WO2023197314A1 - 通信方法和通信装置 - Google Patents

通信方法和通信装置 Download PDF

Info

Publication number
WO2023197314A1
WO2023197314A1 PCT/CN2022/087170 CN2022087170W WO2023197314A1 WO 2023197314 A1 WO2023197314 A1 WO 2023197314A1 CN 2022087170 W CN2022087170 W CN 2022087170W WO 2023197314 A1 WO2023197314 A1 WO 2023197314A1
Authority
WO
WIPO (PCT)
Prior art keywords
message frame
subfield
frame
long training
measurement
Prior art date
Application number
PCT/CN2022/087170
Other languages
English (en)
French (fr)
Inventor
董贤东
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to CN202280001103.2A priority Critical patent/CN114938715A/zh
Priority to PCT/CN2022/087170 priority patent/WO2023197314A1/zh
Publication of WO2023197314A1 publication Critical patent/WO2023197314A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present disclosure relates to the field of wireless communications, and more specifically, to a communication method and a communication device.
  • Wireless Local Area Network has the characteristics of flexibility, mobility and low cost.
  • WLAN sensing is currently being researched. Its main application scenarios are: location discovery in dense environments (home environment and enterprise environment), proximity detection (proximity detection), and presence detection (presence detection), etc. .
  • the communication method may include: determining a first message frame, wherein the first message frame includes a first subfield, wherein the first subfield is used to identify information of a long training field in the second message frame, Wherein, the long training domain is used for channel measurement; and the first message frame is sent.
  • the communication method may include: receiving a first message frame, wherein the first message frame includes a first subfield, wherein the first subfield is used to identify information of a long training field in the second message frame, Wherein, the long training field is used for channel measurement; the information of the long training field in the second message frame is obtained based on the first message frame.
  • a communication device is provided according to an example embodiment of the present disclosure.
  • the communication device may include: a processing module configured to: determine a first message frame, wherein the first message frame includes a first subfield, wherein the first subfield is used to identify the second message frame.
  • the information of the long training domain, wherein the long training domain is used for channel measurement; the transceiver module is configured to: send the first message frame.
  • a communication device is provided according to an example embodiment of the present disclosure.
  • the communication device may include: a transceiver module configured to: receive a first message frame, wherein the first message frame includes a first subfield, wherein the first subfield is used to identify the second message frame.
  • the electronic device includes a memory, a processor, and a computer program stored on the memory and executable on the processor.
  • the processor implements the method as described above when executing the computer program.
  • An example embodiment according to the present disclosure provides a computer-readable storage medium.
  • Computer programs are stored on the computer-readable storage medium.
  • the computer program when executed by the processor, implements the method described above.
  • the technical solution provided by the exemplary embodiments of the present disclosure improves the definition of the number of LTFs in the perception measurement process and adapts it to the needs of WLAN perception measurement.
  • Figure 1 is an exemplary manner illustrating WLAN awareness.
  • Figure 2 is a flowchart illustrating a communication method according to an example embodiment.
  • FIG. 3 is a flowchart illustrating a TB-based sensing manner according to an example embodiment.
  • FIG. 4 is a flowchart illustrating a Non-TB based sensing mode according to an example embodiment.
  • Figure 5 is a flowchart illustrating another communication method according to an example embodiment.
  • FIG. 6 is a block diagram illustrating a communication device according to an example embodiment.
  • Figure 1 is an exemplary manner illustrating WLAN awareness.
  • the process of WLAN awareness may be: the initiator initiates WLAN awareness (for example, initiates a WLAN awareness session), and there may be multiple responders responding to it.
  • the specific possible methods may be as shown in Figure 1 ( shown in a), (b) and (c).
  • a WLAN awareness initiator eg, a client
  • multiple associated or non-associated WLAN awareness responders eg, three access points (APs), access point
  • APs access points
  • Associated here can mean that an associated connection for communication has been established between the initiator and the responder
  • non-associated can mean that no associated connection for communication has been established between the initiator and the responder.
  • clients may include, but are not limited to: cellular phones, smartphones, wearable devices, computers, personal digital assistants (PDAs), personal communications system (PCS) devices, personal information managers (PIMs), personal Navigation equipment (PND), global positioning system, multimedia equipment, Internet of Things (IoT) equipment, etc.
  • PDAs personal digital assistants
  • PCS personal communications system
  • PIMs personal information managers
  • PND personal Navigation equipment
  • IoT Internet of Things
  • An AP can be a wireless switch used for a wireless network or an access device for a wireless network.
  • the AP may include software applications and/or circuitry to enable other types of nodes in the wireless network to communicate through the AP both outside and within the wireless network.
  • the AP may be a terminal device or a network device equipped with a Wi-Fi (Wireless Fidelity, Wireless Fidelity) chip.
  • both the WLAN-aware initiator and the WLAN-aware responder can be clients, and they can communicate by connecting to the same AP.
  • the client serves as the initiator and the AP serves as the responder
  • the present disclosure is not limited thereto.
  • the AP may serve as the initiator and the client may serve as the responder.
  • the client may also be called a non-AP station (non-AP STA), referred to as a "station (STA)" for short.
  • non-AP STA non-AP station
  • STA station
  • the number of initiators and responders is not limited to those shown in (a), (b) and (c) in Figure 1 .
  • the process of WLAN awareness may include: WLAN awareness session establishment, WLAN awareness measurement establishment, and WLAN awareness measurement termination.
  • WLAN awareness session establishment operating parameters associated with the awareness session may be determined and exchanged between devices.
  • the WLAN aware measurement setup the aware measurement and/or the reporting of the measurement results may be performed, so the WLAN aware measurement setup may also be called a WLAN aware measurement process.
  • WLAN awareness measurement termination the device stops performing measurements and terminates the awareness session.
  • TB-based sensing methods trigger-based (TB-based) sensing methods and non-trigger-based (Non-TB based) sensing methods are proposed.
  • the TB-based sensing method is based on Null Data Packet Announcement (NDPA) frames and trigger frames, with the AP as the initiator; the Non-TB-based sensing method is based on NDPA.
  • the station (STA) serves as the initiator.
  • both TB-based sensing methods and Non-TB based sensing methods use Null Data Packet (NDP, Null Data Packet) frames as sensing measurement frames to participate in sensing measurements.
  • NDP Null Data Packet
  • NDP frames are perception measurement frames that participate in perception measurement.
  • UL NDP frames or DL NDP frames that do not participate in sensing measurement may be sent in uplink sensing measurement (UL sounding) or downlink sensing measurement (DL sounding).
  • the long training field (LTF, long training field) in the NDP frame is mainly used for channel measurement, and the LTF is also reused for perception measurement during the perception measurement process.
  • LTF long training field
  • FIG 2 is a flowchart illustrating a communication method according to an example embodiment.
  • the communication method shown in Figure 2 can be applied to an access point (AP) or to a station other than an access point (referred to as: station "STA").
  • AP access point
  • STA station other than an access point
  • a first message frame is determined, wherein the first message frame may include a first subfield, wherein the first subfield is used to identify a long training field (LTF) in the second message frame. information, where the long training field is used for channel measurement; in step 220, the first message frame is sent.
  • LTF long training field
  • the first message frame may be generated or configured according to at least one of the following conditions: channel status, network conditions, load conditions, sending/ The hardware capabilities, service types, and relevant protocol provisions of the receiving device; the embodiments of the present disclosure do not impose specific restrictions on this.
  • the first message frame can also be obtained from an external device, and this embodiment of the present disclosure does not impose any specific limitation.
  • the first message frame may be an NDPA frame or a perceptual measurement trigger frame (hereinafter may also be referred to as a "trigger frame" for short).
  • the second message frame may carry a long training field.
  • an NDP frame is used as an example of the second message frame.
  • the present disclosure is not limited thereto, and other frames carrying LTF are also feasible.
  • Table 1 and Table 2 below show the formats of two NDP frames as examples only.
  • Table 1 shows the HE (High Efficiency) detection NDP frame format
  • Table 2 shows the HE ranging NDP frame format.
  • “HE-LTF” in Table 1 and “HE-LTF 1" to “HE-LTF n” in Table 2 may refer to the long training field in the second message frame in the above embodiment.
  • the NDP frame may also include: traditional short training field (L-STF), traditional long training field (L-LTF), traditional signaling field (L-SIG), repeated traditional signaling field (RL-SIG), HE signaling domain (HE-SIG-A) and HE short training domain (HE-STF), and packet extension domain (PE, packet extension), etc.
  • L-STF traditional short training field
  • L-LTF traditional long training field
  • L-SIG traditional signaling field
  • R-SIG repeated traditional signaling field
  • HE-SIG-A HE signaling domain
  • HE-STF packet extension domain
  • PE packet extension domain
  • the first subfield in the first message frame may be a long training field repetition (LTF repetition) subfield, which is used to identify the number of LTFs in the second message frame.
  • LTF such as "HE-LTF” in Table 1 and "HE-LTF” in Table 2
  • NDP frame can be identified in the first message frame (NDPA frame or perception measurement trigger frame) 1" to "HE-LTF n" (for example, the number of LTFs).
  • the first subfield i.e., LTF repetition subfield
  • SNR signal-to-noise ratio
  • identifying the information of the LTFs in the second message frame (for example, the number of LTFs) in the first message frame in advance is beneficial to ensuring the safe reception and correct analysis of signaling during the perception measurement process, for example, ensuring the security of the LTFs. , thus enabling consistency checks in channel estimation to detect security attacks.
  • the value of the first subfield ie, LTF quantity.
  • the first message frame may include a second subfield, wherein the second subfield may be used to identify an identifier of a device to which the first subfield is to be applied, Also, the second subfield may correspond to the first subfield.
  • the first message frame may include one or more first subfields and their corresponding second subfields, so that the LTF information in the second message frame of one or more devices may be identified.
  • the identifier may identify the site (STA), for example, the identifier may be an AID or a UID.
  • AID may represent the identifier of a site that has established associated communication with the AP
  • UID represents the identifier of a site that has not established associated communication with the AP.
  • the identifier may identify the access point (AP), for example, the identifier may be a special AID, such as, but not limited to, with a value of A special AID of 0 is used to identify the AP.
  • the first message frame may include a station information (STA info) field, and the above-mentioned first subfield and second subfield may be included in the station information in the domain.
  • the site information field may contain an LTF repetition (LTF repetition) subfield, which identifies the number of LTFs contained in the NDP frame in the perception measurement.
  • LTF repetition subfield may correspond to the identifier of the STA, where the identifier may be AID (associated) or UID (unassociated).
  • the corresponding site information field may be used for AP, and the AID may be a special AID, such as 0.
  • the communication method according to the embodiment of the present disclosure improves the definition of the number of LTFs in the perception measurement process and adapts it to the needs of WLAN perception measurement.
  • FIG. 3 is a flowchart illustrating a TB-based sensing manner according to an example embodiment.
  • the second message frame (eg, NDP frame) may participate in the sensing measurement and the first message frame (eg, NDPA frame or perception measurement trigger frame) may identify that the number of LTFs in the second message frame is at least 1.
  • the WLAN sensing measurement process can include three links: polling, measurement, and feedback.
  • the initiator (AP) can send a poll frame to check the availability of the responder (one or more STAs); if the STA is available, it can report a response frame (for example, CTS-to-self ).
  • the NDPA detection method hereinafter may be referred to as "NDPA sounding” or "NDPA detection”
  • TF sounding hereinafter may be referred to as "TF sounding” or " TF detection”
  • the sensing measurement results can be fed back, such as channel state information (CSI, channel state information).
  • CSI channel state information
  • the initiator (AP) may send an NDPA frame and an NDP frame to the responder (STA), where the NDPA frame may correspond to the first message frame in the above embodiment.
  • the NDP frame may correspond to the second message frame in the above embodiment.
  • the NDPA frame can identify the number of LTFs in the NDP frame.
  • the responder (STA) can receive NDPA frames and NDP frames, and use the NDP frames to perform WLAN sensing measurements, and then report the sensing measurement results (eg, CSI) to the initiator (AP).
  • the responder can parse the NDPA frame to learn the number of LTFs identified in the NDP frame, and can parse the NDP frame to check whether the number of LTFs in the received NDP frame is the same as the number identified in the NDPA frame.
  • the NDP frame can participate in the perceptual measurement, therefore, the number identified in the NDPA frame can be set to at least 1.
  • the NDPA frame may also include an identifier (eg, a special AID) of the initiator (AP) to identify the number of LTFs identified in the NDPA frame. to the AP (e.g., applied to NDP frames sent by the AP).
  • an identifier e.g, a special AID
  • the initiator (AP) may send a trigger frame (ie, a sensing measurement trigger frame) to the responder (STA), and then the responder (STA) may send a trigger frame to the initiator (STA).
  • the AP sends NDP frames so that the initiator (AP) can use the NDP frames to perform WLAN awareness measurements.
  • the trigger frame ie, the sensing measurement trigger frame
  • the trigger frame may correspond to the first message frame in the above embodiment
  • the NDP frame may correspond to the second message frame in the above embodiment.
  • the trigger frame ie, the perception measurement trigger frame
  • the responder can parse the trigger frame (i.e., the sensing measurement trigger frame) to learn the number of LTFs in the identified NDP frame, and can include the identified number of LTFs in the NDP frame, and the initiator (AP) can When receiving an NDP frame, check whether the number of LTFs in the NDP frame is the same as the number identified in the first subfield of the NDPA frame.
  • the NDP frame can participate in the perceptual measurement, therefore, the number identified in the NDPA frame can be set to at least 1.
  • the trigger frame ie, the sensing measurement trigger frame
  • the trigger frame may also include the identifier (AID or UID) of the responder (STA) to identify the NDPA frame.
  • AID or UID the identifier of the responder (STA) to identify the NDPA frame.
  • the number of identified LTFs applies to the STA (eg, to NDP frames sent by the STA).
  • responder STA
  • STA responder
  • the present disclosure is not limited thereto, and there may be one or more responders (STA).
  • the number of LTFs in the NDP frame and the number of LTFs to which the identified number of LTFs apply are identified in the NDPA frame or trigger frame, respectively.
  • the identifier of the device for each of the one or more responders (STAs), the number of LTFs in the NDP frame and the number of LTFs to which the identified number of LTFs apply are identified in the NDPA frame or trigger frame, respectively. The identifier of the device.
  • At least one site information field may be included in either the NDPA frame or the trigger frame, where the site information field may include LTF Repetition (LTF repetition) subfield, the number of which can be set to at least 1, to identify the number of LTFs in subsequent NDP frames participating in perception measurement.
  • LTF Repetition LTF repetition subfield
  • FIG. 4 is a flowchart illustrating a Non-TB based sensing mode according to an example embodiment.
  • the first The message frame (eg, NDPA frame) may identify that the number of LTFs in the second message frame is at least 1; in the case that the second message frame (eg, NDP frame) does not participate in the perception measurement, the first subdomain (eg, NDPA frame) frame) may identify the number of LTFs in the second message frame as 1.
  • the number of LTFs identified in the first message frame may be set to different values according to whether the second message frame participates in perception measurement, for example, the number of identified LTFs in the case of participation in perception measurement.
  • the number may be set to be greater than the number of identified LTFs without participating in the reference measurement.
  • the station (STA) sends NDPA frames to the AP for sensing measurement process.
  • the WLAN sensing measurement process can include uplink sensing measurement (also called uplink sounding "UL sounding") or downlink sensing measurement (also called downlink sounding "DL sounding"). Or both coexist.
  • uplink sensing measurement also called uplink sounding "UL sounding”
  • downlink sensing measurement also called downlink sounding "DL sounding”
  • the uplink detection may include: the initiator (STA) sends an NDPA frame and an NDP frame (shown as "UL NDP") to the responder (AP), and the AP uses UL NDP to perform WLAN awareness measurement.
  • the AP after receiving the NDP frame from the STA, the AP will also send an NDP frame (shown as "DL NDP"), but this NDP frame (DL NDP frame) is not used for WLAN awareness measurement, but only to identify it from the STA.
  • NDPA frames and NDP frames are received.
  • the NDPA frame may correspond to the first message frame in the above embodiment
  • the UL NDP and DL NDP may correspond to the second message frame in the above embodiment.
  • the UL NDP sent by the initiator (STA) participates in the sensing measurement. Therefore, for the initiator (STA), the number of identified LTFs in the NDPA frame can be set to at least 1; however, the responder ( DL NDP sent by the AP does not participate in the perception measurement, therefore, the number of LTFs identified in the NDPA frame can be set to 1 for the responder (AP).
  • the NDPA frame may include a site information field about the STA and a site information field about the AP, where the site information field about the STA may include: in UL NDP
  • the number of LTFs and the identifier of the STA for example, AID or UID
  • the site information field about the AP can include: the number of LTFs in the DL NDP and the identifier of the AP (for example, special AID).
  • downlink detection may include: the initiator (STA) sends an NDPA frame and an NDP frame (shown as "UL NDP") to the responder (AP), and the AP sends an NDP frame (shown as "DL NDP"), whereby the STA utilizes the received NDP frames for WLAN awareness measurements, but the NDP frames sent by the STA (UL NDP) are not used for WLAN awareness measurements, but only for protocol integrity purposes.
  • the NDPA frame may correspond to the first message frame in the above embodiment
  • the UL NDP and DL NDP may correspond to the second message frame in the above embodiment.
  • the UL NDP sent by the initiator (STA) does not participate in the sensing measurement.
  • the number of LTFs identified in the NDPA frame can be set to 1; however, the responder (AP)
  • the sent DL NDP participates in sensing measurements, so the number of LTFs identified in the NDPA frame can be set to at least 1 for the responder (AP).
  • the NDPA frame may include a site information field about the STA and a site information field about the AP, where the site information field about the STA may include: the number of LTFs in the UL NDP and the identifier of the STA ( For example, AID or UID); the site information field about the AP may include: information about the number of LTFs in the DL NDP and the identifier of the AP (for example, special AID).
  • the LTF repetition (LTF repetition) subfield in the site information field of the NDPA frame identifies The number can be set to at least 1; if the NDP frame does not participate in perception measurement, the number identified by the LTF repetition (LTF repetition) subfield in the site information field of the NDPA frame can be set to 1.
  • the LTF number of the NDP frame may be included in the NDPA frame (Non-TB based or TB-based) or the perception measurement trigger frame (TB-based) , so that the STA or AP participating in the measurement can be allocated sensing measurement resources instead of being included in the polling frame or sensing measurement report frame.
  • the number of LTFs in the subsequently transmitted NDP frame can be clearly identified in the NDPA frame or the sensing measurement trigger frame, which facilitates safe reception and correct interpretation of signaling.
  • the communication method according to the embodiment of the present disclosure improves the definition of the number of LTFs in the Non-TB based sensing mode and the TB-based sensing mode, making it adaptable to the needs of WLAN sensing measurement.
  • Figure 5 is a flowchart illustrating another communication method according to an example embodiment.
  • the communication method shown in Figure 5 can be applied to an access point (AP) or to a station other than an access point (referred to as: station "STA").
  • AP access point
  • STA station other than an access point
  • a first message frame may be received, wherein the first message frame may include a first subfield, wherein the first subfield is used to identify information of the long training field in the second message frame,
  • the long training domain is used for channel measurement;
  • the first message frame can be parsed, and more specifically, the information of the long training domain in the second message frame can be obtained based on the first message frame.
  • the first message frame may be an NDPA frame or a perception measurement trigger frame.
  • the second message frame may be an NDP frame.
  • the first subfield may be a long training field repeating subfield used to identify the number of long training fields in the second message frame.
  • the first message frame may include a second subfield, wherein the second subfield is used to identify an identifier of a device to which the first subfield is applied, wherein the second subfield is the same as the first subfield. corresponding to the domain.
  • the second message frame in the trigger-based perception measurement process, may participate in the perception measurement and the number identified by the first subfield may be set to at least 1.
  • the number identified by the first subdomain may be set to at least 1; in the second message frame When not participating in perceptual measurement, the quantity identified by the first subfield can be set to 1.
  • the communication device 600 of FIG. 6 may include a processing module 610 and a transceiver module 620.
  • the communication device 600 shown in FIG. 6 may be applied to a device (AP or STA) that sends a first message frame.
  • the processing module 610 may be configured to: determine the first message frame, where the first message frame may include a first subfield, where the first subfield is used to identify information of a long training field in the second message frame, where the long training field is used for channel measurement; the transceiver module 620 may be configured to: send the first message frame. That is to say, the communication device 600 shown in FIG. 6 can perform the communication method described with reference to FIG. 2 and the operations performed by the device transmitting the NDPA frame or trigger frame in FIGS. 3 and 4, and described with reference to Table 1 and Table 2, etc. Embodiments can be applied here, and in order to avoid redundancy, repeated descriptions are omitted here.
  • the transceiver module 620 can be configured to: receive the first message frame, where the first message frame includes a first subfield, where the th A subfield is used to identify the information of the long training field in the second message frame, where the long training field is used for channel measurement; the processing module 610 may be configured to: obtain the long training field in the second message frame based on the first message frame. Information about the training domain.
  • the communication device 600 shown in Figure 6 can perform the operations performed by the device receiving the NDPA frame or trigger frame in Figures 3 and 4 of the communication method described with reference to Figure 5, and the implementation described with reference to Tables 1 and 2 Examples can be applied here, and in order to avoid redundancy, repeated descriptions are omitted here.
  • the communication device 600 shown in FIG. 6 is only exemplary, and the embodiments of the present disclosure are not limited thereto.
  • the communication device 600 may also include other modules, such as a memory module and the like.
  • individual modules in communication device 600 may be combined into more complex modules, or may be divided into more individual modules.
  • the communication method and communication device improve the definition of the number of LTFs in the perception measurement process and adapt it to the needs of WLAN perception measurement.
  • inventions of the present disclosure also provide an electronic device.
  • the electronic device includes a processor and a memory; wherein the memory stores machine-readable instructions (also can (referred to as a "computer program”); a processor for executing machine-readable instructions to implement the methods described with reference to Figures 2 to 5.
  • machine-readable instructions also can (referred to as a "computer program”
  • processor for executing machine-readable instructions to implement the methods described with reference to Figures 2 to 5.
  • Embodiments of the present disclosure also provide a computer-readable storage medium having a computer program stored on the computer-readable storage medium.
  • the computer program is executed by a processor, the method described with reference to FIGS. 2 to 5 is implemented.
  • the processor may be used to implement or execute various exemplary logical blocks, modules and circuits described in conjunction with the present disclosure, such as a CPU (Central Processing Unit, central processing unit), a general-purpose processing unit processor, DSP (Digital Signal Processor, data signal processor), ASIC (Application Specific Integrated Circuit, application specific integrated circuit), FPGA (Field Programmable Gate Array, field programmable gate array) or other programmable logic devices, transistor logic devices, Hardware components or any combination thereof.
  • the processor can also be a combination that implements computing functions, such as a combination of one or more microprocessors, a combination of a DSP and a microprocessor, etc.
  • the memory may be, for example, ROM (Read Only Memory), RAM (Random Access Memory), EEPROM (Electrically Erasable Programmable Read Only Memory). read memory), CD-ROM (Compact Disc Read Only Memory) or other optical disc storage, optical disc storage (including compressed optical discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media or other magnetic A storage device, or any other medium that can be used to carry or store program code in the form of instructions or data structures that can be accessed by a computer, but is not limited thereto.
  • ROM Read Only Memory
  • RAM Random Access Memory
  • EEPROM Electrically Erasable Programmable Read Only Memory
  • read memory read memory
  • CD-ROM Compact Disc Read Only Memory
  • optical disc storage including compressed optical discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.
  • magnetic disk storage media or other magnetic A storage device, or any other medium that can be used to carry or store program code in the form of instructions

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提供一种通信方法和通信装置。所述通信方法包括:确定第一消息帧,其中,所述第一消息帧包括第一子域,其中,所述第一子域用于标识第二消息帧中的长训练域的信息,其中,所述长训练域用于信道的测量;发送所述第一消息帧。

Description

通信方法和通信装置 技术领域
本公开涉及无线通信领域,更具体地说,涉及一种通信方法和通信装置。
背景技术
无线局域网(WLAN,Wireless Local Area Network)具有灵活性、可移动性及低成本等特点。随着通信技术的发展以及用户需求的增长,正在逐步加深对WLAN的应用研究。例如,目前正在对WLAN感知(WLAN sensing)进行研究,其主要的应用场景为:在密集环境下的位置发现(家庭环境及企业环境)、接近检测(proximity detection)以及存在检测(presence detection)等。
发明内容
本公开的各种实施例提供以下技术方案:
根据本公开的示例实施例提供了一种通信方法。所述通信方法可以包括:确定第一消息帧,其中,所述第一消息帧包括第一子域,其中,所述第一子域用于标识第二消息帧中的长训练域的信息,其中,所述长训练域用于信道的测量;发送所述第一消息帧。
根据本公开的示例实施例提供了一种通信方法。所述通信方法可以包括:接收第一消息帧,其中,所述第一消息帧包括第一子域,其中,所述第一子域用于标识第二消息帧中的长训练域的信息,其中,所述长训练域用于信道的测量;基于所述第一消息帧获得所述第二消息帧中的长训练域的信息。
根据本公开的示例实施例提供了一种通信装置。所述通信装置可以包括:处理模块,被配置为:确定第一消息帧,其中,所述第一消息帧包括 第一子域,其中,所述第一子域用于标识第二消息帧中的长训练域的信息,其中,所述长训练域用于信道的测量;收发模块,被配置为:发送所述第一消息帧。
根据本公开的示例实施例提供了一种通信装置。所述通信装置可以包括:收发模块,被配置为:接收第一消息帧,其中,所述第一消息帧包括第一子域,其中,所述第一子域用于标识第二消息帧中的长训练域的信息,其中,所述长训练域用于信道的测量;处理模块,被配置为:基于所述第一消息帧获得所述第二消息帧中的长训练域的信息。
根据本公开的示例实施例提供了一种电子装置。所述电子装置包括存储器、处理器及存储在所述存储器上并在所述处理器上可运行的计算机程序。所述处理器执行所述计算机程序时实现如上所述的方法。
根据本公开的示例实施例提供了一种计算机可读存储介质。所述计算机可读存储介质上存储有计算机程序。该计算机程序被处理器执行时实现如上所述的方法。
本公开的示例实施例提供的技术方案完善了在感知测量过程中对LTF数量的定义,使之适应WLAN感知测量的需求。
附图说明
通过参照附图详细描述本公开的示例实施例,本公开实施例的上述以及其他特征将更加明显,其中:
图1是示出WLAN感知的示例性方式。
图2是示出根据示例实施例的通信方法的流程图。
图3是示出根据示例实施例的TB-based的感知方式下的流程图。
图4是示出根据示例实施例的Non-TB based的感知方式下的流程图。
图5是示出根据示例实施例的另一通信方法的流程图。
图6是示出根据示例实施例的通信装置的框图。
具体实施方式
提供以下参照附图的描述,以帮助全面理解由所附权利要求及其等同物 限定的本公开的各种实施例。本公开的各种实施例包括各种具体细节,但是这些具体细节仅被认为是示例性的。此外,为了清楚和简洁,可以省略对公知的技术、功能和构造的描述。
在本公开中使用的术语和词语不限于书面含义,而是仅被发明人所使用,以能够清楚和一致的理解本公开。因此,对于本领域技术人员而言,提供本公开的各种实施例的描述仅是为了说明的目的,而不是为了限制的目的。
应当理解,除非上下文另外清楚地指出,否则这里使用的单数形式“一”、“一个”、“所述”和“该”也可以包括复数形式。应该进一步理解的是,本公开中使用的措辞“包括”是指存在所描述的特征、整数、步骤、操作、元件和/或组件,但是并不排除存在或添加一个或多个其他特征、整数、步骤、操作、元件、组件和/或它们的组。
将理解的是,尽管术语“第一”、“第二”等在本文中可以用于描述各种元素,但是这些元素不应受这些术语的限制。这些术语仅用于将一个元素与另一个元素区分开。因此,在不脱离示例实施例的教导的情况下,下面讨论的第一元素可以被称为第二元素。
应该理解,当元件被称为“连接”或“耦接”到另一元件时,它可以直接连接或耦接到其他元件,或者也可以存在中间元件。此外,这里使用的“连接”或“耦接”可以包括无线连接或无线耦接。这里使用的术语“和/或”或者表述“……中的至少一个/至少一者”包括一个或多个相关列出的项目的任何和所有组合。
除非另外定义,这里使用的所有术语(包括技术术语和科学术语),具有与本公开所属领域中的普通技术人员的一般理解相同的意义。
图1是示出WLAN感知的示例性方式。
WLAN感知的流程可以是:发起方(initiator)发起WLAN感知(例如,发起WLAN感知会话),可能存在着多个响应方(responder)对其进行响应,具体的可能方式可以如图1中的(a)、(b)和(c)所示。
参照图1中的(a),当WLAN感知发起方(例如,客户端(client))发起WLAN感知时,多个关联或者非关联的WLAN感知响应方(例如,三个接入点(AP,access point))可以进行响应。这里的“关联”可以指发起方与响应方之间建立了用于通信的关联连接,“非关联”可以指发起方与响应方之 间未建立用于通信的关联连接。
作为示例,客户端(client)可以包括但不限于:蜂窝电话、智能电话、可穿戴设备、计算机、个人数字助理(PDA)、个人通信系统(PCS)设备、个人信息管理器(PIM)、个人导航设备(PND)、全球定位系统、多媒体设备、物联网(IoT)设备等。
AP可以是用于无线网络的无线交换机,也可以是无线网络的接入设备。AP可以包括软件应用和/或电路,以使无线网络中的其他类型节点可以通过AP与无线网络外部及内部进行通信。作为示例,AP可以是配备有Wi-Fi(Wireless Fidelity,无线保真)芯片的终端设备或网络设备。
图1中的(b)与图1中的(a)相似,但是在图1中的(b)中,各个响应方(AP)之间可以进行通信。
参照图1中的(c),WLAN感知发起方和WLAN感知的响应方均可以是客户端,并且二者可以通过连接到同一AP进行通信。
虽然在图1中的(a)、(b)和(c)中示出了,客户端作为发起方,AP作为响应方,然而本公开不限于此。例如,在本公开的各种实施例中,AP可以作为发起方,客户端可以作为响应方。此外,在本公开的各种实施例中,客户端也可以被称为非AP的站点(non-AP STA),简称为“站点(STA)”。此外,发起方和响应方的数目不受限于图1中的(a)、(b)和(c)所示。
作为说明性的实施例,WLAN感知的过程可以包括:WLAN感知会话(session)建立、WLAN感知测量建立以及WLAN感知测量终止。在WLAN感知会话建立中,与感知会话相关联的操作参数可以被确定,并在设备之间进行交换。在WLAN感知测量建立中,可以执行感知测量和/或测量结果的报告,因此WLAN感知测量建立也可以被称为WLAN感知测量过程。在WLAN感知测量终止中,设备停止执行测量并且终止感知会话。
此外,在WLAN感知的技术中,提出了基于触发(TB-based)的感知方式以及非基于触发(Non-TB based)的感知方式。例如,TB-based的感知方式是基于空数据包声明(NDPA,Null Data Packet Announcement)帧及触发帧(trigger)触发的形式,AP作为发起方;Non-TB based的感知方式是基于NDPA的形式,站点(STA)作为发起方。此外,TB-based的感知方式以及Non-TB based的感知方式均以空数据包(NDP,Null Data Packet)帧作为感知测量帧参与感知测量。
在TB-based的场景中,NDP帧均是参与感知测量的感知测量帧。在Non-TB based的场景中,可能为了维护协议完成性,在上行感知测量(UL sounding)或下行感知测量(DL sounding)中会发送不参与感知测量的UL NDP帧或DL NDP帧。
在目前的研究中,NDP帧中的长训练域(LTF,long training field)主要用于信道的测量,在感知测量过程中也会重用LTF来进行感知测量。然而,目前对于Non-TB based的感知方式及TB-based的感知方式,缺乏关于NDP帧中的LTF的明确规定,所以需要进行信令的增强。
有鉴于此,根据本公开的实施例的构思提供了一种通信方法和通信装置。
图2是示出根据示例实施例的通信方法的流程图。图2所示的通信方法可以应用于接入点(AP),也可以应用于非接入点的站点(简称为:站点“STA”)。
参照图2,在步骤210中,确定第一消息帧,其中,第一消息帧可以包括第一子域,其中,第一子域用于标识第二消息帧中的长训练域(LTF)的信息,其中,长训练域用于信道的测量;在步骤220中,发送第一消息帧。
在本公开的实施例中,确定第一消息帧的方式可以有很多种,例如:可以根据以下的至少一种情况来生成或配置第一消息帧:信道状态、网络情况、负载情况、发送/接收设备的硬件能力、业务类型、相关协议规定;对此本公开实施例不作具体限制。在本公开的实施例中,还可以从外部设备获取该第一消息帧,对此本公开实施例不作具体限制。
在本公开的实施例中,第一消息帧可以是NDPA帧或感知测量触发帧(在下文也可以简称为“触发帧”)。第二消息帧可以携带有长训练域,例如,在下文中,为了描述的方便,以NDP帧作为第二消息帧的示例,然而,本公开不限于此,其他携带LTF的帧也是可行的。下面的表1和表2示出了仅作为示例性的两种NDP帧的格式。
表1:HE探测(sounding)NDP帧格式
Figure PCTCN2022087170-appb-000001
表2:HE测距(Ranging)NDP帧格式
Figure PCTCN2022087170-appb-000002
表1示出了HE(高效,High Efficiency)探测NDP帧格式,表2示出了HE测距NDP帧格式。表1中的“HE-LTF”和表2中的“HE-LTF 1”至“HE-LTF n”可以指上述实施例中的第二消息帧中的长训练域。此外,参照表1和表2,NDP帧还可以包括:传统短训练域(L-STF)、传统长训练域(L-LTF)、传统信令域(L-SIG)、重复传统信令域(RL-SIG)、HE信令域(HE-SIG-A)和HE短训练域(HE-STF)、以及数据包扩展域(PE,packet extension)等,然而,这仅是示例性的,本公开不限于此。
将理解,虽然在上述表1和表2中指出了可用的NDP帧的格式,然而者仅是示例性的,本公开不限于此,例如,EHT(极高吞吐量,Extreme High-Throughput)探测NDP帧等也适用于本公开的各种示例实施例。
根据本公开的实施例,第一消息帧中的第一子域可以是长训练域重复(LTF repetition)子域,其用于标识第二消息帧中的LTF的数量。换言之,可以在第一消息帧(NDPA帧或感知测量触发帧)中标识第二消息帧(NDP帧)中的LTF(如表1中的“HE-LTF”和表2中的“HE-LTF 1”至“HE-LTF n”)的信息(例如,LTF的数量)。第一子域(即,LTF repetition子域)能够增加信噪比(SNR),这对于感知测量应用是非常重要的。此外,预先在第一消息帧中标识出第二消息帧中的LTF的信息(例如,LTF的数量)有利于在感知测量过程中保证信令的安全接收和正确解析,例如,保证LTF的安全,从而能够在信道估计中进行一致性检查,以检测安全攻击。
在本公开的实施例中,可以基于感知方式(TB-based或Non-TB based)或者第二消息帧(NDP帧)是否参与感知测量,来设置/确定第一子域的值(即, LTF的数量)。
根据本公开的实施例,第一消息帧(NDPA帧或感知测量触发帧)可以包括第二子域,其中,第二子域可以用于标识第一子域要应用于的设备的标识符,并且,第二子域可以与第一子域相对应。例如,第一消息帧中可以包括一个或更多个第一子域及其各自对应的第二子域,从而可以标识一个或更多个设备的第二消息帧中的LTF的信息。
例如,在第一子域要应用于站点(STA)的情况下,该标识符可以标识站点(STA),例如,该标识符可以为AID或UID。AID可以表示与AP建立了关联通信的站点的标识符,UID表示与AP未建立关联通信的站点的标识符。例如,在第一子域要应用于接入点(AP)的情况下,该标识符可以标识接入点(AP),例如,该标识符可以为特殊AID,例如但不限于,利用值为0的特殊AID来标识AP。
此外,在一个可选择的实施例中,第一消息帧(NDPA帧或感知测量触发帧)可以包括站点信息(STA info)域,上述的第一子域和第二子域可以包括在站点信息域中。例如,在站点信息域中可以包含LTF重复(LTF repetition)子域,其标识在感知测量中NDP帧包含的LTF的数量。此外,LTF repetition子域可以与STA的标识符对应,其中,标识符可以为AID(建立关联)或UID(未建立关联)。例如,在Non-TB based的感知测量中,则对应的站点信息域可能用于AP,则AID可能为特殊的AID,例如为0。
根据本公开的实施例的通信方法,完善了在感知测量过程中对LTF数量的定义,使之适应WLAN感知测量的需求。
图3是示出根据示例实施例的TB-based的感知方式下的流程图。
根据本公开的实施例,在基于触发的感知测量过程中(即,在TB-based的感知方式中),第二消息帧(例如,NDP帧)可以参与感知测量并且第一消息帧(例如,NDPA帧或感知测量触发帧)可以标识第二消息帧中的LTF的数量至少为1。
在TB-based的感知方式中,WLAN感知测量过程可以包括轮询、测量以及反馈三个环节。在轮询环节,发起方(AP)可以发送轮询(poll)帧以检查响应方(一个或更多个STA)的可用性;如果STA可用,其可以报告响应帧(例如,CTS-to-self)。在测量环节中可以采用NDPA探测方式(在下文可以称为 “NDPA sounding”或“NDPA探测”)和/或TF(触发帧,trigger frame)探测方式(在下文可以称为“TF sounding”或“TF探测”)。在反馈环节中,可以反馈感知测量结果,例如,信道状态信息(CSI,channel state information)。图3的(a)示出了NDPA探测的流程图,图3的(b)示出了TF探测的流程图。
参照图3的(a),在NDPA探测的情况下,发起方(AP)可以向响应方(STA)发送NDPA帧以及NDP帧,其中,NDPA帧可以对应于上述实施例中的第一消息帧,NDP帧可以对应于上述实施例中的第二消息帧。NDPA帧可以标识NDP帧中的LTF的数量。响应方(STA)可以接收NDPA帧和NDP帧,并且利用NDP帧进行WLAN感知测量,然后向发起方(AP)报告感知测量结果(例如,CSI)。例如,响应方(STA)可以解析NDPA帧获知所标识的NDP帧中的LTF的数量,并且可以解析NDP帧,检查接收到的NDP帧中的LTF的数量是否与NDPA帧中所标识的数量相同。这里,NDP帧可以参与感知测量,因此,NDPA帧中所标识的数量可以被设置为至少为1。
在一个可选择的实施例中,在图3的(a)中,NDPA帧还可以包括发起方(AP)的标识符(例如,特殊AID),以标识NDPA帧中所标识的LTF的数量应用于AP(例如,应用于AP发送的NDP帧)。
参照图3的(b),在TF探测的情况下,发起方(AP)可以向响应方(STA)发送触发帧(即,感知测量触发帧),然后响应方(STA)可以向发起方(AP)发送NDP帧,从而发起方(AP)可以利用NDP帧进行WLAN感知测量。触发帧(即,感知测量触发帧)可以对应于上述实施例中的第一消息帧,NDP帧可以对应于上述实施例中的第二消息帧。触发帧(即,感知测量触发帧)可以标识NDP帧中的LTF的数量。响应方(STA)可以解析触发帧(即,感知测量触发帧)获知所标识的NDP帧中的LTF的数量,并且可以将所标识数量的LTF包括在NDP帧中,发起方(AP)可以在接收到NDP帧时检查NDP帧中的LTF的数量是否与NDPA帧的第一子域所标识的数量相同。这里,NDP帧可以参与感知测量,因此,NDPA帧中所标识的数量可以被设置为至少为1。
在一个可选择的实施例中,在图3的(b)中,触发帧(即,感知测量触发帧)还可以包括响应方(STA)的标识符(AID或UID),以标识NDPA帧中所标识的LTF的数量应用于STA(例如,应用于STA发送的NDP帧)。
虽然在图3的(a)和(b)中仅示出了一个响应方(STA),然而,本公开不限于此,可以存在一个或更多个响应方(STA)。在此情况下,针对一个或 更多个响应方(STA)中的每一者,在NDPA帧或触发帧中,分别标识NDP帧中的LTF的数量以及所标识的LTF的数量所应用于的设备的标识符。
例如,在参照图3的(a)和(b)描述的TB-based感知测量流程中,不管是在NDPA帧还是在触发帧中可以至少包含一个站点信息域,其中,站点信息域可以包含LTF重复(LTF repetition)子域,其设置的数量可以至少为1,以标识后续参与感知测量的NDP帧中的LTF的数量。
图4是示出根据示例实施例的Non-TB based的感知方式下的流程图。
根据本公开的实施例,在非基于触发的感知测量过程中(即,在Non-TB based的感知方式中),在第二消息帧(例如,NDP帧)参与感知测量的情况下,第一消息帧(例如,NDPA帧)可以标识第二消息帧中的LTF的数量至少为1;在第二消息帧(例如,NDP帧)不参与感知测量的情况下,第一子域(例如,NDPA帧)可以标识第二消息帧中的LTF的数量为1。然而,本公开不限于此,可以根据第二消息帧是否参与感知测量将第一消息帧中所标识的LTF的数量设置为不同的值,例如,参与感知测量的情况下的所标识的LTF的数量可以被设置为大于不参与参照测量的情况下的所标识的LTF的数量。
在Non-TB based的感知方式中,站点(STA)发送NDPA帧给AP进行感知测量过程。例如,在Non-TB based的感知方式中,WLAN感知测量过程可以包括上行感知测量(也可以称为上行探测“UL sounding”)或下行感知测量(也可以称为下行探测“DL sounding”),或二者共存。图4的(a)示出了上行探测的流程图,图4的(b)示出了下行探测的流程图。
参照图4的(a),上行探测可以包括:发起方(STA)向响应方(AP)发送NDPA帧和NDP帧(示出为“UL NDP”),AP利用UL NDP执行WLAN感知测量。此外,AP在从STA接收到NDP帧之后,也会发送NDP帧(示出为“DL NDP”),但是该NDP帧(DL NDP帧)不用于WLAN感知测量,而仅是为了标识其从STA接收到NDPA帧和NDP帧。这里,NDPA帧可以对应于上述实施例中的第一消息帧,UL NDP和DL NDP可以对应于上述实施例中的第二消息帧。在上行探测中,发起方(STA)发送的UL NDP参与感知测量,因此,针对发起方(STA),NDPA帧中的所标识的LTF的数量可以被设置为至少为1;然而,响应方(AP)发送的DL NDP不参与感知测量,因此,针对响应方(AP),NDPA帧中所标识的LTF的数量可以被设置 为1。
在一个可选择的实施例中,在图4的(a)中,NDPA帧可以包括关于STA的站点信息域以及关于AP的站点信息域,其中,关于STA的站点信息域可以包括:UL NDP中的LTF数量以及STA的标识符(例如,AID或UID);关于AP的站点信息域可以包括:DL NDP中的LTF数量以及AP的标识符(例如,特殊AID)。
参照图4的(b),下行探测可以包括:发起方(STA)向响应方(AP)发送NDPA帧和NDP帧(示出为“UL NDP”),AP向STA发送NDP帧(示出为“DL NDP”),从而STA利用接收到的NDP帧进行WLAN感知测量,但是STA发送的NDP帧(UL NDP)不用于WLAN感知测量,而仅是为了协议的完整性的目的。这里,NDPA帧可以对应于上述实施例中的第一消息帧,UL NDP和DL NDP可以对应于上述实施例中的第二消息帧。在下行探测中,发起方(STA)发送的UL NDP不参与感知测量,因此,针对发起方(STA),NDPA帧中所标识的LTF的数量可以被设置为1;然而,响应方(AP)发送的DL NDP参与感知测量,因此,针对响应方(AP),NDPA帧中所标识的LTF的数量可以被设置为至少为1。
在一个可选择的实施例中,NDPA帧可以包括关于STA的站点信息域以及关于AP的站点信息域,其中,关于STA的站点信息域可以包括:UL NDP中的LTF数量以及STA的标识符(例如,AID或UID);关于AP的站点信息域可以包括:DL NDP中的LTF数量的信息以及AP的标识符(例如,特殊AID)。
例如,在参照图4的(a)和(b)的Non-TB based的感知流程中,如果NDP帧参与感知测量,则NDPA帧的站点信息域中的LTF重复(LTF repetition)子域所标识的数量可以被设置为至少为1;如果NDP帧不参与感知测量,则NDPA帧的站点信息域中的LTF重复(LTF repetition)子域所标识的数量可以被设置为1。
根据本公开的实施例,NDP帧的LTF数量(例如,LTF重复(LTF repetition)子域)可以被包括在NDPA帧(Non-TB based或TB-based)或感知测量触发帧(TB-based)中,从而可以为参与测量的STA或AP分配感知测量资源,而不是被包括在轮询帧或感知测量报告帧。这样可以在NDPA帧或感知测量触发帧中明确地标识随后传输的NDP帧中的LTF的数量,有助于信令的安 全接收和正确解析。
根据本公开的实施例的通信方法,完善了在Non-TB based的感知方式及TB-based的感知方式下对LTF数量的定义,使之适应WLAN感知测量的需求。
图5是示出根据示例实施例的另一通信方法的流程图。图5所示的通信方法可以应用于接入点(AP),也可以应用于非接入点的站点(简称为:站点“STA”)。
参照图5,在步骤510中,可以接收第一消息帧,其中,第一消息帧可以包括第一子域,其中,第一子域用于标识第二消息帧中的长训练域的信息,其中,长训练域用于信道的测量;在步骤520中,可以解析第一消息帧,更具体地,可以基于第一消息帧获得第二消息帧中的长训练域的信息。
根据本公开的实施例,第一消息帧可以为NDPA帧或者感知测量触发帧。
根据本公开的实施例,第二消息帧可以为NDP帧。
根据本公开的实施例,第一子域可以为长训练域重复子域,用于标识第二消息帧中的长训练域的数量。
根据本公开的实施例,第一消息帧可以包括第二子域,其中,第二子域用于标识第一子域要应用于的设备的标识符,其中,第二子域与第一子域相对应。
根据本公开的实施例,在基于触发的感知测量过程中,第二消息帧可以参与感知测量并且第一子域所标识的数量可以被设置为至少为1。
根据本公开的实施例,在非基于触发的感知测量过程中,在第二消息帧参与感知测量的情况下,第一子域所标识的数量可以被设置为至少为1;在第二消息帧不参与感知测量的情况下,第一子域所标识的数量可以被设置为1。
关于第一消息帧、第二消息帧、NDPA帧、感知测量触发帧、第一子域、第二子域等的描述可以类似于上文各种实施例中的描述,为了简明,在此省略重复的描述。
图6是示出根据示例实施例的通信装置的框图。图6的通信装置600可以包括处理模块610和收发模块620。
在图6所示的通信装置600可以应用于发送第一消息帧的设备(AP或者STA),在此情况下,处理模块610可以被配置为:确定第一消息帧,其中,第一消息帧可以包括第一子域,其中,第一子域用于标识第二消息帧中的长训练域的信息,其中,长训练域用于信道的测量;收发模块620可以被配置为:发送第一消息帧。也就是说,图6所示的通信装置600可以执行参照图2描述的通信方法以及图3和图4中由发送NDPA帧或触发帧的设备执行的操作,并且参照表1和表2等描述的实施例可以应用于此,为了避免冗余,在此省略重复的描述。
在图6所示的通信装置600可以应用于接收第一消息帧的情况下,收发模块620可以被配置为:接收第一消息帧,其中,第一消息帧包括第一子域,其中,第一子域用于标识第二消息帧中的长训练域的信息,其中,长训练域用于信道的测量;处理模块610可以被配置为:基于第一消息帧获得第二消息帧中的长训练域的信息。也就是说,图6所示的通信装置600可以执行参照图5描述的通信方法图3和图4中由接收NDPA帧或触发帧的设备执行的操作,并且参照表1和表2描述的实施例可以应用于此,为了避免冗余,在此省略重复的描述。
将理解,图6所示的通信装置600仅是示例性的,本公开的实施例不限于此,例如,通信装置600还可以包括其他模块,例如,存储器模块等。此外,通信装置600中的各个模块可以组合成更复杂的模块,或者可以划分为更多单独的模块。
根据本公开的实施例的通信方法和通信装置完善了在感知测量过程中对LTF数量的定义,使之适应WLAN感知测量的需求。
基于与本公开的实施例所提供的方法相同的原理,本公开的实施例还提供了一种电子装置,该电子装置包括处理器和存储器;其中,存储器中存储有机器可读指令(也可以称为“计算机程序”);处理器,用于执行机器可读指令以实现参照图2至图5描述的方法。
本公开的实施例还提供了一种计算机可读存储介质,该计算机可读存储介质上存储有计算机程序,计算机程序被处理器执行时实现参照图2至图5描述的方法。
在示例实施例中,处理器可以是用于实现或执行结合本公开内容所描述的各种示例性的逻辑方框、模块和电路,例如,CPU(Central Processing Unit,中央处理器)、通用处理器、DSP(Digital Signal Processor,数据信号处理器)、ASIC(Application Specific Integrated Circuit,专用集成电路)、FPGA(Field Programmable Gate Array,现场可编程门阵列)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合、DSP和微处理器的组合等。
在示例实施例中,存储器可以是,例如,ROM(Read Only Memory,只读存储器)、RAM(Random Access Memory,随机存取存储器)、EEPROM(Electrically Erasable Programmable Read Only Memory,电可擦可编程只读存储器)、CD-ROM(Compact Disc Read Only Memory,只读光盘)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的程序代码并能够由计算机存取的任何其他介质,但不限于此。
应该理解的是,虽然附图的流程图中的各个步骤按照箭头的指示依次显示,但是这些步骤并不是必然按照箭头指示的顺序依次执行。除非本文中有明确的说明,这些步骤的执行并没有严格的顺序限制,其可以以其他的顺序执行。此外,附图的流程图中的至少一部分步骤可以包括多个子步骤或者多个阶段,这些子步骤或者阶段并不必然是在同一时刻执行完成,而是可以在不同的时刻执行,其执行顺序也不必然是依次进行,而是可以与其他步骤或者其他步骤的子步骤或者阶段的至少一部分轮流或者交替地执行。
虽然已经参照本公开的某些实施例示出和描述了本公开,但是本领域技术人员将理解,在不脱离本公开的范围的情况下,可以在形式和细节上进行各种改变。因此,本公开的范围不应被限定为受限于实施例,而是应由所附权利要求及其等同物限定。

Claims (16)

  1. 一种通信方法,包括:
    确定第一消息帧,其中,所述第一消息帧包括第一子域,其中,所述第一子域用于标识第二消息帧中的长训练域的信息,其中,所述长训练域用于信道的测量;
    发送所述第一消息帧。
  2. 根据权利要求1所述的通信方法,其中,所述第一子域为长训练域重复子域,用于标识所述第二消息帧中的长训练域的数量。
  3. 根据权利要求2所述的通信方法,其中,所述第一消息帧包括第二子域,其中,所述第二子域用于标识所述第一子域要应用于的设备的标识符,其中,所述第二子域与所述第一子域相对应。
  4. 根据权利要求2所述的通信方法,其中,在基于触发的感知测量过程中,所述第二消息帧参与感知测量并且所述第一子域所标识的数量被设置为至少为1。
  5. 根据权利要求2所述的通信方法,其中,在非基于触发的感知测量过程中,在所述第二消息帧参与感知测量的情况下,所述第一子域所标识的数量被设置为至少为1;在所述第二消息帧不参与感知测量的情况下,所述第一子域所标识的数量被设置为1。
  6. 根据权利要求1所述的通信方法,其中,所述第一消息帧为空数据分组声明NDPA帧或者感知测量触发帧。
  7. 一种通信方法,包括:
    接收第一消息帧,其中,所述第一消息帧包括第一子域,其中,所述 第一子域用于标识第二消息帧中的长训练域的信息,其中,所述长训练域用于信道的测量;
    基于所述第一消息帧获得所述第二消息帧中的长训练域的信息。
  8. 根据权利要求7所述的通信方法,其中,所述第一子域为长训练域重复子域,用于标识所述第二消息帧中的长训练域的数量。
  9. 根据权利要求8所述的通信方法,其中,所述第一消息帧包括第二子域,其中,所述第二子域用于标识所述第一子域要应用于的设备的标识符,其中,所述第二子域与所述第一子域相对应。
  10. 根据权利要求8所述的通信方法,其中,在基于触发的感知测量过程中,所述第二消息帧参与感知测量并且所述第一子域所标识的数量被设置为至少为1。
  11. 根据权利要求8所述的通信方法,其中,在非基于触发的感知测量过程中,在所述第二消息帧参与感知测量的情况下,所述第一子域所标识的数量被设置为至少为1;在所述第二消息帧不参与感知测量的情况下,所述第一子域所标识的数量被设置为1。
  12. 根据权利要求7所述的通信方法,其中,所述第一消息帧为空数据分组声明NDPA帧或者感知测量触发帧。
  13. 一种通信装置,包括:
    处理模块,被配置为:确定第一消息帧,其中,所述第一消息帧包括第一子域,其中,所述第一子域用于标识第二消息帧中的长训练域的信息,其中,所述长训练域用于信道的测量;
    收发模块,被配置为:发送所述第一消息帧。
  14. 一种通信装置,包括:
    收发模块,被配置为:接收第一消息帧,其中,所述第一消息帧包括第一子域,其中,所述第一子域用于标识第二消息帧中的长训练域的信息,其中,所述长训练域用于信道的测量;
    处理模块,被配置为:基于所述第一消息帧获得所述第二消息帧中的长训练域的信息。
  15. 一种电子装置,包括存储器、处理器及存储在所述存储器上并在所述处理器上可运行的计算机程序,其中,所述处理器执行所述计算机程序时实现权利要求1至6中的任一项或者权利要求7至12中的任一项所述的方法。
  16. 一种计算机可读存储介质,其中,所述计算机可读存储介质上存储有计算机程序,该计算机程序被处理器执行时实现权利要求1至6中的任一项或者权利要求7至12中的任一项所述的方法。
PCT/CN2022/087170 2022-04-15 2022-04-15 通信方法和通信装置 WO2023197314A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280001103.2A CN114938715A (zh) 2022-04-15 2022-04-15 通信方法和通信装置
PCT/CN2022/087170 WO2023197314A1 (zh) 2022-04-15 2022-04-15 通信方法和通信装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/087170 WO2023197314A1 (zh) 2022-04-15 2022-04-15 通信方法和通信装置

Publications (1)

Publication Number Publication Date
WO2023197314A1 true WO2023197314A1 (zh) 2023-10-19

Family

ID=82868086

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/087170 WO2023197314A1 (zh) 2022-04-15 2022-04-15 通信方法和通信装置

Country Status (2)

Country Link
CN (1) CN114938715A (zh)
WO (1) WO2023197314A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190132155A1 (en) * 2018-02-13 2019-05-02 Feng Jiang Enhanced trigger-based null data packet for channel sounding
CN113261324A (zh) * 2019-12-09 2021-08-13 北京小米移动软件有限公司 传输测量方法、传输测量装置及存储介质
CN113965954A (zh) * 2020-07-01 2022-01-21 华为技术有限公司 感知测量信息交互装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190132155A1 (en) * 2018-02-13 2019-05-02 Feng Jiang Enhanced trigger-based null data packet for channel sounding
CN113261324A (zh) * 2019-12-09 2021-08-13 北京小米移动软件有限公司 传输测量方法、传输测量装置及存储介质
CN113965954A (zh) * 2020-07-01 2022-01-21 华为技术有限公司 感知测量信息交互装置

Also Published As

Publication number Publication date
CN114938715A (zh) 2022-08-23

Similar Documents

Publication Publication Date Title
WO2023155072A1 (zh) 通信方法和通信装置
WO2023212927A1 (zh) 用于感知测量建立的通信方法和通信装置
CN114902717A (zh) Wlan感知测量方法及装置、电子设备及存储介质
WO2023197315A1 (zh) 感知测量方法和通信装置
WO2023201633A1 (zh) 用于感知测量报告的通信方法和通信装置
WO2023130329A1 (zh) 通信方法和通信装置
WO2023197314A1 (zh) 通信方法和通信装置
WO2023212924A1 (zh) 用于感知会话建立的通信方法和通信装置
WO2023193205A1 (zh) 用于感知测量报告的通信方法和通信装置
WO2023193250A1 (zh) 通信方法和通信装置
WO2023197267A1 (zh) 用于感知测量建立终止的通信方法和通信装置
WO2023168675A1 (zh) 通信方法和通信装置
WO2023130269A1 (zh) 通信方法和通信装置
WO2023279290A1 (zh) 通信方法和通信装置
WO2023137594A1 (zh) 用于无线局域网感知测量反馈的通信方法和通信装置
WO2023065360A1 (zh) 通信方法和通信装置
WO2023065308A1 (zh) 用于无线局域网感知测量的通信方法和通信装置
WO2023279266A1 (zh) 一种通信方法和通信装置
WO2023137592A1 (zh) Wlan感知测量方法及装置、电子设备及存储介质
WO2023133711A1 (zh) 通信方法和通信装置
WO2024011390A1 (zh) 代理感知测量方法及装置
WO2023193265A1 (zh) Wlan感知测量方法及装置、电子设备及存储介质
WO2024007308A1 (zh) 通信方法、装置、设备以及存储介质
WO2023065315A1 (zh) 通信方法和通信装置
WO2024011391A1 (zh) 代理感知测量方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22936959

Country of ref document: EP

Kind code of ref document: A1