WO2023208073A1 - 换热器 - Google Patents

换热器 Download PDF

Info

Publication number
WO2023208073A1
WO2023208073A1 PCT/CN2023/090982 CN2023090982W WO2023208073A1 WO 2023208073 A1 WO2023208073 A1 WO 2023208073A1 CN 2023090982 W CN2023090982 W CN 2023090982W WO 2023208073 A1 WO2023208073 A1 WO 2023208073A1
Authority
WO
WIPO (PCT)
Prior art keywords
flat tube
unit
tube
fin
flat
Prior art date
Application number
PCT/CN2023/090982
Other languages
English (en)
French (fr)
Inventor
王炎峰
王冠军
丁二刚
史俊茹
Original Assignee
浙江盾安人工环境股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202221016299.6U external-priority patent/CN217383368U/zh
Priority claimed from CN202221057985.8U external-priority patent/CN217383369U/zh
Application filed by 浙江盾安人工环境股份有限公司 filed Critical 浙江盾安人工环境股份有限公司
Publication of WO2023208073A1 publication Critical patent/WO2023208073A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/26Arrangements for connecting different sections of heat-exchange elements, e.g. of radiators

Definitions

  • This application relates to the field of heat exchange technology, and in particular to a heat exchanger.
  • the main components of the air conditioning system include the compressor, condenser, throttling device and heat exchanger.
  • the heat exchanger plays the role of heat exchange with the outside world, and the heat exchange is mainly through the fins and heat exchange tubes on the heat exchanger. to fulfill.
  • heat exchangers in related technologies usually use double-row parallel flow heat exchangers.
  • the current double-row parallel flow heat exchangers are all made of tubes with the same structure in the front and rear rows. path and cannot adapt to the heat exchange needs under different working conditions.
  • the medium when used as an evaporator, the medium is in a liquid state when entering the front pipeline. As the heat exchange process proceeds, the medium gradually evaporates from the liquid state to the gaseous state, and the flow rate of the medium becomes faster, resulting in heat exchange between the medium and the rear pipeline. Insufficient, this will result in the heat exchange effect of the front row pipeline being better, while the heat exchange effect of the rear row pipeline is poor, and the heat exchange effect of the double-row parallel flow heat exchanger will not be fully exerted, affecting the heat exchange effect.
  • a heat exchanger including: a plurality of fin units, a first pipeline unit and a second pipeline unit.
  • a plurality of the fin units are spaced apart from each other and arranged in parallel; the first pipeline unit is passed through the fin unit, and the first pipeline unit includes a plurality of fin units spaced apart along the length direction of the fin unit.
  • a plurality of first pipelines; the second pipeline unit is passed through the fin unit, and the second pipeline unit and the first pipeline unit are spaced apart along the width direction of the fin unit , the second pipeline unit includes a plurality of second pipelines spaced apart along the length direction of the fin unit; the second pipelines have different pipeline structures from the first pipelines.
  • the first piping unit is a first flat tube unit
  • the first flat tube unit includes a plurality of first flat tubes spaced apart along the length direction of the fin unit
  • the second The pipeline unit is a second flat tube unit
  • the second flat tube unit includes a plurality of second flat tubes spaced apart along the length direction of the fin unit.
  • a plurality of first flat tubes and a plurality of The second flat tubes are arranged in a staggered manner, and the cross-sectional area of the first flat tubes is larger than the cross-sectional area of the second flat tubes.
  • the length of the first flat tube and the second flat tube are the same, and the thickness of the first flat tube and the second flat tube are the same; the width of the first flat tube is L1, the width of the second flat tube is L2, where 6mm ⁇ L2 ⁇ L1 ⁇ 20mm. Or, the length of the first flat tube and the second flat tube are the same, and the width of the first flat tube and the second flat tube are the same; the thickness of the first flat tube is H1, and the thickness of the first flat tube is H1. The thickness of the second flat tube is H2, where 1mm ⁇ H2 ⁇ H1 ⁇ 5mm.
  • first flat tube and the two adjacent second flat tubes are arranged in an equilateral triangle; the first flat tube and the adjacent second flat tube
  • the vertical distance between the center planes along the length direction of the fin unit is S, 12mm ⁇ S ⁇ 25mm.
  • the heat exchanger further includes a distributor and a transfer unit.
  • the distributor includes a first capillary tube and a second capillary tube.
  • the diameter of the first capillary tube is larger than the diameter of the second capillary tube. ; Wherein, the first capillary tube is connected to the first flat tube through the transfer unit, and the second capillary tube is connected to the second flat tube through the transfer unit.
  • the adapter unit includes a first adapter and a second adapter.
  • One end of the first adapter is adapted to the first capillary tube, and the other end of the first adapter is adapted to the first capillary tube.
  • the first flat tube is adapted to fit; one end of the second adapter is adapted to the second capillary tube, and the other end of the second adapter is adapted to the second flat tube.
  • the first piping unit is a first flat tube unit
  • the first flat tube unit includes a plurality of first flat tubes spaced apart along the length direction of the fin unit
  • the second The pipeline unit is a circular pipe unit
  • the circular pipe unit includes a plurality of circular pipes spaced apart along the length direction of the fin unit.
  • the heat exchanger further includes: a connecting elbow, one end of the connecting elbow is connected to the round tube, and the other end of the connecting elbow is connected to the first flat tube.
  • the connecting elbow includes: a first connecting part, a second connecting part and a twisting part.
  • One end of the first connecting part is connected to the first flat tube; one end of the second connecting part is connected to the round tube; one end of the twisting part is away from the first connecting part.
  • One end of the flat tube is connected, and the other end of the twisting part is connected with an end of the second connecting part away from the round tube.
  • the first connecting part matches the shape of the first flat tube, and the first flat tube at least partially extends into the first connecting part; the second connecting part and The shape of the circular tube is adapted, and the circular tube at least partially extends into the second connecting part.
  • the shape of the twisting part is U-shaped, and the twisting part is formed by a smooth transition from a waist shape at one end to a circle at the other end.
  • a plurality of the first flat tubes and a plurality of the round tubes are staggered, and the adjacent first flat tubes and the round tubes are connected to each other through the connecting elbows.
  • the heat exchanger further includes a plurality of bent tubes, and two adjacent first flat tubes are far away from the connecting bend. One end of the heads are connected to each other through the elbow.
  • the heat exchanger further includes a distributor and a header, and one end of one of the two adjacent circular tubes away from the connecting elbow is connected to the distributor. , one end of the other round pipe away from the connecting elbow is connected to the header.
  • an end of the circular tube away from the connecting elbow is bent to form a bent portion, and the bent portion is connected to the distributor.
  • the fin unit includes a first fin and a second fin, the fin unit includes a first fin and a second fin, and the first pipeline unit is passed through the On the first fin, the second pipeline unit is passed through the second fin; wherein, the second fin is located on the side of the first fin close to the first pipeline unit, and abutting against the first fin.
  • the width of the first fin is W1
  • the width of the second fin is W2, where W2 ⁇ W1.
  • Figure 1 is a partial structural diagram of a heat exchanger according to one or more embodiments.
  • Figure 2 is a partial structural front view of a heat exchanger according to one or more embodiments.
  • Figure 3 is a partial structural front view of a heat exchanger according to one or more embodiments.
  • Figure 4 is a partial structural front view of a heat exchanger according to one or more embodiments.
  • Figure 5 is a partial structural diagram of a heat exchanger according to one or more embodiments.
  • Figure 6 is a schematic structural diagram of a dispenser according to one or more embodiments.
  • Figure 7 is a schematic structural diagram of a first adapter according to one or more embodiments.
  • Figure 8 is a schematic structural diagram of a second adapter according to one or more embodiments.
  • Figure 9 is a schematic structural diagram of a bent pipe according to one or more embodiments.
  • Figure 10 is a schematic structural diagram of a heat exchanger according to one or more embodiments.
  • Figure 11 is a side view of a heat exchanger according to one or more embodiments.
  • Figure 12 is a partial structural schematic diagram of a heat exchanger according to one or more embodiments.
  • Figure 13 is a partial structural diagram of a heat exchanger according to one or more embodiments.
  • Figure 14 is a schematic structural diagram of a connecting elbow according to one or more embodiments.
  • first and second are used for descriptive purposes only and cannot be understood as indicating or implying relative importance or implicitly indicating the quantity of indicated technical features. Therefore, features defined as “first” and “second” may explicitly or implicitly include at least one of these features.
  • “plurality” means at least two, such as two, three, etc., unless otherwise expressly and specifically limited.
  • the first feature being "on” or “below” the second feature may mean that the first feature is in direct contact with the second feature, or the first feature and the second feature are in indirect contact. Contact through intermediaries.
  • the terms “above”, “above” and “above” the first feature of the second feature may mean that the first feature is directly above or diagonally above the second feature, or simply means that the first feature is higher in level than the second feature.
  • "Below”, “below” and “beneath” the first feature of the second feature may mean that the first feature is directly below or diagonally below the second feature, or simply means that the first feature has a smaller horizontal height than the second feature.
  • this application provides a heat exchanger 100 installed in an air conditioning system.
  • the main components of the air conditioning system include the compressor, condenser, throttling device and heat exchanger.
  • the heat exchanger plays the role of heat exchange with the outside world, and the heat exchange is mainly through the fins and heat exchange tubes on the heat exchanger. to fulfill.
  • heat exchangers in related technologies usually use double-row parallel flow heat exchangers.
  • the current double-row parallel flow heat exchangers are all flat tubes with the same structure in the front and rear rows. , unable to adapt to heat exchange needs under different working conditions.
  • the medium when used as an evaporator, the medium is in a liquid state when entering the front pipeline. As the heat exchange process proceeds, the medium gradually evaporates from the liquid state to the gaseous state, and the flow rate of the medium becomes faster, resulting in heat exchange between the medium and the rear pipeline. Insufficient, this will result in the heat exchange effect of the front row pipeline being better, while the heat exchange effect of the rear row pipeline is poor, and the heat exchange effect of the double-row parallel flow heat exchanger will not be fully exerted, affecting the heat exchange effect.
  • the heat exchanger 100 includes a first pipeline unit 2, a second pipeline unit 3 and a plurality of fin units 10. Among them, a plurality of fin units 10 are spaced apart from each other and arranged in parallel; the first pipeline unit 2 is passed through the fin unit 10 , and the first pipeline unit 2 includes a plurality of third pipes spaced apart along the length direction of the fin unit 10 .
  • the second pipeline unit 3 It includes a plurality of second pipes 301 spaced apart along the length direction of the fin unit 10 .
  • the second pipes 301 and the first pipes 201 have different pipe structures.
  • the heat exchanger 100 of the present application can adapt to actual working conditions to meet different heat exchange needs by setting up two rows of pipelines with different structures.
  • the pipe diameter corresponding to the second pipeline 301 or the first pipeline 201 can be increased to appropriately reduce the flow rate. , enhance the heat transfer effect.
  • the corresponding pipe diameter can be reduced.
  • the second pipeline 301 and the first pipeline 201 can be provided with different pipeline shapes, such as round tubes, flat tubes, Snake tubes, etc., this application is not limited here.
  • the first pipeline unit 2 is a first flat tube unit 20
  • the first flat tube unit 20 includes a plurality of first flat tubes 21 spaced apart along the length direction of the fin unit 10
  • the second pipeline unit 3 is a second flat tube unit 31
  • the second flat tube unit 31 includes a plurality of second flat tubes 311 spaced apart along the length direction of the fin unit.
  • the plurality of first flat tubes 21 and the plurality of second flat tubes 311 are arranged in a staggered manner, and the cross-sectional area of the first flat tubes 21 is larger than the cross-sectional area of the second flat tubes 311 .
  • the heat exchanger 100 of this application satisfies different heat exchange requirements by setting up two rows of flat tubes with different cross-sectional areas, and the medium first enters the second flat tube 311 with a smaller cross-sectional area to perform preliminary heat exchange. , and then enter the cross-sectional area smaller In the large first flat tube 21, deep heat exchange is performed. Since the cross-sectional area of the first flat tube 21 is large, the flow rate is reduced when the medium enters, and sufficient heat exchange is performed with the first flat tube 21, thereby improving the heat exchange performance of the heat exchanger 100.
  • a plurality of first flat tubes 21 and second flat tubes 311 are staggered, further improving the heat exchange capability.
  • a plurality of first flat tubes 21 and second flat tubes 311 are staggered, further improving the heat exchange capacity. Since the plurality of first flat tubes 21 and the plurality of second flat tubes 311 are arranged in a staggered manner, the sides of the first flat tubes 21 correspond to the fin units 10, and the medium in the first flat tubes 21 can not only use the The fin structures on both sides of the length direction of the fin unit 10 can be used for heat exchange. The fin structures on the sides of the second flat tube 311 along the width direction of the fin unit 10 can also be used for heat exchange, so that the fin unit 10 can be fully utilized for heat exchange. heat to further improve the heat transfer effect.
  • the length of the first flat tube 21 and the second flat tube 311 are the same, and the thickness of the first flat tube 21 and the second flat tube 311 is the same.
  • the width of the first flat tube 21 is L1, and the width of the second flat tube 21 is L1.
  • the width of 311 is L2, where L1>L2.
  • the cross-sectional area of the first flat tube 21 is larger than the cross-sectional area of the second flat tube 311 , which increases the contact area between the first flat tube 21 and the fin unit 10 , and during operation, due to the The cross-sectional area becomes larger, the medium flow speed becomes slower, and the contact with the first flat tube 21 becomes more complete, which improves the heat exchange performance of the heat exchanger 100 .
  • the width range of the first flat tube 21 and the second flat tube 311 satisfies 6 mm ⁇ L2 ⁇ L1 ⁇ 20 mm.
  • the drainage performance and heat exchange performance of the heat exchanger 100 can be balanced.
  • the second flat tube 311 When used as an evaporator, the second flat tube 311 is located on the windward side, and the first flat tube 21 is located on the leeward side.
  • the second flat tube 311 located on the windward side will first contact with the outside air and precipitate a large amount of moisture.
  • a cross-section The second flat pipe 311 with a smaller area facilitates the discharge of condensate water, thereby improving drainage efficiency.
  • the widths of the first flat tube 21 and the second flat tube 311 are both greater than 20 mm, the widths of the first flat tube 21 and the second flat tube 311 are too large.
  • the first flat tube 21 and the second flat tube It is easy for water to accumulate on the two flat tubes 311. If it cannot be discharged in time, the heat exchange performance of the heat exchanger 100 will be affected. If the widths of the first flat tube 21 and the second flat tube 311 are both less than 6 mm, the widths of the first flat tube 21 and the second flat tube 311 are too small, and the contact area with the fin unit 10 becomes smaller, reducing the replacement cost. The heat exchange performance of the heater 100.
  • the widths of the first flat tube 21 and the second flat tube 311 can be adjusted according to actual needs.
  • the widths of the first flat tube 21 and the second flat tube 311 can be 10mm, 12mm, 14mm. mm or 16 mm, as long as it meets the width range of the first flat tube 21 and the second flat tube 311.
  • the length of the first flat tube 21 and the second flat tube 311 are the same, and the width of the first flat tube 21 and the second flat tube 311 are the same.
  • the thickness of the first flat tube 21 is H1, and the thickness of the second flat tube 21 is H1.
  • the thickness of 311 is H2, where H1>H2.
  • the cross-sectional area of the first flat tube 21 is larger than the cross-sectional area of the second flat tube 311 , which increases the contact area between the first flat tube 21 and the fin unit 10 , and during operation, due to the The cross-sectional area becomes larger, the medium flow speed slows down, and The contact of the first flat tube 21 is more complete, which improves the heat exchange performance of the heat exchanger 100 .
  • the thickness range of the first flat tube 21 and the second flat tube 311 satisfies 1mm ⁇ H2 ⁇ H1 ⁇ 5mm. If the thickness of the first flat tube 21 and the second flat tube 311 are both greater than 5 mm, the arrangement structure between the first flat tube 21 and the second flat tube 311 will be compact, resulting in a reduction in the heat exchange area of the fin unit 10, thereby reducing the The heat exchange efficiency of the fin unit 10 reduces the heat exchange effect of the heat exchanger 100. If the thickness of the first flat tube 21 and the second flat tube 311 is less than 1 mm, the medium flowing through the first flat tube 21 and the second flat tube 311 is too small, and the heat exchange cannot be fully carried out, and the material of the fin unit 10 The usage increases, thus increasing the cost.
  • the thickness of the first flat tube 21 and the second flat tube 311 can be adjusted according to actual needs.
  • the thickness of the first flat tube 21 and the second flat tube 311 can be 2mm, 3mm or 4mm. mm, as long as the thickness range of the first flat tube 21 and the second flat tube 311 is satisfied.
  • the lengths of the first flat tube 21 and the second flat tube 311 are the same.
  • the width ranges of the first flat tube 21 and the second flat tube 311 are the same as those in the first embodiment.
  • the first flat tube 21 and the second flat tube 311 have the same width.
  • the thickness range of 311 is the same as that in Embodiment 2, and the similarities will not be repeated.
  • the difference is that the widths of the first flat tube 21 and the second flat tube 311 are different, and the widths of the first flat tube 21 and the second flat tube 311 are different.
  • the thicknesses are different, and the cross-sectional area of the first flat tube 21 is larger than the cross-sectional area of the second flat tube 311 .
  • the contact area between the first flat tube 21 and the fin unit 10 is increased.
  • the cross-sectional area of the first flat tube 21 becomes larger, the medium flow speed becomes slower, and the contact with the first flat tube 21 becomes closer. Fully, thereby improving the heat exchange performance and drainage performance of the heat exchanger 100.
  • the first flat tube 21 and the two adjacent second flat tubes 311 are arranged in an equilateral triangle. In this way, it is conducive to the assembly of the first flat tube 21 and the second flat tube 311, and it can ensure that both sides of the first flat tube 21 can enhance heat exchange with the help of the fin unit 10, and can improve the heat exchange efficiency of the fin unit 10. , thereby improving the cost performance of the heat exchanger 100.
  • the vertical distance between the center surfaces of the first flat tube 21 and the adjacent second flat tube 311 along the width direction of the fin unit 10 is S, 12 mm ⁇ S ⁇ 25 mm.
  • S the heat exchange efficiency of the fin unit 10 can be improved, thereby enhancing the heat exchange effect of the heat exchanger 100 .
  • S ⁇ 12mm the wind resistance will increase and the heat exchange efficiency will be affected.
  • S>25mm the material of the fin unit 10 will be wasted.
  • the vertical distance S between the center planes of the first flat tube 21 and the adjacent second flat tube 311 along the width direction of the fin unit 10 can be adjusted according to actual needs, for example, S can be 16 mm. , 18mm, 20mm or 22mm.
  • the heat exchanger 100 also includes a distributor 60 and a transfer unit 80.
  • the distributor 60 is provided with a plurality of capillary tubes 6.
  • the capillary tubes 6 include a first capillary tube 61 and a second capillary tube 62.
  • the diameter of the first capillary tube 61 is larger than the diameter of the second capillary tube 62; wherein, the first capillary tube 61 is connected to the first flat tube 21 through the adapter unit 80,
  • the second capillary tube 62 is connected to the second flat tube 311 through the adapter unit 80 .
  • the distributor 60 adopts a large and small tube structure and is connected to different flat tubes through the adapter unit 80 to distribute the refrigerant to the different flat tubes, so that the refrigerant is distributed evenly.
  • the adapter unit 80 includes a first adapter 81 and a second adapter 82.
  • One end of the first adapter 81 is adapted to the first capillary tube 61, and the other end of the first adapter 81 is adapted to the first flat tube 21.
  • Adapt; one end of the second adapter 82 is adapted to the second capillary tube 62, and the other end of the second adapter 82 is adapted to the second flat tube 311. It can be understood that this can improve the connection strength between the adapter unit 80 and the distributor 60 and the first flat tube 21 and the second flat tube 311 .
  • one end of the first capillary tube 61 and the first flat tube 21 at least partially extends into the first adapter 81 ; and one end of the second capillary tube 62 and the second flat tube 311 at least partially extends into the second adapter 82 within, this can further improve the welding strength.
  • the heat exchanger 100 further includes a header 70 .
  • One ends of the first flat tube 21 and the second flat tube 311 are connected to the distributor 60 through the adapter unit 80 .
  • the first flat tube 21 The header 70 is connected to the other end of the second flat tube 311 .
  • the medium enters from the distributor 60, enters the first flat tube 21 through the first capillary tube 61, conducts heat exchange with the outside through the first fin 11, and flows out from the header 70 after heat exchange; and
  • the medium enters from the distributor 60 , enters the second flat tube 311 through the second capillary tube 62 , exchanges heat with the outside through the second fin 12 , and flows out from the header 70 after heat exchange.
  • the heat exchanger 100 further includes a plurality of bent tubes 50 , and adjacent first flat tubes 21 are connected through the bent tubes 50 ; or, adjacent first flat tubes 21 It is connected with the second flat tube 311 through the elbow 50 to realize different flows of the medium.
  • the elbow 50 connects two adjacent first flat tubes 21 or adjacent first flat tubes 21 and second flat tubes 311 , thereby increasing the circulation path of the medium and thereby improving the heat exchange efficiency of the heat exchanger 100 .
  • the bent tube 50 is fixedly connected to the first flat tube 21 or the second flat tube 311 by welding, thereby reducing the bending process of the flat tube. It can be understood that during the bending process, the problem of fin deformation will occur. This application does not require bending and can solve the problem of fin deformation due to bending.
  • the medium enters from the distributor 60 and enters the second flat tube 311 through the second capillary tube 62.
  • a preliminary heat exchange is performed first. As the heat exchange proceeds, the liquid medium is partially converted into a gaseous state, and the flow resistance is reduced. As it gradually increases, the pressure drop also gradually increases. The flow rate of the medium increases, and then enters the first flat tube 21 through the elbow 50 to perform deep heat exchange. Since the cross-sectional area of the first flat tube 21 is larger, the circulation area of the medium flowing through the first flat tube 21 is larger than The second flat tube 311, that is, the internal volume of the first flat tube 21 is greater than the internal volume of the second flat tube 311.
  • the pressure drop of the medium when passing through the first flat tube 21 will also be reduced accordingly, thereby reducing the flow rate when the medium enters.
  • Full heat exchange is performed with the first flat tube 21 to improve the heat exchange performance of the heat exchanger 100. Then it enters another adjacent first flat tube 21 through the elbow 50, and then enters another adjacent first flat tube 21 through the elbow 50.
  • the second flat tube 311 performs subsequent heat exchange and finally flows out from the header 70 . So, refrigeration
  • the circulation distance of the agent in the heat exchanger 100 is increased, and the circulation distribution is more uniform, which significantly improves the heat exchange effect.
  • Some parallel flow heat exchangers in the related art include headers, fins, round tubes and flat tubes.
  • a plurality of holes are provided in the header, and a plurality of partitions are provided in the header.
  • the multiple partitions divide the header into multiple circulation chambers.
  • Both the round tubes and the flat tubes are inserted into the slots and connected with the corresponding circulation chambers.
  • the medium realizes the communication between the flat tubes and the round tubes through the circulation chambers in the headers.
  • the assembly of the heat exchanger is cumbersome, the structure is complex, and too many welding points will be added, which will increase the probability of medium leakage, reduce the overall structural strength of the heat exchanger, and thereby reduce the heat exchange efficiency of the heat exchanger. efficiency.
  • the partitions are not installed, the uniformity of the flow of the medium in each flat tube and round tube will be greatly affected, thereby reducing the heat exchange efficiency of the heat exchanger.
  • the first pipeline unit 2 is a first flat tube unit 20.
  • the first flat tube unit 20 includes a fin unit along 10.
  • a plurality of first flat tubes 21 are spaced apart in the length direction.
  • the second pipeline unit 3 is a circular tube unit 32 , and the circular tube unit 32 includes a plurality of circular tubes 321 spaced apart along the length direction of the fin unit 10 .
  • the heat exchanger 100 of the present application is provided with the first flat tube 21 and the round tube 321 to improve the heat exchange efficiency of the heat exchanger 100 while also taking into account the drainage efficiency.
  • the medium first enters the round tube 321 for preliminary heat exchange, and then enters the first flat tube 21 for deep heat exchange. Since there are multiple micro-channels in the first flat tube 21 , the medium comes into more complete contact with the first flat tube 21 , thereby fully conducting heat exchange with the first flat tube 21 and improving the heat exchange performance of the heat exchanger 100 .
  • the round tube 321 is located on the windward side, and the first flat tube 21 is located on the leeward side.
  • the round tube 321 located on the windward side first contacts the outside air and precipitates a large amount of moisture. However, due to the structural characteristics of the round tube 321 itself, the round tube 321 is located on the leeward side. It is difficult for condensation water to collect on the pipe 321, and the condensation water will flow down along the circumferential side of the circular pipe 321 for easy discharge, thereby improving drainage efficiency.
  • the heat exchanger 100 also includes a connecting elbow 40.
  • One end of the connecting elbow 40 is connected to the round tube 321, and the other end of the connecting elbow 40 is connected to the first flat tube 21. connect.
  • the connecting elbow 40 instead of the traditional header 70 for medium transmission, it is possible to avoid opening too many holes in the header 70 and setting partitions in the header 70, thereby avoiding the need for the round pipe 321 and the third
  • the flat tubes 21 are all installed on the header 70, which can reduce welding points and reduce the probability of medium leakage, thereby improving the overall structural strength of the heat exchanger 100 and improving the heat exchange efficiency.
  • the connecting elbow 40 enables the medium to flow directly from the first flat tube 21 to the round tube 321, or from the round tube 321 to the first flat tube 21, ensuring that the medium always flows in the round tube 321 and the first flat tube 21. In a balanced and stable state of flow, leakage problems are avoided, and the utilization rate of the medium and the uniformity of the medium flow are improved, thereby improving the heat exchange performance of the heat exchanger 100.
  • the connecting elbow 40 includes a first connecting part 41 , a second connecting part 42 and a twisting part 43 .
  • One end of the first connecting part 41 is connected to the first flat tube 21; one end of the second connecting part 42 is connected to the round tube 321; One end is connected to an end of the first connecting portion 41 away from the first flat tube 21 , and the other end of the twisting portion 43 is connected to an end of the second connecting portion 42 away from the round tube 321 .
  • the round tube 321 and the first flat tube 21 are connected through the connecting elbow 40, which facilitates the circulation of the medium in the round tube 321 and the first flat tube 21.
  • the medium generates turbulent flow inside the connecting elbow 40, making the refrigerant more uniform. , improve heat exchange efficiency.
  • the first connecting part 41 is adapted to the shape of the first flat tube 21 .
  • the cross-sectional shape of the first connecting portion 41 is waist-shaped, which facilitates smoother connection with the first flat tube 21 .
  • the first flat tube 21 at least partially extends into the first connecting part 41, which can increase the contact area between the first connecting part 41 and the first flat tube 21 and improve the welding strength.
  • the second connecting part 42 is adapted to the shape of the circular tube 321 .
  • the cross-sectional shape of the second connecting portion 42 is circular, which facilitates smoother connection with the circular tube 321 .
  • the round tube 321 at least partially extends into the second connecting part 42, which can increase the contact area between the second connecting part 42 and the round tube 321 and improve the welding strength.
  • the shape of the twisting portion 43 is U-shaped.
  • the U-shaped twisting portion 43 can play a good steering role and facilitate the connection of the elbow 40 to connect the first flat tube 21 and the round tube 321 .
  • the twisted portion 43 is formed by a smooth transition from a waist shape at one end to a circular shape at the other end, which can reduce the resistance of the medium flow, facilitate the smoother flow of the medium, and thereby improve the heat exchange efficiency.
  • the twisted portion 43 can also have other shapes, as long as it can play the same role.
  • the first connecting part 41 , the second connecting part 42 and the twisting part 43 are integrally formed. It is easy to process and form, and can effectively improve the overall structural strength of the connecting elbow 40. At the same time, it can reduce assembly time and cost.
  • the connecting elbow 40 is made of copper, aluminum or steel. In this way, it has good strength and corrosion resistance, and will not easily deform during use. Moreover, the connecting elbow 40 is formed by stamping and stretching using a stamping die, which facilitates industrial production. In other embodiments, the connecting elbow 40 can be made of different materials and production processes according to actual needs, as long as the same or similar functional characteristics can be achieved.
  • a plurality of first flat tubes 21 and a plurality of round tubes 321 are staggered, and adjacent first flat tubes 21 and round tubes 321 are connected to each other through connecting elbows 40, further improving heat exchange. ability. Since the plurality of first flat tubes 21 and the plurality of round tubes 321 are staggered, the sides of the first flat tubes 21 correspond to the fin units 10, and the medium in the first flat tubes 21 can not only use them to flow along the fin units.
  • the fin structures on both sides of the length direction of the fin unit 10 can be used for heat exchange, and the fin structures of the circular tubes 321 along the width direction of the fin unit 10 can also be used for heat exchange, thereby making full use of the fin unit 10 for heat exchange and further improving the efficiency. Heat exchange effect.
  • the first flat tube 21 and the two adjacent round tubes 321 are arranged in an equilateral triangle. This can ensure that both sides of the first flat tube 21 can use the fin unit 10 to enhance heat exchange, improve the heat exchange efficiency of the fin unit 10, and thus improve the cost performance of the heat exchanger 100.
  • the width of the first flat tube 21 is L1, 6mm ⁇ L1 ⁇ 20mm. By reasonably setting the width of the first flat tube 21, the drainage performance and heat exchange performance of the heat exchanger 100 can be further balanced. If L1>20mm, the width of the first flat tube 21 is too large. When used as an evaporator, water is likely to accumulate on the first flat tube 21. If it cannot be discharged in time, the heat exchange performance of the heat exchanger 100 will be affected. If L1 ⁇ 6mm, the width of the first flat tube 21 is too small, and the contact area with the fin unit 10 becomes smaller, which reduces the heat exchange performance of the heat exchanger 100.
  • the width of the first flat tube 21 can be adjusted according to actual needs.
  • the width of the first flat tube 21 can be 10mm, 12mm, 14mm or 16mm, as long as the above-mentioned first flat tube is satisfied.
  • a width range of 21 is sufficient.
  • the heat exchanger 100 further includes a header 70 .
  • One of the two adjacent circular pipes 321 is far away from the end of the connecting elbow 40 and the distributor 60 .
  • the end of the other round pipe 321 away from the connecting elbow 40 is connected with the header 70 .
  • the medium enters the plurality of circular tubes 321 from the distributor 60, and the heat-exchanged medium enters the header 70 through the plurality of adjacent circular tubes 321, thereby realizing distribution and collection of the medium.
  • the end of the circular tube 321 away from the connecting elbow 40 is bent to form a bent portion 322 , and the bent portion 322 is connected to the distributor 60 . Since the distributor 60 and the header 70 are both located on the side of the heat exchanger 100 away from the connecting elbow 40 , the bent portion 322 formed by bending the circular tube 321 connected to the distributor 60 facilitates the assembly of the heat exchanger 100 .
  • the shape of the bent portion 322 is L-shaped. In this way, the assembly of the heat exchanger 100 can be further facilitated.
  • the bending portion 322 can also be in other shapes, such as a U-shape or a V-shape.
  • the distributor 60 is provided with a plurality of capillary tubes 6 , and the medium enters the circular tube 321 through the capillary tubes 6 on the distributor 60 .
  • the flow rate of the medium can be controlled to meet different heat exchange requirements.
  • the fin unit 10 includes a first fin 11 and a second fin 12.
  • the first pipeline unit 2 is penetrated on the first fin 11, and the second pipeline unit 3 is penetrated on the first fin 11. on the second fin 12.
  • the first flat tube 21 penetrates the first fin 11
  • the second flat tube 311 or round tube 321 penetrates the second fin 12 ; wherein, the second fin 12 is located on the first fin 11 It is close to the side of the first flat tube 21 and abuts with the first fin 11 .
  • the medium in the first flat tube 21 can not only use the first fins 11 for heat exchange, but also use the second fins 12 on the side of the first flat tube 21 for heat exchange, thereby making full use of the fin unit 10 for heat exchange. Enhance heat exchange effect.
  • the width of the first fin 11 is W1 and the width of the second fin 12 is W2, where W2 ⁇ W1.
  • the first flat tube 21 with a larger cross-sectional area is threaded on the wider first fin 11, and the second flat tube 311 with a smaller cross-sectional area is threaded on the narrower second fin 12.
  • first fin 11 and the second fin 12 will be far away from one end of the flat tube.
  • the lower temperature causes frost to form quickly and easily causes frost blockage.
  • the widths of the first fin 11 and the second fin 12 are both less than 8 mm, the first fin 11 and the second fin will be The heat exchange area of the sheets 12 is reduced, which reduces the heat exchange performance of the heat exchanger 100 .
  • first fin 11 is located on the leeward side
  • second fin 12 is located on the windward side
  • the structures of the first fins 11 and the second fins 12 can be selected according to different heat exchange needs.
  • the second fin 12 since the second fin 12 is located on the windward side, the second fin 12 can be configured as a window structure, thereby improving the heat exchange effect.
  • the first fin 11 located on the leeward side is configured as a flat plate structure, thereby facilitating the discharge of condensed water. In this way, both the heat exchange efficiency of the heat exchanger 100 and the drainage efficiency of the heat exchanger 100 can be ensured.
  • the first fin 11 and the second fin 12 can also have other structures, as long as the same or similar effect can be achieved.
  • the window structure may be that the second fin 12 is provided with a window structure and the window structure protrudes from the surface of the fin body; the window structure may also be a blade and the second fin 12 is provided with a window structure.
  • the heat exchanger 100 includes multiple heat exchange circuits.
  • the heat exchange circuit includes two adjacent round tubes 321, two adjacent first flat tubes 21, and two connecting bends.
  • the head 40 one of the connecting elbows 40 connects one of the round tubes 321 to one of the first flat tubes 21, and the other connecting elbow 40 connects the other round tube 321 to the other first flat tube 21
  • the bent pipe 50 connects two adjacent first flat pipes 21 .
  • one end of the circular tube 321 away from the connecting elbow 40 is connected to the distributor 60
  • the other end of the other circular tube 321 away from the connecting elbow 40 is connected to the header 70 .
  • the medium enters from the distributor 60, enters the circular tube 321 connected thereto through the capillary tube 6, and performs heat exchange with the outside through the second fin 12.
  • the liquid medium is partially converted into a gaseous state, and the flow rate of the medium increases.
  • it enters the adjacent first flat tube 21 through the connecting elbow 40. Since there are multiple micro-channels in the first flat tube 21, the contact area with the first flat tube 21 increases when the medium enters, and the flow rate slows down.
  • One flat tube 21 carries out sufficient heat exchange, and then enters the other connected first flat tube 21 through the elbow 50, and then enters the other round tube 321 through the connected connecting elbow 40 to perform subsequent heat exchange, and finally from flows out of the header 70.
  • the circulation path of the medium in the heat exchanger 100 is increased, which improves the utilization rate of the medium, and the circulation distribution is more uniform, which significantly improves the heat exchange effect.
  • the header 70 only needs to collect the medium at the end without taking into account the direction of the medium. This prevents the header 70 from being provided with partitions, thereby simplifying the header. 70’s craftsmanship.
  • multiple heat exchange circuits share one distributor 60 and header 70, which can save the cost of the heat exchanger 100.
  • the number of heat exchange circuits is six. In other embodiments, an appropriate number of heat exchange loops may be selected based on actual heat exchange needs, for example, it may be four, five, seven or eight.
  • an appropriate number of round tubes 321 , connecting elbows 40 , first flat tubes 21 and elbows 50 in the heat exchange circuit can be selected according to actual needs, and the positions of the connecting elbows 40 and the elbows 50 can be Change according to actual needs.
  • the heat exchange circuit may include a single round tube 321 , a single connecting elbow 40 and a single first flat tube 21 .
  • the medium enters from the distributor 60 , enters the round tube 321 through the capillary tube 6 , enters the first flat tube 21 through the connecting elbow 40 , and then flows out directly from the header 70 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Details Of Fluid Heaters (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

一种换热器(100)。该换热器(100)包括:多个翅片单元(10)、第一管路单元(2)和第二管路单元(3)。多个翅片单元(10)相互间隔且并列地设置;第一管路单元(2)穿设于翅片单元(10),包括沿翅片单元(10)长度方向间隔分布地多根第一管路(201);第二管路单元(3)穿设于翅片单元(10),且第二管路单元(3)与第一管路单元(2)沿翅片单元(10)的宽度方向间隔设置,第二管路单元(3)包括沿翅片单元(10)长度方向间隔分布的多根第二管路(301);第二管路(301)与第一管路(201)的管路结构不同。

Description

换热器
相关申请
本申请要求2022年4月28日申请的,申请号为202221016299.6,名称为“换热器”的中国专利申请以及2022年4月28日申请的,申请号为202221057985.8,名称为“换热器”的中国专利申请的优先权,在此将其全文引入作为参考。
技术领域
本申请涉及换热技术领域,特别是涉及一种换热器。
背景技术
空调系统的主要组成部件包括压缩机、冷凝器、节流装置以及换热器,换热器起到与外界进行热交换的作用,而热交换主要通过换热器上的翅片与换热管来实现。
相关技术中的换热器为了在具有较小箱体的情况下达到制冷需求,通常采用双排平行流换热器,而目前的双排平行流换热器均是前后排采用相同结构的管路,无法适应在不同工况下的换热需求。例如,在用作蒸发器时,介质在进入前排管路时是液态,随换热过程的进行,介质由液态逐渐蒸发为气态,介质流速变快,导致介质与后排管路的换热不充分,这样会造成前排管路换热效果较好,而后排管路换热效果较差,没有充分发挥双排平行流换热器的换热作用,影响换热效果。
发明内容
根据本申请的各种实施例,提供一种换热器,包括:多个翅片单元、第一管路单元和第二管路单元。多个所述翅片单元相互间隔且并列地设置;所述第一管路单元穿设于所述翅片单元,且所述第一管路单元包括沿所述翅片单元长度方向间隔分布地多根第一管路;所述第二管路单元穿设于所述翅片单元,且所述第二管路单元与所述第一管路单元沿所述翅片单元的宽度方向间隔设置,所述第二管路单元包括沿所述翅片单元长度方向间隔分布的多根第二管路;所述第二管路与所述第一管路的管路结构不同。
在一实施例中,所述第一管路单元为第一扁管单元,所述第一扁管单元包括沿所述翅片单元长度方向间隔分布的多根第一扁管,所述第二管路单元为第二扁管单元,所述第二扁管单元包括沿所述翅片单元长度方向间隔分布的多根第二扁管。多根所述第一扁管与多 根所述第二扁管呈交错设置,且所述第一扁管的横截面积大于所述第二扁管的横截面积。
在一实施例中,所述第一扁管与所述第二扁管的长度相同,且所述第一扁管与所述第二扁管的厚度相同;所述第一扁管的宽度为L1,所述第二扁管的宽度为L2,其中6㎜≤L2<L1≤20㎜。或,所述第一扁管与所述第二扁管的长度相同,且所述第一扁管与所述第二扁管的宽度相同;所述第一扁管的厚度为H1,所述第二扁管的厚度为H2,其中1㎜≤H2<H1≤5㎜。
在一实施例中,所述第一扁管与和其相邻的两个所述第二扁管之间呈等边三角形设置;所述第一扁管与相邻的所述第二扁管分别沿所述翅片单元长度方向的中心面之间的垂直距离为S,12㎜≤S≤25㎜。
在一实施例中,所述换热器还包括分配器和转接单元,所述分配器包括第一毛细管及第二毛细管,所述第一毛细管的管径大于所述第二毛细管的管径;其中,所述第一毛细管通过所述转接单元与所述第一扁管相连,所述第二毛细管通过所述转接单元与所述第二扁管相连。
在一实施例中,所述转接单元包括第一转接头与第二转接头,所述第一转接头的一端与所述第一毛细管相适配,所述第一转接头的另一端与所述第一扁管相适配;所述第二转接头的一端与所述第二毛细管相适配,所述第二转接头的另一端与所述第二扁管相适配。
在一实施例中,所述第一管路单元为第一扁管单元,所述第一扁管单元包括沿所述翅片单元长度方向间隔分布的多根第一扁管,所述第二管路单元为圆管单元,所述圆管单元包括沿所述翅片单元长度方向间隔分布的多根圆管。所述换热器还包括:连接弯头,所述连接弯头的一端与所述圆管连接,所述连接弯头的另一端与所述第一扁管连接。
在一实施例中,所述连接弯头包括:第一连接部、第二连接部和扭转部。所述第一连接部的一端与所述第一扁管相连;所述第二连接部的一端与所述圆管相连;所述扭转部的一端与所述第一连接部远离所述第一扁管的一端相连,所述扭转部的另一端与所述第二连接部远离所述圆管的一端相连。
在一实施例中,所述第一连接部与所述第一扁管的形状相适配,且所述第一扁管至少部分伸入所述第一连接部内;所述第二连接部与所述圆管的形状相适配,且所述圆管至少部分伸入所述第二连接部内。所述扭转部的形状为U形,且所述扭转部由一端的腰形向另一端的圆形平滑过渡形成。
在一实施例中,多根所述第一扁管与多根所述圆管交错设置,且相邻的所述第一扁管与所述圆管通过所述连接弯头相互连接。
在一实施例中,所述换热器还包括多个弯管,相邻两个所述第一扁管远离所述连接弯 头的一端通过所述弯管相互连接。
在一实施例中,所述换热器还包括分配器和集流管,相邻两个所述圆管中的其中一个所述圆管远离所述连接弯头的一端与所述分配器连通,另一个所述圆管远离所述连接弯头的一端与所述集流管连通。
在一实施例中,所述圆管远离所述连接弯头的一端通过折弯形成折弯部,且所述折弯部与所述分配器连接。
在一实施例中,所述翅片单元包括第一翅片及第二翅片,所述翅片单元包括第一翅片及第二翅片,所述第一管路单元穿设于所述第一翅片上,所述第二管路单元穿设于所述第二翅片上;其中,所述第二翅片位于所述第一翅片靠近所述第一管路单元的一侧,并与所述第一翅片相互抵接。
在一实施例中,所述第一翅片的宽度为W1,所述第二翅片的宽度为W2,其中W2<W1。
本申请的一个或多个实施例的细节在下面的附图和描述中提出。本申请的其它特征、目的和优点将从说明书、附图以及权利要求书变得明显。
附图说明
为了更好地描述和说明这里公开的那些发明的实施例和/或示例,可以参考一幅或多幅附图。用于描述附图的附加细节或示例不应当被认为是对所公开的发明、目前描述的实施例和/或示例以及目前理解的这些发明的最佳模式中的任何一者的范围的限制。
图1为根据一个或多个实施例的换热器的部分结构示意图。
图2为根据一个或多个实施例的换热器的部分结构正视图。
图3为根据一个或多个实施例的换热器的部分结构正视图。
图4为根据一个或多个实施例的换热器的部分结构正视图。
图5为根据一个或多个实施例的换热器的部分结构示意图。
图6为根据一个或多个实施例的分配器的结构示意图。
图7为根据一个或多个实施例的第一转接头的结构示意图。
图8为根据一个或多个实施例的第二转接头的结构示意图。
图9为根据一个或多个实施例的弯管的结构示意图。
图10为根据一个或多个实施例的换热器的结构示意图。
图11为根据一个或多个实施例的换热器的侧视图。
图12为根据一个或多个实施例的换热器的部分结构示意图。
图13为根据一个或多个实施例的换热器的部分结构示意图。
图14为根据一个或多个实施例的连接弯头的结构示意图。
图中各符号表示含义如下:
100、换热器;10、翅片单元;11、第一翅片;12、第二翅片;2、第一管路单元;201、第一管路;20、第一扁管单元;21、第一扁管;3、第二管路单元;301、第二管路;31、第二扁管单元;311、第二扁管;32、圆管单元;321、圆管;322、折弯部;40、连接弯头;41、第一连接部;42、第二连接部;43、扭转部;50、弯管;60、分配器;6、毛细管;61、第一毛细管;62、第二毛细管;70、集流管;80、转接单元;81、第一转接头;82、第二转接头。
具体实施方式
为使本申请的上述目的、特征和优点能够更加明显易懂,下面结合附图对本申请的具体实施方式做详细的说明。在下面的描述中阐述了很多具体细节以便于充分理解本申请。但是本申请能够以很多不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本申请内涵的情况下做类似改进,因此本申请不受下面公开的具体实施例的限制。
需要说明的是,当组件被称为“固定于”或“设置于”另一个组件,它可以直接在另一个组件上或者也可以存在居中的组件。当一个组件被认为是“连接”另一个组件,它可以是直接连接到另一个组件或者可能同时存在居中组件。本申请的说明书所使用的术语“垂直的”、“水平的”、“上”、“下”、“左”、“右”以及类似的表述只是为了说明的目的,并不表示是唯一的实施方式。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本申请的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本申请中,除非另有明确的规定和限定,第一特征在第二特征“上”、“下”可以是第一特征直接和第二特征接触,或第一特征和第二特征间接地通过中间媒介接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅表示第一特征水平高度小于第二特征。
除非另有定义,本申请的说明书所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。在本申请的说明书中所使用的术语只是为了描述具 体的实施方式的目的,不是旨在于限制本申请。本申请的说明书所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
请参阅图1、图5和图10,本申请提供一种换热器100,安装于空调系统中。
空调系统的主要组成部件包括压缩机、冷凝器、节流装置以及换热器,换热器起到与外界进行热交换的作用,而热交换主要通过换热器上的翅片与换热管来实现。
相关技术中的换热器为了在较小箱体的情况下达到制冷需求,通常采用双排平行流换热器,而目前的双排平行流换热器均是前后排采用相同结构的扁管,无法适应在不同工况下的换热需求。例如,在用作蒸发器时,介质在进入前排管路时是液态,随换热过程的进行,介质由液态逐渐蒸发为气态,介质流速变快,导致介质与后排管路的换热不充分,这样会造成前排管路换热效果较好,而后排管路换热效果较差,没有充分发挥双排平行流换热器的换热作用,影响换热效果。
为了解决上述问题,请参阅图1,本申请提供一种换热器100,该换热器100包括第一管路单元2、第二管路单元3及多个翅片单元10。其中,多个翅片单元10相互间隔且并列地设置;第一管路单元2穿设于翅片单元10,且第一管路单元2包括沿翅片单元10长度方向间隔分布地多根第一管路201;第二管路单元3穿设于翅片单元10,且第二管路单元3与第一管路单元2沿翅片单元10的宽度方向间隔设置,第二管路单元3包括沿翅片单元10长度方向间隔分布的多根第二管路301,第二管路301与第一管路201的管路结构不同。
本申请的换热器100通过设置两列结构不同的管路,可适应实际工况以满足不同的换热需求。随着换热过程的进行,当需要对换热器100的管路内介质进行充分热交换时,可以在增大对应第二管路301或第一管路201的管径,以适当降低流速,增强换热效果。反之,当需要增大管路内介质流动速度时,可以减小对应管径。当然,在其他实施例中,为提高流速、提高排水效率或适配空调系统的管路分布,第二管路301与第一管路201可以设置不同的管路形状如圆管、扁管、蛇管等,本申请在此并不限定。
在一些实施例中,所述第一管路单元2为第一扁管单元20,所述第一扁管单元20包括沿所述翅片单元10长度方向间隔分布的多根第一扁管21,所述第二管路单元3为第二扁管单元31,所述第二扁管单元31包括沿所述翅片单元长度方向间隔分布的多根第二扁管311。多根第一扁管21与多根第二扁管311呈交错设置,且第一扁管21的横截面积大于第二扁管311的横截面积。
本申请的换热器100通过设置两列横截面积不同的扁管,满足了不同的换热需求,且介质先进入到横截面积较小的第二扁管311中,进行初步的热交换,然后进入横截面积较 大的第一扁管21中,进行深度的热交换。由于第一扁管21的横截面积较大,介质进入时流速降低,与第一扁管21进行充分的热交换,提高了换热器100的换热性能。多根第一扁管21及第二扁管311交错设置,进一步提高了换热能力。
同时,多根第一扁管21及第二扁管311交错设置,进一步提高了换热能力。因多根第一扁管21与多根第二扁管311呈交错设置,使得第一扁管21的侧方对应的是翅片单元10,第一扁管21内的介质不仅能够利用其沿翅片单元10长度方向两侧的翅片结构进行换热,还能够利用第二扁管311沿翅片单元10宽度方向的侧面的翅片结构进行换热,从而充分利用翅片单元10进行换热,进一步地提高换热效果。
实施例一
请参阅图2,第一扁管21与第二扁管311的长度相同,且第一扁管21与第二扁管311的厚度相同,第一扁管21的宽度为L1,第二扁管311的宽度为L2,其中L1>L2。如此,第一扁管21的横截面积大于第二扁管311的横截面积,提高了第一扁管21与翅片单元10的接触面积,且在工作时,由于第一扁管21的横截面积变大,介质流动的速度变缓,与第一扁管21的接触更加充分,提高了换热器100的换热性能。
进一步的,第一扁管21与第二扁管311的宽度范围满足6㎜≤L2<L1≤20㎜。通过合理地设置第一扁管21与第二扁管311的宽度,能够平衡换热器100的排水性能及换热性能。当用作蒸发器时,第二扁管311位于迎风侧,第一扁管21位于背风侧,位于迎风侧的第二扁管311会先与外界空气接触,析出大量水分,此时选用横截面积较小的第二扁管311,便于凝结水的排出,从而提高了排水效率。若第一扁管21与第二扁管311的宽度均大于20㎜,则第一扁管21与第二扁管311的宽度过大,在用作蒸发器时,第一扁管21与第二扁管311上容易积水,若不能及时排出则会影响换热器100的换热性能。若第一扁管21与第二扁管311的宽度均小于6㎜,则第一扁管21与第二扁管311的宽度过小,与翅片单元10的接触面积变小,降低了换热器100的换热性能。
在其他实施例中,第一扁管21与第二扁管311的宽度可以根据实际需求做出调整,如第一扁管21与第二扁管311的宽度可以是10㎜、12㎜、14㎜或16㎜,只要满足上述第一扁管21与第二扁管311的宽度范围即可。
实施例二
请参阅图3,第一扁管21与第二扁管311的长度相同,且第一扁管21与第二扁管311的宽度相同,第一扁管21的厚度为H1,第二扁管311的厚度为H2,其中H1>H2。如此,第一扁管21的横截面积大于第二扁管311的横截面积,提高了第一扁管21与翅片单元10的接触面积,且在工作时,由于第一扁管21的横截面积变大,介质流动的速度变缓,与 第一扁管21的接触更加充分,提高了换热器100的换热性能。
进一步的,第一扁管21与第二扁管311的厚度范围满足1㎜≤H2<H1≤5㎜。若第一扁管21与第二扁管311的厚度均大于5㎜,第一扁管21与第二扁管311之间布置结构紧凑,导致翅片单元10的换热面积减小,从而降低翅片单元10的换热效率,降低了换热器100的换热效果。若第一扁管21与第二扁管311的厚度均小于1㎜,经第一扁管21与第二扁管311流动的介质过少,不能充分地进行换热,且翅片单元10材料的用量增加,从而使成本增加。
在其他实施例中,第一扁管21与第二扁管311的厚度可以根据实际需求做出调整,如第一扁管21与第二扁管311的厚度可以是2㎜、3㎜或4㎜,只要满足上述第一扁管21与第二扁管311的厚度范围即可。
实施例三
请参阅图4,第一扁管21与第二扁管311的长度相同,第一扁管21与第二扁管311的宽度范围与实施例一相同,第一扁管21与第二扁管311的厚度范围与实施例二相同,相同之处不再赘述,不同之处在于:第一扁管21与第二扁管311的宽度不同,且第一扁管21与第二扁管311的厚度不同,且第一扁管21的横截面积大于第二扁管311的横截面积。从而提高了第一扁管21与翅片单元10的接触面积,在工作时,由于第一扁管21的横截面积变大,介质流动的速度变缓,与第一扁管21的接触更加充分,进而提高了换热器100的换热性能与排水性能。
请参阅图4,在本申请中,第一扁管21与和其相邻的两个第二扁管311之间呈等边三角形设置。如此,有利于第一扁管21和第二扁管311的装配,且能够保证第一扁管21的两侧都能够借助翅片单元10加强换热,能够提高翅片单元10的换热效率,从而提高换热器100的性价比。
进一步的,请继续参阅图4,第一扁管21与相邻的第二扁管311分别沿翅片单元10宽度方向的中心面之间的垂直距离为S,12㎜≤S≤25㎜。通过合理的布置扁管,能够提高翅片单元10的换热效率,从而增强换热器100的换热效果。若S<12㎜,则导致风阻增加,影响换热效率,若S>25㎜,则造成翅片单元10的材料浪费。在其他实施例中,第一扁管21与相邻的第二扁管311分别沿翅片单元10宽度方向的中心面之间的垂直距离S可以根据实际需求作出调整,如S可以是16㎜、18㎜、20㎜或22㎜。
请参阅图6、图7及图8,换热器100还包括分配器60和转接单元80,分配器60上设置有多个毛细管6,毛细管6包括第一毛细管61及第二毛细管62,第一毛细管61的管径大于第二毛细管62的管径;其中,第一毛细管61通过转接单元80与第一扁管21相连, 第二毛细管62通过转接单元80与第二扁管311相连。分配器60通过采用大小管结构,通过转接单元80连接至不同扁管,将制冷剂分配至不同的扁管,使得制冷剂分配均匀。
进一步的,转接单元80包括第一转接头81与第二转接头82,第一转接头81的一端与第一毛细管61相适配,第一转接头81的另一端与第一扁管21相适配;第二转接头82的一端与第二毛细管62相适配,第二转接头82的另一端与第二扁管311相适配。可以理解,这样可以提高转接单元80与分配器60及第一扁管21与第二扁管311的连接强度。
在一些实施例中,第一毛细管61及第一扁管21的一端至少部分伸入第一转接头81内;第二毛细管62及第二扁管311的一端至少部分伸入第二转接头82内,这样能够进一步提高焊接强度。
在一实施例中,请参阅图5,换热器100还包括集流管70,第一扁管21与第二扁管311的一端通过转接单元80连接分配器60,第一扁管21与第二扁管311的另一端连接集流管70。
在工作过程中,介质从分配器60进入,经第一毛细管61进入到第一扁管21中,经第一翅片11与外界进行热交换,换热后从集流管70集中流出;且介质从分配器60进入,经第二毛细管62进入到第二扁管311中,经第二翅片12与外界进行热交换,换热后从集流管70集中流出。
在另一实施例中,请参阅图9和图13,换热器100还包括多个弯管50,相邻第一扁管21间通过弯管50连通;或,相邻第一扁管21与第二扁管311之间通过弯管50连通,以实现介质的不同流程。通过弯管50连接相邻的两个第一扁管21或相邻第一扁管21与第二扁管311,从而增加了介质的流通路径,从而提升了换热器100的换热效率。弯管50与第一扁管21或第二扁管311之间通过焊接固定连接,从而减少扁管的折弯工艺。可以理解,在折弯的过程中,会发生翅片变形的问题,本申请无需折弯,能够解决翅片因折弯而变形的问题。
在本实施例中,介质从分配器60进入,经第二毛细管62进入到第二扁管311中,先进行初步的热交换,随着热交换的进行,液态介质部分转化为气态,流动阻力逐渐增大,压降也随之逐渐增大。介质的流速增快,然后经过弯管50进入第一扁管21中,进行深度的热交换,由于第一扁管21的横截面积较大,介质流经第一扁管21的流通面积大于第二扁管311,即第一扁管21的内容积大于第二扁管311的内容积,介质经过第一扁管21时的压降也会相应减小,从而使介质进入时流速降低,与第一扁管21进行充分的热交换,提高了换热器100的换热性能,再通过弯管50进入另一相邻的第一扁管21,再通过弯管50进入另一相邻的第二扁管311,进行后续的热交换,最终从集流管70流出。如此,制冷 剂在换热器100中的流通路程增加,而且流通分布更加均匀,使换热效果明显提升。
相关技术中的部分平行流换热器包括集流管、翅片、圆管及扁管。集流管上开设有多个孔槽,且集流管内设置多个隔板,多个隔板将集流管内分隔成多个流通室。圆管及扁管均穿设于孔槽内并与对应的流通室连通,介质经集流管内的流通室实现扁管与圆管的互通。但采用上述结构,换热器组装繁琐,结构复杂,且会增加过多的焊接点,导致介质泄漏的几率增大,降低了换热器整体的结构强度,从而降低了换热器的换热效率。并且,若不安装隔板,则介质在各扁管与圆管内的流通均匀性会受到很大影响,从而降低了换热器的换热效率。
为了解决上述问题,请参阅图10-图12,本申请实施例提供一种换热器100,第一管路单元2为第一扁管单元20,第一扁管单元20包括沿翅片单元10长度方向间隔分布地多根第一扁管21。第二管路单元3为圆管单元32,圆管单元32包括沿翅片单元10长度方向间隔分布的多根圆管321。
本申请的换热器100通过设置第一扁管21和圆管321,提高换热器100的换热效率的同时还兼顾了排水效率。在工作过程中,介质先进入到圆管321中,进行初步的热交换,然后进入第一扁管21中,进行深度的热交换。由于第一扁管21内有多个微通道,介质进入时与第一扁管21接触的更加充分,从而与第一扁管21进行充分的热交换,提高了换热器100的换热性能。作为蒸发器使用时,圆管321位于迎风侧,第一扁管21位于背风侧,位于迎风侧的圆管321先与外界空气接触,析出大量水分,但由于圆管321自身的结构特性,圆管321上不易汇集凝结水,凝结水会沿圆管321的周侧流下,便于排出,从而提高了排水效率。
进一步的,请参阅图10、图11及图14,换热器100还包括连接弯头40,连接弯头40的一端与圆管321连接,连接弯头40的另一端与第一扁管21连接。通过使用连接弯头40代替传统的集流管70来进行介质的传递,能够避免在集流管70上过多的开设孔槽且在集流管70内设置隔板,避免圆管321和第一扁管21均穿设于集流管70上,能够减少焊接点,降低介质泄漏的几率,从而提高了换热器100整体的结构强度,提高了换热效率。连接弯头40使介质能够从第一扁管21直接流向圆管321,或者,从圆管321直接流向第一扁管21内,保证介质在圆管321和第一扁管21内流通时始终处于流量平衡稳定的状态,避免产生泄漏问题,提高了介质的利用率以及介质流动的均匀性,从而提升换热器100的换热性能。
请参阅图14,连接弯头40包括第一连接部41、第二连接部42及扭转部43。第一连接部41的一端与第一扁管21相连;第二连接部42的一端与圆管321相连;扭转部43的 一端与第一连接部41远离第一扁管21的一端相连,扭转部43的另一端与第二连接部42远离圆管321的一端相连。通过连接弯头40连接圆管321与第一扁管21,便于介质在圆管321和第一扁管21内的流通,同时,介质在连接弯头40内部产生紊流,使得制冷剂更加均匀,提高换热效率。
第一连接部41与第一扁管21的形状相适配。具体地,第一连接部41的截面形状为腰形,便于与第一扁管21更顺畅地进行连接。且在组装时,第一扁管21至少部分伸入第一连接部41内,能够增大第一连接部41与第一扁管21的接触面积,提高焊接强度。
第二连接部42与圆管321的形状相适配。具体地,第二连接部42的截面形状为圆形,便于与圆管321更顺畅地进行连接。且在组装时,圆管321至少部分伸入第二连接部42内,能够增大第二连接部42与圆管321的接触面积,提高焊接强度。
在一实施例中,请参阅图14,扭转部43的形状为U形。U形设置的扭转部43能够起到很好的转向作用,便于连接弯头40将第一扁管21及圆管321相连。且扭转部43由一端的腰形向另一端的圆形平滑过渡形成,能够减小介质流通的阻力,便于介质更加顺畅的流通,从而提高换热效率。当然,在其他实施例中,扭转部43还可以为其他形状,只要能够起到相同的作用即可。
请参阅图14,在一实施例中,第一连接部41、第二连接部42及扭转部43一体成型。便于加工成型,且能够有效地提高连接弯头40的整体结构强度。同时能够减少组装时间,降低成本。
进一步的,连接弯头40的材质为铜,铝或钢材质。如此,具有较好的强度和耐腐蚀性,在使用过程中,不会轻易出现变形的情况。且连接弯头40利用冲压模具,冲压拉伸成型,便于工业化生产。在其他实施例中,连接弯头40可根据实际需要采用不同的材质及生产工艺,只要能达到相同或相似的功能特点即可。
请参阅图10-图12,多根第一扁管21与多根圆管321交错设置,且相邻的第一扁管21与圆管321通过连接弯头40相互连接,进一步提高了换热能力。因多根第一扁管21与多根圆管321交错设置,使得第一扁管21的侧方对应的是翅片单元10,第一扁管21内的介质不仅能够利用其沿翅片单元10长度方向两侧的翅片结构进行换热,还能够利用圆管321沿翅片单元10宽度方向的侧面的翅片结构进行换热,从而充分利用翅片单元10进行换热,进一步地提高换热效果。
可选的,第一扁管21与和其相邻的两个圆管321之间呈等边三角形设置。如此能够保证第一扁管21的两侧都能够借助翅片单元10加强换热,能够提高翅片单元10的换热效率,从而提高换热器100的性价比。
进一步的,请参阅图12,第一扁管21的宽度为L1,6㎜≤L1≤20㎜。通过合理地设置第一扁管21的宽度,能够进一步地平衡换热器100的排水性能及换热性能。若L1>20㎜,则第一扁管21宽度过大,在用作蒸发器时,第一扁管21上容易积水,若不能及时排出则会影响换热器100的换热性能。若L1<6㎜,则第一扁管21宽度过小,与翅片单元10的接触面积变小,降低了换热器100的换热性能。
在其他实施例中,第一扁管21的宽度可以根据实际需求做出调整,如第一扁管21的宽度可以是10㎜、12㎜、14㎜或16㎜,只要满足上述第一扁管21的宽度范围即可。
请参阅图10及图13,在一些实施例中,换热器100还包括集流管70,相邻两个圆管321中的其中一个圆管321远离连接弯头40的一端与分配器60连通,另一个圆管321远离连接弯头40的一端与集流管70连通。介质由分配器60进入多个圆管321,换热后的介质通过多个相邻圆管321进入集流管70中,从而实现介质的分配及汇集。
请参阅图10,圆管321远离连接弯头40的一端通过折弯形成折弯部322,且折弯部322与分配器60连接。由于分配器60和集流管70均位于换热器100上远离连接弯头40的一侧,与分配器60相连接的圆管321折弯形成的折弯部322便于换热器100的组装。
具体的,折弯部322的形状为L形。如此,能进一步便于换热器100的组装。在其他实施例中,折弯部322也可以为其他形状,例如可以为U形或V形。
进一步的,分配器60上设置有多个毛细管6,介质通过分配器60上的毛细管6进入圆管321中。通过改变毛细管6的长度,可以控制介质的流量,从而满足不同的换热需求。
请参阅图4和图12,翅片单元10包括第一翅片11及第二翅片12,第一管路单元2穿设于第一翅片11上,第二管路单元3穿设于第二翅片12上。具体的,第一扁管21穿设于第一翅片11上,第二扁管311或圆管321穿设于第二翅片12上;其中,第二翅片12位于第一翅片11靠近第一扁管21的一侧,并与第一翅片11相互抵接。使得第一扁管21内的介质不仅能够利用第一翅片11换热,还能够利用第一扁管21侧方的第二翅片12换热,从而充分利用翅片单元10进行换热,加强换热效果。
在一些实施例中,第一翅片11的宽度为W1,第二翅片12的宽度为W2,其中W2<W1。横截面积较大的第一扁管21穿设于较宽的第一翅片11上,横截面积较小的第二扁管311穿设于较窄的第二翅片12上,通过选择合适的翅片单元10,能够进一步地提高换热效率。
具体地,8㎜<W2<W1<27㎜,若第一翅片11与第二翅片12的宽度均大于27㎜,则导致第一翅片11与第二翅片12远离扁管的一端温度较低,导致结霜速度快,易造成霜堵的情况。若第一翅片11与第二翅片12的宽度均小于8㎜,则导致第一翅片11与第二翅 片12的换热面积减小,降低了换热器100的换热性能。
进一步的,第一翅片11位于背风侧,第二翅片12位于迎风侧。且可根据不同换热需要选择第一翅片11及第二翅片12的结构。例如,由于第二翅片12位于迎风侧,可以选择将第二翅片12设置为开窗片结构,进而提升换热效果。将位于背风侧的第一翅片11设置为平片结构,从而有利于冷凝水的排出。这样既能保证换热器100的换热效率,又能保证换热器100的排水效率。当然,在其他实施例中,第一翅片11及第二翅片12还可以为其他结构,只要能够达到相同或相似的效果即可。
需要说明的是,开窗片结构可以是第二翅片12设置有开窗结构且该开窗结构凸出于翅片本体的表面;开窗片结构也可以是叶片且第二翅片12设有通孔,通孔沿着第二翅片12长度方向延伸,每片叶片的两端与第二翅片12连接并一一对应的盖设在通孔上,且叶片与第二翅片12表面之间开设过风孔,以使得过风孔与相对应的通孔连通形成过风通道。
请参阅图10,换热器100包括多个换热回路,在一实施例中,换热回路包括两个相邻的圆管321、两个相邻的第一扁管21、两个连接弯头40(其中一个连接弯头40将其中一个圆管321与其中一个第一扁管21连通,另一个连接弯头40将另一个圆管321与另一个第一扁管21连通)、一个将两个相邻第一扁管21连通的弯管50。其中,两个相邻圆管321中的其中一个圆管321远离连接弯头40的一端与分配器60连接,另一个圆管321远离连接弯头40的一端与集流管70连接。
在工作过程中,介质从分配器60进入,通过毛细管6进入与之相连的圆管321内,经第二翅片12与外界进行热交换,液态介质部分转化为气态,介质的流速增快。然后通过连接弯头40进入相邻的第一扁管21内,由于第一扁管21内有多个微通道,介质进入时与第一扁管21的接触面积增加,流速变缓,与第一扁管21进行充分的热交换,再经过弯管50进入相连的另一第一扁管21内,再经相连的连接弯头40进入另一圆管321,进行后续的热交换,最后从集流管70中流出。如此设置,介质在换热器100中的流通路径增加,提高了介质的利用率,而且流通分布更加均匀,使换热效果明显提升。且通过连接弯头40及弯管50实现介质的多流程,集流管70只需要对介质做最后的汇集,而无需兼顾介质的转向,避免集流管70设置隔板,从而简化集流管70的工艺。且多个换热回路共用一个分配器60及集流管70,可节约换热器100的成本。
在本申请中,换热回路的数目为六个。在其他实施例中,换热回路可根据实际换热需要选择合适的数目,例如可以为四个、五个、七个或八个。
在其他实施例中,换热回路中的圆管321、连接弯头40、第一扁管21及弯管50可根据实际需要选择适当的数目,且连接弯头40与弯管50的位置可以根据实际需求而改变。 举例说明,换热回路可包括单个圆管321、单个连接弯头40及单个第一扁管21。在工作过程中,介质由分配器60进入,经毛细管6进入圆管321中,再通过连接弯头40进入第一扁管21中,然后直接由集流管70流出。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请的专利保护范围应以所附权利要求为准。

Claims (15)

  1. 一种换热器,包括:
    多个翅片单元,多个所述翅片单元相互间隔且并列地设置;
    第一管路单元,所述第一管路单元穿设于所述翅片单元,且所述第一管路单元包括沿所述翅片单元长度方向间隔分布地多根第一管路;
    第二管路单元,所述第二管路单元穿设于所述翅片单元,且所述第二管路单元与所述第一管路单元沿所述翅片单元的宽度方向间隔设置,所述第二管路单元包括沿所述翅片单元长度方向间隔分布的多根第二管路;
    其特征在于,所述第二管路与所述第一管路的管路结构不同。
  2. 根据权利要求1所述的换热器,所述第一管路单元为第一扁管单元,所述第一扁管单元包括沿所述翅片单元长度方向间隔分布的多根第一扁管,所述第二管路单元为第二扁管单元,所述第二扁管单元包括沿所述翅片单元长度方向间隔分布的多根第二扁管;
    其中,多根所述第一扁管与多根所述第二扁管呈交错设置,且所述第一扁管的横截面积大于所述第二扁管的横截面积。
  3. 根据权利要求2所述的换热器,其中,所述第一扁管与所述第二扁管的长度相同,且所述第一扁管与所述第二扁管的厚度相同;所述第一扁管的宽度为L1,所述第二扁管的宽度为L2,其中6㎜≤L2<L1≤20㎜;或,
    所述第一扁管与所述第二扁管的长度相同,且所述第一扁管与所述第二扁管的宽度相同;所述第一扁管的厚度为H1,所述第二扁管的厚度为H2,其中1㎜≤H2<H1≤5㎜。
  4. 根据权利要求2所述的换热器,其中,所述第一扁管与和其相邻的两个所述第二扁管之间呈等边三角形设置;
    所述第一扁管与相邻的所述第二扁管分别沿所述翅片单元长度方向的中心面之间的垂直距离为S,12㎜≤S≤25㎜。
  5. 根据权利要求2所述的换热器,其中,所述换热器还包括分配器和转接单元,所述分配器包括第一毛细管及第二毛细管,所述第一毛细管的管径大于所述第二毛细管的管径;
    其中,所述第一毛细管通过所述转接单元与所述第一扁管相连,所述第二毛细管通过所述转接单元与所述第二扁管相连。
  6. 根据权利要求5所述的换热器,其中,所述转接单元包括第一转接头与第二转接头,所述第一转接头的一端与所述第一毛细管相适配,所述第一转接头的另一端与所述第一扁管相适配;所述第二转接头的一端与所述第二毛细管相适配,所述第二转接头的另一端与所述第二扁管相适配。
  7. 根据权利要求1所述的换热器,所述第一管路单元为第一扁管单元,所述第一扁管单元包括沿所述翅片单元长度方向间隔分布的多根第一扁管,所述第二管路单元为圆管单元,所述圆管单元包括沿所述翅片单元长度方向间隔分布的多根圆管;
    其中,所述换热器还包括:
    连接弯头,所述连接弯头的一端与所述圆管连接,所述连接弯头的另一端与所述第一扁管连接。
  8. 根据权利要求7所述的换热器,其中,所述连接弯头包括:
    第一连接部,所述第一连接部的一端与所述第一扁管相连;
    第二连接部,所述第二连接部的一端与所述圆管相连;
    扭转部,所述扭转部的一端与所述第一连接部远离所述第一扁管的一端相连,所述扭转部的另一端与所述第二连接部远离所述圆管的一端相连。
  9. 根据权利要求8所述的换热器,其中,所述第一连接部与所述第一扁管的形状相适配,且所述第一扁管至少部分伸入所述第一连接部内;所述第二连接部与所述圆管的形状相适配,且所述圆管至少部分伸入所述第二连接部内;
    所述扭转部的形状为U形,且所述扭转部由一端的腰形向另一端的圆形平滑过渡形成。
  10. 根据权利要求7所述的换热器,其中,多根所述第一扁管与多根所述圆管交错设置,且相邻的所述第一扁管与所述圆管通过所述连接弯头相互连接。
  11. 根据权利要求7所述的换热器,其中,所述换热器还包括多个弯管,相邻两个所述第一扁管远离所述连接弯头的一端通过所述弯管相互连接。
  12. 根据权利要求7所述的换热器,其中,所述换热器还包括分配器和集流管,相邻两个所述圆管中的其中一个所述圆管远离所述连接弯头的一端与所述分配器连通,另一个所述圆管远离所述连接弯头的一端与所述集流管连通。
  13. 根据权利要求12所述的换热器,其中,所述圆管远离所述连接弯头的一端通过折弯形成折弯部,且所述折弯部与所述分配器连接。
  14. 根据权利要求1所述的换热器,其中,所述翅片单元包括第一翅片及第二翅片,所述第一管路单元穿设于所述第一翅片上,所述第二管路单元穿设于所述第二翅片上;
    其中,所述第二翅片位于所述第一翅片靠近所述第一管路单元的一侧,并与所述第一翅片相互抵接。
  15. 根据权利要求14所述的换热器,其中,所述第一翅片的宽度为W1,所述第二翅片的宽度为W2,其中W2<W1。
PCT/CN2023/090982 2022-04-28 2023-04-26 换热器 WO2023208073A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202221016299.6U CN217383368U (zh) 2022-04-28 2022-04-28 换热器
CN202221057985.8 2022-04-28
CN202221057985.8U CN217383369U (zh) 2022-04-28 2022-04-28 换热器
CN202221016299.6 2022-04-28

Publications (1)

Publication Number Publication Date
WO2023208073A1 true WO2023208073A1 (zh) 2023-11-02

Family

ID=88517880

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/090982 WO2023208073A1 (zh) 2022-04-28 2023-04-26 换热器

Country Status (1)

Country Link
WO (1) WO2023208073A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08200886A (ja) * 1995-01-25 1996-08-06 Yanmar Diesel Engine Co Ltd 空調用熱交換器
CN100513977C (zh) * 2005-12-07 2009-07-15 松下电器产业株式会社 热交换器
JP2010185614A (ja) * 2009-02-12 2010-08-26 Mitsubishi Electric Corp 扁平管継手
JP5014372B2 (ja) * 2009-04-14 2012-08-29 三菱電機株式会社 フィンチューブ型熱交換器並びに空調冷凍装置
CN208296385U (zh) * 2018-04-27 2018-12-28 郑州海尔空调器有限公司 一种分流组件、换热器及空调器
US20220065556A1 (en) * 2020-08-31 2022-03-03 Samsung Electronics Co., Ltd. Heat exchanger and air conditioner using the heat exchanger
CN217383368U (zh) * 2022-04-28 2022-09-06 浙江盾安热工科技有限公司 换热器
CN217383369U (zh) * 2022-04-28 2022-09-06 浙江盾安热工科技有限公司 换热器

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08200886A (ja) * 1995-01-25 1996-08-06 Yanmar Diesel Engine Co Ltd 空調用熱交換器
CN100513977C (zh) * 2005-12-07 2009-07-15 松下电器产业株式会社 热交换器
JP2010185614A (ja) * 2009-02-12 2010-08-26 Mitsubishi Electric Corp 扁平管継手
JP5014372B2 (ja) * 2009-04-14 2012-08-29 三菱電機株式会社 フィンチューブ型熱交換器並びに空調冷凍装置
CN208296385U (zh) * 2018-04-27 2018-12-28 郑州海尔空调器有限公司 一种分流组件、换热器及空调器
US20220065556A1 (en) * 2020-08-31 2022-03-03 Samsung Electronics Co., Ltd. Heat exchanger and air conditioner using the heat exchanger
CN217383368U (zh) * 2022-04-28 2022-09-06 浙江盾安热工科技有限公司 换热器
CN217383369U (zh) * 2022-04-28 2022-09-06 浙江盾安热工科技有限公司 换热器

Similar Documents

Publication Publication Date Title
WO2011000137A1 (zh) 一种微通道、平行流、全铝扁管焊接式结构换热器及应用
CN203980989U (zh) 平行流换热器及其翅片
CN107702382B (zh) 微通道蒸发器
CN201589465U (zh) 一种变通道混流式换热器
CN217383369U (zh) 换热器
CN210861409U (zh) 换热器组件和具有其的空调室内机
WO2023208073A1 (zh) 换热器
JP2009145010A (ja) 空気調和機用フィンレス熱交換器
CN215984104U (zh) 换热器
CN217383368U (zh) 换热器
CN210688819U (zh) 换热器和具有其的空调器
CN210861410U (zh) 换热器组件和具有其的空调室内机
CN210861814U (zh) 换热器和具有其的空调器
CN208059081U (zh) 柜式室内机和空调器
CN108613436B (zh) 一种换热器及空调器
CN108344210B (zh) 提高换热效率的平行流换热系统
CN220417729U (zh) 一种高换热效率的微通道换热器
CN216694561U (zh) 换热器和具有该换热器的空调系统
CN213931555U (zh) 换热器及冰箱
CN216282901U (zh) 一种换热器及空调器
CN218410097U (zh) 一种空调
WO2009103222A1 (zh) 一种微间距平行流热交换器
CN211977312U (zh) 蒸发组件和家电设备
CN213178908U (zh) 一种用于超薄蒸发器芯体的矩形波翅片
CN210602893U (zh) 一种板管换热器及蒸发式冷凝系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23795505

Country of ref document: EP

Kind code of ref document: A1