WO2023210570A1 - 植物気孔開口調節剤 - Google Patents

植物気孔開口調節剤 Download PDF

Info

Publication number
WO2023210570A1
WO2023210570A1 PCT/JP2023/016086 JP2023016086W WO2023210570A1 WO 2023210570 A1 WO2023210570 A1 WO 2023210570A1 JP 2023016086 W JP2023016086 W JP 2023016086W WO 2023210570 A1 WO2023210570 A1 WO 2023210570A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
optionally substituted
plant
stomatal opening
ring
Prior art date
Application number
PCT/JP2023/016086
Other languages
English (en)
French (fr)
Inventor
俊則 木下
悠介 相原
綾人 佐藤
茂雄 藤
慧 村上
文秀 叶
陽介 戸田
健一郎 伊丹
栞奈 後藤
文平 前田
Original Assignee
国立大学法人東海国立大学機構
学校法人関西学院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東海国立大学機構, 学校法人関西学院 filed Critical 国立大学法人東海国立大学機構
Publication of WO2023210570A1 publication Critical patent/WO2023210570A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G7/00Botany in general
    • A01G7/06Treatment of growing trees or plants, e.g. for preventing decay of wood, for tingeing flowers or wood, for prolonging the life of plants
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N47/00Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom not being member of a ring and having no bond to a carbon or hydrogen atom, e.g. derivatives of carbonic acid
    • A01N47/40Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom not being member of a ring and having no bond to a carbon or hydrogen atom, e.g. derivatives of carbonic acid the carbon atom having a double or triple bond to nitrogen, e.g. cyanates, cyanamides
    • A01N47/46Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom not being member of a ring and having no bond to a carbon or hydrogen atom, e.g. derivatives of carbonic acid the carbon atom having a double or triple bond to nitrogen, e.g. cyanates, cyanamides containing —N=C=S groups
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01PBIOCIDAL, PEST REPELLANT, PEST ATTRACTANT OR PLANT GROWTH REGULATORY ACTIVITY OF CHEMICAL COMPOUNDS OR PREPARATIONS
    • A01P21/00Plant growth regulators
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C331/00Derivatives of thiocyanic acid or of isothiocyanic acid
    • C07C331/16Isothiocyanates
    • C07C331/30Isothiocyanates containing at least two isothiocyanate groups bound to the same carbon skeleton

Definitions

  • the present invention relates to a plant stomatal opening regulating agent, etc.
  • Higher terrestrial plants regulate the amount of carbon dioxide they take in and the amount of transpiration necessary for photosynthesis by regulating the opening of stomata present in the epidermis of their leaves. For example, it is known that when exposed to water shortage, plants close their stomata and suppress transpiration in order to maintain moisture within their bodies. It is also known that stomata open in response to light, promoting the uptake of carbon dioxide necessary for photosynthesis. Therefore, by artificially adjusting the stomatal opening, effects such as promoting photosynthesis, promoting growth, and improving drought resistance can be expected.
  • Non-Patent Document 1 As an example of artificial regulation of stomatal opening, a method has been reported in which cell membrane H + -ATPase (AHA2) is overexpressed in guard cells (Patent Document 1, Non-Patent Document 1). According to this method, stomatal opening can be promoted, and accordingly, the rate of photosynthesis and plant growth can also be promoted. Furthermore, a method for improving desiccation tolerance by overexpressing magnesium chelatase H subunit in guard cells and promoting stomatal closure has also been reported (Non-Patent Document 2).
  • GMOs genetically modified crops
  • Patent Document 2 reports that a compound called SCL1 has a stomatal opening regulating effect.
  • An object of the present invention is to provide a plant stomatal opening regulator.
  • each compound represented by the general formula (1) has a stomatal opening regulating effect.
  • the present invention was completed as a result of further research based on this knowledge. That is, the present invention includes the following aspects.
  • A represents an optionally substituted ring.
  • L is the same or different and represents a linker.
  • n represents an integer from 1 to 6.
  • a plant stomatal aperture regulating agent containing at least one selected from the group consisting of the compound represented by the following, salts thereof, and solvates thereof.
  • Item 2 The plant stomatal opening regulator according to claim 1, wherein the A is a monocyclic, 5- to 6-membered ring.
  • the above A is an unsubstituted ring, or an optionally substituted alkyl group, an optionally substituted alkoxy group, an optionally substituted alkoxycarbonyl group, an optionally substituted aryl group, or a cyano group. group, halogen atom, nitro group, optionally substituted amino group, optionally substituted amide group, optionally substituted ketone group, optionally substituted ammonio group, and optionally substituted thio group
  • the plant stomatal opening regulating agent according to claim 1 or 2 which is a ring substituted with at least one member selected from the group consisting of:
  • Item 4 The plant stomatal opening regulator according to any one of claims 1 to 3, wherein A has 0 to 3 substituents.
  • Item 5 The plant stomatal opening regulator according to any one of claims 1 to 4, wherein the L is an alkylene group optionally substituted with an alkyl group and/or an aryl group.
  • the above A is a monocyclic and 5- to 6-membered ring
  • the above L is an alkylene group which may be substituted with an alkyl group and/or an aryl group
  • the above A is a benzene ring and the above n is 1, the above A may be substituted.
  • the L is an alkyl group and/or an aryl group.
  • the plant stomatal opening regulator according to any one of claims 1 to 5.
  • Section 7 The plant stomatal opening regulator according to any one of claims 1 to 6, which is a plant stomatal opening inhibitor.
  • Section 8 A desiccation tolerance improver comprising the plant stomatal opening regulator according to any one of claims 1 to 7.
  • Item 9 The desiccation resistance improver according to claim 8, for use in suppressing wilting.
  • Item 10 A method for improving drought tolerance, which comprises applying the plant stomatal opening regulator according to any one of claims 1 to 7 to a plant.
  • Item 11 The method for improving drought tolerance according to claim 10, which comprises bringing the plant stomatal opening regulator according to any one of claims 1 to 7 into contact with the stomata of the plant.
  • A represents an optionally substituted ring.
  • L indicates a linker.
  • n represents an integer from 1 to 6.
  • a cell membrane proton pump phosphorylation inhibitor containing at least one selected from the group consisting of the compound represented by, salts thereof, and solvates thereof.
  • A represents an optionally substituted ring.
  • L indicates a linker.
  • n represents an integer from 1 to 6.
  • A' represents an optionally substituted non-aromatic ring.
  • L is the same or different and represents a linker.
  • n' represents an integer from 2 to 6. ]
  • a plant stomatal opening regulating agent and a compound serving as an active ingredient of the agent. Furthermore, drying resistance improvers, cell membrane proton pump phosphorylation inhibitors, and the like can also be provided.
  • Test Example 2 The measurement results of Test Example 2 are shown.
  • the vertical axis indicates the degree of pore opening. On the horizontal axis, Dark indicates the dark-treated group, Light indicates the light-treated group, Ctl indicates the case where a test solution containing no test compound was used, and ABA indicates the case where the test solution containing abscisic acid as the test compound was used.
  • BITC indicates the case where a test solution containing BITC (compound 1) was used as the test compound, and +FC indicates the case where a test solution containing fusicoccin in addition to the test compound was used.
  • the measurement results of Test Example 3 are shown.
  • the vertical axis indicates the signal intensity of the phosphorylated cell membrane proton pump.
  • Ctrl indicates the case in which the test compound was not applied
  • BITC, m-Bis-BITC, and Tris-BITC indicate the case in which each test compound was applied
  • R indicates the case in which the test compound was treated only with red light
  • RB shows the case treated with red light and blue light
  • FC shows the case treated with fusicoccin.
  • Ctrl indicates the case in which the test compound is not applied
  • BITC indicates the case in which BITC (compound 1) is applied
  • ABA indicates the case in which abscisic acid is applied.
  • the detected proteins are shown on the right side of the photo; 61kDa represents an ABA-responsive kinase substrate, and 14-3-3 represents the loading control 14-3-3 protein.
  • the measurement results of the degree of pore opening after 3 hours of incubation in Test Example 5 are shown.
  • the vertical axis indicates the degree of pore opening.
  • Ctrl indicates the case when a test solution containing no test compound was used
  • BITC and m-Bis-BITC indicate the case when a test solution containing the respective test compound was used
  • the numerical values indicate the case where the test solution containing the test compound was used. Indicates the concentration of the compound in the test solution (unit: ⁇ M).
  • Test Example 5 The measurement results of the degree of pore opening after incubation for 3 hours or 48 hours in Test Example 5 are shown.
  • the vertical axis indicates the degree of pore opening.
  • numbers indicate incubation time, and ABA, BITC, and m-Bis-BITC indicate the case where test solutions containing the respective test compounds were used.
  • the leftmost column shows the case where a test solution containing no test compound was used.
  • the test compound concentrations in the test solution are 100 ⁇ M for ABA, 2500 ⁇ M for BITC, and 50 ⁇ M for m-Bis-BITC.
  • An external photographic image of Test Example 6 is shown.
  • Ctrl indicates the case when a test solution containing no test compound was used
  • BITC and m-Bis-BITC indicate the case when a test solution containing the respective test compound was used
  • the numerical values indicate the case when a test solution containing the test compound was used. Indicates the concentration inside.
  • the upper row shows an external photographic image at the start of incubation in a dehydrated state
  • the lower row shows an external photographic image at the end of incubation in a dehydrated state.
  • An external photographic image of Test Example 7 is shown.
  • Ctrl indicates the case where a test solution containing no test compound was used
  • m-Bis-BITC indicates the case where a test solution containing each test compound was used.
  • the upper row shows an external photographic image at the start of culture in a water-depleted state
  • the lower row shows an external photographic image at the end of culture in a water-depleted state.
  • the results of 1 H NMR (500 MHz, CDCl 3 ) of Compound 27 synthesized in Test Example 1-1-3 are shown.
  • At least one compound selected from the group consisting of compounds represented by (herein sometimes referred to as “compounds of the present invention”), salts thereof, and solvates thereof (herein,
  • the invention relates to a plant stomatal opening regulating agent (herein sometimes referred to as “the plant stomatal opening regulating agent of the present invention”), which contains the plant stomatal opening regulating agent (sometimes referred to as "the active ingredient of the present invention”).
  • the plant stomatal opening regulating agent of the present invention contains the plant stomatal opening regulating agent (sometimes referred to as "the active ingredient of the present invention”).
  • Rings are not particularly limited, and include aromatic rings composed only of hydrocarbons, aromatic rings containing heteroatoms other than carbon and hydrogen (heterocycles), and non-aromatic rings composed only of hydrocarbons (alicyclic carbonized rings). (hydrogen), and non-aromatic rings (heterocycles) containing heteroatoms other than carbon and hydrogen.
  • the heteroatom contained in the heterocycle is not particularly limited, and includes, for example, a sulfur atom, a nitrogen atom, an oxygen atom, and the like.
  • the ring includes both a single ring (eg, 4- to 8-membered ring) and a fused ring (eg, bicyclic or tricyclic).
  • aromatic rings include monocyclic rings such as benzene, thiophene, thiazole, furan, pyrrole, imidazole, pyrazole, oxazole, isoxazole, triazole, tetrazole, pyridine, pyrazine, pyrimidine, pyridazine, and triazine; naphthalene, benzothiophene, benzofuran, Examples include bicyclic rings such as indole, benzimidazole, indazole, benzoxazole, benzothiazole, isobenzofuran, isoindole, purine, quinoline, isoquinoline, quinoxaline, quinazoline, cinnoline, and phthalazine; tricyclic rings such as anthracene and phenanthrene.
  • monocyclic rings such as benzene, thiophene, thiazole, furan, pyrrole, imidazo
  • non-aromatic rings include cycloalkanes such as cyclopropane, cyclobutane, cyclopentane, cyclohexane, cycloheptane, cyclooctane, cyclononane, cyclodecane, cycloundecane, and cyclododecane; cyclopropene, cyclobutene, cyclopropene, cyclohexene, cycloheptene, cyclo Examples include cycloalkenes such as octene; bicyclic alkanes such as bicycloundecane and decahydronaphthalene; and bicyclic alkenes such as bicycloundecane and decahydronaphthalene.
  • cycloalkanes such as cyclopropane, cyclobutane, cyclopentane, cyclohexane, cycloheptane, cycl
  • the ring is preferably a single ring from the viewpoint of plant stomatal opening regulating action.
  • the ring is preferably a 5- to 6-membered ring from the viewpoint of regulating plant stomatal opening.
  • the heteroatom contained in the heterocycle preferably contains a sulfur atom, more preferably only a sulfur atom, from the viewpoint of regulating stomatal opening in plants.
  • the ring is preferably an aromatic ring from the viewpoint of plant stomatal opening regulating action.
  • the ring is an unsubstituted ring or a ring substituted with a hydrogen atom.
  • Ring substituents are not particularly limited, but include, for example, an optionally substituted alkyl group, an optionally substituted alkoxy group, an optionally substituted alkoxycarbonyl group, an optionally substituted aryl group, Cyano group, halogen atom, nitro group, optionally substituted amino group, optionally substituted amide group, optionally substituted ketone group, optionally substituted ammonio group, optionally substituted thio group etc.
  • an optionally substituted alkyl group, an optionally substituted alkoxy group, an optionally substituted alkoxycarbonyl group, an optionally substituted aryl group, a cyano group, and a halogen atom are more preferred.
  • an optionally substituted aryl group, a cyano group, an iodine atom, and an optionally substituted alkoxycarbonyl group are more preferred.
  • the alkyl group includes any of linear, branched, and cyclic groups.
  • the alkyl group is preferably linear or branched, more preferably linear, from the viewpoint of plant stomatal opening regulating action.
  • the number of carbon atoms in the alkyl group is not particularly limited, and is, for example, 1 to 8, preferably 1 to 6, more preferably 1 to 4, still more preferably 1 to 2, particularly preferably is 1.
  • alkyl group examples include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, tert-butyl group, sec-butyl group, n-pentyl group, neopentyl group, n- -hexyl group, 3-methylpentyl group, etc.
  • the alkyl group may be substituted with a halogen atom such as a fluorine atom, chlorine atom, bromine atom, or iodine atom.
  • Alkoxy groups include both linear and branched groups.
  • the alkoxy group is preferably linear from the viewpoint of controlling plant stomatal opening.
  • the number of carbon atoms in the alkoxy group is not particularly limited, and is, for example, 1 to 8, preferably 1 to 6, more preferably 1 to 4, still more preferably 1 to 2, and particularly preferably is 1.
  • Specific examples of the alkoxy group include methoxy group, ethoxy group, n-propoxy group, isopropoxy group, n-butoxy group, isobutoxy group, sec-butoxy group, tert-butoxy group, and the like.
  • the alkoxy group may be substituted with a halogen atom such as a fluorine atom, chlorine atom, bromine atom, or iodine atom.
  • An alkoxycarbonyl group is a group formed by linking an alkoxy group and a carbonyl group.
  • the alkoxy group is as described above.
  • the aryl group is not particularly limited, but from the viewpoint of plant stomatal opening regulating action, it preferably has 6 to 12 carbon atoms, more preferably 6 to 8 carbon atoms.
  • the aryl group may be either monocyclic or polycyclic (eg, bicyclic, tricyclic, etc.), but is preferably monocyclic from the viewpoint of regulating effect on plant stomatal opening.
  • aryl group examples include phenyl group, naphthyl group, biphenyl group, pentalenyl group, indenyl group, anthranyl group, tetracenyl group, pentacenyl group, pyrenyl group, perylenyl group, fluorenyl group, phenanthryl group, etc. and preferably phenyl group.
  • the aryl group may be substituted with a halogen atom such as a fluorine atom, a chlorine atom, a bromine atom, or an iodine atom.
  • the halogen atom is not particularly limited and includes, for example, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, and the like.
  • An amino group (-NH 2 ), an amide group (-CO-NH 2 ), a ketone group (-CO-H), an ammonio group (-NH 3 ), and a thio group (-SH) have a hydrogen atom connected to an alkyl group. , may be substituted with a hydrocarbon group such as an aryl group.
  • a hydrocarbon group such as an aryl group.
  • an optionally substituted aryl group is particularly preferable from the viewpoint of plant stomatal opening regulating effect.
  • the number of ring substituents is not particularly limited, but is, for example, 0 to 6.
  • the number of substituents is preferably 0 to 3, more preferably 0 to 2, and particularly preferably 0 to 1 from the viewpoint of plant stomatal opening regulating action.
  • the compound of the present invention can thereby exhibit an excellent effect of regulating stomatal opening in plants.
  • L is the same or different and indicates a linker.
  • the linker includes a chain structure.
  • the chain structure is not particularly limited, but the number of atoms constituting the main chain is, for example, 1 to 20, preferably 1 to 15, more preferably 1 to 12, and even more preferably 1 to 10 from the viewpoint of controlling plant stomatal opening. , more preferably 1 to 8, particularly preferably 1 to 6, particularly preferably 1 to 2 chain structures.
  • Examples of atoms constituting the main chain include carbon atoms, oxygen atoms, sulfur atoms, and nitrogen atoms.
  • Part or all of the chain structure can be an alkylene group or a heteroalkylene group.
  • the chain structure can be either linear or branched, but from the viewpoint of controlling plant stomatal opening, it is preferably linear.
  • the chain structure may be substituted with an alkyl group and/or an aryl group.
  • the alkyl group and alkylene group are the same as those described above.
  • the linker is preferably an alkylene group optionally substituted with an alkyl group and/or an aryl group, particularly preferably an alkylene group substituted with an alkyl group and/or an aryl group, from the viewpoint of plant stomatal opening regulating effect. be.
  • n indicates an integer from 1 to 6.
  • n is particularly preferably 2 or more.
  • the upper limit of n is, for example, 5, 4, or 3.
  • n is preferably 2 to 5, more preferably 2 to 4, and even more preferably 2 to 3 from the viewpoint of plant stomatal opening regulating action.
  • n is particularly preferably 2 from the viewpoint of regulating the stomatal opening of plants when acting on intact leaves.
  • the A is a monocyclic and 5- to 6-membered ring
  • the above L is an alkylene group which may be substituted with an alkyl group and/or an aryl group
  • the above A is a benzene ring and the above n is 1
  • the above A may be substituted.
  • the L is an alkyl group and/or an aryl group. It is an alkylene group substituted with a group.
  • A' represents an optionally substituted non-aromatic ring.
  • L is the same or different and represents a linker.
  • n' represents an integer from 2 to 6.
  • A" is a benzene ring or cyclohexane.
  • A" is a benzene ring in one embodiment and cyclohexane in another embodiment.
  • L 1 is the same or different and represents an alkylene group which may be substituted with an alkyl group and/or an aryl group.
  • R 1 is the same or different and is an optionally substituted alkyl group, an optionally substituted alkoxy group, an optionally substituted alkoxycarbonyl group, an optionally substituted aryl group, a cyano group, or a halogen atom , a nitro group, an optionally substituted amino group, an optionally substituted amide group, an optionally substituted ketone group, an optionally substituted ammonio group, or an optionally substituted thio group.
  • A" is a benzene ring, or when A" is a benzene ring and n is 1)
  • an aryl group even if substituted, a cyano group, an iodine atom, and a substituted
  • An optionally substituted alkoxycarbonyl group is particularly preferred, and an optionally substituted aryl group is particularly preferred.
  • n is the same as above.
  • m indicates a number that satisfies 0 ⁇ m ⁇ 6 ⁇ n.
  • m is preferably 0 to 3, more preferably 0 to 2, particularly preferably 0 to 1, from the viewpoint of plant stomatal opening regulating action.
  • A" is a benzene ring or cyclohexane.
  • A" is a benzene ring in one embodiment and cyclohexane in another embodiment.
  • an optionally substituted aryl group, a cyano group, an iodine atom, and an optionally substituted alkoxycarbonyl group are particularly preferred, and an optionally substituted aryl group is particularly preferred.
  • L is the same or different and indicates a linker.
  • R 14 and R 15 are hydrogen atoms.
  • R 11 is preferably a hydrogen atom.
  • the compound represented by general formula (1) may include stereoisomers and optical isomers, but these are not particularly limited.
  • the salt of the compound represented by general formula (1) is not particularly limited as long as it is an agriculturally acceptable salt.
  • both acidic salts and basic salts can be employed.
  • acidic salts include inorganic acid salts such as hydrochloride, hydrobromide, sulfate, nitrate, phosphate; acetate, propionate, tartrate, fumarate, maleate, malate.
  • basic salts include alkali metal salts such as sodium salts and potassium salts; and calcium salts and magnesium salts.
  • Alkaline earth metal salts such as salts; salts with ammonia; morpholine, piperidine, pyrrolidine, monoalkylamine, dialkylamine, trialkylamine, mono(hydroxyalkyl)amine, di(hydroxyalkyl)amine, tri(hydroxyalkyl)amine
  • Examples include salts with organic amines such as amines.
  • the compound represented by general formula (1) can also be a hydrate or a solvate.
  • the solvent include agriculturally acceptable organic solvents (eg, ethanol, glycerol, acetic acid, etc.).
  • a known compound can be obtained and used (for example, a commercially available product can be purchased).
  • Examples of known compounds include the compounds shown in Tables 1 to 3.
  • X represents a halogen atom.
  • It can be produced by a method including reacting a compound represented by (compound a) with a thiocyanate.
  • X when X is replaced with an amino group, it can also be produced by reacting with a compound containing thione-type sulfur such as di(1H-imidazol-1-yl)methanethione.
  • compound a a commercially available one can be used, or one synthesized according to a known method can be used.
  • thiocyanate examples include potassium thiocyanate and sodium thiocyanate, and potassium thiocyanate can be preferably used.
  • the amount of thiocyanate to be used is usually preferably 3 to 30 mol, more preferably 7 to 15 mol, per 1 mol of compound a, from the viewpoint of yield, ease of synthesis, etc.
  • reaction is usually carried out in the presence of a reaction solvent.
  • the reaction solvent include, but are not limited to, dimethylformamide, dichloromethane, acetonitrile, tetrahydrofuran, acetone, toluene, and the like, with dimethylformamide being preferred.
  • a single solvent may be used, or a plurality of solvents may be used in combination.
  • the reaction temperature can be carried out under heating, at room temperature, or under cooling, and can usually be carried out at 0 to 120°C.
  • the reaction temperature is particularly preferably 70 to 100°C.
  • the reaction time is not particularly limited and can generally be from 30 minutes to 60 hours.
  • the active ingredient of the present invention has a plant stomatal opening regulating effect.
  • regulating stomatal opening it is possible to regulate photosynthesis and furthermore, plant growth. Therefore, at least one selected from the group consisting of the compound represented by general formula (1), salts thereof, and solvates thereof can be used as an active ingredient in photosynthesis regulators, plant growth regulators, etc. can.
  • the compound represented by general formula (1) has the effect of suppressing stomatal opening in plants (particularly stomatal opening in response to light or drugs (such as fusicoccin)). It is also known that by suppressing the opening of stomatal pores in plants, transpiration is suppressed and the amount of water in the plants is maintained. Therefore, at least one selected from the group consisting of the compound represented by the general formula (1), a salt thereof, and a solvate thereof is an agent for suppressing plant stomata opening, an agent for improving drought tolerance, an agent for suppressing wilting, and an agent for improving freshness. It can be used as an active ingredient such as a retention agent.
  • suppressing phosphorylation of cell membrane proton pumps is considered to be one part of the mechanism of the stomatal opening regulating action of the compound represented by general formula (1). Therefore, at least one selected from the group consisting of the compound represented by general formula (1), salts thereof, and solvates thereof can be used as an active ingredient of a cell membrane proton pump phosphorylation inhibitor. .
  • the target cell membrane proton pump is not particularly limited as long as it is expressed in guard cells.
  • AHA1 (AT2G18960), AHA2 (AT4G30190), AHA3 (AT5G57350), AHA4 (AT3G47950), AHA5 (AT2G24520), AHA6 (AT2G07560), AHA7 (AT3G60330), AHA8 (AT3G42640) ), AHA9 (AT1G80660) , AHA10 (AT1G17260), AHA11 (AT5G62670), etc.
  • OSA1 (LOC_Os03g48310), OSA2 (LOC_Os07g09340), OSA3 (LOC_Os12g44150), OSA4 (LOC_Os05g25550), OSA5 (LOC_Os08g14360), OSA6 (LOC_Os02g55400), OSA7 (LOC_ Os04g56160), OSA8 (LOC_Os03g01120), OSA9 (LOC_Os03g08560), OSA10 (LOC_Os06g08310), etc.
  • the target plant of the plant stomatal opening regulator of the present invention is not particularly limited as long as it is a plant that has stomata.
  • plants such as angiosperms (dicots, monocots, etc.), gymnosperms, and ferns.
  • Specific examples include tomatoes, green peppers, chili peppers, eggplants such as eggplants, cucurbits such as cucumbers, pumpkins, melons, and watermelons, vegetables such as cabbage, broccoli, and Chinese cabbage, and raw or spicy vegetables such as celery, parsley, and lettuce.
  • Alliums such as green onions, onions, and garlic; legumes such as soybeans, groundnuts, green beans, peas, and adzuki beans; other fruit vegetables such as strawberries; tap roots such as daikon radish, turnips, carrots, and burdock; taro, cassava, and potatoes.
  • sweet potatoes, potatoes such as Japanese yam
  • soft vegetables such as asparagus, spinach, honeysuckle
  • flowers such as lisianthus, stock, carnations
  • chrysanthemums grains
  • sugar crops such as sugar cane and sugar beets
  • fiber crops such as cotton and rushes
  • forage crops such as clover, sorghum, and dent corn, apples, pears, and grapes.
  • deciduous fruit trees such as peach, citrus fruits such as mandarin orange, lemon, and grapefruit, and woody plants such as azalea, azalea, and cedar.
  • the plant stomatal opening regulating agent of the present invention may consist only of the above-mentioned drugs, but in addition to the above-mentioned drugs, it may also contain various additives depending on the dosage form, application mode, etc. described below.
  • the content ratio of the above-mentioned drug in the plant stomata opening regulating agent can be appropriately determined depending on the dosage form, application mode, etc. described below, and can be, for example, in the range of 0.0001 to 100% by mass.
  • the content ratio of the above-mentioned drug is 1 to 5000 ⁇ M, preferably 5 to 3000 ⁇ M, and more preferably 10 to 3000 ⁇ M.
  • examples include 1000 ⁇ M, more preferably 20 to 500 ⁇ M, even more preferably about 20 to 200 ⁇ M.
  • the dosage form of the plant stomatal opening regulating agent of the present invention is not particularly limited as long as it is an agriculturally acceptable dosage form. Examples include liquid preparations, solid preparations, powder preparations, granules, granules, wettable powders, flowable preparations, emulsions, pastes, and dispersants.
  • the additive is not particularly limited as long as it is an agriculturally acceptable additive.
  • examples include carriers, surfactants, spreading agents, spray adjuvants, thickeners, bulking agents, binders, vitamins, antioxidants, pH adjusters, volatilization inhibitors, and pigments.
  • silicone surfactants are particularly preferred.
  • the content of the silicone surfactant may vary depending on the dosage form, but in the case of a liquid preparation, for example, it is 0.01 to 0.1% by mass, preferably 0.02 to 0.05% by mass, based on 100% by mass of the plant stomata opening regulator of the present invention. %.
  • the mode of application of the plant stomatal opening regulator of the present invention is not particularly limited as long as it is a known mode of use of agricultural chemicals (or a mode that will be developed in the future). Examples include spraying, dropping, coating, mixing or dissolving into a plant growth environment (in soil, water, solid medium, liquid medium, etc.). Since the object of action of the plant stomatal opening regulating agent of the present invention is the stomata, it is preferable to apply the plant stomatal opening regulating agent of the present invention by bringing it into contact with the stomata of the plant.
  • the active ingredient of the present invention can be used by being included in a plant covering or support material.
  • the invention in one aspect relates to a plant covering or support material containing the active ingredient of the invention.
  • a material for covering plants is a material for covering part or all of a plant, and is not particularly limited as long as it covers a part or all of a plant.
  • the shape of the material for covering plants is not particularly limited, but is preferably in the form of a sheet.
  • the material for the plant covering material is not particularly limited, and may be paper, plastic, or the like.
  • materials for covering plants include sheets for packaging plants, sheets for agricultural use (sheets for agricultural greenhouses), sheets for keeping food fresh (for example, inside containers (such as lunch boxes) in which food containing plants can be placed). Examples include sheets that are used in containers.
  • the plant support material is a material for instructing the plant not to fall over, and is not particularly limited as far as it is concerned.
  • Plant support materials are typically used by inserting or holding plant stems or roots.
  • the material for the plant support material is not particularly limited, and may be paper, plastic, or the like. Examples of plant support materials include porous materials such as sponges and fiber aggregates, and more specifically solid media (such as rock wool pots) and water-absorbing sponges mainly used for flower arrangements. etc.
  • the active ingredient of the present invention can constitute the surface layer of the coating or support material, or can be contained in the entire coating or support material.
  • the active ingredient of the present invention in the covering or supporting material for plants exerts its action on plants when the covering or supporting material comes into contact with the plant, or when it evaporates from the covering or supporting material and comes into contact with the plant. be able to.
  • Test example 1 Measuring test of stomatal opening regulation effect 1 Compounds 1 to 27 (Tables 4 to 10) were prepared, and their stomatal opening regulating effects were measured. Compounds 3, 5, and 27 were synthesized as follows. At least compound 27 is a new compound. Other compounds were synthesized according to previous reports or in analogy, or commercially available products were purchased.
  • KSCN (1.36 g, 14 mmol, 10 equiv.
  • NaI 900 mg, 6 mmol, 4.3 equiv.
  • 1,3,5-tris(bromomethyl)benzene 498 mg, 1.4 mmol, 1.0 equiv.
  • dimethylformamide 10 mL was added to the flask and the mixture was stirred at 90°C for 24 hours.
  • the reaction mixture was diluted with H2O (20 mL) and extracted with diethyl ether (3 x 20 mL). The organic layer was dried over MgSO 4 and then concentrated under reduced pressure.
  • the reaction mixture was diluted with H2O (20 mL) and extracted with ethyl acetate (3 x 20 mL). The organic layer was dried over sodium sulfate, then filtered and concentrated under reduced pressure. The crude product was purified by flash column chromatography on silica gel to give trans-1,4-bis(isothiocyanatomethyl)cyclohexane (315 mg, 1.39 mmol, 70%) as a white solid.
  • a portion of the stem of Commelina benghalensis was placed in a planter containing a mixture of vermiculite and peat moss, and allowed to grow for 2 to 4 weeks indoors with natural light (room temperature: 25 ⁇ 3°C).
  • the planters were placed in a dark room and dark-treated overnight. After dark processing, leaf discs with a diameter of 4 mm were cut from fully expanded leaves using a hole punch (Biospy Punch, Kai Medical).
  • stomatal closure was evaluated under observation images (600x) using a stereofluorescence microscope (Leica M205FA). The short diameter of about 20 pores (hereinafter referred to as "stomata opening degree") was measured for each leaf disk.
  • the 50% inhibition concentration (IC 50 ) of stomatal opening was calculated based on the measured value of stomatal opening for each concentration of each test compound.
  • Test example 2 Measuring test of stomatal opening regulation effect 2 Compound 1 (BITC: benzyl isothiocyanate) (final concentration in the test solution 100 ⁇ M) and abscisic acid (final concentration in the test solution 20 ⁇ M) were used as test compounds. In addition, a test solution containing fusicoccin (final concentration 10 ⁇ M) was also prepared in addition to the test compound.
  • BITC benzyl isothiocyanate
  • Test example 3 Analysis of the mechanism of stomatal opening regulation 1 Immunohistochemical detection of blue light-induced phosphorylation of the plasma membrane H + - was previously reported (Hayashi et al. (2011)). ATPase in stomatal guard cells. Plant Cell Physiol. 52: 1238-1248.). Compound 1 (BITC), Compound 4 (m-Bis-BITC), and Compound 5 (Tris-BITC) were used as test compounds. The active concentration of compound 1 was 100 ⁇ M, the active concentration of compound 4 was 20 ⁇ M, the active concentration of compound 5 was 20 ⁇ M, and the active concentration of fusicoccin was 10 ⁇ M.
  • Test example 4 Analysis of the mechanism of stomatal opening regulation 2 Phosphorylation of ABA-responsive kinase substrate (AKS) induced by abscisic acid (ABA) in guard cells derived from the epidermis of broad bean (Vicia faba) was previously reported (Takahashi et al. (2007) Protein Phosphorylation and Binding of a 14-3-3 Protein in Vicia Guard Cells in Response to ABA. Plant and Cell Physiology. 48: 1182-1191.).
  • Compound 1 (BITC) and abscisic acid were used as test compounds. The concentration of Compound 1 during action was 100 ⁇ M, and the concentration of abscisic acid during action was 20 ⁇ M.
  • Compound 1 had no effect on ABA-related responses (inhibition of seed germination, induction of ABA-responsive genes (RAB18 and RD29B)) in Arabidopsis.
  • Test example 5 Measuring test of stomatal opening regulation effect 3 Bouquets of chrysanthemums (Crysanthemum) were purchased and cultured in water bottles for 2 days at 24°C with a photoperiod of 16h white light (100 ⁇ mol m -2 s -1 )/8h darkness. After the dark period, the leaves were treated with a test solution (0.033% Makupika (spreading agent, Ishihara Bioscience)) and incubated for 3 hours under white light (100 ⁇ mol m -2 s -1 ) or for 48 hours under a 16-hour light/16-hour dark photoperiod (light ⁇ dark ⁇ light). After incubation, the degree of stomatal opening was measured in the same manner as in Test Example 1.
  • Test example 6 Drying resistance test 1 After the 3-hour incubation in Test Example 5, the bouquets were dehydrated and incubated for 90 minutes at 21° C. under 10 ⁇ mol m ⁇ 2 s ⁇ 1 white light and 35-40% relative humidity.
  • Figure 6 shows external photographic images at the start and end of incubation in a dehydrated state. It was found that compounds 1 and 4 can improve desiccation tolerance and suppress wilting.
  • Test example 7 Drying resistance test 2 A test solution (0.033% Makupika (spreading agent, Ishihara Bioscience)) containing compound 4 (m-Bis-BITC) was added to 4-5 week old Chinese cabbage (Brassica rapa) growing in 110 ml of soil. Spread. The concentration of compound 4 in the test solution is 50 ⁇ M. Thereafter, the water was depleted and the cells were cultured for 24 hours in a greenhouse at 25°C and relative humidity of 40-50% during sunny daylight.
  • Makupika spreading agent, Ishihara Bioscience
  • Figure 7 shows external photographic images at the start and end of culture in a water-depleted state. It was found that Compound 4 improved desiccation tolerance and suppressed wilting over a long period of time.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Environmental Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Botany (AREA)
  • Pest Control & Pesticides (AREA)
  • Plant Pathology (AREA)
  • Forests & Forestry (AREA)
  • Zoology (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Ecology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dentistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Agronomy & Crop Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

植物気孔開口調節剤を提供すること。 一般式(1)で表される化合物、その塩、及びそれらの溶媒和物からなる群より選択される少なくとも1種を含有する、植物気孔開口調節剤。

Description

植物気孔開口調節剤
 本発明は、植物気孔開口調節剤等に関する。
 陸生高等植物は、葉の表皮に存在する気孔の開口調節を通じて、光合成に必要な二酸化炭素の取り込み量、蒸散量等の調節を行っている。例えば、水不足に晒されると、植物体内の水分を維持するために、気孔を閉鎖し、蒸散を抑制することが知られている。また、気孔は光に反応して開口され、光合成に必要な二酸化炭素の取り込みが促進されることが知られている。このため、気孔開口を人為的に調節することにより、光合成の促進、成長促進、乾燥耐性向上等の効果が期待できる。
 気孔開口の人為的な調節の例としては、孔辺細胞において細胞膜H-ATPase(AHA2)を過剰発現させる方法が報告されている(特許文献1、非特許文献1)。この方法によれば、気孔開口を促進させ、これに伴い光合成速度及び植物成長も促進させることができる。また、孔辺細胞においてマグネシウムキラターゼHサブユニットを過剰発現させ、気孔の閉鎖を促進させることによって、乾燥耐性を向上させる方法も報告されている(非特許文献2)。
 これらの方法は、遺伝子組換え技術によるものであるため、
1.遺伝子組換え技術が確立していない生物種においては組換え技術の確立及び最適化が都度必要となる。
2.遺伝子組み換え作物(GMO)の作出に時間がかかる。例えばポプラはトランスジェニック当代の作出に約半年、イネにおいては次世代のGMO種子の獲得に半年以上それぞれ要する。
3.作成したGMOに対して都度認可が必要となる。
 これに対して、既に生育している植物に対して施用することにより気孔開口を調節できる物質であれば、GMOの作出及びその認可という手続を各種植物に対して取らなくてもよいので、極めて有用である。
 特許文献2では、SCL1と称される化合物が気孔開口調節作用を有することが報告されている。
国際公開第2014/142334号 日本国特開2020-055767号公報
PNAS, January 7, 2014, vol.111, no.1, pp.533-538 Front Plant Sci, October 30, 2013, vol.4, Article440
 本発明は、植物気孔開口調節剤を提供することを目的とする。
 上記課題に鑑み鋭意研究を重ねた結果、本発明者等は、一般式(1)で表される各々の化合物が気孔開口調節作用を有することを見出した。本発明は、この知見に基づいてさらに研究を重ねた結果、完成されたものである。即ち、本発明は、下記の態様を包含する。
 項1.
一般式(1):
Figure JPOXMLDOC01-appb-C000005
[式中:Aは置換されていてもよい環を示す。Lは同一又は異なって、リンカーを示す。nは1~6の整数を示す。]
で表される化合物、その塩、及びそれらの溶媒和物からなる群より選択される少なくとも1種を含有する、植物気孔開口調節剤。
 項2.
前記Aが単環且つ5~6員環である、請求項1に記載の植物気孔開口調節剤。
 項3.
前記Aが、無置換の環である、或いは置換されていてもよいアルキル基、置換されていてもよいアルコキシ基、置換されていてもよいアルコキシカルボニル基、置換されていてもよいアリール基、シアノ基、ハロゲン原子、ニトロ基、置換されていてもよいアミノ基、置換されていてもよいアミド基、置換されてもよいケトン基、置換されてもよいアンモニオ基、及び置換されてもよいチオ基からなる群より選択される少なくとも1種で置換された環である、請求項1又は2に記載の植物気孔開口調節剤。
 項4.
前記Aの置換基が0~3個である、請求項1~3のいずれかに記載の植物気孔開口調節剤。
 項5.
前記Lがアルキル基及び/又はアリール基で置換されていてもよいアルキレン基である、請求項1~4のいずれかに記載の植物気孔開口調節剤。
 項6.
前記Aが単環且つ5~6員環であり、
前記Lがアルキル基及び/又はアリール基で置換されていてもよいアルキレン基であり、且つ
前記Aがベンゼン環であり且つ前記nが1である場合は、前記Aが、置換されていてもよりアリール基、シアノ基、ヨウ素原子、及び置換されていてもよいアルコキシカルボニル基からなる群より選択される少なくとも1種で置換されたベンゼン環である、並びに/又は前記Lがアルキル基及び/又はアリール基で置換されたアルキレン基である、
請求項1~5のいずれかに記載の植物気孔開口調節剤。 
 項7.
植物気孔開口抑制剤である、請求項1~6のいずれかに記載の植物気孔開口調節剤。
 項8.
請求項1~7のいずれかに記載の植物気孔開口調節剤を含有する、乾燥耐性向上剤。
 項9.
萎れ抑制に用いるための、請求項8に記載の乾燥耐性向上剤。
 項10.
請求項1~7のいずれかに記載の植物気孔開口調節剤を植物に施用することを含む、乾燥耐性向上方法。
 項11.
請求項1~7のいずれかに記載の植物気孔開口調節剤を植物の気孔に接触させることを含む、請求項10に記載の乾燥耐性向上方法。
 項12.
一般式(1):
Figure JPOXMLDOC01-appb-C000006
[式中:Aは置換されていてもよい環を示す。Lはリンカーを示す。nは1~6の整数を示す。]
で表される化合物、その塩、及びそれらの溶媒和物からなる群より選択される少なくとも1種を含有する、細胞膜プロトンポンプリン酸化阻害剤。
 項13.
一般式(1):
Figure JPOXMLDOC01-appb-C000007
[式中:Aは置換されていてもよい環を示す。Lはリンカーを示す。nは1~6の整数を示す。]
で表される化合物、その塩、及びそれらの溶媒和物からなる群より選択される少なくとも1種を含有する、植物の被覆又は支持用材。
 項14.
一般式(1X):
Figure JPOXMLDOC01-appb-C000008
[式中:A’は置換されていてもよい非芳香環を示す。Lは同一又は異なって、リンカーを示す。n’は2~6の整数を示す。]、その塩、又はそれらの溶媒和物。
 上記した剤を規定する項については、本発明の有効成分の当該剤の製造のための使用、本発明の有効成分の当該剤の用途のための使用、当該剤の用途における使用のための本発明の有効成分等に置き換えることができる。
 本発明によれば、植物気孔開口調節剤及び当該剤の有効成分となる化合物を提供することができる。また、乾燥耐性向上剤、細胞膜プロトンポンプリン酸化阻害剤等を提供することもできる。
試験例2の測定結果を示す。縦軸は気孔開度を示す。横軸中、Darkは暗処理群を示し、Lightは光処理群を示し、Ctlは被検化合物を含まない試験液を用いた場合を示し、ABAは被検化合物としてアブシジン酸を含む試験液を用いた場合を示し、BITCは被検化合物としてBITC(化合物1)を含む試験液を用いた場合を示し、+FCは被検化合物に加えてフシコクシンを含む試験液を用いた場合を示す。 試験例3の測定結果を示す。縦軸は、縦軸はリン酸化細胞膜プロトンポンプのシグナル強度を示す。横軸中、Ctrlは被検化合物を作用させない場合を示し、BITC、m-Bis-BITC、及びTris-BITCはそれぞれの被検化合物を作用させた場合を示し、Rは赤色光のみで処理した場合を示し、RBは赤色光及び青色光で処理した場合を示し、FCはフシコクシンを作用させた場合を示す。 試験例4の測定結果を示す。写真上方において、Ctrlは被検化合物を作用させない場合を示し、BITCはBITC(化合物1)を作用させた場合を示し、ABAはアブシジン酸を作用させた場合を示す。写真右側に、検出したタンパク質を示し、61kDaはABA応答性キナーゼ基質を示し、14-3-3はローディングコントロールである14-3-3タンパク質を示す。 試験例5における3時間インキュベート後の気孔開度の測定結果を示す。縦軸は気孔開度を示す。横軸中、Ctrlは被検化合物を含まない試験液を用いた場合を示し、BITC、及びm-Bis-BITCはそれぞれの被検化合物を含む試験液を用いた場合を示し、数値は被検化合物の試験液中の濃度(単位:μM)を示す。 試験例5における3時間又は48時間インキュベート後の気孔開度の測定結果を示す。縦軸は気孔開度を示す。横軸中、数字はインキュベートの時間を示し、ABA、BITC、及びm-Bis-BITCはそれぞれの被検化合物を含む試験液を用いた場合を示す。最左のカラムは被検化合物を含まない試験液を用いた場合を示す。試験液中の被検化合物濃度は、ABAが100μM、BITCが2500μM、m-Bis-BITCが50μMである。 試験例6の外観写真像を示す。Ctrlは被検化合物を含まない試験液を用いた場合を示し、BITC、及びm-Bis-BITCはそれぞれの被検化合物を含む試験液を用いた場合を示し、数値は被検化合物の試験液中の濃度を示す。上段が脱水状態でのインキュベート開始時の外観写真像を示し、下段が脱水状態でのインキュベート終了時の外観写真像を示す。 試験例7の外観写真像を示す。Ctrlは被検化合物を含まない試験液を用いた場合を示し、m-Bis-BITCはそれぞれの被検化合物を含む試験液を用いた場合を示す。上段が水枯渇状態での培養開始時の外観写真像を示し、下段が水枯渇状態での培養終了時の外観写真像を示す。 試験例1-1-3で合成した化合物27の1H NMR (500 MHz, CDCl3)の結果を示す。
 本明細書中において、「含有」及び「含む」なる表現については、「含有」、「含む」、「実質的にからなる」及び「のみからなる」という概念を含む。
 本発明は、その一態様において、一般式(1):
Figure JPOXMLDOC01-appb-C000009
で表される化合物(本明細書において、「本発明の化合物」と示すこともある。)、その塩、及びそれらの溶媒和物からなる群より選択される少なくとも1種(本明細書において、「本発明の有効成分」と示すこともある。)を含有する、植物気孔開口調節剤(本明細書において、「本発明の植物気孔開口調節剤」と示すこともある。)に係る。以下に、本発明の化合物、本発明の有効成分、及びそれらの用途について説明する。
 1.有効成分
 Aは、置換されていてもよい環を示す。なお、ここでの「置換」には、-L-N=C=Sによる置換は包含されない。
 環としては、特に制限されず、炭化水素のみで構成される芳香環、炭素と水素以外のヘテロ原子を含む芳香環(複素環)、炭化水素のみで構成される非芳香環(脂環式炭化水素)、及び炭素と水素以外のヘテロ原子を含む非芳香環(複素環)のいずれも包含される。複素環が含むヘテロ原子としては、特に制限されず、例えば硫黄原子、窒素原子、酸素原子等が挙げられる。環は、単環(例えば4~8員環)、及び縮合環(例えば、二環又は三環)のいずれも包含する。芳香環としては、例えばベンゼン、チオフェン、チアゾール、フラン、ピロール、イミダゾール、ピラゾール、オキサゾール、イソオキサゾール、トリアゾール、テトラゾール、ピリジン、ピラジン、ピリミジン、ピリダジン、トリアジン等の単環; ナフタレン、ベンゾチオフェン、ベンゾフラン、インドール、ベンゾイミダゾール、インダゾール、ベンゾオキサゾール、ベンゾチアゾール、イソベンゾフラン、イソインドール、プリン、キノリン、イソキノリン、キノキサリン、キナゾリン、シンノリン、フタラジン等の二環; アントラセン、フェナントレン等の三環: 等が挙げられる。非芳香環としては、例えばシクロプロパン、シクロブタン、シクロペンタン、シクロヘキサン、シクロヘプタン、シクロオクタン、シクロノナン、シクロデカン、シクロウンデカン、シクロドデカン等のシクロアルカン; シクロプロペン、シクロブテン、シクロプロペン、シクロヘキセン、シクロヘプテン、シクロオクテン等のシクロアルケン; ビシクロウンデカン、デカヒドロナフタレン等の二環式アルカン; ビシクロウンデカン、デカヒドロナフタレン等の二環式アルケン: 等が挙げられる。
 環は、植物気孔開口調節作用の観点から、好ましくは単環である。環は、植物気孔開口調節の観点から、好ましくは5~6員環である。環が複素環である場合、複素環が含むヘテロ原子は、植物気孔開口調節の観点から、好ましくは硫黄原子を含み、より好ましくは硫黄原子のみである。環は、植物気孔開口調節作用の観点から、好ましくは芳香環である。
 環は、無置換の環であるか、或いは水素原子が置換された環である。環の置換基としては、特に制限されないが、例えば置換されていてもよいアルキル基、置換されていてもよいアルコキシ基、置換されていてもよいアルコキシカルボニル基、置換されていてもよいアリール基、シアノ基、ハロゲン原子、ニトロ基、置換されていてもよいアミノ基、置換されていてもよいアミド基、置換されてもよいケトン基、置換されてもよいアンモニオ基、置換されてもよいチオ基等が挙げられる。これらの中でも、置換されていてもよいアルキル基、置換されていてもよいアルコキシ基、置換されていてもよいアルコキシカルボニル基、置換されていてもよいアリール基、シアノ基、ハロゲン原子がさらに好ましく、置換されていてもよりアリール基、シアノ基、ヨウ素原子、置換されていてもよいアルコキシカルボニル基がとりわけ好ましい。
 アルキル基には、直鎖状、分岐鎖状、及び環状のいずれのものも包含される。アルキル基は、植物気孔開口調節作用の観点から、好ましくは直鎖状又は分岐鎖状であり、より好ましくは直鎖状である。アルキル基の炭素数は、特に制限されず、例えば1~8であり、植物気孔開口調節作用の観点から、好ましくは1~6、より好ましくは1~4、さらに好ましくは1~2、特に好ましくは1である。該アルキル基の具体例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基、sec-ブチル基、n-ペンチル基、ネオペンチル基、n-ヘキシル基、3-メチルペンチル基等が挙げられる。アルキル基は、フッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子で置換されていてもよい。
 アルコキシ基には、直鎖状及び分枝鎖状のいずれのものも包含される。アルコキシ基は、植物気孔開口調節作用の観点から、好ましくは直鎖状である。アルコキシ基の炭素数は、特に制限されず、例えば1~8であり、植物気孔開口調節作用の観点から、好ましくは1~6、より好ましくは1~4、さらに好ましくは1~2、特に好ましくは1である。該アルコキシ基の具体例としては、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、イソブトキシ基、sec-ブトキシ基、tert-ブトキシ基等が挙げられる。アルコキシ基は、フッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子で置換されていてもよい。
 アルコキシカルボニル基は、アルコキシ基とカルボニル基が連結してなる基である。アルコキシ基については、上記のとおりである。
 アリール基は、特に制限されないが、植物気孔開口調節作用の観点から、炭素数が6~12のものが好まし、6~8のものがさらに好ましい。該アリール基は、単環式又は多環式(例えば2環式、3環式等)のいずれでも有り得るが、植物気孔開口調節作用の観点から、好ましくは単環式である。該アリール基としては、具体的には、例えばフェニル基、ナフチル基、ビフェニル基、ペンタレニル基、インデニル基、アントラニル基、テトラセニル基、ペンタセニル基、ピレニル基、ペリレニル基、フルオレニル基、フェナントリル基等が挙げられ、好ましくはフェニル基が挙げられる。該アリール基は、フッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子で置換されていてもよい。
 ハロゲン原子としては、特に制限されず、例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。
 アミノ基(-NH2)、アミド基(-CO-NH2)、ケトン基(-CO-H)、アンモニオ基(-NH3)、及びチオ基(-SH)は、水素原子が、アルキル基、アリール基等の炭化水素基に置換されていてもよい。アルキル基、アリール基については上記で説明したとおりである。
 環の置換基としては、植物気孔開口調節作用の観点から、特に好ましくは置換されていてもよいアリール基が挙げられる。
 環の置換基(-L-N=C=S以外の置換基)の数は、特に制限されないが、例えば0~6である。置換基の数は、植物気孔開口調節作用の観点から、好ましくは0~3、より好ましくは0~2、特に好ましくは0~1である。
 本発明の化合物において、Aで示される置換されていてもよい環は、n個(1~6個)の-L-N=C=Sで環上の水素原子が置換されている。本発明の化合物は、これにより、優れた植物気孔開口調節作用を発揮することができる。
 Lは同一又は異なって、リンカーを示す。
 リンカーは、鎖状構造を含む。鎖状構造としては、特に制限されないが、主鎖構成原子数が例えば1~20、植物気孔開口調節作用の観点から、好ましくは1~15、より好ましくは1~12、さらに好ましくは1~10、よりさらに好ましくは1~8、とりわけ好ましくは1~6、特に好ましくは1~2の鎖状構造が挙げられる。主鎖構成原子としては、例えば炭素原子、酸素原子、硫黄原子、窒素原子等が挙げられる。鎖状構造の一部又は全部は、アルキレン基又はヘテロアルキレン基であることができる。鎖状構造は、直鎖状及び分岐鎖状のいずれであることもできるが、植物気孔開口調節作用の観点から、好ましくは直鎖状である。また、鎖状構造は、主鎖上に、例えば-O-、-C(=O)-O-、-CO-NH-、-C(=O)-、-NH-、-S(=O)2-等の部分構造を含むことができる。鎖状構造は、アルキル基及び又はアリール基で置換されていてもよい。アルキル基及びアルキレン基については、上記したものと同様である。
 リンカーは、植物気孔開口調節作用の観点から、好ましくはアルキル基及び/又はアリール基で置換されていてもよいアルキレン基であり、特に好ましくはルキル基及び/又はアリール基で置換されたアルキレン基である。
 nは1~6の整数を示す。
 nは、植物気孔開口調節作用の観点から、特に好ましくは2以上である。また、nの上限は、例えば5、4、又は3である。本発明の一態様において、nは、植物気孔開口調節作用の観点から、好ましくは2~5、より好ましくは2~4、さらに好ましくは2~3である。また、nは、無傷葉に作用させる場合の植物気孔開口調節作用の観点から、特に好ましくは2である。
 本発明の一態様において、好ましくは、前記Aが単環且つ5~6員環であり、
前記Lがアルキル基及び/又はアリール基で置換されていてもよいアルキレン基であり、且つ
前記Aがベンゼン環であり且つ前記nが1である場合は、前記Aが、置換されていてもよりアリール基、シアノ基、ヨウ素原子、及び置換されていてもよいアルコキシカルボニル基からなる群より選択される少なくとも1種で置換されたベンゼン環である、並びに/又は前記Lがアルキル基及び/又はアリール基で置換されたアルキレン基である。
 本発明の一態様において、一般式(1)の中でも、好ましくは一般式(1X):
Figure JPOXMLDOC01-appb-C000010
が挙げられる。
 A’は置換されていてもよい非芳香環を示す。Lは同一又は異なって、リンカーを示す。n’は2~6の整数を示す。
 本発明の一態様において、一般式(1)の中でも、好ましくは一般式(1Y):
Figure JPOXMLDOC01-appb-C000011
が挙げられ、また本発明の一態様において、一般式(1)の中でも、好ましくは一般式(1A):
Figure JPOXMLDOC01-appb-C000012
が挙げられる。
 A”はベンゼン環又はシクロヘキサンである。A”は一態様においてベンゼン環であり、別の一態様においてシクロヘキサンである。
 L1は同一又は異なって、アルキル基及び/又はアリール基で置換されていてもよいアルキレン基を示す。
 R1は同一又は異なって、置換されていてもよいアルキル基、置換されていてもよいアルコキシ基、置換されていてもよいアルコキシカルボニル基、置換されていてもよいアリール基、シアノ基、ハロゲン原子、ニトロ基、置換されていてもよいアミノ基、置換されていてもよいアミド基、置換されてもよいケトン基、置換されてもよいアンモニオ基、又は置換されてもよいチオ基を示す。中でも(一態様において、A”がベンゼン環である場合、又はA”がベンゼン環であり且つnが1である場合は)、置換されていてもよりアリール基、シアノ基、ヨウ素原子、及び置換されていてもよいアルコキシカルボニル基がとりわけ好ましく、置換されていてもよりアリール基が特に好ましい。
 L1、R1で示される基については、上記で説明したとおりである。
 nは前記に同じである。
 mは0≦m≦6-nを満たす数を示す。mは、植物気孔開口調節作用の観点から、好ましくは0~3、より好ましくは0~2、特に好ましくは0~1である。
 本発明の一態様において、一般式(1)の中でも、好ましくは一般式(1Z):
Figure JPOXMLDOC01-appb-C000013
が挙げられ、また本発明の一態様において、一般式(1)の中でも、好ましくは一般式(1B):
Figure JPOXMLDOC01-appb-C000014
が挙げられる。
 A”はベンゼン環又はシクロヘキサンである。A”は一態様においてベンゼン環であり、別の一態様においてシクロヘキサンである。
 R11、R12、R13、R14、及びR15は同一又は異なって、水素原子、-L-N=C=S、置換されていてもよいアルキル基、置換されていてもよいアルコキシ基、置換されていてもよいアルコキシカルボニル基、置換されていてもよいアリール基、シアノ基、ハロゲン原子、ニトロ基、置換されていてもよいアミノ基、置換されていてもよいアミド基、置換されてもよいケトン基、置換されてもよいアンモニオ基、又は置換されてもよいチオ基を示す。中でも、置換されていてもよりアリール基、シアノ基、ヨウ素原子、及び置換されていてもよいアルコキシカルボニル基がとりわけ好ましく、置換されていてもよりアリール基が特に好ましい。
 Lは同一又は異なって、リンカーを示す。
 L1、R11、R12、R13、R14、及びR15で示される基については、上記で説明したとおりである。
 本発明の一態様(態様1)において、R12及びR13の少なくとも1つは-L-N=C=Sであり、R13が-L-N=C=Sである場合は、R11、R12、R14、及びR15の少なくとも1つは水素原子以外の基である。態様1において、好ましくはR14及びR15は水素原子である。態様1において、好ましくはR12及びR13の一方が-L-N=C=Sであり他方が水素原子である。態様1において、R12が-L-N=C=Sである場合は、好ましくはR11が水素原子である。態様1において、R13が-L-N=C=Sである場合は、好ましくはR11がアルキル基又は-L-N=C=Sである。
 一般式(1)で表される化合物には、立体異性体及び光学異性体が含まれ得るが、これらは特に限定されるものではない。
 一般式(1)で表される化合物の塩は、農学的に許容される塩である限り、特に制限されるものではない。該塩としては、酸性塩及び塩基性塩のいずれも採用することができる。酸性塩の例としては、塩酸塩、臭化水素酸塩、硫酸塩、硝酸塩、リン酸塩等の無機酸塩; 酢酸塩、プロピオン酸塩、酒石酸塩、フマル酸塩、マレイン酸塩、リンゴ酸塩、クエン酸塩、メタンスルホン酸塩、パラトルエンスルホン酸塩等の有機酸塩が挙げられ、塩基性塩の例としては、ナトリウム塩、及びカリウム塩等のアルカリ金属塩; 並びにカルシウム塩、マグネシウム塩等のアルカリ土類金属塩; アンモニアとの塩; モルホリン、ピペリジン、ピロリジン、モノアルキルアミン、ジアルキルアミン、トリアルキルアミン、モノ(ヒドロキシアルキル)アミン、ジ(ヒドロキシアルキル)アミン、トリ(ヒドロキシアルキル)アミン等の有機アミンとの塩等が挙げられる。
 一般式(1)で表される化合物は水和物、溶媒和物とすることもできる。溶媒としては、例えば、農学的に許容される有機溶媒(例えばエタノール、グリセロール、酢酸等)等が挙げられる。
 一般式(1)で表される化合物としては、例えば公知化合物を入手して(例えば市販品を購入して)用いることができる。公知化合物としては、例えば表1~表3に示される化合物が挙げられる。表中、‐NCSはイソチオシアネート基(-N=C=S)を示す。
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
 また、一般式(1)で表される化合物は、例えば一般式(a):
Figure JPOXMLDOC01-appb-C000018
[式中:A、L及びnは前記に同じである。Xはハロゲン原子を示す。]
で表される化合物(化合物a)とチオシアン酸塩とを反応させることを含む方法により、製造することができる。或いは、Xをアミノ基に置き換えた場合は、ジ(1H-イミダゾール-1-イル)メタンチオン等のチオン型硫黄を含む化合物と反応させることによっても、製造することができる。
 化合物aは、市販のものを使用することができ、或いは公知の方法に従って合成したものを使用することができる。
 チオシアン酸塩としては、例えばチオシアン酸カリウム、チオシアン酸ナトリウムなどが挙げられ、好適にはチオシアン酸カリウムを使用することができる。
 チオシアン酸塩の使用量は、収率、合成の容易さ等の観点から、通常、化合物a 1モルに対して、3~30モルが好ましく、7~15モルがより好ましい。
 本反応は、通常、反応溶媒の存在下で行われる。反応溶媒としては、特に制限されないが、例えばジメチルホルムアミド、ジクロロメタン、アセトニトリル、テトラヒドロフラン、アセトン、トルエン等が挙げられ、好ましくはジメチルホルムアミド等が挙げられる。溶媒は単独で使用してもよく、また、複数併用してもよい。
 反応温度は、加熱下、常温下及び冷却下のいずれでも行うことができ、通常、0~120℃で行うことができる。反応温度は、70~100℃であることが特に好ましい。反応時間は特に制限されず、通常、30分間~60時間とすることができる。
 反応の進行は、クロマトグラフィーのような通常の方法で追跡することができる。反応終了後、溶媒を留去し、生成物はクロマトグラフィー法、再結晶法等の通常の方法で単離及び精製することができる。また、生成物の構造は、元素分析、MS(ESI-MS)分析、IR分析、1H-NMR、13C-NMR等により同定することができる。
 2.用途
 本発明の有効成分は、植物気孔開口調節作用を有する。また、気孔開口の調節により、光合成の調節、さらには植物の成長調節を図ることもできる。したがって、一般式(1)で表される化合物、その塩、及びそれらの溶媒和物からなる群より選択される少なくとも1種は、光合成調節剤、植物成長調節剤等の有効成分として用いることができる。
 特に、一般式(1)で表される化合物は、植物の気孔開口(特に光又は薬剤(フシコクシン等)に対する気孔開口)を抑制する作用を有している。また、植物の気孔開口が抑制されることによって、蒸散が抑制され、植物内の水分量が保たれることが知られている。したがって、一般式(1)で表される化合物、その塩、及びそれらの溶媒和物からなる群より選択される少なくとも1種は、植物気孔開口抑制剤、乾燥耐性向上剤、萎れ抑制剤、鮮度保持剤等の有効成分として用いることができる。また、植物の気孔の開口部から病原性微生物が進入することが知られている。したがって、一般式(1)で表される化合物、その塩、及びそれらの溶媒和物からなる群より選択される少なくとも1種は、耐病性向上剤等の有効成分として用いることができる。
 また、細胞膜プロトンポンプのリン酸化を抑制することが、一般式(1)で表される化合物の気孔開口調節作用メカニズムの一端であると考えられる。このため、一般式(1)で表される化合物、その塩、及びそれらの溶媒和物からなる群より選択される少なくとも1種は、細胞膜プロトンポンプリン酸化阻害剤の有効成分として用いることができる。対象となる細胞膜プロトンポンプは、孔辺細胞において発現するものであれば特に制限されない。例えばシロイヌナズナの場合は、AHA1(AT2G18960)、AHA2(AT4G30190)、AHA3(AT5G57350)、AHA4(AT3G47950)、AHA5 (AT2G24520)、AHA6(AT2G07560)、AHA7(AT3G60330)、AHA8(AT3G42640)、AHA9(AT1G80660)、AHA10(AT1G17260)、AHA11(AT5G62670)等である。また、イネの場合であれば、OSA1(LOC_Os03g48310)、OSA2(LOC_Os07g09340)、OSA3(LOC_Os12g44150)、OSA4(LOC_Os05g25550)、OSA5(LOC_Os08g14360)、OSA6(LOC_Os02g55400)、OSA7(LOC_Os04g56160)、OSA8(LOC_Os03g01120)、OSA9(LOC_Os03g08560)、OSA10(LOC_Os06g08310)等である。
 本発明の植物気孔開口調節剤の対象植物は、気孔を有する植物である限り特に限定されない。例えば、被子植物(双子葉植物、単子葉植物等)、裸子植物、シダ植物等の植物に対して広く適用できる。具体例としては、トマト、ピーマン、トウガラシ、ナス等のナス類、キュウリ、カボチャ、メロン、スイカ等のウリ類、キャベツ、ブロッコリー、ハクサイ等の菜類、セルリー、パセリー、レタス等の生菜又は香辛菜類、ネギ、タマネギ、ニンニク等のネギ類、ダイズ、ラッカセイ、インゲン、エンドウ、アズキ等の豆類、イチゴ等のその他果菜類、ダイコン、カブ、ニンジン、ゴボウ等の直根類、サトイモ、キャッサバ、バレイショ、サツマイモ、ナガイモ等のイモ類、アスパラガス、ホウレンソウ、ミツバ等の柔菜類、トルコギキョウ、ストック、カーネーション、キク等の花卉類、イネ、コムギ、オオムギ、エンバク、トウモロコシ等の穀物類、ベントグラス、コウライシバ等の芝類、ナタネ、ラッカセイ等の油料作物類、サトウキビ、テンサイ等の糖料作物類、ワタ、イグサ等の繊維料作物類、クローバー、ソルガム、デントコーン等の飼料作物類、リンゴ、ナシ、ブドウ、モモ等の落葉性果樹類、ウンシュウミカン、レモン、グレープフルーツといった柑橘類、サツキ、ツツジ、スギ等の木本類等が挙げられる。
 本発明の植物気孔開口調節剤は、上記した薬剤のみからなるものでもよいが、上記した薬剤に加えて、後述の剤形、施用態様等に応じて種々の添加剤を含んでいてもよい。植物気孔開口調節剤中の上記薬剤の含有割合は、後述の剤形、施用態様等に応じて適宜決定することができるが、例えば0.0001~100質量%の範囲を例示することができる。より具体的な例として、上記薬剤の含有割合は、液剤である本発明の植物気孔開口調節剤を気孔に接触させる場合であれば、1~5000μM、好ましくは5~3000μM、より好ましくは10~1000μM、さらに好ましくは20~500μM、よりさらに好ましくは20~200μM程度が例示される。
 本発明の植物気孔開口調節剤の剤形は、農学的に許容される剤形である限り特に限定されない。例えば、液剤、固形剤、粉剤、顆粒剤、粒剤、水和剤、フロアブル剤、乳剤、ペースト剤、分散剤等が挙げられる。
 添加剤は、農学的に許容される添加剤である限り特に限定されない。例えば、担体、界面活性剤、展着剤、スプレー・アジュバント、増粘剤、増量剤、結合剤、ビタミン類、酸化防止剤、pH調整剤、揮散抑制剤、色素等が挙げられる。
 これらの中でも、特に、シリコーン界面活性剤等の植物の撥水性抑制剤が好ましい。シリコーン界面活性剤の含有量は、剤形によっても異なり得るが、例えば液剤の場合、本発明の植物気孔開口調節剤100質量%に対して、例えば0.01~0.1質量%、好ましくは0.02~0.05質量%である。
 本発明の植物気孔開口調節剤の施用態様は、農薬の使用態様として公知の態様(或いは将来開発される態様)である限り特に限定されない。例えば、散布、滴下、塗布、植物生育環境中(土壌中、水中、固形培地中、液体培地中等)への混合又は溶解等が挙げられる。本発明の植物気孔開口調節剤の作用対象は気孔であるので、好ましくは本発明の植物気孔開口調節剤を植物の気孔に接触させることにより施用することが好ましい。
 また、本発明の有効成分は、植物の被覆又は支持用材に含有させて、用いることができる。この観点から、本発明は、その一態様において、本発明の有効成分を含有する、植物の被覆又は支持用材、に関する。
 植物の被覆用材は、植物の一部又は全部を覆うための材であり、その限りにおいて特に制限されない。植物の被覆用材の形状は、特に制限されないが、好ましくはシート状である。植物の被覆用材の素材は、特に制限されず、紙、プラスチック等であることができる。植物の被覆用材は、具体的には、植物包装用シート、農業用シート(農業ハウス用シート)、食品の鮮度保持用シート(例えば、植物を含む食品を配置し得る容器(例えば弁当等)内に入れて用いるシート)等が挙げられる。
 植物の支持用材は、植物が倒れないように指示するための材であり、その限りにおいて特に制限されない。植物の支持用材は、典型的には、植物の茎又は根を挿して、或いは保持させて用いる。植物の支持用材の素材は、特に制限されず、紙、プラスチック等であることができる。植物の支持用材としては、例えばスポンジ、繊維の集合体等の多孔質体等が挙げられ、より具体的には固形培地(例えばロックウールポット等)、主に生け花等の花きに用いられる吸水スポンジ等が挙げられる。
 本発明の有効成分は、被覆又は支持用材の表層を構成することもできるし、被覆又は支持用材の全体に含まれていることもできる。
 植物の被覆又は支持用材中の本発明の有効成分は、被覆又は支持用材と植物とが接触することによって、或いは被覆又は支持用材から揮発して植物と接触することによって、植物に対する作用を発揮することができる。
 以下に、実施例に基づいて本発明を詳細に説明するが、本発明はこれらの実施例によって限定されるものではない。
 試験例1.気孔開口調節作用の測定試験1
 化合物1~27(表4~表10)を準備し、その気孔開口調節作用を測定した。化合物3、5、及び27は以下のようにして合成した。少なくとも化合物27は新規化合物である。その他の化合物については、既報に従って又は準じて合成するか、或いは市販品を購入した。
 <試験例1-1.化合物の合成>
 <試験例1-1-1.化合物3の合成>
 撹拌棒付き乾燥丸底フラスコに、ジ(1H-イミダゾール-1-イル)メタンチオン(10mmol、5 equiv.)およびDMF(15 mL)を添加した。Et3N (4.8 mmol, 2.4 equiv.) および1,4-フェニレンジメタンアミン (2.0 mmol, 1.0 equiv.) のDMF (5 mL) 溶液をフラスコに加え、混合物を50℃にて一晩攪拌した。反応混合物をH2O (20 mL)でクエンチし、Hexane/EtOAc = 1:1 (20 mL × 3)で抽出した。有機層を1M HCl aq.および水で洗浄した(3回)。次いで、有機層をNa2SO4で乾燥し、濾過して濃縮した。粗生成物をシリカゲル上のクロマトグラフィーにより精製して、化合物3 (221 mg, 1.00 mmol, 50%) を淡黄色固体として得た。
1H NMR (500 MHz, CDCl3) δ 4.73 (s, 4H), 7.35 (s, 4H); 13C NMR (126 MHz, CDCl3) δ 48.37, 127.52, 132.83, 134.59; LRMS (GC-MS, EI): m/z = 220 calcd for C10H8N2S2220 [M+]。
 <試験例1-1-2.化合物5の合成>
Figure JPOXMLDOC01-appb-C000019
 撹拌棒付き乾燥 100 ml 丸底フラスコに、KSCN (1.36 g, 14 mmol, 10 equiv.), NaI (900 mg, 6 mmol, 4.3 equiv.) および 1,3,5-トリス(ブロモメチル)ベンゼン (498 mg, 1.4 mmol, 1.0 equiv.) を添加した。次に、フラスコにジメチルホルムアミド(10 mL)を加え、混合物を90℃で24時間撹拌した。反応混合物をH2O(20 mL)で希釈し、ジエチルエーテル(3 × 20 mL)で抽出した。有機層をMgSO4上で乾燥させた後、減圧下で濃縮した。粗生成物をシリカゲル上のフラッシュカラムクロマトグラフィー (hexane/EtOAc = 100:0 to 70:30) および分取リサイクルゲル浸透クロマトグラフィーで精製して、1,3,5-トリス (イソチオシアナトメチル) ベンゼン (137 mg, 0.47 mmol, 34%) を得た。1H NMR (500 MHz, CDCl3) δ 4.79 (s, 6H), 7.26 (s, 3H); 13C NMR (126 MHz, CDCl3) δ 48.38, 125.29, 133.89, 136.39; LRMS(GC-MS): m/z= 291 calcd for 291 [M+]。
 <試験例1-1-3.化合物27の合成>
 撹拌棒付き乾燥 100 ml 丸底フラスコに、ジ(1H-イミダゾール-1-イル)メタンチオン(1.78 g, 10 mmol、5 equiv.), および DMF (15 mL) を添加した。次に、フラスコにトリエチルアミン (0.55 mL, 9.6 mmol, 4.8 equiv.) およびトランス-1,4-ビス(アミノメチル)シクロヘキサン (280 mg, 2.0 mmol, 1.0 equiv.) の DMF (5 mL) 溶液を加え、混合物を50℃で16時間撹拌した。反応混合物をH2O(20 mL)で希釈し、酢酸エチル(3 × 20 mL)で抽出した。有機層を硫酸ナトリウム上で乾燥させた後、濾過し、減圧下で濃縮した。粗生成物をシリカゲル上のフラッシュカラムクロマトグラフィーで精製して、トランス-1,4-ビス(イソチオシアナトメチル)シクロヘキサン (315 mg, 1.39 mmol, 70%) を白色固体として得た。
 1H NMR (500 MHz, CDCl3)の結果を図8に示す。Chemical Formula: C10H14N2S2、Exact Mass: 226.06, Molecular Weight: 226.36。
 <試験例1-2.測定試験>
 試験液として、被検化合物(化合物1~27)それぞれを各種濃度になるように溶解させた気孔開度測定溶液(5 mM MES-BTP[pH6.5], 50 mM KCl, 0.1 mM CaCl2, 0.5% DMSO)を調製した。
 マルバツユクサ(Commelina benghalensis)の茎の一部を、バーミキュライトとピートモスとの混合土を入れたプランターに挿し、自然光が入る室内(室温25±3℃)で、2~4週間生育させた。プランターを暗室に置き、一晩、暗処理した。暗処理後、完全に展開した葉から穴あけパンチ(Biospy Punch, Kai Medical)を用いて直径4mmのリーフディスクを切り取った。
 試験液それぞれを、96穴プレートの5つのウェルに50μl/ウェルずつ分注し、そこにリーフディスクを浸漬し、光(50μmol m-2 s-1 青色光)照射下で3時間、インキュベートした。インキュベート後、実体蛍光顕微鏡(Leica M205FA)による観察像(600倍)下で、気孔閉鎖を評価した。各リーフディスクあたり20個程度の気孔の短径(以下、「気孔開度」と示す。)を測定した。各被検化合物についての各濃度の気孔開度の測定値に基づいて、気孔開度の50%阻害濃度(IC50)を算出した。
 結果を表4~表9に示す。表中、‐NCSはイソチオシアネート基(-N=C=S)を示し、‐Meはメチル基を示し、‐Phはフェニル基を示す。
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000026
 試験例2.気孔開口調節作用の測定試験2
 化合物1(BITC:ベンジルイソチオシアネート)(試験液中の終濃度100μM)及びアブシジン酸(試験液中の終濃度20μM)を被検化合物として用いた。また、被検化合物に加えてフシコクシン(終濃度10μM)も添加した試験液も用意した。測定試験において、光(150μmol m-2s-1 赤色光及び50μmol m-2 s-1 青色光)照射下で3時間インキュベートする群(光照射群)に加えて、当該光照射に代えて暗室内で3時間インキュベートする群(暗処理群)を設けること以外は、試験例1と同様にして試験した。測定値に基づいて平均値及び標準偏差(Standard deviation; SD)を求めた。
 結果を図1に示す。化合物1は、アブシジン酸より優れた気孔開口抑制作用を示すこと、及びフシコクシンによる気孔開口に対して抑制作用を示すことが分かった。
 試験例3.気孔開口調節作用メカニズムの解析1
 シロイヌナズナ(Arabidopsis thaliana)の表皮由来の孔辺細胞における細胞膜プロトンポンプの青色光およびフシコクシン誘導リン酸化を、既報(Hayashi et al. (2011) Immunohistochemical detection of blue light-induced phosphorylation of the plasma membrane H+-ATPase in stomatal guard cells. Plant Cell Physiol. 52: 1238-1248.)に従って免疫組織化学的に測定した。被検化合物として、化合物1(BITC)、化合物4(m-Bis-BITC)、及び化合物5(Tris-BITC)を用いた。化合物1の作用時の濃度は100μM、化合物4の作用時の濃度は20μM、化合物5の作用時の濃度は20μM、フシコクシンの作用時の濃度は10μMとした。
 結果を図2に示す。化合物1、4、及び5は、青色光で誘導される細胞膜プロトンポンプのリン酸化、及びフシコクシンで誘導される細胞膜プロトンポンプのリン酸化に対して抑制作用を有することが分かった。
 試験例4.気孔開口調節作用メカニズムの解析2
 ソラマメ(Vicia faba)の表皮由来の孔辺細胞における、アブシジン酸(ABA)によって誘導されるABA応答性キナーゼ基質(AKS)のリン酸化を、既報(Takahashi et al. (2007) Protein Phosphorylation and Binding of a 14-3-3 Protein in Vicia Guard Cells in Response to ABA. Plant and Cell Physiology. 48: 1182-1191.)に従って、イムノブロット分析により測定した。被検化合物として、化合物1(BITC)及びアブシジン酸を用いた。化合物1の作用時の濃度は100μM、アブシジン酸の作用時の濃度は20μMとした。
 結果を図3に示す。化合物1は、ABA応答性キナーゼ基質のリン酸化は誘導しなかった。
 また、さらに解析を進めたところ、化合物1はシロイヌナズナのABA関連応答(種子発芽阻害、ABA応答性遺伝子(RAB18及びRD29Bの誘導)にも影響を与得ないことが分かった。
 試験例5.気孔開口調節作用の測定試験3
 キク(Crysanthemum)の花束を購入し、24℃、16h白色光(100μmol m-2 s-1)/8h暗黒の光周期で2日間水瓶で培養した。暗期終了後、葉を、被検化合物(化合物1(BITC)、化合物4(m-Bis-BITC)、又はアブシジン酸(ABA))を添加した試験液(0.033%まくぴか(展着剤、石原バイオサイエンス))に浸し、白色光(100μmol m-2 s-1)3時間でインキュベート、或いは16時間明/16時間暗の光周期(明→暗→明)で48時間インキュベートした。インキュベート後、試験例1と同様にして気孔開度を測定した。
 結果を図4及び図5に示す。化合物1及び4は、無傷葉に対しても気孔開口抑制作用を示すことが分かった。また、化合物4は気孔開口抑制作用の持続性に優れることが分かった。
 試験例6.乾燥耐性試験1
 試験例5の3時間インキュベート後、花束を脱水し、10μmol m-2 s-1の白色光と35-40%の相対湿度の下、21℃で90分間インキュベートした。
 図6に脱水状態でのインキュベートの開始時及び終了時の外観写真像を示す。化合物1及び4により、乾燥耐性を向上させ、萎れを抑制できることが分かった。
 試験例7.乾燥耐性試験2
 110mlの土壌で生育中の4-5週齢のハクサイ(Brassica rapa)に、化合物4(m-Bis-BITC)を添加した試験液(0.033%まくぴか(展着剤、石原バイオサイエンス))を散布した。試験液中の化合物4の濃度は50μMである。その後、水を枯渇させ、晴天の日中、25℃、相対湿度40-50%の温室内で24時間培養した。
 図7に水枯渇状態での培養の開始時及び終了時の外観写真像を示す。化合物4により、乾燥耐性が向上し、長時間に亘って萎れを抑制できることが分かった。

Claims (14)

  1. 一般式(1):
    Figure JPOXMLDOC01-appb-C000001
    [式中:Aは置換されていてもよい環を示す。Lは同一又は異なって、リンカーを示す。nは1~6の整数を示す。]
    で表される化合物、その塩、及びそれらの溶媒和物からなる群より選択される少なくとも1種を含有する、植物気孔開口調節剤。
  2. 前記Aが単環且つ5~6員環である、請求項1に記載の植物気孔開口調節剤。
  3. 前記Aが、無置換の環である、或いは置換されていてもよいアルキル基、置換されていてもよいアルコキシ基、置換されていてもよいアルコキシカルボニル基、置換されていてもよいアリール基、シアノ基、ハロゲン原子、ニトロ基、置換されていてもよいアミノ基、置換されていてもよいアミド基、置換されてもよいケトン基、置換されてもよいアンモニオ基、及び置換されてもよいチオ基からなる群より選択される少なくとも1種で置換された環である、請求項1又は2に記載の植物気孔開口調節剤。
  4. 前記Aの置換基が0~3個である、請求項1~3のいずれかに記載の植物気孔開口調節剤。
  5. 前記Lがアルキル基及び/又はアリール基で置換されていてもよいアルキレン基である、請求項1~4のいずれかに記載の植物気孔開口調節剤。
  6. 前記Aが単環且つ5~6員環であり、
    前記Lがアルキル基及び/又はアリール基で置換されていてもよいアルキレン基であり、且つ
    前記Aがベンゼン環であり且つ前記nが1である場合は、前記Aが、置換されていてもよりアリール基、シアノ基、ヨウ素原子、及び置換されていてもよいアルコキシカルボニル基からなる群より選択される少なくとも1種で置換されたベンゼン環である、並びに/又は前記Lがアルキル基及び/又はアリール基で置換されたアルキレン基である、
    請求項1~5のいずれかに記載の植物気孔開口調節剤。
  7. 植物気孔開口抑制剤である、請求項1~6のいずれかに記載の植物気孔開口調節剤。
  8. 請求項1~7のいずれかに記載の植物気孔開口調節剤を含有する、乾燥耐性向上剤。
  9. 萎れ抑制に用いるための、請求項8に記載の乾燥耐性向上剤。
  10. 請求項1~7のいずれかに記載の植物気孔開口調節剤を植物に施用することを含む、乾燥耐性向上方法。
  11. 請求項1~7のいずれかに記載の植物気孔開口調節剤を植物の気孔に接触させることを含む、請求項10に記載の乾燥耐性向上方法。
  12. 一般式(1):
    Figure JPOXMLDOC01-appb-C000002
    [式中:Aは置換されていてもよい環を示す。Lはリンカーを示す。nは1~6の整数を示す。]
    で表される化合物、その塩、及びそれらの溶媒和物からなる群より選択される少なくとも1種を含有する、細胞膜プロトンポンプリン酸化阻害剤。
  13. 一般式(1):
    Figure JPOXMLDOC01-appb-C000003
    [式中:Aは置換されていてもよい環を示す。Lはリンカーを示す。nは1~6の整数を示す。]
    で表される化合物、その塩、及びそれらの溶媒和物からなる群より選択される少なくとも1種を含有する、植物の被覆又は支持用材。
  14. 一般式(1X):
    Figure JPOXMLDOC01-appb-C000004
    [式中:A’は置換されていてもよい非芳香環を示す。Lは同一又は異なって、リンカーを示す。n’は2~6の整数を示す。]で表される化合物、その塩、又はそれらの溶媒和物。
PCT/JP2023/016086 2022-04-26 2023-04-24 植物気孔開口調節剤 WO2023210570A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022072557 2022-04-26
JP2022-072557 2022-04-26

Publications (1)

Publication Number Publication Date
WO2023210570A1 true WO2023210570A1 (ja) 2023-11-02

Family

ID=88518883

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/016086 WO2023210570A1 (ja) 2022-04-26 2023-04-24 植物気孔開口調節剤

Country Status (1)

Country Link
WO (1) WO2023210570A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3288831A (en) * 1962-07-06 1966-11-29 Rhone Poulenc Sa Isothiocyanato alkyl cyclohexane derivatives
JP2013129643A (ja) * 2011-12-22 2013-07-04 National Univ Corp Shizuoka Univ 植物耐熱性誘導剤
JP2016117685A (ja) * 2014-12-22 2016-06-30 国立大学法人名古屋大学 植物気孔開口調節剤
WO2018008717A1 (ja) * 2016-07-08 2018-01-11 国立大学法人名古屋大学 植物成長調整剤
WO2018062036A1 (ja) * 2016-09-30 2018-04-05 国立大学法人名古屋大学 植物気孔開口調節剤

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3288831A (en) * 1962-07-06 1966-11-29 Rhone Poulenc Sa Isothiocyanato alkyl cyclohexane derivatives
JP2013129643A (ja) * 2011-12-22 2013-07-04 National Univ Corp Shizuoka Univ 植物耐熱性誘導剤
JP2016117685A (ja) * 2014-12-22 2016-06-30 国立大学法人名古屋大学 植物気孔開口調節剤
WO2018008717A1 (ja) * 2016-07-08 2018-01-11 国立大学法人名古屋大学 植物成長調整剤
WO2018062036A1 (ja) * 2016-09-30 2018-04-05 国立大学法人名古屋大学 植物気孔開口調節剤

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
AFRIN SONYA, OKUMA EIJI, TAHJIB-UL-ARIF MD, JAHAN MD SARWAR, NAKAMURA TOSHIYUKI, NAKAMURA YOSHIMASA, MUNEMASA SHINTARO, MURATA YOS: "Stomatal response to isothiocyanates in Arabidopsis thaliana", JOURNAL OF EXPERIMENTAL BOTANY, OXFORD UNIVERSITY PRESS, GB, vol. 71, no. 22, 31 December 2020 (2020-12-31), GB , pages 6921 - 6931, XP093104799, ISSN: 0022-0957, DOI: 10.1093/jxb/eraa420 *

Similar Documents

Publication Publication Date Title
JP4877679B2 (ja) 植物成長調整剤
WO1999045774A1 (fr) Agent regulant la croissance de vegetaux
WO2017217892A1 (ru) Композиция для регулирования роста растений, способ обработки ею растений и активный ингредиент в её составе
WO2023210570A1 (ja) 植物気孔開口調節剤
JPH06239709A (ja) S−ベンジルチオールカーバメートおよびその稲田における雑草抑制剤としての使用
JP6976578B2 (ja) 植物気孔開口調節剤
WO2018159827A1 (ja) 植物ステロイドホルモン(ブラシノライド)様活性をもつ非ステロイド化合物の創製
JP6706949B2 (ja) 不定根発生誘導剤及び根系発達促進剤
JP6679490B2 (ja) 不定根発生誘導剤及び根系発達促進剤
JPS632904A (ja) 植物生長調節剤
JP6842082B2 (ja) 植物成長調整剤
AU595269B2 (en) Plant growth promotion
HU193889B (en) Process for preparing (-)antipode of (e)-1-cyclohexyl-4,4-dimethyl-3-hydroxy-2-(1,2,4-triazol-1-yl)-pent-1-ene and plant growth regulating composition comprising the antipode
JP6902748B2 (ja) 植物成長調整剤
JPS62149676A (ja) ピラゾロイソキノリン誘導体、その製法および農薬
WO2018008717A1 (ja) 植物成長調整剤
JP2014080406A (ja) 植物成長調整剤
JP5082474B2 (ja) 新規なキナゾリン誘導体
JP7325429B2 (ja) 植物の耐塩性向上剤
JPS63141903A (ja) 裁培植物の成長をワークロルキノリン―8―カルボン酸を用いて促進する方法
RU2186768C1 (ru) Тетрагидрат(+)гидротартрата(+)цис-[2s,5r-1,5-диметил-2-(1-окси-3-пропил)]- пирролидиния, проявляющий морфогенетическую и росторегулирующую активность
JP2739762B2 (ja) 光学活性イソニコチン酸アニリド誘導体およびこれからなる植物生長調節剤組成物
KR0175652B1 (ko) 광학활성 이소니코틴산 아닐리드 유도체 및 이것으로 이루어진 식물 생장 조절제 조성물
PL114598B1 (en) Plant growth regulator
CA2006519A1 (en) Banzamide derivatives and plant growth regulants containg them

Legal Events

Date Code Title Description
DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23796310

Country of ref document: EP

Kind code of ref document: A1