WO2024077524A1 - 感知测量方法、电子设备及存储介质 - Google Patents

感知测量方法、电子设备及存储介质 Download PDF

Info

Publication number
WO2024077524A1
WO2024077524A1 PCT/CN2022/124941 CN2022124941W WO2024077524A1 WO 2024077524 A1 WO2024077524 A1 WO 2024077524A1 CN 2022124941 W CN2022124941 W CN 2022124941W WO 2024077524 A1 WO2024077524 A1 WO 2024077524A1
Authority
WO
WIPO (PCT)
Prior art keywords
perception measurement
parameter
perception
measurement
frame
Prior art date
Application number
PCT/CN2022/124941
Other languages
English (en)
French (fr)
Inventor
董贤东
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to PCT/CN2022/124941 priority Critical patent/WO2024077524A1/zh
Publication of WO2024077524A1 publication Critical patent/WO2024077524A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition

Definitions

  • the embodiments of the present disclosure relate to the field of mobile communication technology. Specifically, the embodiments of the present disclosure relate to a perception measurement method, an electronic device, and a storage medium.
  • Wi-Fi Wireless Fidelity
  • WLAN Wireless Local Area Network
  • the WLAN sensing process usually includes a trigger frame-based (TB) method and a non-TB based (NTB) method.
  • TB method is that the AP is the Initiator or Transmitter
  • NTB method is that the STA is the Initiator or Transmitter.
  • the NTB sensing measurement there is a situation where the measurement result is delayed in feedback. Therefore, it is necessary to provide a specific method for implementing delayed feedback to improve the NTB sensing measurement signaling process and adapt it to the wireless sensing needs.
  • the embodiments of the present disclosure provide a perception measurement method, an electronic device, and a storage medium to provide a way to implement delayed feedback.
  • an embodiment of the present disclosure provides a perception measurement method, which is applied to a site device.
  • the method includes:
  • an embodiment of the present disclosure further provides a perception measurement method, which is applied to an access point device, and the method includes:
  • the first NDPA frame carrying a first perception measurement parameter of a first empty data packet NDP frame; wherein at least one parameter of the first perception measurement parameter is a minimum value of the perception measurement parameters supported by the site device, and/or at least one parameter of the first perception measurement parameter is less than the perception measurement parameter of other perception measurement events in the current perception measurement establishment process of the site device;
  • an embodiment of the present disclosure further provides an electronic device, the electronic device being a site device, and the electronic device comprising:
  • An NDPA frame sending module configured to send a first empty data packet notification NDPA frame, carrying a first perception measurement parameter of a first empty data packet NDP frame in the first NDPA frame; wherein at least one of the first perception measurement parameters is the minimum value of the perception measurement parameters supported by the site device, and/or at least one of the first perception measurement parameters is less than the perception measurement parameters of other perception measurement events in the current perception measurement establishment process of the site device;
  • the result sending module is used to instruct the access point device to send the last perception measurement result of the perception measurement establishment process.
  • an embodiment of the present disclosure further provides an electronic device, wherein the electronic device is an access point device, and the electronic device includes:
  • An NDPA frame receiving module configured to receive a first empty data packet announcement NDPA frame, wherein the first NDPA frame carries a first perception measurement parameter of a first empty data packet NDP frame; wherein at least one of the first perception measurement parameters is a minimum value of the perception measurement parameters supported by the site device, and/or at least one of the first perception measurement parameters is smaller than the perception measurement parameters of other perception measurement events in the current perception measurement establishment process of the site device;
  • the measurement result sending module is used to send the last perception measurement result of the perception measurement establishment process.
  • the embodiments of the present disclosure also provide an electronic device, including a memory, a processor, and a computer program stored in the memory and executable on the processor, wherein when the processor executes the program, one or more methods described in the embodiments of the present disclosure are implemented.
  • the embodiments of the present disclosure further provide a computer-readable storage medium, on which a computer program is stored.
  • a computer program is stored.
  • the computer program is executed by a processor, one or more of the methods described in the embodiments of the present disclosure are implemented.
  • the STA sends a first NDPA frame and carries the first perception measurement parameter of the first null data packet (NDP) frame in the first NDPA (Null Data Packet Announcement) frame, so that the AP subsequently performs NDPA perception measurement according to the first perception measurement parameter and sends the last perception measurement result according to the first perception measurement parameter.
  • NDP null Data Packet Announcement
  • At least one of the first perception measurement parameters is the minimum value of the perception measurement parameters supported by the site device, and/or at least one of the first perception measurement parameters is smaller than the perception measurement parameters of other perception measurement events before the current perception measurement establishment process of the site device, thereby saving network resources and device power.
  • FIG1 is a flow chart of a perception measurement method provided by an embodiment of the present disclosure
  • FIG2 is a schematic diagram of a first example of an embodiment of the present disclosure
  • FIG3 is a second schematic diagram of the first example of the embodiment of the present disclosure.
  • FIG4 is a third schematic diagram of the first example of an embodiment of the present disclosure.
  • FIG5 is a schematic diagram of a second example of an embodiment of the present disclosure.
  • FIG6 is a schematic diagram of a third example of an embodiment of the present disclosure.
  • FIG7 is a second flowchart of the perception measurement method provided by an embodiment of the present disclosure.
  • FIG8 is a schematic diagram of a structure of an electronic device provided by an embodiment of the present disclosure.
  • FIG9 is a second structural diagram of an electronic device provided in an embodiment of the present disclosure.
  • FIG. 10 is a third schematic diagram of the structure of the electronic device provided in the embodiment of the present disclosure.
  • the term "and/or” describes the association relationship of associated objects, indicating that three relationships may exist.
  • a and/or B may represent three situations: A exists alone, A and B exist at the same time, and B exists alone.
  • the character "/" generally indicates that the associated objects before and after are in an "or” relationship.
  • plurality in the embodiments of the present disclosure refers to two or more than two, and other quantifiers are similar thereto.
  • first, second, third, etc. may be used in the present disclosure to describe various information, such information should not be limited to these terms. These terms are only used to distinguish the same type of information from each other.
  • first information may also be referred to as the second information, and similarly, the second information may also be referred to as the first information.
  • word “if” used herein may be interpreted as "at the time of” or "when” or "in response to determining”.
  • the embodiments of the present disclosure provide a perception measurement method, an electronic device, and a storage medium, so as to provide a way to implement delayed feedback.
  • the method and the device are based on the same application concept. Since the method and the device solve the problem in a similar principle, the implementation of the device and the method can refer to each other, and the repeated parts will not be repeated.
  • an embodiment of the present disclosure provides a perception measurement method.
  • the method may be applied to a station device STA.
  • the method may include the following steps:
  • Step 101 Send a first empty data packet announcement NDPA frame, carrying the first perception measurement parameters of the first empty data packet NDP frame in the first NDPA frame; wherein, at least one of the first perception measurement parameters is the minimum value of the perception measurement parameters supported by the site device, and/or, at least one of the first perception measurement parameters is smaller than the perception measurement parameters of other perception measurement events in the current perception measurement establishment process of the site device.
  • FIG2 shows a schematic diagram of the architecture of a WLAN Sensing (process); wherein, a sensing initiator (or initiator) initiates WLAN Sensing (e.g., initiates a WLAN sensing session), and there may be multiple sensing responders (or sensing receivers) or responders responding to it, as shown in FIG2 as responder 1, responder 2, and responder 3.
  • a sensing initiator initiates WLAN Sensing
  • multiple sensing responders or sensing receivers
  • responders or responders responding to it, as shown in FIG2 as responder 1, responder 2, and responder 3.
  • FIG2 shows a schematic diagram of the architecture of a WLAN Sensing (process); wherein, a sensing initiator (or initiator) initiates WLAN Sensing (e.g., initiates a WLAN sensing session), and there may be multiple sensing responders (or sensing receivers) or responders responding to it, as shown in FIG2 as responder 1, responder 2, and responder 3.
  • the sensing initiator initiates WLAN Sen
  • the perception initiator communicates with the perception responder via a communication connection, as shown in communication connection S1 ; the perception responders communicate with each other via communication connection S2 .
  • Each sensing initiator can be a client (Client); each sensing responder (in this example, sensing responder 1 to sensing responder 3) can be a station device (STA) or an access point device (AP).
  • STA and AP can play multiple roles in the WLAN sensing process; for example, in the WLAN sensing process, STA can also serve as a sensing initiator, and the sensing initiator can be a sensing transmitter (Sensing Transmitter), a sensing receiver (Sensing Receiver), or both, or neither.
  • the sensing responder can also be a sensing transmitter, a sensing receiver, or both.
  • the perception initiator and the perception responder can both be clients, and the two can communicate by connecting to the same access point device (AP); in FIG4 , Client1 is the perception initiator, and Client2 is the perception responder.
  • AP access point device
  • the WLAN sensing process usually includes a trigger frame (Triggered Based, TB) method and a non-trigger frame (Non-TB based, NTB) method.
  • the TB method is that the AP is the Initiator or Transmitter
  • the NTB method is that the STA is the Initiator or Transmitter.
  • SIFS represents the short inter frame space (Short Inter Frame Space).
  • the sensing initiator STA first executes step 1 and sends a sensing NDPA frame; and then executes step 2 and sends a sensing I2R (Initiator To Responder) NDP frame.
  • the sensing responder AP executes step 3 and sends a sensing R2I (Responder To Initiator) NDP frame.
  • NTB Non-Trigger Based
  • the STA sends a first Null Data Packet Announcement (NDPA) frame, and carries a first perception measurement parameter of a first Null Data Packet (NDP) frame in the first NDPA frame, so that the AP subsequently performs NDPA perception measurement according to the first perception measurement parameter.
  • the perception measurement parameter includes at least one of a Band Width (BW) parameter and a Spatial Stream (SS) number parameter.
  • At least one parameter of the first perception measurement parameters is the minimum value of the perception measurement parameters supported by the site device, and/or at least one parameter of the first perception measurement parameters is smaller than the perception measurement parameters of other perception measurement events before the current perception measurement establishment process of the site device. That is to say, in the NDPA perception measurement before the last perception measurement result is sent, among the first perception measurement parameters configured for the subsequent perception measurement to be performed, at least one parameter is the minimum value, and/or at least one parameter is smaller than the value of the perception measurement parameter of the aforementioned perception measurement event.
  • perception measurement events are perception measurement events before the last perception measurement event
  • the first perception measurement parameter includes at least one of the following situations:
  • the BW of the first perception measurement parameter is 20 MHz (megahertz);
  • the BW of the first sensory measurement parameter is less than the BW of the aforementioned sensory measurement event
  • the SS of the first perception measurement parameter is less than the SS of the aforementioned perception measurement event.
  • the number of long training fields (LTF) of the first NDP frame is 1.
  • the last perception measurement parameter is smaller than the perception measurement parameters of other perception measurement events (instances) of the perception measurement setup (Measurement setup, MS), thereby saving network resources and device power.
  • the first NDP frame may include I2R NDP and/or R2I NDP, as shown in Figure 5.
  • Step 102 instruct the access point device to send the last perception measurement result of the perception measurement establishment process.
  • the STA After the STA configures the perception measurement parameters of the NDP frame, it can instruct the AP (Access point) to feedback the last uplink perception measurement result after SIFS. For example, if n perception measurements are performed, the last perception measurement result is the perception measurement result of n-1 perception measurement events.
  • the perception measurement process needs to be performed one more time.
  • 10 perception measurement events are negotiated to occur, but in fact they occur 11 times, and the 11th perception measurement event is used to delay the feedback of the measurement report of the 10th perception measurement event; since the 11th perception measurement event is to ensure the integrity of the signaling and to transmit the 10th perception measurement report, the parameters of the 11th perception measurement can be different from the previous 10 perception measurements; for example, the BW of the previous 10 perception measurements is 80MHz and the SS is 4. In order to ensure that the device saves power and network resources, the parameters of the 11th perception measurement are 20MHz and SS is 1.
  • the STA sends a first NDPA frame and carries the first perception measurement parameter of the first Null Data Packet (NDP) frame in the first NDPA frame, so that the AP subsequently performs NDPA perception measurement according to the first perception measurement parameter and sends the last perception measurement result according to the first perception measurement parameter.
  • At least one of the first perception measurement parameters is the minimum value of the perception measurement parameters supported by the site device, and/or at least one of the first perception measurement parameters is smaller than the perception measurement parameters of other perception measurement events before the current perception measurement establishment process of the site device, thereby saving network resources and device power.
  • the embodiment of the present disclosure provides a perception measurement method.
  • the method may be applied to a site device.
  • the method may include the following steps:
  • the access point device In a case where the first perception measurement parameter includes the bandwidth parameter, instructing the access point device to send the last perception measurement result of the perception measurement establishment process according to the bandwidth parameter.
  • the BW of the first perception measurement parameter is 20 MHz, indicating that the AP feeds back the BW of the last perception measurement result as 20 MHz after SIFS.
  • the last perception measurement parameter is smaller than the perception measurement parameters of other perception measurement events (instances) of the MS, thereby saving network resources and device power.
  • the embodiment of the present disclosure further provides a perception measurement method.
  • the method may be applied to a site device.
  • the method may include the following steps:
  • the second perception measurement parameter is the perception measurement parameter of other perception measurement events in the current perception measurement establishment process; the second perception measurement parameter is the perception measurement parameter supported by the site device, for example, BW is 20MHz, 40MHz, 80MHz, 160MHz, etc., SS is 1, 2, 3, 4, etc.
  • the first perception measurement parameter of the last perception measurement event, or at least one parameter is the minimum value, or is less than the corresponding parameter in the second perception measurement parameter.
  • the embodiment of the present disclosure further provides a perception measurement method.
  • the method may be applied to a site device.
  • the method may include the following steps:
  • the access point device Instructing the access point device to send the perception measurement results of the other perception measurement events in the perception measurement establishment process according to the bandwidth parameter in the second perception measurement parameter; wherein, in the embodiment of the present disclosure, the other perception measurement events are perception measurement events before the last perception measurement event;
  • the STA sends a first NDPA frame, and carries the first perception measurement parameter of the first Null Data Packet (NDP) frame in the first NDPA frame, performs NDPA perception measurement according to the first perception measurement parameter, and sends the last perception measurement result according to the first perception measurement parameter.
  • At least one of the first perception measurement parameters is the minimum value of the perception measurement parameters supported by the site device, and/or at least one of the first perception measurement parameters is smaller than the perception measurement parameters of other perception measurement events before the current perception measurement establishment process of the site device, so as to save network resources and device power.
  • an embodiment of the present disclosure provides a perception measurement method.
  • the method may be applied to an access point device.
  • the method may include the following steps:
  • Step 701 receiving a first empty data packet announcement NDPA frame, the first NDPA frame carrying the first perception measurement parameters of the first empty data packet NDP frame; wherein, at least one of the first perception measurement parameters is the minimum value of the perception measurement parameters supported by the site device, and/or, at least one of the first perception measurement parameters is smaller than the perception measurement parameters of other perception measurement events in the current perception measurement establishment process of the site device.
  • the architecture of WLAN Sensing applied in the perception measurement method provided in the embodiment of the present disclosure and the WLAN Sensing process refer to the aforementioned first example
  • the NTB perception measurement process refers to the aforementioned second example
  • the process of delayed feedback of measurement results refers to the aforementioned third example, which will not be repeated here.
  • the AP before the last perception measurement result is sent, the AP receives a first NDPA frame sent by the STA, the STA carries a first perception measurement parameter of the first NDP frame in the first NDPA frame, and the AP performs NDPA perception measurement according to the first perception measurement parameter.
  • the perception measurement parameter includes at least one of a BW parameter and a SS number parameter.
  • At least one parameter of the first perception measurement parameters is the minimum value of the perception measurement parameters supported by the site device, and/or at least one parameter of the first perception measurement parameters is smaller than the perception measurement parameters of other perception measurement events before the current perception measurement establishment process of the site device. That is to say, in the NDPA perception measurement before the last perception measurement result is sent, among the first perception measurement parameters configured for the subsequent perception measurement to be performed, at least one parameter is the minimum value, and/or at least one parameter is smaller than the value of the perception measurement parameter of the aforementioned perception measurement event.
  • perception measurement events are perception measurement events before the last perception measurement event
  • the first perception measurement parameter includes at least one of the following situations:
  • the BW of the first perception measurement parameter is 20 MHz (megahertz);
  • the BW of the first sensory measurement parameter is less than the BW of the aforementioned sensory measurement event
  • the SS of the first perception measurement parameter is less than the SS of the aforementioned perception measurement event.
  • the number of long training fields (LTF) of the first NDP frame is 1.
  • the last perception measurement parameter is smaller than the perception measurement parameters of other perception measurement events (instances) of the perception measurement setup (Measurement setup, MS), thereby saving network resources and device power.
  • the first NDP frame may include I2R NDP and/or R2I NDP, as shown in Figure 5.
  • Step 702 Send the perception measurement result of the last perception measurement event in the perception measurement establishment process.
  • the AP feeds back the last uplink sensing measurement result. For example, if n sensing measurements are performed, the last sensing measurement result is the sensing measurement result of n-1 sensing measurement events.
  • the perception measurement process needs to be performed one more time.
  • 10 perception measurement events are negotiated to occur, but in fact they occur 11 times, and the 11th perception measurement event is used to delay the feedback of the measurement report of the 10th perception measurement event; since the 11th perception measurement event is to ensure the integrity of the signaling and to transmit the 10th perception measurement report, the parameters of the 11th perception measurement can be different from the previous 10 perception measurements; for example, the BW of the previous 10 perception measurements is 80MHz and the SS is 4. In order to ensure that the device saves power and network resources, the parameters of the 11th perception measurement are 20MHz and SS is 1.
  • the embodiment of the present disclosure provides a perception measurement method.
  • the method may be applied to an access point device.
  • the method may include the following steps:
  • the second NDPA frame carries a second perception measurement parameter of a second NDP frame; wherein the second perception measurement parameter includes a perception measurement parameter supported by the site device;
  • the first NDPA frame carrying a first perception measurement parameter of a first null data packet NDP frame; wherein at least one parameter in the first perception measurement parameter is a minimum value among the perception measurement parameters supported by the site device, and/or at least one parameter in the first perception measurement parameter is smaller than a corresponding parameter in the second perception measurement parameter; for example, a BW of the first perception measurement parameter is smaller than a BW in the second perception measurement parameter; and a SS of the first perception measurement parameter is smaller than a SS in the second perception measurement parameter;
  • the second perception measurement parameter is the perception measurement parameter of other perception measurement events in the current perception measurement establishment process; the second perception measurement parameter is the perception measurement parameter supported by the site device, for example, BW is 20MHz, 40MHz, 80MHz, 160MHz, etc., SS is 1, 2, 3, 4, etc.
  • the first perception measurement parameter of the last perception measurement event, or at least one parameter is the minimum value, or is less than the corresponding parameter in the second perception measurement parameter.
  • the AP before the last perception measurement result is sent, receives a first NDPA frame, obtains a first perception measurement parameter carried in the first NDPA frame, performs NDPA perception measurement according to the first perception measurement parameter, and sends the last perception measurement result according to the first perception measurement parameter.
  • At least one of the first perception measurement parameters is the minimum value of the perception measurement parameters supported by the site device, and/or at least one of the first perception measurement parameters is smaller than the perception measurement parameters of other perception measurement events before the current perception measurement establishment process of the site device, thereby saving network resources and device power.
  • the embodiment of the present disclosure further provides an electronic device, the electronic device is a site device, and the electronic device includes:
  • the NDPA frame sending module 801 is configured to send a first empty data packet notification NDPA frame, carrying a first perception measurement parameter of a first empty data packet NDP frame in the first NDPA frame; wherein at least one parameter of the first perception measurement parameter is the minimum value of the perception measurement parameters supported by the site device, and/or at least one parameter of the first perception measurement parameter is less than the perception measurement parameter of other perception measurement events in the current perception measurement establishment process of the site device;
  • the result sending module 802 is used to instruct the access point device to send the last perception measurement result of the perception measurement establishment process.
  • the perceptual measurement parameter includes at least one of a bandwidth parameter and a spatial stream number parameter.
  • the result sending module 802 is used to:
  • the access point device In a case where the first perception measurement parameter includes the bandwidth parameter, instructing the access point device to send the last perception measurement result of the perception measurement establishment process according to the bandwidth parameter.
  • the number of long training fields LTF of the first NDP frame is 1.
  • the electronic device includes:
  • the second sending module is used before the NDPA frame sending module 801 sends the first empty data packet to notify the NDPA frame.
  • a second NDPA frame is sent, and the second NDPA frame carries a second perception measurement parameter of a second NDP frame; wherein the second perception measurement parameter includes a perception measurement parameter supported by the site device.
  • the electronic device includes
  • the second indicating module is used after the second sending module sends the second NDPA frame.
  • the present disclosure also provides a perception measurement device, which is applied to a site device.
  • the device includes:
  • An NDPA sending module configured to send a first empty data packet announcement NDPA frame, carrying a first perception measurement parameter of a first empty data packet NDP frame in the first NDPA frame; wherein at least one of the first perception measurement parameters is the minimum value of the perception measurement parameters supported by the site device, and/or at least one of the first perception measurement parameters is less than the perception measurement parameters of other perception measurement events in the current perception measurement establishment process of the site device;
  • the instruction sending module is used to instruct the access point device to send the last perception measurement result of the perception measurement establishment process.
  • the device also includes other modules of the electronic device in the aforementioned embodiment, which will not be described in detail here.
  • the embodiment of the present disclosure further provides an electronic device, the electronic device is an access point device, and the electronic device includes:
  • the NDPA frame receiving module 901 is configured to receive a first empty data packet notification NDPA frame, wherein the first NDPA frame carries a first perception measurement parameter of a first empty data packet NDP frame; wherein at least one of the first perception measurement parameters is the minimum value of the perception measurement parameters supported by the site device, and/or at least one of the first perception measurement parameters is less than the perception measurement parameters of other perception measurement events in the current perception measurement establishment process of the site device;
  • the measurement result sending module 902 is configured to send the last perception measurement result of the perception measurement establishment process.
  • the perception measurement parameter includes at least one of a bandwidth parameter and a spatial stream number parameter.
  • the number of long training fields LTF of the first NDP frame is 1.
  • the electronic device includes:
  • the second receiving module is used before the NDPA frame receiving module 901 receives the first empty data packet notification NDPA frame.
  • a second NDPA frame is received, where the second NDPA frame carries a second perception measurement parameter of a second NDP frame; wherein the second perception measurement parameter includes a perception measurement parameter supported by the site device.
  • the present disclosure also provides a perception measurement device, which is applied to an access point device.
  • the device includes:
  • An NDPA receiving module configured to receive a first empty data packet announcement NDPA frame, the first NDPA frame carrying a first perception measurement parameter of a first empty data packet NDP frame; wherein at least one of the first perception measurement parameters is a minimum value of the perception measurement parameters supported by the site device, and/or at least one of the first perception measurement parameters is less than the perception measurement parameters of other perception measurement events in the current perception measurement establishment process of the site device;
  • the measurement sending module is used to send the last perception measurement result of the perception measurement establishment process.
  • the device also includes other modules of the electronic device in the aforementioned embodiment, which will not be described in detail here.
  • the embodiment of the present disclosure further provides an electronic device, as shown in FIG10
  • the electronic device 1000 shown in FIG10 may be a server, including: a processor 1001 and a memory 1003.
  • the processor 1001 and the memory 1003 are connected, such as through a bus 1002.
  • the electronic device 1000 may further include a transceiver 1004. It should be noted that in actual applications, the transceiver 1004 is not limited to one, and the structure of the electronic device 1000 does not constitute a limitation on the embodiment of the present disclosure.
  • Processor 1001 may be a CPU (Central Processing Unit), a general-purpose processor, a DSP (Digital Signal Processor), an ASIC (Application Specific Integrated Circuit), an FPGA (Field Programmable Gate Array) or other programmable logic devices, transistor logic devices, hardware components or any combination thereof. It may implement or execute various exemplary logic blocks, modules and circuits described in conjunction with the disclosure of the present invention. Processor 1001 may also be a combination that implements computing functions, such as a combination of one or more microprocessors, a combination of a DSP and a microprocessor, etc.
  • the bus 1002 may include a path for transmitting information between the above components.
  • the bus 1002 may be a PCI (Peripheral Component Interconnect) bus or an EISA (Extended Industry Standard Architecture) bus, etc.
  • the bus 1002 may be divided into an address bus, a data bus, a control bus, etc.
  • FIG10 is represented by only one thick line, but it does not mean that there is only one bus or one type of bus.
  • the memory 1003 can be a ROM (Read Only Memory) or other types of static storage devices that can store static information and instructions, a RAM (Random Access Memory) or other types of dynamic storage devices that can store information and instructions, or an EEPROM (Electrically Erasable Programmable Read Only Memory), a CD-ROM (Compact Disc Read Only Memory) or other optical disk storage, optical disk storage (including compressed optical disk, laser disk, optical disk, digital versatile disk, Blu-ray disk, etc.), a magnetic disk storage medium or other magnetic storage device, or any other medium that can be used to carry or store the desired program code in the form of instructions or data structures and can be accessed by a computer, but is not limited to this.
  • ROM Read Only Memory
  • RAM Random Access Memory
  • EEPROM Electrically Erasable Programmable Read Only Memory
  • CD-ROM Compact Disc Read Only Memory
  • optical disk storage including compressed optical disk, laser disk, optical disk, digital versatile disk, Blu-ray disk, etc.
  • magnetic disk storage medium or other magnetic storage device or any
  • the memory 1003 is used to store application code for executing the solution of the present disclosure, and the execution is controlled by the processor 1001.
  • the processor 1001 is used to execute the application code stored in the memory 1003 to implement the content shown in the above method embodiment.
  • the electronic devices include, but are not limited to, mobile phones, laptop computers, digital broadcast receivers, PDAs (personal digital assistants), PADs (tablet computers), PMPs (portable multimedia players), vehicle-mounted terminals (such as vehicle-mounted navigation terminals), etc., and fixed terminals such as digital TVs, desktop computers, etc.
  • PDAs personal digital assistants
  • PADs tablet computers
  • PMPs portable multimedia players
  • vehicle-mounted terminals such as vehicle-mounted navigation terminals
  • fixed terminals such as digital TVs, desktop computers, etc.
  • the electronic device shown in FIG10 is only an example and should not limit the functions and scope of use of the embodiments of the present disclosure.
  • the server provided by the present disclosure may be an independent physical server, or a server cluster or distributed system composed of multiple physical servers, or a cloud server that provides basic cloud computing services such as cloud services, cloud databases, cloud computing, cloud functions, cloud storage, network services, cloud communications, middleware services, domain name services, security services, CDN, and big data and artificial intelligence platforms.
  • the terminal may be a smart phone, tablet computer, laptop computer, desktop computer, smart speaker, smart watch, etc., but is not limited thereto.
  • the terminal and the server may be directly or indirectly connected via wired or wireless communication, which is not limited by the present disclosure.
  • An embodiment of the present disclosure provides a computer-readable storage medium, on which a computer program is stored.
  • the computer-readable storage medium is run on a computer, the computer can execute the corresponding contents of the aforementioned method embodiment.
  • the computer-readable medium mentioned above in the present disclosure may be a computer-readable signal medium or a computer-readable storage medium or any combination of the above two.
  • the computer-readable storage medium may be, for example, but not limited to, an electrical, magnetic, optical, electromagnetic, infrared, or semiconductor system, device or device, or any combination of the above.
  • Computer-readable storage media may include, but are not limited to: an electrical connection with one or more wires, a portable computer disk, a hard disk, a random access memory (RAM), a read-only memory (ROM), an erasable programmable read-only memory (EPROM or flash memory), an optical fiber, a portable compact disk read-only memory (CD-ROM), an optical storage device, a magnetic storage device, or any suitable combination of the above.
  • a computer-readable storage medium may be any tangible medium containing or storing a program that can be used by or in combination with an instruction execution system, device or device.
  • a computer-readable signal medium may include a data signal propagated in a baseband or as part of a carrier wave, which carries a computer-readable program code.
  • This propagated data signal may take a variety of forms, including but not limited to an electromagnetic signal, an optical signal, or any suitable combination of the above.
  • the computer readable signal medium may also be any computer readable medium other than a computer readable storage medium, which may send, propagate or transmit a program for use by or in conjunction with an instruction execution system, apparatus or device.
  • the program code contained on the computer readable medium may be transmitted using any suitable medium, including but not limited to: wires, optical cables, RF (radio frequency), etc., or any suitable combination of the above.
  • the computer-readable medium may be included in the electronic device, or may exist independently without being incorporated into the electronic device.
  • the computer-readable medium carries one or more programs.
  • the electronic device executes the method shown in the above embodiment.
  • a computer program product or a computer program comprising computer instructions, the computer instructions being stored in a computer-readable storage medium.
  • a processor of a computer device reads the computer instructions from the computer-readable storage medium, and the processor executes the computer instructions, so that the computer device executes the methods provided in the above-mentioned various optional implementations.
  • Computer program code for performing the operations of the present disclosure may be written in one or more programming languages, or a combination thereof, including object-oriented programming languages, such as Java, Smalltalk, C++, and conventional procedural programming languages, such as "C" or similar programming languages.
  • the program code may be executed entirely on the user's computer, partially on the user's computer, as a separate software package, partially on the user's computer and partially on a remote computer, or entirely on a remote computer or server.
  • the remote computer may be connected to the user's computer through any type of network, including a local area network (LAN) or a wide area network (WAN), or may be connected to an external computer (e.g., through the Internet using an Internet service provider).
  • LAN local area network
  • WAN wide area network
  • Internet service provider e.g., AT&T, MCI, Sprint, EarthLink, MSN, GTE, etc.
  • each square box in the flow chart or block diagram can represent a module, a program segment or a part of a code, and the module, the program segment or a part of the code contains one or more executable instructions for realizing the specified logical function.
  • the functions marked in the square box can also occur in a sequence different from that marked in the accompanying drawings. For example, two square boxes represented in succession can actually be executed substantially in parallel, and they can sometimes be executed in the opposite order, depending on the functions involved.
  • each square box in the block diagram and/or flow chart, and the combination of the square boxes in the block diagram and/or flow chart can be implemented with a dedicated hardware-based system that performs a specified function or operation, or can be implemented with a combination of dedicated hardware and computer instructions.
  • modules involved in the embodiments described in the present disclosure may be implemented by software or hardware.
  • the name of a module does not limit the module itself in some cases.
  • module A may also be described as "module A for performing operation B".

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开实施例涉及移动通信技术领域,提供了一种感知测量方法、电子设备及存储介质。所述感知测量方法应用于站点设备,所述方法包括:发送第一空数据包通告NDPA帧,在第一NDPA帧中携带第一空数据包NDP帧的第一感知测量参数;其中,所述第一感知测量参数中的至少一个参数为所述站点设备支持的感知测量参数中的最小值,和/或,所述第一感知测量参数中的至少一个参数小于所述站点设备的本次感知测量建立过程的其他感知测量事件的感知测量参数;发送所述感知测量建立过程的最后一个感知测量结果。本公开实施例提供了一种实现延迟反馈的方式。

Description

感知测量方法、电子设备及存储介质 技术领域
本公开实施例涉及移动通信技术领域,具体而言,本公开实施例涉及一种感知测量方法、电子设备及存储介质。
背景技术
随着移动通信技术的迅速发展,无线保真(Wireless Fidelity,Wi-Fi)技术在传输速率以及吞吐量等方面已经取得了巨大的进步。在目前所研究的Wi-Fi技术中,可能会支持无线局域网(Wireless Local Area Network,WLAN)感知(Sensing)技术。例如,在密集环境下(例如家庭环境及企业环境)的位置发现、接近检测(Proximity Detection)及存在检测(Presence Detection)等应用场景。
WLAN sensing过程通常包括基于触发帧(Triggered Based,TB)的方式以及非基于触发帧(Non-TB based,NTB)的方式。具体地,TB方式即AP为Initiator或Transmitter,NTB方式即为STA为Initiator或Transmitter。在NTB感知测量中,存在着延迟反馈测量结果的情况,因此,需要提供一种实现延迟反馈的具体方式,以完善NTB感知测量信令流程,使之适应无线感知需求。
发明内容
本公开实施例提供了一种感知测量方法、电子设备及存储介质,以提供一种实现延迟反馈的方式。
一方面,本公开实施例提供了一种感知测量方法,应用于站点设备,所述方法包括:
发送第一空数据包通告NDPA帧,在第一NDPA帧中携带第一空数 据包NDP帧的第一感知测量参数;其中,所述第一感知测量参数中的至少一个参数为所述站点设备支持的感知测量参数中的最小值,和/或,所述第一感知测量参数中的至少一个参数小于所述站点设备的本次感知测量建立过程的其他感知测量事件的感知测量参数;
指示接入点设备发送所述感知测量建立过程的最后一个感知测量结果。
另一方面,本公开实施例还提供了一种感知测量方法,应用于接入点设备,所述方法包括:
接收第一空数据包通告NDPA帧,第一NDPA帧中携带第一空数据包NDP帧的第一感知测量参数;其中,所述第一感知测量参数中的至少一个参数为站点设备支持的感知测量参数中的最小值,和/或,所述第一感知测量参数中的至少一个参数小于所述站点设备的本次感知测量建立过程的其他感知测量事件的感知测量参数;
发送所述感知测量建立过程的最后一个感知测量结果。
另一方面,本公开实施例还提供了一种电子设备,所述电子设备为站点设备,所述电子设备包括:
NDPA帧发送模块,用于发送第一空数据包通告NDPA帧,在第一NDPA帧中携带第一空数据包NDP帧的第一感知测量参数;其中,所述第一感知测量参数中的至少一个参数为所述站点设备支持的感知测量参数中的最小值,和/或,所述第一感知测量参数中的至少一个参数小于所述站点设备的本次感知测量建立过程的其他感知测量事件的感知测量参数;
结果发送模块,用于指示接入点设备发送所述感知测量建立过程的最后一个感知测量结果。
另一方面,本公开实施例还提供了一种电子设备,所述电子设备为接入点设备,所述电子设备包括:
NDPA帧接收模块,用于接收第一空数据包通告NDPA帧,第一NDPA帧中携带第一空数据包NDP帧的第一感知测量参数;其中,所述第一感知测量参数中的至少一个参数为站点设备支持的感知测量参数中的最小 值,和/或,所述第一感知测量参数中的至少一个参数小于所述站点设备的本次感知测量建立过程的其他感知测量事件的感知测量参数;
测量结果发送模块,用于发送所述感知测量建立过程的最后一个感知测量结果。
本公开实施例还提供了一种电子设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,处理器执行程序时实现如本公开实施例中一个或多个所述的方法。
本公开实施例还提供了一种计算机可读存储介质,该计算机可读存储介质上存储有计算机程序,该计算机程序被处理器执行时实现如本公开实施例中一个或多个所述的方法。
本公开实施例中,在最后一个感知测量结果发送之前,STA发送第一NDPA帧,并在第一NDPA(Null Data Packet Announcement)帧中携带第一空数据包(Null Data Packet,NDP)帧的第一感知测量参数,使得AP后续根据第一感知测量参数进行NDPA感知测量并根据所述第一感知测量参数发送最后一个感知测量结果。其中,所述第一感知测量参数中的至少一个参数为所述站点设备支持的感知测量参数中的最小值,和/或,所述第一感知测量参数中的至少一个参数小于所述站点设备的本次感知测量建立过程之前的其他感知测量事件的感知测量参数,以此节省网络资源以及设备电量。
本公开实施例附加的方面和优点将在下面的描述中部分给出,这些将从下面的描述中变得明显,或通过本公开的实践了解到。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对本公开实施例的描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附 图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本公开实施例提供的感知测量方法的流程图之一;
图2为本公开实施例的第一示例的示意图之一;
图3为本公开实施例的第一示例的示意图之二;
图4为本公开实施例的第一示例的示意图之三;
图5为本公开实施例的第二示例的示意图;
图6为本公开实施例的第三示例的示意图;
图7为本公开实施例的提供的感知测量方法的流程图之二;
图8为本公开实施例提供的电子设备的结构示意图之一;
图9为本公开实施例提供的电子设备的结构示意图之二;
图10为本公开实施例提供的电子设备的结构示意图之三。
具体实施方式
本公开实施例中术语“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
本公开实施例中术语“多个”是指两个或两个以上,其它量词与之类似。
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本发明相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本发明的一些方面相一致的装置和方法的例子。
在本公开使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开。在本公开和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也是旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本公开可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本公开范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,例如,在此所使用的词语“如果”可以被解释成为“在……时”或“当……时”或“响应于确定”。
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,并不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
本公开实施例提供了一种感知测量方法、电子设备及存储介质,用以提供一种实现延迟反馈的方式。
其中,方法和装置是基于同一申请构思的,由于方法和装置解决问题的原理相似,因此装置和方法的实施可以相互参见,重复之处不再赘述。
如图1中所示,本公开实施例提供了一种感知测量方法,可选地,所述方法可应用于站点设备STA,该方法可以包括以下步骤:
步骤101,发送第一空数据包通告NDPA帧,在第一NDPA帧中携带第一空数据包NDP帧的第一感知测量参数;其中,所述第一感知测量参数中的至少一个参数为所述站点设备支持的感知测量参数中的最小值,和/或,所述第一感知测量参数中的至少一个参数小于所述站点设备的本次感知测量建立过程的其他感知测量事件的感知测量参数。
作为第一示例,参见图2至图4,首先介绍本公开实施例提供的感知测量方法所应用的WLAN Sensing的架构以及WLAN Sensing过程。
图2示出了一种WLAN Sensing(过程)的架构示意图;其中,感知发起端Sensing Initiator(或发起端Initiator)发起WLAN Sensing(例如,发起WLAN感知会话),可能存在着多个感知响应端(Sensing Responder,或感知接收端)或响应端对其响应,如图2中的响应端1、响应端2和响 应端3所示。当感知发起端发起WLAN Sensing时,多个关联或者非关联的WLAN Sensing的感知响应端可以进行响应。
参见图3,感知发起端与感知响应端之间通过通信连接通信,如通信连接S1所示;感知响应端之间通过通信连接S2通信。
其中,每个感知发起端可以是一个客户端(Client);每个感知响应端(在本示例中,即感知响应端1至感知响应端3)可以是一个站点设备(Station,STA)或接入点设备(Access Point,AP)。此外,STA和AP可以在WLAN感知过程中承担多个角色;例如,在WLAN感知过程中,STA还可以作为感知发起者,感知发起者可能是感知发射端(Sensing Transmitter)、感知接收端(Sensing Receiver),或两者都是,或都不是。在WLAN感知过程中,感知响应端也可能是感知发射端、感知接收端或两者都是。
作为另一种架构,如图4所示,感知发起端、感知响应端还可以均为客户端,二者可以通过连接到同一接入点设备(AP)进行通信;图4中Client1为感知发起端,Client2为感知响应端。
通常情况下,WLAN sensing过程通常包括基于触发帧(Triggered Based,TB)的方式以及非基于触发帧(Non-TB based,NTB)的方式。具体地,TB方式即AP为Initiator或Transmitter,NTB方式即为STA为Initiator或Transmitter。作为第二示例,参见图5,NTB感知测量过程如图5所示,其中,SIFS表示短帧间隔(Short Inter Frame Space)。具体地,参见图5,感知发起端STA首先执行第1步,发送感知NDPA帧;然后再执行第2步,发送感知I2R(Initiator To Responder)NDP帧。感知响应端AP执行第3步,发送感知R2I(Responder To Initiator)NDP帧。
在NTB(Non-Trigger Based)感知测量中,存在着延迟反馈测量结果(delayed reporting)的情况,作为第三示例,参见图6,当完成感知测量事件1后,AP发送无效报告(invalid reporting);当完成感知测量事件2后,AP发送感知测量事件1的测量报告(即测量报告ID=1),后续由此类推,形成延迟反馈测量报告。
本公开实施例中,在最后一个感知测量结果发送之前,STA发送第一 空数据包通告(Null Data Packet Announcement,NDPA)帧,并在第一NDPA帧中携带第一空数据包(Null Data Packet,NDP)帧的第一感知测量参数,使得AP后续根据第一感知测量参数进行NDPA感知测量。可选地,所述感知测量参数包括带宽(Band Width,BW)参数以及空间流(Spatial Stream,SS)数量参数中的至少一种。
其中,所述第一感知测量参数中的至少一个参数为所述站点设备支持的感知测量参数中的最小值,和/或,所述第一感知测量参数中的至少一个参数小于所述站点设备的本次感知测量建立过程的之前的其他感知测量事件的感知测量参数。也就是说,最后一次感知测量结果发送之前的NDPA感知测量中,为后续即将进行的感知测量配置的第一感知测量参数中,至少一个参数为最小值,和/或至少一个参数小于前述感知测量事件的感知测量参数的值。
其中,本公开实施例中,其他感知测量事件即最后一次感知测量事件之前的感知测量事件;
例如,第一感知测量参数包括以下情况中的至少一种:
第一感知测量参数的BW为20MHz(兆赫兹);
第一感知测量参数的SS=1;其中,SS=1,可映射得到LTF(long training field)的数量等于1,可选地,LTF具体为HE(high efficiency)LTF
第一感知测量参数的BW小于前述感知测量事件的BW;
第一感知测量参数的SS小于前述感知测量事件的SS。
可选地,第一NDP帧的长训练字段(Long Training Field,LTF)的数量为1。
这样,最后一次感知测量参数小于该感知测量建立(Measurement setup,MS)的其他感知测量事件(instance)的感知测量参数,以此节省网络资源以及设备电量。
可选地,第一NDP帧可以包括I2R NDP和/或R2I NDP,如图5所示。
步骤102,指示接入点设备发送所述感知测量建立过程的最后一个感知测量结果。
STA配置好NDP帧的感知测量参数后,可以指示AP(Access point)在SIFS之后,反馈最后一个上行(up link)感知测量结果。例如,进行了n次感知测量,则最后一个感知测量结果为n-1次感知测量事件的感知测量结果。
具体地,如AP要发送最后一次测量事件的测量报告,为了保证信令的完整性,则感知测量过程需多一次。例如,在MS过程中协商了10次感知测量事件发生,实质上发生11次,且第11次感知测量事件用于延迟反馈第10次感知测量事件的测量报告;由于第11次感知测量事件是为了保证信令的完整性,且为了传输第10次感知测量报告,则第11次感知测量的参数可以与前10次感知测量不同;例如,前10次感知测量的BW为80MHz、SS为4,为了保证设备省电同时节省网络资源,第11次感知测量的参数中,BW为20MHz、SS为1。
本公开实施例中,在最后一个感知测量结果发送之前,STA发送第一NDPA帧,并在第一NDPA帧中携带第一空数据包(Null Data Packet,NDP)帧的第一感知测量参数,使得AP后续根据第一感知测量参数进行NDPA感知测量并根据所述第一感知测量参数发送最后一个感知测量结果。其中,所述第一感知测量参数中的至少一个参数为所述站点设备支持的感知测量参数中的最小值,和/或,所述第一感知测量参数中的至少一个参数小于所述站点设备的本次感知测量建立过程之前的其他感知测量事件的感知测量参数,以此节省网络资源以及设备电量。
本公开实施例提供了一种感知测量方法,可选地,所述方法可应用于站点设备,该方法可以包括以下步骤:
发送第一空数据包通告NDPA帧,在第一NDPA帧中携带第一空数据包NDP帧的第一感知测量参数;其中,所述第一感知测量参数中的至少一个参数为所述站点设备支持的感知测量参数中的最小值,和/或,所述第一感知测量参数中的至少一个参数小于所述站点设备的本次感知测量建立过程的其他感知测量事件的感知测量参数;
在所述第一感知测量参数包括所述带宽参数的情况下,指示接入点设备根据所述带宽参数,发送所述感知测量建立过程的最后一个感知测量结果。
例如,第一感知测量参数的BW为20MHz,指示AP在SIFS之后,反馈最后一个感知测量结果的BW为20MHz。这样,最后一次感知测量参数小于该MS的其他感知测量事件(instance)的感知测量参数,以此节省网络资源以及设备电量。
本公开实施例还提供了一种感知测量方法,可选地,所述方法可应用于站点设备,该方法可以包括以下步骤:
发送第二NDPA帧,在所述第二NDPA帧中携带第二NDP帧的第二感知测量参数;其中,所述第二感知测量参数包括所述站点设备支持的感知测量参数;
发送第一空数据包通告NDPA帧,在第一NDPA帧中携带第一空数据包NDP帧的第一感知测量参数;其中,所述第一感知测量参数中的至少一个参数为所述站点设备支持的感知测量参数中的最小值,和/或,所述第一感知测量参数中的至少一个参数小于第二感知测量参数中对应的参数;例如,第一感知测量参数的BW小于第二感知测量参数中的BW;第一感知测量参数的SS小于第二感知测量参数中的SS;
指示接入点设备根据所述带宽参数,发送所述感知测量建立过程的最后一个感知测量结果。
其中,第二感知测量参数即本次感知测量建立过程的其他感知测量事件的感知测量参数;第二感知测量参数为所述站点设备支持的感知测量参数即可,例如BW为20MHz、40MHz、80MHz、160MHz等,SS为1、2、3、4等。而最后一次感知测量事件的第一感知测量参数,或者至少一个参数为最小值,或者小于第二感知测量参数中对应的参数。
本公开实施例还提供了一种感知测量方法,可选地,所述方法可应用 于站点设备,该方法可以包括以下步骤:
发送第二NDPA帧,在所述第二NDPA帧中携带第二NDP帧的第二感知测量参数;其中,所述第二感知测量参数包括所述站点设备支持的感知测量参数;
指示接入点设备根据所述第二感知测量参数中的带宽参数,发送所述感知测量建立过程的所述其他感知测量事件的感知测量结果;其中,本公开实施例中,其他感知测量事件即最后一次感知测量事件之前的感知测量事件;
发送第一空数据包通告NDPA帧,在第一NDPA帧中携带第一空数据包NDP帧的第一感知测量参数;其中,所述第一感知测量参数中的至少一个参数为所述站点设备支持的感知测量参数中的最小值,和/或,所述第一感知测量参数中的至少一个参数小于所述站点设备的本次感知测量建立过程的其他感知测量事件的感知测量参数;
指示接入点设备根据所述带宽参数,发送所述感知测量建立过程的最后一个感知测量结果。
本公开实施例中,在最后一个感知测量结果发送之前,STA发送第一NDPA帧,并在第一NDPA帧中携带第一空数据包(Null Data Packet,NDP)帧的第一感知测量参数,根据第一感知测量参数进行NDPA感知测量并根据所述第一感知测量参数发送最后一个感知测量结果。其中,所述第一感知测量参数中的至少一个参数为所述站点设备支持的感知测量参数中的最小值,和/或,所述第一感知测量参数中的至少一个参数小于所述站点设备的本次感知测量建立过程之前的其他感知测量事件的感知测量参数,以此节省网络资源以及设备电量。
参见图7,本公开实施例提供了一种感知测量方法,可选地,所述方法可应用于接入点设备,该方法可以包括以下步骤:
步骤701,接收第一空数据包通告NDPA帧,第一NDPA帧中携带第 一空数据包NDP帧的第一感知测量参数;其中,所述第一感知测量参数中的至少一个参数为站点设备支持的感知测量参数中的最小值,和/或,所述第一感知测量参数中的至少一个参数小于所述站点设备的本次感知测量建立过程的其他感知测量事件的感知测量参数。
其中,本公开实施例提供的感知测量方法的所应用WLAN Sensing的架构以及WLAN Sensing过程参考前述第一示例,NTB感知测量过程参考前述第二示例、延迟反馈测量结果的过程参考前述第三示例、在此不再赘述。
本公开实施例中,在最后一个感知测量结果发送之前,AP接收STA发送的第一NDPA帧,STA在第一NDPA帧中携带第一NDP帧的第一感知测量参数,AP根据第一感知测量参数进行NDPA感知测量。可选地,所述感知测量参数包括BW参数以及SS数量参数中的至少一种。
其中,所述第一感知测量参数中的至少一个参数为所述站点设备支持的感知测量参数中的最小值,和/或,所述第一感知测量参数中的至少一个参数小于所述站点设备的本次感知测量建立过程的之前的其他感知测量事件的感知测量参数。也就是说,最后一次感知测量结果发送之前的NDPA感知测量中,为后续即将进行的感知测量配置的第一感知测量参数中,至少一个参数为最小值,和/或至少一个参数小于前述感知测量事件的感知测量参数的值。
其中,本公开实施例中,其他感知测量事件即最后一次感知测量事件之前的感知测量事件;
例如,第一感知测量参数包括以下情况中的至少一种:
第一感知测量参数的BW为20MHz(兆赫兹);
第一感知测量参数的SS=1;
第一感知测量参数的BW小于前述感知测量事件的BW;
第一感知测量参数的SS小于前述感知测量事件的SS。
可选地,第一NDP帧的长训练字段(Long Training Field,LTF)的数量为1。
这样,最后一次感知测量参数小于该感知测量建立(Measurement setup,MS)的其他感知测量事件(instance)的感知测量参数,以此节省网络资源以及设备电量。
可选地,第一NDP帧可以包括I2R NDP和/或R2I NDP,如图5所示。
步骤702,发送所述感知测量建立过程的最后一个所述感知测量事件的感知测量结果。
AP在SIFS之后,反馈最后一个上行感知测量结果。例如,进行了n次感知测量,则最后一个感知测量结果为n-1次感知测量事件的感知测量结果。
具体地,如AP要发送最后一次测量事件的测量报告,为了保证信令的完整性,则感知测量过程需多一次。例如,在MS过程中协商了10次感知测量事件发生,实质上发生11次,且第11次感知测量事件用于延迟反馈第10次感知测量事件的测量报告;由于第11次感知测量事件是为了保证信令的完整性,且为了传输第10次感知测量报告,则第11次感知测量的参数可以与前10次感知测量不同;例如,前10次感知测量的BW为80MHz、SS为4,为了保证设备省电同时节省网络资源,第11次感知测量的参数中,BW为20MHz、SS为1。
本公开实施例提供了一种感知测量方法,可选地,所述方法可应用于接入点设备,该方法可以包括以下步骤:
接收第二NDPA帧,所述第二NDPA帧中携带第二NDP帧的第二感知测量参数;其中,所述第二感知测量参数包括所述站点设备支持的感知测量参数;
接收第一空数据包通告NDPA帧,第一NDPA帧中携带第一空数据包NDP帧的第一感知测量参数;其中,所述第一感知测量参数中的至少一个参数为所述站点设备支持的感知测量参数中的最小值,和/或,所述第一感知测量参数中的至少一个参数小于第二感知测量参数中对应的参数;例如,第一感知测量参数的BW小于第二感知测量参数中的BW;第 一感知测量参数的SS小于第二感知测量参数中的SS;
发送所述感知测量建立过程的最后一个所述感知测量事件的感知测量结果。
其中,第二感知测量参数即本次感知测量建立过程的其他感知测量事件的感知测量参数;第二感知测量参数为所述站点设备支持的感知测量参数即可,例如BW为20MHz、40MHz、80MHz、160MHz等,SS为1、2、3、4等。而最后一次感知测量事件的第一感知测量参数,或者至少一个参数为最小值,或者小于第二感知测量参数中对应的参数。
本公开实施例中,在最后一个感知测量结果发送之前,AP接收第一NDPA帧,并获取第一NDPA帧中携带第一感知测量参数,根据第一感知测量参数进行NDPA感知测量并根据所述第一感知测量参数发送最后一个感知测量结果。其中,所述第一感知测量参数中的至少一个参数为所述站点设备支持的感知测量参数中的最小值,和/或,所述第一感知测量参数中的至少一个参数小于所述站点设备的本次感知测量建立过程之前的其他感知测量事件的感知测量参数,以此节省网络资源以及设备电量。
参见图8,基于与本公开实施例所提供的方法相同的原理,本公开实施例还提供了一种电子设备,所述电子设备为站点设备,所述电子设备包括:
NDPA帧发送模块801,用于发送第一空数据包通告NDPA帧,在第一NDPA帧中携带第一空数据包NDP帧的第一感知测量参数;其中,所述第一感知测量参数中的至少一个参数为所述站点设备支持的感知测量参数中的最小值,和/或,所述第一感知测量参数中的至少一个参数小于所述站点设备的本次感知测量建立过程的其他感知测量事件的感知测量参数;
结果发送模块802,用于指示接入点设备发送所述感知测量建立过程的最后一个感知测量结果。
可选地,本公开实施例中,所述感知测量参数包括带宽参数以及空间 流数量参数中的至少一种。
可选地,本公开实施例中,所述结果发送模块802用于:
在所述第一感知测量参数包括所述带宽参数的情况下,指示接入点设备根据所述带宽参数,发送所述感知测量建立过程的最后一个感知测量结果。
可选地,本公开实施例中,第一NDP帧的长训练字段LTF的数量为1。
可选地,本公开实施例中,所述电子设备包括:
第二发送模块,用于所述NDPA帧发送模块801发送第一空数据包通告NDPA帧之前,
发送第二NDPA帧,在所述第二NDPA帧中携带第二NDP帧的第二感知测量参数;其中,所述第二感知测量参数包括所述站点设备支持的感知测量参数。
可选地,本公开实施例中,所述电子设备包括
第二指示模块,用于所述第二发送模块发送第二NDPA帧之后,
指示接入点设备根据所述第二感知测量参数中的带宽参数,发送所述感知测量建立过程的所述其他感知测量事件的感知测量结果。
本公开实施例还提供了一种感知测量装置,应用于站点设备,所述装置包括:
NDPA发送模块,用于发送第一空数据包通告NDPA帧,在第一NDPA帧中携带第一空数据包NDP帧的第一感知测量参数;其中,所述第一感知测量参数中的至少一个参数为所述站点设备支持的感知测量参数中的最小值,和/或,所述第一感知测量参数中的至少一个参数小于所述站点设备的本次感知测量建立过程的其他感知测量事件的感知测量参数;
指示发送模块,用于指示接入点设备发送所述感知测量建立过程的最后一个感知测量结果。
所述装置还包括前述实施例中电子设备的其他模块,在此不再赘述。
参见图9,基于与本公开实施例所提供的方法相同的原理,本公开实施例还提供了一种电子设备,所述电子设备为接入点设备,所述电子设备包括:
NDPA帧接收模块901,用于接收第一空数据包通告NDPA帧,第一NDPA帧中携带第一空数据包NDP帧的第一感知测量参数;其中,所述第一感知测量参数中的至少一个参数为站点设备支持的感知测量参数中的最小值,和/或,所述第一感知测量参数中的至少一个参数小于所述站点设备的本次感知测量建立过程的其他感知测量事件的感知测量参数;
测量结果发送模块902,用于发送所述感知测量建立过程的最后一个感知测量结果。
可选地,本公开实施例中,所述感知测量参数包括带宽参数以及空间流数量参数中的至少一种。
可选地,本公开实施例中,第一NDP帧的长训练字段LTF的数量为1。
可选地,本公开实施例中,所述电子设备包括:
第二接收模块,用于所述NDPA帧接收模块901接收第一空数据包通告NDPA帧之前,
接收第二NDPA帧,所述第二NDPA帧中携带第二NDP帧的第二感知测量参数;其中,所述第二感知测量参数包括所述站点设备支持的感知测量参数。
本公开实施例还提供了一种感知测量装置,应用于接入点设备,所述装置包括:
NDPA接收模块,用于接收第一空数据包通告NDPA帧,第一NDPA帧中携带第一空数据包NDP帧的第一感知测量参数;其中,所述第一感知测量参数中的至少一个参数为站点设备支持的感知测量参数中的最小值,和/或,所述第一感知测量参数中的至少一个参数小于所述站点设备的本次感知测量建立过程的其他感知测量事件的感知测量参数;
测量发送模块,用于发送所述感知测量建立过程的最后一个感知测量 结果。
所述装置还包括前述实施例中电子设备的其他模块,在此不再赘述。
在一个可选实施例中,本公开实施例还提供了一种电子设备,如图10所示,图10所示的电子设备1000可以为服务器,包括:处理器1001和存储器1003。其中,处理器1001和存储器1003相连,如通过总线1002相连。可选地,电子设备1000还可以包括收发器1004。需要说明的是,实际应用中收发器1004不限于一个,该电子设备1000的结构并不构成对本公开实施例的限定。
处理器1001可以是CPU(Central Processing Unit,中央处理器),通用处理器,DSP(Digital Signal Processor,数据信号处理器),ASIC(Application Specific Integrated Circuit,专用集成电路),FPGA(Field Programmable Gate Array,现场可编程门阵列)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本公开公开内容所描述的各种示例性的逻辑方框,模块和电路。处理器1001也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等。
总线1002可包括一通路,在上述组件之间传送信息。总线1002可以是PCI(Peripheral Component Interconnect,外设部件互连标准)总线或EISA(Extended Industry Standard Architecture,扩展工业标准结构)总线等。总线1002可以分为地址总线、数据总线、控制总线等。为便于表示,图10中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
存储器1003可以是ROM(Read Only Memory,只读存储器)或可存储静态信息和指令的其他类型的静态存储设备,RAM(Random Access Memory,随机存取存储器)或者可存储信息和指令的其他类型的动态存储设备,也可以是EEPROM(Electrically Erasable Programmable Read Only Memory,电可擦可编程只读存储器)、CD-ROM(Compact Disc Read Only Memory,只读光盘)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储 设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。
存储器1003用于存储执行本公开方案的应用程序代码,并由处理器1001来控制执行。处理器1001用于执行存储器1003中存储的应用程序代码,以实现前述方法实施例所示的内容。
其中,电子设备包括但不限于:移动电话、笔记本电脑、数字广播接收器、PDA(个人数字助理)、PAD(平板电脑)、PMP(便携式多媒体播放器)、车载终端(例如车载导航终端)等等的移动终端以及诸如数字TV、台式计算机等等的固定终端。图10示出的电子设备仅仅是一个示例,不应对本公开实施例的功能和使用范围带来任何限制。
本公开提供的服务器可以是独立的物理服务器,也可以是多个物理服务器构成的服务器集群或者分布式系统,还可以是提供云服务、云数据库、云计算、云函数、云存储、网络服务、云通信、中间件服务、域名服务、安全服务、CDN、以及大数据和人工智能平台等基础云计算服务的云服务器。终端可以是智能手机、平板电脑、笔记本电脑、台式计算机、智能音箱、智能手表等,但并不局限于此。终端以及服务器可以通过有线或无线通信方式进行直接或间接地连接,本公开在此不做限制。
本公开实施例提供了一种计算机可读存储介质,该计算机可读存储介质上存储有计算机程序,当其在计算机上运行时,使得计算机可以执行前述方法实施例中相应内容。
应该理解的是,虽然附图的流程图中的各个步骤按照箭头的指示依次显示,但是这些步骤并不是必然按照箭头指示的顺序依次执行。除非本文中有明确的说明,这些步骤的执行并没有严格的顺序限制,其可以以其他的顺序执行。而且,附图的流程图中的至少一部分步骤可以包括多个子步骤或者多个阶段,这些子步骤或者阶段并不必然是在同一时刻执行完成,而是可以在不同的时刻执行,其执行顺序也不必然是依次进行,而是可以与其他步骤或者其他步骤的子步骤或者阶段的至少一部分轮流或者交替地执行。
需要说明的是,本公开上述的计算机可读介质可以是计算机可读信号 介质或者计算机可读存储介质或者是上述两者的任意组合。计算机可读存储介质例如可以是——但不限于——电、磁、光、电磁、红外线、或半导体的系统、装置或器件,或者任意以上的组合。计算机可读存储介质的更具体的例子可以包括但不限于:具有一个或多个导线的电连接、便携式计算机磁盘、硬盘、随机访问存储器(RAM)、只读存储器(ROM)、可擦式可编程只读存储器(EPROM或闪存)、光纤、便携式紧凑磁盘只读存储器(CD-ROM)、光存储器件、磁存储器件、或者上述的任意合适的组合。在本公开中,计算机可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行系统、装置或者器件使用或者与其结合使用。而在本公开中,计算机可读信号介质可以包括在基带中或者作为载波一部分传播的数据信号,其中承载了计算机可读的程序代码。这种传播的数据信号可以采用多种形式,包括但不限于电磁信号、光信号或上述的任意合适的组合。计算机可读信号介质还可以是计算机可读存储介质以外的任何计算机可读介质,该计算机可读信号介质可以发送、传播或者传输用于由指令执行系统、装置或者器件使用或者与其结合使用的程序。计算机可读介质上包含的程序代码可以用任何适当的介质传输,包括但不限于:电线、光缆、RF(射频)等等,或者上述的任意合适的组合。
上述计算机可读介质可以是上述电子设备中所包含的;也可以是单独存在,而未装配入该电子设备中。
上述计算机可读介质承载有一个或者多个程序,当上述一个或者多个程序被该电子设备执行时,使得该电子设备执行上述实施例所示的方法。
根据本公开的一个方面,提供了一种计算机程序产品或计算机程序,该计算机程序产品或计算机程序包括计算机指令,该计算机指令存储在计算机可读存储介质中。计算机设备的处理器从计算机可读存储介质读取该计算机指令,处理器执行该计算机指令,使得该计算机设备执行上述各种可选实现方式中提供的方法。
可以以一种或多种程序设计语言或其组合来编写用于执行本公开的操作的计算机程序代码,上述程序设计语言包括面向对象的程序设计语言—诸如Java、Smalltalk、C++,还包括常规的过程式程序设计语言—诸如“C” 语言或类似的程序设计语言。程序代码可以完全地在用户计算机上执行、部分地在用户计算机上执行、作为一个独立的软件包执行、部分在用户计算机上部分在远程计算机上执行、或者完全在远程计算机或服务器上执行。在涉及远程计算机的情形中,远程计算机可以通过任意种类的网络——包括局域网(LAN)或广域网(WAN)—连接到用户计算机,或者,可以连接到外部计算机(例如利用因特网服务提供商来通过因特网连接)。
附图中的流程图和框图,图示了按照本公开各种实施例的系统、方法和计算机程序产品的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段、或代码的一部分,该模块、程序段、或代码的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。也应当注意,在有些作为替换的实现中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个接连地表示的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这依所涉及的功能而定。也要注意的是,框图和/或流程图中的每个方框、以及框图和/或流程图中的方框的组合,可以用执行规定的功能或操作的专用的基于硬件的系统来实现,或者可以用专用硬件与计算机指令的组合来实现。
描述于本公开实施例中所涉及到的模块可以通过软件的方式实现,也可以通过硬件的方式来实现。其中,模块的名称在某种情况下并不构成对该模块本身的限定,例如,A模块还可以被描述为“用于执行B操作的A模块”。
以上描述仅为本公开的较佳实施例以及对所运用技术原理的说明。本领域技术人员应当理解,本公开中所涉及的公开范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离上述公开构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本公开中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。

Claims (14)

  1. 一种感知测量方法,应用于站点设备,其特征在于,所述方法包括:
    发送第一空数据包通告NDPA帧,在第一NDPA帧中携带第一空数据包NDP帧的第一感知测量参数;其中,所述第一感知测量参数中的至少一个参数为所述站点设备支持的感知测量参数中的最小值,和/或,所述第一感知测量参数中的至少一个参数小于所述站点设备的本次感知测量建立过程的其他感知测量事件的感知测量参数;
    指示接入点设备发送所述感知测量建立过程的最后一个感知测量结果。
  2. 根据权利要求1所述的感知测量方法,其特征在于,所述感知测量参数包括带宽参数以及空间流数量参数中的至少一种。
  3. 根据权利要求2所述的感知测量方法,其特征在于,在所述第一感知测量参数包括所述带宽参数的情况下,所述指示接入点设备发送所述感知测量建立过程的最后一个感知测量结果,包括:
    指示接入点设备根据所述带宽参数,发送所述感知测量建立过程的最后一个感知测量结果。
  4. 根据权利要求1所述的感知测量方法,其特征在于,第一NDP帧的长训练字段LTF的数量为1。
  5. 根据权利要求1所述的感知测量方法,其特征在于,所述方法包括:
    发送第二NDPA帧,在所述第二NDPA帧中携带第二NDP帧的第二感知测量参数;其中,所述第二感知测量参数包括所述站点设备支持的感知测量参数。
  6. 根据权利要求5所述的感知测量方法,其特征在于,所述发送第二NDPA帧之后,所述方法包括:
    指示接入点设备根据所述第二感知测量参数中的带宽参数,发送所述 感知测量建立过程的所述其他感知测量事件的感知测量结果。
  7. 一种感知测量方法,应用于接入点设备,其特征在于,所述方法包括:
    接收第一空数据包通告NDPA帧,第一NDPA帧中携带第一空数据包NDP帧的第一感知测量参数;其中,所述第一感知测量参数中的至少一个参数为站点设备支持的感知测量参数中的最小值,和/或,所述第一感知测量参数中的至少一个参数小于所述站点设备的本次感知测量建立过程的其他感知测量事件的感知测量参数;
    发送所述感知测量建立过程的最后一个所述感知测量事件的感知测量结果。
  8. 根据权利要求7所述的感知测量方法,其特征在于,所述感知测量参数包括带宽参数以及空间流数量参数中的至少一种。
  9. 根据权利要求7所述的感知测量方法,其特征在于,第一NDP帧的长训练字段LTF的数量为1。
  10. 根据权利要求7所述的感知测量方法,其特征在于,所述方法包括:
    接收第二NDPA帧,所述第二NDPA帧中携带第二NDP帧的第二感知测量参数;其中,所述第二感知测量参数包括所述站点设备支持的感知测量参数。
  11. 一种电子设备,所述电子设备为站点设备,其特征在于,所述电子设备包括:
    NDPA帧发送模块,用于发送第一空数据包通告NDPA帧,在第一NDPA帧中携带第一空数据包NDP帧的第一感知测量参数;其中,所述第一感知测量参数中的至少一个参数为所述站点设备支持的感知测量参数中的最小值,和/或,所述第一感知测量参数中的至少一个参数小于所述站点设备的本次感知测量建立过程的其他感知测量事件的感知测量参数;
    结果发送模块,用于指示接入点设备发送所述感知测量建立过程的最后一个感知测量结果。
  12. 一种电子设备,所述电子设备为接入点设备,其特征在于,所述电子设备包括:
    NDPA帧接收模块,用于接收第一空数据包通告NDPA帧,第一NDPA帧中携带第一空数据包NDP帧的第一感知测量参数;其中,所述第一感知测量参数中的至少一个参数为站点设备支持的感知测量参数中的最小值,和/或,所述第一感知测量参数中的至少一个参数小于所述站点设备的本次感知测量建立过程的其他感知测量事件的感知测量参数;
    测量结果发送模块,用于发送所述感知测量建立过程的最后一个感知测量结果。
  13. 一种电子设备,其特征在于,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述程序时实现权利要求1至6中任一项所述的方法或实现权利要求7至10中任一项所述的方法。
  14. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现权利要求1至6中任一项所述的方法或实现权利要求7至10中任一项所述的方法。
PCT/CN2022/124941 2022-10-12 2022-10-12 感知测量方法、电子设备及存储介质 WO2024077524A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/124941 WO2024077524A1 (zh) 2022-10-12 2022-10-12 感知测量方法、电子设备及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/124941 WO2024077524A1 (zh) 2022-10-12 2022-10-12 感知测量方法、电子设备及存储介质

Publications (1)

Publication Number Publication Date
WO2024077524A1 true WO2024077524A1 (zh) 2024-04-18

Family

ID=90668375

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/124941 WO2024077524A1 (zh) 2022-10-12 2022-10-12 感知测量方法、电子设备及存储介质

Country Status (1)

Country Link
WO (1) WO2024077524A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210288779A1 (en) * 2020-06-03 2021-09-16 Claudio Da Silva Wireless local area network sensing sounding
CN113965954A (zh) * 2020-07-01 2022-01-21 华为技术有限公司 感知测量信息交互装置
WO2022092650A1 (ko) * 2020-10-30 2022-05-05 엘지전자 주식회사 무선랜 시스템에서 센싱을 수행하는 방법 및 장치
CN114667753A (zh) * 2022-02-16 2022-06-24 北京小米移动软件有限公司 通信方法及装置、电子设备及存储介质
CN115039465A (zh) * 2022-05-06 2022-09-09 北京小米移动软件有限公司 用于感知会话建立的通信方法和通信装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210288779A1 (en) * 2020-06-03 2021-09-16 Claudio Da Silva Wireless local area network sensing sounding
CN113965954A (zh) * 2020-07-01 2022-01-21 华为技术有限公司 感知测量信息交互装置
WO2022092650A1 (ko) * 2020-10-30 2022-05-05 엘지전자 주식회사 무선랜 시스템에서 센싱을 수행하는 방법 및 장치
CN114667753A (zh) * 2022-02-16 2022-06-24 北京小米移动软件有限公司 通信方法及装置、电子设备及存储介质
CN115039465A (zh) * 2022-05-06 2022-09-09 北京小米移动软件有限公司 用于感知会话建立的通信方法和通信装置

Similar Documents

Publication Publication Date Title
WO2023155074A1 (zh) 通信方法及装置、电子设备及存储介质
WO2023151077A1 (zh) 通信方法及装置、电子设备及存储介质
WO2023201494A1 (zh) Wlan感知测量方法及装置、电子设备及存储介质
WO2023212936A1 (zh) Wlan感知测量建立终止方法及装置、电子设备及存储介质
WO2023197321A1 (zh) Wlan感知测量方法及装置、电子设备及存储介质
CN115004752A (zh) 感知代理sbp终止方法及装置、电子设备及存储介质
WO2024077524A1 (zh) 感知测量方法、电子设备及存储介质
WO2024087064A1 (zh) 通信方法、电子设备及存储介质
WO2024077559A1 (zh) 感知测量建立方法、电子设备及存储介质
WO2023137592A1 (zh) Wlan感知测量方法及装置、电子设备及存储介质
WO2024082099A1 (zh) 通信方法、电子设备及存储介质
WO2024036625A1 (zh) 信息指示方法及电子设备、存储介质
WO2023092499A1 (zh) Wlan感知方法及装置、电子设备及存储介质
WO2023130331A1 (zh) Wlan感知测量方法及装置、电子设备及存储介质
WO2024040400A1 (zh) 代理感知测量方法、电子设备及存储介质
WO2024007225A1 (zh) 通信方法及电子设备、存储介质
WO2023141821A1 (zh) 通信方法及装置、电子设备及存储介质
WO2024040404A1 (zh) 感知测量建立方法、电子设备及存储介质
WO2023193202A1 (zh) 通信方法及装置、电子设备及存储介质
WO2024060015A1 (zh) 感知测量建立方法、电子设备及存储介质
WO2024026686A1 (zh) 通信方法及电子设备、存储介质
WO2023133695A1 (zh) Wlan感知测量方法及装置、电子设备及存储介质
WO2023216196A1 (zh) 通信方法及装置、电子设备及存储介质
WO2024011391A1 (zh) 代理感知测量方法及装置
WO2024011390A1 (zh) 代理感知测量方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22961716

Country of ref document: EP

Kind code of ref document: A1