WO2020232700A1 - 数据传输方法、装置、设备及存储介质 - Google Patents

数据传输方法、装置、设备及存储介质 Download PDF

Info

Publication number
WO2020232700A1
WO2020232700A1 PCT/CN2019/088138 CN2019088138W WO2020232700A1 WO 2020232700 A1 WO2020232700 A1 WO 2020232700A1 CN 2019088138 W CN2019088138 W CN 2019088138W WO 2020232700 A1 WO2020232700 A1 WO 2020232700A1
Authority
WO
WIPO (PCT)
Prior art keywords
frame
capability information
message frame
message
frequency bands
Prior art date
Application number
PCT/CN2019/088138
Other languages
English (en)
French (fr)
Inventor
董贤东
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to PCT/CN2019/088138 priority Critical patent/WO2020232700A1/zh
Priority to CN201980000900.7A priority patent/CN112292885A/zh
Priority to US17/612,908 priority patent/US20220278699A1/en
Priority to EP19930106.0A priority patent/EP3975620A4/en
Publication of WO2020232700A1 publication Critical patent/WO2020232700A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/22Processing or transfer of terminal data, e.g. status or physical capabilities
    • H04W8/24Transfer of terminal data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/005Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission adapting radio receivers, transmitters andtransceivers for operation on two or more bands, i.e. frequency ranges
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0037Inter-user or inter-terminal allocation
    • H04L5/0041Frequency-non-contiguous
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/51Allocation or scheduling criteria for wireless resources based on terminal or device properties
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0009Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]

Definitions

  • the present disclosure relates to the field of communications, and in particular to a data transmission method, device, equipment, and storage medium.
  • wireless fidelity Wireless Fidelity, Wi-Fi
  • the scope of research includes: 320MHz bandwidth transmission, aggregation and coordination of multiple frequency bands, etc.
  • the proposed vision is relative to the existing Institute of Electrical and Electronics Engineers (Institute of Electrical and Electronics Engineers, IEEE) 802.11ax increases the speed and throughput by at least four times.
  • the main application scenarios include video transmission, Augmented Reality (AR), Virtual Reality (VR), etc.
  • the aggregation and coordination of multiple frequency bands refers to the simultaneous communication between devices in the 2.4GHz, 5.8GHz, and 6-7GHz frequency bands.
  • multiple frequency bands can also be millimeter wave frequency bands, such as 45GHz and 60GHz frequency bands.
  • the embodiments of the present disclosure provide a data transmission method, device, equipment, and storage medium, which can be used to solve the problem of how to simultaneously perform data transmission in multiple frequency bands.
  • the technical solution is as follows:
  • a data transmission method including:
  • the first device generates a first message frame, the first message frame carries first capability information, and the first capability information is used to indicate that the first device supports simultaneous data transmission on at least two frequency bands;
  • the first device sends the first message frame
  • the first device receives a second message frame, the second message frame carries second capability information, and the second capability information is used to indicate that the second device supports simultaneous data transmission on at least two frequency bands;
  • the first device sends data in at least two frequency bands according to the first capability information and the second capability information.
  • the first capability information and the second capability information include the following information items:
  • Frequency band identification of at least two frequency bands are used.
  • the first capability information and the second capability information further include at least one of the following information items:
  • MCS Modulation and Coding Scheme
  • the information item is expressed in the form of an information element (Information Element, IE).
  • Information Element Information Element
  • the first message frame is a multi-band negotiation request frame
  • the second message frame is a multi-band negotiation response frame
  • the first message frame is a beacon frame (Beacon Frame)
  • the second message frame is an association request frame (Association Request Frame);
  • the first message frame is a probe request frame (Probe Request Frame)
  • the second message frame is a probe response frame (Probe Response Frame);
  • the first message frame is an association request frame (Association Request Frame)
  • the second message frame is an association response frame (Association Response Frame);
  • the first message frame is an authentication request frame (Authentication Request Frame)
  • the second message frame is an authentication response frame (Authentication Response Frame).
  • the first device receives a data frame, and the MAC frame header of the data frame carries second capability information;
  • the first device sends a confirmation frame, and the confirmation frame carries first capability information
  • the first device receives data in at least two frequency bands according to the first capability information and the second capability information.
  • a data transmission method includes:
  • the second device receives the first message frame, where the first message frame carries first capability information, and the first capability information is used to indicate that the first device supports data transmission on at least two frequency bands at the same time;
  • the second device generates a second message frame, the second message frame carries second capability information, and the second capability information is used to indicate that the second device supports simultaneous data transmission on at least two frequency bands;
  • the second device sends a second message frame
  • the second device receives data in at least two frequency bands according to the first capability information and the second capability information.
  • the first capability information and the second capability information include the following information items:
  • Frequency band identification of at least two frequency bands are used.
  • the first capability information and the second capability information further include at least one of the following information items:
  • the information item is expressed in the form of an information element IE.
  • the first message frame is a multi-band negotiation request frame
  • the second message frame is a multi-band negotiation response frame
  • the first message frame is a beacon frame, and the second message frame is an association request frame; or, the first message frame is a probe request frame, and the second message frame is a probe Response frame; or, the first message frame is an association request frame, and the second message frame is an association response frame; or, the first message frame is an authentication request frame, and the second message frame is an authentication response frame .
  • the method further includes:
  • the second device sends a data frame, and the Medium Access Control (MAC) frame header of the data frame carries the second capability information;
  • MAC Medium Access Control
  • the second device receives the confirmation frame, and the confirmation frame carries the first capability information
  • the second device sends data in at least two frequency bands according to the first capability information and the second capability information.
  • an apparatus for establishing data transmission including:
  • the first device generates a first message frame, the first message frame carries first capability information, and the first capability information is used to indicate that the first device supports simultaneous data transmission on at least two frequency bands;
  • the first device sends the first message frame
  • the first device receives a second message frame, the second message frame carries second capability information, and the second capability information is used to indicate that the second device supports simultaneous data transmission on at least two frequency bands;
  • the first device sends data in at least two frequency bands according to the first capability information and the second capability information.
  • the first capability information and the second capability information include the following information items:
  • Frequency band identification of at least two frequency bands are used.
  • the first capability information and the second capability information further include at least one of the following information items:
  • the information item is expressed in the form of an information element.
  • the first message frame is a multi-band negotiation request frame
  • the second message frame is a multi-band negotiation response frame
  • the first device is an STA, and the first message frame is any one of a probe request frame, an association request frame, and an authentication request frame; or, the first device is an AP, and the first message frame is Any one of probe response frame, association response frame, authentication response frame, and beacon frame.
  • the device further includes:
  • the first receiving module is configured to receive a data frame, and the MAC frame header of the data frame carries second capability information;
  • the first sending module is configured to send an acknowledgement frame, and the acknowledgement frame carries first capability information
  • data is received on at least two frequency bands.
  • a data transmission device which includes:
  • the second receiving module is configured to receive a first message frame, the first message frame carries first capability information, and the first capability information is used to indicate that the first device supports simultaneous data transmission on at least two frequency bands;
  • the second processing module is configured to generate a second message frame, the second message frame carries second capability information, and the second capability information is used to indicate that the second device supports simultaneous data transmission on at least two frequency bands;
  • the second sending module is configured to send a second message frame
  • the second receiving module is configured to receive data in at least two frequency bands according to the first capability information and the second capability information.
  • the first capability information and the second capability information include the following information items:
  • Frequency band identification of at least two frequency bands are used.
  • the first capability information and the second capability information further include at least one of the following information items:
  • the information item is expressed in the form of an information element IE.
  • the first message frame is a multi-band negotiation request frame
  • the second message frame is a multi-band negotiation response frame
  • the second device is an STA, and the second message frame is any one of a probe request frame, an association request frame, and an authentication request frame; or, the second device is an AP, and the second message frame is Any one of probe response frame, association response frame, authentication response frame, and beacon frame.
  • the device further includes:
  • the second sending module is configured to send a data frame, and the MAC frame header of the data frame carries second capability information;
  • the second receiving module is configured to receive a confirmation frame, and the confirmation frame carries the first capability information
  • the second receiving module is configured to send data in at least two frequency bands according to the first capability information and the second capability information.
  • a wireless communication device which includes:
  • Transceiver connected to the processor
  • a memory for storing processor executable instructions
  • the processor is configured to load and execute executable instructions to implement the data transmission method described in the above aspect and any optional implementation manner.
  • a wireless communication device which includes:
  • Transceiver connected to the processor
  • a memory for storing processor executable instructions
  • the processor is configured to load and execute executable instructions to implement the data transmission method described in the above aspect and any optional implementation manner.
  • a computer-readable storage medium stores at least one instruction, at least one program, code set or instruction set, at least one instruction, at least one program, code set Or the instruction set is loaded and executed by the processor to implement the data transmission method described in the above aspect and any optional implementation manner.
  • the first message frame By sending the first message frame from the first device to the second device, the first message frame carries the first capability information, and the second device replies to the first device with a second message frame, the second message frame carries the second capability Information, the first device and the second device transmit data on at least two frequency bands according to the first capability information and the second capability information, so that two devices with different capabilities can simultaneously transmit data on multiple frequency bands through negotiation, thereby achieving Greater transmission rate and throughput.
  • Fig. 1 is a block diagram of a communication system provided by an exemplary embodiment of the present disclosure
  • Fig. 2 is a flowchart of a data transmission method provided by an exemplary embodiment of the present disclosure
  • Fig. 3 is a structural block diagram of information elements provided by an exemplary embodiment of the present disclosure.
  • FIG. 4 is a flowchart of a data transmission method provided by another exemplary embodiment of the present disclosure.
  • FIG. 5 is a flowchart of a data transmission method provided by another exemplary embodiment of the present disclosure.
  • Fig. 6 is a schematic structural diagram of a data transmission device provided by an exemplary embodiment of the present disclosure.
  • FIG. 7 is a schematic structural diagram of a data transmission device provided by another exemplary embodiment of the present disclosure.
  • Fig. 8 is a schematic structural diagram of a wireless communication device provided by another exemplary embodiment of the present disclosure.
  • Fig. 1 shows a block diagram of a communication system provided by an exemplary embodiment of the present disclosure.
  • the communication system includes: a wireless access point (Access Point, AP) 120 and a station (Station) 140.
  • AP Access Point
  • Station station
  • the wireless access point 120 is used to provide wireless access functions.
  • the wireless access point 120 may be a wireless router, a base station with Wi-Fi function, or the like.
  • One wireless access point 120 can access multiple sites 140.
  • the station 140 is used to access the wireless access point 120.
  • the site 140 may be a mobile phone, a tablet, a laptop, an e-book, an industrial machine, or other equipment.
  • the above-mentioned communication system may be an Institute of Electrical and Electronics Engineers (IEEE) 802.11a/b/g/n/ac/ax/be communication network.
  • IEEE Institute of Electrical and Electronics Engineers
  • the above-mentioned communication system is IEEE 802.11be as an example.
  • the above communication system includes two networking forms:
  • a basic wireless network (Infrastructure) based on AP 120 also known as a basic network, it is created by AP 120, and many STAs 140 join the wireless network formed.
  • the characteristics of this type of network are: AP 120 is the center of the entire network, and all communications in the network are forwarded through AP 120.
  • the first device in the present disclosure may be one of the wireless access point 120 and the station 140, and the second device may be the other of the wireless access point 120 and the station 140.
  • a wireless network based on an ad hoc network also called an ad hoc network, is a network composed of only two or more STAs 140 themselves, and there is no AP 120 in the network. This type of network is a loose structure, and all STAs 140 in the network can communicate directly.
  • the first device in the present disclosure may be the first site 140, and the second device may be the second site 140.
  • Fig. 2 shows a flowchart of a data transmission method provided by an exemplary embodiment of the present disclosure. The method can be applied to the communication system shown in FIG. 1, and the method includes:
  • Step 201 The first device generates a first message frame, the first message frame carries first capability information, and the first capability information is used to indicate that the first device supports simultaneous data transmission on at least two frequency bands;
  • the at least two frequency bands include: at least two of the 2.4 GHz frequency band, the 5.8 GHz frequency band, and the 6-7 GHz frequency band.
  • the at least two frequency bands also include other communication frequency bands supported by the Wi-Fi protocol, and the other communication frequency bands may include millimeter wave frequency bands, such as 45 GHz and 60 GHz frequency bands.
  • the 2.4 GHz frequency band is referred to as frequency band A
  • the 5.8 GHz frequency band is referred to as frequency band B
  • the 6-7 GHz frequency band is referred to as frequency band C.
  • the first message frame is a multi-band negotiation request frame (Multi-band operation Request).
  • the first message frame is generated.
  • Step 202 The first device sends a first message frame
  • the first device sends the first message frame on a single frequency band.
  • the single frequency band may be a first frequency band, and the single frequency band is a frequency band to which the first device and the second device have been associated.
  • Step 203 The second device receives a first message frame, where the first message frame carries first capability information, and the first capability information is used to indicate that the first device supports simultaneous data transmission on at least two frequency bands;
  • the second device receives the first message frame on a single frequency band. For example, the second device receives the first message frame on the first frequency band.
  • Step 204 The second device generates a second message frame, the second message frame carries second capability information, and the second capability information is used to indicate that the second device supports simultaneous data transmission on at least two frequency bands;
  • the second message frame is a multi-band negotiation response frame (Multi-band Operation Response).
  • Step 205 The second device sends a second message frame
  • the second device sends the second message frame on a single frequency band, and the single frequency band may be the first frequency band.
  • Step 206 The first device receives a second message frame, where the second message frame carries second capability information, and the second capability information is used to indicate that the second device supports simultaneous data transmission on at least two frequency bands;
  • the first device receives the second message frame on a single frequency band. For example, the first device receives the second message frame on the first frequency band.
  • Step 207 The first device sends data in at least two frequency bands according to the first capability information and the second capability information.
  • the first device determines the transmission capabilities simultaneously supported by the first device and the second device according to the first capability information and the second capability information. According to the transmission capacity supported at the same time, send data on at least two frequency bands.
  • the data is sent on at least two frequency bands according to the optimal transmission capabilities supported at the same time.
  • the at least two frequency bands include a first frequency band and a second frequency band
  • the first frequency band is a frequency band used to send the first message frame and the second message frame
  • the second frequency band is a frequency band different from the first frequency band
  • Step 208 The second device receives data in at least two frequency bands according to the first capability information and the second capability information.
  • the second device determines the capabilities supported by the first device and the second device at the same time according to the first capability information and the second capability information. According to the transmission capacity supported at the same time, data is received on at least two frequency bands.
  • the data is received in at least two frequency bands according to the optimal transmission capability supported at the same time.
  • the first capability information and the second capability information may be the same or different.
  • the first device supports simultaneous communication on frequency band A, frequency band B, and frequency band C
  • the second device supports simultaneous communication on frequency band A and frequency band B. Then the first device determines that frequency band A and frequency band B are two For frequency bands supported by each device at the same time, data is sent on frequency band A and frequency band B.
  • the second device simultaneously receives data on frequency band A and frequency band B.
  • the first device sends a first message frame to the second device, and the first message frame carries the first capability information, and the second device replies to the first device with the second message
  • the second message frame carries second capability information, and the first device and the second device transmit data in at least two frequency bands according to the first capability information and the second capability information, so that two devices with different capabilities can negotiate
  • the method transmits data on multiple frequency bands at the same time to achieve greater transmission rate and throughput.
  • the steps executed by the first device can be individually implemented as the data transmission method on the first device side
  • the steps executed by the second device can be individually implemented as the data transmission method on the second device side.
  • the first capability information and the second capability information include the following information items: frequency band identifiers of at least two frequency bands.
  • the first capability information further includes: at least one of working bandwidth supported by the first device, MCS, or key multiplexing information.
  • the second capability information further includes: at least one of working bandwidth supported by the second device, MCS, or key multiplexing confirmation information.
  • the working bandwidth is at least one of a combination of 20MHz, 40MHz, 80MHz, 80+80MHz (discontinuous, non-overlapping)/160MHz (continuous), 160+160MHz (discontinuous, non-overlapping)/320MHz.
  • the key multiplexing information is used to indicate that the existing key (key on the first frequency band) is reused for data encryption.
  • 8 bits are used to represent the frequency band and the working bandwidth.
  • the number of frequency band identifiers is the same as the number of frequency bands. Taking frequency bands including 2.4GHz frequency band, 5.8GHz frequency band and 6-7GHz frequency band as examples, the frequency band identifier occupies the first 3 bits of the 8 bits, and the first bit of the first 3 bits corresponds to the 2.4GHz frequency band and the second The bit corresponds to the 5.8GHz frequency band, and the third bit corresponds to the 6-7GHz frequency band.
  • the value of the first bit When the value of the first bit is 1, it means that the communication in the 2.4GHz frequency band is supported; when the value of the first bit is 0, it means that the communication in the 2.4GHz frequency band is not supported.
  • the value of the second bit When the value of the second bit is 1, it means that the communication in the 5.8GHz frequency band is supported; when the value of the second bit is 0, it means that the communication in the 5.8GHz frequency band is not supported.
  • the value of the third bit When the value of the third bit is 1, it means that the communication in the 6-7GHz frequency band is supported; when the value of the third bit is 0, it means that the communication in the 6-7GHz frequency band is not supported.
  • the last 5 bits of the 8 bits are used to indicate the working bandwidth.
  • the 4th bit corresponds to 20MHz
  • the 5th bit corresponds to 40MHz
  • the 6th bit corresponds to 80MHz
  • the 7th bit corresponds to 80+80MHz (non-continuous, non-overlapping)/160MHz (continuous)
  • the 8th bit corresponds to 160+160MHz ( Discontinuous, non-overlapping)/320MHz.
  • each of the foregoing information items is represented by an information element (Information Element, IE).
  • IE is a part of a frame (such as a management message frame), and its length is variable.
  • the IE includes an Element ID (element identification code) bit, a length (Length) bit, and a content bit of variable length. Among them, the length bit is used to indicate the number of content bits.
  • the aforementioned information items may occupy one IE for each information item, or two or more information items may occupy the same IE.
  • the element identification code of IE can be represented by reserved bits in related technologies, such as 11-15, 43-49, 50-255, etc.
  • the first message frame is a beacon frame, and the second message frame is an association request frame; or, the first message frame is a probe request frame, and the second message frame is a probe response frame Or, the first message frame is an association request frame, and the second message frame is an association response frame; or, the first message frame is an authentication request frame, and the second message frame is an authentication response frame.
  • the first device sends the same data frame in at least two frequency bands; or, the first device sends different data frames in at least two frequency bands, and the different data frames are to be sent After the data is divided into blocks.
  • data frame 1 is sent on frequency band A
  • data frame 2 is sent on frequency band B
  • data frame 3 is sent on frequency band C
  • data frame 4 is sent on frequency band A
  • data is sent on frequency band B
  • data is sent on frequency band B
  • data frame 7 is sent on frequency band A
  • data frame 8 is sent on frequency band B
  • data frame 9 is sent on frequency band C.
  • Fig. 4 shows a flowchart of a data transmission method provided by another exemplary embodiment of the present disclosure. This method can be applied to the communication system shown in FIG. 1. The method includes:
  • Step 401 the first device and the second device perform data transmission
  • the first device and the second device establish a data transmission connection according to the Wi-Fi protocol, and perform data transmission on a single frequency band;
  • the first device and the second device establish a data transmission connection according to the embodiment shown in FIG. 2, and the first device sends data to the second device on multiple frequency bands.
  • a transmission connection has been established between the first device and the second device, and the second device can send a data frame to the first device.
  • Step 402 The second device sends a data frame, and the MAC frame header of the data frame carries second capability information.
  • the second device When the second device has a large amount of data to be sent, the second device generates a data frame, and the second device sends the data frame to the first device.
  • the MAC frame header of the data frame carries second capability information.
  • second capability information For related description of the second capability information, refer to the foregoing embodiment.
  • the data frame is a physical layer data protocol unit (Physical layer (PHY) Protocol Data Unit, PPDU).
  • PHY Physical layer
  • Step 403 The first device receives the data frame, and the MAC (Media Access Control) frame header of the data frame carries second capability information;
  • MAC Media Access Control
  • Step 404 The first device sends a confirmation frame, and the confirmation frame carries first capability information
  • the acknowledgement frame is an acknowledgement feedback frame (Acknowledge, ACK).
  • Step 405 The second device receives the confirmation frame, and the confirmation frame carries the first capability information.
  • Step 406 The second device sends data in at least two frequency bands according to the first capability information and the second capability information.
  • the second device determines the transmission capabilities supported by the first device and the second device at the same time according to the first capability information and the second capability information. According to the transmission capacity supported at the same time, send data on at least two frequency bands.
  • the data is sent on at least two frequency bands according to the optimal transmission capabilities supported at the same time.
  • Step 407 The first device receives data in at least two frequency bands according to the first capability information and the second capability information.
  • the first device determines the capabilities supported by the first device and the second device at the same time according to the first capability information and the second capability information. According to the transmission capacity supported at the same time, data is received on at least two frequency bands.
  • the data is received in at least two frequency bands according to the optimal transmission capability supported at the same time.
  • the second device sends a data frame to the first device, the data frame carries the first capability information, and the first device replies to the second device with a confirmation frame, which carries With second capability information, the second device and the first device transmit data on at least two frequency bands according to the first capability information and the second capability information, so that the two devices after they have started data can negotiate in multiple frequency bands Data is transmitted at the same time, thereby achieving greater transmission rate and throughput.
  • two devices STA1+STA2 or STA+AP
  • Two devices need to support the ability to communicate in multiple frequency bands at the same time; 2. If two devices are associated, authenticated, connected, and negotiated in a single frequency band (such as the first frequency band), they are in another frequency band Use the same key to encrypt data during data transmission; 3. Before the first data transmission under multi-frequency bands, negotiation can be divided into two ways: a. Send management message frames between two devices.
  • the first device sends a multi-band negotiation request frame to the second device, and negotiates its multi-band communication information in this management message frame (except for the working frequency band used to send the multi-band negotiation request message frame itself), such as 5.8GHz or 6-7GHz, and also carry working bandwidth information for multi-band communication, such as 20MHz or 40MHz, key multiplexing information and data transmission MCS mode, the second device replies with a multi-band negotiation response frame to the first device .
  • the second device replies with a multi-band negotiation response frame to the first device .
  • the data frame (PPDU) sent by the second device to the first device carries the second capability information to identify the data transmission in multiple frequency bands, and the first device replies with a confirmation message
  • the frame (ACK) is given to the second device, and the confirmation message frame indicates that data transmission will be performed in multiple frequency bands.
  • the multi-band negotiation request frame (or the duration field of the MAC header of the data frame) ) Set the duration of subsequent communications to be carried out in multiple frequency bands, but the responder may change the duration.
  • the duration value of the Network Allocation Vector (NAV) set has been subsequently confirmed as quasi.
  • Fig. 6 shows a block diagram of a data transmission device provided by an exemplary embodiment of the present disclosure.
  • the data transmission device can be implemented as all or part of the first device through software, hardware or a combination of the two.
  • the device includes: a first processing module 620, a first sending module 640, and a first receiving module 660.
  • the first receiving module 660 and the first sending module 640 may be hardware devices such as a radio frequency antenna, and the first processing module 620 may be hardware devices such as a central processing unit or a baseband processor.
  • the first processing module 620 is configured to generate a first message frame, the first message frame carries first capability information, and the first capability information is used to indicate that the first device supports simultaneous operation in at least two frequency bands Data transfer on
  • the first sending module 640 is configured to send the first message frame
  • the first receiving module 660 is configured to receive a second message frame, the second message frame carries second capability information, and the second capability information is used to indicate that the second device supports simultaneous operation on at least two frequency bands data transmission;
  • the first sending module is configured to send data on the at least two frequency bands according to the first capability information and the second capability information.
  • the first capability information and the second capability information include the following information items:
  • Frequency band identifiers of the at least two frequency bands are used.
  • the first capability information and the second capability information further include at least one of the following information items: working bandwidth; modulation and coding mode; key multiplexing information.
  • the information item is expressed in the form of an information element.
  • the first message frame is a multi-band negotiation request frame
  • the second message frame is a multi-band negotiation response frame
  • the first message frame is a beacon frame, and the second message frame is an association request frame; or, the first message frame is a probe request frame, and the second message frame is a probe response frame; or, One message frame is an association request frame, and the second message frame is an association response frame; or, the first message frame is an authentication request frame, and the second message frame is an authentication response frame.
  • the first receiving module 660 is configured to receive a data frame, and the MAC frame header of the data frame carries the second capability information;
  • the first sending module 640 is configured to send an acknowledgement frame, the acknowledgement frame carrying the first capability information
  • the first receiving module 660 is configured to receive data in the at least two frequency bands according to the first capability information and the second capability information.
  • Fig. 7 shows a block diagram of a data transmission device provided by an exemplary embodiment of the present disclosure.
  • the data transmission device can be implemented as all or part of the second device through software, hardware or a combination of the two.
  • the device includes: a second processing module 720, a second sending module 740, and a second receiving module 760.
  • the second receiving module 760 and the second sending module 740 may be hardware devices such as a radio frequency antenna
  • the second processing module 720 may be hardware devices such as a central processing unit or a baseband processor.
  • the second receiving module 760 is configured to receive a first message frame, the first message frame carrying first capability information, and the first capability information is used to indicate that the first device supports simultaneous operation on at least two frequency bands Data transfer;
  • the second processing module 720 is configured to generate a second message frame, the second message frame carries second capability information, and the second capability information is used to indicate that the second device supports simultaneous operation in at least two frequency bands Data transfer on
  • the second sending module 740 is configured to send the second message frame
  • the second receiving module 760 is configured to receive data in the at least two frequency bands according to the first capability information and the second capability information.
  • the first capability information and the second capability information include the following information items:
  • Frequency band identifiers of the at least two frequency bands are used.
  • the first capability information and the second capability information further include at least one of the following information items:
  • the information item is expressed in the form of an information element.
  • the first message frame is a multi-band negotiation request frame
  • the second message frame is a multi-band negotiation response frame
  • the first message frame is a beacon frame, and the second message frame is an association request frame; or, the first message frame is a probe request frame, and the second message frame is a probe response frame; or, One message frame is an association request frame, and the second message frame is an association response frame; or, the first message frame is an authentication request frame, and the second message frame is an authentication response frame.
  • the second sending module 740 is configured to send a data frame, and the MAC frame header of the data frame carries the second capability information;
  • the second receiving module 760 is configured to receive a confirmation frame, the confirmation frame carrying the first capability information
  • the second sending module 740 is configured to send data in the at least two frequency bands according to the first capability information and the second capability information.
  • Fig. 8 shows a schematic structural diagram of a wireless communication device provided by an exemplary embodiment of the present disclosure.
  • the wireless communication device may be a first device or a second device.
  • the wireless communication device includes: a processor 101, a receiver 102, a transmitter 103, a memory 104, and a bus 105.
  • the processor 101 includes one or more processing cores, and the processor 101 executes various functional applications and information processing by running software programs and modules.
  • the receiver 102 and the transmitter 103 may be implemented as a communication component, and the communication component may be a communication chip.
  • the memory 104 is connected to the processor 101 through a bus 105.
  • the memory 104 may be used to store at least one instruction, and the processor 101 is used to execute the at least one instruction to implement each step in the foregoing method embodiment.
  • the memory 104 can be implemented by any type of volatile or non-volatile storage device or a combination thereof.
  • the volatile or non-volatile storage device includes, but is not limited to: magnetic disks or optical disks, electrically erasable and programmable Read-only memory (EEPROM), erasable programmable read-only memory (EPROM), static anytime access memory (SRAM), read-only memory (ROM), magnetic memory, flash memory, programmable read-only memory (PROM) .
  • An exemplary embodiment of the present disclosure also provides a computer-readable storage medium in which at least one instruction, at least one program, code set or instruction set is stored, the at least one instruction, the At least one program, the code set, or the instruction set is loaded and executed by the processor to implement each step in the foregoing method embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Databases & Information Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提供了一种数据传输方法、装置、设备及存储介质,该方法包括:第一设备生成第一消息帧,第一消息帧中携带有第一能力信息,第一能力信息用于指示第一设备支持同时在至少两个频段上进行数据传输;第一设备发送第一消息帧;第二设备接收第一消息帧;第二设备生成和发送第二消息帧;第一设备接收第二消息帧,第二消息帧携带有第二能力信息,第二能力信息用于指示第二设备支持同时在至少两个频段上进行数据传输;第一设备根据第一能力信息和第二能力信息,在至少两个频段上发送数据。

Description

数据传输方法、装置、设备及存储介质 技术领域
本公开涉及通信领域,特别涉及一种数据传输方法、装置、设备及存储介质。
背景技术
下一代无线保真(Wireless Fidelity,Wi-Fi)技术中,所研究的范围包括:320MHz的带宽传输,多个频段的聚合及协同等,所提出的愿景相对于已有的电气和电子工程师协会(Institute of Electrical and Electronics Engineers,IEEE)802.11ax提高至少四倍的速率以及吞吐量。主要的应用场景包括视频传输,增强现实(Augmented Reality,AR)、虚拟现实(Virtual reality,VR)等。
其中,多个频段的聚合及协同是指设备间同时在2.4GHz、5.8GHz及6-7GHz的频段下进行通信,当然多频段也可以是毫米波频段,比如45GHz和60GHz频段。
发明内容
本公开实施例提供了一种数据传输方法、装置、设备及存储介质,可以用于解决如何在多个频段同时进行数据传输的问题。所述技术方案如下:
根据本公开的一个方面,提供了一种数据传输方法,方法包括:
第一设备生成第一消息帧,第一消息帧中携带有第一能力信息,第一能力信息用于指示第一设备支持同时在至少两个频段上进行数据传输;
第一设备发送第一消息帧;
第一设备接收第二消息帧,第二消息帧携带有第二能力信息,第二能力信息用于指示第二设备支持同时在至少两个频段上进行数据传输;
第一设备根据第一能力信息和第二能力信息,在至少两个频段上发送数据。
在一个可选的实施方式中,第一能力信息和第二能力信息包括如下信息项:
至少两个频段的频段标识。
在一个可选的实施方式中,第一能力信息和第二能力信息,还包括如下信息项中的至少一项:
工作带宽;
调制编码方式(Modulation and Coding Scheme,MCS);
密钥复用信息。
在一个可选的实施方式中,信息项采用信息元素(Information Element,IE)的形式表示。
在一个可选的实施方式中,第一消息帧是多频段协商请求帧,第二消息帧是多频段协商响应帧。
在一个可选的实施方式中,所述第一消息帧为信标帧(Beacon Frame),所述第二消息帧为关联请求帧(Association Request Frame);
或,所述第一消息帧为探测请求帧(Probe Request Frame),所述第二消息帧为探测响应帧(Probe Response Frame);
或,所述第一消息帧为关联请求帧(Association Request Frame),所述第二消息帧为关联响应帧(Association Response Frame);
或,所述第一消息帧为认证请求帧(Authentication Request Frame),所述第二消息帧为认证响应帧(Authentication Response Frame)。
在一个可选的实施方式中,第一设备接收数据帧,数据帧的MAC帧头携带有第二能力信息;
第一设备发送确认帧,确认帧携带有第一能力信息;
第一设备根据第一能力信息和第二能力信息,在至少两个频段上接收数据。
根据本公开的另一方面,提供了一种数据传输方法,方法包括:
第二设备接收第一消息帧,第一消息帧携带有第一能力信息,第一能力信息用于指示第一设备支持同时在至少两个频段上进行数据传输;
第二设备生成第二消息帧,第二消息帧中携带有第二能力信息,第二能力信息用于指示第二设备支持同时在至少两个频段上进行数据传输;
第二设备发送第二消息帧;
第二设备根据第一能力信息和第二能力信息,在至少两个频段上接收数据。
在一个可选的实施方式中,第一能力信息和第二能力信息包括如下信息项:
至少两个频段的频段标识。
在一个可选的实施方式中,第一能力信息和第二能力信息,还包括如下信息项中的至少一项:
工作带宽;
MCS方式;
密钥复用信息。
在一个可选的实施方式中,信息项采用信息元素IE的形式表示。
在一个可选的实施方式中,第一消息帧是多频段协商请求帧,第二消息帧是多频段协商响应帧。
在一个可选的实施方式中,第一消息帧为信标帧,所述第二消息帧为关联请求帧;或,所述第一消息帧为探测请求帧,所述第二消息帧为探测响应帧;或,所述第一消息帧为关联请求帧,所述第二消息帧为关联响应帧;或,所述第一消息帧为认证请求帧,所述第二消息帧为认证响应帧。
在一个可选的实施方式中,所述方法还包括:
第二设备发送数据帧,数据帧的媒体接入控制(Medium Access Control,MAC)帧头携带有第二能力信息;
第二设备接收确认帧,确认帧携带有第一能力信息;
第二设备根据第一能力信息和第二能力信息,在至少两个频段上发送数据。
根据本公开的另一方面,提供了一种数据传输建立的装置,所述装置包括:
第一设备生成第一消息帧,第一消息帧中携带有第一能力信息,第一能力信息用于指示第一设备支持同时在至少两个频段上进行数据传输;
第一设备发送第一消息帧;
第一设备接收第二消息帧,第二消息帧携带有第二能力信息,第二能力信息用于指示第二设备支持同时在至少两个频段上进行数据传输;
第一设备根据第一能力信息和第二能力信息,在至少两个频段上发送数据。
在一个可选的实施方式中,第一能力信息和第二能力信息包括如下信息项:
至少两个频段的频段标识。
在一个可选的实施方式中,第一能力信息和第二能力信息,还包括如下信息项中的至少一项:
工作带宽;
MCS方式;
密钥复用信息。
在一个可选的实施方式中,信息项采用信息元素的形式表示。
在一个可选的实施方式中,第一消息帧是多频段协商请求帧,第二消息帧是多频段协商响应帧。
在一个可选的实施方式中,第一设备是STA,第一消息帧是探测请求帧、关联请求帧、认证请求帧中的任意一种;或,第一设备是AP,第一消息帧是探测响应帧、关联响应帧、认证响应帧、信标帧中的任意一种。
在一个可选的实施方式中,所述装置还包括:
第一接收模块,被配置为接收数据帧,数据帧的MAC帧头携带有第二能力信息;
第一发送模块,被配置为发送确认帧,确认帧携带有第一能力信息;
根据第一能力信息和第二能力信息,在至少两个频段上接收数据。
根据本公开的另一方面,提供了一种数据传输装置,装置包括:
第二接收模块,被配置为接收第一消息帧,第一消息帧携带有第一能力信息,第一能力信息用于指示第一设备支持同时在至少两个频段上进行数据传输;
第二处理模块,被配置为生成第二消息帧,第二消息帧中携带有第二能力信息,第二能力信息用于指示第二设备支持同时在至少两个频段上进行数据传输;
第二发送模块,被配置为发送第二消息帧;
第二接收模块,被配置为根据第一能力信息和第二能力信息,在至少两个频段上接收数据。
在一个可选的实施方式中,第一能力信息和第二能力信息包括如下信息项:
至少两个频段的频段标识。
在一个可选的实施方式中,第一能力信息和第二能力信息,还包括如下信息项中的至少一项:
工作带宽;
MCS方式;
密钥复用信息。
在一个可选的实施方式中,信息项采用信息元素IE的形式表示。
在一个可选的实施方式中,第一消息帧是多频段协商请求帧,第二消息帧是多频段协商响应帧。
在一个可选的实施方式中,第二设备是STA,第二消息帧是探测请求帧、关联请求帧、认证请求帧中的任意一种;或,第二设备是AP,第二消息帧是探测响应帧、关联响应帧、认证响应帧、信标帧中的任意一种。
在一个可选的实施方式中,所述装置还包括:
第二发送模块,被配置为发送数据帧,数据帧的MAC帧头携带有第二能力信息;
第二接收模块,被配置为接收确认帧,确认帧携带有第一能力信息;
第二接收模块,被配置为根据第一能力信息和第二能力信息,在至少两个频段上发送数据。
根据本公开的一个方面,提供了一种无线通信设备,该无线通信设备包括:
处理器;
与处理器相连的收发器;
用于存储处理器可执行指令的存储器;
其中,处理器被配置为加载并执行可执行指令以实现如上方面及任一可选实施方式所述的数据传输方法。
根据本公开的一个方面,提供了一种无线通信设备,该无线通信设备包括:
处理器;
与处理器相连的收发器;
用于存储处理器可执行指令的存储器;
其中,处理器被配置为加载并执行可执行指令以实现如上方面及任一可选实施方式所述的数据传输方法。
根据本公开的一个方面,提供了一种计算机可读存储介质,该计算机可读存储介质中存储有至少一条指令、至少一段程序、代码集或指令集,至少一条指令、至少一段程序、代码集或指令集由处理器加载并执行以实现如上方面及任一可选实施方式所述的数据传输方法。
本公开实施例提供的技术方案带来的有益效果至少包括:
通过由第一设备向第二设备发送第一消息帧,该第一消息帧携带有第一能力信息,第二设备向第一设备回复第二消息帧,该第二消息帧携带有第二能力信息,第一设备和第二设备根据第一能力信息和第二能力信息在至少两个频段上传输数据,使得不同能力的两个设备能够通过协商方式在多个频段上同时传输数据,从而实现更大的传输速率和吞吐量。
附图说明
为了更清楚地说明本公开实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开 的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本公开一个示例性实施例提供的通信系统的框图;
图2是本公开一个示例性实施例提供的数据传输方法的流程图;
图3是本公开一个示例性实施例提供的信息元素的结构框图;
图4是本公开另一个示例性实施例提供的数据传输方法的流程图;
图5是本公开另一个示例性实施例提供的数据传输方法的流程图;
图6是本公开一个示例性实施例提供的数据传输装置的结构示意图;
图7是本公开另一个示例性实施例提供的数据传输装置的结构示意图;
图8是本公开另一个示例性实施例提供的无线通信设备的结构示意图。
具体实施方式
为使本公开的目的、技术方案和优点更加清楚,下面将结合附图对本公开实施方式作进一步地详细描述。
本公开实施例描述的通信系统以及业务场景是为了更加清楚地说明本公开实施例的技术方案,并不构成对本公开实施例提供的技术方案的限定,本领域普通技术人员可知,随着通信系统的演变和新业务场景的出现,本公开实施例提供的技术方案对于类似的技术问题,同样适用。
图1示出了本公开一个示意性实施例提供的通信系统的框图。该通信系统包括:无线接入点(Access Point,AP)120和站点(Station)140。
无线接入点120用于提供无线接入功能。无线接入点120可以是无线路由器、具有Wi-Fi功能的基站等。一个无线接入点120可接入多个站点140。
站点140用于接入无线接入点120。站点140可以是手机、平板、笔记本电脑、电子书、工业机器等设备。
上述通信系统可以是电气和电子工程师协会(Institute of Electrical and Electronics Engineers,IEEE)802.11a/b/g/n/ac/ax/be通信网络。本公开实施例以上述通信系统是IEEE 802.11be来举例说明。
上述通信系统包括两种组网形式:
第一,基于AP 120组建的基础无线网络(Infrastructure):也称为基础网, 是由AP 120创建,众多STA 140加入所组成的无线网络。这种类型的网络的特点是:AP 120是整个网络的中心,网络中所有的通信都通过AP 120来转发完成。
在这种组网情况下,本公开中的第一设备可以是无线接入点120和站点140中的一个,第二设备可以是无线接入点120和站点140中的另一个。
第二,基于自组网的无线网络(Ad hoc):也称为自组网,是仅由两个以上STA 140自己组成的网络,网络中不存在AP 120。这种类型的网络是一种松散的结构,网络中所有的STA 140都可以直接通信。
在这种组网情况下,本公开中的第一设备可以是第一站点140,第二设备可以是第二站点140。
图2示出了本公开一个示意性实施例提供的数据传输方法的流程图。该方法可以应用于图1所示的通信系统中,该方法包括:
步骤201,第一设备生成第一消息帧,第一消息帧中携带有第一能力信息,第一能力信息用于指示第一设备支持同时在至少两个频段上进行数据传输;
至少两个频段包括:2.4GHz频段、5.8GHz频段和6-7GHz频段中的至少两个频段。可选地,至少两个频段还包括Wi-Fi协议所支持的其它通信频段,其它通信频段可以包括毫米波频段,比如45GHz和60GHz频段。以下实施例中简称2.4GHz频段为频段A、5.8GHz频段为频段B、6-7GHz频段为频段C。
可选地,第一消息帧是多频段协商请求帧(Multi-band operation Request)。
示例性的,第一设备存在大量数据需要发送时,生成第一消息帧。
步骤202,第一设备发送第一消息帧;
第一设备在单个频段上发送第一消息帧。该单个频段可以是第一频段,该单个频段是第一设备和第二设备已经建立关联的频段。
步骤203,第二设备接收第一消息帧,第一消息帧携带有第一能力信息,第一能力信息用于指示第一设备支持同时在至少两个频段上进行数据传输;
第二设备在单个频段上接收第一消息帧。比如,第二设备在第一频段上接收第一消息帧。
步骤204,第二设备生成第二消息帧,第二消息帧中携带有第二能力信息,第二能力信息用于指示第二设备支持同时在至少两个频段上进行数据传输;
可选地,第二消息帧是多频段协商响应帧(Multi-band Operation Response)。
步骤205,第二设备发送第二消息帧;
第二设备在单个频段上发送第二消息帧,该单个频段可以是第一频段。
步骤206,第一设备接收第二消息帧,第二消息帧携带有第二能力信息,第二能力信息用于指示第二设备支持同时在至少两个频段上进行数据传输;
第一设备在单个频段上接收第二消息帧。比如,第一设备在第一频段上接收第二消息帧。
步骤207,第一设备根据第一能力信息和第二能力信息,在至少两个频段上发送数据;
第一设备根据第一能力信息和第二能力信息,确定第一设备和第二设备同时支持的传输能力。根据同时支持的传输能力,在至少两个频段上发送数据。
可选地,根据同时支持的最优传输能力,在至少两个频段上发送数据。
可选地,至少两个频段包括第一频段和第二频段,第一频段是用来发送第一消息帧和第二消息帧的频段,第二频段是不同于第一频段的频段。
步骤208,第二设备根据第一能力信息和第二能力信息,在至少两个频段上接收数据。
第二设备根据第一能力信息和第二能力信息,确定第一设备和第二设备同时支持的能力。根据同时支持的传输能力,在至少两个频段上接收数据。
可选地,根据同时支持的最优传输能力,在至少两个频段上接收数据。
第一能力信息和第二能力信息可以相同,也可以不同。当第一设备和第二设备
在一个示例中,第一设备同时支持在频段A、频段B和频段C上同时通信,第二设备同时支持在频段A和频段B上同时通信,则第一设备确定频段A和频段B是两个设备同时支持的频段,在频段A和频段B上发送数据。相应地,第二设备同时在频段A和频段B上接收数据。
综上所述,本实施例提供的方法,通过由第一设备向第二设备发送第一消息帧,该第一消息帧携带有第一能力信息,第二设备向第一设备回复第二消息帧,该第二消息帧携带有第二能力信息,第一设备和第二设备根据第一能力信息和第二能力信息在至少两个频段上传输数据,使得不同能力的两个设备能够通过协商方式在多个频段上同时传输数据,从而实现更大的传输速率和吞吐量。
在本公开实施例中,由第一设备执行的步骤可单独实现成为第一设备侧的数据传输方法,由第二设备执行的步骤可单独实现成为第二设备侧的数据传输方法。
在基于图2的可选实施例中,第一能力信息和第二能力信息包括如下信息项:至少两个频段的频段标识。
可选地,第一能力信息还包括:第一设备支持的工作带宽、MCS或密钥复用信息中的至少一项。
可选地,第二能力信息还包括:第二设备支持的工作带宽、MCS或密钥复用确认信息中的至少一项。
其中,工作带宽是20MHz、40MHz、80MHz、80+80MHz(不连续,非重叠)/160MHz(连续)、160+160MHz(不连续、非重叠)/320MHz所形成的组合中的至少一种。
其中,密钥复用信息用来指示复用已有密钥(第一频段上的密钥)来进行数据加密。
在一个示例中,采用8个比特来表示频段和工作带宽。频段标识的个数与频段的数量相同。以频段包括:2.4GHz频段、5.8GHz频段和6-7GHz频段为例,频段标识占用8个比特中的前3个比特,前3个比特中的第1个比特对应2.4GHz频段、第2个比特对应5.8GHz频段、第3个比特对应6-7GHz频段。
当第1个比特的取值为1时,代表支持2.4GHz频段的通信;当第1个比特的取值为0时,代表不支持2.4GHz频段的通信。当第2个比特的取值为1时,代表支持5.8GHz频段的通信;当第2个比特的取值为0时,代表不支持5.8GHz频段的通信。当第3个比特的取值为1时,代表支持6-7GHz频段的通信;当第3个比特的取值为0时,代表不支持6-7GHz频段的通信。
采用8个比特中的后5个比特来指示工作带宽。第4个比特对应20MHz,第5个比特对应40MHz,第6个比特对应80MHz,第7个比特对应80+80MHz(不连续,非重叠)/160MHz(连续),第8个比特160+160MHz(不连续、非重叠)/320MHz。当比特取值为1时,代表支持该工作带宽;当比特取值为0时,代表不支持该工作带宽。
在一个示例中,上述各个信息项采用信息元素(Information Element,IE)来表示。IE是一个帧(比如管理消息帧)的组成部分,其长度不定。示例性的,IE包括一个Element ID(元素识别码)位、一个长度(Length)位以及一个长度不定的内容位。其中,长度位用于表示内容位的比特数量。上述信息项可以每个信息项占用一个IE,也可以两个或多个信息项占用同一个IE。IE的元素识别 码可以采用相关技术中的保留位来表示,比如11至15、43至49、50-255等。
在基于图2的可选实施例中,第一消息帧为信标帧,所述第二消息帧为关联请求帧;或,第一消息帧为探测请求帧,第二消息帧为探测响应帧;或,第一消息帧为关联请求帧,第二消息帧为关联响应帧;或,第一消息帧为认证请求帧,第二消息帧为认证响应帧。
在基于图2的可选实施例中,第一设备在至少两个频段中发送相同的数据帧;或,第一设备在至少两个频段中发送不同的数据帧,不同的数据帧是对待发送的数据进行分块后得到的。
例如,第一时刻在频段A上发送数据帧1、在频段B上发送数据帧2、在频段C上发送数据帧3;第二时刻在频段A上发送数据帧4、在频段B上发送数据帧5、在频段C上发送数据帧6;第三时刻在频段A上发送数据帧7、在频段B上发送数据帧8、在频段C上发送数据帧9。
图4示出了本公开另一个示例性实施例提供的数据传输方法的流程图。该方法可以应用于图1所示的通信系统中。该方法包括:
步骤401,第一设备和第二设备进行数据传输;
在一个实施例中,第一设备和第二设备按照Wi-Fi协议建立数据传输连接,在单个频段上进行数据传输;
在一个实施例中,第一设备和第二设备按照图2所示实施例建立数据传输连接,由第一设备在多个频段上向第二设备发送数据。
也即,第一设备和第二设备之间已经建立了传输连接,第二设备能够向第一设备发送数据帧。
步骤402,第二设备发送数据帧,数据帧的MAC帧头携带有第二能力信息;
当第二设备存在大量数据需要发送时,第二设备生成数据帧,第二设备向第一设备发送该数据帧。
该数据帧的MAC帧头携带有第二能力信息。第二能力信息的相关描述可参考上述实施例。
可选地,该数据帧是物理层数据协议单元(Physical layer(PHY)Protocol Data Unit,PPDU)。
步骤403,第一设备接收数据帧,数据帧的MAC(Media Access Control)帧头携带有第二能力信息;
步骤404,第一设备发送确认帧,确认帧携带有第一能力信息;
可选地,确认帧是确认反馈帧(Acknowledge,ACK)。
步骤405,第二设备接收确认帧,确认帧携带有第一能力信息;
步骤406,第二设备根据第一能力信息和第二能力信息,在至少两个频段上发送数据。
第二设备根据第一能力信息和第二能力信息,确定第一设备和第二设备同时支持的传输能力。根据同时支持的传输能力,在至少两个频段上发送数据。
可选地,根据同时支持的最优传输能力,在至少两个频段上发送数据。
步骤407,第一设备根据第一能力信息和第二能力信息,在至少两个频段上接收数据。
第一设备根据第一能力信息和第二能力信息,确定第一设备和第二设备同时支持的能力。根据同时支持的传输能力,在至少两个频段上接收数据。
可选地,根据同时支持的最优传输能力,在至少两个频段上接收数据。
综上所述,本实施例提供的方法,通过由第二设备向第一设备发送数据帧,该数据帧携带有第一能力信息,第一设备向第二设备回复确认帧,该确认帧携带有第二能力信息,第二设备和第一设备根据第一能力信息和第二能力信息在至少两个频段上传输数据,使得在已经开始数据后的两个设备能够通过协商方式在多个频段上同时传输数据,从而实现更大的传输速率和吞吐量。
结合图5所示的实施例,为了能够使得两个设备(STA1+STA2或者STA+AP)间同时在多个频段下进行通信。1、两个设备需要支持同时在多频段进行通信的能力;2、如在单个频段(比如第一频段)下两个设备进行了关联、认证的连接及密钥协商,则在另一频段下进行数据传输时使用同样的密钥对数据进行加密;3、在初次要进行多频段下的数据传输之前,可分为两种方式来进行协商:a、两个设备间发送管理消息帧来进行协商,譬如:第一设备发送多频段协商请求帧给第二设备,在这个管理消息帧中协商其进行多频段通信的信息(除了用于发送多频段协商请求消息帧本身的工作频段),譬如5.8GHz或6-7GHz,另外还携带进行多频段通信的工作带宽信息,譬如20MHz或是40MHz、密钥复用信息及数据传输的MCS方式,第二设备回复多频段协商响应帧给第一设备。b、在已经开始在单个频段进行数据传输后,第二设备发送给第一设备的数据帧(PPDU)中带上第二能力信息来标识进行多频段下的数据传输,第一设备回复确认消息帧(ACK)给第二设备,在确认消息帧中表示将在多频段下进行数据 传输。
在基于图2或图4的可选实施例中,为了保证在多频段下进行数据传输时能够不受干扰,则在多频段协商请求帧(或数据帧的MAC帧头的时长(duration)字段)设置后续在多频段下要进行的通信的时长,但可能其响应方会改变时长,对于其他的站点来说,其设置的网络分配矢量(Network Allocation Vector,NAV)的时长值已后续的确认为准。
以下为本公开实施例提供的装置实施例,对于装置实施例中未详细说明的细节,可以参考上述一一对应的方法实施例。
图6示出了本公开一个示例性实施例提供的数据传输装置的框图。该数据传输装置可以通过软件、硬件或者两者的结合实现成为第一设备的全部或部分。该装置包括:第一处理模块620、第一发送模块640和第一接收模块660。其中,第一接收模块660和第一发送模块640可以为射频天线等硬件设备,第一处理模块620可以是中央处理器或是基带处理器等硬件设备。
第一处理模块620,被配置为生成第一消息帧,所述第一消息帧中携带有第一能力信息,所述第一能力信息用于指示所述第一设备支持同时在至少两个频段上进行数据传输;
第一发送模块640,用于发送所述第一消息帧;
第一接收模块660,用于接收第二消息帧,所述第二消息帧携带有第二能力信息,所述第二能力信息用于指示所述第二设备支持同时在至少两个频段上进行数据传输;
所述第一发送模块,用于根据所述第一能力信息和所述第二能力信息,在所述至少两个频段上发送数据。
在一个可选的实施例中,所述第一能力信息和所述第二能力信息包括如下信息项:
所述至少两个频段的频段标识。
在一个可选的实施例中,所述第一能力信息和所述第二能力信息,还包括如下信息项中的至少一项:工作带宽;调制编码方式;密钥复用信息。
在一个可选的实施例中,所述信息项采用信息元素的形式表示。
在一个可选的实施例中,所述第一消息帧是多频段协商请求帧,所述第二消息帧是多频段协商响应帧。
在一个可选的实施例中,第一消息帧为信标帧,第二消息帧为关联请求帧;或,第一消息帧为探测请求帧,第二消息帧为探测响应帧;或,第一消息帧为关联请求帧,第二消息帧为关联响应帧;或,第一消息帧为认证请求帧,第二消息帧为认证响应帧。
在一个可选的实施例中,所述第一接收模块660,被配置为接收数据帧,所述数据帧的MAC帧头携带有所述第二能力信息;
所述第一发送模块640,被配置为发送确认帧,所述确认帧携带有所述第一能力信息;
所述第一接收模块660,被配置为根据所述第一能力信息和所述第二能力信息,在所述至少两个频段上接收数据。
图7示出了本公开一个示例性实施例提供的数据传输装置的框图。该数据传输装置可以通过软件、硬件或者两者的结合实现成为第二设备的全部或部分。该装置包括:第二处理模块720、第二发送模块740和第二接收模块760。其中,第二接收模块760和第二发送模块740可以为射频天线等硬件设备,第二处理模块720可以是中央处理器或是基带处理器等硬件设备。
第二接收模块760,被配置为接收第一消息帧,所述第一消息帧携带有第一能力信息,所述第一能力信息用于指示所述第一设备支持同时在至少两个频段上进行数据传输;
第二处理模块720,被配置为生成第二消息帧,所述第二消息帧中携带有第二能力信息,所述第二能力信息用于指示所述第二设备支持同时在至少两个频段上进行数据传输;
第二发送模块740,被配置为发送所述第二消息帧;
所述第二接收模块760,被配置为根据所述第一能力信息和所述第二能力信息,在所述至少两个频段上接收数据。
在一个可选的实施例中,所述第一能力信息和所述第二能力信息包括如下信息项:
所述至少两个频段的频段标识。
在一个可选的实施例中,所述第一能力信息和所述第二能力信息,还包括如下信息项中的至少一项:
工作带宽;
调制编码方式;
密钥复用信息。
在一个可选的实施例中,所述信息项采用信息元素的形式表示。
在一个可选的实施例中,所述第一消息帧是多频段协商请求帧,所述第二消息帧是多频段协商响应帧。
在一个可选的实施例中,第一消息帧为信标帧,第二消息帧为关联请求帧;或,第一消息帧为探测请求帧,第二消息帧为探测响应帧;或,第一消息帧为关联请求帧,第二消息帧为关联响应帧;或,第一消息帧为认证请求帧,第二消息帧为认证响应帧。
在一个可选的实施例中,所述第二发送模块740,被配置为发送数据帧,所述数据帧的MAC帧头携带有所述第二能力信息;
所述第二接收模块760,被配置为接收确认帧,所述确认帧携带有所述第一能力信息;
所述第二发送模块740,被配置为根据所述第一能力信息和所述第二能力信息,在所述至少两个频段上发送数据。
图8示出了本公开一个示例性实施例提供的无线通信设备的结构示意图,该无线通信设备可以是第一设备或第二设备。该无线通信设备包括:处理器101、接收器102、发射器103、存储器104和总线105。
处理器101包括一个或者一个以上处理核心,处理器101通过运行软件程序以及模块,从而执行各种功能应用以及信息处理。
接收器102和发射器103可以实现为一个通信组件,该通信组件可以是一块通信芯片。
存储器104通过总线105与处理器101相连。
存储器104可用于存储至少一个指令,处理器101用于执行该至少一个指令,以实现上述方法实施例中的各个步骤。
此外,存储器104可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,易失性或非易失性存储设备包括但不限于:磁盘或光盘,电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),静态随时存取存储器(SRAM),只读存储器(ROM),磁存储器,快闪存储器,可编程只读存储器(PROM)。
本公开一示例性实施例还提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有至少一条指令、至少一段程序、代码集或指令集,所述至少一条指令、所述至少一段程序、所述代码集或指令集由所述处理器加载并执行以实现上述方法实施例中的各个步骤。
本领域普通技术人员可以理解实现上述实施例的全部或部分步骤可以通过硬件来完成,也可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,上述提到的存储介质可以是只读存储器,磁盘或光盘等。
以上所述仅为本公开的较佳实施例,并不用以限制本公开,凡在本公开的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。

Claims (31)

  1. 一种数据传输方法,其特征在于,所述方法包括:
    第一设备生成第一消息帧,所述第一消息帧中携带有第一能力信息,所述第一能力信息用于指示所述第一设备支持同时在至少两个频段上进行数据传输;
    所述第一设备发送所述第一消息帧;
    所述第一设备接收第二消息帧,所述第二消息帧携带有第二能力信息,所述第二能力信息用于指示第二设备支持同时在至少两个频段上进行数据传输;
    所述第一设备根据所述第一能力信息和所述第二能力信息,在所述至少两个频段上发送数据。
  2. 根据权利要求1所述的方法,其特征在于,所述第一能力信息和所述第二能力信息包括如下信息项:
    所述至少两个频段的频段标识。
  3. 根据权利要求2所述的方法,其特征在于,所述第一能力信息和所述第二能力信息,还包括如下信息项中的至少一项:
    工作带宽;
    调制编码方式MCS;
    密钥复用信息。
  4. 根据权利要求2或3所述的方法,其特征在于,所述信息项采用信息元素IE的形式表示。
  5. 根据权利要求1至3任一所述的方法,其特征在于,
    所述第一消息帧是多频段协商请求帧,所述第二消息帧是多频段协商响应帧。
  6. 根据权利要求1至3任一所述的方法,其特征在于,
    所述第一消息帧为信标帧,所述第二消息帧为关联请求帧;
    或,所述第一消息帧为探测请求帧,所述第二消息帧为探测响应帧;
    或,所述第一消息帧为所述关联请求帧,所述第二消息帧为关联响应帧;
    或,所述第一消息帧为认证请求帧,所述第二消息帧为认证响应帧。
  7. 根据权利要求1至3任一所述的方法,其特征在于,所述方法还包括:
    所述第一设备接收数据帧,所述数据帧的介质访问控制MAC帧头携带有所述第二能力信息;
    所述第一设备发送确认帧,所述确认帧携带有所述第一能力信息;
    所述第一设备根据所述第一能力信息和所述第二能力信息,在所述至少两个频段上接收数据。
  8. 一种数据传输方法,其特征在于,所述方法包括:
    第二设备接收第一消息帧,所述第一消息帧携带有第一能力信息,所述第一能力信息用于指示所述第一设备支持同时在至少两个频段上进行数据传输;
    所述第二设备生成第二消息帧,所述第二消息帧中携带有第二能力信息,所述第二能力信息用于指示所述第二设备支持同时在至少两个频段上进行数据传输;
    所述第二设备发送所述第二消息帧;
    所述第二设备根据所述第一能力信息和所述第二能力信息,在所述至少两个频段上接收数据。
  9. 根据权利要求8所述的方法,其特征在于,所述第一能力信息和所述第二能力信息包括如下信息项:
    所述至少两个频段的频段标识。
  10. 根据权利要求9所述的方法,其特征在于,所述第一能力信息和所述第二能力信息,还包括如下信息项中的至少一项:
    工作带宽;
    调制编码方式;
    密钥复用信息。
  11. 根据权利要求9或10所述的方法,其特征在于,所述信息项采用信息元素IE的形式表示。
  12. 根据权利要求9至10任一所述的方法,其特征在于,
    所述第一消息帧是多频段协商请求帧,所述第二消息帧是多频段协商响应帧。
  13. 根据权利要求8至10任一所述的方法,其特征在于,
    所述第一消息帧为信标帧,所述第二消息帧为关联请求帧;
    或,所述第一消息帧为探测请求帧,所述第二消息帧为探测响应帧;
    或,所述第一消息帧为所述关联请求帧,所述第二消息帧为关联响应帧;
    或,所述第一消息帧为认证请求帧,所述第二消息帧为认证响应帧。
  14. 根据权利要求8至10任一所述的方法,其特征在于,所述方法还包括:
    所述第二设备发送数据帧,所述数据帧的MAC帧头携带有所述第二能力信息;
    所述第二设备接收确认帧,所述确认帧携带有所述第一能力信息;
    所述第二设备根据所述第一能力信息和所述第二能力信息,在所述至少两个频段上发送数据。
  15. 一种数据传输装置,其特征在于,所述装置包括:
    第一处理模块,被配置为生成第一消息帧,所述第一消息帧中携带有第一能力信息,所述第一能力信息用于指示所述第一设备支持同时在至少两个频段上进行数据传输;
    第一发送模块,用于发送所述第一消息帧;
    第一接收模块,用于接收第二消息帧,所述第二消息帧携带有第二能力信息,所述第二能力信息用于指示所述第二设备支持同时在至少两个频段上进行数据传输;
    所述第一发送模块,用于根据所述第一能力信息和所述第二能力信息,在 所述至少两个频段上发送数据。
  16. 根据权利要求15所述的装置,其特征在于,所述第一能力信息和所述第二能力信息包括如下信息项:
    所述至少两个频段的频段标识。
  17. 根据权利要求16所述的装置,其特征在于,所述第一能力信息和所述第二能力信息,还包括如下信息项中的至少一项:
    工作带宽;
    调制编码方式;
    密钥复用信息。
  18. 根据权利要求16或17所述的装置,其特征在于,所述信息项采用信息元素IE的形式表示。
  19. 根据权利要求15至17任一所述的装置,其特征在于,
    所述第一消息帧是多频段协商请求帧,所述第二消息帧是多频段协商响应帧。
  20. 根据权利要求15至17任一所述的装置,其特征在于,
    所述第一消息帧为信标帧,所述第二消息帧为关联请求帧;
    或,所述第一消息帧为探测请求帧,所述第二消息帧为探测响应帧;
    或,所述第一消息帧为所述关联请求帧,所述第二消息帧为关联响应帧;
    或,所述第一消息帧为认证请求帧,所述第二消息帧为认证响应帧。
  21. 根据权利要求15至17任一所述的装置,其特征在于,
    所述第一接收模块,被配置为接收数据帧,所述数据帧的介质访问控制MAC帧头携带有所述第二能力信息;
    所述第一发送模块,被配置为发送确认帧,所述确认帧携带有所述第一能力信息;
    所述第一接收模块,被配置为根据所述第一能力信息和所述第二能力信息,在所述至少两个频段上接收数据。
  22. 一种数据传输装置,其特征在于,所述装置包括:
    第二接收模块,被配置为接收第一消息帧,所述第一消息帧携带有第一能力信息,所述第一能力信息用于指示所述第一设备支持同时在至少两个频段上进行数据传输;
    第二处理模块,被配置为生成第二消息帧,所述第二消息帧中携带有第二能力信息,所述第二能力信息用于指示所述第二设备支持同时在至少两个频段上进行数据传输;
    第二发送模块,被配置为发送所述第二消息帧;
    所述第二接收模块,被配置为根据所述第一能力信息和所述第二能力信息,在所述至少两个频段上接收数据。
  23. 根据权利要求22所述的装置,其特征在于,所述第一能力信息和所述第二能力信息包括如下信息项:
    所述至少两个频段的频段标识。
  24. 根据权利要求23所述的装置,其特征在于,所述第一能力信息和所述第二能力信息,还包括如下信息项中的至少一项:
    工作带宽;
    调制编码方式;
    密钥复用信息。
  25. 根据权利要求23或24所述的装置,其特征在于,所述信息项采用信息元素IE的形式表示。
  26. 根据权利要求23至24任一所述的装置,其特征在于,
    所述第一消息帧是多频段协商请求帧,所述第二消息帧是多频段协商响应帧。
  27. 根据权利要求22至24任一所述的装置,其特征在于,
    所述第一消息帧为信标帧,所述第二消息帧为关联请求帧;
    或,所述第一消息帧为探测请求帧,所述第二消息帧为探测响应帧;
    或,所述第一消息帧为所述关联请求帧,所述第二消息帧为关联响应帧;
    或,所述第一消息帧为认证请求帧,所述第二消息帧为认证响应帧。
  28. 根据权利要求22至24任一所述的装置,其特征在于,
    所述第二发送模块,被配置为发送数据帧,所述数据帧的MAC帧头携带有所述第二能力信息;
    所述第二接收模块,被配置为接收确认帧,所述确认帧携带有所述第一能力信息;
    所述第二发送模块,被配置为根据所述第一能力信息和所述第二能力信息,在所述至少两个频段上发送数据。
  29. 一种无线通信设备,其特征在于,所述无线通信设备包括:
    处理器;
    与所述处理器相连的收发器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为加载并执行所述可执行指令以实现如权利要求1至7任一所述的数据传输方法。
  30. 一种无线通信设备,其特征在于,所述无线通信设备包括:
    处理器;
    与所述处理器相连的收发器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为加载并执行所述可执行指令以实现如权利要求8至14任一所述的数据传输方法。
  31. 一种计算机可读存储介质,其特征在于,所述可读存储介质中存储有 至少一条指令、至少一段程序、代码集或指令集,所述至少一条指令、所述至少一段程序、所述代码集或指令集由所述处理器加载并执行以实现如上权利要求1至7任一所述的数据传输方法,和/或,如上权利要求8至14任一所述的数据传输方法。
PCT/CN2019/088138 2019-05-23 2019-05-23 数据传输方法、装置、设备及存储介质 WO2020232700A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2019/088138 WO2020232700A1 (zh) 2019-05-23 2019-05-23 数据传输方法、装置、设备及存储介质
CN201980000900.7A CN112292885A (zh) 2019-05-23 2019-05-23 数据传输方法、装置、设备及存储介质
US17/612,908 US20220278699A1 (en) 2019-05-23 2019-05-23 Data transmission method, apparatus, device, and storage medium
EP19930106.0A EP3975620A4 (en) 2019-05-23 2019-05-23 DATA TRANSMISSION METHOD, DEVICE, DEVICE AND STORAGE MEDIUM

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/088138 WO2020232700A1 (zh) 2019-05-23 2019-05-23 数据传输方法、装置、设备及存储介质

Publications (1)

Publication Number Publication Date
WO2020232700A1 true WO2020232700A1 (zh) 2020-11-26

Family

ID=73459325

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/088138 WO2020232700A1 (zh) 2019-05-23 2019-05-23 数据传输方法、装置、设备及存储介质

Country Status (4)

Country Link
US (1) US20220278699A1 (zh)
EP (1) EP3975620A4 (zh)
CN (1) CN112292885A (zh)
WO (1) WO2020232700A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022147691A1 (zh) * 2021-01-06 2022-07-14 北京小米移动软件有限公司 通信方法和通信设备
CN115039465A (zh) * 2022-05-06 2022-09-09 北京小米移动软件有限公司 用于感知会话建立的通信方法和通信装置
WO2024077558A1 (zh) * 2022-10-13 2024-04-18 北京小米移动软件有限公司 通信方法、电子设备及存储介质
WO2024077563A1 (zh) * 2022-10-13 2024-04-18 北京小米移动软件有限公司 通信方法、装置、设备以及存储介质

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116420421A (zh) * 2021-11-08 2023-07-11 北京小米移动软件有限公司 无线通信方法、装置、设备以及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104812088A (zh) * 2014-01-28 2015-07-29 上海贝尔股份有限公司 增强直接通信接口以支持双连接的方法和网络节点
WO2015187556A1 (en) * 2014-06-02 2015-12-10 Belkin International, Inc. Optimizing network performance using band-switching operations
CN106851683A (zh) * 2017-01-10 2017-06-13 青岛海信移动通信技术股份有限公司 多频载波聚合wifi数据传输方法、装置及终端设备
CN108990027A (zh) * 2018-08-29 2018-12-11 深圳市零度智控科技有限公司 双频双天线设备之间的文件传输方法、设备及存储介质
CN109673001A (zh) * 2019-02-12 2019-04-23 Oppo广东移动通信有限公司 数据传输控制方法及相关产品

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8812833B2 (en) * 2009-06-24 2014-08-19 Marvell World Trade Ltd. Wireless multiband security
WO2014067131A1 (en) * 2012-11-02 2014-05-08 Broadcom Corporation Signaling notification scheme for in-device coexistence interference
CN103813410B (zh) * 2012-11-15 2017-10-31 深圳国人通信有限公司 一种控制无线终端接入的方法及无线接入点
CN102984818B (zh) * 2012-12-03 2016-05-04 东莞宇龙通信科技有限公司 数据通信装置和数据通信方法
JP6622428B2 (ja) * 2016-05-31 2019-12-18 華為技術有限公司Huawei Technologies Co.,Ltd. アクセスポイント間のハンドオーバのための方法、及び端末機器
US9930713B2 (en) * 2016-08-19 2018-03-27 Intel IP Corporation Multi-band link aggregation setup frames
US10856203B2 (en) * 2017-01-19 2020-12-01 Qualcomm Incorporated Signaling for link aggregation setup and reconfiguration
WO2018217901A1 (en) * 2017-05-24 2018-11-29 Intel IP Corporation Multi-connectivity coordination
US10880895B2 (en) * 2018-05-27 2020-12-29 Brian Gordaychik Variable length downlink control information formats for next generation radio technologies
DE102019213955A1 (de) * 2018-09-12 2020-03-12 Marvell World Trade Ltd. Signalisierung von drahtlosstationsfähigkeiten

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104812088A (zh) * 2014-01-28 2015-07-29 上海贝尔股份有限公司 增强直接通信接口以支持双连接的方法和网络节点
WO2015187556A1 (en) * 2014-06-02 2015-12-10 Belkin International, Inc. Optimizing network performance using band-switching operations
CN106851683A (zh) * 2017-01-10 2017-06-13 青岛海信移动通信技术股份有限公司 多频载波聚合wifi数据传输方法、装置及终端设备
CN108990027A (zh) * 2018-08-29 2018-12-11 深圳市零度智控科技有限公司 双频双天线设备之间的文件传输方法、设备及存储介质
CN109673001A (zh) * 2019-02-12 2019-04-23 Oppo广东移动通信有限公司 数据传输控制方法及相关产品

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3975620A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022147691A1 (zh) * 2021-01-06 2022-07-14 北京小米移动软件有限公司 通信方法和通信设备
EP4277435A4 (en) * 2021-01-06 2024-03-06 Beijing Xiaomi Mobile Software Co Ltd COMMUNICATION METHOD AND COMMUNICATION DEVICE
CN115039465A (zh) * 2022-05-06 2022-09-09 北京小米移动软件有限公司 用于感知会话建立的通信方法和通信装置
WO2024077558A1 (zh) * 2022-10-13 2024-04-18 北京小米移动软件有限公司 通信方法、电子设备及存储介质
WO2024077563A1 (zh) * 2022-10-13 2024-04-18 北京小米移动软件有限公司 通信方法、装置、设备以及存储介质

Also Published As

Publication number Publication date
EP3975620A1 (en) 2022-03-30
EP3975620A4 (en) 2023-01-18
US20220278699A1 (en) 2022-09-01
CN112292885A (zh) 2021-01-29

Similar Documents

Publication Publication Date Title
WO2020232700A1 (zh) 数据传输方法、装置、设备及存储介质
US11924823B2 (en) Multi-link device association and reassociation
US11979772B2 (en) Wireless communication method for transmitting ACK and wireless communication terminal using same
US20230276300A1 (en) Wireless communication method using fragmentation and wireless communication terminal using same
WO2016090635A1 (en) An adaptive block ack mechanism for a-mdpu
WO2020232699A1 (zh) 数据传输方法、装置、设备及存储介质
WO2022252027A1 (zh) 多连接下的通信方法和通信装置
US20230032255A1 (en) Device, system, and method for multi-link tunneled direct link setup (tdls) setup
KR20230046238A (ko) 다중 링크를 지원하는 통신 시스템에 nstr 동작을 위한 동기화 정보의 전송 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19930106

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019930106

Country of ref document: EP

Effective date: 20211223