WO2023210070A1 - 排ガス処理装置、燃焼設備及び排ガス処理方法 - Google Patents

排ガス処理装置、燃焼設備及び排ガス処理方法 Download PDF

Info

Publication number
WO2023210070A1
WO2023210070A1 PCT/JP2023/001083 JP2023001083W WO2023210070A1 WO 2023210070 A1 WO2023210070 A1 WO 2023210070A1 JP 2023001083 W JP2023001083 W JP 2023001083W WO 2023210070 A1 WO2023210070 A1 WO 2023210070A1
Authority
WO
WIPO (PCT)
Prior art keywords
reducing agent
exhaust gas
reducing
combustion exhaust
specific substance
Prior art date
Application number
PCT/JP2023/001083
Other languages
English (en)
French (fr)
Inventor
勝己 野地
博 加古
具承 増田
啓一郎 甲斐
博之 吉村
Original Assignee
三菱重工業株式会社
三菱パワー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社, 三菱パワー株式会社 filed Critical 三菱重工業株式会社
Publication of WO2023210070A1 publication Critical patent/WO2023210070A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/90Injecting reactants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G7/00Incinerators or other apparatus for consuming industrial waste, e.g. chemicals
    • F23G7/06Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J15/00Arrangements of devices for treating smoke or fumes

Definitions

  • the present disclosure relates to an exhaust gas treatment device, combustion equipment, and an exhaust gas treatment method.
  • This application claims priority based on Japanese Patent Application No. 2022-071408 filed with the Japan Patent Office on April 25, 2022, the contents of which are incorporated herein.
  • Nitrox nitrogen oxides
  • Patent Document 1 a catalyst layer that promotes the reduction reaction of nitrogen oxides is provided in the exhaust gas flow path, and ammonia is added to the exhaust gas upstream of the catalyst layer, so that nitrogen oxide in the exhaust gas is oxidized in the catalyst layer. It is described that substances are reduced and decomposed by reaction with ammonia.
  • the amount of reducing agent supplied to reduce NOx depends on the NOx concentration in the flue gas flow path. can be adjusted accordingly.
  • the unburned content of the above-mentioned reducing agent is contained in the combustion exhaust gas of the fuel.
  • the unburned content of this reducing agent (first reducing agent) has the effect of reducing specific substances (NOx, etc.), so the reducing agent (first reducing agent) supplied to reduce specific substances (NOx, etc.) in the combustion exhaust gas This will disturb the control of the supply amount of the second reducing agent).
  • the ratio of the reducing agent to NOx in the flue gas may be unbalanced. Likely to happen. Therefore, it is not easy to adjust the supply amount of the reducing agent (second reducing agent).
  • At least one embodiment of the present invention provides a supply amount of a reducing agent (second reducing agent) for reducing a specific substance in the combustion exhaust gas of a fuel containing the reducing agent (first reducing agent).
  • the purpose of the present invention is to provide an exhaust gas treatment device, combustion equipment, and an exhaust gas treatment method that allow easy and appropriate adjustment of the exhaust gas treatment method.
  • An exhaust gas treatment device includes: A second reducing agent provided in a flow path of the combustion exhaust gas of the fuel containing a first reducing agent capable of reducing a specific substance, and for supplying a second reducing agent to the combustion exhaust gas for reducing the specific substance in the combustion exhaust gas. 2 reducing agent supply section; a first reducing agent reduction section provided upstream of the second reducing agent supply section in the flow path and configured to reduce the first reducing agent in the combustion exhaust gas; Equipped with
  • the combustion equipment includes: a combustion device configured to combust a fuel containing a first reducing agent capable of reducing a specific substance; the above-mentioned exhaust gas treatment device configured to treat combustion exhaust gas of the fuel from the combustion device; Equipped with
  • the exhaust gas treatment method includes: supplying a second reducing agent for reducing the specific substance in the combustion exhaust gas to the combustion exhaust gas in a flow path of the combustion exhaust gas of the fuel containing a first reducing agent capable of reducing the specific substance; reducing the first reducing agent in the combustion exhaust gas at a position upstream of a supply position of the second reducing agent in the flow path; Equipped with
  • the supply amount of the reducing agent (second reducing agent) for reducing a specific substance in the combustion exhaust gas of a fuel containing the reducing agent (first reducing agent) is appropriately adjusted.
  • a simple exhaust gas treatment device, combustion equipment, and exhaust gas treatment method are provided.
  • FIG. 1 is a schematic diagram of a combustion facility according to an embodiment.
  • FIG. 1 is a schematic diagram of an exhaust gas treatment device according to an embodiment. Shows the relationship (calculation example) between the reaction amount in the first reducing agent reduction section (horizontal axis) and the coefficient of variation of the concentration ratio of ammonia and NOx at the position immediately after the second reducing agent supply section (vertical axis). It is a graph. It is a graph showing the relationship (calculation example) between the reaction amount in the first reducing agent reduction part (horizontal axis) and the concentration of NOx and ammonia in the chimney (vertical axis).
  • FIG. 1 is a schematic diagram of an exhaust gas treatment device according to an embodiment.
  • FIG. 1 is a schematic diagram of an exhaust gas treatment device according to an embodiment.
  • FIG. 1 is a schematic diagram of an example of combustion equipment to which an exhaust gas treatment device according to some embodiments is applied.
  • FIG. 2, FIG. 6, and FIG. 7 are each schematic diagrams of an exhaust gas treatment device according to one embodiment.
  • the combustion facility 1 includes a combustion device 100 (see FIG. 1) configured to combust a fuel that includes a first reducing agent (e.g., ammonia) capable of reducing a specific substance (e.g., NOx).
  • a first reducing agent e.g., ammonia
  • an exhaust gas treatment device 102 see FIG. 2 configured to treat combustion exhaust gas from the combustion device 100.
  • the combustion equipment 1 shown in FIG. 1 is a gas turbine combined cycle including a gas turbine equipment 2 including a combustor 12 as the above-mentioned combustion device 100, a steam turbine equipment 4, and a heat recovery steam generator (HRSG) 6. (GTCC) power generation equipment.
  • a gas turbine equipment 2 including a combustor 12 as the above-mentioned combustion device 100, a steam turbine equipment 4, and a heat recovery steam generator (HRSG) 6. (GTCC) power generation equipment.
  • GTCC heat recovery steam generator
  • the gas turbine equipment 2 includes a compressor 10, the above-mentioned combustor 12, and a turbine 14.
  • Compressor 10 is configured to compress air to produce compressed air.
  • the combustor 12 is configured to generate combustion gas through a combustion reaction between compressed air from the compressor 10 and fuel.
  • the turbine 14 is configured to be rotationally driven by combustion gas from the combustor 12.
  • a generator 18 is connected to the turbine 14 via a rotating shaft 16, and the rotational energy of the turbine 14 drives the generator 18 to generate electric power.
  • the combustion gas that has completed its work in the turbine 14 is discharged from the turbine 14 as combustion exhaust gas.
  • the exhaust heat recovery boiler 6 is configured to generate steam using the heat of the combustion exhaust gas from the gas turbine equipment 2. As shown in FIGS. 2, 6, and 7, the exhaust heat recovery boiler 6 includes a duct 30 (see FIG. 2) into which combustion exhaust gas from the gas turbine equipment 2 is introduced, and a combustion exhaust gas defined by the duct 30. It has heat exchanger tubes 34 and 36 provided in the flow path 32. Condensate from the condenser 26 of the steam turbine equipment 4 is introduced into the heat exchanger tubes 34 and 36, and in the heat exchanger tubes 34 and 36, the combustion exhaust gas flowing in the duct 30 and the condensate are combined. Steam is produced by heat exchange. The exhaust gas that has passed through the duct 30 of the exhaust heat recovery boiler 6 is discharged from a chimney 38.
  • the steam turbine equipment 4 includes a turbine 20 configured to be driven by steam from the exhaust heat recovery boiler 6.
  • a generator 24 is connected to the turbine 20 via a rotating shaft 22, and the rotational energy of the turbine 20 drives the generator 24 to generate electric power.
  • the steam that has completed its work in the turbine 20 is led to a condenser 26, where it is condensed to become condensed water, which is then supplied to the exhaust heat recovery boiler 6.
  • the fuel supplied to the combustion device 100 is a fuel containing a first reducing agent capable of reducing a specific substance.
  • the above-mentioned specific substance is a substance that can be included in the combustion exhaust gas of the fuel, and may be, for example, NOx (nitrogen oxides such as NO and NO 2 ).
  • the above-mentioned first reducing agent is a substance that has the effect of reducing NOx, and may include, for example, ammonia or urea. That is, the above-mentioned fuel may include ammonia or urea. Note that the above-mentioned fuel may contain components other than the first reducing agent (for example, carbon-containing fuel such as coal, oil, or natural gas).
  • the exhaust gas treatment device 102 includes a first reducing agent reducing section 50 and a second reducing agent supplying section, which are respectively provided in the flow path 32 through which the combustion exhaust gas from the combustion device 100 flows. 40.
  • the second reducing agent supply unit 40 is configured to supply the combustion exhaust gas with a second reducing agent for reducing specific substances (such as NOx) in the combustion exhaust gas.
  • a second reducing agent for reducing specific substances such as NOx
  • NOx specific substances
  • the second reducing agent supply unit 40 is configured to supply the combustion exhaust gas with a second reducing agent for reducing specific substances (such as NOx) in the combustion exhaust gas.
  • a second reducing agent for reducing specific substances such as NOx
  • NOx in the combustion exhaust gas can be decomposed into nitrogen and water by a reaction between NOx and the second reducing agent, thereby reducing NOx in the combustion exhaust gas.
  • the second reducing agent supply section 40 may include a nozzle 42 configured to spray a liquid or gas containing the second reducing agent into the flow path 32.
  • a liquid or gas containing the second reducing agent stored in the second reducing agent storage section 44 may be supplied to the nozzle 42 via the supply line 46.
  • the supply line 46 may be provided with a valve 48 for adjusting the amount of second reducing agent supplied via the second reducing agent supply section 40 .
  • the second reducing agent is a substance that has the effect of reducing NOx, and may include, for example, ammonia or urea.
  • the second reducing agent may be supplied to the combustion exhaust gas in the form of an aqueous solution (for example, aqueous ammonia or aqueous urea).
  • a mixer 51 may be provided downstream of the second reducing agent supply section 40 to promote mixing of the flue gas and the second reducing agent. By promoting the mixing of the combustion exhaust gas and the second reducing agent in the mixer, it is possible to promote the reaction between the specific substance in the combustion exhaust gas and the second reducing agent.
  • a second reduction catalyst 52 for promoting a reduction reaction with (the first reducing agent and/or the second reducing agent) may be provided in the flue gas flow path 32.
  • the second reduction catalyst 52 allows the specific substance in the combustion exhaust gas to react effectively with the reducing agent.
  • the second reduction catalyst may contain, for example, a metal or metal compound containing titanium, vanadium, tungsten, or molybdenum.
  • a plurality of second reduction catalysts 52 may be provided downstream of the second reducing agent supply section 40 in the combustion exhaust gas flow path 32.
  • the reducing agent in the flue gas (a A reducing agent decomposition catalyst 54 may be provided to promote the decomposition reaction of the first reducing agent and/or the second reducing agent.
  • the reducing agent decomposition catalyst 54 By providing the reducing agent decomposition catalyst 54, the reducing agent remaining in the combustion exhaust gas can be reduced downstream of the second reducing catalyst 52, and then the exhaust gas can be discharged through the chimney 38.
  • a specific substance (such as NOx) in the flue gas and a reducing agent (the first reducing agent and/or the second reducing agent) are placed downstream of the reducing agent decomposition catalyst 54.
  • a third reduction catalyst 53 may be provided to promote the reduction reaction with the oxidation agent).
  • the first reducing agent reducing section 50 is provided upstream of the second reducing agent supplying section 40 in the flue gas passage 32 and is configured to reduce the first reducing agent in the flue gas in the flue gas passage 32. Ru. Note that when the fuel is burned in the combustion device 100, a part of the first reducing agent contained in the fuel becomes an oxide (NOx when the first reducing agent is ammonia) due to a combustion reaction. The other part of the agent remains in the combustion exhaust gas as unburned matter without being combusted. That is, in the first reducing agent reduction unit 50, the unburned amount of the first reducing agent remaining in the combustion exhaust gas is reduced.
  • the first reducing agent reduction section includes a reducing agent decomposition catalyst for promoting a decomposition reaction of the first reducing agent.
  • the reducing agent decomposition catalyst may be a catalyst for promoting the oxidative decomposition reaction of the first reducing agent.
  • the unburned content of the first reducing agent contained in the combustion exhaust gas is decomposed by the reducing agent decomposition catalyst as the first reducing agent reduction unit 50 on the upstream side of the second reducing agent supply unit 40 in the combustion exhaust gas flow path 32.
  • the reducing agent decomposition catalyst may include a metal or metal compound including, for example, platinum, copper, iron, cobalt, palladium, iridium, nickel or ruthenium.
  • the first reducing agent reducing unit 50 includes a first reducing catalyst for promoting the reaction between the specific substance and the first reducing agent.
  • the first reducing catalyst as the first reducing agent reduction unit 50 identifies the unburned content of the first reducing agent contained in the combustion exhaust gas on the upstream side of the second reducing agent supply unit 40 in the combustion exhaust gas flow path 32. It can be reduced by consuming it in an acid reduction reaction with a substance.
  • the first reduction catalyst contains, for example, titanium, vanadium or tungsten, molybdenum, platinum, copper, iron, cobalt, palladium, iridium, nickel, and ruthenium. It may also contain metals or metal compounds.
  • the first reducing agent reduction section 50 includes a neutralizing agent supply section configured to supply a neutralizing agent to the flue gas to neutralize the first reducing agent.
  • a neutralizing agent supply section configured to supply a neutralizing agent to the flue gas to neutralize the first reducing agent.
  • the first reducing agent reduction unit 50 at least a portion of the first reducing agent in the combustion exhaust gas is removed. A part of the first reducing agent remaining in the combustion exhaust gas without being removed by the first reducing agent reducing unit 50 is converted into a specific component on the downstream side of the first reducing agent reducing unit 50 (for example, in the second reducing catalyst 52 described above). (NOx, etc.), or may be decomposed by the above-mentioned reducing agent decomposition catalyst 54.
  • the specific substance (such as NOx) in the combustion exhaust gas is removed.
  • a first reducing agent reduction section for reducing the first reducing agent in the combustion exhaust gas is provided upstream of the second reducing agent supply section 40 that supplies a second reducing agent (ammonia, etc.) for reducing NOx, etc.). 50 are provided.
  • the first reducing agent (unburned content) in the combustion exhaust gas is reduced on the upstream side of the second reducing agent supply section 40 in the combustion exhaust gas flow path 32.
  • the second reducing agent is supplied to the combustion exhaust gas with the unburned content of the first reducing agent reduced, for example, the amount of unburned content of the first reducing agent in the combustion exhaust gas does not have to be considered. It is also possible to easily adjust the supply amount of the second reducing agent. Alternatively, since the imbalance in the ratio of the first reducing agent and the specific substance (NH 3 /NOx, etc.) on the downstream side of the second reducing agent supply unit 40 is reduced (the variation in the ratio becomes smaller), the second reducing agent Easy to adjust the amount of agent supplied.
  • the supply amount of the reducing agent (second reducing agent) for reducing a specific substance in the combustion exhaust gas of the fuel containing the reducing agent (first reducing agent) can be appropriately adjusted. It's easy to do.
  • the first reducing agent reducing unit 50 may be provided upstream of the heat exchanger tubes 34 and 36 in the flue gas flow path 32, may be provided downstream of the heat exchanger tubes 34 and 36, or may be provided downstream of the heat exchanger tubes 34 and 36, or , as shown in FIGS. 2, 6, and 7, it may be provided between the heat exchanger tubes 34 and 36.
  • the second reducing agent supply section 40 may be provided only on the downstream side of the first reducing agent reduction section 50 in the flue gas flow path 32.
  • the first reducing agent reducing section 50 may be provided upstream of the most upstream one among the plurality of second reducing agent supply sections 40. That is, in this case, a reducing agent for reducing specific substances (such as NOx) in the combustion exhaust gas is not supplied to the upstream side of the first reducing agent reducing section 50 in the flow path 32.
  • the exhaust gas treatment device 102 may include a control device 60 for adjusting the amount of the second reducing agent supplied by the second reducing agent supply section 40.
  • the control device 60 may be configured to adjust the supply amount of the second reducing agent based on the concentration of a specific substance (such as NOx) in the combustion exhaust gas.
  • the control device 60 may be configured to adjust the supply amount of the second reducing agent based on the measurement result by the concentration measurement unit 62 or 64 for measuring the concentration of the specific substance in the combustion exhaust gas.
  • the concentration measuring section 62 is located downstream of the first reducing agent reducing section 50 in the flue gas flow path 32 and at the second reducing agent supplying section 40.
  • the device is configured to measure the concentration of a specific substance at a location upstream of the device.
  • the concentration measurement section 64 is configured to measure the concentration of the specific substance within the chimney 38 located downstream of the second reducing agent supply section 40 .
  • the control device 60 may be configured to adjust the opening degree of the valve 48 provided in the supply line 46 for supplying the second reducing agent in order to adjust the supply amount of the second reducing agent.
  • the control device 60 includes a computer equipped with a processor (CPU, GPU, etc.), a storage device (memory device; RAM, etc.), an auxiliary storage section, an interface, and the like.
  • the control device 60 is configured to receive a signal indicating a concentration measurement value from the concentration measurement section 62 or 64 via an interface.
  • the processor is configured to process the signals received in this manner.
  • the processor may calculate the opening degree command value to be given to the valve 48 based on the concentration measurement value by the concentration measurement section 62 or 64.
  • the control device 60 may be configured to give the calculated opening degree command value to an actuator for changing the opening degree of the valve 48.
  • the NOx concentration in the combustion exhaust gas can be measured using, for example, a chemiluminescent NOx meter (JIS B 7982), a non-dispersive infrared absorption method (NDIR method), or It can be measured according to JIS K 0104 by reduced naphthylethylenediamine spectrophotometry (Zn-NEDA method).
  • the concentration measuring section 62 or 64 may be configured to measure the NOx concentration using any one of these methods.
  • control device 60 controls the concentration of the specific substance on the downstream side of the first reducing agent reduction unit 50 and upstream side of the second reducing agent supply unit 40 in the flue gas flow path 32.
  • the second reducing agent supply unit 40 is configured to adjust the amount of the second reducing agent supplied. Note that the concentration of the specific substance in the combustion exhaust gas is measured by the concentration measurement unit 62 as the concentration of the specific substance downstream of the first reducing agent reduction unit 50 and upstream of the second reducing agent supply unit 40 in the flow path 32. Values may also be used.
  • the supply amount of the second reducing agent is adjusted based on the concentration of the specific substance downstream of the first reducing agent reduction unit 50 and upstream of the second reducing agent supply unit 40. It is possible to supply an appropriate amount of the second reducing agent capable of reducing specific substances in the combustion exhaust gas. Further, as described above, the first reducing agent reducing part 50 reduces the first reducing agent (unburned content) in the combustion exhaust gas on the upstream side of the second reducing agent supply part 40 in the flue gas flow path 32. Therefore, as in the present embodiment, the supply amount of the second reducing agent can be appropriately adjusted based on the concentration of the specific substance, regardless of the concentration of the first reducing agent in the flue gas flow path 32.
  • the control device 60 controls the concentration of the specific substance (e.g., multiple).
  • the second reducing agent may be configured to supply an amount (same amount) of the second reducing agent determined based on the average value at the position.
  • the second reducing agent supply unit 40 is configured to supply the second reducing agent to each of a plurality of positions within the cross section of the flow path 32.
  • the second reducing agent supply section 40 includes a plurality of nozzles 42 configured to supply the second reducing agent to each of a plurality of positions within the cross section of the flow path 32.
  • control device 60 may control the flow path 32 so that the concentration ratio of the second reducing agent and the specific substance at each of a plurality of positions in the cross section of the flow path 32 immediately after the second reducing agent supply section 40 is a predetermined ratio ( For example, the amount of the second reducing agent supplied by the second reducing agent supply section 40 may be adjusted so that the amount of the second reducing agent is a times the stoichiometric ratio. Note that when the specific substance is NOx and ammonia is used as the second reducing agent, the above concentration ratio is the concentration ratio of ammonia (NH 3 ) and NOx ([NH 3 ]/[NOx]). .
  • the concentration measurement section 62 is configured to measure the concentration of the specific substance at each of a plurality of positions within the cross section of the flow path 32
  • the second reducing agent supply section 40 is configured to measure the concentration of the specific substance at each of a plurality of positions within the cross section of the flow path 32.
  • the second reducing agent is supplied to each of a plurality of positions (a plurality of positions corresponding to the concentration measurement positions by the concentration measurement unit 62).
  • control device 60 controls whether the second reducing agent is controlled by the second reducing agent supply unit 40 based on the concentration of the specific substance in the chimney 38 from which the flue gas from the flue gas flow path 32 is discharged. configured to adjust the amount of supply. Note that as the concentration of the specific substance in the chimney 38, a measured value of the concentration of the specific substance in the combustion exhaust gas by the concentration measurement unit 64 may be used.
  • the amount of the second reducing agent supplied by the second reducing agent supply unit 40 is adjusted based on the concentration of the specific substance in the chimney 38 from which the combustion exhaust gas from the flow path 32 is discharged. Therefore, the concentration of the specific substance in the combustion exhaust gas discharged from the chimney 38 can be maintained within an appropriate range (for example, less than a regulation value).
  • FIG. 3 shows ammonia as the second reducing agent supplied by the second reducing agent supply section 40 and the position (concentration measurement) downstream of the first reducing agent reducing section 50 and upstream of the second reducing agent supply section 40.
  • Ammonia as the second reducing agent is supplied so that the ratio to the NOx concentration at the concentration measuring position by the section 62 becomes a predetermined value (here, the ratio of ammonia (second reducing agent) to NOx is 1:1).
  • 2 is a graph showing the relationship (calculation example) between the coefficient of variation (vertical axis) of the concentration ratio of NOx (total of two reducing agents) and NOx.
  • the amount of reaction in the first reducing agent reducing section indicates the proportion of NOx in the combustion exhaust gas that has reacted in the first reducing agent reducing section.
  • the amount of reaction is changed by adjusting the amount of catalyst in the first reducing agent reducing section.
  • the above-mentioned coefficient of variation is based on ammonia (the first reducing agent (unburnt) and the second It is a value obtained by dividing the standard deviation of the concentration ratio of NOx (total of reducing agents) and NOx by the average value, and is an index indicating the variation in the concentration ratio.
  • the graph shown in FIG. 3 shows that the larger the amount of reduction (that is, the amount of reaction with NOx) of unburned ammonia (unburned content of the first reducing agent) in the first reducing agent reducing section 50, the greater the This indicates that the variation in the concentration ratio of ammonia and NOx on the downstream side of the flow rate becomes smaller. That is, by reducing unburned ammonia in the first reducing agent reducing unit 50, the supply amount of the second reducing agent can be adjusted based on the concentration of NOx without using the concentration of unburned ammonia. It has been shown that variations in the concentration ratio of ammonia and NOx on the downstream side of the reducing agent supply section can be reduced.
  • the graph shown in FIG. 4 shows that the concentration of NOx and ammonia (NH 3 ) in the chimney 38 becomes smaller as the above-mentioned reaction amount becomes larger.
  • the first reducing agent reduction section 50 It has been shown that the NOx and ammonia concentrations in the combustion exhaust gas discharged from the combustion equipment 1 can be appropriately reduced based on the NOx concentration at a position downstream and upstream of the second reducing agent supply section.
  • FIG. 5 shows the unburned NH3 concentration/NOx concentration ratio (horizontal axis) on the upstream side of the first reducing agent reducing section 50 and the first reducing agent reducing section 50 under the same conditions as in FIGS. 3 and 4.
  • each numerical value is the average value of the concentration at multiple positions within the cross section of the flow path 32.
  • the horizontal axis in FIG. 5 indicates the magnitude of disturbance in the control of the ammonia supply amount by the second reducing agent supplying section 40. From the graph in FIG. It can be seen that the ratio (vertical axis) between the ammonia (unburned content of the first reducing agent) concentration and the ammonia (second reducing agent) supply amount on the upstream side of the reducing agent supply section 40 becomes smaller.
  • the exhaust gas treatment device (102) includes: A second reducing agent provided in the flow path (32) of the combustion exhaust gas of the fuel containing a first reducing agent (for example, ammonia) capable of reducing a specific substance (for example, NOx), and for reducing the specific substance in the combustion exhaust gas.
  • a second reducing agent supply section (40) for supplying an agent (for example, ammonia) to the combustion exhaust gas;
  • a first reducing agent reduction section (50) provided upstream of the second reducing agent supply section in the flow path and configured to reduce the first reducing agent in the combustion exhaust gas; Equipped with
  • the specific substance in the combustion exhaust gas is Upstream of the second reducing agent supply section that supplies the second reducing agent (ammonia, etc.) for reducing (NOx, etc.), a first reducing agent reducing section for reducing the first reducing agent in the combustion exhaust gas. is provided.
  • the first reducing agent (unburned content) in the combustion exhaust gas is reduced on the upstream side of the second reducing agent supply section in the combustion exhaust gas flow path.
  • the second reducing agent is supplied to the combustion exhaust gas with the unburned content of the first reducing agent reduced, for example, the amount of unburned content of the first reducing agent in the combustion exhaust gas does not have to be considered. It is also possible to easily adjust the supply amount of the second reducing agent. Alternatively, since the imbalance in the ratio of the first reducing agent and the specific substance (NH 3 /NOx, etc.) on the downstream side of the second reducing agent supply section is reduced (the variation in the ratio becomes smaller), the second reducing agent It is easy to adjust the supply amount. As described above, according to the configuration (1) above, the supply amount of the reducing agent (second reducing agent) for reducing a specific substance in the combustion exhaust gas of the fuel containing the reducing agent (first reducing agent) can be appropriately controlled. Easy to adjust.
  • the second reducing agent supply section is provided only on the downstream side of the first reducing agent reducing section in the flow path.
  • the second reducing agent supply section is provided only downstream of the first reducing agent reduction section, the specific substance in the combustion exhaust gas of the fuel containing the reducing agent (first reducing agent) It is easier to more appropriately adjust the supply amount of the reducing agent (second reducing agent) for reducing .
  • the first reducing agent reducing section includes a reducing agent decomposition catalyst for promoting an oxidative decomposition reaction of the first reducing agent.
  • the first reducing agent reduction section includes a reducing agent decomposition catalyst that promotes the oxidative decomposition reaction of the first reducing agent, so that the second reducing agent supply section in the flue gas flow path is On the upstream side, unburned components of the first reducing agent contained in the combustion exhaust gas can be decomposed and reduced. Therefore, as described in (1) above, the supply amount of the reducing agent (second reducing agent) for reducing specific substances in the combustion exhaust gas of the fuel containing the reducing agent (first reducing agent) can be appropriately adjusted. It's easy to do.
  • the first reducing agent reducing section includes a reducing agent decomposition catalyst for promoting a decomposition reaction of the first reducing agent.
  • the first reducing agent reduction section includes a reducing agent decomposition catalyst that promotes the decomposition reaction of the first reducing agent, so that the second reducing agent supply section in the flue gas flow path is On the upstream side, unburned components of the first reducing agent contained in the combustion exhaust gas can be decomposed and reduced. Therefore, as described in (1) above, the supply amount of the reducing agent (second reducing agent) for reducing specific substances in the combustion exhaust gas of the fuel containing the reducing agent (first reducing agent) can be appropriately adjusted. It's easy to do.
  • the first reducing agent reducing unit includes a first reducing catalyst for promoting a reaction between the specific substance and the first reducing agent.
  • the first reducing agent reducing section includes the first reducing catalyst that promotes the reaction between the above-mentioned specific substance and the first reducing agent.
  • the unburned content of the first reducing agent contained in the combustion exhaust gas can be reduced by an oxidation-reduction reaction with the above-mentioned specific substance. Therefore, as described in (1) above, the supply amount of the reducing agent (second reducing agent) for reducing specific substances in the combustion exhaust gas of the fuel containing the reducing agent (first reducing agent) can be appropriately adjusted. It's easy to do.
  • the first reducing agent reducing section includes a neutralizing agent supply section configured to supply a neutralizing agent for neutralizing the first reducing agent to the combustion exhaust gas.
  • the first reducing agent reduction section includes the neutralizing agent supply section configured to supply a neutralizing agent for neutralizing the first reducing agent, so that the combustion On the upstream side of the second reducing agent supply section in the exhaust gas flow path, the unburned content of the first reducing agent contained in the combustion exhaust gas can be reduced by a neutralization reaction with a neutralizing agent. Therefore, as described in (1) above, the supply amount of the reducing agent (second reducing agent) for reducing specific substances in the combustion exhaust gas of the fuel containing the reducing agent (first reducing agent) can be appropriately adjusted. It's easy to do.
  • the specific substance includes nitrogen oxide.
  • the flow path for reducing the nitrogen oxides (NOx) in the flue gas is A first reducing agent reducing section for reducing the first reducing agent in the combustion exhaust gas is provided upstream of the second reducing agent supply section that supplies the second reducing agent. Therefore, as stated in (1) above, the supply amount of the reducing agent (second reducing agent) for reducing nitrogen oxides (NOx) in the combustion exhaust gas of the fuel containing the reducing agent (first reducing agent) Easy to adjust appropriately.
  • At least one of the first reducing agent and the second reducing agent contains ammonia or urea.
  • At least one of the first reducing agent and the second reducing agent contains ammonia or urea. Therefore, by using ammonia or urea as the first reducing agent or the second reducing agent, nitrogen oxides in the combustion exhaust gas can be reduced. Therefore, as stated in (1) above, a reducing agent (second reducing agent) is supplied to reduce nitrogen oxides (NOx) in the combustion exhaust gas of fuel containing the reducing agent (first reducing agent). Easy to adjust the amount appropriately.
  • the exhaust gas treatment device includes: A second reduction catalyst (52) is provided downstream of the second reducing agent supply section in the flow path to promote the reduction reaction of the specific substance.
  • the second reduction catalyst for promoting the reduction reaction of the specific substance is provided downstream of the second reducing agent supply section, the specific substance contained in the combustion exhaust gas is By reducing the residual amount of the first reducing agent and the second reducing agent by reaction with the second reducing catalyst, the specific substance in the combustion exhaust gas can be effectively reduced.
  • the exhaust gas treatment device includes: supply of the second reducing agent by the second reducing agent supply unit based on the concentration of the specific substance on the downstream side of the first reducing agent reducing unit and upstream side of the second reducing agent supply unit in the flow path; A control device (60) configured to adjust the amount is provided.
  • the supply amount of the second reducing agent is adjusted based on the concentration of the specific substance on the downstream side of the first reducing agent reduction section and on the upstream side of the second reducing agent supply section. Therefore, it is possible to supply an appropriate amount of the second reducing agent capable of reducing specific substances in the combustion exhaust gas. Further, according to the configuration (8) above, as described in (1) above, the first reducing agent (unburnt Therefore, it is relatively easy to adjust the supply amount of the second reducing agent by the control device.
  • the exhaust gas treatment device includes: A control device configured to adjust the amount of the second reducing agent supplied by the second reducing agent supply unit based on the concentration of the specific substance in a chimney from which the combustion exhaust gas from the flow path is discharged. (60).
  • the amount of the second reducing agent supplied by the second reducing agent supply section is adjusted based on the concentration of the specific substance in the chimney from which the combustion exhaust gas from the flow path is discharged. Therefore, the concentration of the specific substance in the combustion exhaust gas discharged from the chimney can be maintained within an appropriate range (for example, below a regulatory value).
  • the combustion equipment (1) includes: a combustion device (100) configured to burn fuel containing a first reducing agent capable of reducing a specific substance;
  • the exhaust gas treatment device (102) according to any one of (1) to (9) above, configured to treat combustion exhaust gas of the fuel from the combustion device; Equipped with
  • the specific substance in the combustion exhaust gas is Upstream of the second reducing agent supply section that supplies the second reducing agent (ammonia, etc.) for reducing (NOx, etc.), a first reducing agent reducing section for reducing the first reducing agent in the combustion exhaust gas. is provided.
  • the first reducing agent (unburned content) in the combustion exhaust gas is reduced on the upstream side of the second reducing agent supply section in the combustion exhaust gas flow path.
  • the second reducing agent is supplied to the combustion exhaust gas with the unburned content of the first reducing agent reduced, for example, the amount of unburned content of the first reducing agent in the combustion exhaust gas does not have to be considered. It is also possible to easily adjust the supply amount of the second reducing agent. Alternatively, since the imbalance in the ratio of the first reducing agent and the specific substance (NH 3 /NOx, etc.) on the downstream side of the second reducing agent supply section is reduced (the variation in the ratio becomes smaller), the second reducing agent It is easy to adjust the supply amount. As described above, according to the configuration (1) above, the supply amount of the reducing agent (second reducing agent) for reducing a specific substance in the combustion exhaust gas of the fuel containing the reducing agent (first reducing agent) can be appropriately controlled. Easy to adjust.
  • the exhaust gas treatment method includes: supplying a second reducing agent for reducing the specific substance in the combustion exhaust gas to the combustion exhaust gas in a fuel combustion exhaust gas flow path (32) containing a first reducing agent capable of reducing the specific substance; reducing the first reducing agent in the combustion exhaust gas at a position upstream of a supply position of the second reducing agent in the flow path; Equipped with
  • the specific substance in the combustion exhaust gas is The first reducing agent in the combustion exhaust gas is reduced at a position upstream from a position where a second reducing agent (ammonia, etc.) for reducing (NOx, etc.) is supplied. Thereby, the first reducing agent (unburned content) in the combustion exhaust gas is reduced on the upstream side of the supply position of the second reducing agent in the flue gas flow path.
  • the second reducing agent is supplied to the combustion exhaust gas with the unburned content of the first reducing agent reduced, for example, the amount of unburned content of the first reducing agent in the combustion exhaust gas does not have to be considered. It is also possible to easily adjust the supply amount of the second reducing agent. Alternatively, since the imbalance in the ratio of the first reducing agent to the specific substance (NH 3 /NOx, etc.) downstream of the second reducing agent supply position is reduced (the variation in the ratio becomes smaller), the second reducing agent is Easy to adjust the amount of agent supplied. As described above, according to the method (11) above, the supply amount of the reducing agent (second reducing agent) for reducing the specific substance in the combustion exhaust gas of the fuel containing the reducing agent (first reducing agent) can be appropriately controlled. Easy to adjust.
  • expressions expressing shapes such as a square shape or a cylindrical shape do not only mean shapes such as a square shape or a cylindrical shape in a strict geometric sense, but also within the range where the same effect can be obtained. , shall also represent shapes including uneven parts, chamfered parts, etc.
  • the expressions "comprising,””including,” or “having" one component are not exclusive expressions that exclude the presence of other components.

Landscapes

  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chimneys And Flues (AREA)
  • Treating Waste Gases (AREA)
  • Incineration Of Waste (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

排ガス処理装置は、特定物質を還元可能な第1還元剤を含む燃料の燃焼排ガスの流路に設けられ、前記燃焼排ガス中の前記特定物質を還元するための第2還元剤を前記燃焼排ガスに供給するための第2還元剤供給部と、前記流路において前記第2還元剤供給部の上流側に設けられ、前記燃焼排ガス中の前記第1還元剤を低減するための第1還元剤低減部と、を備える。

Description

排ガス処理装置、燃焼設備及び排ガス処理方法
 本開示は、排ガス処理装置、燃焼設備及び排ガス処理方法に関する。
 本願は、2022年4月25日に日本国特許庁に出願された特願2022-071408号に基づき優先権を主張し、その内容をここに援用する。
 発電用ボイラ、ガスタービンおよび燃焼炉等の燃焼設備からの燃焼排ガスに含まれる特定物質(例えば窒素酸化物(NOx))を、触媒の存在下で還元剤を用いて無害な物質(窒素酸化物の場合は窒素および水)に分解して除去又は低減することがある。
 例えば特許文献1には、排ガスの流路に窒素酸化物の還元反応を促進する触媒層を設け、該触媒層の上流で排ガスにアンモニアを添加することで、触媒層にて排ガス中の窒素酸化物をアンモニアとの反応により還元して分解することが記載されている。
特開2009-545437号公報
 従来の化石燃料(石炭、石油又は天然ガス等)の燃焼排ガスに含まれるNOxを低減する排ガス処理においては、NOxを還元するための還元剤の供給量は、燃焼排ガスの流路におけるNOx濃度に基づいて適切に調節することができる。
 一方、特定物質(NOx等)を還元する作用を有する還元剤(アンモニア等)を含む燃料の場合、燃料の燃焼排ガス中には、上述の還元剤の未燃分が含まれる。この還元剤(第1還元剤)の未燃分は、特定物質(NOx等)を還元する作用を有するため、燃焼排ガス中の特定物質(NOx等)を還元するために供給される還元剤(第2還元剤)の供給量の制御の外乱となる。あるいは、燃焼排ガス中における還元剤(第1還元剤)の未燃分の流路断面内における濃度には分布(ばらつき)があるため、燃焼排ガス中における還元剤とNOxとの比のアンバランスが発生しやすい。このため、還元剤(第2還元剤)の供給量の調節が容易ではない。
 上述の事情に鑑みて、本発明の少なくとも一実施形態は、還元剤(第1還元剤)を含む燃料の燃焼排ガス中の特定物質を還元するための還元剤(第2還元剤)の供給量を適切に調節しやすい排ガス処理装置、燃焼設備及び排ガス処理方法を提供することを目的とする。
 本発明の少なくとも一実施形態に係る排ガス処理装置は、
 特定物質を還元可能な第1還元剤を含む燃料の燃焼排ガスの流路に設けられ、前記燃焼排ガス中の前記特定物質を還元するための第2還元剤を前記燃焼排ガスに供給するための第2還元剤供給部と、
 前記流路において前記第2還元剤供給部の上流側に設けられ、前記燃焼排ガス中の前記第1還元剤を低減するための第1還元剤低減部と、
を備える。
 また、本発明の少なくとも一実施形態に係る燃焼設備は、
 特定物質を還元可能な第1還元剤を含む燃料を燃焼させるように構成された燃焼装置と、
 前記燃焼装置からの前記燃料の燃焼排ガスを処理するように構成された上述の排ガス処理装置と、
を備える。
 また、本発明の少なくとも一実施形態に係る排ガス処理方法は、
 特定物質を還元可能な第1還元剤を含む燃料の燃焼排ガスの流路において前記燃焼排ガス中の前記特定物質を還元するための第2還元剤を前記燃焼排ガスに供給するステップと、
 前記流路における前記第2還元剤の供給位置よりも上流側の位置で前記燃焼排ガス中の前記第1還元剤を低減するステップと、
を備える。
 本発明の少なくとも一実施形態によれば、還元剤(第1還元剤)を含む燃料の燃焼排ガス中の特定物質を還元するための還元剤(第2還元剤)の供給量を適切に調節しやすい排ガス処理装置、燃焼設備及び排ガス処理方法が提供される。
一実施形態に係る燃焼設備の概略図である。 一実施形態に係る排ガス処理装置の概略図である。 第1還元剤低減部での反応量(横軸)と、第2還元剤供給部の直後の位置におけるアンモニアとNOxとの濃度比の変動係数(縦軸)との関係(計算例)を示すグラフである。 第1還元剤低減部での反応量(横軸)と、煙突内におけるNOx及びアンモニアの濃度(縦軸)との関係(計算例)を示すグラフである。 第1還元剤低減部の上流側での未燃NH3濃度平均/NOx濃度平均比(横軸)と、第1還元剤低減部の下流側かつ第2還元剤供給部の上流側でのアンモニア濃度と第2還元剤供給部でのアンモニア供給量(濃度)との比(縦軸)の関係(計算例)を示す図である。 一実施形態に係る排ガス処理装置の概略図である。 一実施形態に係る排ガス処理装置の概略図である。
 以下、添付図面を参照して本発明の幾つかの実施形態について説明する。ただし、実施形態として記載されている又は図面に示されている構成部品の寸法、材質、形状、その相対的配置等は、本発明の範囲をこれに限定する趣旨ではなく、単なる説明例にすぎない。
(燃焼設備の構成)
 図1は、幾つかの実施形態に係る排ガス処理装置が適用される燃焼設備の一例の概略図である。図2、図6及び図7は、それぞれ、一実施形態に係る排ガス処理装置の概略図である。幾つかの実施形態では、燃焼設備1は、特定物質(例えばNOx)を還元可能な第1還元剤(例えばアンモニア)を含む燃料を燃焼させるように構成された燃焼装置100(図1参照)と、燃焼装置100からの燃焼排ガスを処理するように構成された排ガス処理装置102(図2参照)と、を備える。
 図1に示す燃焼設備1は、上述の燃焼装置100としての燃焼器12を含むガスタービン設備2と、蒸気タービン設備4と、排熱回収ボイラ(HRSG)6と、を備えたガスタービン複合サイクル(GTCC)発電設備である。
 ガスタービン設備2は、圧縮機10と、上述の燃焼器12と、タービン14と、を備える。圧縮機10は、空気を圧縮して圧縮空気を生成するように構成される。燃焼器12は、圧縮機10からの圧縮空気と燃料との燃焼反応により燃焼ガスを発生させるように構成される。タービン14は、燃焼器12からの燃焼ガスにより回転駆動されるように構成される。タービン14には回転シャフト16を介して発電機18が連結されており、タービン14の回転エネルギーによって発電機18が駆動されて電力が生成されるようになっている。タービン14で仕事を終えた燃焼ガスは、燃焼排ガスとしてタービン14から排出されるようになっている。
 排熱回収ボイラ6は、ガスタービン設備2からの燃焼排ガスの熱によって、蒸気を生成するように構成される。図2、図6及び図7に示すように、排熱回収ボイラ6は、ガスタービン設備2からの燃焼排ガスが導入されるダクト30(図2参照)と、ダクト30によって画定される燃焼排ガスの流路32に設けられた伝熱管34,36と、を有する。伝熱管34,36には、蒸気タービン設備4の復水器26からの復水が導入されるようになっており、伝熱管34,36において、ダクト30内を流れる燃焼排ガスと復水との熱交換により、蒸気が生成されるようになっている。排熱回収ボイラ6のダクト30内を通過した排ガスは、煙突38から排出されるようになっている。
 蒸気タービン設備4は、排熱回収ボイラ6からの蒸気によって駆動されるように構成されたタービン20を備える。タービン20には回転シャフト22を介して発電機24が連結されており、タービン20の回転エネルギーによって発電機24が駆動されて電力が生成されるようになっている。タービン20で仕事を終えた蒸気は復水器26に導かれ、該復水器26で凝縮されて復水となり、排熱回収ボイラ6に供給される。
 燃焼装置100(上述の実施形態ではガスタービン設備2の燃焼器12)に供給される燃料は、特定物質を還元可能な第1還元剤を含む燃料である。
 上述の特定物質は、燃料の燃焼排ガスに含まれ得る物質であり、例えばNOx(NOやNO等の窒素酸化物)であってもよい。
 特定物質がNOxである場合、上述の第1還元剤は、NOxを還元する作用を有する物質であり、例えば、アンモニア又は尿素を含んでもよい。すなわち、上述の燃料は、アンモニア又は尿素を含んでもよい。なお、上述の燃料は、第1還元剤以外の成分(例えば、石炭、石油又は天然ガス等の炭素含有燃料)を含んでもよい。
(排ガス処理装置の構成)
 図2、図6及び図7に示すように、排ガス処理装置102は、燃焼装置100からの燃焼排ガスが流れる流路32にそれぞれ設けられる第1還元剤低減部50と、第2還元剤供給部40と、を備える。
 第2還元剤供給部40は、燃焼排ガス中の特定物質(NOx等)を還元するための第2還元剤を前記燃焼排ガスに供給するように構成される。特定物質を含む燃焼排ガスに第2還元剤を供給することで、燃焼排ガス中の特定物質を還元することができ、これにより、煙突38から排出される燃焼排ガス中の特定物質を低減することができる。例えば、特定物質がNOxである場合は、NOxと第2還元剤との反応により燃焼排ガス中のNOxを窒素及び水に分解して、燃焼排ガス中のNOxを低減することができる。
 図2、図6及び図7に示すように、第2還元剤供給部40は、第2還元剤を含む液体又は気体を流路32に噴出するように構成されたノズル42を含んでもよい。ノズル42には、第2還元剤貯留部44に貯留された第2還元剤を含む液体又は気体が、供給ライン46を介して供給されるようになっていてもよい。供給ライン46には、第2還元剤供給部40を介した第2還元剤の供給量を調節するためのバルブ48が設けられていてもよい。
 特定物質がNOxである場合、第2還元剤は、NOxを還元する作用を有する物質であり、例えば、アンモニア又は尿素を含んでもよい。第2還元剤は、水溶液(例えばアンモニア水や尿素水)の形で燃焼排ガスに供給されてもよい。
 燃焼排ガスの流路32において、第2還元剤供給部40の下流側には、燃焼排ガスと第2還元剤との混合を促進するための混合器51が設けられてもよい。混合器にて燃焼排ガスと第2還元剤との混合を促進することで、燃焼排ガス中の特定物質と、第2還元剤との反応を促進することができる。
 また、図2、図6及び図7に示すように、燃焼排ガスの流路32において、第2還元剤供給部40の下流側には、燃焼排ガス中の特定物質(NOx等)と、還元剤(第1還元剤及び/又は第2還元剤)との還元反応を促進するための第2還元触媒52が設けられてもよい。第2還元触媒52を設けることで、燃焼排ガス中の特定物質と還元剤とを効果的に反応させることができる。特定物質がNOxであり、還元剤がアンモニア又は尿素を含む場合、第2還元触媒は、例えば、チタン、バナジウム又はタングステン、モリブデンを含む金属又は金属化合物を含んでもよい。図7に示すように、燃焼排ガスの流路32において、第2還元剤供給部40の下流側には、複数の第2還元触媒52が設けられてもよい。
 また、図2、図6及び図7に示すように、燃焼排ガスの流路32において、第2還元剤供給部40及び第2還元触媒52の下流側には、燃焼排ガス中の還元剤(第1還元剤及び/又は第2還元剤)の分解反応を促進するための還元剤分解触媒54が設けられてもよい。還元剤分解触媒54を設けることで、第2還元触媒52の下流側で燃焼排ガス中に残存する還元剤を低減させてから、煙突38を介して排ガスを排出することができる。図6に示すように、燃焼排ガスの流路32において、還元剤分解触媒54の下流側に、燃焼排ガス中の特定物質(NOx等)と、還元剤(第1還元剤及び/又は第2還元剤)との還元反応を促進するための第3還元触媒53が設けられていてもよい。
 第1還元剤低減部50は、燃焼排ガスの流路32において第2還元剤供給部40の上流側に設けられ、流路32内の燃焼排ガス中の第1還元剤を低減するように構成される。なお、燃焼装置100で燃料が燃焼されるときに、燃料に含まれる第1還元剤の一部は燃焼反応により酸化物(第1還元剤がアンモニアの場合はNOx)となるが、第1還元剤の他の一部は、燃焼されずに未燃分として燃焼排ガス中に残存する。すなわち、第1還元剤低減部50では、燃焼排ガス中に残存する第1還元剤の未燃分が低減される。
 幾つかの実施形態では、第1還元剤低減部は、第1還元剤の分解反応を促進するための還元剤分解触媒を含む。還元剤分解触媒は、第1還元剤の酸化分解反応を促進するための触媒であってもよい。第1還元剤低減部50としての還元剤分解触媒により、燃焼排ガスの流路32における第2還元剤供給部40の上流側にて、燃焼排ガスに含まれる第1還元剤の未燃分を分解させて低減することができる。還元剤がアンモニア又は尿素を含む場合、還元剤分解触媒は、例えば、白金、銅、鉄、コバルト、パラジウム、イリジウム、ニッケル又はルテニウムを含む金属又は金属化合物を含んでもよい。
 幾つかの実施形態では、第1還元剤低減部50は、特定物質と第1還元剤との反応を促進するための第1還元触媒を含む。第1還元剤低減部50としての第1還元触媒により、燃焼排ガスの流路32における第2還元剤供給部40の上流側にて、燃焼排ガスに含まれる第1還元剤の未燃分を特定物質との酸還元反応で消費することにより低減することができる。特定物質がNOxであり、還元剤がアンモニア又は尿素を含む場合、第1還元触媒は、例えば、チタン、バナジウム又はタングステン、モリブデン、白金、銅、鉄、コバルト、パラジウム、イリジウム、ニッケル、ルテニウムを含む金属又は金属化合物を含んでもよい。
 幾つかの実施形態では、第1還元剤低減部50は、第1還元剤を中和するための中和剤を燃焼排ガスに供給するように構成された中和剤供給部を含む。第1還元剤低減部50としての中和剤供給部により中和剤を供給することで、燃焼排ガスの流路32における第2還元剤供給部40の上流側にて、燃焼排ガスに含まれる第1還元剤の未燃分を中和剤との中和反応で消費することにより低減することができる。還元剤がアンモニア又は尿素を含む場合、上述の中和剤は、例えば、三酸化硫黄(SO)又は硫酸等を含んでもよい。
 なお、第1還元剤低減部50では、燃焼排ガス中の第1還元剤の少なくとも一部が除去される。第1還元剤低減部50で除去されずに燃焼排ガス中に残る第1還元剤の一部は、第1還元剤低減部50の下流側において(例えば上述の第2還元触媒52において)特定成分(NOx等)との還元反応に消費されてもよく、あるいは、上述の還元剤分解触媒54にて分解されてもよい。
 上述の実施形態によれば、特定物質(NOx等)を還元可能な第1還元剤(アンモニア(NH)等)を含む燃料の燃焼排ガスの流路32において、燃焼排ガス中の該特定物質(NOx等)を還元するための第2還元剤(アンモニア等)を供給する第2還元剤供給部40の上流側に、燃焼排ガス中の第1還元剤を低減するための第1還元剤低減部50が設けられる。これにより、燃焼排ガスの流路32における第2還元剤供給部40の上流側にて、燃焼排ガス中の第1還元剤(未燃分)が低減される。したがって、第1還元剤の未燃分が低減された状態で燃焼排ガスに第2還元剤が供給されるので、例えば、燃焼排ガス中の第1還元剤の未燃分の量を考慮しなくても第2還元剤の供給量を調節可能となる等、第2還元剤の供給量の調節がしやすい。あるいは、第2還元剤供給部40の下流側における第1還元剤と特定物質の比(NH/NOx等)のアンバランスが低減される(当該比のばらつきが小さくなる)ので、第2還元剤の供給量の調節がしやすい。このように、上述の実施形態によれば、還元剤(第1還元剤)を含む燃料の燃焼排ガス中の特定物質を還元するための還元剤(第2還元剤)の供給量を適切に調節しやすい。
 なお、第1還元剤低減部50は、燃焼排ガスの流路32において、伝熱管34,36の上流側に設けられてもよく、伝熱管34,36の下流側に設けられてもよく、あるいは、図2、図6及び図7に示すように、伝熱管34と伝熱管36との間に設けられてもよい。
 なお、第2還元剤供給部40は、燃焼排ガスの流路32において第1還元剤低減部50の下流側にのみ設けられてもよい。言い換えると、第1還元剤低減部50は、複数の第2還元剤供給部40のうち、最も上流のものより上流に設けられてもよい。即ち、この場合、流路32において第1還元剤低減部50の上流側では、燃焼排ガス中の特定物質(NOx等)を還元するための還元剤が供給されない。
 図2、図6及び図7に示すように、排ガス処理装置102は、第2還元剤供給部40による第2還元剤の供給量を調節するための制御装置60を備えてもよい。制御装置60は、燃焼排ガス中の特定物質(NOx等)の濃度に基づいて第2還元剤の供給量を調節するように構成されてもよい。
 制御装置60は、燃焼排ガス中の特定物質の濃度を計測するための濃度計測部62又は64による計測結果に基づいて、第2還元剤の供給量を調節するように構成されてもよい。図2、図6及び図7に示す例示的な実施形態において、濃度計測部62は、燃焼排ガスの流路32における第1還元剤低減部50の下流側、かつ、第2還元剤供給部40の上流側の位置での特定物質の濃度を計測するように構成される。また、濃度計測部64は、第2還元剤供給部40よりも下流側に位置する煙突38内での特定物質の濃度を計測するように構成される。
 制御装置60は、第2還元剤の供給量を調節するために、第2還元剤を供給するための供給ライン46に設けられたバルブ48の開度を調節するように構成されてもよい。
 制御装置60は、プロセッサ(CPU又はGPU等)、記憶装置(メモリデバイス;RAM等)、補助記憶部及びインターフェース等を備えた計算機を含む。制御装置60は、インターフェースを介して、濃度計測部62又は64からの濃度計測値を示す信号を受け取るようになっている。プロセッサは、このようにして受け取った信号を処理するように構成される。プロセッサは、濃度計測部62又は64による濃度計測値に基づいて、バルブ48に与える開度指令値を算出するようになっていてもよい。制御装置60は、算出された開度指令値を、バルブ48の開度を変更するためのアクチュエータに与えるようになっていてもよい。
 なお、上述の特定物質がNOxである場合、燃焼排ガス中のNOx濃度は、例えば、化学発光方式NOx計(JIS B 7982)、非分散形赤外線吸収法(NDIR法)を用いて、又は、亜鉛還元ナフチルエチレンジアミン吸光光度法(Zn-NEDA法)により、JIS K 0104に従って計測することができる。濃度計測部62又は64は、これらのうち何れかの手法を用いてNOx濃度を計測するように構成されてもよい。
 幾つかの実施形態では、制御装置60は、燃焼排ガスの流路32における第1還元剤低減部50の下流側かつ第2還元剤供給部40の上流側における特定物質の濃度に基づいて、第2還元剤供給部40による第2還元剤の供給量を調節するように構成される。なお、流路32における第1還元剤低減部50の下流側かつ第2還元剤供給部40の上流側での特定物質の濃度として、濃度計測部62による燃焼排ガス中の特定物質の濃度の計測値を用いてもよい。
 上述の実施形態では、第1還元剤低減部50の下流側かつ第2還元剤供給部40の上流側における特定物質の濃度に基づいて第2還元剤の供給量を調節するようにしたので、燃焼排ガス中の特定物質を低減可能な適切な量の第2還元剤を供給することができる。また上述したように、第1還元剤低減部50により、燃焼排ガスの流路32における第2還元剤供給部40の上流側にて燃焼排ガス中の第1還元剤(未燃分)が低減されるので、本実施形態のように、燃焼排ガスの流路32における第1還元剤の濃度によらず、特定物質の濃度に基づいて第2還元剤の供給量を適切に調節することができる。
 例えば、制御装置60は、流路32の断面内の複数位置の各々において、第1還元剤低減部50の下流側かつ第2還元剤供給部40の上流側における特定物質の濃度(例えば、複数位置における平均値)に基づいて決定される量(同量)の第2還元剤を供給するように構成されてもよい。この場合、第2還元剤供給部40は、流路32の断面内の複数位置の各々に第2還元剤を供給するように構成される。例えば、第2還元剤供給部40は、流路32の断面内の複数位置の各々に第2還元剤を供給するように構成された複数のノズル42を含む。
 あるいは、制御装置60は、流路32にて第2還元剤供給部40の直後における流路32の断面内の複数位置の各々における第2還元剤と特定物質の濃度の比が所定の比(例えば化学量論比のa倍等)となるように、第2還元剤供給部40による第2還元剤の供給量を調節するように構成されてもよい。なお、特定物質がNOxであり、第2還元剤としてアンモニアを使用する場合、上述の濃度の比は、アンモニア(NH)とNOxとの濃度比([NH]/[NOx])である。この場合、濃度計測部62は、流路32の断面内の複数位置の各々における特定物質の濃度を計測するように構成されるとともに、第2還元剤供給部40は、流路32の断面内の複数位置(濃度計測部62による濃度計測位置に対応する複数の位置)の各々に第2還元剤を供給するように構成される。
 幾つかの実施形態では、制御装置60は、燃焼排ガスの流路32からの燃焼排ガスが排出される煙突38内における特定物質の濃度に基づいて、第2還元剤供給部40による第2還元剤の供給量を調節するように構成される。なお、煙突38内における特定物質の濃度として、濃度計測部64による燃焼排ガス中の特定物質の濃度の計測値を用いてもよい。
 上述の実施形態によれば、流路32からの燃焼排ガスが排出される煙突38内における特定物質の濃度に基づいて、第2還元剤供給部40による第2還元剤の供給量を調節するようにしたので、煙突38から排出される燃焼排ガス中の特定物質の濃度を適正範囲内(例えば規制値未満等)に維持することができる。
 以下、幾つかの実施形態に係る排ガス処理装置により得られる効果について、グラフに基づき説明する。以下の説明では、図2に示す排ガス処理装置において、第1還元剤としてのアンモニアを含む燃料の燃焼排ガスが流路32に導入され、該燃焼排ガスには特定物質としてのNOxが含まれ、第1還元剤低減部50としてアンモニア分解触媒が用いられ、第2還元剤としてアンモニアが用いられることを前提とする。
 図3は、第2還元剤供給部40で供給される第2還元剤としてのアンモニアと、第1還元剤低減部50の下流側かつ第2還元剤供給部40の上流側の位置(濃度計測部62による濃度計測位置)でのNOx濃度との比が所定値(ここではアンモニア(第2還元剤)とNOxの比が1:1)になるように、第2還元剤としてのアンモニアを供給した場合の、第1還元剤低減部50での反応量(横軸)と、第2還元剤供給部40の直後(下流側)の位置におけるアンモニア(第1還元剤(未燃分)と第2還元剤の合計)とNOxとの濃度比の変動係数(縦軸)との関係(計算例)を示すグラフである。ここで、第1還元剤低減部での反応量は、第1還元剤低減部において燃焼排ガス中のNOxが反応した割合を示すものである。反応量は、第1還元剤低減部の触媒量を調節することにより変更されるものである。上述の変動係数は、第2還元剤供給部40の下流側かる第2還元触媒52の上流側の流路32断面内の複数の位置におけるアンモニア(第1還元剤(未燃分)と第2還元剤の合計)とNOxとの濃度比の標準偏差を平均値で除して得られる値であり、当該濃度比のばらつきを示す指標である。
 図4は、図3の場合と同様の条件において、上述の反応量(横軸)と、煙突38内におけるNOx及びアンモニアの濃度(流路断面における複数位置での濃度の平均値)(縦軸)との関係(計算例)を示すグラフである。
 図3に示すグラフは、第1還元剤低減部50での未燃アンモニア(第1還元剤の未燃分)の低減量(すなわちNOxとの反応量)が大きいほど、第2還元剤供給部の下流側におけるアンモニアとNOxとの濃度比のばらつきが小さくなることを示している。すなわち、第1還元剤低減部50で未燃アンモニアを低減させることにより、未燃アンモニアの濃度を用いなくても、NOxの濃度に基づいて第2還元剤の供給量を調節すれば、第2還元剤供給部の下流側におけるアンモニアとNOxとの濃度比のばらつきを小さくできることが示されている。
 また、図4に示すグラフは、上述の反応量が大きいほど、煙突38内におけるNOx及びアンモニア(NH)の濃度が小さくなることを示している。
 図3及び図4のグラフより、第2還元剤供給部の上流側の位置におけるアンモニア濃度(第1還元剤の未燃分の濃度)を考慮しなくても、第1還元剤低減部50の下流側かつ第2還元剤供給部の上流側の位置におけるNOx濃度に基づいて、燃焼設備1から排出される燃焼排ガス中のNOx及びアンモニア濃度を適切に低減できることが示されている。
 図5は、図3及び図4の場合と同様の条件において、第1還元剤低減部50の上流側での未燃NH3濃度/NOx濃度比(横軸)と、第1還元剤低減部50の下流側かつ第2還元剤供給部40の上流側でのアンモニア濃度(第1還元剤の未燃分濃度)と第2還元剤供給部40でのアンモニア(第2還元剤)供給量(濃度)との比(縦軸)と、上述の反応量と、の関係(計算例)を示す図である。なお、各数値は、流路32断面内の複数位置での濃度の平均値である。
 図5の横軸(第1還元剤低減部50の上流側での未燃NH3濃度/NOx濃度比は、第2還元剤供給部40によるアンモニア供給量の制御の外乱の大きさを示すものである。図5のグラフから、外乱(横軸)が大きくなっても、第1還元剤低減部50での反応量が大きくなるのにしたがい、第1還元剤低減部50の下流側かつ第2還元剤供給部40の上流側でのアンモニア(第1還元剤の未燃分)濃度とアンモニア(第2還元剤)供給量との比(縦軸)が小さくなることがわかる。すなわち、第1還元剤低減部50の下流側に到達する未燃アンモニア(第1還元剤の未燃分)が増加しても、第1還元剤低減部50での反応量が増加するにしたがい、外乱が及ぼす影響が低減されることが示されている。
 上記各実施形態に記載の内容は、例えば以下のように把握される。
(1)本発明の少なくとも一実施形態に係る排ガス処理装置(102)は、
 特定物質(例えばNOx)を還元可能な第1還元剤(例えばアンモニア)を含む燃料の燃焼排ガスの流路(32)に設けられ、前記燃焼排ガス中の前記特定物質を還元するための第2還元剤(例えばアンモニア)を前記燃焼排ガスに供給するための第2還元剤供給部(40)と、
 前記流路において前記第2還元剤供給部の上流側に設けられ、前記燃焼排ガス中の前記第1還元剤を低減するための第1還元剤低減部(50)と、
を備える。
 上記(1)の構成によれば、特定物質(NOx等)を還元可能な第1還元剤(アンモニア(NH)等)を含む燃料の燃焼排ガスの流路において、燃焼排ガス中の該特定物質(NOx等)を還元するための第2還元剤(アンモニア等)を供給する第2還元剤供給部の上流側に、燃焼排ガス中の第1還元剤を低減するための第1還元剤低減部が設けられる。これにより、燃焼排ガスの流路における第2還元剤供給部の上流側にて、燃焼排ガス中の第1還元剤(未燃分)が低減される。したがって、第1還元剤の未燃分が低減された状態で燃焼排ガスに第2還元剤が供給されるので、例えば、燃焼排ガス中の第1還元剤の未燃分の量を考慮しなくても第2還元剤の供給量を調節可能となる等、第2還元剤の供給量の調節がしやすい。あるいは、第2還元剤供給部の下流側における第1還元剤と特定物質の比(NH/NOx等)のアンバランスが低減される(当該比のばらつきが小さくなる)ので、第2還元剤の供給量の調節がしやすい。このように、上記(1)の構成によれば、還元剤(第1還元剤)を含む燃料の燃焼排ガス中の特定物質を還元するための還元剤(第2還元剤)の供給量を適切に調節しやすい。
(2)幾つかの実施形態では、上記(1)の構成において、
 前記第2還元剤供給部は、前記流路において前記第1還元剤低減部の下流側にのみ設けられる。
 上記(2)の構成によれば、第2還元剤供給部は第1還元剤低減部の下流側にのみ設けられるので、還元剤(第1還元剤)を含む燃料の燃焼排ガス中の特定物質を還元するための還元剤(第2還元剤)の供給量をより一層適切に調節しやすい。
(3)幾つかの実施形態では、上記(1)又は(2)の構成において、
 前記第1還元剤低減部は、前記第1還元剤の酸化分解反応を促進するための還元剤分解触媒を含む。
 上記(3)の構成によれば、第1還元剤低減部は、第1還元剤の酸化分解反応を促進する還元剤分解触媒を含むので、燃焼排ガスの流路における第2還元剤供給部の上流側にて、燃焼排ガスに含まれる第1還元剤の未燃分を分解させて低減することができる。よって、上記(1)で述べたように、還元剤(第1還元剤)を含む燃料の燃焼排ガス中の特定物質を還元するための還元剤(第2還元剤)の供給量を適切に調節しやすい。
(3)’幾つかの実施形態では、上記(1)又は(2)の構成において、
 前記第1還元剤低減部は、前記第1還元剤の分解反応を促進するための還元剤分解触媒を含む。
 上記(3)’の構成によれば、第1還元剤低減部は、第1還元剤の分解反応を促進する還元剤分解触媒を含むので、燃焼排ガスの流路における第2還元剤供給部の上流側にて、燃焼排ガスに含まれる第1還元剤の未燃分を分解させて低減することができる。よって、上記(1)で述べたように、還元剤(第1還元剤)を含む燃料の燃焼排ガス中の特定物質を還元するための還元剤(第2還元剤)の供給量を適切に調節しやすい。
(4)幾つかの実施形態では、上記(1)乃至(3)の何れかの構成において、
 前記第1還元剤低減部は、前記特定物質と前記第1還元剤との反応を促進するための第1還元触媒を含む。
 上記(4)の構成によれば、第1還元剤低減部は、上述の特定物質と第1還元剤との反応を促進する第1還元触媒を含むので、燃焼排ガスの流路における第2還元剤供給部の上流側にて、燃焼排ガスに含まれる第1還元剤の未燃分を上述の特定物質との酸化還元反応により低減することができる。よって、上記(1)で述べたように、還元剤(第1還元剤)を含む燃料の燃焼排ガス中の特定物質を還元するための還元剤(第2還元剤)の供給量を適切に調節しやすい。
(4’)幾つかの実施形態では、上記(1)乃至(4)の何れかの構成において、
 前記第1還元剤低減部は、前記第1還元剤を中和するための中和剤を前記燃焼排ガスに供給するように構成された中和剤供給部を含む。
 上記(4’)の構成によれば、第1還元剤低減部は、第1還元剤を中和するための中和剤を供給するように構成された中和剤供給部を含むので、燃焼排ガスの流路における第2還元剤供給部の上流側にて、燃焼排ガスに含まれる第1還元剤の未燃分を中和剤との中和反応により低減することができる。よって、上記(1)で述べたように、還元剤(第1還元剤)を含む燃料の燃焼排ガス中の特定物質を還元するための還元剤(第2還元剤)の供給量を適切に調節しやすい。
(5)幾つかの実施形態では、上記(1)乃至(4)の何れかの構成において、
 前記特定物質は窒素酸化物を含む。
 上記(5)の構成によれば、窒素酸化物(NOx)を還元可能な第1還元剤を含む燃料の燃焼排ガスの流路において、燃焼排ガス中の窒素酸化物(NOx)を還元するための第2還元剤を供給する第2還元剤供給部の上流側に、燃焼排ガス中の第1還元剤を低減するための第1還元剤低減部が設けられる。よって、上記(1)で述べたように、還元剤(第1還元剤)を含む燃料の燃焼排ガス中の窒素酸化物(NOx)を還元するための還元剤(第2還元剤)の供給量を適切に調節しやすい。
(6)幾つかの実施形態では、上記(5)の構成において、
 前記第1還元剤又は前記第2還元剤の少なくとも一方は、アンモニア又は尿素を含む。
 上記(6)の構成によれば、第1還元剤又は第2還元剤の少なくとも一方は、アンモニア又は尿素を含む。よって、第1還元剤又は第2還元剤としてのアンモニア又は尿素を用いることで、燃焼排ガス中の窒素酸化物を還元することができる。このため、上記(1)で述べたように、還元剤(第1還元剤)を含む燃料の燃焼排ガス中の窒素酸化物(NOx)を還元するための還元剤(第2還元剤)の供給量を適切に調節しやすい。
(7)幾つかの実施形態では、上記(1)乃至(6)の何れかの構成において、
 前記排ガス処理装置は、
 前記流路において前記第2還元剤供給部の下流側に設けられ、前記特定物質の還元反応を促進するための第2還元触媒(52)を備える。
 上記(7)の構成によれば、第2還元剤供給部の下流側に、特定物質の還元反応を促進するための第2還元触媒を設けたので、燃焼排ガス中に含まれる特定物質を該第2還元触媒にて第1還元剤の残留分及び第2還元剤との反応で還元させることで、燃焼排ガス中の特定物質を効果的に低減することができる。
(8)幾つかの実施形態では、上記(1)乃至(7)の何れかの構成において、
 前記排ガス処理装置は、
 前記流路における前記第1還元剤低減部の下流側かつ前記第2還元剤供給部の上流側における前記特定物質の濃度に基づいて、前記第2還元剤供給部による前記第2還元剤の供給量を調節するように構成された制御装置(60)を備える。
 上記(8)の構成によれば、第1還元剤低減部の下流側かつ第2還元剤供給部の上流側における特定物質の濃度に基づいて、第2還元剤の供給量を調節するようにしたので、燃焼排ガス中の特定物質を低減可能な適切な量の第2還元剤を供給することができる。また、上記(8)の構成によれば、上記(1)で述べたように、燃焼排ガスの流路における第2還元剤供給部の上流側にて燃焼排ガス中の第1還元剤(未燃分)が低減されるので、制御装置による第2還元剤の供給量の調節が比較的容易である。
(9)幾つかの実施形態では、上記(1)乃至(8)の何れかの構成において、
 前記排ガス処理装置は、
 前記流路からの前記燃焼排ガスが排出される煙突内における前記特定物質の濃度に基づいて、前記第2還元剤供給部による前記第2還元剤の供給量を調節するように構成された制御装置(60)を備える。
 上記(9)の構成によれば、流路からの燃焼排ガスが排出される煙突内における特定物質の濃度に基づいて、第2還元剤供給部による第2還元剤の供給量を調節するようにしたので、煙突から排出される燃焼排ガス中の特定物質の濃度を適正範囲内(例えば規制値未満等)に維持することができる。
(10)本発明の少なくとも一実施形態に係る燃焼設備(1)は、
 特定物質を還元可能な第1還元剤を含む燃料を燃焼させるように構成された燃焼装置(100)と、
 前記燃焼装置からの前記燃料の燃焼排ガスを処理するように構成された上記(1)乃至(9)の何れか一項に記載の排ガス処理装置(102)と、
を備える。
 上記(10)の構成によれば、特定物質(NOx等)を還元可能な第1還元剤(アンモニア(NH)等)を含む燃料の燃焼排ガスの流路において、燃焼排ガス中の該特定物質(NOx等)を還元するための第2還元剤(アンモニア等)を供給する第2還元剤供給部の上流側に、燃焼排ガス中の第1還元剤を低減するための第1還元剤低減部が設けられる。これにより、燃焼排ガスの流路における第2還元剤供給部の上流側にて、燃焼排ガス中の第1還元剤(未燃分)が低減される。したがって、第1還元剤の未燃分が低減された状態で燃焼排ガスに第2還元剤が供給されるので、例えば、燃焼排ガス中の第1還元剤の未燃分の量を考慮しなくても第2還元剤の供給量を調節可能となる等、第2還元剤の供給量の調節がしやすい。あるいは、第2還元剤供給部の下流側における第1還元剤と特定物質の比(NH/NOx等)のアンバランスが低減される(当該比のばらつきが小さくなる)ので、第2還元剤の供給量の調節がしやすい。このように、上記(1)の構成によれば、還元剤(第1還元剤)を含む燃料の燃焼排ガス中の特定物質を還元するための還元剤(第2還元剤)の供給量を適切に調節しやすい。
(11)本発明の少なくとも一実施形態に係る排ガス処理方法は、
 特定物質を還元可能な第1還元剤を含む燃料の燃焼排ガスの流路(32)において前記燃焼排ガス中の前記特定物質を還元するための第2還元剤を前記燃焼排ガスに供給するステップと、
 前記流路における前記第2還元剤の供給位置よりも上流側の位置で前記燃焼排ガス中の前記第1還元剤を低減するステップと、
を備える。
 上記(11)の方法によれば、特定物質(NOx等)を還元可能な第1還元剤(アンモニア(NH)等)を含む燃料の燃焼排ガスの流路において、燃焼排ガス中の該特定物質(NOx等)を還元するための第2還元剤(アンモニア等)を供給する位置よりも上流側の位置で、燃焼排ガス中の第1還元剤を低減する。これにより、燃焼排ガスの流路における第2還元剤の供給位置の上流側にて、燃焼排ガス中の第1還元剤(未燃分)が低減される。したがって、第1還元剤の未燃分が低減された状態で燃焼排ガスに第2還元剤が供給されるので、例えば、燃焼排ガス中の第1還元剤の未燃分の量を考慮しなくても第2還元剤の供給量を調節可能となる等、第2還元剤の供給量の調節がしやすい。あるいは、第2還元剤の供給位置の下流側における第1還元剤と特定物質の比(NH/NOx等)のアンバランスが低減される(当該比のばらつきが小さくなる)ので、第2還元剤の供給量の調節がしやすい。このように、上記(11)の方法によれば、還元剤(第1還元剤)を含む燃料の燃焼排ガス中の特定物質を還元するための還元剤(第2還元剤)の供給量を適切に調節しやすい。
 以上、本発明の実施形態について説明したが、本発明は上述した実施形態に限定されることはなく、上述した実施形態に変形を加えた形態や、これらの形態を適宜組み合わせた形態も含む。
 本明細書において、「ある方向に」、「ある方向に沿って」、「平行」、「直交」、「中心」、「同心」或いは「同軸」等の相対的或いは絶対的な配置を表す表現は、厳密にそのような配置を表すのみならず、公差、若しくは、同じ機能が得られる程度の角度や距離をもって相対的に変位している状態も表すものとする。
 例えば、「同一」、「等しい」及び「均質」等の物事が等しい状態であることを表す表現は、厳密に等しい状態を表すのみならず、公差、若しくは、同じ機能が得られる程度の差が存在している状態も表すものとする。
 また、本明細書において、四角形状や円筒形状等の形状を表す表現は、幾何学的に厳密な意味での四角形状や円筒形状等の形状を表すのみならず、同じ効果が得られる範囲で、凹凸部や面取り部等を含む形状も表すものとする。
 また、本明細書において、一の構成要素を「備える」、「含む」、又は、「有する」という表現は、他の構成要素の存在を除外する排他的な表現ではない。
1   燃焼設備
2   ガスタービン設備
4   蒸気タービン設備
6   排熱回収ボイラ
10  圧縮機
12  燃焼器
14  タービン
16  回転シャフト
18  発電機
20  タービン
22  回転シャフト
24  発電機
26  復水器
30  ダクト
32  流路
34  伝熱管
36  伝熱管
38  煙突
40  第2還元剤供給部
42  ノズル
44  第2還元剤貯留部
46  供給ライン
48  バルブ
50  第1還元剤低減部
51  混合器
52  第2還元触媒
53  第3還元触媒
54  還元剤分解触媒
60  制御装置
62  濃度計測部
64  濃度計測部
100 燃焼装置
102 排ガス処理装置

Claims (11)

  1.  特定物質を還元可能な第1還元剤を含む燃料の燃焼排ガスの流路に設けられ、前記燃焼排ガス中の前記特定物質を還元するための第2還元剤を前記燃焼排ガスに供給するための第2還元剤供給部と、
     前記流路において前記第2還元剤供給部の上流側に設けられ、前記燃焼排ガス中の前記第1還元剤を低減するための第1還元剤低減部と、
    を備える排ガス処理装置。
  2.  前記第2還元剤供給部は、前記流路において前記第1還元剤低減部の下流側にのみ設けられる
    請求項1に記載の排ガス処理装置。
  3.  前記第1還元剤低減部は、前記第1還元剤の酸化分解反応を促進するための還元剤分解触媒を含む
    請求項1又は2に記載の排ガス処理装置。
  4.  前記第1還元剤低減部は、前記特定物質と前記第1還元剤との反応を促進するための第1還元触媒を含む
    請求項1又は2に記載の排ガス処理装置。
  5.  前記特定物質は窒素酸化物を含む
    請求項1又は2に記載の排ガス処理装置。
  6.  前記第1還元剤又は前記第2還元剤の少なくとも一方は、アンモニア又は尿素を含む
    請求項5に記載の排ガス処理装置。
  7.  前記流路において前記第2還元剤供給部の下流側に設けられ、前記特定物質の還元反応を促進するための第2還元触媒を備える
    請求項1又は2に記載の排ガス処理装置。
  8.  前記流路における前記第1還元剤低減部の下流側かつ前記第2還元剤供給部の上流側における前記特定物質の濃度に基づいて、前記第2還元剤供給部による前記第2還元剤の供給量を調節するように構成された制御装置を備える
    請求項1又は2に記載の排ガス処理装置。
  9.  前記流路からの前記燃焼排ガスが排出される煙突内における前記特定物質の濃度に基づいて、前記第2還元剤供給部による前記第2還元剤の供給量を調節するように構成された制御装置を備える
    請求項1又は2に記載の排ガス処理装置。
  10.  特定物質を還元可能な第1還元剤を含む燃料を燃焼させるように構成された燃焼装置と、
     前記燃焼装置からの前記燃料の燃焼排ガスを処理するように構成された請求項1又は2に記載の排ガス処理装置と、
    を備える燃焼設備。
  11.  特定物質を還元可能な第1還元剤を含む燃料の燃焼排ガスの流路において前記燃焼排ガス中の前記特定物質を還元するための第2還元剤を前記燃焼排ガスに供給するステップと、
     前記流路における前記第2還元剤の供給位置よりも上流側の位置で前記燃焼排ガス中の前記第1還元剤を低減するステップと、
    を備える排ガス処理方法。
PCT/JP2023/001083 2022-04-25 2023-01-17 排ガス処理装置、燃焼設備及び排ガス処理方法 WO2023210070A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022071408A JP2023161201A (ja) 2022-04-25 2022-04-25 排ガス処理装置、燃焼設備及び排ガス処理方法
JP2022-071408 2022-04-25

Publications (1)

Publication Number Publication Date
WO2023210070A1 true WO2023210070A1 (ja) 2023-11-02

Family

ID=88518290

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/001083 WO2023210070A1 (ja) 2022-04-25 2023-01-17 排ガス処理装置、燃焼設備及び排ガス処理方法

Country Status (3)

Country Link
JP (1) JP2023161201A (ja)
TW (1) TW202342166A (ja)
WO (1) WO2023210070A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020078766A (ja) * 2018-11-12 2020-05-28 三菱重工業株式会社 ガス浄化フィルタの製造方法
JP2022054620A (ja) * 2020-09-28 2022-04-07 いすゞ自動車株式会社 還元剤供給装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020078766A (ja) * 2018-11-12 2020-05-28 三菱重工業株式会社 ガス浄化フィルタの製造方法
JP2022054620A (ja) * 2020-09-28 2022-04-07 いすゞ自動車株式会社 還元剤供給装置

Also Published As

Publication number Publication date
TW202342166A (zh) 2023-11-01
JP2023161201A (ja) 2023-11-07

Similar Documents

Publication Publication Date Title
CA2769465C (en) Air pollution control device
CA2769861C (en) Air pollution control device and method for reducing amount of mercury in flue gas
DK2102458T3 (en) Dynamic control of selective non-catalytic reduction system for semibatch-fed stoker-based urban waste incineration
JP4096068B2 (ja) 排ガス用乾式同時脱硫脱硝装置
US9387436B2 (en) Exhaust-gas purification device and method for the reduction of nitrogen oxides from an exhaust gas of a fossil-fired power plant
EP2338586B1 (en) Exhaust gas processing device and exhaust gas processing system
JP2014514134A (ja) 発電ボイラにおける選択触媒nox還元方法及び装置
Javed et al. Effect of oxygenated liquid additives on the urea based SNCR process
WO2023210070A1 (ja) 排ガス処理装置、燃焼設備及び排ガス処理方法
Selvam et al. Emission control diesel power plant for reducing oxides of nitrogen through selective catalytic reduction method using ammonia
JP4902834B2 (ja) 脱硝方法、および脱硝装置
WO2023210071A1 (ja) 排ガス処理装置、燃焼設備、発電設備及び排ガス処理方法
Jeníková et al. Applicability of secondary denitrification measures on a fluidized bed boiler
US6123910A (en) Method of predicting and controlling harmful oxide and apparatus therefor
Choi et al. Numerical evaluation of the effect of swirl configuration and fuel-rich environment on combustion and emission characteristics in a coal-fired boiler
JP2021126619A (ja) 脱硝装置およびボイラ
US11577201B2 (en) Control device for flue gas denitrizer, boiler facility, control method for flue gas denitrizer, and control program for flue gas denitrizer
WO2023120404A1 (ja) アンモニア燃料ボイラシステム
Huotari Estimation of SCR System Performance
Pronobis et al. Studies on the effectiveness of SCR catalysts during combustion of pulverized coal
JP2024067774A (ja) 脱硝制御装置及び脱硝装置
JPS5838206B2 (ja) 燃焼排ガス中の窒素酸化物低減法
CA3109828A1 (en) Nox abatement system for a stationary burning system
Dao et al. NO REMOVAL BY GAS REBURNING AND SELECTIVE NON-CATALYTIC REDUCTION USING AMMONIA IN A PILOT-SCALE REACTOR
JPH0440057B2 (ja)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23795819

Country of ref document: EP

Kind code of ref document: A1