感知应用确定。
在一种实施方式中,所述装置还包括:
发送第一信息,所述第一信息标识AP支持的无线感知能力信息。
在一种实施方式中,所述装置还包括:
接收第二信息,所述第二信息标识站点支持的无线感知能力信息。
在一种实施方式中,所述第二周期信息元素包括以下至少一项:
周期信息元素ID,字节长度,无线感知周期偏移量,无线感知持续时间,无线感知间隔,无线感知重复数量,连接信息及状态码。
在一种实施方式中,所述状态码基于第一周期信息元素与第二周期信息元素确定。
根据本公开实施例的第五方面,提供一种无线感知装置,包括:
处理器;用于存储处理器可执行指令的存储器;其中,所述处理器被配置为:执行第一方面或第一方面中任意一种实施方式所述的无线感知方法;或被配置为:执行第二方面或第二方面中任意一种实施方式所述的无线感知方法。
根据本公开实施例的第六方面,提供一种非临时性计算机可读存储介质,当所述存储介质中的指令由移动终端的处理器执行时,使得移动终端能够第一方面或第一方面中任意一种实施方式所述的无线感知方法;或得移动终端能够执行第二方面或第二方面中任意一种实施方式所述的无线感知方法。
本公开的实施例提供的技术方案可以包括以下有益效果:通过站点与AP之间的无线感知周期协商,可以在预设置或定义的周期内周期性发起无线感知消息,并且可以实现减小其他站点通信干扰的效果。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并与说明书一起用于解释本公开的原理。
图1示出了本公开实施例适用的一种无线感知通信系统的示意图。
图2示出了本公开实施例在AP控制下站点与站点之间进行无线感知的示意图。
图3A至图3B示出了本公开实施例静默时间机制的格式示意图。
图4是根据一示例性实施例示出的一种无线感知方法的流程图。
图5是根据一示例性实施例示出的又一种无线感知方法的流程图。
图6是根据一示例性实施例示出的一种无线感知方法无线感知周期请求帧的示意图。
图7是根据一示例性实施例示出的一种无线感知方法无线感知周期响应帧的示意图。
图8A至图8C是根据一示例性实施例示出的一种无线感知方法的能力信息元素格式示意图。
图9是根据一示例性实施例示出的另一种无线感知方法的流程图。
图10是根据一示例性实施例示出的一种无线感知装置框图。
图11是根据一示例性实施例示出的另一种无线感知装置框图。
图12是根据一示例性实施例示出的一种无线感知装置的框图。
图13是根据一示例性实施例示出的一种无线感知装置的框图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开的一些方面相一致的装置和方法的例子。
无线通信技术中,在IEEE802.11任务组中成立了802.11bf任务组,研究无线感知。其中无线感知一般应用于密集场景下的位置发现(例如,家庭环境及企业环境等),近感探测和/或存在探测等应用场景中。图1示出了本公开实施例适用的一种无线感知通信系统的示意图。如图1所示,站点与AP之间进行无线通信。并且无线感知的流程可能是站点发起无线感知,AP响应者进行响应。
其中,本公开中涉及的站点可以理解为是无线局域网中的用户终端,该用户终端可以称为用户设备(User Equipment,UE)、移动台(Mobile Station,MS)、移动终端(Mobile Terminal,MT)等,是一种向用户提供语音和/或数据连通性的设备,例如,终端可以是具有无线连接功能的手持式设备、车载设备等。目前,一些终端的举例为:智能手机(Mobile Phone)、口袋计算机(Pocket Personal Computer,PPC)、掌上电脑、个人数字助理(Personal Digital Assistant,PDA)、笔记本电脑、平板电脑、可穿戴设备、物联网(Internet of Things,IoT)客户端或者车载设备等。本公开中AP指无线局域网用户终端接入网络的设备、路由器等。
图2示出了本公开实施例在AP控制下站点与站点之间进行无线感知的示意图。如图2所示,相关技术中,在AP控制下站点与站点之间进行无线感知的方式,可以参考标准中静默时间(Quiet Time Period,QTP)机制。图3A至图3B示出了本公开实施例静默时间机制的格式示意图。如图3A所示,包括信息元素ID,字节长度,信息元素ID扩展,控制,静默时间内容。其中Octets标识八位位组,variable表示变量。如图3B所示,包括对话框,静默时间抵消,静默时间持续时间,静默时间间隔,重复次数,特定服务标识符。其中Octets标识八位位组,variable标识变量。具体而言,支持QTP的站点向支持QTP的AP发送QTP请求,在QTP期间内进行站点与站点之间的通信。
但是,相关技术中虽然存在有QTP机制可以用于站点与站点之间的通信机制,但是,在一次进程中可能存在着一个发起者,多个响应者的情况。例如,在IEEE802.11bf中的流程,802.11bf一次进程可能存在一个发起者,并且存在多个响应者,此时,若使用QTP机制用于站点与站点之间的通信机制,则所有站点均为站点与站点之间通信的发起者,即可以理解为,每个站点都要发送QTP请求。因此,由QTP机制可以理解,在AP控制下支持WLAN sensing的站点与站点通信时,容易导致出现相互干扰的情况。
因此,本公开提供一种无线感知方法。
图4是根据一示例性实施例示出的一种无线感知方法的流程图。如图4所示,无线感知方法用于站点中,包括以下步骤。
在步骤S11中,确定无线感知周期请求帧。
在步骤S12中,发送无线感知周期请求帧。
在本公开实施例中,站点根据其支持的无线感知的具体应用确定无线感知周期请求帧。无线感知周期请求帧包括站点进行无线感知的第一周期信息元素,第一周期信息元素用于站点进行周期性无线感知。站点发送确定的无线感知周期请求帧。AP接收到站点发送的无线感知周期请求帧后,响应于接收的无线感知周期请求帧,向站点发送无线感知周期响应帧。站点接收AP发送的无线感知周期响应帧,且需要执行下述步骤。
图5是根据一示例性实施例示出的一种无线感知方法的流程图。如图5所示,无线感知方法还包括以下步骤。
在步骤S21中,接收无线感知周期响应帧。
在本公开实施例中,无线感知周期响应帧包括无线访问接入点AP的第二周期信息元素。
在步骤S22中,响应于第二周期信息元素与第一周期信息元素相同,确定周期性发起无线感知消息。
在本公开实施例中,站点确定接收的无线感知周期响应帧中包括的第二周期信息元素,并且将第二周期信息元素与站点的第一周期信息元素进行匹配。若第二周期信息元素与站点的第一周期信息元素相同,则确定AP同意站点的无线感知周期请求。此时,第二周期信息元素中状态码(status code)为响应,站点确定周期性发起无线感知消息。在本公开实施例中,AP发送的无线感知周期响应帧,可以是广播帧。第二周期信息元素中状态码(status code)为响应。
另一种方式,若AP不接受站点发送的无线感知周期请求帧,则在无线感知周期响应帧中确定与第一周期信息元素不相同的第二周期信息元素,此时,第二周期信息元素中状 态码(status code)为不响应。站点确定AP发送的无线感知周期响应帧中的第二周期信息元素不同于第一周期信息元素,则不进行周期性发起无线感知消息。
图6是根据一示例性实施例示出的一种无线感知方法无线感知周期请求帧的示意图。在本公开实施例中,无线感知周期请求帧包括的第一周期信息元素的格式如图6所示。在本公开实施例中,无线感知周期请求帧包括以下至少一项:
周期信息元素ID,字节长度,无线感知周期偏移量,无线感知持续时间,无线感知间隔,无线感知重复数量,连接信息。
其中,在本公开实施例中,无线感知周期偏移量(WLAN sensing period offset)基于第一个无线感知周期(WLAN sensing Period,WSP)和信标发送间隔时间(target beacon Transmission time,TBTT)确定。换言之,无线感知周期偏移量,可以设置为第一个无线感知周期(WSP)与以Tus表示的TBTT的偏移量。
无线感知持续时间(WLAN sensing duration)基于无线感知周期确定。换言之,无线感知持续时间可以设置为无线感知周期持续时间,其单位可以为32μs。当然对该单位的限定仅仅是为了举例说明,并不是对本公开的无线感知持续时间的具体限定。
无线感知间隔(WLAN sensing interval)基于连续无线感知周期之间发送的间隔确定。换言之,以两个连续无线感知周期为例,无线感知间隔可以设置为两个连续WSP开始之间的请求间隔。
无线感知重复数量(WLAN sensing repetition)基于无线感知周期请求帧数量确定。换言之,无线感知重复数量可以设置为无线感知周期请求帧数量。
在本公开一示例性实施例中,站点发送第一周期信息元素的次数可以根据无线感知重复数量确定。或者,站点发送第一周期信息元素的次数还可以根据无线感知可以实现的具体应用确定。其中无线感知可以实现的具体应用可以是标识支持位置发现,可以是标识动作检测,例如,近感探测(proximity detection)或存在探测(presence detection)。
在本公开实施例中,第一周期信息元素还可以包括站点执行无线感知的次数,用于标识站点在一个无线感知周期内执行无线感知的次数。其中,连接信息可以标识2.4GHz,5GHz、6GHz或60GHz等频带信息。需要说明的是,若第一周期信息元素包括有连接信息,则上述实施例中第一周期信息元素中的周期信息元素ID,字节长度,无线感知周期偏移量,无线感知持续时间,无线感知间隔以及无线感知重复数量均需要重复出现。
其中,第一周期信息元素和第二周期信息元素包括相同的信息元素,本公开为便于描述将站点发送的周期信息元素称为第一周期信息元素,将AP发送的周期信息元素称为第二周期信息元素。图7是根据一示例性实施例示出的一种无线感知方法无线感知周期响应 帧的示意图。无线感知周期响应帧中包括的第二周期信息元素的格式如图7所示。
在本公开实施例中需要理解的是,在站点发送无线感知周期请求帧,以及接受AP发送的无线感知周期响应帧之前,AP与站点进行初始关联的过程中,需要进行能力信息交互。站点发送第二信息,第二信息标识站点支持的无线感知能力信息,以告知AP站点支持的能力信息。AP根据接收到站点发送的无线感知能力信息确定站点支持的能力。AP发送第一信息,第一信息标识AP支持的无线感知能力信息,已告知站点其支持的无线感知能力信息,站点确定AP支持的无线感知能力信息。在本公开实施例中,站点可以在初始关联请求帧(association request)中携带第二信息,或者在欲关联请求帧(re-association request)中携带第二信息。AP可以在初始关联响应帧(association response)中携带第一信息,或者在欲关联响应帧(re-association response)中携带第一信息或信标帧中携带第一信息。
图8A至图8C是根据一示例性实施例示出的一种无线感知方法的能力信息元素格式示意图。在本公开实施例中,站点第二信息元素或者AP的第一信息元素的格式可以是如图8A所示的帧格式,或者是如图8B所示的帧格式。其中若第一信息或者第二信息的格式为图8B所示的帧格式中,则在图8B所示的帧格式包括的信息域中包括第一信息或第二信息,其信息域的格式如图8C所示,包括子元素ID,字节长度,支持的应用(例如,information1标识支持位置发现,information2标识支持近感探测或存在探测)。
本公开实施例提供的无线感知方法可以适用于站点与AP一对一通信的情况。若站点与AP确定周期性发起无线感知消息,则参与周期性发起无线感知消息的站点接收P2P消息帧,例如WLAN sensing initial doing request帧。不参与周期性发起无线感知消息的其他站点的无线感知设置其网络分配向量(Network Allocation Vector,NAV)为繁忙。当然,本公开实施例提供的无线感知方法也可以适用于站点与AP的其他情况。如果存在重传延迟值(backoff),则确定将backoff在在进行周期性发起无线感知消息的线感知周期内进行递减。对于不支持无线感知的站点,则将不支持无线感知的站点的NAV设置为繁忙,并在进行周期性发起无线感知消息的线感知周期内进行递减。
基于相同/相似的构思,本公开实施例还提供一种无线感知方法。
图9是根据一示例性实施例示出的一种无线感知方法的流程图。如图9所示,无线感知方法用于无线访问接入点AP中,包括以下步骤。
在步骤S31中,接收无线感知周期请求帧。
在本公开实施例中,无线感知周期请求帧包括站点进行无线感知的第一周期信息元素,第一周期信息元素用于站点进行周期性无线感知。
站点根据其支持的无线感知的具体应用确定无线感知周期请求帧。无线感知周期请求帧包括站点进行无线感知的第一周期信息元素,第一周期信息元素用于站点进行周期性无线感知。站点发送确定的无线感知周期请求帧。AP接收到站点发送的无线感知周期请求帧后,响应于接收的无线感知周期请求帧,若确定接受无线感知周期请求帧,设置第二周期信息元素与第一周期信息元素相同。向站点发送无线感知周期响应帧。站点接收AP发送的无线感知周期响应帧,且需要执行下述步骤。
在本公开实施例中,无线感知周期响应帧包括无线访问接入点AP的第二周期信息元素。站点确定接收的无线感知周期响应帧中包括的第二周期信息元素,并且将第二周期信息元素与站点的第一周期信息元素进行匹配。若第二周期信息元素与站点的第一周期信息元素相同,则确定AP同意站点的无线感知周期请求。此时,第二周期信息元素中状态码(status code)为响应,站点确定周期性发起无线感知消息。在本公开实施例中,AP发送的无线感知周期响应帧,可以是广播帧。第二周期信息元素中状态码(status code)为响应。
另一种方式,若AP不接受站点发送的无线感知周期请求帧,则在无线感知周期响应帧中确定与第一周期信息元素不相同的第二周期信息元素,此时,第二周期信息元素中状态码(status code)为不响应。站点确定AP发送的无线感知周期响应帧中的第二周期信息元素不同于第一周期信息元素,则不进行周期性发起无线感知消息。
图6是根据一示例性实施例示出的一种无线感知方法无线感知周期请求帧的示意图。在本公开实施例中,无线感知周期请求帧包括的第一周期信息元素的格式如图6所示。在本公开实施例中,无线感知周期请求帧包括以下至少一项:
周期信息元素ID,字节长度,无线感知周期偏移量,无线感知持续时间,无线感知间隔,无线感知重复数量,连接信息。
其中,在本公开实施例中,无线感知周期偏移量(WLAN sensing period offset)基于第一个无线感知周期(WLAN sensing Period,WSP)和信标发送间隔时间(target beacon Transmission time,TBTT)确定。换言之,无线感知周期偏移量,可以设置为第一个无线感知周期(WSP)与以Tus表示的TBTT的偏移量。
无线感知持续时间(WLAN sensing duration)基于无线感知周期确定。换言之,无线感知持续时间可以设置为无线感知周期持续时间,其单位可以为32μs。当然对该单位的限定仅仅是为了举例说明,并不是对本公开的无线感知持续时间的具体限定。
无线感知间隔(WLAN sensing interval)基于连续无线感知周期之间发送的间隔确定。换言之,以两个连续无线感知周期为例,无线感知间隔可以设置为两个连续WSP开始之间的请求间隔。
无线感知重复数量(WLAN sensing repetition)基于无线感知周期请求帧数量确定。换言之,无线感知重复数量可以设置为无线感知周期请求帧数量。
在本公开一示例性实施例中,站点发送第一周期信息元素的次数可以根据无线感知重复数量确定。或者,站点发送第一周期信息元素的次数还可以根据无线感知可以实现的具体应用确定。其中无线感知可以实现的具体应用可以是标识支持位置发现,可以是标识动作检测,例如,近感探测(proximity detection)或存在探测(presence detection)。
在本公开实施例中,第一周期信息元素还可以包括站点执行无线感知的次数,用于标识站点在一个无线感知周期内执行无线感知的次数。其中,连接信息可以标识2.4GHz,5GHz、6GHz或60GHz等频带信息。需要说明的是,若第一周期信息元素包括有连接信息,则上述实施例中第一周期信息元素中的周期信息元素ID,字节长度,无线感知周期偏移量,无线感知持续时间,无线感知间隔以及无线感知重复数量均需要重复出现。
其中,第一周期信息元素和第二周期信息元素包括相同的信息元素,本公开为便于描述将站点发送的周期信息元素称为第一周期信息元素,将AP发送的周期信息元素称为第二周期信息元素。图7是根据一示例性实施例示出的一种无线感知方法无线感知周期响应帧的示意图。无线感知周期响应帧中包括的第二周期信息元素的格式如图7所示。
在本公开实施例中需要理解的是,在站点发送无线感知周期请求帧,以及接受AP发送的无线感知周期响应帧之前,AP与站点进行初始关联的过程中,需要进行能力信息交互。站点发送第二信息,第二信息标识站点支持的无线感知能力信息,以告知AP站点支持的能力信息。AP根据接收到站点发送的无线感知能力信息确定站点支持的能力。AP发送第一信息,第一信息标识AP支持的无线感知能力信息,已告知站点其支持的无线感知能力信息,站点确定AP支持的无线感知能力信息。在本公开实施例中,站点可以在初始关联请求帧(association request)中携带第二信息,或者在欲关联请求帧(re-association request)中携带第二信息。AP可以在初始关联响应帧(association response)中携带第一信息,或者在欲关联响应帧(re-association response)中携带第一信息。
图8A至图8C是根据一示例性实施例示出的一种无线感知方法的能力信息元素格式示意图。在本公开实施例中,站点第二信息元素或者AP的第一信息元素的格式可以是如图8A所示的帧格式,或者是如图8B所示的帧格式。其中若第一信息或者第二信息的格式为图8B所示的帧格式中,则在图8B所示的帧格式包括的信息域中包括第一信息或第二信息,其信息域的格式如图8C所示,包括子元素ID,字节长度,支持的应用(例如,information1标识支持位置发现,information2标识支持近感探测或存在探测)。
本公开实施例提供的无线感知方法可以适用于站点与AP一对一通信的情况。若站点 与AP确定周期性发起无线感知消息,则参与周期性发起无线感知消息的站点接收P2P消息帧,例如WLAN sensing initial doing request帧。不参与周期性发起无线感知消息的其他站点的无线感知设置其网络分配向量(Network Allocation Vector,NAV)为繁忙。当然,本公开实施例提供的无线感知方法也可以适用于站点与AP的其他情况。如果存在重传延迟值(backoff),则确定将backoff在在进行周期性发起无线感知消息的线感知周期内进行递减。对于不支持无线感知的站点,则将不支持无线感知的站点的NAV设置为繁忙,并在进行周期性发起无线感知消息的无线感知周期内进行递减。
基于相同的构思,本公开实施例还提供一种无线感知装置。
可以理解的是,本公开实施例提供的无线感知装置为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。结合本公开实施例中所公开的各示例的单元及算法步骤,本公开实施例能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。本领域技术人员可以对每个特定的应用来使用不同的方法来实现所描述的功能,但是这种实现不应认为超出本公开实施例的技术方案的范围。
图10是根据一示例性实施例示出的一种无线感知装置100框图。参照图10,应用于站点,该装置包括确定模块101和发送模块102。
确定模块101,用于确定无线感知周期请求帧,无线感知周期请求帧包括站点进行无线感知的第一周期信息元素,第一周期信息元素用于站点进行周期性无线感知。发送模块102,用于发送无线感知周期请求帧。
在本公开实施例中,确定模块101还用于,接收无线感知周期响应帧,无线感知周期响应帧包括无线访问接入点AP的第二周期信息元素。响应于第二周期信息元素与第一周期信息元素相同,确定周期性发起无线感知消息。
在本公开实施例中,无线感知周期请求帧包括以下至少一项:
周期信息元素ID,字节长度,无线感知周期偏移量,无线感知持续时间,无线感知间隔,无线感知重复数量,连接信息。
在本公开实施例中,无线感知周期偏移量基于第一个无线感知周期和信标发送间隔时间确定。
在本公开实施例中,无线感知持续时间基于无线感知周期确定。
在本公开实施例中,无线感知间隔基于连续无线感知周期之间发送的间隔确定。
在本公开实施例中,无线感知重复数量基于无线感知周期请求帧数量确定。
在本公开实施例中,第一周期信息元素的发送次数基于无线感知重复数量确定。
第一周期信息元素的发送次数基于无线感知应用确定。
在本公开实施例中,无线感知装置还包括:
接收第一信息,第一信息标识AP支持的无线感知能力信息。
在本公开实施例中,无线感知装置还包括:
发送第二信息,第二信息标识站点支持的无线感知能力信息。
在本公开实施例中,第二周期信息元素包括以下至少一项:
周期信息元素ID,字节长度,无线感知周期偏移量,无线感知持续时间,无线感知间隔,无线感知重复数量,连接信息及状态码。
在本公开实施例中,状态码基于第一周期信息元素与第二周期信息元素确定。
图11是根据一示例性实施例示出的一种无线感知装置200框图。参照图11,应用于无线访问接入点AP,包括接收模块201。
接收模块201,用于接收无线感知周期请求帧,无线感知周期请求帧包括站点进行无线感知的第一周期信息元素,第一周期信息元素用于站点进行周期性无线感知。
在本公开实施例中,无线感知装置还包括:
发送无线感知周期响应帧,无线感知周期响应帧包括无线访问接入点AP的第二周期信息元素。
在本公开实施例中,无线感知装置还包括:
确定接受无线感知周期请求帧,设置第二周期信息元素与所述第一周期信息元素相同。
在本公开实施例中,无线感知周期请求帧包括以下至少一项:
周期信息元素ID,字节长度,无线感知周期偏移量,无线感知持续时间,无线感知间隔,无线感知重复数量,连接信息。
在本公开实施例中,无线感知周期偏移量基于第一个无线感知周期和信标发送间隔时间确定。
在本公开实施例中,无线感知持续时间基于无线感知周期确定。
在本公开实施例中,无线感知间隔基于连续无线感知周期之间发送的间隔确定。
在本公开实施例中,无线感知重复数量基于无线感知周期请求帧数量确定。
在本公开实施例中,第一周期信息元素的发送次数基于无线感知重复数量确定。
第一周期信息元素的发送次数基于无线感知应用确定。
在本公开实施例中,无线感知装置还包括:
发送第一信息,第一信息标识AP支持的无线感知能力信息。
在本公开实施例中,无线感知装置还包括:
接收第二信息,第二信息标识站点支持的无线感知能力信息。
在本公开实施例中,第二周期信息元素包括以下至少一项:
周期信息元素ID,字节长度,无线感知周期偏移量,无线感知持续时间,无线感知间隔,无线感知重复数量,连接信息及状态码。
在本公开实施例中,状态码基于第一周期信息元素与第二周期信息元素确定。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
图12是根据一示例性实施例示出的一种用于无线感知的装置300的框图。例如,装置300可以是移动电话,计算机,数字广播终端,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理等。
参照图12,装置300可以包括以下一个或多个组件:处理组件302,存储器304,电力组件306,多媒体组件308,音频组件310,输入/输出(I/O)接口312,传感器组件314,以及通信组件316。
处理组件302通常控制装置300的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件302可以包括一个或多个处理器320来执行指令,以完成上述的方法的全部或部分步骤。此外,处理组件302可以包括一个或多个模块,便于处理组件302和其他组件之间的交互。例如,处理组件302可以包括多媒体模块,以方便多媒体组件308和处理组件302之间的交互。
存储器304被配置为存储各种类型的数据以支持在装置300的操作。这些数据的示例包括用于在装置300上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器304可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电力组件306为装置300的各种组件提供电力。电力组件306可以包括电源管理系统,一个或多个电源,及其他与为装置300生成、管理和分配电力相关联的组件。
多媒体组件308包括在所述装置300和用户之间的提供一个输出接口的屏幕。在一些 实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。所述触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与所述触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件308包括一个前置摄像头和/或后置摄像头。当装置300处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件310被配置为输出和/或输入音频信号。例如,音频组件310包括一个麦克风(MIC),当装置300处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器304或经由通信组件316发送。在一些实施例中,音频组件310还包括一个扬声器,用于输出音频信号。
I/O接口312为处理组件302和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件314包括一个或多个传感器,用于为装置300提供各个方面的状态评估。例如,传感器组件314可以检测到装置300的打开/关闭状态,组件的相对定位,例如所述组件为装置300的显示器和小键盘,传感器组件314还可以检测装置300或装置300一个组件的位置改变,用户与装置300接触的存在或不存在,装置300方位或加速/减速和装置300的温度变化。传感器组件314可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件314还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件314还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件316被配置为便于装置300和其他设备之间有线或无线方式的通信。装置300可以接入基于通信标准的无线网络,如WiFi,2G或3G,或它们的组合。在一个示例性实施例中,通信组件316经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,所述通信组件316还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,装置300可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述方法。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器304,上述指令可由装置300的处理器320执行以完成上述方法。例如,所述非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
图13是根据一示例性实施例示出的一种用于无线感知的装置400的框图。例如,装置400可以被提供为一服务器。参照图12,装置400包括处理组件422,其进一步包括一个或多个处理器,以及由存储器432所代表的存储器资源,用于存储可由处理组件422的执行的指令,例如应用程序。存储器432中存储的应用程序可以包括一个或一个以上的每一个对应于一组指令的模块。此外,处理组件422被配置为执行指令,以执行上述无线感知方法。
装置400还可以包括一个电源组件426被配置为执行装置400的电源管理,一个有线或无线网络接口450被配置为将装置400连接到网络,和一个输入输出(I/O)接口458。装置400可以操作基于存储在存储器432的操作系统,例如Windows ServerTM,Mac OS XTM,UnixTM,LinuxTM,FreeBSDTM或类似。
进一步可以理解的是,本公开中“多个”是指两个或两个以上,其它量词与之类似。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。
进一步可以理解的是,术语“第一”、“第二”等用于描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开,并不表示特定的顺序或者重要程度。实际上,“第一”、“第二”等表述完全可以互换使用。例如,在不脱离本公开范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。
进一步可以理解的是,本公开实施例中尽管在附图中以特定的顺序描述操作,但是不应将其理解为要求按照所示的特定顺序或是串行顺序来执行这些操作,或是要求执行全部所示的操作以得到期望的结果。在特定环境中,多任务和并行处理可能是有利的。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开的其它实施方案。本申请旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或 惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。

Claims (29)

  1. 一种无线感知方法,其特征在于,应用于站点,包括:
    确定无线感知周期请求帧,所述无线感知周期请求帧包括站点进行无线感知的第一周期信息元素,所述第一周期信息元素用于站点进行周期性无线感知;
    发送无线感知周期请求帧。
  2. 根据权利要求1所述的无线感知方法,其特征在于,所述方法还包括:
    接收无线感知周期响应帧,所述无线感知周期响应帧包括无线访问接入点AP的第二周期信息元素;
    响应于所述第二周期信息元素与所述第一周期信息元素相同,确定周期性发起无线感知消息。
  3. 根据权利要求1所述的无线感知方法,其特征在于,所述无线感知周期请求帧包括以下至少一项:
    周期信息元素ID,字节长度,无线感知周期偏移量,无线感知持续时间,无线感知间隔,无线感知重复数量,连接信息。
  4. 根据权利要求3所述的无线感知方法,其特征在于,所述无线感知周期偏移量基于第一个无线感知周期和信标发送间隔时间确定。
  5. 根据权利要求3所述的无线感知方法,其特征在于,所述无线感知持续时间基于无线感知周期确定。
  6. 根据权利要求3所述的无线感知方法,其特征在于,所述无线感知间隔基于连续无线感知周期之间发送的间隔确定。
  7. 根据权利要求3所述的无线感知方法,其特征在于,所述无线感知重复数量基于无线感知周期请求帧数量确定。
  8. 根据权利要求3所述的无线感知方法,其特征在于,所述第一周期信息元素的发送次数基于无线感知重复数量确定;
    所述第一周期信息元素的发送次数基于无线感知应用确定。
  9. 根据权利要求1所述的无线感知方法,其特征在于,所述方法还包括:
    接收第一信息,所述第一信息标识AP支持的无线感知能力信息。
  10. 根据权利要求1所述的无线感知方法,其特征在于,所述方法还包括:
    发送第二信息,所述第二信息标识站点支持的无线感知能力信息。
  11. 根据权利要求2所述的无线感知方法,其特征在于,所述第二周期信息元素包括以下至少一项:
    周期信息元素ID,字节长度,无线感知周期偏移量,无线感知持续时间,无线感知间隔,无线感知重复数量,连接信息及状态码。
  12. 根据权利要求11所述的无线感知方法,其特征在于,所述状态码基于第一周期信息元素与第二周期信息元素确定。
  13. 一种无线感知方法,其特征在于,应用于无线访问接入点AP,包括:
    接收无线感知周期请求帧,所述无线感知周期请求帧包括站点进行无线感知的第一周期信息元素,所述第一周期信息元素用于站点进行周期性无线感知。
  14. 根据权利要求13所述的无线感知方法,其特征在于,所述方法还包括:
    确定接受无线感知周期请求帧,设置第二周期信息元素与所述第一周期信息元素相同。
  15. 根据权利要求14所述的无线感知方法,其特征在于,所述方法还包括:
    发送无线感知周期响应帧,所述无线感知周期响应帧包括无线访问接入点AP的第二周期信息元素。
  16. 根据权利要求13或14所述的无线感知方法,其特征在于,所述无线感知周期请求帧包括以下至少一项:
    周期信息元素ID,字节长度,无线感知周期偏移量,无线感知持续时间,无线感知间隔,无线感知重复数量,连接信息。
  17. 根据权利要求15所述的无线感知方法,其特征在于,所述无线感知周期偏移量基于第一个无线感知周期和信标发送间隔时间确定。
  18. 根据权利要求15所述的无线感知方法,其特征在于,所述无线感知持续时间基于无线感知周期确定。
  19. 根据权利要求15所述的无线感知方法,其特征在于,所述无线感知间隔基于连续无线感知周期之间发送的间隔确定。
  20. 根据权利要求15所述的无线感知方法,其特征在于,所述无线感知重复数量基于无线感知周期请求帧数量确定。
  21. 根据权利要求15所述的无线感知方法,其特征在于,所述第一周期信息元素的发送次数基于无线感知重复数量确定;
    所述第一周期信息元素的发送次数基于无线感知应用确定。
  22. 根据权利要求13所述的无线感知方法,其特征在于,所述方法还包括:
    发送第一信息,所述第一信息标识AP支持的无线感知能力信息。
  23. 根据权利要求13所述的无线感知方法,其特征在于,所述方法还包括:
    接收第二信息,所述第二信息标识站点支持的无线感知能力信息。
  24. 根据权利要求14或15所述的无线感知方法,其特征在于,所述第二周期信息元素包括以下至少一项:
    周期信息元素ID,字节长度,无线感知周期偏移量,无线感知持续时间,无线感知间隔,无线感知重复数量,连接信息及状态码。
  25. 根据权利要求24所述的无线感知方法,其特征在于,所述状态码基于第一周期信息元素与第二周期信息元素确定。
  26. 一种无线感知装置,其特征在于,应用于站点,包括:
    确定模块,用于确定无线感知周期请求帧,所述无线感知周期请求帧包括站点进行无线感知的第一周期信息元素,所述第一周期信息元素用于站点进行周期性无线感知;
    发送模块,用于发送无线感知周期请求帧。
  27. 一种无线感知装置,其特征在于,应用于无线访问接入点AP,包括:
    接收模块,用于接收无线感知周期请求帧,所述无线感知周期请求帧包括站点进行无线感知的第一周期信息元素,所述第一周期信息元素用于站点进行周期性无线感知。
  28. 一种无线感知装置,其特征在于,包括:
    处理器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为:执行权利要求1-12中任意一项所述的无线感知方法;或被配置为:执行权利要求13-25中任意一项所述的无线感知方法。
  29. 一种非临时性计算机可读存储介质,当所述存储介质中的指令由移动终端的处理器执行时,使得移动终端能够执行权利要求1-12中任意一项所述的无线感知方法;或得移动终端能够执行权利要求13-25中任意一项所述的无线感知方法。
PCT/CN2020/120902 2020-10-14 2020-10-14 一种无线感知方法、无线感知装置及存储介质 WO2022077268A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP20957049.8A EP4231698A1 (en) 2020-10-14 2020-10-14 Wlan sensing method, wlan sensing apparatus and storage medium
US18/031,348 US20230403589A1 (en) 2020-10-14 2020-10-14 Method for wlan sensing, apparatus for wlan sensing and non-transitory computer-readable storage medium
CN202080002785.XA CN114762381A (zh) 2020-10-14 2020-10-14 一种无线感知方法、无线感知装置及存储介质
PCT/CN2020/120902 WO2022077268A1 (zh) 2020-10-14 2020-10-14 一种无线感知方法、无线感知装置及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/120902 WO2022077268A1 (zh) 2020-10-14 2020-10-14 一种无线感知方法、无线感知装置及存储介质

Publications (1)

Publication Number Publication Date
WO2022077268A1 true WO2022077268A1 (zh) 2022-04-21

Family

ID=81207582

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/120902 WO2022077268A1 (zh) 2020-10-14 2020-10-14 一种无线感知方法、无线感知装置及存储介质

Country Status (4)

Country Link
US (1) US20230403589A1 (zh)
EP (1) EP4231698A1 (zh)
CN (1) CN114762381A (zh)
WO (1) WO2022077268A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023206110A1 (zh) * 2022-04-26 2023-11-02 Oppo广东移动通信有限公司 感知测量方法、装置、设备及存储介质
WO2023212924A1 (zh) * 2022-05-06 2023-11-09 北京小米移动软件有限公司 用于感知会话建立的通信方法和通信装置
WO2024077559A1 (zh) * 2022-10-13 2024-04-18 北京小米移动软件有限公司 感知测量建立方法、电子设备及存储介质

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210211973A1 (en) * 2021-03-19 2021-07-08 Intel Corporation Method and apparatus for transmit parameter indication in support of wlan sensing

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101184324A (zh) * 2006-11-13 2008-05-21 华为技术有限公司 频谱检测和共享的方法、系统、用户设备及装置
EP2809097A1 (en) * 2012-01-24 2014-12-03 Fujitsu Limited Information processing device, wireless communication device, and information processing method
CN107852775A (zh) * 2015-06-26 2018-03-27 瑞典爱立信有限公司 在服务无线电节点和控制节点以及相关联设备中使用的方法
CN111083676A (zh) * 2019-12-30 2020-04-28 深圳蓝奥声科技有限公司 无线联动监控方法、装置及系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101184324A (zh) * 2006-11-13 2008-05-21 华为技术有限公司 频谱检测和共享的方法、系统、用户设备及装置
EP2809097A1 (en) * 2012-01-24 2014-12-03 Fujitsu Limited Information processing device, wireless communication device, and information processing method
CN107852775A (zh) * 2015-06-26 2018-03-27 瑞典爱立信有限公司 在服务无线电节点和控制节点以及相关联设备中使用的方法
CN111083676A (zh) * 2019-12-30 2020-04-28 深圳蓝奥声科技有限公司 无线联动监控方法、装置及系统

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023206110A1 (zh) * 2022-04-26 2023-11-02 Oppo广东移动通信有限公司 感知测量方法、装置、设备及存储介质
WO2023212924A1 (zh) * 2022-05-06 2023-11-09 北京小米移动软件有限公司 用于感知会话建立的通信方法和通信装置
WO2024077559A1 (zh) * 2022-10-13 2024-04-18 北京小米移动软件有限公司 感知测量建立方法、电子设备及存储介质

Also Published As

Publication number Publication date
EP4231698A1 (en) 2023-08-23
CN114762381A (zh) 2022-07-15
US20230403589A1 (en) 2023-12-14

Similar Documents

Publication Publication Date Title
WO2022077268A1 (zh) 一种无线感知方法、无线感知装置及存储介质
WO2022193195A1 (zh) 一种带宽部分配置方法、带宽部分配置装置及存储介质
WO2022041003A1 (zh) 资源确定方法、资源确定装置及存储介质
WO2022041008A1 (zh) 直连通信方法、直连通信装置及存储介质
WO2020258080A1 (zh) 随机接入方法、装置及存储介质
WO2023279297A1 (zh) 随机接入方法、装置及存储介质
WO2022193303A1 (zh) 一种随机接入方法、随机接入装置及存储介质
WO2022077274A1 (zh) 一种无线感知资源协调方法、装置及存储介质
WO2022205348A1 (zh) 一种发送和接收下行信息的方法、装置、设备及存储介质
WO2021159516A1 (zh) 初始接入方法、初始接入装置及存储介质
WO2022067766A1 (zh) 定位参考信号配置方法、配置装置及存储介质
WO2022006757A1 (zh) 信息传输方法、装置、通信设备和存储介质
CN113841445B (zh) 数据传输方法、数据传输装置及存储介质
CN112702803A (zh) 信道的确定方法、装置、终端设备和计算机可读存储介质
US20220346083A1 (en) Methods and apparatuses for determining network allocation vector, and storage media
WO2023015535A1 (zh) 一种执行小数据包传输和确定随机接入消息传输方式的方法、装置、设备及存储介质
WO2023130472A1 (zh) 提早识别的方法、装置、通信设备及存储介质
WO2022151342A1 (zh) 一种上报方法、发送方法、装置、设备及存储介质
WO2022120611A1 (zh) 一种参数配置方法、参数配置装置及存储介质
WO2022027323A1 (zh) 用于寻呼信息处理的方法、装置及存储介质
WO2022036610A1 (zh) 一种通信方法、通信装置及存储介质
WO2021114053A1 (zh) 传输测量方法、传输测量装置及存储介质
EP4061063A1 (en) Device power saving method and device power saving apparatus
WO2020014967A1 (zh) 随机接入的处理方法及装置
WO2022104745A1 (zh) 通信方法、通信装置及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20957049

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020957049

Country of ref document: EP

Effective date: 20230515