WO2023210313A1 - 測定方法、測定システム、および情報処理方法 - Google Patents

測定方法、測定システム、および情報処理方法 Download PDF

Info

Publication number
WO2023210313A1
WO2023210313A1 PCT/JP2023/014476 JP2023014476W WO2023210313A1 WO 2023210313 A1 WO2023210313 A1 WO 2023210313A1 JP 2023014476 W JP2023014476 W JP 2023014476W WO 2023210313 A1 WO2023210313 A1 WO 2023210313A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
light
angle
processing circuit
inclination
Prior art date
Application number
PCT/JP2023/014476
Other languages
English (en)
French (fr)
Inventor
基樹 八子
和晃 西尾
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2023210313A1 publication Critical patent/WO2023210313A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/26Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity

Definitions

  • the present disclosure relates to a measurement method, a measurement system, and an information processing method.
  • the material, surface condition, and tilt angle of the surface of the object greatly affect the measurement results.
  • the angle of inclination of the surface of the object easily changes depending on, for example, the measurement environment, the method of installing and fixing the object, and the skill of the measurer.
  • the inclination angle of the surface of the object tends to vary from measurement to measurement, and the measurement results of the inclination angle are often inaccurate.
  • Patent Documents 1 and 2 disclose examples of non-contact angle measurement.
  • the present disclosure provides a measurement method that can easily generate information regarding the inclination of the surface of a target object in a non-contact manner, and a measurement system using the measurement method.
  • a method includes the steps of: acquiring spectral information of light from a surface of a target object; acquiring reference information including information on light reflection characteristics of the surface of the target object; and generating information regarding a tilt of the surface of the object based on the information and the reference information.
  • the general or specific aspects of the present disclosure may be implemented in a system, apparatus, method, integrated circuit, computer program or recording medium such as a computer readable recording disk, and the system, apparatus, method, integrated circuit, It may be realized by any combination of a computer program and a recording medium.
  • the computer-readable recording medium may include, for example, a non-volatile recording medium such as a CD-ROM (Compact Disc-Read Only Memory).
  • a device may be composed of one or more devices. When the device is composed of two or more devices, the two or more devices may be placed within one device, or may be separately placed within two or more separate devices.
  • “device” may refer not only to a device, but also to a system of devices.
  • FIG. 1A is a diagram schematically showing how a target object is irradiated with incident light having two different wavelengths to generate specularly reflected light and diffusely reflected light.
  • FIG. 1B is a diagram schematically showing how a target object is irradiated with light incident at two different angles to generate diffusely reflected light.
  • FIG. 2 is a block diagram schematically showing the configuration of a measurement system according to exemplary embodiment 1 of the present disclosure.
  • FIG. 3A is a diagram schematically showing an example of reference information data stored in a storage device.
  • FIG. 3B is a flowchart schematically illustrating an example of an operation in which the processing circuit generates reference information.
  • FIG. 4A is a diagram schematically showing how a light detection device detects diffusely reflected light generated when a target object is irradiated with light emitted from a light source.
  • FIG. 4B is a diagram schematically showing a change in the spectrum due to a change in the incident angle and the output angle.
  • FIG. 4C is a diagram illustrating an example of reference information including spectra at multiple angles.
  • FIG. 5A is a diagram schematically showing another example of reference information including spectra at multiple angles.
  • FIG. 5B is a diagram plotting angles and normalized inner product values included in the reference information shown in FIG. 5A.
  • FIG. 6 is a flowchart schematically showing an example of a measurement operation performed by the processing circuit in the first embodiment.
  • FIG. 6 is a flowchart schematically showing an example of a measurement operation performed by the processing circuit in the first embodiment.
  • FIG. 7A is a flowchart schematically showing another example of the measurement operation performed by the processing circuit in the first embodiment.
  • FIG. 7B is a diagram schematically showing an example of error information displayed on the display UI.
  • FIG. 8 is a flowchart schematically showing still another example of the measurement operation performed by the processing circuit in the first embodiment.
  • FIG. 9 is a diagram for explaining a measurement method according to Embodiment 2 of the present disclosure.
  • FIG. 10 is a flowchart schematically showing an example of a measurement operation performed by the processing circuit in the second embodiment.
  • FIG. 11 is a diagram for explaining a measurement method according to Embodiment 3 of the present disclosure.
  • FIG. 12 is a diagram schematically showing an example of a spectrum locus when wavelength band 1 and wavelength band 2 are selected.
  • FIG. 12 is a diagram schematically showing an example of a spectrum locus when wavelength band 1 and wavelength band 2 are selected.
  • FIG. 13 is a flowchart schematically showing an example of a measurement operation performed by the processing circuit in the third embodiment.
  • FIG. 14 is a flowchart schematically showing another example of the measurement operation performed by the processing circuit in the third embodiment.
  • FIG. 15 is a flowchart schematically showing still another example of the measurement operation performed by the processing circuit in the third embodiment.
  • all or part of a circuit, unit, device, member, or section, or all or part of a functional block in a block diagram may be, for example, a semiconductor device, a semiconductor integrated circuit (IC), or a large scale integration (LSI). ) may be implemented by one or more electronic circuits.
  • An LSI or IC may be integrated into one chip, or may be configured by combining a plurality of chips.
  • functional blocks other than the memory element may be integrated into one chip.
  • it is called LSI or IC, but the name changes depending on the degree of integration, and may be called system LSI, VLSI (very large scale integration), or ULSI (ultra large scale integration).
  • a field programmable gate array (FPGA), which is programmed after the LSI is manufactured, or a reconfigurable logic device that can reconfigure the connections inside the LSI or set up circuit sections inside the LSI can also be used for the same purpose.
  • FPGA field programmable gate array
  • the functions or operations of all or part of a circuit, unit, device, member, or section can be performed by software processing.
  • the software is recorded on one or more non-transitory storage media such as ROM, optical disk, hard disk drive, etc., and when the software is executed by a processor, the functions specified by the software are executed. It is executed by a processor and peripheral devices.
  • a system or apparatus may include one or more non-transitory storage media on which software is recorded, a processor, and required hardware devices, such as interfaces.
  • light includes not only visible light (wavelength of about 400 nm to about 700 nm) but also electromagnetic waves including ultraviolet light (wavelength of about 10 nm to about 400 nm) and infrared light (wavelength of about 700 nm to about 1 mm). means.
  • Reflection of incident light at the same angle as the incident angle with the normal to the surface of the object as the reference axis is generally called “specular reflection” or “regular reflection.”
  • specular reflection when the incident light is reflected at an angle different from the incident angle with the normal to the surface of the object as the reference axis, it is called “diffuse reflection” or “diffuse reflection.”
  • Specular reflection light generated when light is reflected on the surface of an object can contain a lot of information about the light source.
  • the diffusely reflected light generated when light is reflected at or near the surface of the object can contain a lot of information about the object, such as the light absorption rate and surface condition of the material of the object.
  • FIG. 1A is a diagram schematically showing how a target object is irradiated with incident light having two different wavelengths ⁇ 1 and ⁇ 2 to generate specularly reflected light and diffusely reflected light.
  • the thick lines with arrows shown in FIG. 1 represent incident light and specularly reflected light
  • the black and dark gray thin lines with arrows shown in FIG. 1 represent diffusely reflected light of wavelengths ⁇ 1 and ⁇ 2, respectively.
  • the spatial spread of diffusely reflected light often changes depending on wavelength. Therefore, as shown in the inset of FIG. 1A, the spectra of diffusely reflected light received by observers A and B at different positions are different from each other.
  • 1A represent the spectra of diffusely reflected light received by observer A and observer B, respectively.
  • the light intensity at wavelength ⁇ 1 is higher than the light intensity at wavelength ⁇ 2.
  • the light intensity at wavelength ⁇ 2 is higher than the light intensity at wavelength ⁇ 1.
  • a hologram sheet is a notable example in which the spatial spread of diffusely reflected light differs between wavelengths ⁇ 1 and ⁇ 2.
  • standard white plates made of barium sulfate are often designed so that the spatial spread of diffusely reflected light is uniform regardless of wavelength. If the object 10 is not intentionally designed to be so, the spectrum of diffusely reflected light will often differ depending on the position of observers A, B, as shown in the inset of FIG. 1A.
  • FIG. 1B is a diagram schematically showing how a target object is irradiated with light incident at two different angles and diffuse reflected light is generated.
  • the light emitted from the light source 20a enters the object 10 at an angle closer to the normal to the surface 10s of the object 10 than the light emitted from the light source 20b.
  • the black and dark gray thin lines with arrows shown in FIG. 1B represent diffusely reflected light generated when the object 10 is irradiated with the light emitted from the light source 20a and the light source 20b, respectively.
  • Standard white boards are often designed so that the spatial spread of diffusely reflected light is uniform regardless of the incident angle of the light. If object 10 is not intentionally designed to be so, the spectrum of diffusely reflected light received by observer A will vary depending on the angle of incidence of the light.
  • the present inventor has developed an embodiment of the present disclosure that allows information regarding the inclination of the surface of an object to be easily generated in a non-contact manner by focusing on changes in the spectrum caused by the spatial spread of diffusely reflected light.
  • the information regarding the inclination of the surface of the object is information indicating the amount caused by the inclination of the surface of the object.
  • Such information may be, for example, information indicating the inclination angle or amount of deflection of the surface of the object.
  • the method according to the first item includes acquiring spectral information of light from a surface of an object, acquiring reference information including information on light reflection characteristics of the surface of the object, and acquiring the spectral information. and generating information regarding the inclination of the surface of the object based on the reference information.
  • the method according to the second item is the method according to the first item, wherein the spectral information includes a plurality of light intensities respectively corresponding to a plurality of wavelength bands, and the reference information is a method according to the first item.
  • the spectral information includes a plurality of light intensities respectively corresponding to a plurality of wavelength bands
  • the reference information is a method according to the first item.
  • information regarding the inclination of the surface of the object can be generated by comparing the above plurality of light intensities included in the spectrum information and the above plurality of light intensities included in the reference information.
  • the method according to the third item is the method according to the first or second item, wherein the information regarding the inclination of the surface of the object is information indicating the inclination angle of the surface of the object, or the information about the inclination of the surface of the object This is information indicating the amount of deflection of the surface.
  • the method according to the fourth item includes determining whether the inclination angle or the amount of deflection is within an allowable range in the method according to the third item.
  • the surface of the object is determined based on the spectrum information. further including analyzing.
  • the surface of the object can be analyzed.
  • the method according to the sixth item further includes generating error information when it is determined in the method according to the fourth item that the inclination angle or the deflection amount is not within an allowable range.
  • the method according to the seventh item further includes, in the method according to the fourth item, generating information for correcting the tilt angle when it is determined that the tilt angle is not within an allowable range.
  • the inclination angle can be kept within the permissible range.
  • a method according to an eighth item is a method according to any one of the third to seventh items, in which, before generating information regarding the inclination of the surface of the object, the spectral information and the reference information are used. The method further includes determining whether the tilt angle or the deflection amount can be estimated based on the tilt angle or the deflection amount.
  • the method according to a ninth item is the method according to any one of the first to eighth items, wherein the light from the surface of the object is directed to one or more portions within the surface of the object. It is the light from.
  • the method further includes displaying a GUI for a user to specify the one or more portions within the surface of the object.
  • This method allows the user to specify one or more portions within the surface of the object.
  • the method according to the tenth item is the method according to any one of the first to ninth items, further including generating the reference information before acquiring the reference information.
  • Generating the reference information includes a first operation of changing at least one of an incident angle of light incident on the surface of the object and an exit angle of light emitted from the surface of the object; Repeatedly performing a second operation of causing a light source to emit light for irradiating the surface of the object, and a third operation of causing a light detection device to detect light from the surface of the object to generate spectral information of the light. and associating at least one of the changed incident angle and the output angle obtained by repeatedly performing the first operation, the second operation, and the third operation with the spectral information. including remembering.
  • the method according to the eleventh item is the method according to the second item, further comprising irradiating the object with irradiation light including light corresponding to each of the plurality of wavelength bands.
  • the light from the surface of the object is light caused by the irradiation light.
  • the object is irradiated with irradiation light including, for example, first light corresponding to a first wavelength band and second light corresponding to a second wavelength band.
  • irradiation light including, for example, first light corresponding to a first wavelength band and second light corresponding to a second wavelength band.
  • spectral information can be efficiently acquired compared to a configuration in which the first irradiation light corresponding to the first wavelength band and the second irradiation light corresponding to the second wavelength band are irradiated at different timings.
  • spectrum information can be acquired more efficiently than in a configuration including a first light source that emits the first irradiation light and a second light source that emits the second irradiation light.
  • the system includes a light detection device that detects light from a surface of a target object and generates spectral information of the light; and a system that acquires the spectrum information from the light detection device, and a processing circuit that acquires reference information including information on light reflection characteristics of a surface, and generates information regarding an inclination of the surface of the object based on the spectral information and the reference information.
  • the system according to the thirteenth item is the system according to the twelfth item, further comprising a storage device that stores the reference information.
  • the processing circuit obtains the reference information from the storage device.
  • the information processing method executed by a computer includes acquiring first spectral information included in first light from a first region of a surface of a target object; obtaining reference information including information on reflection characteristics; and determining whether the inclination of the surface of the object is within a predetermined range based on the first spectrum information and the reference information. , when it is determined that the inclination is within a predetermined range, second spectral information included in second light from a second region on the surface is acquired, and based on the second spectral information, the target object is and determining whether the appearance is good or bad regarding the color of the image.
  • the information processing method according to the fifteenth item is the information processing method according to the fourteenth item, wherein the second area is wider than the first area.
  • the amount of data of the first spectrum information is smaller than the amount of data of the second spectrum information, so the calculation load is reduced in determining whether the slope of the surface of the object is within a predetermined range. can.
  • the information processing method according to the sixteenth item is the information processing method according to the fourteenth or fifteenth item, wherein the inclination of the surface of the object is within a predetermined range based on the first spectrum information and the reference information.
  • the method further includes generating correction information for correcting the inclination of the surface when it is determined that the inclination of the surface is not within the range.
  • the inclination of the surface of the object can be kept within a predetermined range.
  • the information processing method according to the seventeenth item is, in the information processing method according to any one of the fourteenth to sixteenth items, whether or not the amount related to the slope can be estimated based on the first spectrum information and the reference information. and, if it is determined that the amount related to the slope can be estimated, determining whether the slope is within the predetermined range.
  • the reference information includes range information indicating a range in which the light intensity corresponding to each of the plurality of wavelength bands can change depending on the amount related to the tilt. Whether or not the amount related to the tilt can be estimated is determined based on the light intensity corresponding to each of the plurality of wavelength bands included in the first spectrum information and the range information.
  • the processing operation can be stopped when the amount related to the slope cannot be estimated, and it is possible to simplify the processing operation and reduce the processing load.
  • reference information can be obtained from a storage device.
  • FIG. 2 is a block diagram schematically showing the configuration of a measurement system according to exemplary embodiment 1 of the present disclosure.
  • the measurement system 100 shown in FIG. 2 includes a photodetector 30, a storage device 40, a display device 50, a processing circuit 60, and a memory 62.
  • the broken line shown in FIG. 2 represents the optical axis of the photodetector 30.
  • the optical axis of the photodetector 30 may be, for example, the optical axis of a lens attached to the photodetector 30.
  • the thin solid lines with arrows shown in FIG. 2 represent input and output of signals.
  • FIG. 2 schematically shows how the surface 10s of the object 10 is irradiated with light emitted from the light source 20 to generate diffusely reflected light.
  • the object 10 is fixed to the surface 12s of the sample stage 12, and the sample stage 12 is arranged on the rotation stage 14. By changing the orientation of the sample stage 12 using the rotation stage 14, the inclination angle of the surface 10s of the object 10 can be adjusted.
  • Measurement system 100 may include a rotation stage 14 and/or a light source 20 as components.
  • the inclination angle of the surface 10s of the object 10 can be defined, for example, by the angle formed between the reference plane and the surface 10s of the object 10, with a plane perpendicular to the optical axis of the photodetector 30 as a reference plane.
  • the reference plane for the inclination angle may be another plane.
  • the spatial spread of the diffusely reflected light schematically shown in FIG. 2 is merely an example.
  • the spatial spread of diffusely reflected light strongly depends on the physical properties and surface conditions of the object. Therefore, the degree of spatial spread, shape, and angular region of the diffusely reflected light are not limited to the example shown in FIG. 2. The same applies to the spatial spread of diffusely reflected light shown in the following figures.
  • the processing circuit 60 acquires spectrum information of light from the surface 10s of the object 10 from the photodetector 30, and obtains reference information including information on the surface 10s of the object 10. is obtained from the storage device 40.
  • the processing circuit 60 further generates information indicating the inclination angle of the surface 10s of the object 10 based on the spectrum information and the reference information. As a result, the information can be easily generated without contact.
  • the object 10 has a surface 10s that reflects the light emitted from the light source 20.
  • the surface 10s of the object 10 has the following light reflection characteristics.
  • the surface 10s of the object 10 is irradiated with the light, resulting in specular reflection light and diffuse reflection light.
  • the total reflectance of can be, for example, 1% or more, more preferably 10%.
  • the object 10 has a plate shape.
  • the shape of the object 10 is not limited to a plate shape, and may be, for example, spherical.
  • the surface 10s of the object 10 may be a flat surface or a curved surface.
  • the light reflected by the surface 10s of the object 10 is treated as including the light reflected by the surface 10s of the object 10 and the light scattered within the vicinity of the surface of the object 10. It's okay to be hurt. Further, the light reflection characteristics of the surface 10s of the object 10 may be treated as characteristics including the light reflection characteristics of the surface 10s of the object 10 and the light scattering characteristics inside the surface of the object 10 near the surface.
  • the object 10 may include a fluorescent medium.
  • the fluorescent medium is excited by the light emitted from the light source 20.
  • the light emitted from the fluorescence medium due to excitation may be detected as light from the surface 10s of the object 10.
  • Rotation stage 14 may be, for example, a goniometer.
  • the rotation stage 14 can adjust the rotation direction and/or rotation angle.
  • the rotation stage 14 may be rotated manually. If the rotation stage 14 includes an adjustment device for adjusting rotation, the rotation stage 14 may be rotated by the adjustment device.
  • the light source 20 includes a light emitting element that emits light to illuminate the surface 10s of the object 10.
  • the light may be, for example, white light, ultraviolet light, visible light, or infrared light.
  • the light may be parallel light, for example.
  • the light source 20 may include a plurality of light emitting elements that each emit light of a plurality of wavelengths such as red light, green light, and blue light.
  • the light emitting device can be, for example, an LED, a laser diode, an incandescent lamp, a halogen lamp, a xenon lamp, a mercury lamp, etc.
  • the position and/or orientation of the light source 20 may be changed manually.
  • the light source 20 includes an adjustment device that adjusts the position and/or orientation
  • the position and/or orientation of the light source 20 may be changed by the adjustment device.
  • the light detection device 30 detects light from the surface 10s of the object 10, generates spectral information of the light, and outputs a signal indicating the spectral information.
  • the spectrum information is information indicating a plurality of light intensities respectively corresponding to a plurality of wavelength bands included in the target wavelength range.
  • the spectrum information is information indicating a plurality of images respectively corresponding to a plurality of wavelength bands included in the target wavelength range.
  • Each wavelength band may have a wavelength width of, for example, several nm to several tens of nm.
  • the wavelength widths of the plurality of wavelength bands may be uniform or non-uniform. There may or may not be a gap between two adjacent wavelength bands among the plurality of wavelength bands.
  • a plurality of wavelength bands may be obtained by dividing the target wavelength range into a plurality of parts.
  • the target wavelength range is any wavelength range. All target wavelength ranges may be included in the wavelength range of visible light. Alternatively, part of the target wavelength range may be included in the visible light wavelength range, and the remaining wavelength range may be included in the infrared or ultraviolet wavelength range.
  • the light detection device 30 may be, for example, a hyperspectral camera.
  • a hyperspectral camera including a spectrometer such as a prism and a grating may be used.
  • a spectrometer such as a prism and a grating
  • Ru By repeating such light detection while moving the dot-like or line-like observation area on the surface 10s of the object 10, that is, while scanning, spectrum information of light in the entire area of the surface 10s of the object 10 is generated. be done.
  • a hyperspectral camera using so-called compressed sensing technology may be used as the photodetection device 30.
  • the light from the surface 10s of the object 10 is detected through a special filter array to generate a compressed image, and the compressed image is restored to generate spectrum information of the light from the surface 10s of the object 10. can do.
  • Details of a hyperspectral camera using compressed sensing technology are disclosed in US Pat. No. 9,599,511. The entire disclosure of US Pat. No. 9,599,511 is incorporated herein by reference.
  • the position and/or orientation of the photodetector 30 may be changed manually.
  • the photodetection device 30 includes an adjustment device that adjusts the position and/or orientation
  • the position and/or orientation of the photodetection device 30 may be changed by the adjustment device.
  • the storage device 40 stores reference information including information on the light reflection characteristics of the surface 10s of the object 10. Details of the reference information will be described later.
  • the storage device 40 may receive the signal output from the photodetector 30 and store spectrum information of the light from the surface 10s of the object 10.
  • the storage device 40 may be, for example, a hard disk drive (HDD) with a magnetic disk or a solid state drive (SSD) with flash memory.
  • the display device 50 displays an input user interface (UI) 50a and a display UI 50b.
  • the input UI 50a is used by the user to input information.
  • Information input by the user into the input UI 50a is received by the photodetector 30, the storage device 40, or the processing circuit 60. Details of the information input by the user will be described later.
  • the display UI 50b is used to display information generated by the processing circuit 60.
  • the input UI 50a and the display UI 50b are displayed as a graphical user interface (GUI). It can also be said that the information shown on the input UI 50a and the display UI 50b is displayed on the display device 50.
  • the input UI 50a and the display UI 50b may be realized by a device capable of both input and output, such as a touch screen. In that case, a touch screen may function as the display device 50.
  • the input UI 50a is a device independent of the display device 50.
  • the processing circuit 60 receives the signal from the photodetector 30 to obtain spectrum information of light from the surface 10s of the object 10, and obtains reference information from the storage device 40 or an external storage device such as a server. When acquiring reference information from an external storage device, there is no need to provide the storage device 40.
  • the processing circuit 60 further generates information indicating the inclination angle of the surface 10s of the object 10 based on the spectrum information and the reference information.
  • the processing circuit 60 may control the rotational operation of the rotation stage 14 via an adjustment device.
  • the processing circuit 60 may control the light emission operation of the light source 20, or may control the operation of changing the position and orientation of the light source 20 via an adjustment device.
  • the processing circuit 60 may control the light detection operation of the light detection device 30, or may control the operation of changing the position and orientation of the light detection device 30 via an adjustment device.
  • the processing circuit 60 may control the storage operation of the storage device 40.
  • the processing circuit 60 may control the display operation of the display device 50.
  • Measurement system 100 thus includes a processing device that includes processing circuitry 60 and memory 62 .
  • Processing circuit 60 and memory 62 may be integrated on one circuit board or may be provided on separate circuit boards.
  • the processing circuit 60 may be distributed over multiple circuits.
  • Processing circuitry 60, memory 62, or processing equipment may be located at a remote location separate from other components via a wired or wireless communication network.
  • the reference information includes at least one of the incident angle of light incident on the surface 10s of the object 10 and the exit angle of light emitted from the surface 10s of the object 10, and a plurality of wavelengths corresponding to the at least one angle.
  • the angle of incidence can be defined, for example, by the angle between the normal to the surface 10s of the object 10 and the optical axis of the incident light.
  • the output angle may be defined, for example, by the angle between the normal to the surface 10s of the object 10 and the optical axis of the output light.
  • light emitted from the surface 10s of the object 10 refers to the diffuse reflected light generated when the surface 10s of the object 10 is irradiated with the light emitted from the light source 20. , means light traveling along the optical axis of the photodetector 30.
  • the reference information does not need to include information about the fixed incident angle or exit angle.
  • the exit angle changes while the incident angle does not change. . That is, the angle of incidence is fixed.
  • the arm supports the photodetector 30, when the orientation of the sample stage 12 is changed by the rotation stage 14, the incident angle changes, but the exit angle does not change. That is, the output angle is fixed.
  • FIG. 3A is a diagram schematically showing an example of reference information data stored in the storage device 40.
  • the reference information data includes multiple tables. Each table shows the relationship between the incident angle, the output angle, and the light intensity for a certain wavelength band. Wavelengths ⁇ 1, ⁇ 2, and ⁇ 3 shown in FIG. 3A represent the center wavelengths of the wavelength bands. In the reference information data shown in FIG. 3, the table is divided by wavelength band, but may be divided by incident angle or output angle.
  • the incident angle and the exit angle may be expressed in degrees (°) as shown in FIG. 3A, or may be expressed in arbitrary units expressing angles, such as radians.
  • the light intensity may be expressed by a pixel value or by a standardized numerical value including a percentage.
  • the reference information may further include information on absorbance and/or reflectance associated with the material of the object 10, and may also include information on the surface state such as the roughness of the surface 10s. With such information, information indicating the inclination angle of the surface 10s of the object 10 can be generated more accurately. Information included in the reference information may be changed as necessary.
  • FIG. 3B is a flowchart schematically showing an example of an operation in which the processing circuit 60 generates reference information.
  • the processing circuit 60 executes the operations of steps S11 to S16 shown in FIG. 3B.
  • the user sets one or more incident angles and/or one or more exit angles via the input UI 50a shown in FIG. 2.
  • the processing circuit 60 acquires information on one or more incident angles and/or one or more exit angles from the input UI 50a.
  • the number of combinations of incidence angles and exit angles is equal to the number of incidence angles multiplied by the number of exit angles. However, if the combination of a certain incident angle included in one or more set incident angles and a certain exit angle included in one or more set output angles cannot be realized due to the configuration of the device, the combination is Excluded. In that case, the number of combinations of incidence angles and exit angles is smaller than the multiplication of the number of incidence angles and the number of exit angles. If the angle of incidence or angle of exit is fixed, the number of angles of incidence or exit is one.
  • the processing circuit 60 changes the incidence angle and/or the exit angle to one of the above combinations based on the information of the one or more incidence angles and/or the one or more exit angles.
  • Such a change in the angle of incidence and/or the angle of exit can be achieved by the processing circuit 60 rotating the rotation stage 14 via an adjustment device.
  • the angle of incidence or the angle of exit is fixed.
  • such a change in the angle of incidence and/or the angle of exit can be achieved by the processing circuit 60 changing the position and orientation of the light source 20 and/or the light detection device 30 via an adjustment device.
  • the processing circuit 60 causes the light source 20 to emit light for irradiating the surface 10s of the object 10.
  • the processing circuit 60 causes the photodetector 30 to detect light from the surface 10s of the object 10 and generate spectrum information of the light.
  • Step S15 Processing circuit 60 determines whether all combinations of incidence and exit angles have been examined. If the determination is Yes, the processing circuit 60 executes the operation of step S16. If the determination is No, the processing circuit 60 executes the operation of step S12 again. In step S12, the processing circuit 60 changes the incident angle and/or the exit angle to one of the combinations not yet examined. In this way, the processing circuit 60 repeatedly executes the first operation in step S12, the second operation in step S13, and the third operation in step S14.
  • the processing circuit 60 stores the changed incident angle and/or exit angle obtained by repeatedly performing the first operation, the second operation, and the third operation in association with the spectrum information in the storage device 40. .
  • the above operation of the processing circuit 60 allows reference information to be generated.
  • FIG. 4A is a diagram schematically showing how the light detection device 30 detects the diffusely reflected light generated when the object 10 is irradiated with the irradiation light emitted from the light source 20.
  • the irradiation light includes light in each of a plurality of wavelength bands. Diffuse reflected light is light caused by irradiated light.
  • the target object 10 is arranged so as to be inclined by an angle ⁇ from the reference plane.
  • the dotted line shown in FIG. 4A represents the reference plane. In the example shown in FIG. 4A, when the surface 10s of the object 10 changes by an angle ⁇ from the reference plane, the incident angle and the exit angle change by ⁇ .
  • FIG. 4B is a diagram schematically showing changes in the spectrum due to changes in the incident angle and the output angle.
  • light intensities at two wavelengths ⁇ 1 and ⁇ 2 are plotted as a spectrum.
  • the broken lines shown in FIG. 4B represent spectra at multiple angles included in the reference information, and the solid lines represent the actually measured spectra.
  • the incident angle and the exit angle are expressed uniformly by the value of the angle ⁇ .
  • the angle of the measured spectrum can be calculated, for example, by linearly interpolating spectra at multiple angles included in the reference information.
  • a method typified by the SAM (Spectral Angle Mapper) method may be used.
  • SAM Spectral Angle Mapper
  • a spectrum is represented as a vector.
  • the vector has a plurality of light intensities corresponding to a plurality of wavelength bands as components.
  • FIG. 4C is a diagram illustrating an example of reference information including spectra at multiple angles.
  • the spectral vector has light intensities at wavelengths ⁇ 1 and ⁇ 2 as first and second components, respectively.
  • the vector of the measured spectrum is represented as (32,58).
  • the inner product value f( ⁇ ) is calculated using the following equation (1) using the angle ⁇ . and (2).
  • FIG. 5A is a diagram schematically showing another example of reference information including spectra at multiple angles.
  • the reference information shown in FIG. 5A shows the relationship between the angle and the spectrum at the angle.
  • the normalized inner product value is the value obtained by dividing the inner product value v1 ⁇ v2 of the vectors v1 and v2 of the two spectra by the absolute values
  • ). If the angle is ⁇ 0°, the normalized dot product value is 1. The inverse cosine of the normalized inner product value is called the "spectral angle.” Spectral angles may be used instead of normalized inner product values.
  • the reference information shown in FIG. 5A was generated as follows. A color sample having a surface exhibiting red color was placed on the sample stage 12, and the spectrum of light from the surface of the color sample was measured while rotating the rotation stage 14 to change the inclination angle of the surface of the color sample.
  • the spectrum includes four light intensities corresponding to the four wavelengths 475 nm, 505 nm, 605 nm, and 635 nm, respectively.
  • FIG. 5B is a diagram plotting the angles and normalized inner product values included in the reference information shown in FIG. 5A.
  • the error bar shown in FIG. 5B represents the error in the normalized inner product value based on the measurement error of the spectrum.
  • Spectral measurement errors are due to, for example, the intensity of the illumination, the accuracy of the equipment used, and/or the signal-to-noise ratio.
  • the change in the spectrum as a function of the tilt angle is due to, for example, the angle of incidence, the angle of exit, the absorption and reflectance of the material, and/or the surface condition, such as the roughness of the surface.
  • the normalized inner product value also changes depending on which wavelength the light intensity is used as the spectrum. For the above reasons, in spectrum measurement, in order to detect smaller angular changes, the incident angle and the exit angle, that is, the position and orientation of the light source 20 and the light detection device 30, and the normalized inner product value are used to calculate the The wavelength can be chosen appropriately.
  • the inclination angle of the surface 10s of the object 10 and the inclination angle of the surface 12s of the sample stage 12 correspond one-to-one
  • the inclination angle of the surface 10s of the object 10 is Alternatively, the inclination angle of the surface 12s of the sample stage 12 may be estimated by the method described above. This is because the inclination angle of the surface 10s of the object 10 can be estimated based on the inclination angle of the surface 12s of the sample stage 12.
  • FIG. 6 is a flowchart schematically showing an example of a measurement operation performed by the processing circuit 60 in the first embodiment.
  • the processing circuit 60 executes the operations of steps S101 to S105 shown in FIG.
  • the processing circuit 60 acquires reference information from the storage device 40.
  • the measurement system 100 may be configured as follows. That is, the user sets identification information for identifying the target object 10 via the input UI 50a, and the processing circuit 60 receives a signal from the input UI 50a and stores the reference information corresponding to the set identification information in the storage device. It may be acquired from 40.
  • the identification information includes information specifying, for example, the name of the object and the surface condition of the object.
  • the processing circuit 60 acquires spectrum information of light from the surface 10s of the object 10 from the photodetector 30.
  • the photodetector 30 generates the spectrum information as follows.
  • the user sets the light detection conditions via the input UI 50a.
  • the light detection condition may be, for example, at least one selected from the group consisting of exposure time, frame rate, digital gain, and gamma correction.
  • the user presses the light detection start button displayed on the input UI 50a.
  • the light detection device 30 receives a signal from the input UI 50a, detects light from the surface 10s of the object 10 based on the light detection conditions, generates spectrum information of the light, and outputs a signal indicating the spectrum information.
  • the spectrum information is information indicating a plurality of images respectively corresponding to a plurality of wavelength bands.
  • the processing circuit 60 specifies one portion within the surface 10s of the object 10 as follows.
  • the one portion can be, for example, a point or an area with an extent.
  • the processing circuit 60 displays the image of the target object 10 on the display UI 50b.
  • the image of the target object 10 may be one image selected from a plurality of images respectively corresponding to a plurality of wavelength bands, or an image obtained by superimposing two or more of the plurality of images. All of the plurality of images may be superimposed.
  • the image of the object 10 may be displayed as a black and white image, or may be displayed as a pseudo-colored RGB image.
  • the user specifies one part in the area corresponding to the surface 10s of the object 10 in the displayed image of the object 10 via the input UI 50a. In this way, the processing circuit 60 displays a GUI for the user to specify one portion within the surface 10s of the object 10.
  • the processing circuit 60 receives a signal from the input UI 50a and specifies one portion within the surface 10s of the object
  • step S103 When a hyperspectral camera equipped with a spectrometer is used as the photodetector 30 to detect reflected light from a partial region within the surface 10s of the object 10, the operation in step S103 may be omitted. Even when a hyperspectral camera using compressed sensing technology is used as the light detection device 30, if the spectral information of the light from the surface 10s of the object 10 does not depend on the position within the surface 10s of the object 10, step The operation in S103 may be omitted.
  • Step S104 The processing circuit 60 acquires spectrum information of light from the designated portion by extraction from the spectrum information acquired in step S102.
  • the processing circuit 60 estimates the tilt angle of the designated portion based on the spectrum information of the light from the designated portion and the reference information, and generates information indicating the tilt angle of the designated portion.
  • the method for estimating the inclination angle is as described with reference to FIGS. 4A to 4C.
  • the information indicating the inclination angle of the designated portion may be information indicating the inclination angle itself, or may be information from which the inclination angle can be derived.
  • the processing circuit 60 may output information indicating the inclination angle of the designated portion, and may display the information on the display UI 50b or may store it in the storage device 40.
  • the "designated portion” may be rephrased as "the surface 10s of the object 10.”
  • light from a designated portion is also referred to as “light from the surface 10s of the object 10.”
  • the inclination angle of the designated portion is also referred to as “the inclination angle of the surface 10s of the object 10.”
  • FIG. 7A is a flowchart schematically showing another example of the measurement operation performed by the processing circuit 60 in the first embodiment.
  • the processing circuit 60 executes steps S101 to S108 shown in FIG. 7A.
  • the operations in steps S101 to S105 shown in FIG. 7A are the same as the operations in steps S101 to S105 shown in FIG. 6, respectively.
  • the processing circuit 60 executes the operation of step S106 after step S105.
  • the processing circuit 60 determines whether the estimated tilt angle is within a permissible range.
  • the allowable range of the tilt angle may be set by the user via the input UI 50a, or may be set automatically based on reference information. In the example shown in FIG. 5B, when the tilt angle is smaller than 6 degrees, the spectrum change becomes smaller than the measurement error, and it is not easy to determine whether the surface 10s of the object 10 is tilted. Therefore, the permissible range of the tilt angle can be set to an angle at which the tilt can be detected, an arbitrary value of 6 degrees or more in the example of FIG. 5B. If the determination is Yes, the processing circuit 60 executes the operation of step S107. If the determination is No, the processing circuit 60 executes the operation of step S108.
  • the processing circuit 60 analyzes the surface 10s of the object 10 based on the spectrum information of the light from the surface 10s of the object 10, and generates information on the analyzed surface 10s of the object 10. Examples of analysis include determining the freshness and/or sugar content of foods, examining the appearance including color of industrial products, measuring the thickness of transparent membranes, measuring surface moisture content such as skin and wood, and determining water quality and/or soil. Examples include inspections of Before analysis, the processing circuit 60 may cause the display UI 50b to display that the estimated tilt angle is within an allowable range.
  • the display UI 50b may display a message such as "The inclination angle of the surface of the object is within the permissible range.”
  • the processing circuit 60 may output the analyzed information and display the information on the display UI 50b, or may store the information in the storage device 40.
  • FIG. 7B is a diagram schematically showing an example of error information displayed on the display UI 50b.
  • the message "Processing will be canceled because the inclination angle of the surface of the object exceeds the allowable range" is displayed as error information.
  • the image of the object is displayed at the top left of the background, the light detection conditions are displayed at the top right of the background, and the light detection conditions are displayed at the bottom of the background, each corresponding to a plurality of wavelength bands. Image is displayed.
  • the processing circuit 60 may omit the operation of step S108 and end the measurement operation.
  • FIG. 8 is a flowchart schematically showing still another example of the measurement operation performed by the processing circuit 60 in the first embodiment.
  • the processing circuit 60 executes the operations of steps S101 to S109 shown in FIG.
  • the operations in steps S101 to S108 shown in FIG. 8 are the same as the operations in steps S101 to S108 shown in FIG. 7A, respectively.
  • the processing circuit 60 executes the operation of step S109 after step S108. Note that the processing circuit 60 may omit the operation of step S108 and execute the operation of step S109 after step S106.
  • the processing circuit 60 generates correction information for correcting the inclination angle of the surface 10s of the object 10.
  • the correction information may include, for example, the rotation direction and/or rotation angle of the rotation stage 14 for keeping the estimated tilt angle within an allowable range.
  • the processing circuit 60 may display the correction information on the display UI 50b. The user manually corrects the rotation direction and/or rotation angle of the rotation stage 14 based on the displayed correction information. Alternatively, the processing circuit 60 may correct the rotation direction and/or rotation angle of the rotation stage 14 via an adjustment device.
  • the processing circuit 60 executes the operations of steps S104 to S106 again. If the determination is No even after performing the operation in step S106 a predetermined number of times, the processing circuit 60 may perform the operation in step S108 and then terminate the measurement operation, or perform the operation in step S108. The measurement operation may be ended without doing so.
  • the predetermined number of times may be, for example, once, twice, or three or more times. Note that if the predetermined number of times is one and the processing circuit 60 finishes the measurement operation after performing the operation of step S108, the flowchart shown in FIG. 8 is the same as the flowchart shown in FIG. 7A.
  • the measurement method that can easily generate information indicating the inclination angle of the surface 10s of the object 10 in a non-contact manner, and a measurement system 100 using the measurement method. realizable.
  • the measurement method according to the first embodiment is advantageous in that information indicating the inclination angle of the surface 10s of the object 10 can be generated by detecting the light from the surface 10s of the object 10 once with a single light detection device 30. It's simple.
  • the measurement method disclosed in Patent Document 1 has low time efficiency because imaging is performed multiple times.
  • the measuring method disclosed in Patent Document 2 uses a plurality of devices, so the device becomes large.
  • the number of times of photodetection is one, so it is excellent in time efficiency, and since a single photodetection device 30 is used, the measurement system 100 can be downsized.
  • the measurement method according to the first embodiment allows for simplification of processing operations and simplification and miniaturization of measurement system 100.
  • the reference information, the spectrum information of the light from the surface 10s of the object 10, and the information indicating the inclination angle of the surface 10s of the object 10 are generated by the measurement system 100.
  • the reference information may be generated by a first device comprising a photodetection device 30, a storage device, an input UI 50a, and a processing circuit 60.
  • the spectral information of the light from the surface 10s of the object 10 may be generated by a second device including the photodetection device 30 and the input UI 50a.
  • Information regarding the inclination of the surface 10s of the object 10 may be generated by a third device including the processing circuit 60.
  • the first device, the second device, and the third device are mutually independent devices.
  • FIG. 9 is a diagram for explaining a measurement method according to Embodiment 2 of the present disclosure.
  • the surface 10s of the object 10 is irradiated with the incident light, and diffusely reflected light is generated at a plurality of portions A to C of the surface 10s of the object 10.
  • the traveling directions of the light incident on the plurality of parts A to C are all the same, the photodetector 30 is sufficiently far away from the surface 10s of the object 10, and the light detecting device 30 is sufficiently far away from the surface 10s of the object 10, and It is assumed that the difference in the output angle depending on the position of parts A to C can be ignored.
  • Two dotted lines shown in FIG. 9 indicate that a part of the area between the object 10 and the photodetector 30 is omitted.
  • the photodetection device 30 a hyperspectral camera equipped with a spectrometer or a hyperspectral camera using compressed sensing technology may be used.
  • the photodetector 30 may include a plurality of spectroscopic elements arranged one-dimensionally or two-dimensionally. Each of the plurality of spectroscopic elements detects light from a corresponding portion and generates spectral information of the light.
  • the double-headed solid line shown in FIG. 9 represents the photodetection area of the photodetection device 30.
  • the plurality of portions A to C are located within the photodetection region.
  • the inclination angles of portions A and C are zero, and portions A and C are not inclined from a plane perpendicular to the optical axis of the photodetector 30.
  • the inclination angle of part B located between part A and part C is non-zero, and part B is slightly inclined from a plane perpendicular to the optical axis of the photodetector 30.
  • the spectral information of the light from portion B, which is slightly tilted, is different from the spectral information of the light from portions A and C, which are not tilted.
  • FIG. 10 is a flowchart schematically showing an example of a measurement operation performed by the processing circuit 60 in the second embodiment.
  • the processing circuit 60 executes the operations of steps S101, S102, S107, and S110 to S115 shown in FIG.
  • the operations in steps S101, S102, and S107 shown in FIG. 10 are the same as the operations in steps S101, S102, and S107 shown in FIG. 7A, respectively.
  • the processing circuit 60 executes the operation of step S110 after step S102.
  • the processing circuit 60 specifies a plurality of portions within the surface 10s of the object 10 in the following manner.
  • the processing circuit 60 displays the image of the target object 10 described above on the display UI 50b.
  • the user specifies a plurality of portions within a region corresponding to the surface 10s of the object 10 in the displayed image via the input UI 50a.
  • the plurality of parts are located apart from each other. In this way, the processing circuit 60 displays a GUI for the user to specify multiple portions within the surface 10s of the object 10.
  • the processing circuit 60 receives a signal from the input UI 50a and specifies a plurality of portions within the surface 10s of the object 10. Note that the plurality of portions may be specified manually by the user as described above, or may be specified automatically.
  • the intervals between the multiple parts may be constant, or a characteristic part is detected from the image of the object 10 and a plurality of parts are added to the characteristic part. It may be specified that there are many parts.
  • the designation of multiple parts in a feature is useful, for example, for inspecting products or food products conveyed by a conveyor belt.
  • Step S111> The processing circuit 60 obtains spectral information of light from a plurality of designated portions by extraction from the spectral information obtained in step S102.
  • the processing circuit 60 estimates the tilt angles of the plurality of designated parts based on the spectrum information of the light from the plurality of designated parts and the reference information, and generates information indicating the tilt angles of the plurality of designated parts. .
  • the plurality of specified parts are part of the surface 10s of the object 10, in this specification, "the plurality of specified parts” may be paraphrased as “the surface 10s of the object 10.”
  • the surface 10s of the object 10 For example, in this specification, "light from a plurality of designated parts” is also referred to as “light from the surface 10s of the object 10.”
  • the inclination angles of the plurality of designated portions are also referred to as “the inclination angles of the surface 10s of the object 10.”
  • the processing circuit 60 estimates the amount of deflection of the surface 10s of the object 10 by linking the spatial information indicating the positions of the plurality of parts and the information indicating the inclination angle of the plurality of parts. Generate information indicating the amount of deflection for 10 seconds.
  • the information indicating the amount of deflection of the surface 10s of the object 10 may be information indicating the amount of deflection itself, or may be information from which the amount of deflection can be derived.
  • the information indicating the amount of deflection of the surface 10s of the object 10 may be information representing the estimated amount of deflection in the form of a heat map or contour lines.
  • Step S114> The processing circuit 60 determines whether the estimated amount of deflection is within an allowable range. In other words, the processing circuit 60 determines whether all the inclination angles of the plurality of portions are within the tolerance range described in step S106 shown in FIG. 7A.
  • the allowable range of the amount of deflection may be set by the user via the input UI 50a, or may be set automatically based on reference information. If the determination is Yes, the processing circuit 60 executes the operation of step S107. If the determination is No, the processing circuit 60 executes the operation of step S115.
  • Step S115> The processing circuit 60 generates and outputs error information, and causes the display UI 50b to display the information.
  • error information for example, a message such as "The amount of deflection of the surface of the object exceeds the allowable range" may be displayed on the display UI 50b.
  • the processing circuit 60 may terminate the measurement operation by omitting the operation of step S115.
  • the processing circuit 60 may terminate the measurement operation by omitting the operations after step S114 after executing the operation at step S113.
  • a measurement method that can easily generate information indicating the amount of deflection of the surface 10s of the object 10 without contact, and a measurement system 100 using the measurement method are provided. realizable.
  • the measurement method according to the second embodiment like the measurement method according to the first embodiment, enables simplification of processing operations and simplification and miniaturization of the measurement system 100.
  • reference information is generated by the first device
  • spectrum information of light from the surface 10s of the object 10 is generated by the second device
  • Information indicating the amount of deflection of the surface 10s of the object 10 may be generated by a third device.
  • Embodiment 3 Next, with reference to FIG. 11, a measurement method according to Embodiment 2 of the present disclosure that can detect whether or not an abnormality has occurred on the surface 10s of the object 10 will be described. Abnormalities may occur on the surface 10s of the object 10 due to adhesion of foreign matter or poor coating. Even if the angle of inclination or amount of deflection of the surface 10s of the object 10 where the abnormality occurs is estimated, the estimated angle of inclination or amount of deflection is inaccurate.
  • the operation of estimating the inclination angle or the amount of deflection of the surface 10s of the object 10 can be stopped, which simplifies the processing operation and reduces the processing load. reduction is possible.
  • FIG. 11 is a diagram for explaining a measurement method according to Embodiment 3 of the present disclosure.
  • a spectrum having light intensities at wavelengths ⁇ 1 and ⁇ 2 is shown on a two-dimensional plane.
  • the horizontal axis and the vertical axis represent the light intensity at wavelengths ⁇ 1 and ⁇ 2, respectively.
  • a spectrum having N light intensities corresponding to N wavelengths can be represented on an N-dimensional space.
  • N is a natural number of 2 or more.
  • White dotted circles represent spectra included in the reference information.
  • the spectrum included in the reference information draws a trajectory shown in FIG. 11.
  • a locus means "a set of points that satisfy the same condition.”
  • the same condition refers to the relationship between tilt angle and spectrum.
  • a locus is a line segment represented by an equation, but in reality, measurement errors occur, so the spectrum locus has a width and is expressed as a spatial region. For this reason, the trajectory shown in FIG. 11 has the shape of an elongated ellipse in a two-dimensional plane. The hatched area shown in FIG. 11 represents the locus of the spectrum included in the reference information.
  • the measured spectrum is located on the locus of the spectrum included in the reference information, no matter what the inclination angle of the surface 10s of the object 10 is. It should be. In other words, as shown in FIG. 11, if the measured spectrum is not located on the trajectory, it can be seen that an abnormality has occurred on the surface 10s of the object 10.
  • the solid circles shown in FIG. 11 represent the measured spectra.
  • the method for generating the spectrum locus shown in FIG. 11 will be described in more detail below.
  • the spectrum locus can be generated, for example, by the following operations (a) to (d) by the processing circuit 60.
  • (a) Obtain reference information from the storage device 40.
  • (b) Select N wavelength bands included in the reference information.
  • (c) For each of the N wavelength bands included in the reference information, corresponding data points are plotted on an N-dimensional space.
  • the operation (b) may be performed based on information input by the user. For example, when estimating the tilt angle using information on N wavelength bands among the information on a plurality of wavelength bands that can be acquired by the photodetector 30, the processing circuit 60 estimates the inclination angle using information on N wavelength bands that can be acquired by the user. A GUI for specifying may be displayed. Processing circuit 60 selects N wavelength bands specified by the user.
  • the processing circuit 60 may perform the operation (b) before the operation (a). In that case, in the operation (a), the processing circuit 60 acquires reference information about the N wavelength bands selected in the operation (b), while the remaining wavelengths not selected in the operation (b) are It is not necessary to obtain reference information about the band.
  • the processing circuit 60 When executing the operation (b), the processing circuit 60 is not limited to the operation of selecting information on the wavelength band specified by the user, but may also execute the operation of selecting a prescribed wavelength band. For example, the processing circuit 60 may generate information regarding the tilt using information on a smaller number of wavelength bands than information on multiple wavelength bands that can be obtained by the photodetection device 30. As a result, it is possible to reduce the amount of calculation for generating information regarding the slope, and it is possible to reduce the load on information processing. Note that if the number of wavelength bands that can be obtained by the photodetector 30 is N, and the number of wavelength bands used for estimating the tilt angle is also N, the operation (b) may be omitted. .
  • Wavelength band 1 and wavelength band 2 have wavelength ranges that are different from each other.
  • Wavelength band 1 may have a wavelength range of 450 nm or more and 470 nm or less
  • wavelength band 2 may have a wavelength range of 630 nm or more and 640 nm or less, for example. In this way, the width of the wavelength range may be different for each selected wavelength band.
  • the wavelength range of the wavelength band may be discontinuous.
  • represents the inclination angle similarly to the example shown in FIG.
  • the numbers representing the light intensity in each wavelength band may be, for example, pixel values output from each pixel included in the image sensor, or may be standardized numbers including percentages. .
  • the processing circuit 60 gives the measurement error width included in the reference information to the data point.
  • the measurement error may be derived in the operation of generating reference information shown in FIG. 3B. Theoretically, a linear trajectory connecting the plotted data points represents the trajectory of the spectrum included in the reference information. However, when actually measuring the light intensity corresponding to each of a plurality of wavelength bands, a finite error occurs, so the spectrum locus becomes an area having a width of measurement error.
  • the processing circuit 60 gives the data point (24, 32) a width of 5 in the horizontal axis direction and a width of 5 in the vertical axis direction as a measurement error.
  • the processing circuit 60 gives the data point (35, 41) a width of 6 in the horizontal axis direction and 7 in the vertical axis direction as a measurement error.
  • the processing circuit 60 assigns the width of the measurement error of the light intensity in each of wavelength band 1 and wavelength band 2 to other data points of ⁇ included in the reference information.
  • the processing circuit 60 can indicate a region having a width of measurement error on the two-dimensional space.
  • the gray area shown in FIG. 12 represents an area with a range of measurement error.
  • the gray area is the locus of the spectrum included in the reference information, taking measurement errors into consideration, and is shown more specifically compared to the hatched area shown in FIG. 11.
  • the spectrum locus included in the reference information can be said to be information indicating a range of light intensity that can change according to changes in angle-related quantities such as the inclination angle and the amount of deflection of the object 10.
  • FIG. 13 is a flowchart schematically showing an example of a measurement operation performed by the processing circuit 60 in the third embodiment.
  • the processing circuit 60 executes the operations of steps S101 to S109 and S116 and S117 shown in FIG.
  • the operations in steps S101 to S109 shown in FIG. 13 are the same as the operations in steps S101 to S109 shown in FIG. 8, respectively.
  • the processing circuit 60 executes the operation of step S116 after step S104.
  • Step S116> The processing circuit 60 determines whether the tilt angle of the designated portion can be estimated based on the spectrum information of the light from the designated portion and the reference information. Specifically, the processing circuit 60 determines whether the spectrum of light from the designated portion is located on the locus of the spectrum included in the reference information. If the determination is Yes, the processing circuit 60 executes the operation of step S105. If the determination is No, the processing circuit 60 executes the operation of step S117.
  • the processing circuit 60 generates and outputs error information, and causes the display UI 50b to display the information.
  • error information for example, a message such as "An abnormality has occurred on the surface of the object" may be displayed on the display UI 50b.
  • a designated portion of the image of the object 10 may be highlighted and displayed on the display UI 50b as a portion where an abnormality has occurred.
  • the processing circuit 60 may terminate the measurement operation by omitting the operation of step S117.
  • FIG. 14 is a flowchart schematically showing another example of the measurement operation performed by the processing circuit 60 in the third embodiment.
  • the processing circuit 60 executes the operations of steps S101, S102, S107, S110 to S115, S117, and S118 shown in FIG.
  • step S118 are the same as the operations in steps S101, S102, S107, and S110 to S115 shown in FIG. 10, respectively.
  • the operation of step SS117 shown in FIG. 14 is the same as the operation of step S117 shown in FIG. 13.
  • the processing circuit 60 executes the operation of step S118 after step S111.
  • Step S118> The processing circuit 60 determines whether the tilt angles of the plurality of designated portions can be estimated based on the spectrum information of the light from the plurality of designated portions and the reference information. Specifically, the processing circuit 60 determines whether the spectra of light from the plurality of designated portions are located on the locus of the spectrum included in the reference information. If the determination is Yes, the processing circuit 60 executes the operation of step S112. If the determination is No, the processing circuit 60 executes the operation of step S117.
  • FIG. 15 is a flowchart schematically showing still another example of the measurement operation performed by the processing circuit 60 in the third embodiment.
  • the processing circuit 60 performs an analysis of the surface 10s of the object 10 that is related to the inspection of the appearance of the industrial product, including its color.
  • the processing circuit 60 executes the operation of step S119 instead of step S103 shown in FIG. 13, and executes the operation of step S120 instead of step S104.
  • the processing circuit 60 executes the operation of step S121 instead of step S116 shown in FIG. 13, and executes the operation of step S122 instead of step S105.
  • the processing circuit 60 executes the operation of step S123 after step S106 shown in FIG. 13, and executes the operation of step S124 instead of step S107.
  • Step S119> The processing circuit 60 specifies one portion within the surface 10s of the object 10, as described in step S103. This one portion is herein referred to as a "first region.” The second area, which will be described later, is wider than the first area.
  • the processing circuit 60 acquires spectrum information of the first region.
  • the spectral information of the first region means spectral information included in the first light from the first region, and is also referred to as "first spectral information" in this specification.
  • Step S121> The processing circuit 60 determines whether the tilt angle of the first region can be estimated based on the spectrum information of the first region.
  • the method for determining whether the tilt angle can be estimated is the same as described in step S116.
  • Step S122> The processing circuit 60 estimates the tilt angle based on the spectrum information of the first region and the reference information, and generates information indicating the tilt angle of the designated portion.
  • the method for estimating the inclination angle is as described in step S105.
  • the processing circuit 60 acquires spectrum information of a second region within the surface 10s of the object 10.
  • the spectral information of the second region means spectral information included in the second light from the second region, and is also referred to as "second spectral information" in this specification.
  • the second area is wider than the first area.
  • the second region may be, for example, a region that includes the first region. That is, a portion of the second region may overlap the entire first region.
  • the second area may be an area that does not include the first area. That is, the second area does not need to overlap the first area.
  • the second area corresponds to, for example, the target range of analysis in step S124, which will be described later.
  • the processing circuit 60 may display a GUI for the user to specify one area within the surface 10s of the object 10, and may specify a second area by receiving a signal from the input UI 50a.
  • the processing circuit 60 may determine the following plurality of pixels as the plurality of pixels in the second region.
  • the plurality of pixels include one or more pixels in the first region included in the image of the object 10 and a predetermined number of pixels located around the first region.
  • the image of the object 10 may be one image selected from a plurality of images respectively corresponding to a plurality of wavelength bands, an image obtained by superimposing two or more images among the plurality of images, or a compressed image.
  • the processing circuit 60 extracts the outline of the object 10 by detecting edges of the image of the object 10, and determines a plurality of pixels included within the extracted outline as a plurality of pixels within the second region. It's okay. Edge detection may be performed by known processing methods such as a Sobel filter, a Laplacian filter, and a Canny filter.
  • the processing circuit 60 performs an analysis related to the inspection of the appearance including the color of the industrial product based on the spectral information of the second region.
  • the analysis may be performed, for example, by regression analysis, multivariate analysis, or the aforementioned SAM method.
  • the processing circuit 60 may perform the analysis based on the average spectrum obtained from the spectral information in the second region. For example, for an image corresponding to the i-th wavelength band (i is a natural number from 1 to N, inclusive) among the plurality of wavelength bands, the processing circuit 60 calculates the average of the plurality of pixels in the second region included in the image. Analysis may be performed based on pixel values. Alternatively, the processing circuit 60 calculates the average pixel value of the plurality of pixels in the second region included in each image for each of the plurality of images respectively corresponding to the plurality of wavelength bands, and calculates the plurality of average pixel values obtained thereby. Analysis may be performed based on pixel values.
  • the storage device 40 may store model data used for judgment of the appearance inspection.
  • the model data may be, for example, data indicating spectrum information of a product that is determined to be non-defective in an external appearance inspection.
  • the analysis by the processing circuit 60 may include, for example, comparing the plurality of average pixel values described above with a plurality of model data respectively corresponding to a plurality of wavelength bands. In this way, the processing circuit 60 may inspect the appearance of the industrial product, including its color, based on the comparison between the spectral information in the second region and the model data.
  • the second region may be divided into a plurality of sub-regions.
  • the plurality of sub-regions include a first sub-region and a second sub-region that are different from each other.
  • the processing circuit 60 performs an inspection to determine the uniformity of the hue of the second region of the object 10 based on the spectral information of the first sub-region and the spectral information of the second sub-region of the second region. Good too.
  • the processing circuit 60 examines the degree of similarity between the spectral information of the first sub-region and the spectral information of the second sub-region.
  • the processing circuit 60 may determine that the object 10 is a good product if the degree of similarity is high, and may determine the object 10 to be a defective product if the degree of similarity is low.
  • the information indicating the judgment result of the external appearance inspection may be information indicating pass/fail as described above, or may be information using a certain scale representing quality. Furthermore, in the image showing the object 10, the determination result may be shown by emphasizing the location where the inspection result is determined to be defective.
  • the processing circuit 60 determines whether the tilt angle can be estimated and whether the tilt angle is within the allowable range based on the spectrum information of the first region narrower than the second region. Determine whether it exists or not.
  • the processing circuit 60 further performs analysis based on spectral information of a second region that is wider than the first region.
  • the amount of spectral information in the first region is smaller than the amount of spectral information in the second region. Therefore, compared to the case where analysis is performed by determining whether or not the tilt angle can be estimated based on the spectrum information of the second region and whether or not the tilt angle is within the allowable range, the calculation load on the processing circuit 60 is increased. can be reduced. Furthermore, since the analysis is performed after confirming that the tilt angle is within the allowable range, the accuracy of the analysis can be improved.
  • the first region and the second region may have the same width.
  • the first region may be wider than the second region.
  • the spectral information of the first region and the spectral information of the second region may be acquired by one photodetection operation by the photodetection device 30.
  • a single imaging operation by a hyperspectral camera acquires a plurality of images corresponding to a plurality of wavelength bands, and spectral information in a first region and spectral information in a second region are acquired from the plurality of images. Good too.
  • the spectral information in the first region and the spectral information in the second region may be acquired by the photodetection device 30 performing two photodetection operations.
  • a plurality of images respectively corresponding to a plurality of wavelength bands may be obtained by a first imaging operation using a hyperspectral camera, and spectral information of the first region may be obtained from the plurality of images.
  • a plurality of images respectively corresponding to a plurality of wavelength bands may be acquired by a second imaging operation using the hyperspectral camera, and spectral information in the second region may be acquired from the plurality of images.
  • the third embodiment it is possible to realize a measurement method that can detect whether or not an abnormality has occurred on the surface 10s of the object 10, and a measurement system 100 using the measurement method.
  • the technology of the present disclosure can be used, for example, in a measurement system that generates information regarding the inclination of the surface of an object.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

測定方法は、対象物の表面からの光のスペクトル情報を取得することと、前記対象物の前記表面の光反射特性の情報を含む参照情報を取得することと、前記スペクトル情報および前記参照情報に基づいて、前記対象物の前記表面の傾きに関する情報を生成することと、を含む。

Description

測定方法、測定システム、および情報処理方法
 本開示は、測定方法、測定システム、および情報処理方法に関する。
 対象物の透過率および反射率などの光学特性の測定において、対象物の材料、表面状態、および表面の傾斜角は測定結果に大きく影響を及ぼす。特に、対象物の表面の傾斜角は、例えば測定環境、対象物の設置および固定方法、ならびに計測者の技量によって容易に変化する。そのことが原因で、対象物の表面の傾斜角は測定の試行ごとに変動しやすく、傾斜角の測定結果が不正確になることが少なくない。
 古くから知られている水準器を用いた接触式の角度測定では、対象物の表面の傾斜角を測定する際に、対象物の表面状態が悪化したり、対象物の固定状態が変化したりする可能性がある。このことから、非接触式の角度測定が求められる。特許文献1および2は、非接触式の角度測定の例を開示している。
特開2001-201331号公報 特開2018-124167号公報
 本開示は、対象物の表面の傾きに関する情報を非接触で簡便に生成することが可能な測定方法、および当該測定方法を用いた測定システムを提供する。
 本開示の一態様に係る方法は、対象物の表面からの光のスペクトル情報を取得することと、前記対象物の前記表面の光反射特性の情報を含む参照情報を取得することと、前記スペクトル情報および前記参照情報に基づいて、前記対象物の前記表面の傾きに関する情報を生成することと、を含む。
 本開示の包括的または具体的な態様は、システム、装置、方法、集積回路、コンピュータプログラムまたはコンピュータ読み取り可能な記録ディスク等の記録媒体で実現されてもよく、システム、装置、方法、集積回路、コンピュータプログラムおよび記録媒体の任意の組み合わせで実現されてもよい。コンピュータ読み取り可能な記録媒体は、例えばCD-ROM(Compact Disc‐Read Only Memory)等の不揮発性の記録媒体を含み得る。装置は、1つ以上の装置で構成されてもよい。装置が2つ以上の装置で構成される場合、当該2つ以上の装置は、1つの機器内に配置されてもよく、分離した2つ以上の機器内に分かれて配置されてもよい。本明細書および特許請求の範囲では、「装置」とは、1つの装置を意味し得るだけでなく、複数の装置からなるシステムも意味し得る。
 本開示の技術によれば、対象物の表面の傾きに関する情報を非接触で簡便に生成することが可能な測定方法、および当該測定方法を用いた測定システムを実現できる。
図1Aは、互いに異なる2つの波長を有する入射光で対象物が照射されて鏡面反射光および拡散反射光が生じる様子を模式的に示す図である。 図1Bは、互いに異なる2つの角度で入射する光で対象物が照射されて拡散反射光が生じる様子を模式的に示す図である。 図2は、本開示の例示的な実施形態1による測定システムの構成を模式的に示すブロック図である。 図3Aは、記憶装置に記憶される参照情報のデータの例を模式的に示す図である。 図3Bは、処理回路が参照情報を生成する動作の例を概略的に示すフローチャートである。 図4Aは、光源から出射された光で対象物が照射されて生じた拡散反射光を光検出装置が検出する様子を模式的に示す図である。 図4Bは、入射角および出射角の変化に伴うスペクトルの変化を模式的に示す図である。 図4Cは、複数の角度でのスペクトルを含む参照情報の例を示す図である。 図5Aは、複数の角度でのスペクトルを含む参照情報の他の例を模式的に示す図である。 図5Bは、図5Aに示す参照情報に含まれる角度および規格化された内積値をプロットした図である。 図6は、実施形態1において処理回路が実行する測定動作の例を概略的に示すフローチャートである。 図7Aは、実施形態1において処理回路が実行する測定動作の他の例を概略的に示すフローチャートである。 図7Bは、表示UIに表示されるエラー情報の例を模式的に示す図である。 図8は、実施形態1において処理回路が実行する測定動作のさらに他の例を概略的に示すフローチャートである。 図9は、本開示の実施形態2による測定方法を説明するための図である。 図10は、実施形態2において処理回路が実行する測定動作の例を概略的に示すフローチャートである。 図11は、本開示の実施形態3による測定方法を説明するための図である。 図12は、波長バンド1および波長バンド2を選択した場合におけるスペクトルの軌跡の例を模式的に示す図である。 図13は、実施形態3において処理回路が実行する測定動作の例を概略的に示すフローチャートである。 図14は、実施形態3において処理回路が実行する測定動作の他の例を概略的に示すフローチャートである。 図15は、実施形態3において処理回路が実行する測定動作のさらに他の例を概略的に示すフローチャートである。
 本開示において、回路、ユニット、装置、部材または部の全部または一部、またはブロック図における機能ブロックの全部または一部は、例えば、半導体装置、半導体集積回路(IC)、またはLSI(large scale integration)を含む1つまたは複数の電子回路によって実行され得る。LSIまたはICは、1つのチップに集積されてもよいし、複数のチップを組み合わせて構成されてもよい。例えば、記憶素子以外の機能ブロックは、1つのチップに集積されてもよい。ここでは、LSIまたはICと呼んでいるが、集積の度合いによって呼び方が変わり、システムLSI、VLSI(very large scale integration)、もしくはULSI(ultra large scale integration)と呼ばれるものであってもよい。LSIの製造後にプログラムされる、Field Programmable Gate Array(FPGA)、またはLSI内部の接合関係の再構成またはLSI内部の回路区画のセットアップができるreconfigurable logic deviceも同じ目的で使うことができる。
 さらに、回路、ユニット、装置、部材または部の全部または一部の機能または操作は、ソフトウェア処理によって実行することが可能である。この場合、ソフトウェアは1つまたは複数のROM、光学ディスク、ハードディスクドライブなどの非一時的記録媒体に記録され、ソフトウェアが処理装置(processor)によって実行されたときに、そのソフトウェアで特定された機能が処理装置(processor)および周辺装置によって実行される。システムまたは装置は、ソフトウェアが記録されている1つまたは複数の非一時的記録媒体、処理装置(processor)、および必要とされるハードウェアデバイス、例えばインターフェースを備えていてもよい。
 本開示において、「光」とは、可視光(波長が約400nm~約700nm)だけでなく、紫外線(波長が約10nm~約400nm)および赤外線(波長が約700nm~約1mm)を含む電磁波を意味する。
 以下、本開示の例示的な実施形態を説明する。なお、以下で説明する実施形態は、いずれも包括的又は具体的な例を示すものである。以下の実施形態で示される数値、形状、構成要素、構成要素の配置位置及び接続形態、ステップ、ステップの順序などは、一例であり、本開示を限定する主旨ではない。また、以下の実施形態における構成要素のうち、最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。また、各図は模式図であり、必ずしも厳密に図示されたものではない。さらに、各図において、実質的に同一の構成要素に対しては同一の符号を付しており、重複する説明は省略又は簡略化される場合がある。
 本開示の実施の形態を説明する前に、図1Aおよび図1Bを参照して、対象物の表面の傾斜角、および対象物に入射する光の角度が測定にどのような影響を及ぼすかのメカニズムを説明する。光源から出射された光で対象物を照射すると反射光および散乱光が生じる。そのような反射光および散乱光は光検出装置によって検出される。対象物の表面の法線を基準軸として、入射光が入射角と同じ角度で反射されることを、一般に「鏡面反射」または「正反射」と呼ぶ。これに対して、対象物の表面の法線を基準軸として、入射光が入射角とは異なる角度で反射されることを、「拡散反射」または「乱反射」と呼ぶ。対象物の表面で光が反射されて生じる鏡面反射光には、光源の情報が多く含まれ得る。これに対して、対象物の表面またはその近傍で光が反射されて生じる拡散反射光には、対象物の材料の光吸収率および表面状態などの対象物の情報が多く含まれ得る。
 図1Aは、互いに異なる2つの波長λ1およびλ2を有する入射光で対象物が照射されて鏡面反射光および拡散反射光が生じる様子を模式的に示す図である。図1に示す矢印付きの太い線は、入射光および鏡面反射光を表し、図1に示す黒色および濃い灰色の矢印付きの細い線は、それぞれ、波長λ1およびλ2の拡散反射光を表す。図1Aに示すように、拡散反射光の空間的な広がりは、多くの場合波長に応じて変化する。したがって、図1Aの挿入図に示すように、異なる位置にいる観測者Aおよび観測者Bが受け取る拡散反射光のスペクトルは互いに異なる。図1Aの挿入図に示す実線および破線は、それぞれ、観測者Aおよび観測者Bが受け取る拡散反射光のスペクトルを表す。観測者Aが受け取る拡散反射光のスペクトルにおいて、波長λ1の光強度は波長λ2の光強度よりも高い。これに対して、観測者Bが受け取る拡散反射光のスペクトルにおいて、波長λ2の光強度は波長λ1の光強度よりも高い。
 拡散反射光の空間的な広がりが波長λ1およびλ2において互いに異なる顕著な例として、ホログラムシートが挙げられる。一方、硫酸バリウムから形成された標準白板は、拡散反射光の空間的な広がりが波長に依存せず均一になるように設計される場合が多い。対象物10がそうなるように意図的に設計されていない場合、拡散反射光のスペクトルは、図1Aの挿入図に示すように、観測者A、Bの位置によって異なる場合が多い。
 図1Bは、互いに異なる2つの角度で入射する光で対象物が照射されて拡散反射光が生じる様子を模式的に示す図である。図1Bに示す例において、光源20aから出射された光は、光源20bから出射された光よりも、対象物10の表面10sの法線に近い角度で対象物10に入射する。図1Bに示す黒色および濃い灰色の矢印付きの細い線は、それぞれ、光源20aおよび光源20bから出射された光で対象物10が照射されて生じた拡散反射光を表す。標準白板は、拡散反射光の空間的な広がりが光の入射角に依存せずに均一になるように設計される場合が多い。対象物10がそうなるように意図的に設計されていない場合、観測者Aが受け取る拡散反射光のスペクトルは、光の入射角に応じて変化する。
 本発明者は、拡散反射光の空間的な広がりに起因するスペクトルの変化に着目することにより、対象物の表面の傾きに関する情報を非接触で簡便に生成することが可能な本開示の実施形態による測定方法、および当該測定方法を用いる測定システムに想到した。対象物の表面の傾きに関する情報は、対象物の表面の傾きに起因する量を示す情報である。そのような情報は、例えば、対象物の表面の傾斜角またはたわみ量を示す情報であり得る。以下に、本開示の実施形態による測定方法および測定システムを説明する。
 第1の項目に係る方法は、対象物の表面からの光のスペクトル情報を取得することと、前記対象物の前記表面の光反射特性の情報を含む参照情報を取得することと、前記スペクトル情報および前記参照情報に基づいて、前記対象物の前記表面の傾きに関する情報を生成することと、を含む。
 この方法により、対象物の表面の傾きに関する情報を非接触で簡便に生成することができる。
 第2の項目に係る方法は、第1の項目に係る方法において、前記スペクトル情報が、複数の波長バンドにそれぞれ対応する複数の光強度を含み、前記参照情報が、前記対象物の前記表面に入射する光の入射角および前記対象物の前記表面から出射される光の出射角の少なくとも一方の角度と、前記少なくとも一方の角度に対応した前記複数の波長バンドにそれぞれ対応する前記複数の光強度との関係を示す情報を含む。
 この方法により、スペクトル情報に含まれる上記の複数の光強度と、参照情報に含まれる上記の複数の光強度とを比較して、対象物の表面の傾きに関する情報を生成することができる。
 第3の項目に係る方法は、第1または第2の項目に係る方法において、前記対象物の前記表面の傾きに関する情報が、前記対象物の前記表面の傾斜角を示す情報、または前記対象物の前記表面のたわみ量を示す情報である。
 この方法により、対象物の前記表面の傾斜角またはたわみ量を示す情報を生成することができる。
 第4の項目に係る方法は、第3の項目に係る方法において、前記傾斜角または前記たわみ量が許容範囲内であるか否かを判定することを含む。
 この方法により、傾斜角またはたわみ量が許容範囲内であるか否かを判定できる。
 第5の項目に係る方法は、第4の項目に係る方法において、前記傾斜角または前記たわみ量が許容範囲内であると判定された場合、前記スペクトル情報に基づいて、前記対象物の前記表面を分析することをさらに含む。
 この方法により、対象物の表面を分析することができる。
 第6の項目に係る方法は、第4の項目に係る方法において、前記傾斜角または前記たわみ量が許容範囲内ではないと判定された場合、エラー情報を生成することをさらに含む。
 この方法により、傾斜角またはたわみ量が許容範囲内ではないことをユーザに知らせることができる。
 第7の項目に係る方法は、第4の項目に係る方法において、前記傾斜角が許容範囲内ではないと判定された場合、前記傾斜角を補正するための情報を生成することをさらに含む。
 この方法により、傾斜角を許容範囲内に収めることができる。
 第8の項目に係る方法は、第3から第7のいずれかの項目に係る方法において、前記対象物の前記表面の傾きに関する情報を生成することの前に、前記スペクトル情報および前記参照情報に基づいて、前記傾斜角または前記たわみ量を推定できるか否かを判定することをさらに含む。
 この方法により、対象物の表面の傾きに関する情報を生成することの前に、対象物の表面に異常が生じたか否かを検出することができる。
 第9の項目に係る方法は、第1から第8の項目のいずれかに係る方法において、前記対象物の前記表面からの前記光が、前記対象物の前記表面内の1つまたは複数の部分からの光である。前記方法は、前記対象物の前記表面内の前記1つまたは複数の部分をユーザが指定するためのGUIを表示することをさらに含む。
 この方法により、ユーザは、対象物の表面内の1つまたは複数の部分を指定することができる。
 第10の項目に係る方法は、第1から第9の項目のいずれかに係る方法において、前記参照情報を取得することの前に、前記参照情報を生成することをさらに含む。前記参照情報を生成することは、前記対象物の前記表面に入射する光の入射角および前記対象物の前記表面から出射された光の出射角の少なくとも一方を変化させる第1動作、前記対象物の前記表面を照射するための光を光源に出射させる第2動作、および光検出装置に前記対象物の前記表面からの光を検出させて前記光のスペクトル情報を生成させる第3動作を繰り返し実行することと、前記第1動作、前記第2動作、および前記第3動作を繰り返し実行して得られた、変化した前記入射角および前記出射角の少なくとも一方と、前記スペクトル情報とを対応づけて記憶させることと、を含む。
 この方法により、参照情報を生成することができる。
 第11の項目に係る方法は、第2の項目に係る方法において、前記複数の波長バンドの各々に対応する光を含む照射光で前記対象物を照射することをさらに含む。前記対象物の前記表面からの光は、前記照射光に起因した光である。
 この方法では、例えば、第1の波長バンドに対応する第1の光と、第2の波長バンドに対応する第2の光と、を含む照射光を対象物に照射する。この場合、第1の波長バンドに対応する第1の照射光と、第2の波長バンドに対応する第2の照射光を異なるタイミングで照射する形態と比較して、効率よくスペクトル情報を取得できる。または、当該第1照射光を照射する第1光源と、当該第2照射光を照射する第2光源とをそれぞれ含む形態と比較して、効率良くスペクトル情報を取得できる。
 すなわち、この方法により、複数の波長バンドについてのスペクトル情報を効率よく取得することができる。
 第12の項目に係るシステムは、対象物の表面からの光を検出して前記光のスペクトル情報を生成する光検出装置と、前記光検出装置から前記スペクトル情報を取得し、前記対象物の前記表面の光反射特性の情報を含む参照情報を取得し、前記スペクトル情報および前記参照情報に基づいて、前記対象物の前記表面の傾きに関する情報を生成する処理回路と、を備える。
 このシステムでは、対象物の表面の傾きに関する情報を非接触で簡便に生成することができる。
 第13の項目に係るシステムは、第12の項目に係るシステムにおいて、前記参照情報を記憶する記憶装置をさらに備える。前記処理回路は、前記記憶装置から前記参照情報を取得する。
 第14の項目に係るコンピュータによって実行される情報処理方法は、対象物の表面の第1領域からの第1光に含まれる第1スペクトル情報を取得することと、前記対象物の前記表面の光反射特性の情報を含む参照情報を取得することと、前記第1スペクトル情報および前記参照情報に基づいて、前記対象物の前記表面の傾きが所定の範囲内であるか否かを判定することと、前記傾きが所定の範囲内であると判定した場合に、前記表面における第2領域からの第2光に含まれる第2スペクトル情報を取得し、前記第2スペクトル情報に基づいて、前記対象物の色に関する外観の良否を判定することと、を含む。
 この情報処理方法により、対象物の色に関する外観の検査を行うことができる。
 第15の項目に係る情報処理方法は、第14の項目に係る情報処理方法において、前記第2領域が前記第1領域よりも広い。
 この情報処理方法により、第1スペクトル情報のデータ量が第2スペクトル情報のデータ量よりも少ないので、対象物の表面の傾きが所定の範囲内であるか否かの判定において、計算負荷を削減できる。
 第16の項目に係る情報処理方法は、第14または第15の項目に係る情報処理方法において、前記第1スペクトル情報および前記参照情報に基づいて、前記対象物の前記表面の傾きが所定の範囲内にないと判定した場合に、前記表面の傾きを補正するための補正情報を生成することをさらに含む。
 この情報処理方法により、対象物の表面の傾きを所定の範囲内に収めることができる。
 第17の項目に係る情報処理方法は、第14から第16の項目のいずれかに係る情報処理方法において、前記第1スペクトル情報および前記参照情報に基づいて、前記傾きに関する量を推定可能か否か判定することと、前記傾きに関する量を推定可能であると判定した場合に、前記傾きが前記所定の範囲内であるか判定することと、をさらに含む。前記参照情報は、複数の波長バンドの各々に対応する光強度が、前記傾きに関する量に応じて変化し得る範囲を示す範囲情報を含む。前記傾きに関する量を推定可能か否かは、前記第1スペクトル情報に含まれる前記複数の波長バンドの各々に対応する光強度と、前記範囲情報とに基づいて判定される。
 この情報処理方法により、傾きに関する量が推定可能でない場合に処理動作を中止することができ、処理動作の簡略化および処理負荷の低減が可能になる。
 このシステムでは、記憶装置から参照情報を取得することができる。
 (実施形態1)
 [測定システム]
 まず、図2を参照して、対象物の表面の傾斜角を示す情報を生成することが可能な本開示の実施形態1による測定システムの構成例を説明する。図2は、本開示の例示的な実施形態1による測定システムの構成を模式的に示すブロック図である。図2に示す測定システム100は、光検出装置30と、記憶装置40と、表示装置50と、処理回路60と、メモリ62とを備える。図2に示す破線は光検出装置30の光軸を表す。光検出装置30の光軸は、例えば、光検出装置30に取り付けられたレンズの光軸であり得る。図2に示す矢印付きの細い実線は信号の入出力を表す。
 図2には、測定システム100に加えて、光源20から出射された光で対象物10の表面10sが照射されて拡散反射光が生じる様子が模式的に示されている。図2に示す例において、対象物10は試料台12の表面12sに固定されており、試料台12は回転ステージ14上に配置されている。回転ステージ14によって試料台12の向きを変えることにより、対象物10の表面10sの傾斜角を調整することができる。測定システム100は、回転ステージ14および/または光源20を構成要素として備えていてもよい。
 対象物10の表面10sの傾斜角は、例えば、光検出装置30の光軸に対して垂直な平面を基準面として、当該基準面と対象物10の表面10sとがなす角度によって規定され得る。傾斜角の基準面は他の平面であってもよい。
 なお、図2に模式的に示す拡散反射光の空間的な広がりはあくまで例示である。拡散反射光の空間的な広がりは、対象物の物性および表面状態に強く依存する。したがって、拡散反射光の空間的な広がりの程度、形状、および角度領域は図2に示す例に限定されない。以下の図に示す拡散反射光の空間的な広がりについても同様である。
 後で詳しく説明するが、測定システム100において、処理回路60は、対象物10の表面10sからの光のスペクトル情報を光検出装置30から取得し、対象物10の表面10sの情報を含む参照情報を記憶装置40から取得する。処理回路60は、さらに、スペクトル情報および参照情報に基づいて、対象物10の表面10sの傾斜角を示す情報を生成する。その結果、当該情報を非接触で簡便に生成することができる。
 以下に、対象物10、回転ステージ14、光源20、および測定システム100の各構成要素を説明する。
 <対象物10>
 対象物10は、光源20から出射された光を反射する表面10sを有する。対象物10の表面10sは以下の光反射特性を有する。光源20から出射された光が対象物10の表面10sに対して一定角度で、例えば垂直方向に入射する場合、対象物10の表面10sが当該光で照射されて生じる鏡面反射光および拡散反射光の全反射率は、例えば1%以上、より望ましくは10%であり得る。図2に示す例において、対象物10はプレート形状を有する。対象物10の形状はプレート形状に限定されず、例えば球状であってもよい。対象物10の表面10sは平面であってもよいし、曲面であってもよい。
 本明細書において、対象物10の表面10sで反射される光は、対象物10の表面10sで反射された光と、対象物10の表面近傍の内部で散乱された光とを含むものとして扱われてもよい。また、対象物10の表面10sの光反射特性は、対象物10の表面10sの光反射特性と、対象物10の表面近傍の内部の光散乱特性とを含む特性として扱われてもよい。
 あるいは、対象物10は、蛍光媒質を有していてもよい。当該蛍光媒質は、光源20から出射された光によって励起される。その場合、励起によって当該蛍光媒質から発せられる光を、対象物10の表面10sからの光として検出してもよい。
 <回転ステージ14>
 回転ステージ14は、例えばゴニオメータであり得る。回転ステージ14は、回転方向および/または回転角を調整することが可能である。回転ステージ14を手動で回転させてもよい。回転ステージ14が回転を調整する調整装置を備えている場合、当該調整装置によって回転ステージ14を回転させてもよい。
 <光源20>
 光源20は、対象物10の表面10sを照射するための光を出射する発光素子を備える。当該光は、例えば白色光であってもよいし、紫外線、可視光、または赤外線であってもよい。当該光は、例えば平行光であり得る。光源20は、赤色光、緑色光、および青色光のような複数の波長の光をそれぞれ出射する複数の発光素子を備えていてもよい。発光素子は、例えばLED、レーザダイオード、白熱電球、ハロゲンランプ、キセノンランプ、水銀ランプなどであり得る。
 光源20の位置および/または向きは手動で変化させてもよい。光源20が、位置および/または向きを調整する調整装置を備える場合、当該調整装置によって光源20の位置および/または向きを変化させてもよい。
 <光検出装置30>
 光検出装置30は、対象物10の表面10sからの光を検出して当該光のスペクトル情報を生成し、かつ当該スペクトル情報を示す信号を出力する。当該スペクトル情報は、対象波長域に含まれる複数の波長バンドにそれぞれ対応する複数の光強度を示す情報である。光強度が2次元的に分布する場合、当該スペクトル情報は、対象波長域に含まれる複数の波長バンドにそれぞれ対応する複数の画像を示す情報である。
 各波長バンドは、例えば数nmから数十nmの波長幅を有し得る。複数の波長バンドの波長幅は均一であってもよいし、不均一であってもよい。複数の波長バンドのうち、互いに隣り合う2つの波長バンドの間には、隙間があってもよいし、隙間がなくてもよい。複数の波長バンドは、対象波長域を複数の部分に分割して得てもよい。対象波長域は、任意の波長域である。対象波長域はすべて可視光の波長域に含まれていてもよい。あるいは、対象波長域のうち、一部の波長域が可視光の波長域に含まれており、残りの波長域が赤外線または紫外線の波長域に含まれていてもよい。
 光検出装置30は、例えばハイパースペクトルカメラであり得る。光検出装置30として、プリズムおよびグレーティングなどの分光器を備えるハイパースペクトルカメラを用いてもよい。対象物10の表面10sの点状またはライン状の一部領域からの反射光を、分光器を介して検出することにより、対象物10の表面10sのうち、当該反射光のスペクトル情報が生成される。対象物10の表面10sにおける点状またはライン状の観察領域を移動させながら、すなわちスキャンしながらそのような光検出を繰り返すことにより、対象物10の表面10s全体の領域における光のスペクトル情報が生成される。
 あるいは、光検出装置30として、いわゆる圧縮センシング技術を利用したハイパースペクトルカメラを用いてもよい。対象物10の表面10sからの光を、特殊なフィルタアレイを介して検出して圧縮画像を生成し、当該圧縮画像を復元することにより、対象物10の表面10sからの光のスペクトル情報を生成することができる。圧縮センシング技術を利用したハイパースペクトルカメラの詳細は、米国特許第9599511号明細書に開示されている。米国特許第9599511号明細書の開示内容の全体を本明細書に援用する。
 光検出装置30の位置および/または向きは手動で変化させてもよい。光検出装置30が、位置および/または向きを調整する調整装置を備える場合、当該調整装置によって光検出装置30の位置および/または向きを変化させてもよい。
 <記憶装置40>
 記憶装置40は、対象物10の表面10sの光反射特性の情報を含む参照情報を記憶する。参照情報の詳細については後述する。記憶装置40は、光検出装置30から出力された信号を受け取って、対象物10の表面10sからの光のスペクトル情報を記憶してもよい。記憶装置40は、例えば磁気ディスクを備えたハードディスクドライブ(HDD)またはフラッシュメモリを備えたソリッドステートドライブ(SSD)であり得る。
 <表示装置50>
 表示装置50は、入力ユーザインターフェース(UI)50aおよび表示UI50bを表示する。入力UI50aは、ユーザが情報を入力するために用いられる。ユーザが入力UI50aに入力した情報は、光検出装置30、記憶装置40、または処理回路60によって受け取られる。ユーザが入力する情報の詳細については後述する。表示UI50bは、処理回路60によって生成された情報を表示するために用いられる。
 入力UI50aおよび表示UI50bは、グラフィカルユーザインターフェース(GUI)として表示される。入力UI50aおよび表示UI50bに示される情報は、表示装置50に表示されると言うこともできる。入力UI50aおよび表示UI50bは、タッチスクリーンのように入力および出力の両方が可能なデバイスによって実現されていてもよい。その場合、タッチスクリーンが表示装置50として機能してもよい。入力UI50aとしてキーボードおよび/またはマウスを用いる場合、入力UI50aは、表示装置50とは独立した装置である。
 <処理回路60>
 処理回路60は、光検出装置30からの信号を受け取って対象物10の表面10sからの光のスペクトル情報を取得し、記憶装置40またはサーバのような外部の記憶装置から参照情報を取得する。外部の記憶装置から参照情報を取得する場合、記憶装置40を設ける必要はない。処理回路60は、さらに、当該スペクトル情報および当該参照情報に基づいて、対象物10の表面10sの傾斜角を示す情報を生成する。
 処理回路60は、調整装置を介して回転ステージ14の回転動作を制御してもよい。処理回路60は、光源20の光出射の動作を制御してもよいし、調整装置を介して光源20の位置および向きの変更動作を制御してもよい。処理回路60は、光検出装置30の光検出の動作を制御してもよいし、調整装置を介して光検出装置30の位置および向きの変更動作を制御してもよい。処理回路60は、記憶装置40の記憶動作を制御してもよい。処理回路60は、表示装置50の表示動作を制御してもよい。
 処理回路60が実行する測定動作の詳細については後述する。処理回路60によって実行されるコンピュータプログラムは、ROMまたはRAM(Random Access Memory)などのメモリに格納されている。このように、測定システム100は、処理回路60およびメモリ62を含む処理装置を備える。処理回路60およびメモリ62は、1つの回路基板に集積されていてもよいし、別々の回路基板に設けられていてもよい。処理回路60は、複数の回路に分散していてもよい。処理回路60、メモリ62、または処理装置は、有線または無線の通信ネットワークを介して、他の構成要素から離れた遠隔地に設置されていてもよい。
 [参照情報およびその生成方法]
 参照情報は、対象物10の表面10sに入射する光の入射角および対象物10の表面10sから出射される光の出射角の少なくとも一方の角度と、当該少なくとも一方の角度に対応した複数の波長バンドにそれぞれ対応する複数の光強度との関係を示す情報を含む。入射角は、例えば、対象物10の表面10sの法線と、入射光の光軸とがなす角度によって規定され得る。同様に、出射角は、例えば、対象物10の表面10sの法線と、出射光の光軸とがなす角度によって規定され得る。本明細書において、「対象物10の表面10sから出射される光」または「出射光」とは、光源20から出射された光で対象物10の表面10sが照射されて生じる拡散反射光のうち、光検出装置30の光軸に沿って進行する光を意味する。
 入射角または出射角が固定されている場合、参照情報は、固定された入射角または出射角の情報を含まなくてもよい。図2に示す例において、試料台12に取り付けられたアームが光源20を支持する構成では、回転ステージ14によって試料台12の向きを変化させる場合、出射角は変化する一方、入射角は変化しない。すなわち、入射角は固定されている。一方、当該アームが光検出装置30を支持する構成では、回転ステージ14によって試料台12の向きを変化させる場合、入射角は変化する一方、出射角は変化しない。すなわち、出射角は固定されている。
 図3Aを参照して、記憶装置40に記憶される参照情報のデータの例を説明する。図3Aは、記憶装置40に記憶される参照情報のデータの例を模式的に示す図である。図3Aに示す例において、参照情報のデータは複数のテーブルを含む。各テーブルは、ある波長バンドについての入射角と出射角と光強度との関係を示す。図3Aに示す波長λ1、λ2、λ3は、波長バンドの中心波長を表す。図3に示す参照情報のデータにおいて、テーブルは波長バンドごとに分けられているが、入射角または出射角ごとに分けられていてもよい。
 入射角および出射角は、図3Aに示すように角度(°)によって表されてもよく、ラジアンのような角度を表す任意の単位によって表されてもよい。光強度は画素値によって表されてもよく、パーセンテージを含む規格化された数値によって表されてもよい。
 参照情報は、さらに、対象物10の材料に紐づく吸収率および/または反射率の情報を含んでいてもよいし、表面10sの粗さのような表面状態の情報を含んでもよい。そのような情報により、対象物10の表面10sの傾斜角を示す情報をより正確に生成することができる。参照情報に含まれる情報は、必要に応じて適宜変更され得る。
 次に、図3Bを参照して、参照情報の生成方法の例を説明する。図3Bは、処理回路60が参照情報を生成する動作の例を概略的に示すフローチャートである。処理回路60は、図3Bに示すステップS11~S16の動作を実行する。
 <ステップS11>
 ユーザは、1つ以上の入射角および/または1つ以上の出射角を図2に示す入力UI50aを介して設定する。処理回路60は、入力UI50aから、1つ以上の入射角および/または1つ以上の出射角の情報を取得する。入射角および出射角の組み合わせの数は、入射角の数および出射角の数の乗算に等しい。ただし、設定された1つ以上の入射角に含まれるある入射角と、設定された1つ以上の出射角に含まれるある出射角との組み合わせが装置の構成上実現できない場合は、当該組み合わせは除外される。その場合、入射角および出射角の組み合わせの数は、入射角の数および出射角の数の乗算よりも小さい。入射角または出射角が固定されている場合、入射角または出射角の数は1である。
 <ステップS12>
 処理回路60は、1つ以上の入射角および/または1つ以上の出射角の情報に基づいて、入射角および/または出射角を上記の組み合わせの1つに変化させる。入射角および/または出射角のそのような変化は、処理回路60が調整装置を介して回転ステージ14を回転させることによって実現できる。前述のアームが光源20または光検出装置30を支持する構成では、入射角または出射角は固定される。あるいは、入射角および/または出射角のそのような変化は、処理回路60が調整装置を介して光源20および/または光検出装置30の位置および向きを変化させることによって実現できる。
 <ステップS13>
 処理回路60は、対象物10の表面10sを照射するための光を光源20に出射させる。
 <ステップS14>
 処理回路60は、光検出装置30に、対象物10の表面10sからの光を検出させて当該光のスペクトル情報を生成させる。
 <ステップS15>
 処理回路60は、入射角および出射角のすべての組み合わせを調べたか否かを判定する。判定がYesの場合、処理回路60は、ステップS16の動作を実行する。判定がNoの場合、処理回路60は、ステップS12の動作を再び実行する。ステップS12において、処理回路60は、入射角および/または出射角を、まだ調べていない組み合わせの1つに変化させる。このようにして、処理回路60は、ステップS12の第1動作、ステップS13の第2動作、およびステップS14の第3動作を繰り返し実行する。
 <ステップS16>
 処理回路60は、第1動作、第2動作、および第3動作を繰り返し実行して得られた、変化した入射角および/または出射角と、スペクトル情報とを対応づけて記憶装置40に記憶させる。
 処理回路60の上記の動作により、参照情報を生成することができる。
 [対象物10の表面10sの傾斜角を推定する方法]
 次に、図4Aから図4Cを参照して、対象物10の表面10sの傾斜角を推定する方法を説明する。図4Aは、光源20から出射された照射光で対象物10が照射されて生じた拡散反射光を光検出装置30が検出する様子を模式的に示す図である。照射光は、複数の波長バンドの各々の光を含む。拡散反射光は、照射光に起因した光である。対象物10は、前述の基準面から角度θだけ傾いた状態で配置されている。図4Aに示す点線は基準面を表す。図4Aに示す例では、対象物10の表面10sが基準面から角度θだけ変化すると、入射角および出射角はθだけ変化する。
 図4Bは、入射角および出射角の変化に伴うスペクトルの変化を模式的に示す図である。図4Bには、スペクトルとして、ある2つの波長λ1およびλ2における光強度がプロットされている。図4Bに示す破線は参照情報に含まれる複数の角度でのスペクトルを表し、実線は実際に測定されたスペクトルを表す。簡単のために、入射角および出射角は、角度θの値によって統一して表示されている。図4Bに示す例において、測定されたスペクトルは、参照情報に含まれるθ=5°でのスペクトルと、θ=10°でのスペクトルとの間に位置する。測定されたスペクトルの角度は、例えば、参照情報に含まれる複数の角度でのスペクトルを線形補間することによって計算することができる。その際、SAM(Spectral Angle Mapper)法に代表されるような方法を用いてもよい。SAM法では、スペクトルがベクトルとして表される。当該ベクトルは、複数の波長バンドにそれぞれ対応する複数の光強度を成分として有する。
 図4Cは、複数の角度でのスペクトルを含む参照情報の例を示す図である。図4Cに示す例において、スペクトルのベクトルは、波長λ1およびλ2における光強度をそれぞれ第1および第2成分として有する。参照情報に含まれるθ=0°、5°、および10°でのスペクトルのベクトルは、それぞれ、(40、85)、(36、70)、および(30、50)として表される。測定されたスペクトルのベクトルは、(32,58)として表される。
 θ=0°でのスペクトルの法線ベクトルである(-85,40)と、各角度でのスペクトルのベクトルとの内積値を計算すると、当該内積値は、θ=0°で0、θ=5°で-260、θ=10°で-550になる。θ=0°、5°、および10°のうち、互いに隣り合う2つの角度の間でスペクトルが線型に変化すると仮定すると、内積値f(θ)は角度θを用いて以下の式(1)および(2)によって表される。
 測定されたスペクトルのベクトル(32、58)と、θ=0°でのスペクトルの法線ベクトル(-85、40)との内積値は-400である。当該内積値はθ=5°での-260とθ=10°での-550との間にあるので、式(2)を適用すると、-58×θ+30=-400からθ=7.41°になる。したがって、測定されたスペクトルから、対象物10の表面10sの傾斜角がθ=7.41°であると推定される。なお、この推定方法は例示である。当然、他の推定方法を用いてもよい。
 次に、図5Aおよび図5Bを参照して、複数の角度でのスペクトルを含む参照情報の他の例を説明する。図5Aは、複数の角度でのスペクトルを含む参照情報の他の例を模式的に示す図である。図5Aに示す参照情報は、角度と、当該角度でのスペクトルとの関係を示す。ただし、当該角度でのスペクトルは、複数の波長バンドにそれぞれ対応する複数の光強度ではなく、当該角度でのスペクトルのベクトルと、θ=0°でのスペクトルのベクトルとの規格化された内積値によって表されている。規格化された内積値は、2つのスペクトルのベクトルv1およびv2の内積値v1・v2を、2つのスペクトルのベクトルの絶対値|v1|および|v2|によって除算した値、すなわちv1・v2/(|v1||v2|)である。角度がθ=0°である場合、規格化された内積値は1である。規格化された内積値の逆コサインを「スペクトル角」と呼ぶ。規格化された内積値の代わりに、スペクトル角を用いてもよい。
 図5Aに示す参照情報は以下のようにして生成された。赤色を呈する表面を有するカラーサンプルを試料台12上に配置し、回転ステージ14を回転させてカラーサンプルの表面の傾斜角を変化させながら、カラーサンプルの表面からの光のスペクトルが測定された。当該スペクトルは、4つの波長475nm、505nm、605nm、および635nmにそれぞれ対応する4つの光強度を含む。
 図5Bは、図5Aに示す参照情報に含まれる角度および規格化された内積値をプロットした図である。図5Bに示すエラーバーは、スペクトルの測定誤差に基づく規格化された内積値の誤差を表す。図5Bに示す例では、参照情報の取得において傾斜角が±6°かそれよりも大きい場合、スペクトルの変化が測定誤差を上回り、傾斜角を検出することが可能になる。スペクトルの測定誤差は、例えば照明の強さ、使用する装置の精度、および/またはSN比に起因する。これに対して、傾斜角に応じたスペクトルの変化は、例えば、入射角、出射角、材料の吸収率および反射率、および/または表面の粗さのような表面状態に起因する。規格化された内積値は、スペクトルとしてどの波長における光強度を用いるかによっても変化する。上記の理由から、スペクトルの測定では、より小さな角度変化を検出するために、入射角および出射角、すなわち光源20および光検出装置30の位置および向き、ならびに規格化された内積値の算出に用いる波長が適切に選択され得る。
 なお、図2に示す例において、対象物10の表面10sの傾斜角と試料台12の表面12sの傾斜角とが1対1に対応する場合には、対象物10の表面10sの傾斜角の代わりに、試料台12の表面12sの傾斜角を前述の方法によって推定してもよい。試料台12の表面12sの傾斜角に基づいて、対象物10の表面10sの傾斜角を推定できるからである。
 [処理回路の測定動作]
 次に、図6を参照して、実施形態1において処理回路60が実行する測定動作の例を説明する。処理回路60は、対象物10の表面10sの傾斜角を推定する動作を実行する。図6は、実施形態1において処理回路60が実行する測定動作の例を概略的に示すフローチャートである。処理回路60は、図6に示すステップS101~S105の動作を実行する。
 <ステップS101>
 処理回路60は、記憶装置40から参照情報を取得する。参照情報の取得に関して、測定システム100は以下のように構成されていてもよい。すなわち、ユーザが入力UI50aを介して対象物10を識別するための識別情報を設定し、処理回路60は、入力UI50aからの信号を受けて、設定された識別情報に対応する参照情報を記憶装置40から取得してもよい。識別情報は、例えば対象物の名称および対象物の表面状態などを指定する情報を含む。
 <ステップS102>
 処理回路60は、光検出装置30から、対象物10の表面10sからの光のスペクトル情報を取得する。光検出装置30は、以下のようにして当該スペクトル情報を生成する。
 ユーザは、入力UI50aを介して光検出条件を設定する。当該光検出条件は、例えば、露光時間、フレームレート、デジタルゲイン、およびガンマ補正からなる群から選択される少なくとも1つであり得る。ユーザは、光検出条件を設定した後、入力UI50aに表示された光検出の開始ボタンを押す。光検出装置30は、入力UI50aから信号を受け取り、光検出条件に基づいて対象物10の表面10sからの光を検出して当該光のスペクトル情報を生成し、当該スペクトル情報を示す信号を出力する。ここでは、当該スペクトル情報は、複数の波長バンドにそれぞれ対応する複数の画像を示す情報である。
 <ステップS103>
 処理回路60は、以下のようにして対象物10の表面10s内の1つの部分を指定する。当該1つの部分は、例えば点または広がりを有する領域であり得る。処理回路60は、対象物10の画像を表示UI50bに表示させる。対象物10の画像は、複数の波長バンドにそれぞれ対応する複数の画像から選択された1つの画像、または当該複数の画像のうち、2つ以上の画像を重畳した画像であり得る。当該複数の画像をすべて重畳してもよい。対象物10の画像は、白黒画像として表示されてもよく、疑似的に色付けされたRGB画像として表示されてもよい。ユーザは、表示された対象物10の画像における対象物10の表面10sに相当する領域内の1つの部分を、入力UI50aを介して指定する。このように、処理回路60は、対象物10の表面10s内の1つの部分をユーザが指定するためのGUIを表示する。処理回路60は、入力UI50aからの信号を受け取り、対象物10の表面10s内の1つの部分を指定する。
 分光器を備えるハイパースペクトルカメラを光検出装置30として用いて、対象物10の表面10s内の一部領域からの反射光を検出する場合、ステップS103の動作は省略してもよい。圧縮センシング技術を利用したハイパースペクトルカメラを光検出装置30として用いた場合でも、対象物10の表面10sからの光のスペクトル情報が対象物10の表面10s内の位置に依存しないのであれば、ステップS103の動作を省略してもよい。
 <ステップS104>
 処理回路60は、ステップS102において取得したスペクトル情報からの抽出により、指定した部分からの光のスペクトル情報を取得する。
 <ステップS105>
 処理回路60は、指定した部分からの光のスペクトル情報および参照情報に基づいて、指定した部分の傾斜角を推定して、指定した部分の傾斜角を示す情報を生成する。傾斜角の推定方法については図4Aから図4Cを参照して説明した通りである。指定した部分の傾斜角を示す情報は、当該傾斜角それ自体を示す情報であってもよいし、当該傾斜角を導出することが可能な情報であってもよい。処理回路60は、指定した部分の傾斜角を示す情報を出力し、表示UI50bに表示させてもよいし、記憶装置40に記憶させてもよい。
 指定した部分は対象物10の表面10sの一部であるので、本明細書では、「指定した部分」を「対象物10の表面10s」に言い換えることがある。例えば、本明細書において、「指定した部分からの光」を「対象物10の表面10sからの光」とも称する。同様に、指定した部分の傾斜角を、「対象物10の表面10sの傾斜角」とも称する。
 処理回路60の上記の動作により、対象物10の表面10sの傾斜角を示す情報を生成することができる。
 次に、図7Aを参照して、実施形態1において処理回路60が実行する測定動作の他の例を説明する。処理回路60は、図6に示すステップS101~S105の動作に加えて、推定した傾斜角が許容範囲内であるか否かを判定する動作を実行する。図7Aは、実施形態1において処理回路60が実行する測定動作の他の例を概略的に示すフローチャートである。処理回路60は、図7Aに示すステップS101~S108およびの動作を実行する。図7Aに示すステップS101~S105の動作は、それぞれ、図6に示すステップS101~S105の動作と同じである。処理回路60は、ステップS105の次にステップS106の動作を実行する。
 <ステップS106>
 処理回路60は、推定した傾斜角が許容範囲内であるか否かを判定する。傾斜角の許容範囲は、ユーザが入力UI50aを介して設定してもよいし、参照情報に基づいて自動で設定されてもよい。図5Bに示す例では、傾斜角が6度より小さい場合にはスペクトル変化が測定誤差よりも小さくなり、対象物10の表面10sが傾斜しているか否かを判定することが容易ではない。したがって、傾斜角の許容範囲は、傾斜を検出できる角度、図5Bの例では6度以上の任意の値に設定され得る。判定がYesの場合、処理回路60はステップS107の動作を実行する。判定がNoの場合、処理回路60はステップS108の動作を実行する。
 <ステップS107>
 処理回路60は、対象物10の表面10sからの光のスペクトル情報に基づいて、対象物10の表面10sを分析し、対象物10の表面10sを分析した情報を生成する。分析の例としては、食品の鮮度および/または糖度の測定、工業製品の色合いを含む外観の検査、透明膜の厚さ測定、肌および木材などの表面水分量の測定、ならびに水質および/または土壌の検査が挙げられる。処理回路60は、分析の前に、推定した傾斜角が許容範囲内であることを表示UI50bに表示させてもよい。表示UI50bには、例えば「対象物の表面の傾斜角が許容範囲内です」というようなメッセージが表示され得る。処理回路60は、分析した情報を出力し、当該情報を表示UI50bに表示させてもよいし、当該情報を記憶装置40に記憶させてもよい。
 <ステップS108>
 処理回路60は、エラー情報を生成して出力し、当該情報を表示UI50bに表示させる。図7Bは、表示UI50bに表示されるエラー情報の例を模式的に示す図である。図7Bに示す例では、エラー情報として、「対象物の表面の傾斜角が許容範囲を超えているため処理を中止します」というメッセージが表示されている。なお、背景の左上部には、対象物の画像が表示されており、背景の右上部には光検出条件が表示されており、背景の下部には、複数の波長バンドにそれぞれ対応する複数の画像が表示されている。処理回路60は、ステップS108の動作を省略して測定動作を終了してもよい。
 次に、図8を参照して、実施形態1において処理回路60が実行する測定動作のさらに他の例を説明する。処理回路60は、図7Aに示すステップS101~S108の動作に加えて、対象物10の表面10sの傾斜角を補正するための動作を実行する。図8は、実施形態1において処理回路60が実行する測定動作のさらに他の例を概略的に示すフローチャートである。処理回路60は、図8に示すステップS101~S109の動作を実行する。図8に示すステップS101~S108の動作は、それぞれ、図7Aに示すステップS101~S108の動作と同じである。処理回路60は、ステップS108の次にステップS109の動作を実行する。なお、処理回路60は、ステップS108の動作を省略してステップS106の次にステップS109の動作を実行してもよい。
 <ステップS109>
 処理回路60は、対象物10の表面10sの傾斜角を補正するための補正情報を生成する。当該補正情報は、例えば推定した傾斜角を許容範囲内に収めるための回転ステージ14の回転方向および/または回転角を含み得る。処理回路60は、補正情報を表示UI50bに表示させてもよい。ユーザは、表示された補正情報に基づいて回転ステージ14の回転方向および/または回転角度を手動で補正する。あるいは、処理回路60は、調整装置を介して回転ステージ14の回転方向および/または回転角を補正してもよい。
 ステップS109の後、処理回路60は、ステップS104~S106の動作を再び実行する。ステップS106の動作を所定の回数だけ実行しても判定がNoである場合、処理回路60は、ステップS108の動作を実行してから測定動作を終了してもよいし、ステップS108の動作を実行せずに測定動作を終了してもよい。所定の回数は、例えば1回であってもよいし、2回であってもよいし、3回以上であってもよい。なお、所定の回数が1回であり、処理回路60がステップS108の動作を実行してから測定動作を終了する場合、図8に示すフローチャートは、図7Aに示すフローチャートと同じになる。
 以上のことから、実施形態1によれば、対象物10の表面10sの傾斜角を示す情報を非接触で簡便に生成することが可能な測定方法、および当該測定方法を用いた測定システム100を実現できる。対象物10の表面10sからの光を単一の光検出装置30によって1回検出することにより、対象物10の表面10sの傾斜角を示す情報を生成できる点で、実施形態1による測定方法は簡便である。
 特許文献1に開示されている測定方法では、複数回の撮像を行うので時間効率が低い。特許文献2に開示されている測定方法では、複数の装置を用いるので装置が大型になる。これに対して、実施形態1による測定方法では、光検出の回数は1回であるので時間効率に優れており、単一の光検出装置30を用いるので測定システム100を小型化できる。実施形態1による測定方法は、処理動作の簡略化、ならびに測定システム100の単純化および小型化を可能にする。
 なお、実施形態1による測定方法では、参照情報、対象物10の表面10sからの光のスペクトル情報、および対象物10の表面10sの傾斜角を示す情報は、測定システム100によって生成される。参照情報は、光検出装置30、記憶装置、入力UI50a、および処理回路60を備える第1装置によって生成されてもよい。対象物10の表面10sからの光のスペクトル情報は、光検出装置30および入力UI50aを備える第2装置によって生成されてもよい。対象物10の表面10sの傾きに関する情報は、処理回路60を備える第3装置によって生成されてもよい。第1装置、第2装置、および第3装置は互いに独立した装置である。
 (実施形態2)
 次に、図9を参照して、対象物10の表面10sのたわみ量を示す情報を生成することが可能な本開示の実施形態2による測定方法を説明する。図9は、本開示の実施形態2による測定方法を説明するための図である。図9に示す例では、対象物10の表面10sが入射光で照射されて対象物10の表面10sの複数の部分A~Cで拡散反射光が生じる。簡単のために、複数の部分A~Cに入射する光の進行方向はすべて同じであり、光検出装置30は対象物10の表面10sから十分に離れており、対象物10の表面10sの複数の部分A~Cの位置に依存する出射角の違いは無視できるとする。図9に示す2つの波線は、対象物10と光検出装置30との間の領域の一部を省略することを表す。
 光検出装置30として、分光器を備えるハイパースペクトルカメラまたは圧縮センシング技術を利用したハイパースペクトルカメラを用いてもよい。あるいは、光検出装置30は、1次元的または2次元的に配列された複数の分光素子を備えていてもよい。当該複数の分光素子の各々は、対応する1つの部分からの光を検出して当該光のスペクトル情報を生成する。図9に示す両矢印の実線は、光検出装置30の光検出領域を表す。複数の部分A~Cは光検出領域内に位置する。
 図9に示す例において、部分Aおよび部分Cの傾斜角はゼロであり、部分Aおよび部分Cは光検出装置30の光軸に対して垂直な平面から傾斜していない。これに対して、部分Aおよび部分Cの間に位置する部分Bの傾斜角はノンゼロであり、部分Bは光検出装置30の光軸に対して垂直な平面から少しだけ傾斜している。少しだけ傾斜している部分Bからの光のスペクトル情報は、傾斜してない部分Aおよび部分Cからの光のスペクトル情報とは異なる。部分A~Cの位置を示す空間情報と、部分A~Cからの光のスペクトル情報とを結びつけることにより、対象物10の表面10sの局所的な傾斜角の変化、すなわちたわみ量を示す情報を生成できる。
 次に、図10を参照して、実施形態2において処理回路60が実行する測定動作の例を説明する。処理回路60は、対象物10の表面10sのたわみ量を推定する動作を実行する。図10は、実施形態2において処理回路60が実行する測定動作の例を概略的に示すフローチャートである。処理回路60は、図10に示すステップS101、S102、S107、S110~S115の動作を実行する。図10に示すステップS101、S102、およびS107の動作は、それぞれ、図7Aに示すステップS101、S102、およびS107の動作と同じである。処理回路60はステップS102の次にステップS110の動作を実行する。
 <ステップS110>
 処理回路60は、以下のようにして対象物10の表面10s内の複数の部分を指定する。処理回路60は、前述した対象物10の画像を表示UI50bに表示させる。ユーザは、表示された画像における対象物10の表面10sに相当する領域内の複数の部分を、入力UI50aを介して指定する。複数の部分は互いに離れて位置する。このように、処理回路60は、対象物10の表面10s内の複数の部分をユーザが指定するためのGUIを表示する。処理回路60は、入力UI50aからの信号を受けて、対象物10の表面10s内の複数の部分を指定する。なお、複数の部分は、上記のようにユーザによって手動で指定されてもよいし、自動で指定されてもよい。複数の部分が自動で指定される場合には、当該複数の部分の間隔が一定になるように指定されてもよいし、対象物10の画像から特徴部を検出し、当該特徴部に複数の部分が多く存在するように指定されてもよい。特徴部における複数の部分の指定は、例えば、ベルトコンベアによって運搬される製品または食品を検査するのに有用である。
 <ステップS111>
 処理回路60は、ステップS102において取得したスペクトル情報からの抽出により、指定した複数の部分からの光のスペクトル情報を取得する。
 <ステップS112>
 処理回路60は、指定した複数の部分からの光のスペクトル情報および参照情報に基づいて、指定した複数の部分の傾斜角を推定して、指定した複数の部分の傾斜角を示す情報を生成する。
 指定した複数の部分は対象物10の表面10sの一部であるので、本明細書では、「指定した複数の部分」を「対象物10の表面10s」に言い換えることがある。例えば、本明細書において、「指定した複数の部分からの光」を「対象物10の表面10sからの光」とも称する。同様に、指定した複数の部分の傾斜角を、「対象物10の表面10sの傾斜角」とも称する。
 <ステップS113>
 処理回路60は、複数の部分の位置を示す空間情報と、複数の部分の傾斜角を示す情報とを結びつけることにより、対象物10の表面10sのたわみ量を推定して、対象物10の表面10sのたわみ量を示す情報を生成する。対象物10の表面10sのたわみ量を示す情報は、当該たわみ量それ自体を示す情報であってもよいし、当該たわみ量を導出することが可能な情報であってもよい。対象物10の表面10sのたわみ量を示す情報は、推定したたわみ量をヒートマップまたは等高線の形式で表した情報であってもよい。
 <ステップS114>
 処理回路60は、推定したたわみ量が許容範囲内であるか否かを判定する。言い換えれば、処理回路60は、複数の部分の傾斜角がすべて、図7Aに示すステップS106において説明した許容範囲内であるか否かを判定する。たわみ量の許容範囲は、ユーザが入力UI50aを介して設定してもよいし、参照情報に基づいて自動で設定されてもよい。判定がYesの場合、処理回路60はステップS107の動作を実行する。判定がNoの場合、処理回路60はステップS115の動作を実行する。
 <ステップS115>
 処理回路60は、エラー情報を生成して出力し、当該情報を表示UI50bに表示させる。エラー情報として、例えば「対象物の表面のたわみ量が許容範囲を超えています」というようなメッセージが表示UI50bに表示され得る。なお、処理回路60は、ステップS115の動作を省略して測定動作を終了してもよい。
 上記の動作において、処理回路60は、ステップS113の動作を実行した後、ステップS114以降の動作を省略して測定動作を終了してもよい。
 以上のことから、実施形態2によれば、対象物10の表面10sのたわみ量を示す情報を非接触で簡便に生成することが可能な測定方法、および当該測定方法を用いた測定システム100を実現できる。実施形態2による測定方法は、実施形態1による測定方法と同様に、処理動作の簡略化、ならびに測定システム100の単純化および小型化を可能にする。
 なお、実施形態2による測定方法では、実施形態1による測定方法と同様に、参照情報を第1装置によって生成し、対象物10の表面10sからの光のスペクトル情報を第2装置によって生成し、対象物10の表面10sのたわみ量を示す情報を第3装置によって生成してもよい。
 (実施形態3)
 次に、図11を参照して、対象物10の表面10sに異常が生じたか否かを検出することが可能な本開示の実施形態2による測定方法を説明する。異物の付着および塗装不良などの理由により、対象物10の表面10sに異常が生じることがある。異常が生じた対象物10の表面10sの傾斜角またはたわみ量を推定しても、推定した傾斜角またはたわみ量は不正確である。したがって、対象物10の表面10sに異常が生じたことを検出できれば、対象物10の表面10sの傾斜角またはたわみ量を推定する動作を中止することができ、処理動作の簡略化および処理負荷の低減が可能になる。
 図11は、本開示の実施形態3による測定方法を説明するための図である。図11では、簡単のために、波長λ1およびλ2における光強度を有するスペクトルが2次元平面上に示されている。当該2次元平面において、水平軸および垂直軸はそれぞれ波長λ1およびλ2における光強度を表す。N個の波長にそれぞれ対応するN個の光強度を有するスペクトルは、N次元空間上に示すことができる。Nは2以上の自然数である。
 ここでは、参照符号は、対象物10の表面10sの複数の傾斜角θ=0°、θ=±6°、およびθ=±12°でのスペクトル情報を含む。図11に示す例では、参照情報に含まれる複数の傾斜角θ=0°、θ=±6°、およびθ=±12°でのスペクトルがプロットされている。白い点線の丸印は、参照情報に含まれるスペクトルを表す。角度をθ=12°からθ=-12°まで変化させると、参照情報に含まれるスペクトルは図11に示す軌跡を描く。本明細書において、軌跡とは「同一の条件を満たす点の集合」を意味する。図11に示す例において、同一の条件は、傾斜角とスペクトルとの関係を指す。軌跡は、数学的には方程式によって表される線分であるが、実際には測定誤差が生じるため、スペクトルの軌跡は幅を有し、空間上の領域として表される。この理由から、図11に示す軌跡は、2次元平面において、細長い楕円の形状を有する。図11に示すハッチングされた領域は、参照情報に含まれるスペクトルの軌跡を表す。
 対象物10の表面10sに異常が生じていない場合、対象物10の表面10sの傾斜角がどのような角度であっても、測定したスペクトルは、参照情報に含まれるスペクトルの軌跡上に位置するはずである。言い換えれば、図11に示すように、測定したスペクトルが軌跡上に位置していなければ、対象物10の表面10sに異常が生じたことがわかる。図11に示す実線の丸印は、測定したスペクトルを表す。
 以下に、図11に示すスペクトルの軌跡の生成方法をより詳細に説明する。スペクトルの軌跡は、例えば、処理回路60による以下の(a)から(d)の動作によって生成され得る。
(a)記憶装置40から、参照情報を取得する。
(b)参照情報に含まれるN個の波長バンドを選択する。
(c)参照情報に含まれるN個の波長バンドの各々について、対応するデータ点をN次元空間上にプロットする。
(d)参照情報に含まれる測定誤差の幅をデータ点に付与する。
 (b)の動作は、ユーザから入力された情報に基づいて実行されてもよい。例えば、光検出装置30によって取得可能な複数の波長バンドの情報のうち、N個の波長バンドの情報を用いて傾斜角を推定する場合、処理回路60は、当該N個の波長バンドをユーザが指定するためのGUIを表示してもよい。処理回路60はユーザによって指定されたN個の波長バンドを選択する。
 処理回路60は、(b)の動作を(a)の動作より前に実行してもよい。その場合、処理回路60は、(a)の動作において、(b)の動作によって選択したN個の波長バンドについての参照情報を取得する一方、(b)の動作によって選択しなかった残りの波長バンドについての参照情報は取得しなくてもよい。
 処理回路60は(b)の動作を実行する際に、ユーザによって指定された波長バンドの情報を選択する動作に限らず、規定の波長バンドを選択する動作を実行してもよい。例えば、処理回路60は、光検出装置30によって取得可能な複数の波長バンドの情報よりも少ない数の波長バンドの情報を用いて傾きに関する情報を生成し得る。その結果、傾きに関する情報生成のための計算量を削減することができ、情報処理における負荷を軽減することが可能になる。なお、光検出装置30によって取得可能な複数の波長バンドの数がN個であり、傾斜角の推定に用いる波長バンドの数も同様にN個である場合、(b)の動作は省略され得る。
 (c)の動作において、処理回路60は、(b)の動作によって選択したN個の波長バンドの各々について、対応するデータ点を参照情報から取得し、N次元の空間上に当該データ点をプロットする。図12は、(b)の動作において、N=2として、波長バンド1および波長バンド2を選択した場合におけるスペクトルの軌跡の例を模式的に示す図である。波長バンド1および波長バンド2は互いに異なる範囲の波長域を有する。波長バンド1は、例えば、波長450nm以上470nm以下の波長域を有し、波長バンド2は、例えば、波長630nm以上640nm以下の波長域を有し得る。このように、波長域の幅は、選択された波長バンドごとに異なっていてもよい。波長バンドの波長域は不連続であってもよい。
 波長バンド1および波長バンド2についての参照情報の例を表1に示す。以下のθは、図11に示す例と同様に傾斜角を表す。表1について、各波長バンドにおける光強度を表す数字は、例えば、イメージセンサに含まれる各画素から出力される画素値であってもよいし、パーセンテージを含む規格化された数値であってもよい。
 表1に示す参照情報が用いられる場合、図12に示す水平軸は波長バンド1における光強度を表し、図12に示す垂直軸は波長バンド2における光強度を表す。処理回路60は、2次元空間上に表1のデータ点をプロットする。処理回路60は、例えば、θ=-12°のデータ点として、2次元空間上に(24、32)をプロットし、θ=-6°のデータ点として、2次元空間上に(35、41)をプロットする。同様に、処理回路60は、参照情報に含まれる他のθについて、波長バンド1および波長バンド2のデータ点を2次元空間上にプロットする。
 (d)の動作において、処理回路60は、参照情報に含まれる測定誤差の幅をデータ点に付与する。測定誤差は、図3Bに示す参照情報を生成する動作において導出され得る。理論的には、プロットされたデータ点をつないだ線状の軌跡が、参照情報に含まれるスペクトルの軌跡を表す。しかし、実際に複数の波長バンドの各々に対応する光強度を測定する場合には有限の誤差が生じるため、スペクトルの軌跡は、測定誤差の幅を有する領域になる。
 表1に示すように、θ=-12°である場合、波長バンド1における光強度の測定誤差は5であり、波長バンド2における光強度の測定誤差もまた5である。したがって、処理回路60は、θ=-12°である場合、(24、32)のデータ点に、測定誤差として、水平軸方向に5、垂直軸方向に5の幅を付与する。θ=-6°である場合、波長バンド1における光強度の測定誤差は6であり、波長バンド2における光強度の測定誤差は7である。したがって、処理回路60は、θ=-6°である場合、(35、41)のデータ点に、測定誤差として、水平軸方向に6、垂直軸方向に7の幅を付与する。同様に、処理回路60は、参照情報に含まれる他のθのデータ点に、波長バンド1および波長バンド2の各々における光強度の測定誤差の幅を付与する。
 このようにして、処理回路60は、2次元空間上に、測定誤差の幅を有する領域を示すことができる。図12に示す灰色の領域は、測定誤差の幅を有する領域を表す。灰色の領域は、測定誤差を加味した、参照情報に含まれるスペクトルの軌跡であり、図11に示すハッチングされた領域と比較してより具体的に示されている。参照情報に含まれるスペクトルの軌跡は、対象物10の傾斜角、およびたわみ量などの角度に関する量の変化に応じて変化し得る光強度の範囲を示す情報であると言える。
 次に、図13を参照して、実施形態3において処理回路60が実行する測定動作の例を説明する。処理回路60は、図8に示すステップS101~S109の動作に加えて、対象物10の表面10sの傾斜角を推定できるか否かを判定する動作を実行する。図13は、実施形態3において処理回路60が実行する測定動作の例を概略的に示すフローチャートである。処理回路60は、図13に示すステップS101~S109ならびにS116およびS117の動作を実行する。図13に示すステップS101~S109の動作は、それぞれ、図8に示すステップS101~S109の動作と同じである。処理回路60は、ステップS104の次にステップS116の動作を実行する。
 <ステップS116>
 処理回路60は、指定した部分からの光のスペクトル情報および参照情報に基づいて、指定した部分の傾斜角を推定できるか否かを判定する。具体的には、処理回路60は、指定した部分からの光のスペクトルが、参照情報に含まれるスペクトルの軌跡上に位置するか否かを判定する。判定がYesの場合、処理回路60は、ステップS105の動作を実行する。判定がNoの場合、処理回路60は、ステップS117の動作を実行する。
 <ステップS117>
 処理回路60は、エラー情報を生成して出力し、当該情報を表示UI50bに表示させる。エラー情報として、例えば、「対象物の表面に異常が生じています」のようなメッセージを表示UI50bに表示してもよい。さらに、対象物10の画像のうち、指定した部分を異常が生じた部分として強調して表示UI50bに表示してもよい。なお、処理回路60は、ステップS117の動作を省略して測定動作を終了してもよい。
 次に、図14を参照して、実施形態3において処理回路60が実行する測定動作の他の例を説明する。処理回路60は、図10に示すステップS101、S102、S107、S110~S115の動作に加えて、対象物10の表面10sのたわみ量を推定できるか否かを判定する動作を実行してもよい。図14は、実施形態3において処理回路60が実行する測定動作の他の例を概略的に示すフローチャートである。処理回路60は、図14に示すステップS101、S102、S107、S110~S115、S117、およびS118の動作を実行する。図14に示すステップS101、S102、S107、S110~S115の動作は、それぞれ、図10に示すステップS101、S102、S107、S110~S115の動作と同じである。図14に示すステップSS117の動作は、図13に示すステップS117の動作と同じである。処理回路60は、ステップS111の次にステップS118の動作を実行する。
 <ステップS118>
 処理回路60は、指定した複数の部分からの光のスペクトル情報および参照情報に基づいて、指定した複数の部分の傾斜角を推定できるか否かを判定する。具体的には、処理回路60は、指定した複数の部分からの光のスペクトルが、参照情報に含まれるスペクトルの軌跡上に位置するか否かを判定する。判定がYesの場合、処理回路60は、ステップS112の動作を実行する。判定がNoの場合、処理回路60は、ステップS117の動作を実行する。
 次に、図15を参照して、実施形態3において処理回路60が実行する測定動作のさらに他の例を説明する。図15は、実施形態3において処理回路60が実行する測定動作のさらに他の例を概略的に示すフローチャートである。この例において、処理回路60は、対象物10の表面10sの分析として、工業製品の色合いを含む外観の検査に関連する分析を行う。
 実施形態3において、処理回路60は、図13に示すステップS103の代わりに、ステップS119の動作を実行し、ステップS104の代わりに、ステップS120の動作を実行する。処理回路60は、図13に示すステップS116の代わりに、ステップS121の動作を実行し、ステップS105の代わりに、ステップS122の動作を実行する。処理回路60は、図13に示すステップS106の後に、ステップS123の動作を実行し、ステップS107の代わりに、ステップS124の動作を実行する。
 <ステップS119>
 処理回路60は、ステップS103において説明したように、対象物10の表面10s内の1つの部分を指定する。当該1つの部分を、ここでは「第1領域」と称する。後述する第2領域は、第1領域よりも広い領域である。
 <ステップS120>
 処理回路60は、第1領域のスペクトル情報を取得する。第1領域のスペクトル情報は、第1領域からの第1光に含まれるスペクトル情報を意味し、本明細書において「第1スペクトル情報」とも称する。
 <ステップS121>
 処理回路60は、第1領域のスペクトル情報に基づいて、第1領域の傾斜角を推定できるか否かを判定する。傾斜角を推定できるか否かを判定する方法は、ステップS116において説明した通りである。
 <ステップS122>
 処理回路60は、第1領域のスペクトル情報および参照情報に基づいて、傾斜角を推定して、指定した部分の傾斜角を示す情報を生成する。傾斜角の推定方法についてはステップS105において説明した通りである。
 <ステップS123>
 処理回路60は、対象物10の表面10s内の第2領域のスペクトル情報を取得する。第2領域のスペクトル情報は、第2領域からの第2光に含まれるスペクトル情報を意味し、本明細書において「第2スペクトル情報」とも称する。
 第2領域は、第1領域よりも広い領域である。第2領域は、例えば、第1領域を含む領域であり得る。すなわち、第2領域の一部は、第1領域の全体に重なり得る。あるいは、第2領域は第1領域を含まない領域であってもよい。すなわち、第2領域は、第1領域に重ならなくてもよい。第2領域は、例えば、後述するステップS124における分析の対象範囲に相当する。
 処理回路60は、対象物10の表面10s内の1つの領域をユーザが指定するためのGUIを表示し、かつ入力UI50aからの信号を受け取ることによって第2領域を指定してもよい。処理回路60は、以下の複数の画素を、第2領域内の複数の画素として決定してもよい。当該複数の画素は、対象物10の画像に含まれる第1領域内の1つまたは複数の画素と、その周囲に位置する所定の数の画素とを含む。
 対象物10の画像は、複数の波長バンドにそれぞれ対応する複数の画像から選択された1つの画像、当該複数の画像のうち、2つ以上の画像を重畳した画像、または圧縮画像であり得る。処理回路60は、対象物10の画像のエッジを検出することにより、対象物10の輪郭を抽出し、抽出した輪郭の内部に含まれる複数の画素を第2領域内の複数の画素として決定してもよい。エッジの検出は、Sobelフィルタ、ラプラシアンフィルタ、およびCannyフィルタなどの公知の処理方法によって行われ得る。
 <ステップS124>
 処理回路60は、第2領域のスペクトル情報に基づいて、工業製品の色合いを含む外観の検査に関連する分析をする。当該分析は、例えば、回帰分析、多変量解析、または前述のSAM法によって行われ得る。
 処理回路60は、第2領域のスペクトル情報から得られる平均スペクトルに基づいて、分析を行ってもよい。例えば、処理回路60は、複数の波長バンドのうち、第i(iは1以上N以下の自然数)の波長バンドに対応する画像について、当該画像に含まれる第2領域内の複数の画素の平均画素値に基づいて分析を行ってもよい。あるいは、処理回路60は、複数の波長バンドにそれぞれ対応する複数の画像の各々について、各画像に含まれる第2領域内の複数の画素の平均画素値を算出し、それによって得られる複数の平均画素値に基づいて、分析を行ってもよい。
 工業製品の色合いを含む外観の検査に関連する分析をする場合、記憶装置40に外観の検査の判定に用いるモデルデータを記憶させていてもよい。モデルデータは、例えば、外観の検査において、良品と判定される製品のスペクトル情報を示すデータであり得る。処理回路60による分析は、例えば、前述の複数の平均画素値と、複数の波長バンドにそれぞれ対応する複数のモデルデータとの比較を行うことを含んでいてもよい。このように、処理回路60は、第2領域のスペクトル情報と、モデルデータとの比較に基づいて、工業製品の色合いを含む外観の検査を行ってもよい。
 他の実施形態として、第2領域を複数のサブ領域に分割してもよい。複数のサブ領域は、互いに異なる第1サブ領域および第2サブ領域を含む。処理回路60は、第2領域のうち、第1サブ領域のスペクトル情報、および第2サブ領域のスペクトル情報に基づいて、対象物10の第2領域の色合いの均一性を判定する検査を行ってもよい。この場合、処理回路60は、第1サブ領域のスペクトル情報と、第2サブ領域のスペクトル情報との類似度を調べる。処理回路60は、類似度が高い場合には対象物10を良品と判定し、類似度が低い場合には対象物10を不良品と判定してもよい。
 外観の検査の判定結果を示す情報は、上記のように良否を示す情報であってもよいし、質を表すある尺度を用いた情報であってもよい。さらに、対象物10を示す画像において、検査結果が不良と判定された箇所を強調することにより、判定結果を示してもよい。
 以上、図15を参照して説明したように、処理回路60は、第2領域よりも狭い第1領域のスペクトル情報に基づいて、傾斜角が推定できるか否かおよび傾斜角が許容範囲内であるか否かを判定する。処理回路60は、さらに、第1領域より広い第2領域のスペクトル情報に基づいて分析を行う。
 第1領域は第2領域よりも狭いので、第1領域のスペクトル情報のデータ量は、第2領域のスペクトル情報のデータ量よりも少ない。したがって、第2領域のスペクトル情報に基づいて傾斜角が推定できるか否かおよび傾斜角が許容範囲内であるか否かを判定し、分析を行う場合と比較して、処理回路60による計算負荷を削減できる。さらに、傾斜角が許容範囲内であることを確認した後に分析が行われるため、分析精度を向上することができる。
 なお、上記の例では、第2領域が第1領域よりも広いと仮定して説明したが、第1領域および第2領域は同じ広さを有してもよい。あるいは、第1領域は第2領域よりも広くてもよい。
 第1領域のスペクトル情報および第2領域のスペクトル情報は、光検出装置30による1回の光検出動作によって取得されてもよい。例えば、ハイパースペクトルカメラによる1回の撮像動作により、複数の波長バンドにそれぞれ対応する複数の画像を取得し、当該複数の画像から第1領域のスペクトル情報および第2領域のスペクトル情報を取得してもよい。
 あるいは、第1領域のスペクトル情報および第2領域のスペクトル情報は、光検出装置30による2回の光検出動作によって取得されてもよい。例えば、ハイパースペクトルカメラによる第1撮像動作により、複数の波長バンドにそれぞれ対応する複数の画像を取得し、当該複数の画像から第1領域のスペクトル情報を取得してもよい。次に、ハイパースペクトルカメラによる第2撮像動作により、複数の波長バンドにそれぞれ対応する複数の画像を取得し、当該複数の画像から第2領域のスペクトル情報を取得してもよい。
 以上のことから、実施形態3によれば、対象物10の表面10sに異常が生じたか否かを検出することが可能な測定方法、および当該測定方法を用いた測定システム100を実現できる。
 本開示の技術は、例えば、対象物の表面の傾きに関する情報を生成する測定システムに利用できる。
  10    対象物
  10s   表面
  12    試料台
  12s   表面
  14    回転ステージ
  20、20a、20b    光源
  30    光検出装置
  40    記憶装置
  50    表示装置
  50a   入力UI
  50b   表示UI
  60    処理回路
  62    メモリ
  100   測定システム

Claims (17)

  1.  対象物の表面からの光のスペクトル情報を取得することと、
     前記対象物の前記表面の光反射特性の情報を含む参照情報を取得することと、
     前記スペクトル情報および前記参照情報に基づいて、前記対象物の前記表面の傾きに関する情報を生成することと、
    を含む方法。
  2.  前記スペクトル情報は、複数の波長バンドにそれぞれ対応する複数の光強度を含み、
     前記参照情報は、前記対象物の前記表面に入射する光の入射角および前記対象物の前記表面から出射される光の出射角の少なくとも一方の角度と、前記少なくとも一方の角度に対応した前記複数の波長バンドにそれぞれ対応する前記複数の光強度との関係を示す情報を含む、
     請求項1に記載の方法。
  3.  前記対象物の前記表面の傾きに関する情報は、前記対象物の前記表面の傾斜角を示す情報、または前記対象物の前記表面のたわみ量を示す情報である、請求項1または2に記載の方法。
  4.  前記傾斜角または前記たわみ量が許容範囲内であるか否かを判定することを含む、
     請求項3に記載の方法。
  5.  前記傾斜角または前記たわみ量が許容範囲内であると判定された場合、前記スペクトル情報に基づいて、前記対象物の前記表面を分析することをさらに含む、
     請求項4に記載の方法。
  6.  前記傾斜角または前記たわみ量が許容範囲内ではないと判定された場合、エラー情報を生成することをさらに含む、
     請求項4に記載の方法。
  7.  前記傾斜角が許容範囲内ではないと判定された場合、前記傾斜角を補正するための情報を生成することをさらに含む、
     請求項4に記載の方法。
  8.  前記対象物の前記表面の傾きに関する情報を生成することの前に、前記スペクトル情報および前記参照情報に基づいて、前記傾斜角または前記たわみ量を推定できるか否かを判定することをさらに含む、
     請求項3に記載の方法。
  9.  前記対象物の前記表面からの前記光は、前記対象物の前記表面内の1つまたは複数の部分からの光であり、
     前記対象物の前記表面内の前記1つまたは複数の部分をユーザが指定するためのGUIを表示することをさらに含む、
     請求項1または2に記載の方法。
  10.  前記参照情報を取得することの前に、前記参照情報を生成することをさらに含み、
     前記参照情報を生成することは、
      前記対象物の前記表面に入射する光の入射角および前記対象物の前記表面から出射された光の出射角の少なくとも一方を変化させる第1動作、前記対象物の前記表面を照射するための光を光源に出射させる第2動作、および光検出装置に前記対象物の前記表面からの光を検出させて前記光のスペクトル情報を生成させる第3動作を繰り返し実行することと、
      前記第1動作、前記第2動作、および前記第3動作を繰り返し実行して得られた、変化した前記入射角および前記出射角の少なくとも一方と、前記スペクトル情報とを対応づけて記憶させることと、
    を含む、
     請求項1または2に記載の方法。
  11.  前記複数の波長バンドの各々に対応する光を含む照射光で前記対象物を照射することをさらに含み、
     前記対象物の前記表面からの光は、前記照射光に起因した光である、
     請求項2に記載の方法。
  12.  対象物の表面からの光を検出して前記光のスペクトル情報を生成する光検出装置と、
     前記光検出装置から前記スペクトル情報を取得し、前記対象物の前記表面の光反射特性の情報を含む参照情報を取得し、前記スペクトル情報および前記参照情報に基づいて、前記対象物の前記表面の傾きに関する情報を生成する処理回路と、
    を備える、システム。
  13.  前記参照情報を記憶する記憶装置をさらに備え、
     前記処理回路は、前記記憶装置から前記参照情報を取得する、
     請求項12に記載のシステム。
  14.  コンピュータによって実行される方法であって、
     対象物の表面の第1領域からの第1光に含まれる第1スペクトル情報を取得することと、
     前記対象物の前記表面の光反射特性の情報を含む参照情報を取得することと、
     前記第1スペクトル情報および前記参照情報に基づいて、前記対象物の前記表面の傾きが所定の範囲内であるか否かを判定することと、
     前記傾きが所定の範囲内であると判定した場合に、前記表面における第2領域からの第2光に含まれる第2スペクトル情報を取得し、前記第2スペクトル情報に基づいて、前記対象物の色に関する外観の良否を判定することと、
    を含む情報処理方法。
  15.  前記第2領域は、前記第1領域よりも広い、
     請求項14に記載の情報処理方法。
  16.  前記第1スペクトル情報および前記参照情報に基づいて、前記対象物の前記表面の傾きが所定の範囲内にないと判定した場合に、前記表面の傾きを補正するための補正情報を生成することをさらに含む、
     請求項14に記載の情報処理方法。
  17.  前記第1スペクトル情報および前記参照情報に基づいて、前記傾きに関する量を推定可能か否か判定することと、
     前記傾きに関する量を推定可能であると判定した場合に、前記傾きが前記所定の範囲内であるか判定することと、
    を含み、
     前記参照情報は、複数の波長バンドの各々に対応する光強度が、前記傾きに関する量に応じて変化し得る範囲を示す範囲情報を含み、
     前記傾きに関する量を推定可能か否かは、前記第1スペクトル情報に含まれる前記複数の波長バンドの各々に対応する光強度と、前記範囲情報とに基づいて判定される、
     請求項14に記載の情報処理方法。
PCT/JP2023/014476 2022-04-28 2023-04-10 測定方法、測定システム、および情報処理方法 WO2023210313A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2022074261 2022-04-28
JP2022-074261 2022-04-28
JP2023-047708 2023-03-24
JP2023047708 2023-03-24

Publications (1)

Publication Number Publication Date
WO2023210313A1 true WO2023210313A1 (ja) 2023-11-02

Family

ID=88518381

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/014476 WO2023210313A1 (ja) 2022-04-28 2023-04-10 測定方法、測定システム、および情報処理方法

Country Status (1)

Country Link
WO (1) WO2023210313A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004069474A (ja) * 2002-08-06 2004-03-04 Mitsubishi Electric Corp リード打痕検査装置
JP2013137239A (ja) * 2011-12-28 2013-07-11 Bridgestone Corp 外観検査装置及び外観検査方法
WO2019112055A1 (ja) * 2017-12-08 2019-06-13 日本製鉄株式会社 形状検査装置及び形状検査方法
JP2020085678A (ja) * 2018-11-27 2020-06-04 オムロン株式会社 検査システム、検査方法およびプログラム
JP2021067588A (ja) * 2019-10-25 2021-04-30 Jfeスチール株式会社 被検査体の表面検査装置および被検査体の表面検査方法
JP2021124401A (ja) * 2020-02-05 2021-08-30 住友金属鉱山株式会社 基板の検査装置、基板の検査方法
JP2022030615A (ja) * 2020-08-07 2022-02-18 トヨタ自動車株式会社 色味補正システム及び色味補正方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004069474A (ja) * 2002-08-06 2004-03-04 Mitsubishi Electric Corp リード打痕検査装置
JP2013137239A (ja) * 2011-12-28 2013-07-11 Bridgestone Corp 外観検査装置及び外観検査方法
WO2019112055A1 (ja) * 2017-12-08 2019-06-13 日本製鉄株式会社 形状検査装置及び形状検査方法
JP2020085678A (ja) * 2018-11-27 2020-06-04 オムロン株式会社 検査システム、検査方法およびプログラム
JP2021067588A (ja) * 2019-10-25 2021-04-30 Jfeスチール株式会社 被検査体の表面検査装置および被検査体の表面検査方法
JP2021124401A (ja) * 2020-02-05 2021-08-30 住友金属鉱山株式会社 基板の検査装置、基板の検査方法
JP2022030615A (ja) * 2020-08-07 2022-02-18 トヨタ自動車株式会社 色味補正システム及び色味補正方法

Similar Documents

Publication Publication Date Title
JP5572293B2 (ja) 欠陥検査方法及び欠陥検査装置
JP3784603B2 (ja) 検査方法及びその装置並びに検査装置における検査条件設定方法
US10168215B2 (en) Color measurement apparatus and color information processing apparatus
US10393669B2 (en) Colour measurement of gemstones
US20150369664A1 (en) Systems and methods for calibrating, configuring and validating an imaging device or system for multiplex tissue assays
EP3239925A1 (en) Fish type determination device and fish type determination method
JP2014215177A (ja) 検査装置及び検査方法
JP2005265655A (ja) 分光反射率測定装置、膜厚測定装置および分光反射率測定方法
CN210401431U (zh) 一种检测荧光免疫和胶体金试剂条的跨平台检测装置
US9036895B2 (en) Method of inspecting wafer
TWI495867B (zh) Application of repeated exposure to multiple exposure image blending detection method
JP2016090476A (ja) 異物検出方法
JP6969164B2 (ja) 評価装置、評価プログラム及び評価方法
JP6096173B2 (ja) 高発光光束コリメート照明装置および均一な読取フィールドの照明の方法
US10107745B2 (en) Method and device for estimating optical properties of a sample
WO2023210313A1 (ja) 測定方法、測定システム、および情報処理方法
CN114424046A (zh) 检查方法、程序以及检查系统
JP2017133953A (ja) 錠剤検査装置
JP2014517271A5 (ja)
JP2021092439A (ja) 照明最適化方法、制御装置、及びプログラム
RU2638910C1 (ru) Способ экспресс-контроля объекта
JP7136064B2 (ja) 被検査体の表面検査装置および被検査体の表面検査方法
KR102171773B1 (ko) 검사 영역 결정 방법 및 이를 이용하는 외관 검사 장치
JP2017190957A (ja) 光学測定装置
AALDERINK et al. Quantitative hyperspectral imaging technique for condition assessment and monitoring of historical documents

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23796059

Country of ref document: EP

Kind code of ref document: A1