WO2022252027A1 - 多连接下的通信方法和通信装置 - Google Patents

多连接下的通信方法和通信装置 Download PDF

Info

Publication number
WO2022252027A1
WO2022252027A1 PCT/CN2021/097325 CN2021097325W WO2022252027A1 WO 2022252027 A1 WO2022252027 A1 WO 2022252027A1 CN 2021097325 W CN2021097325 W CN 2021097325W WO 2022252027 A1 WO2022252027 A1 WO 2022252027A1
Authority
WO
WIPO (PCT)
Prior art keywords
connection
communication
data frame
communication method
frame
Prior art date
Application number
PCT/CN2021/097325
Other languages
English (en)
French (fr)
Inventor
董贤东
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to PCT/CN2021/097325 priority Critical patent/WO2022252027A1/zh
Priority to CN202180001554.1A priority patent/CN115769524A/zh
Priority to US18/565,483 priority patent/US20240298208A1/en
Priority to EP21943404.0A priority patent/EP4351054A1/en
Publication of WO2022252027A1 publication Critical patent/WO2022252027A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1893Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0252Traffic management, e.g. flow control or congestion control per individual bearer or channel
    • H04W28/0263Traffic management, e.g. flow control or congestion control per individual bearer or channel involving mapping traffic to individual bearers or channels, e.g. traffic flow template [TFT]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1671Details of the supervisory signal the supervisory signal being transmitted together with control information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1864ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1896ARQ related signaling

Definitions

  • the present disclosure relates to the field of wireless communication, and more specifically, to a communication method and a communication device under multi-connection.
  • Wi-Fi technology 320MHz bandwidth transmission, aggregation and coordination of multiple frequency bands, etc. It is expected to increase the rate and throughput by at least four times compared with the existing standards. Its main application scenarios are Video transmission, AR (Augmented Reality, augmented reality), VR (Virtual Reality, virtual reality), etc.
  • the aggregation and coordination of multiple frequency bands refers to the simultaneous communication between devices in the 2.4GHz, 5GHz, and 6GHz frequency bands.
  • a new MAC Media Access Control
  • a new MAC Media Access Control
  • the current multi-band aggregation and system technology will support a maximum bandwidth of 320MHz (160MHz+160MHz), and may also support 240MHz (160MHz+80MHz) and other bandwidths.
  • the station (STA: Station) and the access point (AP: Access Point) can be a multi-connection device (MLD: multi-link device), that is, it supports simultaneous sending and receiving under multiple connections at the same time. /or receive functions. Therefore, in the current technology, there may be multiple connections between the STA and the AP, and the communication between the two devices under the multiple connections is being researched.
  • MLD multi-connection device
  • An exemplary embodiment according to the present disclosure provides a communication method under multi-connection.
  • the communication method can be applied to a station supporting multi-connection communication, and includes: listening under at least one connection to which the communication identifier TID in the multiple connections is mapped; determining whether to retransmit the data frame according to the listening result .
  • An exemplary embodiment according to the present disclosure provides a communication method under multi-connection.
  • the communication method may be applied to an access point supporting multi-connection communication, and includes: determining a first message frame, wherein the first message frame includes: identification information indicating that a data frame needs to be retransmitted and/or used for retransmission transmitting the identification information of the connection of the data frame; sending the first message frame under at least one connection to which the communication identifier TID among the multiple connections is mapped.
  • a communication device under multi-connection can be applied to a station supporting multi-connection communication, and includes: a transceiver module configured to: listen to at least one connection to which a communication identifier TID in multiple connections is mapped; a processing module configured to For: According to the listening result, determine whether to retransmit the data frame.
  • a communication device under multi-connection may be applied to an access point supporting multi-connection communication, and includes: a processing module configured to: determine a first message frame, where the first message frame includes identification information indicating that a data frame needs to be retransmitted And/or the identification information of the connection used to retransmit the data frame; the transceiver module is configured to: send the first message frame under at least one connection to which the communication identifier TID among the multiple connections is mapped.
  • an electronic device includes a memory, a processor, and a computer program stored on the memory and executable on the processor.
  • the processor implements the above method when executing the computer program.
  • a computer-readable storage medium storing instructions for performing various operations.
  • a computer program is stored on the computer readable storage medium.
  • the computer program is executed by the processor, the above-mentioned method is realized.
  • the technical solutions provided by the exemplary embodiments of the present disclosure enable data to be retransmitted under multiple connections, thereby improving frequency spectrum utilization.
  • FIG. 1 is an exemplary diagram illustrating a communication scenario under multiple connections
  • FIG. 2 is a flowchart illustrating a communication method according to an embodiment of the present disclosure
  • FIG. 3 is a detailed flowchart showing a communication method according to an embodiment of the present disclosure
  • FIG. 4 is a detailed flowchart illustrating a communication method according to an embodiment of the present disclosure
  • FIG. 5 is a detailed flowchart illustrating a communication method according to an embodiment of the present disclosure
  • FIG. 6 is a flowchart illustrating another communication method according to an embodiment of the present disclosure.
  • FIG. 7 shows a block diagram of a communication device according to an embodiment of the present disclosure.
  • FIG. 1 is an exemplary diagram illustrating a communication scenario under multiple connections.
  • a basic service set may consist of an AP and one or more stations (STA) communicating with the AP.
  • a basic service set can be connected to the distribution system DS (Distribution System) through its AP, and then connected to another basic service set to form an extended service set ESS (Extended Service Set).
  • DS Distribution System
  • ESS Extended Service Set
  • An AP is a wireless switch for a wireless network and is also the core of a wireless network.
  • AP equipment can be used as a wireless base station, mainly used as a bridge for connecting wireless networks and wired networks. With this access point AP, wired and wireless networks can be integrated.
  • the AP may include software applications and/or circuitry to enable other types of nodes in the wireless network to communicate with the outside and inside of the wireless network through the AP.
  • the AP may be a terminal device or a network device equipped with a Wi-Fi (Wireless Fidelity, wireless fidelity) chip.
  • Wi-Fi Wireless Fidelity, wireless fidelity
  • stations may include, but are not limited to: cellular phones, smart phones, wearable devices, computers, personal digital assistants (PDAs), personal communication system (PCS) devices, personal information managers (PIMs), personal navigation devices (PND), GPS, multimedia devices, Internet of Things (IoT) devices, etc.
  • PDAs personal digital assistants
  • PCS personal communication system
  • PIMs personal information managers
  • PND personal navigation devices
  • GPS GPS
  • multimedia devices Internet of Things (IoT) devices, etc.
  • IoT Internet of Things
  • APs and STAs may support multi-connected devices, for example, may be denoted as AP MLD and non-AP STA MLD, respectively.
  • AP MLD multi-connected devices
  • non-AP STA MLD multi-connected devices
  • the AP MLD may represent an access point supporting the multi-connection communication function
  • the non-AP STA MLD may represent a station supporting the multi-connection communication function.
  • AP MLD can work under three connections, such as AP1, AP2 and AP3 shown in Figure 1
  • non-AP STA MLD can also work under three connections, as shown in Figure 1 STA1, STA2 and STA3.
  • AP1 and STA1 communicate through the corresponding first link Link 1.
  • AP2 and AP3 communicate with STA2 and STA3 through the second link Link 2 and the third link Link 3 respectively.
  • Link 1 to Link 3 can be multiple connections at different frequencies, for example, connections at 2.4GHz, 5GHz, and 6GHz, or several connections at the same or different bandwidths at 2.4GHz, 5GHz, and 6GHz. Additionally, multiple channels can exist under each connection.
  • an AP MLD may be connected to multiple non-AP STA MLDs, or under each connection, the AP Can communicate with several other types of sites.
  • EHT extremely high-throughput
  • TID block confirmation protocol for communication identifier
  • the non-AP STA MLD can communicate with the AP MLD that supports the EMLSR mode in EMLSR (enhanced multi-link single radio) mode, where the EMLSR mode refers to the non-AP STA MLD at a certain moment It can only communicate with AP MLD under one connection, but it can listen to channels under multiple connections.
  • EMLSR enhanced multi-link single radio
  • the non-AP STA MLD in EMLSR mode, if a data frame needs to be retransmitted, the non-AP STA MLD first receives the initial control frame (initial control frame) under a connection, and performs data frame interaction under this connection, and the data frame Before the frame interaction is completed, it cannot be transmitted or received under other connections. After the data frame interaction is completed, it can be listened to under all activated connections.
  • the initial control frame initial control frame
  • the data frame Before the frame interaction is completed, it cannot be transmitted or received under other connections. After the data frame interaction is completed, it can be listened to under all activated connections.
  • there is a mechanism for mapping TIDs to connections that is, data with the same TID can be mapped to at least one connection for transmission.
  • data frames with the same TID can also be retransmitted under different connections.
  • the non-AP STA MLD in EMLSR mode needs to listen under all activated connections, but there may be connections to which the TID is not mapped in all activated
  • FIG. 2 is a flowchart illustrating a communication method according to an embodiment of the present disclosure.
  • the traffic method shown in Figure 2 can be applied to stations supporting multi-connection communication (for example, non-AP STA MLD).
  • listening may be performed under at least one connection to which a TID in a plurality of connections is mapped.
  • the plurality of connections may refer to all activated connections, for example, the activated all connections may be a plurality of connections initially established between the non-AP STA MLD and the AP MLD and available for communication.
  • the listening is only performed under at least one connection to which the TID is mapped, instead of performing listening under all activated connections, so that spectrum resource waste can be avoided.
  • the interception in step 201 may include: interception of a frame indicating that a retransmission operation needs to be performed from the AP MLD, for example.
  • the listening in step 201 may include: listening to the initial transmission of the data frame, for example, as shown in FIG. 4 and FIG. Whether the transfer under at least one connection was successful.
  • step 202 it may be determined whether the data frame needs to be retransmitted according to the listening result. For example, when it is detected that a retransmission operation is required in the detected frame, it may be determined that the data frame needs to be retransmitted; or when it is detected that the transmission of the data frame is unsuccessful, it may be determined that the data frame needs to be retransmitted.
  • the non-AP STA MLD receives information indicating that the transmission of the data frame failed, or does not receive feedback for the downlink data frame (for example, an acknowledgment (ACK) frame) after a timeout, the data frame can be determined The transfer of was unsuccessful.
  • ACK acknowledgment
  • the non-AP STA MLD In the transmission of the uplink data frame, if the non-AP STA MLD is interrupted due to a communication failure when receiving the data frame, or there is an error in the received data frame, or the data frame is not received over time, it can be determined that the transmission of the data frame is not correct. success.
  • the examples of unsuccessful transmission of the downlink data frame and/or uplink data frame listed here are only illustrative, rather than limiting the present disclosure, and other methods, conditions or factors that can determine whether the transmission of the data frame is successful are also included within the scope of this disclosure.
  • the retransmission of the data frame can be realized by listening to the reception of the first message frame (the control frame from the AP MLD).
  • the non-AP STA MLD may monitor the reception of the first message frame.
  • the non-AP STA MLD may listen for the reception of the first message frame under at least one connection mapped by the TID.
  • the first message frame may be an initial control frame (initial control frame) sent by the AP MLD.
  • the first message frame (for example, an initial control frame) may include identification information indicating that the data frame needs to be retransmitted.
  • the first message frame (for example, initial control frame) may include, for example but not limited to, a retransmission (Retry) subfield as the identification information; when the subfield is set to a specific value (for example, but not limited to "1") , it means that the data frame needs to be retransmitted.
  • the first message frame (for example, the initial control frame) may also include communication information required for transmitting the data frame, such as but not limited to, information such as the number of spatial streams (NSS: number of spatial streams).
  • the non-AP STA MLD may retransmit the data frame under the connection receiving the first message frame. Since the identification information carried by the first message frame indicates that the retransmission of the data frame is required, when receiving the first message frame, the non-AP STA MLD can determine that the retransmission of the data frame is required.
  • Data frames may be retransmitted under the connection on which the first message frame (eg, the initial control frame) was received.
  • the communication method shown in FIG. 3 may be applicable to the retransmission of uplink data frames and downlink data frames.
  • the non-AP STA MLD supporting EMLSR can listen to the initial control frame sent by the AP MLD according to the conditions of the connection to which the TID is mapped. For example, if a non-AP STA MLD in EMLSR mode supports multiple connections, and multiple connections are active, but the TID is only mapped to one or some of the connections, then the non-AP in EMLSR mode STA MLD only needs to listen under the connection whose TID is mapped to receive the initial control frame sent by AP MLD, instead of listening to the initial control frame under all activated multiple connections, and then receiving the initial control frame Receive/send retransmitted data frames under the connection.
  • the initial control frame may carry information such as NSS required to transmit the data frame.
  • the non-AP STA MLD may also negotiate with the AP MLD for other connections for retransmitting data frames.
  • the retransmission can be realized in the case of simplified signaling interaction, for example, without Additional signaling to negotiate a connection for retransmission of data frames.
  • the retransmission of the data frame can be realized by monitoring the initial transmission of the data frame. In other words, it may be monitored whether the transmission of the data frame under at least one connection to which the TID is mapped is successful, so as to determine whether retransmission of the data frame is required.
  • the non-AP STA MLD may send data frames to the AP MLD.
  • the sending of the data frame in this step may refer to the initial transmission of the data frame.
  • the non-AP STA MLD may send the data frame under the corresponding connection to which the TID is mapped.
  • the non-AP STA MLD may receive a third message frame from the AP MLD (S440).
  • the non-AP STA MLD or AP MLD may determine that the data frame transmission is not successful, and feed back information (not shown) that the data transmission is not successful to the other party.
  • the third message frame may include an information identifier of a connection for retransmitting the data frame, where the connection for retransmitting the data frame is determined by an access point supporting multi-connection communication (S430) .
  • the third message frame may be transmitted under any connection to which the TID is mapped.
  • the third message frame may be a feedback frame for a data frame sent by the non-AP STA MLD, for example, an ACK frame.
  • the third message frame (for example, ACK frame) may carry the identification information of the connection determined by the AP MLD for retransmitting the data frame.
  • the present disclosure is not limited thereto, and the third message frame may be any type of frame.
  • the identification information of the connection used to retransmit the data frame may be carried in the form of a connection group identification (link set).
  • the link set identifier (link set) may include a plurality of bits (for example, the number of bits of the link set identifier can be determined according to the situation where the TID is mapped to the connection), and the bit corresponding to the link used to retransmit the data frame A bit may be set to a particular value (such as, but not limited to, "1").
  • the identification information of the connection used to retransmit the data frame may be carried in a separate connection identification (link ID).
  • the link ID (link ID) may refer to combined information of working frequency spectrum, bandwidth/channel, BSSID (basis service set identifier) and the like.
  • AP MLD can be based on various information (such as but not limited to, the situation of the connection to which the TID is mapped, the load information of the connection, the status information, the bandwidth information, the network situation, the hardware capability, the service type, the related protocol provisions, etc.) to determine the connection used to retransmit data frames.
  • various information such as but not limited to, the situation of the connection to which the TID is mapped, the load information of the connection, the status information, the bandwidth information, the network situation, the hardware capability, the service type, the related protocol provisions, etc.
  • step S440 the non-AP STA MLD can know/determine the connection used to retransmit the data frame through the connection identification information carried in the third message frame, and perform data retransmission under the connection.
  • the communication method shown in FIG. 4 is described by taking the transmission of uplink data frames as an example, the present disclosure is not limited thereto.
  • the communication method shown in FIG. 4 can also be applied to the transmission of downlink data frames.
  • the non-AP STA MLD and AP MLD in EMLSR mode can determine the connection for retransmission after the initial interaction of the data frame is completed, specifically: the connection for retransmission can be determined in the reply ACK frame , for example, the determined connection can be a link set (according to the situation where the TID is mapped to the connection), for example, the corresponding bit is set to 1, or it can be in the form of link ID, so as to identify the receiving/sending under the determined connection Retransmit data frame.
  • FIG. 5 an embodiment of a connection for retransmitting data frames negotiated between a non-AP STA MLD and an AP MLD is shown.
  • the communication method shown in FIG. 5 is described as an example of transmission of downlink data frames, the present disclosure is not limited thereto, and the communication method shown in FIG. 5 may also be applied to transmission of uplink data frames.
  • the non-AP STA MLD can receive the data frame sent from the AP MLD when the TID is mapped to the corresponding connection; if the non-AP STA MLD is interrupted due to a communication failure when receiving the data frame, or the received data frame If there is an error, or the data frame is not received within a timeout, it may be determined that the transmission of the data frame is unsuccessful (S520).
  • the non-AP STA MLD may determine a connection for retransmitting the data frame.
  • the non-AP STA MLD can obtain information about each connection (such as but not limited to, the connection to which the TID is mapped) from the AP MLD during the process of establishing an initial association connection with the AP MLD or the process of establishing multiple connections. conditions, connection load information, status information, bandwidth information, network conditions, hardware capabilities, service types, related protocol regulations, etc.), and in step S530, the non-AP STA MLD can determine the A connection to transmit data frames.
  • the non-AP STA MLD may send a second message frame, wherein the second message frame may include identification information of the determined connection, for example, in the form of link set or link ID as described with reference to FIG. 4 Identification information.
  • the non-AP STA MLD may send the second message frame under any connection to which the TID is mapped.
  • the AP MLD can parse the second message frame, and obtain the connection for retransmission determined by the non-AP STA MLD, so as to determine whether the connection is available. If the AP MLD is determined by the non -The connection determined by the AP STA MLD cannot be used for retransmission, then the AP MLD can determine/recommend a connection that can be used for retransmission (step S560), and carry the information of the recommended connection in the third message frame to send / Feedback to non-AP STA MLD (step S570). In this case, the non-AP STA MLD can use the connection recommended by the AP MLD to retransmit the data frame.
  • step S550 the AP MLD determines that the connection for retransmission determined by the non-AP STA MLD is available, steps S560 and S570 may be omitted.
  • the flexibility of the device can be improved, so as to effectively retransmit the data frames.
  • FIG. 6 is a flowchart illustrating another communication method according to an embodiment of the present disclosure.
  • the communication method shown in FIG. 6 can be applied to an access point supporting multi-connection communication.
  • a first message frame may be determined, wherein the first message frame may include: identification information indicating that the data frame needs to be retransmitted and/or identification information of a connection for retransmission of the data frame.
  • the first message frame may be sent under at least one connection to which the TID is mapped among the plurality of connections.
  • the first message frame may be, for example but not limited to, an initial control frame.
  • the first message frame may further include: communication information required for transmitting the data frame.
  • the retransmission of the data frame may be performed under the connection sending the first message frame (for example, receiving/sending the retransmitted data frame under the connection sending the initial control frame). That is to say, the method shown in FIG. 6 may correspond to the operations performed by the AP MLD in FIG. 3 , and for the sake of brevity, repeated descriptions are omitted here.
  • the first message frame may correspond to the third message frame described with reference to FIGS. 4 and 5 . That is to say, the method shown in FIG. 6 may correspond to the operations performed by the AP MLD in FIG. 4 and FIG. 5 , and repeated descriptions are omitted here for the sake of brevity.
  • the AP MLD may receive a second message frame, wherein the second message frame includes a link for retransmitting the data frame.
  • Identification information (link set or link ID), where the connection for retransmitting the data frame is determined by the station (non-AP STA MLD) that supports multi-connection communication.
  • the AP MLD may determine the connection used to retransmit the data frame, and carry its identification information in the third message frame to send to the non-AP STA MLD.
  • the identification information indicating that the data frame needs to be retransmitted and the identification information of the connection used to retransmit the data frame are respectively carried in different frames
  • the present disclosure is not limited thereto, and the same message frame may Both of them are carried in , that is, the connection for retransmission can be determined at the same time as retransmission is indicated.
  • FIG. 7 is a block diagram illustrating a communication device according to an embodiment of the present disclosure.
  • a communication device 700 may include a processing module 710 and a transceiving module 720 .
  • the communication device shown in FIG. 7 can be applied to non-AP STA MLD or AP MLD.
  • the transceiver module 720 may be configured to: listen under at least one connection to which the TID in multiple connections is mapped; the processing module 710 may It is configured to: determine whether to retransmit the data frame according to the listening result.
  • the communication device 700 may perform the communication method described with reference to FIG. 2 and the operations performed by the non-AP STA MLD in FIGS. 3 to 5 , and repeated descriptions are omitted here for brevity.
  • the processing module 710 may be configured to: determine a first message frame, wherein the first message frame includes identification information indicating that a data frame needs to be retransmitted and/or is used The identification information of the connection used to retransmit the data frame; the transceiver module 720 may be configured to: send the first message frame under at least one connection to which the TID among the multiple connections is mapped.
  • the communication device 700 may perform the communication method described with reference to FIG. 6 and the operations performed by the AP MLD in FIGS. 3 to 5 , and repeated descriptions are omitted here for brevity.
  • the communication device 700 shown in FIG. 7 is only exemplary, and embodiments of the present disclosure are not limited thereto.
  • the communication device 700 may also include other modules, such as a memory module.
  • various modules in the communication device 700 may be combined into more complex modules, or may be divided into more individual modules.
  • the communication method and communication device enable data to be retransmitted under multiple connections, thereby improving frequency spectrum utilization.
  • the embodiments of the present disclosure also provide an electronic device, which includes a processor and a memory; wherein, the memory stores machine-readable instructions (may also be referred to as the “computer program”); a processor for executing machine-readable instructions to implement the methods described with reference to FIGS. 2-6 .
  • the memory stores machine-readable instructions (may also be referred to as the “computer program”); a processor for executing machine-readable instructions to implement the methods described with reference to FIGS. 2-6 .
  • Embodiments of the present disclosure also provide a computer-readable storage medium, on which a computer program is stored.
  • a computer program is stored.
  • the methods described with reference to FIGS. 2 to 6 are implemented.
  • a processor may be used to implement or execute various exemplary logical blocks, modules and circuits described in conjunction with the present disclosure, for example, CPU (Central Processing Unit, central processing unit), general processing DSP (Digital Signal Processor, Data Signal Processor), ASIC (Application Specific Integrated Circuit, Application Specific Integrated Circuit), FPGA (Field Programmable Gate Array, Field Programmable Gate Array) or other programmable logic devices, transistor logic devices, hardware components or any combination thereof.
  • the processor may also be a combination that realizes computing functions, for example, a combination of one or more microprocessors, a combination of DSP and a microprocessor, and the like.
  • the memory may be, for example, ROM (Read Only Memory, Read Only Memory), RAM (Random Access Memory, Random Access Memory), EEPROM (Electrically Erasable Programmable Read Only Memory, Electrically Erasable Programmable Only Memory) read memory), CD-ROM (Compact Disc Read Only Memory, read-only disc) or other optical disc storage, optical disc storage (including compact disc, laser disc, optical disc, digital versatile disc, Blu-ray disc, etc.), magnetic disk storage medium or other magnetic A storage device, or any other medium that can be used to carry or store program code in the form of instructions or data structures and that can be accessed by a computer, but is not limited thereto.
  • ROM Read Only Memory, Read Only Memory
  • RAM Random Access Memory
  • EEPROM Electrically Erasable Programmable Only Memory
  • CD-ROM Compact Disc Read Only Memory, read-only disc
  • optical disc storage including compact disc, laser disc, optical disc, digital versatile disc, Blu-ray disc, etc.
  • magnetic disk storage medium or other magnetic A storage device or any other medium that

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提供一种多连接下的通信方法和通信装置。该通信方法应用于支持多连接通信的站点,包括:在多个连接中的通信标识TID被映射到的至少一个连接下进行侦听(210);根据侦听结果,确定是否需要重传数据帧(220)。本公开的实施例提供的技术方案使得数据能够在多连接下进行重传,提高频谱利用率。

Description

多连接下的通信方法和通信装置 技术领域
本公开涉及无线通信领域,更具体地说,涉及多连接下的通信方法和通信装置。
背景技术
目前的Wi-Fi技术所研究的范围为:320MHz的带宽传输、多个频段的聚合及协同等,期望能够相对于现有的标准提高至少四倍的速率以及吞吐量,其主要的应用场景为视频传输、AR(Augmented Reality,增强现实)、VR(Virtual Reality,虚拟现实)等。
多个频段的聚合及协同是指设备间同时在2.4GHz、5GHz及6GHz等的频段下进行通信,对于设备间同时在多个频段下通信需要定义新的MAC(Media Access Control,介质访问控制)机制来进行管理。此外,还期望多频段的聚合及协同能够支持低时延传输。
目前多频段的聚合及系统技术中将支持的最大带宽为320MHz(160MHz+160MHz),此外还可能会支持240MHz(160MHz+80MHz)及其它带宽。
在目前的技术中,站点(STA:Station)和接入点(AP:Access Point)可以是多连接设备(MLD:multi-link device),即,支持在同一时刻能够在多连接下同时发送和/或接收的功能。因此,在目前的技术中,STA与AP之间可以存在多个连接,并且正在对这两种设备在多连接下的通信进行研究。
发明内容
本公开的各方面将至少解决上述问题和/或缺点。本公开的各种实施例提供以下技术方案:
根据本公开的示例实施例提供一种多连接下的通信方法。所述通信方法可以应用于支持多连接通信的站点,并且包括:在多个连接中的通信标识TID被映射到的至少一个连接下进行侦听;根据侦听结果,确定是否需要重传数据帧。
根据本公开的示例实施例提供一种多连接下的通信方法。所述通信方法可以应用于支持多连接通信的接入点,并且包括:确定第一消息帧,其中,所述第一消息帧包括:指示需要重传数据帧的标识信息和/或用于重传所述数据帧的连接的标识信息;在多个连接中的通信标识TID被映射到的至少一个连接下发送所述第一消息帧。
根据本公开的示例实施例提供一种多连接下的通信装置。所述通信装置可以应用于支持多连接通信的站点,并且包括:收发模块,被配置为:在多个连接中的通信标识TID被映射到的至少一个连接下进行侦听;处理模块,被配置为:根据侦听结果,确定是否需要重传的数据帧。
根据本公开的示例实施例提供一种多连接下的通信装置。所述通信装置可以应用于支持多连接通信的接入点,并且包括:处理模块,被配置为:确定第一消息帧,其中,所述第一消息帧包括指示需要重传数据帧的标识信息和/或用于重传所述数据帧的连接的标识信息;收发模块,被配置为:在多个连接中的通信标识TID被映射到的至少一个连接下发送所述第一消息帧。
根据本公开的示例实施例提供了一种电子装置。所述电子装置包括存储器、处理器及存储在所述存储器上并在所述处理器上可运行的计算机程序。所述处理器执行所述计算机程序时实现如上所述的方法。
根据本公开的示例实施例提供了一种计算机可读存储介质。所述计算机可读存储介质上存储有计算机程序。该计算机程序被处理器执行时实现如上所述的方法。
本公开的示例实施例提供的技术方案使得数据能够在多连接下进行重传,提高频谱利用率。
附图说明
通过参照附图详细描述本公开的示例实施例,本公开实施例的上述以及其他特征将更加明显,其中:
图1是示出多连接下的通信场景的示例性示图;
图2是示出根据本公开实施例的通信方法的流程图;
图3是示出根据本公开实施例的通信方法的详细流程图;
图4是示出根据本公开实施例的通信方法的详细流程图;
图5是示出根据本公开实施例的通信方法的详细流程图;
图6是示出根据本公开实施例的另一通信方法的流程图;
图7示出根据本公开的实施例的通信装置的框图。
具体实施方式
提供以下参照附图的描述,以帮助全面理解由所附权利要求及其等同物限定的本公开的各种实施例。本公开的各种实施例包括各种具体细节,但是这些具体细节仅被认为是示例性的。此外,为了清楚和简洁,可以省略对公知的技术、功能和构造的描述。
在本公开中使用的术语和词语不限于书面含义,而是仅被发明人所使用,以能够清楚和一致的理解本公开。因此,对于本领域技术人员而言,提供本公开的各种实施例的描述仅是为了说明的目的,而不是为了限制的目的。
应当理解,除非上下文另外清楚地指出,否则这里使用的单数形式“一”、“一个”、“所述”和“该”也可以包括复数形式。应该进一步理解的是,本公开中使用的措辞“包括”是指存在所描述的特征、整数、步骤、操作、元件和/或组件,但是并不排除存在或添加一个或多个其他特征、整数、步骤、操作、元件、组件和/或它们的组。
将理解的是,尽管术语“第一”、“第二”等在本文中可以用于描述各种元素,但是这些元素不应受这些术语的限制。这些术语仅用于将一个元素与另一个元素区分开。因此,在不脱离示例实施例的教导的情况下,下面讨论的第一元素可以被称为第二元素。
应该理解,当元件被称为“连接”或“耦接”到另一元件时,它可以直接连接或耦接到其他元件,或者也可以存在中间元件。此外,这里使用 的“连接”或“耦接”可以包括无线连接或无线耦接。这里使用的术语“和/或”或者表述“……中的至少一个/至少一者”包括一个或多个相关列出的项目的任何和所有组合。
除非另外定义,这里使用的所有术语(包括技术术语和科学术语),具有与本公开所属领域中的普通技术人员的一般理解相同的意义。此外,下面所描述的本公开不同实施方式中所涉及的技术特征只要彼此之间未构成冲突就可以相互结合。
图1是示出多连接下的通信场景的示例性示图。
在无线局域网中,一个基本服务集(BSS)可以由AP以及与AP通信的一个或多个站点(STA)构成。一个基本服务集可以通过其AP连接到分配系统DS(Distribution System),然后再接入到另一个基本服务集,构成扩展的服务集ESS(Extended Service Set)。
AP是用于无线网络的无线交换机,也是无线网络的核心。AP设备可以用作无线基站,主要是用来连接无线网络及有线网络的桥接器。利用这种接入点AP,可以整合有线及无线网络。
AP可以包括软件应用和/或电路,以使无线网络中的其他类型节点可以通过AP与无线网络外部及内部进行通信。在一些示例中,作为示例,AP可以是配备有Wi-Fi(Wireless Fidelity,无线保真)芯片的终端设备或网络设备。
作为示例,站点(STA)可以包括但不限于:蜂窝电话、智能电话、可穿戴设备、计算机、个人数字助理(PDA)、个人通信系统(PCS)设备、个人信息管理器(PIM)、个人导航设备(PND)、全球定位系统、多媒体设备、物联网(IoT)设备等。
在本公开的示例实施例中,AP和STA可以支持多连接的设备,例如,可以被分别表示为AP MLD和non-AP STA MLD。为了便于描述,在下文中,主要描述一个AP与一个STA在多连接下进行通信的示例,然而,本公开的示例实施例不限于此。
在图1中,仅作为示例性的,AP MLD可以表示支持多连接通信功能的接入点,non-AP STA MLD可以表示支持多连接通信功能的站点。参照图1,AP MLD可以工作在三个连接下,如图1所示的AP1、AP2和AP3,non-AP STA  MLD也可以工作在三个连接下,如图1所示的STA1、STA2和STA3。在图1的示例中,假设AP1与STA1通过对应的第一连接Link 1进行通信,类似地,AP2和AP3分别通过第二连接Link 2和第三连接Link 3与STA2和STA3进行通信。此外,Link 1至Link 3可以是不同频率下的多个连接,例如,2.4GHz、5GHz、6GHz下的连接等,或2.4GHz、5GHz、6GHz下的几个相同或不同带宽的连接。此外,在每个连接下可以存在多个信道。然而,应该理解的是,图1所示的通信场景仅是示例性的,本发明构思不限于此,例如,AP MLD可以连接到多个non-AP STA MLD,或者在每个连接下,AP可以与多个其他类型的站点进行通信。
在极高吞吐量(EHT:extreme high-throughput)通信中,如果一个MLD已经与另一个MLD建立了针对通信标识(TID:traffic identifier)的块确认协议,并且在一个连接下,TID的数据帧(例如,QoS数据帧)的传输不成功,并且如果该数据帧不是片段(fragment),则MLD可以尝试在TID映射到的任意连接上重传该数据帧。
non-AP STA MLD可以在EMLSR(增强型多连接单无线通信:enhanced–multilink single radio)模式下与支持EMLSR模式的AP MLD进行通信,其中,EMLSR模式是指non-AP STA MLD在某一时刻只能在一个连接下与AP MLD通信,但可以在多个连接下进行信道的侦听。
具体地,在EMLSR模式下,如果需要重传数据帧,则non-AP STA MLD首先接在一个连接下收初始控制帧(initial control frame),并且在这个连接下进行数据帧的交互,在数据帧交互完成之前不能够在其他连接下进行传输或接收,在数据帧交互完成之后,可以在已激活的全部连接下进行侦听。此外,在EHT通信中,存在着TID映射到连接的机制,即,具有相同的TID的数据可以映射到至少一个连接下进行传输。此外,具有相同TID的数据帧也可以在不同的连接下进行重传。然而,在现有技术中,处于EMLSR模式的non-AP STA MLD需要在已激活的全部连接下进行侦听,但是已激活的全部连接中可能存在着TID没有映射到的连接,这会造成频谱利用率降低和功耗增加。
图2是示出根据本公开实施例的通信方法的流程图。图2所示的通行方法可以应用于支持多连接通信的站点(例如,non-AP STA MLD)。
参照图2,在步骤201中,可以在多个连接中的TID被映射到的至少一个 连接下进行侦听。根据示例实施例,多个连接可以是指已激活的全部连接,例如,已激活的全部连接可以是在non-AP STA MLD与AP MLD之间初始建立的可用于通信的多个连接。在本公开的实施例中,仅在TID所映射到的至少一个连接下进行侦听,而不是在已激活的全部连接下进行侦听,从而可以避免频谱资源浪费。根据本公开的实施例,步骤201中的侦听可以包括:对来自AP MLD的指示需要进行重传操作的帧的侦听,例如。如图3所示,可以侦听第一消息帧的接收。根据本公开的另一实施例,步骤201中的侦听可以包括:对数据帧的初始传输情况的侦听,例如,如图4和图5所示,可以侦听数据帧在TID映射到的至少一个连接下的传输是否成功。
在步骤202中,可以根据侦听结果,确定是否需要重传数据帧。例如,当侦听到的帧中标识了需要进行重传操作时,可以确定需要重传数据帧;或者当侦听到数据帧的传输不成功时,可以确定需要重传数据帧。在下行数据帧的传输中,如果non-AP STA MLD接收到指示数据帧传输失败的信息,或者超时未接收到对于下行数据帧的反馈(例如,确认(ACK)帧)时,可以确定数据帧的传输不成功。在上行数据帧的传输中,如果non-AP STA MLD在接收数据帧时因通信故障而中断,或者接收到的数据帧存在错误,或者超时未接收到数据帧,则可以确定数据帧的传输不成功。然而,在此列举的下行数据帧和/或上行数据帧的传输不成功的示例仅是说明性的,而不是对本公开的限制,能够判定数据帧的传输是否成功的其他方法、条件或因素也包含在本公开的范围内。
下面将参照图3至图5详细描述根据本公开的实施例的通信方法。
参照图3,可以通过侦听第一消息帧(来自AP MLD的控制帧)的接收,来实现数据帧的重传。
具体地,在步骤S310中,non-AP STA MLD可以侦听第一消息帧的接收。例如,non-AP STA MLD可以在TID映射的至少一个连接下侦听第一消息帧的接收。例如,第一消息帧可以是由AP MLD发送的初始控制帧(initial control frame)。根据本公开的实施例,第一消息帧(例如,初始控制帧)可以包括指示需要重传数据帧的标识信息。第一消息帧(例如,初始控制帧)可以包括,例如但不限于,重传(Retry)子域作为该标识信息;当该子域被设置为特定值(例如,但不限于“1”)时,表示需要进行数据帧的重传。根据本公开的实施例,第一消息帧(例如,初始控制帧)还可以包括传输数 据帧需要的通信信息,例如但不限于,空间流数量(NSS:number of spatial stream)等信息。
在步骤S330中,响应于接收到第一消息帧,non-AP STA MLD可以在接收到第一消息帧的连接下进行数据帧的重传。由于第一消息帧携带的标识信息指示需要进行数据帧的重传,因此,在接收到第一消息帧时,non-AP STA MLD可以确定需要进行数据帧的重传,在该实施例中,可以在接收到第一消息帧(例如,初始控制帧)的连接下重传数据帧。此外,将理解,图3所示的通信方法可以适用于上行数据帧和下行数据帧的重传。
根据本公开的实施例,支持EMLSR的non-AP STA MLD可以根据TID所映射到的连接的情况,来侦听AP MLD发送的初始控制帧。例如,如果处于EMLSR模式的non-AP STA MLD支持多个连接,并且多个连接处于激活状态,但是TID仅映射到多个连接中的某个或某些连接,则处于EMLSR模式的non-AP STA MLD只需要在TID进行了映射的连接下进行侦听,以接收AP MLD发送的初始控制帧,而不需要在所有激活的多个连接下侦听初始控制帧,然后在接收到初始控制帧的连接下接收/发送重传的数据帧。例如,初始控制帧可以携带传输数据帧所需的NSS等信息。然而,将理解,本公开不限于此,例如,在侦听第一消息帧的情况下,non-AP STA MLD也可以与AP MLD协商用于重传数据帧的其他连接。
在本公开的实施例中,通过在接收到第一消息帧(例如,初始控制帧)的连接下进行数据帧的重传,可以在精简信令交互的情况下实现重传,例如,不需要额外的信令来协商用于重传数据帧的连接。
参照图4,可以通过侦听数据帧的初始传输情况,来实现数据帧的重传。换言之,可以侦听数据帧在TID映射到的至少一个连接下的传输是否成功,从而判定是否需要进行数据帧的重传。
在步骤S410中,non-AP STA MLD可以向AP MLD发送数据帧。该步骤中的数据帧的发送可以指数据帧的初始传输。例如,根据本公开的实施例,non-AP STA MLD可以在TID所映射到的相应连接下发送该数据帧。
响应于数据帧的传输未成功(步骤S420),则non-AP STA MLD可以从AP MLD接收第三消息帧(S440)。根据本公开的实施例,可以由non-AP STA MLD或AP MLD确定数据帧传输未成功,并且向对方反馈数据未传 输成功的信息(未示出)。根据本公开的实施例,第三消息帧可以包括用于重传数据帧的连接的信息标识,其中,用于重传数据帧的连接是由支持多连接通信的接入点确定的(S430)。例如,根据本公开的实施例,第三消息帧可以在TID所映射到的任意连接下被传输。
在本公开的实施例中,第三消息帧可以是针对non-AP STA MLD发送的数据帧的反馈帧,例如,ACK帧。第三消息帧(例如,ACK帧)可以携带由AP MLD确定的用于重传数据帧的连接的标识信息。然而,本公开不限于此,第三消息帧可以具有是任何类型的帧。
根据本公开的实施例,用于重传数据帧的连接的标识信息可以以连接组标识(link set)的方式被携带。例如,连接组标识(link set)可以包括多个比特位(例如,根据TID映射到连接的情况可以确定出连接组标识的比特位数目),并且用于重传数据帧的连接所对应的比特位可以被设置为特定值(例如但不限于“1”)。根据本公开的另一实施例,用于重传数据帧的连接的标识信息可以以单独的连接标识(link ID)的方式被携带。例如,连接标识(link ID)可以指工作频谱、带宽/信道以及BSSID(basis service set identifier)等的组合信息。
根据本公开的实施例,AP MLD可以根据各种信息(例如但不限于,TID映射到的连接的情况、连接的负载信息、状态信息、带宽信息、网络情况、硬件能力、业务类型、相关协议规定等)来确定用于重传数据帧的连接。
在步骤S440中,non-AP STA MLD可以通过第三消息帧中携带的连接的标识信息,获知/确定用于重传数据帧的连接,并且在该连接下进行数据的重传。
虽然图4所示的通信方法是以上行数据帧的传输为例进行的描述,但是本公开不限于此,图4所示的通信方法也可以应用于下行数据帧的传输。
根据本公开的实施例,处于EMLSR模式的non-AP STA MLD与AP MLD可以在数据帧初始交互完成之后,确定重传的连接,具体地:可以在回复的ACK帧中,确定重传的连接,例如,可以所确定的连接可以为link set(根据TID映射到连接的情况),例如,对应的比特位设置为1,或者可以为link ID的形式,从而标识在确定的连接下接收/发送重传数据帧。
根据本公开的实施例,通过另外地确定用于重传数据帧的连接,可以有效地利用多个连接进行重传,提高设备的适应性。
参照图5,示出了在non-AP STA MLD与AP MLD之间协商用于重传数据帧的连接的实施例。虽然图5所示的通信方法是以下行数据帧的传输为例进行的描述,但是本公开不限于此,图5所示的通信方法也可以应用于上行数据帧的传输。
在步骤S510中,non-AP STA MLD可以在TID映射到相应连接下接收从AP MLD发送的数据帧;如果non-AP STA MLD在接收数据帧时因通信故障而中断,或者接收到的数据帧存在错误,或者超时未接收到数据帧,则可以确定数据帧的传输不成功(S520)。
在步骤S530中,响应于数据帧的传输未成功,non-AP STA MLD可以确定用于重传数据帧的连接。根据本公开的实施例,non-AP STA MLD可以在与AP MLD建立初始关联连接过程或者建立多连接过程等中,从AP MLD获得关于各个连接的信息(例如但不限于,TID映射到的连接的情况、连接的负载信息、状态信息、带宽信息、网络情况、硬件能力、业务类型、相关协议规定等),并且在步骤S530中,non-AP STA MLD可以根据获得的信息来确定用于重传数据帧的连接。
在步骤S540中,non-AP STA MLD可以发送第二消息帧,其中,第二消息帧可以包括所确定的连接的标识信息,例如,具有如参照图4所描述的link set或link ID形式的标识信息。根据本公开的实施例,non-AP STA MLD可以在TID所映射到的任意连接下发送第二消息帧。
在步骤S550中,AP MLD可以解析第二消息帧,并获得由non-AP STA MLD所确定的用于重传的连接,以确定该连接是否可用。如果AP MLD根据当前的通信状况(例如但不限于,TID映射到的连接的情况、连接的负载信息、状态信息、带宽信息、网络情况、硬件能力、业务类型、相关协议规定等)确定由non-AP STA MLD所确定的连接不可用于重传,则AP MLD可以确定/推荐可以用于重传的连接(步骤S560),并且将推荐的连接的信息携带在第三消息帧中,以发送/反馈给non-AP STA MLD(步骤S570)。此情况下,non-AP STA MLD可以利用由AP MLD推荐的连接,来进行数据帧的重传。
如果在步骤S550中,AP MLD确定由non-AP STA MLD所确定的用于重传的连接是可用的,则可以省略步骤S560和步骤S570。
根据本公开的实施例,通过在non-AP STA MLD与AP MLD之间协商用于重传数据帧的连接,可以提高设备的灵活性,从而有效地进行数据帧的重传。
图6是示出根据本公开实施例的另一通信方法的流程图。图6所示的通信方法可以应用于支持多连接通信的接入点。
参照图6,在步骤610中,可以确定第一消息帧,其中,第一消息帧可以包括:指示需要重传数据帧的标识信息和/或用于重传数据帧的连接的标识信息。在步骤620中,可以在多个连接中的TID被映射到的至少一个连接下发送第一消息帧。
在第一消息帧包括指示需要重传数据帧的标识信息的情况下,第一消息帧可以是,例如但不限于,初始控制帧。在此情况下,第一消息帧还可以包括:传输数据帧需要的通信信息。此外,可以在发送第一消息帧的连接下,进行数据帧的重传(例如,在发送初始控制帧的连接下接收/发送重传的数据帧)。也就是说,图6所示的方法可以对应于图3中的由AP MLD执行的操作,为了简明,在此省略重复的描述。
在第一消息帧包括指示需要重传数据帧的标识信息的情况下,第一消息帧可以对应于参照图4和图5中描述的第三消息帧。也就是说,图6所示的方法可以对应于图4和图5中由AP MLD执行的操作,为了简明,在此省略重复的描述。
在一个实施例中,如图5的步骤S540所示,响应于数据帧的初始传输不成功,AP MLD可以接收第二消息帧,其中,第二消息帧包括用于重传数据帧的连接的标识信息(link set或link ID),其中,重传数据帧的连接是由支持多连接通信的站点(non-AP STA MLD)确定的。
在另一实施例中,如图4的步骤S430和S440以及图5的步骤S560和S570所示,AP MLD可以确定用于重传数据帧的连接,并且将其标识信息携带在第三消息帧中,以发送到non-AP STA MLD。
虽然在上述的实施例中,指示需要重传数据帧的标识信息以及用于重传数据帧的连接的标识信息分别被携带在不同的帧中,但是本公开不限于此,可以在同一消息帧中携带他们二者,即,可以在指示重传的同时,确定用于重传的连接。
图7是示出根据本公开的实施例的通信装置的框图。
参照图7,通信装置700可以包括处理模块710和收发模块720。图7所示的通信装置可以应用于non-AP STA MLD或者AP MLD。
在图7所示的通信装置应用于non-AP STA MLD的情况下,收发模块720可以被配置为:在多个连接中的TID被映射到的至少一个连接下进行侦听;处理模块710可以被配置为:根据侦听结果,确定是否需要重传的数据帧。在此情况下,通信装置700可以执行参照图2所描述的通信方法以及图3至图5中由non-AP STA MLD执行的操作,为了简明,在此省略重复的描述。
在图7所示的通信装置应用于AP MLD的情况下,处理模块710可以被配置为:确定第一消息帧,其中,第一消息帧包括指示需要重传数据帧的标识信息和/或用于重传数据帧的连接的标识信息;收发模块720可以被配置为:在多个连接中的TID被映射到的至少一个连接下发送第一消息帧。在此情况下,通信装置700可以执行参照图6所描述的通信方法以及图3至图5中由AP MLD执行的操作,为了简明,在此省略重复的描述。
此外,图7所示的通信装置700仅是示例性的,本公开的实施例不限于此,例如,通信装置700还可以包括其他模块,例如,存储器模块等。此外,通信装置700中的各个模块可以组合成更复杂的模块,或者可以划分为更多单独的模块。
根据本公开的实施例的通信方法和通信装置使得数据能够在多连接下进行重传,提高频谱利用率。
基于与本公开的实施例所提供的方法相同的原理,本公开的实施例还提供了一种电子装置,该电子装置包括处理器和存储器;其中,存储器中存储有机器可读指令(也可以称为“计算机程序”);处理器,用于执行机器可读指令以实现参照图2至图6描述的方法。
本公开的实施例还提供了一种计算机可读存储介质,该计算机可读存储介质上存储有计算机程序,计算机程序被处理器执行时实现参照图2至图6描述的方法。
在示例实施例中,处理器可以是用于实现或执行结合本公开内容所描述的各种示例性的逻辑方框、模块和电路,例如,CPU(Central Processing Unit,中央处理器)、通用处理器、DSP(Digital Signal Processor,数据信号处理器)、ASIC(Application Specific Integrated Circuit,专用集成电 路)、FPGA(Field Programmable Gate Array,现场可编程门阵列)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合、DSP和微处理器的组合等。
在示例实施例中,存储器可以是,例如,ROM(Read Only Memory,只读存储器)、RAM(Random Access Memory,随机存取存储器)、EEPROM(Electrically Erasable Programmable Read Only Memory,电可擦可编程只读存储器)、CD-ROM(Compact Disc Read Only Memory,只读光盘)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的程序代码并能够由计算机存取的任何其他介质,但不限于此。
应该理解的是,虽然附图的流程图中的各个步骤按照箭头的指示依次显示,但是这些步骤并不是必然按照箭头指示的顺序依次执行。除非本文中有明确的说明,这些步骤的执行并没有严格的顺序限制,其可以以其他的顺序执行。此外,附图的流程图中的至少一部分步骤可以包括多个子步骤或者多个阶段,这些子步骤或者阶段并不必然是在同一时刻执行完成,而是可以在不同的时刻执行,其执行顺序也不必然是依次进行,而是可以与其他步骤或者其他步骤的子步骤或者阶段的至少一部分轮流或者交替地执行。
虽然已经参照本公开的某些实施例示出和描述了本公开,但是本领域技术人员将理解,在不脱离本公开的范围的情况下,可以在形式和细节上进行各种改变。因此,本公开的范围不应被限定为受限于实施例,而是应由所附权利要求及其等同物限定。

Claims (17)

  1. 一种多连接下的通信方法,应用于支持多连接通信的站点,所述通信方法包括:
    在多个连接中的通信标识TID被映射到的至少一个连接下进行侦听;
    根据侦听结果,确定是否需要重传数据帧。
  2. 根据权利要求1所述的通信方法,其中,在所述至少一个连接下进行侦听包括:侦听第一消息帧的接收,其中,所述第一消息帧包括指示需要重传所述数据帧的标识信息。
  3. 根据权利要求2所述的通信方法,其中,所述通信方法还包括:
    响应于接收到所述第一消息帧,在接收到所述第一消息帧的连接下进行所述数据帧的重传。
  4. 根据权利要求2或3所述的通信方法,其中,所述第一消息帧还包括:传输所述数据帧需要的通信信息。
  5. 根据权利要求1所述的通信方法,其中,在所述至少一个连接下进行侦听包括:侦听所述数据帧在所述至少一个连接下的传输是否成功。
  6. 根据权利要求5所述的通信方法,其中,所述通信方法还包括:
    响应于所述传输未成功,确定用于重传所述数据帧的连接;
    发送第二消息帧,其中,所述第二消息帧包括所确定的连接的标识信息。
  7. 根据权利要求5或6所述的通信方法,其中,所述通信方法还包括:
    响应于所述传输未成功,接收第三消息帧,其中,所述第三消息帧包 括用于重传所述数据帧的连接的信息标识,其中,所述用于重传所述数据帧的连接是由支持多连接通信的接入点确定的。
  8. 一种多连接下的通信方法,应用于支持多连接通信的接入点,所述通信方法包括:
    确定第一消息帧,其中,所述第一消息帧包括:指示需要重传数据帧的标识信息和/或用于重传所述数据帧的连接的标识信息;
    在多个连接中的通信标识TID被映射到的至少一个连接下发送所述第一消息帧。
  9. 根据权利要求8所述的通信方法,其中,所述通信方法还包括:
    在发送所述第一消息帧的连接下,进行所述数据帧的重传。
  10. 根据权利要求8或9所述的通信方法,其中,所述第一消息帧还包括:传输所述数据帧需要的通信信息。
  11. 根据权利要求8所述的通信方法,其中,所述通信方法还包括:
    接收第二消息帧,其中,所述第二消息帧包括用于重传所述数据帧的连接的标识信息,其中,所述重传所述数据帧的连接是由支持多连接通信的站点确定的。
  12. 根据权利要求8或11所述的通信方法,其中,所述通信方法还包括:确定用于重传所述数据帧的连接。
  13. 根据权利要求12所述的通信方法,其中,所述通信方法还包括:
    发送第三消息帧,其中,所述第三消息帧包括用于标识所确定的连接的标识信息。
  14. 一种多连接下的通信装置,应用于支持多连接通信的站点,所述 通信装置包括:
    收发模块,被配置为:在多个连接中的通信标识TID被映射到的至少一个连接下进行侦听;
    处理模块,被配置为:根据侦听结果,确定是否需要重传的数据帧。
  15. 一种多连接下的通信装置,应用于支持多连接通信的接入点,所述通信装置包括:
    处理模块,被配置为:确定第一消息帧,其中,所述第一消息帧包括指示需要重传数据帧的标识信息和/或用于重传所述数据帧的连接的标识信息;
    收发模块,被配置为:在多个连接中的通信标识TID被映射到的至少一个连接下发送所述第一消息帧。
  16. 一种电子装置,包括存储器、处理器及存储在所述存储器上并在所述处理器上可运行的计算机程序,其中,所述处理器执行所述计算机程序时实现权利要求1至7中的任一项或者权利要求8至13中的任一项所述的方法。
  17. 一种计算机可读存储介质,其中,所述计算机可读存储介质上存储有计算机程序,该计算机程序被处理器执行时实现权利要求1至7中的任一项或者权利要求8至13中的任一项所述的方法。
PCT/CN2021/097325 2021-05-31 2021-05-31 多连接下的通信方法和通信装置 WO2022252027A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2021/097325 WO2022252027A1 (zh) 2021-05-31 2021-05-31 多连接下的通信方法和通信装置
CN202180001554.1A CN115769524A (zh) 2021-05-31 2021-05-31 多连接下的通信方法和通信装置
US18/565,483 US20240298208A1 (en) 2021-05-31 2021-05-31 Multi-link communication method and communication apparatus
EP21943404.0A EP4351054A1 (en) 2021-05-31 2021-05-31 Multi-link communication method and communication apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/097325 WO2022252027A1 (zh) 2021-05-31 2021-05-31 多连接下的通信方法和通信装置

Publications (1)

Publication Number Publication Date
WO2022252027A1 true WO2022252027A1 (zh) 2022-12-08

Family

ID=84323816

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/097325 WO2022252027A1 (zh) 2021-05-31 2021-05-31 多连接下的通信方法和通信装置

Country Status (4)

Country Link
US (1) US20240298208A1 (zh)
EP (1) EP4351054A1 (zh)
CN (1) CN115769524A (zh)
WO (1) WO2022252027A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110199494A (zh) * 2017-01-19 2019-09-03 高通股份有限公司 用于链路聚合建立和重新配置的信令
US20200037288A1 (en) * 2018-08-10 2020-01-30 Po-Kai Huang Block acknowledgement and fragmentation in multi-link communication between multi-link logical entities
US20200359259A1 (en) * 2019-05-10 2020-11-12 Qualcomm Incorporated Multi-link aggregation link management
KR20210004869A (ko) * 2019-07-05 2021-01-13 현대자동차주식회사 멀티 링크 무선랜에서의 다중 전송 방법 및 장치
US20210014776A1 (en) * 2019-07-12 2021-01-14 Qualcomm Incorporated Multi-link communication
WO2021006810A1 (en) * 2019-07-05 2021-01-14 Panasonic Intellectual Property Corporation Of America Communication apparatus and communication method for hybrid automatic repeat request operation
US20210045008A1 (en) * 2019-08-05 2021-02-11 Mediatek Singapore Pte. Ltd. Apparatus and methods of packet retransmission between multi-link devices
CN112788597A (zh) * 2019-10-23 2021-05-11 半导体元件工业有限责任公司 多链路无线通信连接

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AR108456A1 (es) * 2016-05-13 2018-08-22 Ericsson Telefon Ab L M Retransmisión de paquetes en un sistema de comunicaciones inalámbricas

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110199494A (zh) * 2017-01-19 2019-09-03 高通股份有限公司 用于链路聚合建立和重新配置的信令
US20200037288A1 (en) * 2018-08-10 2020-01-30 Po-Kai Huang Block acknowledgement and fragmentation in multi-link communication between multi-link logical entities
US20200359259A1 (en) * 2019-05-10 2020-11-12 Qualcomm Incorporated Multi-link aggregation link management
KR20210004869A (ko) * 2019-07-05 2021-01-13 현대자동차주식회사 멀티 링크 무선랜에서의 다중 전송 방법 및 장치
WO2021006810A1 (en) * 2019-07-05 2021-01-14 Panasonic Intellectual Property Corporation Of America Communication apparatus and communication method for hybrid automatic repeat request operation
US20210014776A1 (en) * 2019-07-12 2021-01-14 Qualcomm Incorporated Multi-link communication
US20210045008A1 (en) * 2019-08-05 2021-02-11 Mediatek Singapore Pte. Ltd. Apparatus and methods of packet retransmission between multi-link devices
CN112788597A (zh) * 2019-10-23 2021-05-11 半导体元件工业有限责任公司 多链路无线通信连接

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MORTEZA MEHRNOUSH (FACEBOOK): "Performance Study of MLO TID Mapping Configurations", IEEE DRAFT; 11-20-1841-01-00BE-PERFORMANCE-STUDY-OF-MLO-TID-MAPPING-CONFIGURATIONS, IEEE-SA MENTOR, PISCATAWAY, NJ USA, vol. 802.11 EHT; 802.11be, no. 1, 25 December 2020 (2020-12-25), Piscataway, NJ USA , pages 1 - 20, XP068175566 *
See also references of EP4351054A4 *

Also Published As

Publication number Publication date
US20240298208A1 (en) 2024-09-05
CN115769524A (zh) 2023-03-07
EP4351054A4 (en) 2024-04-10
EP4351054A1 (en) 2024-04-10

Similar Documents

Publication Publication Date Title
WO2021004382A1 (zh) 一种多链路通信方法及相关设备
WO2020238812A1 (zh) 一种适用于多链路的通信方法及相关设备
WO2022052863A1 (zh) 无线局域网中块确认会话的管理方法及装置
TWI685265B (zh) 用於無線系統的方法以及無線設備
CN115119540B (zh) 多连接下的通信方法和通信设备
WO2022252027A1 (zh) 多连接下的通信方法和通信装置
WO2023010345A1 (zh) 通信方法和通信装置
WO2022241641A1 (zh) 通信方法和通信装置
WO2022151487A1 (zh) 通信方法和通信装置
CN115211226B (zh) 通信方法和通信装置
WO2023056608A1 (zh) 通信方法和通信装置
WO2022021086A1 (zh) 多连接下的通信方法和通信设备
WO2022256985A1 (zh) 通信方法和通信装置
WO2022170448A1 (zh) 多连接下的通信方法和通信装置
WO2022213391A1 (zh) 多连接下的通信方法和通信装置
US20240349372A1 (en) Multi-link communication method and multi-link communication apparatus
WO2023019412A1 (zh) 通信方法和通信装置
WO2022217586A1 (zh) 多连接下的通信方法和通信装置
WO2023019405A1 (zh) 多连接下的通信方法和通信装置
WO2023056637A1 (zh) 多连接下的通信方法和通信装置
WO2022094774A1 (zh) 多连接下的通信方法和通信设备
WO2022198596A1 (zh) 多连接下的通信方法和通信装置
WO2022217587A1 (zh) 多连接下的通信方法和通信装置
WO2022261821A1 (zh) 通信方法和通信装置
WO2022213387A1 (zh) 通信方法和通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21943404

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18565483

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202347089166

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2021943404

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021943404

Country of ref document: EP

Effective date: 20240102