WO2023208060A1 - 一种线路板氯化铜蚀刻废液沉淀处理回用方法及其装置 - Google Patents

一种线路板氯化铜蚀刻废液沉淀处理回用方法及其装置 Download PDF

Info

Publication number
WO2023208060A1
WO2023208060A1 PCT/CN2023/090931 CN2023090931W WO2023208060A1 WO 2023208060 A1 WO2023208060 A1 WO 2023208060A1 CN 2023090931 W CN2023090931 W CN 2023090931W WO 2023208060 A1 WO2023208060 A1 WO 2023208060A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
etching
reaction
copper
waste liquid
Prior art date
Application number
PCT/CN2023/090931
Other languages
English (en)
French (fr)
Inventor
叶涛
叶旖婷
Original Assignee
叶涛
叶旖婷
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 叶涛, 叶旖婷 filed Critical 叶涛
Publication of WO2023208060A1 publication Critical patent/WO2023208060A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/46Regeneration of etching compositions

Definitions

  • the invention belongs to the technical field of circuit board etching waste liquid recovery, treatment and recycling, and specifically relates to a circuit board copper chloride etching waste liquid precipitation treatment and reuse method and a device thereof.
  • etching is an important step.
  • the etching solutions commonly used in circuit board production include acidic copper chloride etching solution and alkaline cupric ammonia chloride etching solution.
  • circuit board copper chloride etching process it is collectively referred to as circuit board copper chloride etching process, which distinguishes it from sulfuric acid/hydrogen peroxide type, organic acid type, persulfate type, chromic acid/sulfuric acid type and other circuit board etching processes.
  • acidic copper chloride etching working fluid hydrochloric acid and copper chloride.
  • Some process formulas also contain ammonium chloride and/or sodium chloride and/or ferric chloride.
  • the main components of the alkaline cupric ammonia chloride etching working fluid are copper salts of cupric chloride ammonia complex, ammonium chloride, and ammonia water, in which ammonium bicarbonate and/or ammonium carbonate and/or organic acid amines can be used as additives. .
  • etching waste liquid In actual etching production, as the etching working fluid in the etching tank reacts with the copper metal, the proportions of various components in the solution will continue to change. In order to ensure stable etching performance, new etching liquid needs to be added to the etching working liquid in the etching production line.
  • the added new etching liquid is called etching sub-liquid in the industry, and the solution that overflows outside the etching production line is called etching waste liquid.
  • the acidification method is to directly add sulfuric acid to the alkaline cupric ammonia chloride etching waste liquid. After producing the copper sulfate, electrolysis is used to recover the metallic copper through electrochemical reduction. However, the remaining salt solution contains a large amount of alkaline cupric ammonia chloride. The ammonium sulfate that does not exist in etching cannot be recycled into the etching process.
  • the extraction method uses an organic strong chelating agent to extract copper ions in the etching waste liquid, and the remaining liquid is used to prepare a regenerated etching sub-liquid, and then uses sulfuric acid to back-extract the organic extractant that chelated the copper ions to obtain copper sulfate. Copper metal is recovered through electrolysis. Although the extraction process has a high recycling rate of production raw materials, a large amount of free ammonia is produced due to the destruction of the copper ammonia complex during the recycling process.
  • the vigorous stirring required in the extraction process causes ammonia to easily escape, and the etching waste after extraction is
  • the residual chelating agent in the remaining liquid will cause the regenerated etching sub-liquid to contain organic impurities of the chelating agent, affecting the efficiency and quality of the etching production.
  • the electrolysis method is to directly use the alkaline copper ammonia chloride etching waste liquid as the electrolyte for electrolysis to extract copper.
  • the copper ammonia complex is destroyed and free ammonia is released.
  • the heat generated during the electrolysis process greatly reduces the solubility of ammonia, resulting in the volatilization of a large amount of ammonia.
  • the electrolyte contains a large amount of ammonium ions and chloride ions at the same time, there is a possibility of producing explosive and dangerous nitrogen trichloride during the electrolysis process, and chlorine gas is produced during the electrolysis process, which reacts with the ammonia in the electrolyte and converts it. Ammonia is wasted for nitrogen, resulting in poor economic efficiency of this copper recovery method.
  • the alkalization method is to use one or more of sodium hydroxide, potassium hydroxide, ammonium hydroxide, sodium carbonate, and sodium bicarbonate for neutralization reaction to generate copper hydroxide and/or copper carbonate. Precipitate and perform solid-liquid separation to collect copper elements.
  • acidic etching solutions that themselves contain ammonium chloride, or when ammonium hydroxide is used in the alkalization recovery process of acidic copper chloride etching waste liquid, the resulting copper-containing precipitate contains ammonium salt impurities and is difficult to pass through.
  • the removal of existing environmentally friendly treatment technology affects the recycling of copper compound products in the next step.
  • each etching production line needs to be equipped with several large-scale electrolysis equipment worth millions of yuan.
  • electricity Electrolysis equipment is expensive because it is equipped with multiple metal electrodes and diaphragms, and a large amount of electricity is consumed during use to convert copper ions and metal copper, resulting in large investment in electrolysis equipment, high energy consumption of equipment, and heavy maintenance costs.
  • the first object of the present invention is to provide a method for precipitating, treating and reusing circuit board copper chloride etching waste liquid containing ammonium and/or ammonia, which has low equipment investment costs, low maintenance costs, less environmental pollution during the treatment process, and can remove copper.
  • the final liquid medicine can be recycled to improve production returns.
  • the second object of the present invention is to provide a device for the above-mentioned copper chloride etching waste liquid precipitation treatment and recycling method for circuit boards.
  • the first object of the present invention is achieved through the following technical measures:
  • a method for precipitation treatment and reuse of circuit board copper chloride etching waste liquid containing ammonium and/or ammonia are as follows:
  • circuit board copper chloride etching waste liquid and the pH value adjuster are mixed and reacted to cause copper salts to precipitate in the solution. At least one of the circuit board copper chloride etching waste liquid and the pH value adjuster is used.
  • the working principle of the present invention is to neutralize the etching waste liquid containing ammonium and/or ammonia to obtain a copper compound precipitation or a mixture of it and an iron compound - filter residue (see the specific reaction formula below), and then perform a neutralization reaction on the filter residue.
  • Ammonia nitrogen removal treatment is used to recover copper products and the filtrate is directly or re-distributed into etching sub-liquid and/or etching oxidant solution.
  • circuit board copper chloride etching waste liquid and pH adjuster described in step (1) of the present invention contains ammonium and/or ammonia.
  • the circuit board copper chloride etching waste liquid is circuit board acidic copper chloride etching waste liquid and/or circuit board alkaline copper chloride ammonia etching waste liquid, which can be a circuit board copper chloride etching waste liquid, or It can be a mixture of more than one circuit board copper chloride etching waste liquid.
  • the filtrate A described in step (3) of the present invention can be reused in whole or in part directly or after preparation as an acidic etching regeneration sub-liquid and/or an acidic etching oxidant solution in the circuit board acidic copper chloride etching system; it can also be used All or part of it is reused directly or after preparation as an alkaline etching regeneration sub-liquid in the circuit board alkaline copper ammonia chloride etching system.
  • the main component of the recycled copper product in step (3) of the present invention is at least one of copper hydroxide, copper carbonate, basic copper carbonate, copper oxide, and percuprate.
  • the pH adjuster in step (1) of the present invention includes two types: acidic pH adjuster and alkaline pH adjuster.
  • the acidic pH adjuster is at least one of circuit board acidic copper chloride etching waste liquid, hydrochloric acid, organic acid, and carbon dioxide.
  • the alkaline pH adjuster is selected from the group consisting of alkaline cupric ammonia chloride etching waste liquid for circuit boards, sodium hydroxide, potassium hydroxide, ammonia and/or ammonium hydroxide, sodium carbonate, sodium bicarbonate, potassium bicarbonate, At least one of ammonium carbonate and ammonium bicarbonate.
  • the organic acid in the acidic pH adjuster is formic acid.
  • the obtained filtrate A also contains formate radicals.
  • the acidic regeneration etching sub-liquid prepared with filtrate A contains formic acid.
  • the oxidant added during the acid etching process can oxidize and consume the reducing formic acid in time. Will not negatively impact acid etching production.
  • the alkaline regeneration etching sub-liquid prepared using filtrate A contains ammonium formate. When reused in alkaline etching production, ammonium formate has no negative impact on the chemical reaction of alkaline etching.
  • the acidic pH adjuster contains carbon dioxide
  • carbon dioxide is first used to adjust the pH of the alkaline circuit board copper chloride etching waste liquid downward until copper salts precipitate and the resulting pH is greater than 7, and then Use an acidic pH adjuster of at least one of circuit board acidic copper chloride etching waste liquid, hydrochloric acid, and organic acid to further adjust the pH value downward.
  • the pH value is further adjusted downward using at least one acidic pH adjuster of circuit board acidic copper chloride etching waste liquid, hydrochloric acid, and organic acid
  • the resulting pH value is not less than 7, so as to generate as much as possible Copper salts precipitate and prevent large amounts of carbon dioxide from being released and causing waste.
  • the alkaline pH adjuster is at least one of circuit board alkaline cupric ammonia chloride etching waste liquid, ammonia water, ammonium carbonate, and ammonium bicarbonate. Because when the alkaline pH adjuster contains at least one of sodium hydroxide, potassium hydroxide, sodium carbonate, and sodium bicarbonate, the resulting filtrate A will contain too many potassium ions and/or sodium ions, most of which It needs to be discharged and cannot be reused in etching production. Therefore, the preferred solution of the alkaline pH adjuster can reduce the use of inorganic alkali raw materials containing potassium or sodium as alkaline pH adjusters, overcome the problem of difficulty in environmentally friendly recycling, and thereby increase the recycling rate.
  • the alkaline pH adjuster is solid ammonium carbonate to minimize the volume increase of the reaction solution during the pH adjustment process.
  • the ammonium ions added to the reaction solution due to the addition of solid ammonium carbonate can be removed in step (3), and the components in the solution can easily be balanced when it is subsequently prepared as an etching regeneration sub-liquid for reuse.
  • circuit board copper chloride etching waste liquid described in step (1) is mixed with circuit board acidic copper chloride etching waste liquid and circuit board alkaline copper ammonia chloride etching waste liquid, or circuit board acidic chlorine etching waste liquid is used Copper etching waste liquid and/or circuit board alkaline copper ammonia chloride etching waste liquid are used as pH adjusters.
  • the chemical reaction that occurs is as follows.
  • the hydrogen ions in the following reaction equation come from the acidic pH adjuster. 4Cu(NH 3 ) 2 Cl+6H + +4H 2 O+O 2 ⁇ 2Cu 2 (OH) 3 Cl ⁇ +2NH 4 Cl+6NH 4 + ; 2Cu(NH 3 ) 4 Cl 2 +5H + +3H 2 O ⁇ Cu 2 (OH) 3 Cl ⁇ +3NH 4 Cl+5NH 4 + .
  • step (1) When the circuit board copper chloride etching waste liquid described in step (1) is acidic and is mixed with sodium hydroxide and/or potassium hydroxide and/or ammonia and/or ammonium hydroxide in the alkaline pH value adjuster, During the neutralization reaction, the chemical reaction that occurs is as follows.
  • step (1) When the circuit board copper chloride etching waste liquid described in step (1) is acidic and mixed with the carbonate in the alkaline pH adjuster, When neutralizing with and/or bicarbonate, the chemical reaction that occurs is as follows.
  • step (1) When the circuit board copper chloride etching waste liquid described in step (1) is acidic and is mixed with an alkaline pH adjuster until it becomes neutral or alkaline, continue to add the carbonate in the alkaline pH adjuster. and/or bicarbonate can cause the solution to produce copper carbonate and/or basic copper carbonate precipitates.
  • the filtrate A obtained in step (2) mainly contains ammonium salts and chloride salts, and may also contain inorganic acids. Or ammonium hydroxide, other original components in the circuit board copper chloride etching waste liquid, as well as copper ammonia complex and/or soluble copper salt.
  • the main component of the filter residue C obtained in step (2) includes at least one of cupric ammonia chloride, basic copper chloride, copper hydroxide, copper carbonate, and basic copper carbonate, and is also mixed with ammonium salt and/or hydroxide. Ammonium and/or copper ammonia complexes.
  • the filtrate A may also contain iron salts
  • the filter residue C may also contain iron salts. Contains iron hydroxides and/or iron salts. The inventor found that although new ammonium salts and/or chloride salts were generated in step (1), a considerable part of the soluble salts in the solution were taken away by the solid precipitate during the solid-liquid separation in step (2), so in filtrate A The chlorine salt and ammonium salt will not need to be discarded in large quantities due to excessive amounts.
  • the deamination treatment described in step (3) adopts at least one of the following methods: (i) mixing the filter residue C with the deamination oxidant to perform a deamination oxidation reaction; (ii) directly heating and oxidizing the filter residue C to remove ammonia. deal with.
  • the deamination oxidant is hypochlorite and/or chlorine.
  • the oxidizing properties of hypochlorite and/or chlorine are used to remove ammonium salt and/or ammonia in the filter residue C. Nitrogen is generated during the reaction.
  • the hypochlorite is specifically potassium hypochlorite and/or sodium hypochlorite.
  • filtrate B contains chlorine salts and/or hypochlorite and/or inorganic alkali
  • main component of filter residue D is copper hydroxide and/or copper carbonate and/or copper oxide and/or percuprate.
  • the filter residue C contains iron hydroxide and/or iron salt
  • the iron-containing component will also exist in the filter residue D in the form of iron hydroxide and/or iron oxide, and/or in the form of iron salt. and/or ferrate form is present in filtrate B.
  • the types and proportions of each component in the obtained filter residue D can be controlled by the pH value, operating temperature, redox potential parameter value, reaction time, and ammonia and/or ammonium concentration in the reaction solution at the end of the chemical reaction.
  • the obtained filtrate B contains excess deamination oxidant hypochlorite and inorganic alkali, it can be used for oxidation treatment in other processes.
  • At least one of the following chemical reactions occurs during the deamination oxidation reaction:
  • the deamination oxidizing agent contains hypochlorite Cu(NH 3 ) 4 Cl 2 +6ClO - ⁇ 2HCl+6Cl - +CuO ⁇ +2N 2 ⁇ +5H 2 O; 2Cu 2 (OH) 3 Cl+3ClO - +2NH 4 Cl ⁇ 4HCl+3Cl - +4CuO ⁇ +N 2 ⁇ +5H 2 O;
  • chlorine gas dissolves in water to generate hypochlorite and chloride ions. Therefore, when the deamination oxidant contains chlorine, the same reaction as when the deamination oxidant contains hypochlorite may occur. When the reaction mixture is alkaline and the deamination oxidant contains chlorine, the reaction of chlorine with the alkaline substance may also produce chlorate radicals.
  • an inorganic base is added to the reaction mixture during the deamination process to maintain the pH value of the reaction solution at ⁇ 6.8. More preferably, the pH value of the reaction solution is maintained at ⁇ 7.
  • the inorganic base is at least one of sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, sodium bicarbonate and potassium bicarbonate, preferably sodium hydroxide.
  • a new alkaline pH value adjuster is added in addition to the alkaline copper chloride ammonia etching waste liquid of the circuit board, which can convert basic copper chloride, copper carbonate, and basic copper carbonate in the filter residue C. is copper hydroxide.
  • percuprate is a solid that is insoluble in water
  • ferrate is soluble in water. Therefore, the iron oxide and/or iron hydroxide in the reaction mixture can be reacted with the deamination oxidant under conditions of high alkalinity to be oxidized to form soluble ferrate, which can react with the product sodium percuprate solid. Separation of copper and iron compounds.
  • the deamination oxidation reaction is performed under higher reaction solution alkalinity, reaction solution ORP value and reaction temperature. More preferably, during the deamination process, the pH value of the reaction mixture is controlled at ⁇ 9, and the reaction solution is heated and its oxidation-reduction potential is controlled at a higher value to promote high cuprate and/or ferric acid. Salt formation.
  • At least one of the following chemical reactions occurs during the direct heating and oxidation ammonia removal process:
  • the filter residue C contains iron salts and/or iron hydroxides
  • at least one of the following reactions will occur during the heating and oxidation removal of ammonia to generate iron oxide.
  • step (3) the filter residue C is heated and oxidized to remove ammonia to obtain a solid whose main component is copper oxide, which may also contain a small amount of oxide impurities such as iron oxide and/or other metals.
  • the crystal structure of iron oxide particles generated at high temperature by heating and oxidation to remove ammonia is different from the crystal structure of iron oxide generated at room temperature.
  • the former is insoluble in sulfuric acid at room temperature. Utilizing the chemical characteristics that the crystal structure of high-temperature iron oxide is slightly soluble in sulfuric acid, the mixture of copper oxide and iron oxide obtained by heating and oxidizing ammonia removal in step (3) can be separated by dissolving the copper oxide powder in sulfuric acid. Therefore, when the filter residue C contains iron compounds, it is preferred to use heating and oxidation to remove ammonia in step (3).
  • step (4) the following specific implementation methods may be used:
  • filtrate A When it only needs to be reused in the acid etching process, take the filtrate A to prepare an acidic etching regeneration sub-liquid and/or an acidic etching oxidant and reuse it in the acid etching production line. At this time, the filtrate A is acidic regenerated and etched according to the process conditions. Distribute the reused amount of liquid and acidic etching oxidant solution. During the preparation process, filtrate A is prepared according to process requirements and used as a regenerated etching subliquid.
  • filtrate A Reused in the acidic etching system, if the filtrate A is acidic, it can be reused in the acidic etching system directly or after preparation as an acidic regeneration etching sub-liquid; when using the filtrate A to prepare an acidic etching oxidant and reused in the acidic etching system, if If filtrate A is acidic, adjust filtrate A to neutral or alkaline and then add sodium chlorate and/or potassium chlorate to prepare a chemically stable mixed solution as an acidic etching oxidant.
  • the filtrate A is distributed according to the preparation requirements of the alkaline regeneration etching sub-liquid, the acid regeneration etching sub-liquid and/or the acid etching oxidant according to the process requirements. Then, as in the above-mentioned embodiments (1) and (2), it can be used directly or after being deployed in the etching process according to the process requirements.
  • This process method is based on the existing neutralization reaction precipitation recovery process technology of acid and alkaline copper chloride etching waste liquid and adds the above two ammonia nitrogen removal treatment processes as a process improvement. It can combine the existing process technology. Removal of ammonium salts from copper sludge precipitates produced by neutralization reaction. Compared with the existing technology, this process method has the following four major advantages:
  • circuit board etching manufacturers that use both acid etching and alkaline etching processes containing ammonium chloride.
  • the appropriate quantities of acid and alkaline etching waste liquids can be used for on-site online processing to achieve 100 % Recycling.
  • the sodium percuprate can be used for reduction reaction.
  • Copper oxide is obtained. Copper hydroxide, copper carbonate, basic copper carbonate, and copper oxide can all be converted into copper salt products through simple chemical reactions, or even further become electrolytic copper, or the obtained copper oxide can be used directly as a copper supplement source for acid plating.
  • circuit board manufacturers are allowed to process waste copper liquid into copper source materials for recycling into production, thereby improving both cost-effectiveness indicators and environmental governance indicators.
  • the etching performance of the new acid etching solution mixed with copper chloride and ferric chloride, or ammonium chloride added on this basis is much better than the existing acidic copper chloride etching process, and its production efficiency can be improved. 1.6 times, the etching quality is improved by 30%, and it is becoming more and more popular in the industry.
  • the produced filter residue C contains iron compounds. The method of the present invention can effectively separate copper and iron compounds to facilitate their respective recovery.
  • step (1) since most iron sources currently on the market contain heavy metal impurities such as manganese, acidic etching waste liquids containing iron often contain trace amounts of manganese ions and other heavy metal ions. If iron-containing acidic etching liquid waste is used in step (1), the filter residue C obtained in step (2) will also be mixed with heavy metal impurities other than copper and iron. At this time, if method (i) in step (3) is adopted, further impurity removal treatment is required to remove manganese and other impurities in the iron compound from the copper and iron compounds.
  • the metal element impurities such as iron and manganese contained in the precipitated copper mud can be converted into copper oxide, iron oxide and manganese dioxide after high temperature treatment. Because copper oxide is easily soluble in sulfuric acid, iron oxide and manganese dioxide after high temperature treatment are not easily soluble in sulfuric acid.
  • the filter residue C after high-temperature heating and oxidation treatment is mixed with a solution containing sulfuric acid, and the copper sulfate solution can be obtained after solid-liquid separation.
  • the iron oxide and manganese dioxide that are insoluble in sulfuric acid are separated again to obtain iron oxide with higher purity for reuse.
  • Method (ii) eliminates the need to add other impurity removal processes and equipment, reducing production and recycling costs.
  • the present invention can make the following improvements: when the circuit board copper chloride etching waste liquid in step (1) contains alkaline etching waste liquid, first heat the alkaline etching waste liquid to remove ammonia and then use the method of the present invention as described Process some or all of the circuit board copper chloride etching waste liquid.
  • This improvement can reduce the ammonia and/or ammonium concentration in the alkaline etching waste liquid, and subsequently reduce the acidity.
  • the dosage of the pH adjuster can avoid excessive ammonium chloride and excessive filtrate A being generated during the reaction in step (1), which cannot be recycled, resulting in accumulation waste and environmental pollution, and can also be beneficial to the preparation of the etching regeneration solution.
  • ammonia gas, water vapor and/or carbon dioxide gas escape, and ammonia water and/or water can be used to absorb it to obtain a solution containing ammonium carbonate and/or ammonium bicarbonate and/or ammonia water for reuse in alkaline
  • the prepared liquid is used for absorption and utilization.
  • the circuit board copper chloride etching waste liquid described in step (1) contains circuit board alkaline cupric ammonia chloride etching waste liquid
  • the circuit board alkaline cupric ammonia chloride etching waste liquid is first heated to ⁇ 55°C for ammonia removal treatment.
  • the ammonia-containing tail gas that escapes during the heating and ammonia removal process of the alkaline etching waste liquid is directed to the prepared alkaline etching regeneration liquid for absorption treatment.
  • the present invention can also make the following improvements: before performing step (1), the acidic etching waste liquid and/or the alkaline etching waste liquid are separately subjected to water-oil separation and/or solid-liquid separation treatment, so that the ink in the acidic etching waste liquid , film residue and solid impurities are cleaned, and/or the ink, film residue, stannous hydroxide precipitate and other solid impurities in the alkaline etching waste liquid are cleaned.
  • step (2) of the present invention a separation process of dechlorination salt and/or removal of metal impurities other than copper is added to the filter residue C.
  • step (3) of the present invention adopts method (i)
  • the amount of deamination oxidant is controlled according to the redox potential parameter of the reaction liquid to adjust the deamination reaction speed.
  • the pH parameter value is used to control the amount of inorganic alkali added, and the temperature and time of the reaction solution are controlled so that the ammonia or ammonium salt content concentration of the reaction solution meets the process requirements after treatment.
  • the present invention can also make the following improvements: when the method (i) is adopted in step (3) of the present invention, the chlorine produced by the chlorine generator of the electrolysis process is used as the deamination oxidant to replace the hypochlorite purchased in the market. Solution and chlorine gas product, it can not only optimize the control of the deamination oxidation process and facilitate recycling without introducing new impurities, thereby reducing production costs, but also reduce the introduction of moisture so that the waste liquid of filtrate B can be reduced.
  • the present invention can also make the following improvements: when the step (3) adopts the mode (i), the obtained filter residue D is subjected to a reduction reaction using hydrogen peroxide and/or sodium sulfite solution and/or sodium bisulfite and sodium percuprate to obtain Copper oxide is washed with clean water to remove chlorine salts, sodium and potassium ions to produce higher purity copper oxide for recycling.
  • the chemical reaction principle of the reduction reaction of sodium percuprate to produce copper oxide is as follows: 2NaCuO 2 +Na 2 SO 3 +H 2 O ⁇ 2CuO+Na 2 SO 4 +2NaOH; 2NaCuO 2 +NaHSO 3 +H 2 O ⁇ 2CuO+NaHSO 4 +2NaOH; 2NaCuO 2 +H 2 O 2 ⁇ 2CuO+2NaOH+O 2 ⁇ .
  • the present invention can also make the following improvements.
  • step (3) of the present invention adopts method (ii), the temperature of directly heating the filter residue C is not lower than 100°C, thereby obtaining a good copper oxide yield.
  • step (3) of the present invention adopts method (ii)
  • the temperature of directly heating the filter residue C is not lower than 100°C, thereby obtaining a good copper oxide yield.
  • the present invention can make the following improvements: when step (3) adopts method (ii), the filter residue C is mechanically pulverized at high temperature during the direct heating and oxidation process, and/or the filter residue C is subjected to
  • the oxidation treatment is carried out by the method of interval heating and oxidation ⁇ cooling and grinding ⁇ heating and oxidation again.
  • the improved process can further increase the reaction production rate of high-temperature iron oxide and manganese dioxide.
  • the filter residue C is subjected to interval heating, oxidation and cooling pulverization in step (3), it is washed with water after mechanical pulverization to remove soluble ammonium salts and/or sodium, potassium salts, etc. contained in the original filter residue C. Salt impurities are removed. After washing with water, it is heated and oxidized to obtain purer copper and iron compounds.
  • the present invention can also make the following improvements: when step (3) of the present invention adopts mode (ii), the recovered iron oxide is made into an iron source material and used again in the acid etching process.
  • the present invention can be improved as follows: when filtrate A contains iron salts, in step (4), the newly prepared alkaline etching regeneration sub-liquid is subjected to precision filtration before use to remove iron hydroxide solids.
  • the present invention can also make the following improvements: control the reaction temperature of the reactants during the reaction process of step (1) and/or step (3), and/or perform cooling treatment on the filtrate A before performing step (4).
  • control the reaction temperature of the reactants during the reaction process of step (1) and/or step (3) and/or perform cooling treatment on the filtrate A before performing step (4).
  • the latter allows filtrate A to precipitate more solid salts through cooling, making filtrate A more in line with process requirements to prepare etching solutions for recycling.
  • the present invention can also make the following improvements: use an evaporator to heat, evaporate and concentrate the filtrate A before proceeding to step (4), so that the filtrate A can be 100% recycled while reducing the volume of the solution. There is too much waste liquid that cannot be reused and creates new sources of pollution.
  • the second object of the present invention is to provide a device for the precipitation treatment and recycling method of circuit board copper chloride etching waste liquid, which is assembled from the following equipment components. It mainly includes:
  • At least one reaction tank or it and at least one solid heating device, at least one solid-liquid separator, and at least one temporary storage tank are connected through pipelines or pipelines equipped with pumps and/or valves;
  • the reaction tank is used to mix the circuit board copper chloride engraving waste liquid and the pH adjuster to react, causing the reaction liquid to precipitate copper sludge, and/or to react with the precipitated copper sludge and the deamination oxidant in step (3) using the method ( The deamination oxidation reaction of i) is used.
  • the solid heating device is used in step (3) to directly perform high-temperature heating, oxidation and ammonia removal treatment on the copper mud or copper slag separated from the solid-liquid separator in the method (ii).
  • the solid-liquid separator is used for solid-liquid separation of solid-liquid mixtures.
  • the temporary storage tank is used to store the solution and/or prepare the etching sub-liquid for use.
  • the solid heating device can be an electric heating device or an oxidation combustion reaction heating device.
  • the solid-liquid separator can be a filter, a rotary centrifuge, or a filter press.
  • detection devices are respectively installed in the reaction tank, solid-liquid separator, temporary storage tank and connected pipelines and in the space of the production workshop.
  • the detection device includes any one of a hydrometer, a colorimeter, a pH meter, an acidity meter, a redox potentiometer, a thermometer, a liquid level meter, a flow meter, a chlorine gas detector, and a hydrogen gas detector that can be used according to process control requirements. species or any combination thereof.
  • a stirring device is installed in the reaction tank and/or the temporary storage tank.
  • the stirring device can be any liquid reflux stirring device, rotating impeller stirring device, or pneumatic stirring device that can perform stirring according to process requirements.
  • a hot and cold temperature exchanger is installed in the reaction tank and/or the temporary storage tank to cool or release heat to the solution in the reaction tank and/or the temporary storage tank.
  • the reaction liquid is subjected to a cold precipitation solid salt treatment for process control, so that the solution of the reaction liquid after filtration is more suitable for preparing a recycled etching solution.
  • a feeding port, a discharging port, an overflow port and an exhaust port are provided in the reaction tank and/or the temporary storage tank, so that the equipment structure meets the various technical requirements of the process, and also makes the products produced during the production process
  • the outgoing gas can be easily collected and processed.
  • the present invention can be improved as follows: a heated reaction kettle is added, and the alkaline etching waste liquid is subjected to a heating ammonia drive treatment.
  • the present invention can also make the following improvements: add an aqueous solution heating and concentration evaporator to heat, concentrate and evaporate the filtrate A to reduce the volume of the filtrate A.
  • the present invention can be improved as follows: adding crushing equipment to crush and/or grind the copper slime that has been heated at high temperatures.
  • the present invention can be improved as follows: add a water-oil separator and/or a filtering device, and perform impurity removal treatment on the etching waste liquid or pH adjustment liquid or recycling solution.
  • the present invention can also make the following improvements: add a tail gas treatment device, and the device can use any one or a combination of two of the vacuum jet gas-liquid mixing device and the spray tower gas-liquid mixing device that can handle according to the process requirements. And the exhaust gas treatment device will classify and process the exhaust gas according to its temperature and chemical properties.
  • the present invention can also make the following improvements: add a cleaning tank equipment with a stirrer, and wash and purify the copper mud or heat-treated copper slag produced in the recycling process.
  • the present invention can also make the following improvements: using an electrolysis process chlorine generator to produce chlorine as a deamination oxidant to optimize safety control during the deamination and oxidation process, reduce production costs, and reduce sewage discharge.
  • the electrolysis process chlorine generator is an electrolytic tank with an electrolytic cathode and anode compartments for separation.
  • the chlorine gas is produced by electrolyzing the chlorine salt solution or the acidic copper chloride etching waste liquid, and the chlorine gas is used for deamination and oxidation. reaction.
  • the reaction tank for performing the deamination oxidation reaction is equipped with a vacuum jet gas-liquid mixing device and/or a spray tower gas-liquid mixing device. , in order to better guide the electrolyzed chlorine gas from the chlorine gas generator of the electrolysis process to the reaction tank to participate in the deamination oxidation reaction.
  • the present invention can also make the following improvements: add an automatic detection and feeding controller, and send the on-site data measured by each detection device to the automatic detection and feeding controller for processing, thereby controlling the addition of materials during the reaction process, and/or based on the removal of materials.
  • the ammonia oxidation reaction condition adjusts the working output current of the electrolysis power supply in the chlorine generator of the electrolysis process to control the amount of chlorine gas released, and performs a safety interlock on the electrolysis of chlorine.
  • the solid heating device is provided with temperature-controlled process control and the exhaust gas from the solid heating device is safely treated. To achieve automated and safe control of the production process of the entire equipment.
  • the present invention can also make the following improvements: an overflow buffer tank is added, and the overflow buffer tank is connected to at least one of the reaction tank, solid-liquid separator, temporary storage tank, and electrolysis process chlorine generator through pipelines. Connect, or place under the overflow port of at least one of the reaction tanks, solid-liquid separators, temporary storage tanks, and electrolytic process chlorine generators to solve the problem of liquid leakage between the containers in the process equipment of the present invention.
  • the solution can flow according to the process requirements under the conditions of high and low position.
  • the present invention can also make the following improvements: add a normal-pressure sealed tank cover, and cover and seal the required tanks to reduce material loss and environmental pollution.
  • the present invention can also make the following improvements: add a hydrogen eliminator to eliminate the hydrogen electrolyzed by the chlorine generator using partial electrolysis process, so as to eliminate the dangerous sources generated in production.
  • the present invention has the following beneficial effects:
  • the recycling treatment method of the present invention is safe, simple and reliable. It can process acidic copper chloride etching waste liquid or alkaline copper chloride ammonia etching waste liquid individually in real time on site, and can also simultaneously process acidic copper chloride etching waste liquid and alkaline copper chloride ammonia etching waste liquid.
  • the alkaline copper ammonia chloride etching waste liquid is mixed and recycled on site for reuse;
  • the recycling treatment method of the present invention only requires simple mixing equipment, solid-liquid separation equipment, reaction tanks and/or heating tanks to achieve the purpose of the present invention. These equipments are simple in structure, easy to repair and maintain, and the cost is much lower than expensive equipment. Electrolysis equipment, so the equipment investment scale is small, daily maintenance costs are low, and economic benefits are high;
  • the recycling process of the present invention has low energy consumption and no new pollution sources.
  • the solution after copper extraction can be recycled without affecting the efficiency and quality of etching production, thereby effectively increasing production income and even achieving 100% recycling, which is in line with Current environmental protection regulations and emission reduction policy requirements;
  • the recycling process of the present invention not only avoids the ammonium salt impurities in the copper-containing precipitate obtained when the alkalinization method is used, but also avoids the need for electrolysis when the electrolysis method is used. Safety issues associated with the production of nitrogen trichloride;
  • the recycling process of the present invention can separate and collect the copper compounds and iron compounds in the waste liquid.
  • the copper hydroxide and/or copper oxide products recovered in the process of the present invention can be used in the acid copper electroplating process instead of phosphorus copper in circuit board production, allowing the production enterprise to treat the copper-containing etching waste liquid into waste.
  • Weibao can simultaneously solve the three major pollution sources of heavy metals, ammonia nitrogen and phosphorus, which has positive significance for environmental protection.
  • Figure 1 is a schematic diagram of a circuit board copper chloride etching waste liquid precipitation treatment and reuse method and its device according to the basic embodiment 1 of the present invention
  • Figure 2 is a schematic diagram of a circuit board copper chloride etching waste liquid precipitation treatment and reuse method and its device according to Embodiment 2 of the present invention
  • Figure 2.1 is an enlarged schematic diagram of 2-A in Figure 2;
  • Figure 2.2 is an enlarged schematic diagram of 2-B in Figure 2;
  • Figure 2.3 is an enlarged schematic diagram of 2-C in Figure 2;
  • Figure 2.4 is an enlarged schematic diagram of 2-D in Figure 2;
  • Figure 2.5 is an enlarged schematic diagram of 2-E in Figure 2;
  • Figure 3 is a schematic diagram of a circuit board copper chloride etching waste liquid precipitation treatment and reuse method and its device according to Embodiment 3 of the present invention
  • Figure 3.1 is an enlarged schematic diagram of 3-A in Figure 3;
  • Figure 3.2 is an enlarged schematic diagram of 3-B in Figure 3;
  • Figure 3.3 is an enlarged schematic diagram of 3-C in Figure 3;
  • Figure 3.4 is an enlarged schematic diagram of 3-D in Figure 3;
  • Figure 3.5 is an enlarged schematic diagram of 3-E in Figure 3;
  • Figure 3.6 is an enlarged schematic diagram of 3-F in Figure 3;
  • Figure 4 is a schematic diagram of a circuit board copper chloride etching waste liquid precipitation treatment and reuse method and its device according to Embodiment 4 of the present invention
  • Figure 4.1 is an enlarged schematic diagram of 4-A in Figure 4;
  • Figure 4.2 is an enlarged schematic diagram of 4-B in Figure 4;
  • Figure 4.3 is an enlarged schematic diagram of 4-C in Figure 4.
  • Figure 5 is a schematic diagram of a circuit board copper chloride etching waste liquid precipitation treatment and reuse method and its device according to Embodiment 5 of the present invention
  • Figure 5.1 is an enlarged schematic diagram of 5-A in Figure 5;
  • Figure 5.2 is an enlarged schematic diagram of 5-B in Figure 5;
  • Figure 6 is a schematic diagram of a circuit board copper chloride etching waste liquid precipitation treatment and reuse method and its device according to Embodiment 6 of the present invention
  • Figure 6.1 is an enlarged schematic diagram of 6-A in Figure 6;
  • Figure 6.2 is an enlarged schematic diagram of 6-B in Figure 6;
  • Figure 6.3 is an enlarged schematic diagram of 6-C in Figure 6;
  • Figure 6.4 is an enlarged schematic diagram of 6-D in Figure 6;
  • Figure 6.5 is an enlarged schematic diagram of 6-E in Figure 6;
  • Figure 6.6 is an enlarged schematic diagram of 6-F in Figure 6;
  • Figure 7 is a schematic diagram of a circuit board copper chloride etching waste liquid precipitation treatment and reuse method and its device according to Embodiment 7 of the present invention.
  • Figure 7.1 is an enlarged schematic diagram of 7-A in Figure 7;
  • Figure 7.2 is an enlarged schematic diagram of 7-B in Figure 7;
  • Figure 7.3 is an enlarged schematic diagram of 7-C in Figure 7;
  • Figure 8 is a schematic diagram of a circuit board copper chloride etching waste liquid precipitation treatment and reuse method and its device according to Embodiment 8 of the present invention.
  • Figure 8.1 is an enlarged schematic diagram of 8-A in Figure 8.
  • Figure 8.2 is an enlarged schematic diagram of 8-B in Figure 8;
  • Figure 8.3 is an enlarged schematic diagram of 8-C in Figure 8.
  • Figure 8.4 is an enlarged schematic diagram of 8-D in Figure 8.;
  • Figure 8.5 is an enlarged schematic diagram of 8-E in Figure 8.
  • the present invention uses a 1 cubic meter reaction tank, a temporary storage tank, a stirring device, a vacuum jet gas-liquid mixing device, a spray tower gas-liquid mixing device, an ammonia-displacing heated reaction kettle, and an aqueous solution heated, concentrated, and evaporated.
  • the chlorine generator and electrolytic process chlorine generator are all products of Yegao Environmental Protection Equipment Manufacturing Co., Ltd., Foshan City, Guangdong province. Detection sensors, solid heating devices, pumps, valves, and PLC controllers are commercially available products.
  • the chemical raw materials used are all commercially available chemical raw materials. In addition to the above-mentioned products, those skilled in the art can also select other products with similar properties to the above-mentioned products listed in the present invention based on routine selection, all of which can achieve the purpose of the present invention.
  • FIG. 1 it is a basic embodiment of a circuit board copper chloride etching waste liquid precipitation treatment and recovery method and its device according to the present invention, which includes: reaction tank 1, solid-liquid separator 3, temporary storage tank 8 ⁇ 13. Hot and cold temperature exchanger 31.
  • the reaction tank 1 is equipped with an impeller stirrer 27, a hot and cold temperature exchanger 31, and detection devices 39 and 40 respectively equipped with a pH meter and a redox potentiometer, which pass through a pipeline equipped with a valve 71 and a pump 56. Connected to the solid-liquid separator 3;
  • the solid-liquid separator 3 adopts an ordinary filter press
  • the temporary storage tank 8 is used to store acidic copper chloride etching waste liquid 112
  • the temporary storage tank 9 is used to store a mixture of sodium hypochlorite solution 93 and potassium hypochlorite solution 94 as a deamination oxidant
  • the temporary storage tank 10 is used to store a mixture of sodium hypochlorite solution 93 and potassium hypochlorite solution 94.
  • the sodium hydroxide solution 86 is stored.
  • the temporary storage tank 11 is used to store the filtrate A97 from the solid-liquid separator 3.
  • the temporary storage tank 12 is used to load the filter residue C99 separated from the solid-liquid separator 3.
  • the temporary storage tank 13 is used to store the sodium hydroxide solution 86. Store the filtrate D98 from solid-liquid separator 3.
  • a solid feeder 128 is used, which is equipped with a solid mixture of sodium hydroxide 85, potassium hydroxide 87, potassium carbonate 89, sodium carbonate 90, ammonium carbonate 154, and ammonium bicarbonate 155.
  • the clean water 104 pipeline is installed above the reaction tank 1.
  • the etching waste liquid that needs to be treated is the acidic copper chloride etching waste liquid 112, the acidity of which is 2M, the main components are hydrochloric acid, copper chloride, and an aqueous solution containing ammonium chloride and sodium chloride additives.
  • Method (i) is adopted in step (3).
  • the treatment process is to first turn on the pump 170 to pump the acidic copper chloride etching waste liquid in the temporary storage tank 8 into the reaction tank 1, and start the impeller stirrer 27 and the hot and cold temperature exchanger 31.
  • the pH of the reaction solution in the reaction tank 1 is controlled by the pH meter of the detection device 39 during the process, and the process setting value of the pH meter in step (1) is pH 5.5. That is, the pH meter controls the solid feeder 128 to add alkaline pH adjusters sodium hydroxide 85, potassium hydroxide 87, potassium carbonate 89, sodium carbonate 90, ammonium carbonate 154, and ammonium bicarbonate 155 into the reaction tank 1 to cause the reaction.
  • the pH value of the liquid reaches pH 5.5 and the precipitate precipitates.
  • the impeller stirrer 27 is shut down and the neutralized reaction liquid is cooled down through the hot and cold temperature exchanger 31 .
  • the valve 59 and the pump 173 open the valve 59 and the pump 173 to pump the solid-liquid mixture in the reaction tank 1 to the filter press 3 for solid-liquid separation.
  • the filtrate A is led to the temporary storage tank 11.
  • the valve 59 and the pump 173 are shut down.
  • the filter residue C is collected in the temporary storage tank 12 by opening the filter press 3. Its main components are copper hydroxide and basic copper chloride, and the impurities include soluble chlorine salts and copper chloride ammonia complex.
  • Open valves 57 and 58, and pumps 171 and 172 put the sodium hydroxide solution 86 and deamination oxidant in the tank 10 into the reaction tank 1.
  • the input amount of the sodium hydroxide solution 86 is based on the pH meter of the detection device 39 in step
  • the process setting value in (3) is pH 6.8, and the deamination oxidant is added to make it
  • the ORP value of the reaction was maintained at 450mv, and the temperature of the reaction solution was controlled at 30°C through a hot and cold temperature exchanger.
  • filtrate A97 Take part of the filtrate A97, adjust the pH value, and add sodium chlorate and potassium chlorate solids to prepare an acidic etching oxidant for reuse in the acidic etching production line.
  • the remaining filtrate A97 is directly reused in the acid etching production line as acid etching regeneration sub-liquid.
  • Filtrate B was inspected and found that 80 mg/L of ammonia nitrogen remained in it for subsequent processing.
  • This example illustrates the use of the process of the present invention to add alkaline pH value adjusters such as sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, ammonium carbonate, and ammonium bicarbonate to the acidic copper chloride etching waste liquid during the recycling process.
  • alkaline pH value adjusters such as sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, ammonium carbonate, and ammonium bicarbonate
  • a neutralizing chemical reaction occurs to produce copper sludge precipitation.
  • the precipitated copper sludge is recycled using the deamination oxidation treatment method of method (i) in step (3).
  • Filtrate A is used to prepare regenerated etching sub-liquid and acidic etching oxidant to achieve 100% recycling.
  • Embodiment 2 of a circuit board copper chloride etching waste liquid precipitation treatment and reuse method device of the present invention mainly includes 2 reaction tanks, 5 solid-liquid separators, and 8 temporary storage tanks. tank, 2 hot and cold temperature exchangers, 2 water-oil separators, 1 solid feeder, 1 set of chlorine generator for electrolysis process, 1 impeller stirring copper mud and copper slag cleaning tank, 14 sensors and 1 automatic Detection of feeding controller, 1 hydrogen eliminator, 1 chemical reaction kettle 156, and 1 aqueous solution heating and concentration evaporator 165.
  • the reaction tank 1-1 is equipped with an impeller stirrer 27, a sealed tank cover 114, a hot and cold temperature exchanger 31, a pH detection device 39, a specific gravity detection device 40, a temperature detection device 41, and a liquid level detection device 42.
  • the reaction tank 1-2 is equipped with a sealed tank cover 115, a liquid reflux agitator 29, a hot and cold temperature exchanger 32, a vacuum jet gas-liquid mixing device 21, a spray tower gas-liquid mixing device 24, a pH detection device 43, and an oxidation and reduction device.
  • the solid-liquid separators 3-1 and 3-2 are ordinary filters with a filter media structure, while the solid-liquid separators 3-3 to 3-5 are ordinary plate and frame filter presses.
  • the temporary storage tank is used to temporarily store different solutions as shown in Figure 2.
  • the impeller agitator 28 and the liquid level gauge of the sensor 50 are installed in the temporary storage tank 10 .
  • the water-oil separators 19 and 20 and the solid-liquid separators 3-1 and 3-2 respectively remove impurities from the acidic pH adjuster and the alkaline copper ammonia chloride etching waste liquid that needs to be treated. After removing impurities, they are diverted to temporary storage tanks 8 and 9 for storage.
  • the acidic pH adjuster component is a mixture of hydrochloric acid 111 and formic acid 142.
  • the pH value of the alkaline cupric ammonia chloride etching waste liquid 113 that needs to be treated is pH 8.3, and its main components are a mixture of ammonia water, ammonium chloride and cupric ammonia chloride.
  • the aqueous solution heating concentration evaporator 165 is used to evaporate the filtrate A in the concentration temporary storage tank 11 .
  • the solid feeder 128 is loaded with sodium hydroxide 85, which is added to the reaction tank 1-2 to adjust the pH value of the deamination oxidation reaction solution.
  • the electrolytic cell separator 37 in the chlorine generator of the electrolysis process is a cation exchange membrane, and a mixture of chlorine 95, hydrogen, sodium hydroxide solution 86 and potassium hydroxide solution 88 is obtained by electrolyzing the sodium chloride and potassium chloride mixture. liquid.
  • the electrolyzed hydrogen is introduced into the hydrogen eliminator 160 through the vacuum jet gas-liquid mixing device 22 to react with the oxidant for safe treatment.
  • the chlorine gas 95 is directed into the reaction tank 1-2 to participate in the chemical reaction.
  • the automatic detection and feeding controller 38 obtains on-site data through multiple detection devices for automatic control of the production process flow of the entire set of equipment.
  • the impeller stirring copper mud and copper slag cleaning tank 110 is specially used for washing the filter residue D, and a pH value detection device 47 and a photoelectric colorimetric detection device 51 are installed in the tank for detecting the pH and copper salt concentration in the washing liquid. , to remove impurities from the copper hydroxide.
  • the process flow of this method adopts the process method of mode (i) in step (3).
  • the steps are to pump the acidic pH value adjuster into the water-oil separator 19 and remove the alkaline copper ammonia chloride etching waste liquid that needs to be treated.
  • 113 is pumped into the water-oil separator 20, and the acidic pH adjuster is pumped into the temporary storage tank 8 and the alkaline cupric ammonia chloride that needs to be processed through the respective filters 3 and 4 for impurity removal treatment.
  • the etching waste liquid is pumped into the temporary storage tank 9 .
  • the pump 173 is turned on to pump the alkaline etching waste liquid into the reaction tank 1-1 at a constant volume. Turn on the stirrer 27 and the hot and cold temperature exchanger 31.
  • the temperature of the reaction liquid passes through the temperature detection device 41, the copper ion concentration of the reaction liquid passes through the specific gravity detection device 40, the pH meter of the detection device 39 and the liquid level meter of the detection device 42 all detect the temperature, copper ion concentration, pH and liquid level of the reaction solution. Sampling and testing are carried out, and the on-site testing data is sent to the automatic testing and feeding controller 38 for processing and program execution.
  • the control pump 171 is turned on according to the process program, and the acidic pH value adjusting agent is added to the solution in the reaction tank 1-1 and the pH value is adjusted to and maintained at pH7.9 during the reaction process.
  • the hot and cold temperature exchanger 31 controls the reaction.
  • the liquid temperature is normal temperature.
  • the valve 60 is opened and the pump 174 is turned on to pump the solid-liquid mixture in the reaction tank 1-1 to the filter press 5 for solid-liquid separation.
  • the valve 60 is closed and the pump 174 is shut down.
  • the filtrate A97 is directed to the temporary storage tank 11 for storage, and the filter residue C is retained in the filter press 5.
  • open the plate frame of the filter press take out the filter residue C and put it into the temporary storage tank 10.
  • the main component of the filter residue C is the copper chloride ammonia complex double salt. Re-close the 5-plate frame of the filter press and prepare for the next process.
  • the mixed solution of sodium hydroxide solution 86 and potassium hydroxide 88 in the temporary storage tank 12 is added to the temporary storage tank 10 according to the control of the liquid level detection device 50, and the impeller stirrer 28 is turned on to mix the sediment into suspension. solution.
  • the suspension in tank 10 is tested for ammonia nitrogen content. The NH 4 + ion concentration was found to be 15 g/L.
  • By opening the valve 61 and the pump 175, all the suspension in the temporary storage tank 10 is added to the reaction tank 1-2. After the solution in the temporary storage tank 10 is evacuated, the valve 61 is closed and the pump 175 is turned off to start the pump.
  • the ORP value and pH value of the solution are adjusted according to the on-site deamination oxidation reaction conditions to control the electrolysis output of chlorine and perform feeding control on the solid feeder 128.
  • the pump 188 is used to add oxidant to the hydrogen eliminator 160 based on the data from the detection device 47 .
  • the ORP value is controlled to be above 850mv and the pH value is controlled to pH7.5.
  • the temperature of the reaction solution is controlled at normal temperature and maintained for 36 hours.
  • the NH 4 + ion concentration is measured to be 70 mg/L. The reaction is complete.
  • the colorimeter detection device 51 is used to determine the pH of the washing liquid and the copper salt concentration in the solution.
  • the valve 73 and the pump 186 are opened to pump the solid-liquid mixture in the tank 110 into the filter press 7 for solid-liquid separation. .
  • the filtrate is directed back to the temporary storage tank 16 for treatment, and the filter residue copper hydroxide 96 is retained in the filter press 7 .
  • the valve 73 is closed and the pump 186 is shut down. Open the plate and frame of the filter press 7, take out the filter residue copper hydroxide 96 and place it in the temporary storage tank 15 for recycling, and then close the plate and frame again to prepare for the next work.
  • the filtrate A extracted from the temporary storage tank 11 is pumped to the aqueous solution heating and concentration evaporator 165 for concentration, and the distilled water can be collected and reused.
  • the concentrated solution of filtrate A is pumped to the temporary storage tank 18 through the pump 177 for temporary storage.
  • ammonia 132 and/or ammonia 102 are used to prepare the ammonia content of the regenerated etching sub-liquid 106, and the prepared alkaline etching regenerated sub-liquid is reused in the alkaline etching production line 108.
  • Filtrate B was tested and its ammonia nitrogen impurity content still remained at 70mg/L.
  • the solution in the temporary storage tank 14 is to be processed later.
  • the detection data on the workshop site are transmitted to the automatic detection and feeding controller 38 for processing and safety interlocking of the production system through the hydrogen detection device 48 and the chlorine detection device 49.
  • a method for acidifying and precipitating circuit board alkaline etching waste liquid is as follows:
  • This embodiment illustrates the recovery and treatment of copper sludge obtained by neutralizing and precipitating the alkaline copper ammonia chloride etching waste liquid that needs to be treated by using an acidic pH adjuster. And use chlorine oxidant to deaminate and oxidize the suspension of precipitated copper mud under alkaline conditions, and obtain copper hydroxide from the reaction of oxidizing the copper chloride ammonia complex. In the process of electrolytic chlorine production, the electrolytic cathode The electrolytically precipitated hydrogen is led to a hydrogen eliminator for safe treatment.
  • filtrate A produced during the reaction of neutralizing and precipitating copper sludge is heated, evaporated and concentrated, and then prepared according to process requirements to prepare a regenerated etching sub-liquid for use in the alkaline etching production line.
  • Embodiment 3 of a circuit board copper chloride etching waste liquid precipitation treatment and reuse method device of the present invention mainly includes 2 reaction tanks, 3 solid-liquid separators, and 12 temporary storage tanks. tank, 4 solid feeders, 14 detection devices, a conveyor belt, two sets of electrolysis process chlorine generators (the separators 37 of the two electrolytic tanks are both anion exchange membranes), two tail gas treatment tanks, two etching Production line, 1 automatic detection feeding controller, 1 solid heating device.
  • the reaction tank 1-1 is equipped with an impeller stirrer 27, a sealed tank cover 114, a pH detection device 39, and a photoelectric colorimeter detection device 40, and the connecting pipe between the reaction tank 1-1 and the solid-liquid separator 3 is A flow meter 43 is installed.
  • the reaction tank 1-2 is equipped with a sealed tank cover 117, a vacuum jet gas-liquid mixer 21, a hot and cold temperature exchanger 32, a pH detection device 45, an ORP detection device 46, a temperature detection device 47, and a liquid level detection device 48.
  • a flow meter 49 is installed on the communication pipe between the reaction tank 1-2 and the solid-liquid separator 4.
  • the solid-liquid separator 3-1 adopts an ordinary filter press, and the solid-liquid separator 3-2 adopts a titanium rotary centrifuge with a scraper.
  • the solid-liquid separator 3-3 is an ordinary filter.
  • the plurality of temporary storage tanks are used to temporarily store different solutions as shown in Figure 3.
  • the temporary storage tank 11 is used to prepare acidic etching sub-liquid, so a liquid reflux agitator 29 is installed on the tank;
  • the temporary storage tank 13 is used to prepare alkaline etching sub-liquid, so an impeller stirrer 28 and a heating device are installed on the tank.
  • the temporary storage tank 12 stores hydrochloric acid
  • the temporary storage tank 18 stores sodium chlorate oxidant solution 146.
  • the temporary storage tank 15 is used for mixing the anolyte solution of the two electrolytic cells and the etching working solution on the etching line as a solution.
  • the solid feeder 128 is loaded with the filter residue C99 transported from the conveyor belt 131, and is put into the reaction tank 1-2 during operation.
  • the reaction tank 1-2 is equipped with a solid feeder 129, which is loaded with solid sodium hydroxide 85 and sodium carbonate 90.
  • the main components of the acidic copper chloride etching solution that needs to be processed are copper chloride, ferric chloride, sodium chloride and hydrochloric acid, and the acidity is 1M.
  • the pH value alkaline adjuster is an alkaline cupric ammonia chloride etching solution, the main components of which are cupric ammonia chloride, ammonia water, ammonium chloride, and additives, and the pH value is pH7.5.
  • the anolytes of the two electrolysis process chlorine generators A and B are both acidic etching working fluids, and the acidic copper chloride etching waste liquid is also used as the catholyte of A and B.
  • a detection device 44 hydrometer is installed in the cathode tank area of electrolytic tank A, and its data is sent to the automatic detection feeding controller 38 for processing and controls the pump 178 to add acidic etching waste liquid to the cathode area of electrolytic tank A to cause the cathode to continuously electroprecipitate. Copper causes the anode of electrolytic cell A to electroprecipitate chlorine and the cathode to electroprecipitate copper.
  • the cathode tank area of electrolytic tank B is equipped with a detection device 50 acidometer and 51 redox potentiometer.
  • the acidity meter 50 controls the hydrochloric acid in the temporary storage tank 12 to be thrown into the cathode tank area of the electrolytic tank B through the pump 185 to ensure that the catholyte is acidic;
  • the other ORP meter 51 controls the oxidant in the temporary storage tank 18 through the pump 186 Throw it into the cathode tank area of electrolytic tank B to ensure that the cathode will neither electrolyte copper nor hydrogen, so that the anode of electrolytic tank B will produce chlorine 95 and the cathode will undergo an electrochemical reaction with the oxidant.
  • the solution in the reaction tank 1-2 is controlled by the pH meter of the detection device 45 to add a mixture of sodium hydroxide and sodium carbonate to adjust the pH value of the reaction solution.
  • the tail gas treatment tank is divided into an acidic tail gas treatment tank and an ammonia-alkaline tail gas treatment tank.
  • the reaction liquid of the acidic tail gas treatment tank 162 is sodium hydroxide solution 86
  • the reaction liquid of the ammonia-alkaline tail gas treatment tank 163 is sulfuric acid solution 133.
  • the exhaust gas treatment tank designed according to the process can be installed with any one or two combinations of gas-liquid mixers. As shown in Figure 3, the acidic tail gas of each tank is introduced into the S inlet of tank 162 for treatment, and the ammonia alkaline tail gas of each tank and the tail gas discharged from the solid heating device are simultaneously introduced into the J inlet of tank 163 for treatment.
  • a pH detection device 52 or 53 is respectively installed in the exhaust gas treatment tank.
  • the device 163 is also equipped with a pneumatic stirrer 30, which injects air into the exhaust gas treatment reaction liquid to help ammonia accelerate the reaction with sulfuric acid.
  • the etching production line is provided with an acid etching production line 107 and an alkaline etching production line 108, so that the prepared acid etching regeneration sub-liquid 105 can be used for etching in the acid etching line.
  • the alkaline etching subliquid 106 is put into the alkaline production line 108 for etching recycling.
  • the automatic detection and feeding controller 38 obtains sampling data from multiple detection devices and performs automated control of the production process flow of the entire set of equipment.
  • Sodium sulfite solution 158 and sodium bisulfite solution 159 are prepared to clean the filter residue D, so that part of the sodium ferrate and sodium percuprate in the filter residue D100 is reduced to copper oxide and iron oxide.
  • the solid heating device 2 is used to perform high-temperature heat treatment and oxidation processing on the copper oxide and iron oxide after the reduction reaction of the filter residue D, so as to restructure the structure of the iron oxide and copper oxide and evaporate water.
  • This method is to treat the acidic copper chloride etching waste liquid, and its alkaline pH value adjuster is alkaline copper ammonia chloride etching waste liquid.
  • the process flow is to open two exhaust gas treatment devices to process the exhaust gas, then add the acidic etching waste liquid 112 in the temporary storage tank 8 into the reaction tank 1-1 through the pump 170, open the impeller stirrer 27, and react.
  • Various on-site data of the liquid are transmitted to the automatic detection and feeding controller 38 for processing through the pH detection device 39 and the temperature detection device 40 respectively.
  • the pH meter controls the pump 171 to add the alkaline etching waste liquid 113 in the temporary storage tank 9 into the reaction tank 1-1 to perform a neutralization and precipitation reaction.
  • the pH value of the reaction solution is controlled to pH 4.8. After the neutralization reaction, precipitated copper sludge will precipitate.
  • the precipitated tail gas from the reaction tank 1-1 is directed to the S inlet of the tail gas treatment tank 162 for treatment.
  • the valve 58 when the solution in the reaction tank 1-1 has finished reacting, open the valve 58 and turn on the pump 172 to pump the solid-liquid mixture in the reaction tank 1-1 into the filter press 3 for solid-liquid separation.
  • the pipeline flow The reading reflected by the meter detection device 43 indicates that there is liquid flow in the tube. When the reading of the detection device 43 returns to zero, it means that the material in the reaction tank 1-1 has been extracted, the valve 58 is closed and the pump 172 is shut down.
  • the filtrate A97 flowing out from the filter press 3 is pumped into the temporary storage tank 10 through the overflow buffer tank 120 and the filter device 5 . Open the plate and frame in the filter press 3, take out the filter residue C99, drop it on the conveyor belt 131 and transport it to the solid feeder 128. After the filter press is completed, re-close the plate and frame of the filter press 3 to prepare for the next process. .
  • the filtrate A97 in the temporary storage tank 10 is quantitatively distributed according to the process requirements, and is pumped into the temporary storage tank 11 through the pump 175 and pumped into the temporary storage tank 13 through the pump 174.
  • the liquid level of the clean water 104 is controlled by the liquid level detection device 48 in the reaction tank 1-2.
  • the solid feeder 128 is turned on to quantitatively add the filter residue C99 into the reaction tank 1-2.
  • the pump 62 is turned on to make the jet gas-liquid mixer 21 work, the hot and cold temperature exchanger 32 is turned on to adjust and control the temperature of the reaction liquid according to the process, and the exhaust gas is directed to the S inlet suction port of the exhaust gas treatment tank 162 for treatment.
  • the solution in the reaction tank 1-2 was sampled for ammonia nitrogen concentration detection, and the NH 4 + ion concentration was found to be 28 g/L.
  • the two electrolysis process chlorine generators are turned on, and the solid feeder 129 is controlled according to the pH detection device 45 to add the mixture of sodium hydroxide 85 and sodium carbonate 90 into the reaction tank 1-2.
  • the anolyte of two electrolytic cells is acidic copper chloride etching waste liquid.
  • two electrolytic anode cells, overflow buffer tanks 124 and 126, and temporary storage tank 15 are used to circulate the anolyte through pumps and pipelines. Make the precipitated chlorine gas flow and lead it to the reaction tank 1-2 to participate in the reaction. The other part of the chlorine gas reacts with the cuprous ions and ferrous ions in the etching working fluid for oxidation.
  • the copper ion concentration of the catholyte of electrolytic tank A is controlled according to the set value of the specific gravity detection device 44 to control the pump 178 to add acidic copper chloride etching waste liquid 112 to the cathode area of electrolytic tank A and its cathode is electrolytically precipitated Copper metal.
  • the overflowed catholyte will be pumped to the temporary storage tank 14 for temporary storage through the overflow buffer tank 123 or pumped to the temporary storage tank 8 through pumping.
  • the pH detection device 45, ORP detection device 46, temperature detection device 47, and liquid level detection device 48 transmit on-site sampling data to the automatic detection and feeding controller 38 for processing and control.
  • the pH value of the reaction solution in reaction tank 1-2 is controlled to pH14, the ORP value is controlled to be above 10mv, and the temperature of the reaction solution is controlled at 55°C.
  • the solution in reaction tank 1-2 reacts according to the process requirements for 18 hours, the ammonia nitrogen is detected.
  • the concentration is 40 mg/L, it is determined to be completed and the electrolyzer, solid feeders 128 and 129, and pump 191 are shut down.
  • the valve 79 is opened, the pump 192 and the rotary centrifuge 4 are turned on in the reaction tank 1-2.
  • the solid-liquid mixture undergoes solid-liquid separation, and the flow meter detection device 49 reflects the reading during the process.
  • Filtrate B is pumped into the temporary storage tank 17 through the overflow buffer tank 125 for temporary storage and is left for processing. Its main components are chlorine salt and sodium ferrate solution, and the ammonia nitrogen impurity is detected to be 40 mg/L.
  • the filter residue D is cut off by the scraper on the rotary centrifuge 4 and dropped into the temporary storage tank 16 . When the reading of the flow meter detection device 49 returns to zero, it means that the solid-liquid mixture in the reaction tank 1-2 has been extracted, that is, the valve 79 is closed, the pump 192 and the rotary centrifuge 4 are shut down.
  • the filter residue D100 is a solid mixture containing sodium percuprate as the main component and chlorine salt as impurity.
  • the solid slag copper oxide and iron oxide after the reduction reaction are sent to the solid heating device 2 for high-temperature heating.
  • the solid heating device is a combustion heating device that uses a combustion and exothermic reaction between flammable gas 147 and air 143.
  • the heat treatment is 650°C for 1 hour, and the copper oxide and iron oxide products produced at high temperature are reused.
  • filtrate A is divided into two constant volumes according to process requirements to prepare acidic etching regeneration subliquid and alkaline solution respectively.
  • the acidic etching regeneration sub-liquid is returned to the acid etching production line for etching recycling
  • the alkaline etching regeneration sub-liquid is returned to the alkaline etching production line for etching recycling.
  • the feature of this embodiment is that a mixed solution of acid and alkaline copper chloride etching waste liquid is used for neutralization and precipitation reaction.
  • the obtained filtrate A is divided into two parts according to the process and used as etching liquid for reuse.
  • the filter residue C adopts two impurity removal treatment methods: the deamination oxidation reaction of mode (i) and the heating oxidation reaction of combination mode (ii) in step (3), so that the mixture of copper oxide and iron oxide can be easily used.
  • Embodiment 4 of a circuit board copper chloride etching waste liquid precipitation treatment and reuse method device of the present invention which includes: reaction tank 1, 5 solid-liquid separators 3-1 to 3- 5. 12 temporary storage tanks 8 to 19, 5 detection devices, 2 solid heating devices 2-1 and 2-2, mechanical crushing device 140, copper mud and copper slag cleaning tank 110 with impeller agitator, pump and valve.
  • the reaction tank 1 is equipped with an impeller stirrer 27 and a pH meter detection device 39, which are connected to the solid-liquid separator 3-1 through a pipeline provided with a valve 58 and a pump 172;
  • the solid-liquid separators 3-1 to 3-3 all adopt ordinary filter presses, and the solid-liquid separator 3-4 is an ordinary wire-wound precision filter element filter.
  • the temporary storage tank 8 is used to store acid etching waste liquid
  • the temporary storage tank 9 is used to store alkaline etching waste liquid
  • the temporary storage tank 10 is used to store the filter residue C99 from the solid-liquid separator 3-1
  • the temporary storage tank 11 contains the filtrate A97
  • the temporary storage tank 12 prepares the acid etching sub-liquid
  • the temporary storage tank 13 prepares the acid etching oxidant solution
  • the temporary storage tank 14 prepares the alkaline etching regeneration sub-liquid
  • the temporary storage tank 15 is used to load the passing machinery
  • the mixture 148 of copper oxide powder and iron oxide powder is crushed, washed and separated by filtration.
  • the temporary storage tank 16 is used to temporarily store the waste liquid of the mixture 148 of washed copper oxide and iron oxide powder.
  • the mechanical pulverizer 140 is used to mechanically process and pulverize the copper slag 148 treated by the solid heating device 2-1.
  • the solid heating device 2-1 is used to perform heating, oxidation and deamination reaction treatment on the filter residue C99 of precipitated copper sludge.
  • the solid heating device 2-2 is used to perform high-temperature oxidation treatment on the copper slag 148 that has been heated, crushed, and washed.
  • the copper mud and copper slag cleaning tank 110 with an impeller agitator is used to use sulfuric acid to dissolve copper oxide to separate the copper oxide from the mixture 149 of iron oxide and manganese dioxide.
  • the alkaline cupric ammonia chloride etching waste liquid that needs to be treated is an aqueous solution containing ammonia water, ammonium chloride, cupric ammonia chloride and additives at pH 8.8.
  • the acidic pH adjuster is acidic copper chloride etching waste liquid, the main components of which are acidic solutions containing hydrochloric acid, copper chloride, ferric chloride, and ammonium chloride, and its acidity is 3.5M/L.
  • the process flow of this method is to start the pump 171 to pump the alkaline etching waste liquid in the temporary storage tank 9 into a certain volume of solution 113 into the reaction tank 1, and start the impeller stirrer 27.
  • the pump 170 is controlled by the pH meter of the detection device 39 to add the acidic pH adjuster in the temporary storage tank 8 into the reaction tank 1 to react with the alkaline etching waste liquid 113.
  • the pH meter reaches the set value pH3 After .2, the pump 53 is shut down, and precipitate is precipitated in the reaction solution. Open the valve 58 and the pump 172, and pump the solid-liquid mixture in the reaction tank 1 to the filter press 3 for solid-liquid separation.
  • the obtained filtrate A is led to the temporary storage tank 11, and the filter residue C is retained in the filter press. 3 in.
  • the valve 58 and the pump 172 are turned off. Open the filter press 3, take out the filter residue C and put it into the temporary storage tank 10, and then close the filter plate frame to prepare for the next process. Open the valves 60 and 61 and the pumps 174 and 175 to pump part of the filtrate A97 solution in the temporary storage tank 11 to the temporary storage tank 12 and 13 respectively to prepare the acid etching regeneration sub-liquid and acid etching oxidant solution.
  • take the remaining part of the solution of filtrate A and pump it into the temporary storage tank through pump 173. 14 is used to prepare alkaline etching regeneration sub-liquid.
  • the prepared alkaline etching regeneration sub-liquid 106 must pass through the filter 7 to filter out insoluble substances in the alkaline etching regeneration sub-liquid.
  • the heating device adopts electric heating device. Turn on the solid heating device 2-1 to directly heat the filter residue C at 120°C for 3 hours. After completing the heating oxidation ammonia removal reaction according to the process requirements, the electric heating device 134 is shut down, and the copper slag 148 product is taken out and transferred to the mechanical crushing device 140 for crushing. After being crushed, the copper slag 148 is put into a cleaning tank 109 and washed with water to remove soluble salt impurities in the copper slag 148 .
  • the pump 179 is turned on to pump the solid-liquid mixture in the cleaning tank 109 to the solid-liquid separator 3-2 for solid-liquid separation, and the cleaning waste liquid is directed to the temporary storage tank 16 for treatment.
  • the filter residue 148 is separated from the solid-liquid separator 3-2 and placed in the temporary storage tank 15 for temporary storage.
  • the copper slag 148 in the tank 15 is put into the electric solid heating device 2-2, and is subjected to a high-temperature oxidation treatment at 850°C. Stir and tumble during the oxidation reaction for two hours, then take it out and cool it.
  • the copper slag 149 and the sulfuric acid solution 133 are put into the cleaning tank 110 to prepare the copper sulfate solution.
  • the pump 180 is turned on to pass the solid-liquid mixture in the tank 110 through the solid-liquid separator 3-3 for solid-liquid separation.
  • the crude acidic copper sulfate solution is stored in the temporary storage tank 18, and then finely filtered through the precision filter used as the solid-liquid separator 3-4 to obtain a relatively pure acidic copper sulfate solution 151.
  • the insoluble substances of sulfuric acid, iron oxide and manganese dioxide, are intercepted by the solid-liquid separator 3-3 and 3-4 respectively.
  • the solid-liquid separator 3-3 is opened to take out the iron oxide 152 and store it in the temporary storage tank 17. After the manganese dioxide in the iron oxide 152 is separated, the iron oxide is reused to prepare the acidic etching regeneration liquid.
  • the filter residue C is subjected to the first electric heating 120°C oxidation and ammonia removal treatment. During the reaction, copper oxide and iron oxide are generated.
  • the filter residue C is subjected to mechanical crushing and water washing to desalinate the copper slag, and the treated copper slag is again subjected to electric heating at high temperature 850°C for deamination and/or Or remove chlorine salts and/or remove other metal impurities other than copper to obtain copper oxide powder, iron oxide powder and trace amounts of manganese dioxide impurity products.
  • the characteristic of this embodiment is that acid and alkaline copper chloride etching waste liquids are mixed, neutralized and precipitated in the factory of a circuit board manufacturing enterprise.
  • Method (ii) in step (3) is used in the process.
  • This method can reduce the use of deamination oxidant processes and equipment, is safe and simple to operate and saves a large amount of equipment investment funds. It can easily realize the mixed treatment of acid and alkaline copper chloride etching waste liquid without adding new pollution sources, and at the same time achieve the ideal effect of 100% recycling.
  • FIG. 5 it is an embodiment of a circuit board copper chloride etching waste liquid precipitation treatment and recovery method and its device according to the present invention, which includes: reaction tanks 1-1 and 1-2, solid-liquid separator 3- 1 and 3-2, temporary storage tanks 8 to 14, spray tower gas-liquid mixing device 24, hot and cold temperature exchanger 31, and chemical reaction kettle 156.
  • the reaction tank 1-1 is equipped with an impeller stirrer 27, a hot and cold temperature exchanger 31, a pH meter and an oxygen meter respectively. Detection devices 41 and 42 of the reduction potentiometer.
  • the reaction tank 1-1 is connected to the solid-liquid separator 3-1 through a pipeline provided with a valve 71 and a pump 56; an impeller stirrer 28 is installed in the reaction tank 1-2, and the detection device 43 is a pH meter.
  • Device 44 is a redox potentiometer.
  • the reaction tank 1-2 is connected to the solid-liquid separator 3-2 through the pipeline of the valve 75 and the pump 59.
  • the solid-liquid separators 3-1 and 3-2 adopt ordinary filter presses
  • the chemical reaction kettle 156 adopts an electric heating type reaction kettle, and an impeller stirrer, pH meter and thermometer detection devices 39 and 40 are installed in the kettle for process control of heating and ammonia removal treatment of alkaline etching waste liquid.
  • the temporary storage tank 8 is used to store alkaline copper chloride etching waste liquid 113
  • the temporary storage tank 9 is used to store the mixed liquid pH adjuster of hydrochloric acid 111 and formic acid 142
  • the temporary storage tank 10 is used to store The filter residue C99 extruded by the filter press 3
  • the temporary storage tank 11 is used to store the filtrate A97 from the solid-liquid separator 3-1
  • the temporary storage tank 12 is used to load the filter residue separated from the solid-liquid separator 3-2.
  • D100 the temporary storage tank 13 stores the filtrate D98 from the solid-liquid separator 3-2
  • the temporary storage tank 14 stores the sodium hypochlorite solution 93.
  • a solid feeder 128 is installed on the top of the reaction tank 1-2, containing sodium hydroxide 85.
  • the alkaline copper chloride etching waste liquid 113 that needs to be treated has a pH value of 7.3, and its main components are ammonium chloride, ammonium carbonate, ammonium bicarbonate, ammonia, and an aqueous solution based on cupric ammonia chloride. Its copper ion concentration is 90 g/L.
  • the acidic pH adjuster is hydrochloric acid.
  • the recycling and regeneration process is to first turn on the pump 170 to pump the alkaline copper chloride etching waste liquid 113 in the temporary storage tank 8 into the chemical reaction kettle 156 .
  • the impeller stirrer and heater in the reaction kettle are started to heat the alkaline etching waste liquid 113 to remove ammonia.
  • the ammonia removal process is controlled by the pH meter of the detection device 39 and the thermometer of the detection device 40 .
  • the working temperature in the reaction kettle is controlled at 95°C
  • the pH value of the heated reaction liquid in the kettle is controlled at pH 6.8.
  • the ammonia-containing tail gas escaping from the kettle is directed to the gas-liquid mixing device 24 of the spray tower for preparation and regeneration.
  • the etching liquid is used for absorption and utilization.
  • the heater in the chemical reaction kettle is turned off and the solution in the kettle is cooled. After the solution in the kettle is cooled down, the concentrated slurry is pumped to the reaction tank 1-1 through the pump 171 for the next step of neutralization and copper salt precipitation chemical reaction.
  • the pH meter of the detection device 41 controls the pump 172 to add the hydrochloric acid solution to the tank 9.
  • the process setting value of the pH meter in step (1) is pH5.0.
  • the reaction liquid passes through the hot and cold temperature exchanger 31 to cool the reaction liquid during the neutralization exothermic reaction.
  • the valve 59 and the pump 173 are opened to pump the solid-liquid mixture in the reaction tank 1-1 to the filter press 3 for solid-liquid separation, and the filtrate A is led to the temporary storage tank 11 .
  • the valve 59 and the pump 173 are closed.
  • the filter residue C is collected by opening the pressure plate of the filter press 3 and temporarily placed in the temporary storage tank 10.
  • the filter press 3 completes collecting the solid filter residue C, the plate and frame are re-closed and wait for the next operation.
  • the filtrate A97 is pumped by the pump 174 into the spray tower gas-liquid mixer 24 for preparing alkaline etching regeneration sub-liquid.
  • it is prepared by absorbing ammonia-containing tail gas, adding ammonium carbonate salt, ammonium chloride, and ammonia water raw materials.
  • the laboratory technician detects that the regeneration sub-liquid preparation standard is reached, it is used in the alkaline etching production line.
  • the filter residue C solid in the temporary storage tank 10 into the reaction tank 1-2 open the valve 64 and start the pump 177 to introduce the sodium hypochlorite solution 93 into the reaction tank 1-2.
  • the ammonia nitrogen concentration tested by sampling was 11 g/L.
  • the impeller stirrer 28 is turned on, the pH meter of the detection device 43 and the redox potentiometer of the detection device 44 work simultaneously, and the detection device 44 controls the pump 177 to put the deamination oxidant solution in the temporary storage tank 14 into the reaction tank 1-2 .
  • the ORP meter process setting value is 420mv. While the deamination oxidant solution is being put in, the solid feeder 128 is turned on to put the sodium hydroxide 85 into the reaction tank 1-2.
  • the amount of the sodium hydroxide 85 put in is based on the pH meter of the detection device 43 in step (3).
  • the process setting value is pH 8.8 to control, and the temperature of the reaction solution is normal temperature.
  • the deamination oxidation reaction is deemed to be completed.
  • the filtrate B98 is directed to the temporary storage tank 13, and the filter residue D100 is retained in the filter press. 4 in.
  • the filter press 4 is opened to collect the filter residue D trapped in the machine and temporarily place it in the temporary storage tank 12 .
  • the main component of filter residue D is copper hydroxide after deamination and oxidation reaction.
  • the alkaline circuit board copper chloride etching waste liquid with a pH value of 7.3 is subjected to high-temperature ammonia removal in a chemical reactor, and then mixed with acidic substances to react until the pH value of the reaction solution reaches pH 5.0 and precipitates are precipitated.
  • copper clay
  • the alkaline etching waste liquid is heated to remove ammonia to reduce the pH value of the original alkaline copper chloride etching waste liquid, thereby reducing the input amount of acidic pH adjuster.
  • the volume of the filtrate A97 obtained after the neutralization and precipitation reaction will not be larger than the volume of the waste liquid to be treated.
  • This example illustrates the use of the process of the present invention to separately recycle alkaline copper chloride etching waste liquid and add hydrochloric acid as an acidic pH adjuster to perform a neutralization and precipitation reaction.
  • an acidic pH adjuster is added to generate ammonium chloride in the reaction solution, thereby lowering the pH value of the solution and precipitating copper salt precipitates in the solution.
  • the precipitated copper sludge is subjected to deamination and oxidation treatment using method (i) in step (3) to recover copper hydroxide.
  • the alkaline etching waste liquid is heated to remove ammonia by using a reaction kettle, so that there will be no excess filtrate A97 that cannot be reused after the waste liquid is treated, so that the entire recycling system does not generate new sources of pollution.
  • Embodiment 6 of a circuit board copper chloride etching waste liquid precipitation treatment and reuse method device of the present invention which mainly includes 2 reaction tanks, 3 solid-liquid separators, and 10 temporary storage tanks. tank, 2 solid feeders, 14 detection devices, a conveyor belt, and two sets of electrolysis process chlorine generators 33A and 33B (the separator 37A of the electrolytic tank 33A is a cation exchange membrane, and the separator 37B of the electrolytic tank 33B is a filter cloth), two exhaust gas treatment tanks, two etching production lines, and one automatic detection and feeding controller.
  • the separator 37A of the electrolytic tank 33A is a cation exchange membrane
  • the separator 37B of the electrolytic tank 33B is a filter cloth
  • the reaction tank 1-1 is equipped with an impeller stirrer 27, a sealed tank cover 114, a pH detection device 39, and a photoelectric colorimeter detection device 40, and the reaction tank 1-1 is connected to the solid-liquid separator 3-1.
  • a flow meter 43 is installed on the pipeline.
  • the reaction tank 1-2 is equipped with a sealed tank cover 116, a vacuum jet gas-liquid mixer 21, a hot and cold temperature exchanger 32, a pH detection device 45, an ORP detection device 46, a temperature detection device 47, and a liquid level detection device 48.
  • a flow meter 49 is installed on the connecting pipe between the reaction tank 1-2 and the solid-liquid separator 3-2.
  • the solid-liquid separator 3-1 adopts an ordinary filter press, and the solid-liquid separator 3-2 adopts a titanium rotary centrifuge with a scraper.
  • the solid-liquid separator 3-3 is an ordinary filter.
  • the plurality of temporary storage tanks are used to temporarily store different solutions as shown in Figure 6 .
  • the temporary storage tank 11 is used to prepare acid etching sub-liquid, so the tank is equipped with a liquid reflux agitator 29;
  • the temporary storage tank 14 is used to prepare the acidic etching oxidant solution;
  • the temporary storage tank 13 is used to prepare the alkaline etching sub-liquid, so the tank 13 is installed with an impeller stirrer 28 and Hot and cold temperature exchanger 31 for heating.
  • the solid feeder 128 is loaded with the filter residue C99 transported from the conveyor belt 131, and is put into the reaction tank 1-2 during operation.
  • the reaction tank 1-2 is equipped with a solid feeder 129, which is loaded with solid sodium hydroxide 85 and sodium carbonate 90.
  • the main components of the acidic copper chloride etching solution that needs to be processed are copper chloride, ammonium chloride and hydrochloric acid, and the acidity is 1.8M.
  • the alkaline pH adjuster is an alkaline cupric ammonia chloride etching solution, the main components of which are cupric ammonia chloride, ammonia water, ammonium chloride, and additives, and the pH value is pH 8.3.
  • the method (i) is used for deamination and oxidation treatment.
  • Both sets of electrolysis process chlorine generators use acidic copper chloride etching waste liquid as the anolyte and catholyte.
  • the separator of electrolytic tank 33A is a cation exchange membrane, and the separator of electrolytic tank 33B is filter cloth.
  • the two anodes react to produce chlorine 95 and the cathode produces copper through an electrochemical reaction.
  • the acidic etching waste liquid in the electrolysis process is continuously added to the anode tank areas of the two electrolytic tanks, and is controlled by the hydrometer 44 installed in the anode tank area to control the pump 182 to perform the addition and the hydrometer 52 to control the pump 183 to perform the addition. cast.
  • the chlorine gas 95 escaping from the two anode tank areas and the chlorine gas 95 escaping from the buffer tank 124 are guided by the ejector 21 to the reaction tank 1-2 to participate in the chemical reaction.
  • the introduced chlorine reaction amount is controlled by the ORP meter of the detection device 46 in the reaction tank 1-2 to control the output power of the two electrolysis power supplies 36A and 36B and to turn on and off to control the amount of oxidant added for the deamination reaction.
  • the solution in the reaction tank 1-2 is controlled by the pH meter of the detection device 45 to add a mixture of sodium hydroxide and sodium carbonate to adjust the pH value of the reaction solution.
  • the tail gas treatment tank is divided into an acidic tail gas treatment tank and an ammonia-alkaline tail gas treatment tank.
  • the reaction liquid of the acidic tail gas treatment tank is sodium hydroxide solution 86
  • the reaction liquid of the ammonia-alkaline tail gas treatment tank is sulfuric acid solution 133.
  • the exhaust gas treatment tank designed according to the process can be installed with any one or two combinations of gas-liquid mixers. As shown in Figure 6, the acidic tail gas of each tank is introduced into the S inlet of tank 162 for treatment, and the ammonia alkaline tail gas of each tank is introduced into the J inlet of tank 163 for treatment.
  • the tail gas treatment tank is equipped with pH detection devices 50 and 51 respectively.
  • the tank 163 is also equipped with a pneumatic stirrer 30, which injects air into the exhaust gas treatment reaction liquid to help ammonia accelerate the reaction with sulfuric acid.
  • the etching production line is provided with an acid etching production line 107 and an alkaline etching production line 108.
  • the prepared acidic etching regeneration subliquid 105 and acidic etching oxidant 146 are poured back into the acidic etching line through the pump 178 and the pump 184 respectively to react with the circuit copper plate.
  • the alkaline etching subliquid 106 is put into the alkaline production line 108 through the pump 180 for recycling and etching reaction with the circuit copper plate.
  • the automatic detection and feeding controller 38 obtains on-site sampling data from multiple detection devices and automatically controls the production process of the entire equipment.
  • This method is to treat the acidic copper chloride etching waste liquid, and its alkaline pH value adjuster is alkaline copper ammonia chloride etching waste liquid.
  • the process flow is to start two exhaust gas treatment devices, add the acidic etching waste liquid 112 in the temporary storage tank 8 into the reaction tank 1-1 through the pump 170, start the impeller stirrer 27, and various on-site mixing of the reaction liquid
  • the data are transmitted to the automatic detection and feeding controller 38 for processing through the pH detection device 39 and the temperature detection device 40 respectively.
  • the pH meter 39 controls the pump 171 to add the alkaline etching waste liquid 113 in the temporary storage tank 9 into the reaction tank 1-1 for neutralization and precipitation reaction.
  • the pH value of the reaction solution was controlled to pH 5.2, and copper sludge precipitated.
  • the precipitated tail gas from the reaction tank 1-1 is directed to the S inlet of the tail gas treatment tank 162. deal with.
  • the valve 58 when the solution in the reaction tank 1-1 has finished reacting, open the valve 58 and turn on the pump 172 to pump the solid-liquid mixture in the reaction tank 1-1 into the filter press 3 for solid-liquid separation.
  • the pipeline flow The reading reflected by the meter detection device 43 indicates that there is liquid flow in the tube.
  • the valve 58 is closed and the pump 172 is shut down.
  • the filtrate A97 flowing out from the filter press 3 is pumped into the temporary storage tank 10 through the overflow buffer tank 120 and the filter device 5 . Open the plate and frame in the filter press 3, take out the filter residue C99, drop it on the conveyor belt 131 and transport it to the solid feeder 128. After the filter press 3 completes the unloading, re-close the plate and frame of the filter press 3 for preparation. Next process.
  • the filtrate A97 in the temporary storage tank 10 is quantitatively distributed according to the process requirements, and is pumped into the temporary storage tank 11, the temporary storage tank 13 and the temporary storage tank 14 through the pumps 176, 175 and 174 respectively.
  • the liquid level of the clean water 104 is controlled by the liquid level detection device 48 in the reaction tank 1-2.
  • the solid feeder 128 is turned on to quantitatively add the filter residue C99 into the reaction tank 1-2.
  • the pump 62 is turned on to make the jet gas-liquid mixer 21 work, the hot and cold temperature exchanger 32 is turned on to adjust and control the temperature of the reaction liquid according to the process, and the exhaust gas is directed to the S inlet suction port of the exhaust gas treatment tank 162 for treatment.
  • the solution in the reaction tank 1-2 was sampled to detect the ammonia nitrogen concentration, and the result was 126 g/L.
  • the anode electrolyte in two of the electrolysis process chlorine generators is acidic copper chloride etching waste liquid.
  • the anode is used to produce chlorine during operation to perform a deamination and oxidation reaction on the materials in the reaction tanks 1-2, while the cathode electroprecipitates copper.
  • the copper ion concentration control of the anolyte of the two electrolyzers is based on the set values of the specific gravity detection devices 44 and 52 to control the pumps 182 and 183 to respectively add acidic copper chloride to the anode tank areas of the two electrolyzers.
  • the catholyte is a mixture of acidic copper chloride etching waste liquid 112 and electroplated copper brightener 166. Since the separator of the electrolytic tank 33A is a cation exchange membrane and the separator of the electrolytic tank 33B is a filter cloth, the two The copper ions in the anode tank area migrate to the cathode tank area under the action of the electric field force and metal copper is electroprecipitated on the cathode.
  • the pH detection device 45, ORP detection device 46, temperature detection device 47, and liquid level detection device 48 installed on the reaction tank 1-2 transmit on-site sampling data to the automatic detection and feeding controller 38 for processing and control.
  • the pH value of the reaction solution in reaction tank 1-2 is controlled to pH11, the ORP value is controlled to be above 1mv, and the temperature of the reaction solution is 5°C.
  • the ammonia nitrogen concentration of the reaction solution was sampled and tested, and the result was 80 mg/L.
  • the electrolyser, solid feeders 128 and 129, pumps 182, 183, 187 are shut down, the valve 73 is opened, the pump 188 and the rotary centrifuge 4 are turned on to pair the solids in the reaction tank 1-2.
  • the liquid mixture undergoes solid-liquid separation, and the flow meter detection device 49 reflects the reading during the process.
  • the filtrate B was pumped into the temporary storage tank 17 through the overflow buffer tank 125 for temporary storage for processing. It was detected that the filtrate B still contained 80 mg/L of ammonia nitrogen substance.
  • the filter residue D is cut off by the scraper on the rotary centrifuge 4 and dropped into the temporary storage tank 16 . When the reading of the flow meter detection device 49 returns to zero, it means that the solid-liquid mixture in the reaction tank 1-2 has been extracted, that is, the valve 73 is closed, the pump 188 and the rotary centrifuge 4 are shut down.
  • the main component of the filter residue D100 is a solid mixture of copper hydroxide and copper carbonate. Clean water 104 is added to the temporary storage tank 16 to clean the solid copper compound to remove soluble salts therein.
  • the feature of this embodiment is that acid and alkaline copper chloride etching waste liquids are mixed with each other for neutralization and precipitation reaction.
  • the obtained filtrate A is divided into three parts according to the process and used as etching liquid for reuse.
  • the filter residue C is subjected to deamination and oxidation reaction in the method (i) in step (3), and then the filter residue D is washed with water to obtain a solid copper compound. This allows the acid and alkaline copper chloride etching waste liquid to be environmentally treated in the production plant and achieve 100% recovery and recycling of the waste liquid.
  • Embodiment 7 of a circuit board copper chloride etching waste liquid precipitation treatment and reuse method device of the present invention which includes: reaction tank 1, two solid-liquid separators 3-1 and 3- 2. 10 temporary storage tanks 8 to 17, 12 detection devices, 1 solid heating device 2. Mechanical crushing device 140, copper mud and copper slag cleaning tank with impeller agitator 110, exhaust gas from spray tower gas-liquid mixing device Processor 162, pump and valve.
  • the reaction tank 1 is equipped with an impeller stirrer 27, a detection device 39, a pH meter and a liquid level meter 40, which are connected to the solid-liquid separator 3-1 through a pipeline provided with a valve 57 and a pump 171;
  • the solid-liquid separators 3-1 and 3-2 both adopt ordinary filter presses.
  • the temporary storage tank 8 is used to store the acid etching waste liquid
  • the temporary storage tank 9 is used to store the filter residue C99
  • the temporary storage tank 10 is used to store the filtrate A97 from the solid-liquid separator 3-1
  • the temporary storage tank 11 is used to prepare the acid etching regeneration sub-liquid
  • the temporary storage tank 12 is used to prepare the acid etching oxidant solution
  • the temporary storage tank 13 is used to store the acid etching oxidant solution 146
  • the temporary storage tank 14 stores the acid etching regeneration sub-liquid 105
  • the temporary storage tank 15 It is used to load the washed copper oxide powder discharged from the filter press 4, and the temporary storage tank 16 stores the waste liquid of the washed copper oxide flowing out from the filter press 4.
  • the solid heating device 2 is used to perform heating, oxidation and deamination reaction treatment on the filter residue C99 of precipitated copper sludge.
  • the mechanical pulverizer 140 is used to mechanically process and pulverize the copper slag 148 processed by the solid heating device 2 .
  • the described copper mud and copper slag cleaning tank 110 with an impeller agitator is used to wash the copper slag 148 with water to remove soluble impurities.
  • the detection device 39 is a pH meter
  • 40 is a liquid level meter
  • 41 is a liquid level meter
  • 42 is an acidometer
  • 43 is a pH meter
  • 44 is a hydrometer
  • 45 is an acidometer
  • 46 is a hydrometer
  • 47 is an oxidation meter.
  • 48 is the liquid level meter
  • 49 is the hydrometer
  • 50 is the thermometer.
  • the acidic copper chloride etching waste liquid that needs to be treated has an acidity of 1.2M/L, a copper ion concentration of 140 g/L, and an ammonium chloride concentration of 7 g/L.
  • the alkaline pH adjuster is ammonium carbonate, ammonium bicarbonate, ammonia water, and liquid ammonia.
  • the process flow of this method is to turn on the pump 170 to pump the acidic etching waste liquid in the temporary storage tank 8 into a certain volume of solution 112 into the reaction tank 1, and start the impeller stirrer 27.
  • the addition of external alkaline pH adjusters is controlled according to the pH meter of the detection device 39. During the process, when the pH meter reaches the set value pH 4.5, all external alkaline pH adjusters are shut down. in reaction solution A precipitate of alkaline copper chloride and copper ammonia complex precipitates. Open the valve 57 and the pump 171, and pump the solid-liquid mixture in the reaction tank 1 to the filter press 3 for solid-liquid separation. The obtained filtrate A is led to the temporary storage tank 10, and the filter residue C is retained in the filter press. 3 in.
  • valve 57 and the pump 171 are turned off. Open the filter press 3, take out the filter residue C99 and put it into the temporary storage tank 9, and then close the filter press plate frame to prepare for the next process. Open valves 58 and 59 and pumps 172 and 173 to pump part of the filtrate A97 solution in the temporary storage tank 10 to the temporary storage tanks 11 and 12 respectively for preparation of acid etching regeneration sub-liquid and acid etching oxidant solution.
  • the solutions prepared according to the process are pumped into temporary storage tanks 13 and 14 for temporary storage respectively.
  • the heating device adopts electric heating device. Turn on the solid heating device 2 to directly heat the filter residue C at 400°C for 3 hours. After completing the heating oxidation ammonia removal reaction according to the process requirements, the electric heating device 134 is shut down, and the copper slag 148 product is taken out and transferred to the mechanical crushing device 140 for crushing. After being crushed, the copper slag 148 is put into a cleaning tank 109 and washed with water to remove soluble salt impurities in the copper slag 148 .
  • the pump 180 is turned on to pump the solid-liquid mixture in the cleaning tank 109 to the solid-liquid separator 3-2 for solid-liquid separation, and the cleaning waste liquid is directed to the temporary storage tank 16 for treatment.
  • the copper oxide filter residue 161 is separated from the solid-liquid separator 3-2 and placed in the temporary storage tank 15 for temporary storage.
  • the acidic tail gas containing ammonium chloride escapes from the solid heating device 2 and is directed to the spray tower 24 for absorption and treatment, and the waste liquid from the tail gas treatment device 162 is left for further treatment.
  • the device 162 is equipped with a liquid level meter 48 and a hydrometer 49 to control the replacement of the exhaust gas absorbing liquid.
  • the filter residue C is electrically heated at 400°C to oxidize and remove ammonia, and copper oxide is generated during the reaction.
  • the characteristic of this embodiment is that the acidic copper chloride etching waste liquid is mixed, neutralized and precipitated in the factory of a circuit board manufacturing enterprise.
  • Method (ii) in step (3) is used in the process. This method can reduce the use of deamination oxidant processes and equipment, is safe and simple to operate and saves a large amount of equipment investment funds. After further environmental treatment of the ammonia-nitrogen-containing wastewater generated during the process, the ideal effect of 100% recycling of the acidic copper chloride etching waste liquid can be achieved without using electrolytic copper extraction.
  • Embodiment 8 of a circuit board copper chloride etching waste liquid precipitation treatment and reuse method device of the present invention mainly includes 2 reaction tanks, 4 solid-liquid separators, and 8 temporary storage tanks. tank, 2 hot and cold temperature exchangers, 1 water-oil separator, 1 solid feeder, 1 set of electrolysis process chlorine generator, 1 impeller stirring copper mud and copper slag cleaning tank, 14 sensors, 1 automatic Testing feeding controller, 1 hydrogen eliminator, 1 chemical reactor 156, and 1 carbon dioxide source.
  • the reaction tank 1-1 is equipped with an impeller stirrer 27, a sealed tank cover 114, a hot and cold temperature exchanger 31, a pH detection device 39, a specific gravity detection device 40, a temperature detection device 41, and a liquid level detection device 42.
  • the reaction tank 1-2 is equipped with a sealed tank cover 115, a liquid reflux agitator 29, a hot and cold temperature exchanger 32, a spray tower gas-liquid mixing device 24, a pH detection device 43, an oxidation reduction potential (ORP) detection device 44, Temperature detection device 45 and liquid level detection device 46.
  • ORP oxidation reduction potential
  • the solid-liquid separator 3-1 is an ordinary filter with a filter media structure, and the solid-liquid separators 3-2 to 3-4 are Use an ordinary plate and frame filter press.
  • the temporary storage tank is used to temporarily store different solutions as shown in Figure 2.
  • the impeller agitator 28 and the liquid level gauge of the sensor 50 are installed in the temporary storage tank 10 .
  • the water-oil separator 20 and the solid-liquid separator 3-1 remove impurities from the alkaline copper ammonia chloride etching waste liquid that needs to be treated. After removing impurities, they are respectively diverted to the temporary storage tank 9 for storage.
  • the acidic pH adjuster components are carbon dioxide gas 202 and hydrochloric acid 111 respectively.
  • the pH value of the alkaline cupric ammonia chloride etching waste liquid 113 that needs to be treated is pH 8.3, and its main components are a mixture of ammonia water, ammonium chloride and cupric ammonia chloride.
  • the solid feeder 128 is loaded with sodium hydroxide 85, which is added to the reaction tank 1-2 to adjust the pH value of the deamination oxidation reaction solution.
  • the electrolytic cell separator 37 in the chlorine generator of the electrolysis process is a cation exchange membrane, and chlorine 95, hydrogen, and sodium hydroxide solution 86 are obtained by electrolyzing sodium chloride solution.
  • the electrolyzed hydrogen is introduced into the hydrogen eliminator 160 through the vacuum jet gas-liquid mixing device 22 to react with the oxidant for safe treatment.
  • the chlorine gas 95 is directed into the reaction tank 1-2 through the spray tower 24 to participate in the chemical reaction.
  • the automatic detection and feeding controller 38 obtains on-site data through multiple detection devices for automatic control of the production process flow of the entire set of equipment.
  • the impeller stirring copper mud and copper slag cleaning tank 110 is specially used for washing the filter residue D, and a pH value detection device 47 and a photoelectric colorimetric detection device 51 are installed in the tank for detecting the pH and copper salt concentration in the washing liquid. , to remove impurities from the copper hydroxide.
  • the process flow of this method adopts the process method of mode (i) in step (3), and the alkaline copper ammonia chloride etching waste liquid 113 that needs to be processed is pumped into the water and oil separator 20, and is removed through the filter 4 After miscellaneous treatment, it is pumped into the temporary storage tank 9.
  • the pump 172 is turned on to pump the alkaline etching waste liquid into the reaction tank 1-1 at a constant volume. Turn on the stirrer 27 and the hot and cold temperature exchanger 31.
  • the reaction liquid passes through the thermometer of the detection device 41, the hydrometer of the detection device 40, the pH meter of the detection device 39 and the liquid level meter of the detection device 42 to sample and detect the temperature, copper ion concentration, pH and liquid level of the reaction solution, and detect them on-site.
  • the data is sent to the automatic detection and feeding controller 38 for processing and program execution.
  • the valve 63 is opened to send the carbon dioxide gas 202 into the solution in the tank 1 through the vacuum ejector 21 for gas-liquid mixing reaction, so that the pH value of the reaction solution is reduced to pH 7.2.
  • control pump 170 is turned on and the acidic pH adjuster is poured into the solution in the reaction tank 1-1 to adjust the pH value to pH7.0 to cause a large amount of precipitates to precipitate from the reaction solution.
  • the hot and cold temperature exchanger 31 Control the temperature of the reaction solution to normal temperature.
  • the valve 60 is opened and the pump 174 is turned on to pump the solid-liquid mixture in the reaction tank 1-1 to the filter press 5 for solid-liquid separation.
  • the valve 60 is closed and the pump 174 is shut down.
  • the filtrate A97 is directed to the temporary storage tank 11 for storage, and the filter residue C is retained in the filter press 5.
  • the filter residue C is retained in the filter press 5.
  • the main component of the filter residue C is the copper chloride ammonia complex double salt. Re-close the 5-plate frame of the filter press and prepare for the next process.
  • the sodium hydroxide solution 86 in the temporary storage tank 12 is added to the temporary storage tank 10 under the control of the liquid level detection device 50, and the impeller stirrer 28 is turned on to mix the precipitate into a suspended solution.
  • the suspension in tank 10 is tested for ammonia nitrogen by the operator.
  • the NH 4 + ion concentration was found to be 21 g/L.
  • the on-site detection data of the temperature detection device 45, the liquid level detection device 46 and the ORP detection device 47 in the hydrogen eliminator 160 are sent to the automatic detection and feeding control machine 38 for processing.
  • the controller 38 adjusts the output current of the electrolysis power supply according to the size of the electrolysis power supply.
  • the ORP value and pH value of the solution are adjusted according to the on-site deamination oxidation reaction conditions to control the electrolysis output of chlorine and perform feeding control on the solid feeder 128.
  • the pump 188 is used to add oxidant to the hydrogen eliminator 160 based on the data from the detection device 47 .
  • the ORP value is controlled to be above 950mv and the pH value is controlled to pH7.5.
  • the temperature of the reaction solution is controlled at normal temperature and maintained for 36 hours.
  • the NH 4 + ion concentration is measured to be 50 mg/L.
  • the reaction is complete.
  • Solid-liquid separation is performed in the filter press, filtrate B is directed to the temporary storage tank 14, and filter residue D is retained in the filter press 6, the main component of which is copper hydroxide.
  • the valve 72 and the pump 185 are closed.
  • Concentrate filtrate A according to process requirements.
  • the solution in tank 11 is pumped to the chemical reaction kettle 156 to prepare the alkaline etching regeneration sub-liquid.
  • Ammonium chloride solid is added to the concentrated solution of filtrate A in the chemical reaction kettle 156 to supplement the chloride ion concentration.
  • Liquid ammonia 132 and/or ammonia water 102 are used to prepare the ammonia content of the regenerated etching sub-liquid 106, and the prepared alkaline etching regenerated sub-liquid is reused in the alkaline etching production line 108.
  • Filtrate B was tested and its ammonia nitrogen impurity content still remained at 50mg/L. And it is directed to the temporary storage tank 14 for subsequent use as an oxidizing agent.
  • the detection data on the workshop site are transmitted to the automatic detection and feeding controller 38 for processing through the hydrogen detection device 48 and the chlorine detection device 49 and are safety interlocked with the production system.
  • a method for acidifying and precipitating circuit board alkaline etching waste liquid is as follows:
  • This example illustrates the recovery and treatment of copper sludge obtained by neutralizing the alkaline cupric ammonia chloride etching waste liquid that needs to be treated by using acidic pH adjuster carbon dioxide gas and hydrochloric acid together.
  • carbon dioxide is first used to react with free ammonia in the waste liquid to generate ammonium bicarbonate to reduce its pH value, so that the volume of the neutralization reaction solution does not increase significantly, and the volume of the neutralization reaction solution does not increase significantly.
  • the volume of the filtrate A97 will increase and the excess waste liquid will be discharged if it cannot be reused.
  • Use chlorine oxidant to deaminate and oxidize the suspension of precipitated copper mud under alkaline conditions.
  • the pH value and alkalinity of the reaction solution are controlled low, so it is difficult to operate under high redox potential.
  • Sodium percuprate is generated, so copper hydroxide is obtained in the reaction of oxidizing the copper chloride ammonia complex.
  • the hydrogen electrolytically precipitated by the electrolysis cathode is also introduced into the hydrogen eliminator, and the filtrate D98 oxidant is used to react with the hydrogen for safe treatment.
  • the filtrate A produced during the reaction of neutralizing the precipitated copper sludge is prepared according to the process requirements to regenerate the etching sub-liquid for use in the alkaline etching production line.

Abstract

本发明公开了一种线路板氯化铜蚀刻废液沉淀处理回用方法及其装置,其将线路板氯化铜蚀刻废液与pH值调整剂混合发生反应,令溶液中析有铜盐沉淀,所述的线路板氯化铜蚀刻废液和pH值调整剂中的至少一种包含含有铵和/或氨的线路板氯化铜蚀刻废液;然后,对上一步中反应后所得的固液混合物进行固液分离,得到滤液A和滤渣C;然后对滤渣C进行脱氨处理,以生成回收的铜产品;最后,将滤液A全部或部分直接或者经调配后作为蚀刻再生子液和/或蚀刻氧化剂溶液回用于线路板氯化铜蚀刻系统中。本发明设备投资成本小,维护费用低,处理过程环境污染少,取铜后的药液能循环回用以提高生产收益。

Description

一种线路板氯化铜蚀刻废液沉淀处理回用方法及其装置 技术领域
本发明属于线路板蚀刻废液回收处理循环再用的技术领域,具体涉及一种线路板氯化铜蚀刻废液沉淀处理回用方法及其装置。
背景技术
在现有的印刷线路板(PCB)制作过程中,蚀刻是重要的一步。目前线路板生产常用的蚀刻液中有酸性氯化铜蚀刻液和碱性氯化铜氨蚀刻液。行业上统称为线路板氯化铜蚀刻工艺,使其区别于硫酸/双氧水类型、有机酸类型、过硫酸盐类型、铬酸/硫酸类型等线路板蚀刻工艺。
酸性氯化铜蚀刻工作液的主要成分是盐酸、氯化铜,部分的工艺配方中还含有氯化铵和/或氯化钠和/或氯化铁。
碱性氯化铜氨蚀刻工作液的主要成分为氯化铜氨络合物的铜盐、氯化铵、氨水,其中可选用碳酸氢铵和/或碳酸铵和/或有机酸胺等作为添加剂。
在实际的蚀刻生产中,随着在蚀刻槽中的蚀刻工作液与铜金属的蚀刻反应,溶液中的各种成分的占比会不断地发生变化。为了保证蚀刻性能稳定,需要向蚀刻生产线中的蚀刻工作液补投新的蚀刻药液。所述补投新的蚀刻药液行业上称之为蚀刻子液,而溢出到蚀刻生产线外的溶液则称为蚀刻废液。
目前,业界中对碱性氯化铜氨蚀刻废液作回收处理的方法有酸化法、萃取法和电解法。
(1)酸化法是向碱性氯化铜氨蚀刻废液直接加入硫酸,制得硫酸铜后采用电解通过电化学还原回收金属铜,但其余下的盐溶液由于含有大量碱性氯化铜氨蚀刻中不存在的硫酸铵而无法循环再用到蚀刻工序中。
(2)萃取法是采用有机的强螯合剂萃取蚀刻废液中的铜离子,余液用于配制再生蚀刻子液,再采用硫酸对螯合得铜离子的有机萃取剂反萃取得硫酸铜后通过电解回收得到铜金属。萃取工艺虽然生产原料回用率高,但其回收过程中因铜氨络合物被破坏而产生大量游离氨,萃取过程所需的剧烈搅拌导致氨气容易逸出,加上萃取后的蚀刻废液余液中残留有螯合剂,会导致再生配制的蚀刻子液中因含有螯合剂有机杂质而影响蚀刻生产的效率和质量。
(3)电解法是直接将碱性氯化铜氨蚀刻废液作为电解液进行电解取铜。电解过程中铜氨络合物被破坏释放出游离氨,由于电解过程发热大大降低了氨气的溶解度,从而导致大量氨气挥发。另外,由于电解液中同时含有大量铵离子和氯离子,电解过程中会有产生三氯化氮易爆危险品的可能,并且电解过程中有氯气产出,其与电解液中的氨反应转化为氮气而造成氨的浪费,导致这种回收取铜方法经济效益差。
关于酸性氯化铜蚀刻废液的回收处理方法有碱化法和电解法。
(1)所述的碱化法是采用氢氧化钠、氢氧化钾、氢氧化铵、碳酸钠、碳酸氢钠中的一种或者一种以上作中和反应生成氢氧化铜和/或碳酸铜沉淀并作固液分离来收取铜元素。但对于本身含有氯化铵的酸性蚀刻液而言,或者在对酸性氯化铜蚀刻废液作碱化法回收处理中采用氢氧化铵时,所得的含铜沉淀物含有铵盐杂质且难以通过现有环保处理工艺技术去除,影响了下一步铜化合物产品的回收利用。
(2)采用电解法时每条蚀刻生产线均需要搭配价值上百万元的数台大型电解设备。电 解设备因安装有多个金属电极和隔膜而造价昂贵,且使用过程中需耗费大量电能来实现铜离子和金属铜之间的转换,导致电解设备投资大、设备耗能高且维护成本重。
因此。现有的线路板酸、碱性氯化铜蚀刻废液回收处理工艺中存在着多种的不完善工艺问题,故业界期盼着回收工艺能有更安全简单,设备投资小,有较高的回用率甚至能实现100%循环回用的新型工艺推出。
发明内容
本发明的第一个目的在于提供一种含有铵和/或氨的线路板氯化铜蚀刻废液沉淀处理回用方法,其设备投资成本小,维护费用低,处理过程环境污染少,取铜后的药液能循环回用以提高生产收益。
本发明的第二个目的在于提供一种上述线路板氯化铜蚀刻废液沉淀处理回用方法的装置。
本发明的第一个目的通过以下技术措施实现:
一种含有铵和/或氨的线路板氯化铜蚀刻废液沉淀处理回用方法,其工艺操作步骤如下:
(1)将线路板氯化铜蚀刻废液与pH值调整剂混合发生反应,令溶液中析有铜盐沉淀,所述的线路板氯化铜蚀刻废液和pH值调整剂中的至少一种包含含有铵和/或氨的线路板氯化铜蚀刻废液;
(2)对步骤(1)中反应后所得的固液混合物进行固液分离,得到滤液A和滤渣C;
(3)对滤渣C进行脱氨处理,以生成回收的铜产品;
(4)将滤液A全部或部分直接或者经调配后作为蚀刻再生子液和/或蚀刻氧化剂溶液回用于线路板氯化铜蚀刻系统中。
本发明的工作原理是,对含有铵和/或氨的蚀刻废液作中和反应后得到铜化合物沉淀或者其与铁化合物的混合物——滤渣(具体反应式详见下文),随后对滤渣作除氨氮处理来回收铜产品和将滤液直接或者重新调配成为蚀刻子液和/或蚀刻氧化剂溶液。
其中,本发明步骤(1)中所述的线路板氯化铜蚀刻废液和pH值调整剂中的至少一种含有铵和/或氨。所述的线路板氯化铜蚀刻废液为线路板酸性氯化铜蚀刻废液和/或线路板碱性氯化铜氨蚀刻废液,可以是一种线路板氯化铜蚀刻废液,也可以是一种以上线路板氯化铜蚀刻废液的混合液。
本发明步骤(3)中所述的滤液A可以全部或部分直接或者经调配后作为酸性蚀刻再生子液和/或酸性蚀刻氧化剂溶液回用于线路板酸性氯化铜蚀刻系统中;也可以将全部或部分直接或者经调配后作为碱性蚀刻再生子液回用到线路板碱性氯化铜氨蚀刻系统中。
本发明步骤(3)中所述的回收铜产品的主成分为氢氧化铜、碳酸铜、碱式碳酸铜、氧化铜、高铜酸盐中的至少一种。
本发明步骤(1)中的pH调整剂有酸性pH调整剂和碱性pH调整剂两种。所述的酸性pH调整剂为线路板酸性氯化铜蚀刻废液、盐酸、有机酸、二氧化碳中的至少一种。所述的碱性pH调整剂为选自线路板碱性氯化铜氨蚀刻废液、氢氧化钠、氢氧化钾、氨和/或氢氧化铵、碳酸钠、碳酸氢钠、碳酸氢钾、碳酸铵、碳酸氢铵中的至少一种。
优选地,所述酸性pH值调整剂中的有机酸为甲酸。当所述的酸性pH调整剂中包含甲酸时,所得的滤液A中也含有甲酸根。采用滤液A配制的酸性再生蚀刻子液中含有甲酸,回用于酸性蚀刻生产中时酸性蚀刻过程中加投的氧化剂能及时将具有还原性的甲酸氧化消耗掉, 不会对酸性蚀刻生产造成负面影响。而采用滤液A配制的碱性再生蚀刻子液中含有甲酸铵,回用于碱性蚀刻生产中时甲酸铵对碱性蚀刻的化学反应亦无负面影响。
优选地,所述的酸性pH值调整剂包含二氧化碳时,先采用二氧化碳对碱性的线路板氯化铜蚀刻废液向下调整pH值至有铜盐沉淀析出且令所得pH值大于7,再采用线路板酸性氯化铜蚀刻废液、盐酸、有机酸中至少一种的酸性pH调整剂进一步向下调整pH值。更优选地,在采用线路板酸性氯化铜蚀刻废液、盐酸、有机酸中至少一种的酸性pH调整剂进一步向下调整pH值时,所得pH值不低于7,以便尽量多地生成铜盐沉淀并能避免大量释放二氧化碳,造成浪费。
优选地,所述碱性pH值调整剂为线路板碱性氯化铜氨蚀刻废液、氨水、碳酸铵、碳酸氢铵中的至少一种。因为当所述碱性pH值调整剂包含氢氧化钠、氢氧化钾、碳酸钠、碳酸氢钠中的至少一种时,所得滤液A会含有过多的钾离子和/或钠离子,大部分需作外排处理而不能回用于蚀刻生产中。故所述碱性pH值调整剂优选方案能减少含有钾或者钠的无机碱原料作为碱性pH值调整剂使用,克服其难以实现环保循环再用的问题,从而提高循环回用率。
更优选地,所述碱性pH值调整剂为固体碳酸铵,以在pH值调整过程中尽量减少反应液的容积增量。反应液中因加投固体碳酸铵而增加的铵离子能在步骤(3)中被除去,后续将其配制为蚀刻再生子液回用时溶液中各组分容易得到平衡。
无论是步骤(1)中所述的线路板氯化铜蚀刻废液由线路板酸性氯化铜蚀刻废液和线路板碱性氯化铜氨蚀刻废液混合而成,还是采用线路板酸性氯化铜蚀刻废液和/或线路板碱性氯化铜氨蚀刻废液作为pH值调整剂,混合过程中都会发生以下反应:
CuCl2+4NH4OH→Cu(NH3)4Cl2↓+4H2O;
2CuCl2+3NH4OH→Cu2(OH)3Cl↓+3NH4Cl;
CuCl2+2NH4OH→Cu(OH)2↓+2NH4Cl;
4Cu(NH3)2Cl+6H++4H2O+O2→2Cu2(OH)3Cl↓+2NH4Cl+6NH4 +
2Cu(NH3)4Cl2+5H++3H2O→Cu2(OH)3Cl↓+3NH4Cl+5NH4 +
FeCl3+3NH4OH→Fe(OH)3↓+3NH4Cl(线路板酸性氯化铜蚀刻废液含有铁离子时);
FeCl2+2NH4OH→Fe(OH)2↓+2NH4Cl(线路板酸性氯化铜蚀刻废液含有铁离子时)。
当步骤(1)中所述的线路板氯化铜蚀刻废液为碱性,且与酸性pH值调整剂作中和反应时,所发生的化学反应如下所示。以下反应方程式中的氢离子来自于酸性pH调整剂。
4Cu(NH3)2Cl+6H++4H2O+O2→2Cu2(OH)3Cl↓+2NH4Cl+6NH4 +
2Cu(NH3)4Cl2+5H++3H2O→Cu2(OH)3Cl↓+3NH4Cl+5NH4 +
当步骤(1)中所述的线路板氯化铜蚀刻废液为酸性,且与碱性pH值调整剂中的氢氧化钠和/或氢氧化钾和/或氨和/或氢氧化铵进行中和反应时,所发生的化学反应如下所示。
H++0H-→H2O;
CuCl2+20H-→Cu(OH)2↓+2Cl-
2CuCl2+3OH-→Cu2(OH)3Cl+3Cl-
FeCl3+30H-→Fe(OH)3↓+3Cl-(线路板氯化铜蚀刻废液含有铁离子时);
FeCl2+20H-→Fe(OH)2↓+2Cl-(线路板氯化铜蚀刻废液含有铁离子时);
CuCl2+4NH4OH→Cu(NH3)4Cl2↓+4H2O(pH值调整剂包含氨和/或氢氧化铵时)。
当步骤(1)中所述的线路板氯化铜蚀刻废液为酸性,且与碱性pH值调整剂中的碳酸盐 和/或碳酸氢盐进行中和反应时,所发生的化学反应如下所示。
(i)碳酸盐
2H++CO3 2-→H2O+CO2↑;
CuCl2+2CO3 2-+2H+→Cu(OH)2↓+2Cl-+2CO2↑;
FeCl3+3CO3 2-+3H+→Fe(OH)3↓+3Cl-+3CO2↑(线路板氯化铜蚀刻废液含有铁离子时);
FeCl2+2CO3 2-+2H+→Fe(OH)2↓+2Cl-+2CO2↑(线路板氯化铜蚀刻废液含有铁离子时)。
(ii)碳酸氢盐
H++HCO3 -→H2O+CO2↑;
CuCl2+2HCO3 -→Cu(OH)2↓+2Cl-+2CO2↑;
FeCl3+3HCO3 -→Fe(OH)3↓+3Cl-+3CO2↑(线路板氯化铜蚀刻废液含有铁离子时);
FeCl2+2HCO3 -→Fe(OH)2↓+2Cl-+2CO2↑(线路板氯化铜蚀刻废液含有铁离子时)。
当步骤(1)中所述的线路板氯化铜蚀刻废液为酸性,且与碱性pH值调整剂混合至中性或碱性时,继续投入碱性pH值调整剂中的碳酸盐和/或碳酸氢盐能使溶液产出碳酸铜和/或碱式碳酸铜沉淀物。
CuCl2+CO3 2-→CuCO3↓+2Cl-
CuCl2+2HCO3 -→CuCO3↓+2Cl-+H2O+CO2↑;
2CuCl2+4HCO3 -→Cu2(OH)2CO3+H2O+4Cl-+3CO2↑。
由于所述的线路板氯化铜蚀刻废液和pH值调整剂中的至少一种含有铵和/或氨,步骤(2)所得滤液A中主要含有铵盐和氯盐,还可能含有无机酸或者氢氧化铵,线路板氯化铜蚀刻废液中原有的其他成分,以及铜氨络合物和/或可溶性铜盐。而步骤(2)所得滤渣C的主要成分包含氯化铜氨、碱式氯化铜、氢氧化铜、碳酸铜、碱式碳酸铜中的至少一种,还夹杂有铵盐和/或氢氧化铵和/或铜氨络合物。当所述的线路板氯化铜蚀刻废液和/或pH值调整剂中包含带有铁离子的线路板酸性氯化铜蚀刻废液时,滤液A还可能含有铁盐,滤渣C中还可能含有铁的氢氧化物和/或铁盐。发明人发现,虽然步骤(1)中有新的铵盐和/或氯盐生成,但步骤(2)的固液分离时溶液中相当一部分的可溶性盐被固体沉淀包裹带走,因此滤液A中的氯盐和铵盐并不会因量过大而需大量废弃外排。
步骤(3)中所述的脱氨处理选用以下方式中的至少一种:(i)将滤渣C与脱氨氧化剂混合进行脱氨氧化反应处理;(ii)直接对滤渣C进行加热氧化除氨处理。
(i)脱氨氧化反应处理
所述的脱氨氧化剂为次氯酸盐和/或氯气,利用次氯酸根和/或氯气的氧化性对滤渣C中的铵盐和/或氨进行去除,反应过程中有氮气生成。所述的次氯酸盐具体为次氯酸钾和/或次氯酸钠。
脱氨氧化反应后的混合物通过固液分离得到滤液B和滤渣D。滤液B中含有氯盐和/或次氯酸盐和/或无机碱,滤渣D的主成分为氢氧化铜和/或碳酸铜和/或氧化铜和/或高铜酸盐。当滤渣C中含有铁的氢氧化物和/或铁盐时,其中的含铁成分还会以铁的氢氧化物和/或铁的氧化物形式存在于滤渣D中,和/或以铁盐和/或高铁酸盐的形式存在于滤液B中。所得滤渣D中各成分的种类和比例可通过化学反应过程中反应液的pH值、工作温度、氧化还原电位参数值、反应时间、以及反应结束时反应液中的氨和/或铵浓度进行控制。而所得滤液B中含有富余的脱氨氧化剂次氯酸盐和无机碱时,可用于其它工艺中作氧化处理。
脱氨氧化反应过程中发生以下至少一种化学反应:
(1)脱氨氧化剂包含次氯酸盐时
Cu(NH3)4Cl2+6ClO-→2HCl+6Cl-+CuO↓+2N2↑+5H2O;
2Cu2(OH)3Cl+3ClO-+2NH4Cl→4HCl+3Cl-+4CuO↓+N2↑+5H2O;
(2)脱氨氧化剂包含氯气时
Cu(NH3)4Cl2+6Cl2+H2O→14HCl+CuO↓+2N2↑;
Cu2(OH)3Cl+2NH4Cl+3Cl2→9HCl+2CuO↓+N2↑+H2O;
其中,氯气溶于水中会生成次氯酸根和氯离子,因此脱氨氧化剂包含氯气时也可能发生如同脱氨氧化剂包含次氯酸盐时的反应。当反应混合物为碱性且脱氨氧化剂包含氯气时,氯气与碱性物质反应还可能伴生氯酸根。
当滤渣C中含有亚铁盐和/或氢氧化亚铁时,脱氨氧化反应过程中还会发生下列至少一种反应。
6Fe2++3ClO-+3H2O→2Fe(OH)3+4Fe3++3Cl-
2Fe2++Cl2→2Fe3++2Cl-
6Fe(OH)2+3ClO-+3H2O→6Fe(OH)3+3Cl-
6Fe(OH)2+3Cl2→2Fe3++4Fe(OH)3+6Cl-
发明人发现,脱氨氧化反应过程中反应混合物的pH值≥6.8时,能避免在回收处理的脱氨氧化反应过程中生成危险易爆物三氯化氮。且反应混合物中存在氢氧根时,能有效促进氨和/或铵的脱除反应。
因此,作为本发明一种优选的实施方式:步骤(3)中采用脱氨氧化反应处理时,脱氨处理过程中向反应混合物加投补充无机碱以将反应液的pH值维持在≥6.8。更优选地,将反应液的pH值维持在≥7。所述的无机碱为氢氧化钠、氢氧化钾、碳酸钠、碳酸钾、碳酸氢钠、碳酸氢钾中的至少一种,优选为氢氧化钠。
脱氨氧化反应过程中向反应混合物加投补充无机碱,或者反应混合物本身的pH值≥7时,发生以下至少一种反应。
2NH4Cl+3ClO-+2OH-→5Cl-+N2↑+5H2O;
2NH3+3ClO-→3Cl-+N2↑+3H2O;
2NH4Cl+3Cl2+8OH-→8Cl-+N2↑+8H2O;
2NH3+3Cl2+6OH-→6Cl-+N2↑+6H2O。
在脱氨氧化反应过程中新加入除线路板碱性氯化铜氨蚀刻废液以外的碱性pH值调整剂,能将滤渣C中的碱式氯化铜、碳酸铜、碱式碳酸铜转化为氢氧化铜。
Cu2(OH)3Cl+OH-→Cl-+2Cu(OH)2↓;
CuCO3+2OH-→Cu(OH)2↓+CO3 2-
Cu2(OH)2CO3+2OH-→2Cu(OH)2↓+CO3 2-
发明人经过多次试验发现,反应混合物的碱度较高时,脱氨氧化过程中还容易将二价铜进一步氧化成为高铜酸盐,将氢氧化铁氧化成为高铁酸盐。
2Cu(OH)2+2OH-+ClO-→2CuO2 -+Cl-+3H2O;
2CuO+2OH-+ClO-→2CuO2 -+Cl-+H2O;
2Fe(OH)3+OH-+3ClO-→2FeO4 2-+3HCl+2H2O(当反应混合物中含有氢氧化铁时)。
由于高铜酸盐是不溶于水的固体,而高铁酸盐可溶于水。因此可以通过令反应混合物中的氧化铁和/或氢氧化铁在碱度较高的条件下与脱氨氧化剂反应被氧化反应生成可溶性的高铁酸盐,从而能与生成物高铜酸钠固体作铜、铁化合物的分离。
优选地,当滤渣C中含有铁的氢氧化物时,在较高的反应液碱度、反应液ORP值及反应温度下作脱氨氧化反应处理。更优选地,脱氨处理过程中将反应混合物的pH值控制在≥9,并且对反应液进行加热和将其氧化还原电位控制在较高的值,以促进高铜酸盐和/或高铁酸盐生成。
(ii)加热氧化除氨处理
加热除氨的反应过程中有氧化铜固体生成,并伴有氯化氢气体和/或氨气和/或二氧化碳气体和/或水产生。当所述滤渣C中含有氯化铵时还会因温度升高发生氯化铵的升华反应,故需对尾气作吸收处理。
直接加热氧化除氨处理过程中发生以下至少一种化学反应:







当滤渣C中含有铁盐和/或铁的氢氧化物时,加热氧化除氨的过程中还会发生下列至少一组反应生成氧化铁。



因此,步骤(3)中对滤渣C作加热氧化除氨处理,得到主成分为氧化铜的固体,还可能含有氧化铁和/或其它金属少量的氧化物杂质。
采取加热氧化除氨处理方式在高温生成的氧化铁晶体结构粉粒与常温下生成的氧化铁晶体结构存在有别,前者在常温下难溶于硫酸。利用高温氧化铁的晶体结构微溶于硫酸的化学特殊性,能够将步骤(3)中通过加热氧化除氨处理方式所得的氧化铜和氧化铁的混合物在硫酸中溶解氧化铜粉后作分离。因此,当滤渣C中含有铁的化合物时,步骤(3)中优选采用加热氧化除氨处理。
步骤(4)中,具体可以有以下几种实施方式:
(1)仅需回用于碱性蚀刻工序时,取滤液A按工艺要求与氨水、液氨、氯化铵、其他添加剂中的至少一种配制得到碱性蚀刻再生子液,并将其回用到碱性蚀刻生产线上。
(2)仅需回用于酸性蚀刻工序时,取滤液A分别配制酸性蚀刻再生子液和/或酸性蚀刻氧化剂回用到酸性蚀刻生产线中,此时根据工艺情况对滤液A进行酸性再生蚀刻子液和酸性蚀刻氧化剂溶液的回用量作分配。配制过程中,滤液A按工艺要求调配后作为再生蚀刻子液 回用到酸性蚀刻体系中,若滤液A为酸性,则直接或者调配后作为酸性再生蚀刻子液回用于酸性蚀刻体系中;采用滤液A配制酸性蚀刻氧化剂回用到酸性蚀刻体系中时,若滤液A为酸性,则将滤液A调节为中性或者碱性后再加投氯酸钠和/或氯酸钾以调配出化学性质稳定的混合液作为酸性蚀刻氧化剂。
(3)需回用于酸性蚀刻生产线和碱性蚀刻生产线时,按工艺要求分别对碱性再生蚀刻子液、酸性再生蚀刻子液和/或酸性蚀刻氧化剂的配制需求量对滤液A进行分配,再分别如同上述实施方式(1)和(2)按工艺要求直接或者经调配后回用于蚀刻工序中。
本工艺方法是在现有酸、碱性氯化铜蚀刻废液的中和反应沉淀回收工艺技术基础上增加以上两种所述的除氨氮处理工艺作为工艺的改进,能将现有工艺技术中应用中和反应生成铜泥沉淀物中的铵盐去除。与现有技术相比本工艺方法具有以下四大优点:
其一,适合同时使用含有氯化铵成分的酸性蚀刻和碱性蚀刻两种工艺的线路板蚀刻生产企业,取酸、碱性两种蚀刻废液的适配数量上作现场在线处理,实现100%回收循环利用。在步骤(3)的脱氨处理后得到的氢氧化铜和/或碳酸铜和/或碱式碳酸铜和/或氧化铜和/或高铜酸钠中,高铜酸钠可以作还原反应后得到氧化铜。而氢氧化铜、碳酸铜、碱式碳酸铜、氧化铜都可以通过简单的化学反应转化为铜盐产品,甚至更进一步成为电解铜,或者将所得的氧化铜直接作为铜补充源使用到酸性电镀铜工序中,令线路板生产企业将废铜液处理变为铜源材料循环回用到生产中,使成本效益指标和环境治理指标均得到提高。
其二,随着业界线路板碱性蚀刻工艺的改进,已出现其蚀刻工作液的pH值工控点接近pH7中性点的新型弱碱性氯化铜氨蚀刻工艺,其蚀刻质量较目前现有工艺能提高6倍。此类弱碱性氯化铜氨蚀刻废液更适用于本发明的加投酸性pH值调整剂沉淀处理回用方法的工艺方案。不会因废液处理过程中其反应液体积不断增容而不能实现100%循环回用产生新的污染源。
其三,新型的氯化铜和氯化铁混合酸性蚀刻液,或在此基础上添加氯化铵,其蚀刻性能大大优于现有技术的酸性氯化铜蚀刻工艺性能,其生产效率可提高1.6倍,蚀刻质量提升30%,越来越受业界欢迎。该含铁的酸性蚀刻废液与碱性蚀刻废液混合后令产出的滤渣C含有铁的化合物,采用本发明的方法能有效将铜、铁化合物分开以利于各自的回收。需要指出的是,由于目前市面上的铁源多含有锰等重金属杂质,故含有铁元素的酸性蚀刻废液中也常含有微痕量的锰离子和其他重金属离子。若步骤(1)中使用到含铁酸性蚀刻液废液,将会导致步骤(2)所得的滤渣C中也掺有铜、铁以外的重金属杂质。此时,若采用步骤(3)中的方式(i),后续还需要作进一步的除杂处理才能将铁化合物中的锰等杂质从铜和铁的化合物中去除。而采用步骤(3)的方式(ii),则能将沉淀铜泥中所夹杂的铁、锰等金属元素杂质在高温处理后转化为氧化铜、氧化铁和二氧化锰。由于氧化铜易溶于硫酸,而高温处理后的氧化铁和二氧化锰不易溶于硫酸。利用上述的物质特性将经过高温加热氧化处理后的滤渣C与含有硫酸的溶液混合,作固液分离后便能得到硫酸铜溶液。另将不溶于硫酸的氧化铁和二氧化锰再作分离处理,得到纯度较高的氧化铁作回用。方式(ii)无需另外增加其他除杂工序及设备,降低生产回收成本。
本发明可以作以下改进:步骤(1)中的线路板氯化铜蚀刻废液包含碱性蚀刻废液时,先对碱性蚀刻废液进行加热除氨处理再按本发明的方法作为所述的线路板氯化铜蚀刻废液中的部分或者全部进行处理。此项改进能降低碱性蚀刻废液中的氨和/或铵浓度,后续能减少酸性 pH值调整剂的用量,从而避免步骤(1)反应过程中生成过量氯化铵和过多滤液A而无法作循环回用造成堆积浪费和环境污染,还能有利于蚀刻再生液的配制。加热除氨过程中有氨气、水气和/或二氧化碳气体逸出,可采用氨水和/或水作吸收以得到含有碳酸铵和/或碳酸氢铵和/或氨水的溶液回用于碱性蚀刻子液的配制中,或者直接在配制碱性再生蚀刻子液时采用配制液作吸收利用。
优选地,步骤(1)中所述的线路板氯化铜蚀刻废液包含线路板碱性氯化铜氨蚀刻废液时,先将线路板碱性氯化铜氨蚀刻废液进行加热到≥55℃作驱氨处理。
优选地,将碱性蚀刻废液进行加热除氨过程中逸出的含氨尾气引流到配制碱性蚀刻再生子液中进行吸收处理。
本发明还可以作以下改进:进行步骤(1)前,先对酸性蚀刻废液和/或碱性蚀刻废液分别作水油分离和/或固液分离处理,使酸性蚀刻废液中的油墨、菲林残渣和固体杂物得到清理,和/或使碱性蚀刻废液中的油墨、菲林渣、氢氧化亚锡沉淀物和其它固体杂质得到清理。
本发明还可以作以下改进:在本发明步骤(2)中,对滤渣C增加脱氯盐和/或脱除铜以外金属杂质的分离处理。
本发明还可以作以下改进:在本发明步骤(3)采用方式(i)时,根据反应液的氧化还原电位参数来控制脱氨氧化剂的加投量以调整脱氨反应速度,根据反应液的pH参数值来控制无机碱的加投量,控制反应液的温度及时间使反应液的氨或铵盐含量浓度在处理后符合工艺要求。
本发明还可以作以下改进:作为本发明在步骤(3)采用方式(i)时,所采用的脱氨氧化剂选用电解工艺的氯气发生器所产出的氯气代替市场外购的次氯酸盐溶液和氯气商品,它既能优化脱氨氧化过程控制和没有引入新的杂质而利于循环再用使生产成本降低,又能减少水分带入使得滤液B的废液能够减少其排放量。
本发明还可以作以下改进:当所述步骤(3)采用方式(i)时,对所得的滤渣D使用双氧水和/或亚硫酸钠溶液和/或亚硫酸氢钠与高铜酸钠作还原反应得到氧化铜,并用清水进行清洗,以去除其中的氯盐和钠、钾离子后制得纯度更高的氧化铜作回收利用。
高铜酸钠的还原反应生成为氧化铜的化学反应原理如下所示:
2NaCuO2+Na2SO3+H2O→2CuO+Na2SO4+2NaOH;
2NaCuO2+NaHSO3+H2O→2CuO+NaHSO4+2NaOH;
2NaCuO2+H2O2→2CuO+2NaOH+O2↑。
本发明还可以作以下改进,使用滤液B含有氧化剂的溶液和/或双氧水对使用电解工艺的氯气发生器中所电析出的氢气作化学方法处理,已减轻甚至消除氢气的危害性。
本发明还可以作以下改进:在本发明步骤(3)采用方式(ii)时,对所述的滤渣C直接进行加热的温度不低于100℃,从而获得良好的氧化铜收率。当滤渣C中存有铁离子和锰离子时,对所述的滤渣C使用更高的加热温度并通入氧气或通入空气中进行加热反应,有助将其中的铁离子和锰离子转变为氧化铁和二氧化锰。
本发明可以作以下改进:在步骤(3)采用方式(ii)时,所述的滤渣C在直接加热氧化过程中对滤渣C进行高温下作机械粉碎,和/或对所述的滤渣C采用间隔式的加热氧化→冷却粉碎→再次加热氧化的方法进行氧化处理。以改善铁和锰化合物被包裹在固体铜渣中令其难以进行氧化反应,通过改进的工艺能进一步提高高温氧化铁和二氧化锰的反应生成率。
优选地,在步骤(3)对滤渣C采用间隔式的加热氧化和冷却粉碎的同时,在机械粉碎后进行用水清洗,将原滤渣C中所含的铵盐和/或钠、钾盐等可溶性盐的杂质清除干净。水洗后再进行加热氧化更得到更纯的铜、铁化合物。
本发明还可以作以下改进:在本发明步骤(3)采用方式(ii)时,将所回收得到的氧化铁制作为铁源材料回用于酸性蚀刻工序中。
本发明可以作以下改进:当滤液A中含有铁盐时,步骤(4)中对新配制的碱性蚀刻再生子液进行精密过滤处理后再作使用,以去除其中铁的氢氧化物固体。
本发明还可以作以下改进:在步骤(1)和/或步骤(3)的反应过程中控制反应物的反应温度,和/或在进行步骤(4)前对滤液A作降温处理。后者能使滤液A通过降温冷析出更多固体盐份,令滤液A更符合工艺要求来配制循环使用的蚀刻液。
本发明还可以作以下改进:对滤液A使用蒸发器进行加热蒸发浓缩后再进行步骤(4),使所述的滤液A能在减少溶液体积下实现将滤液A作100%循环回用,不存在废液过多而无法回用而产生新的污染源。
本发明的第二个目的是提供一种线路板氯化铜蚀刻废液沉淀处理回用方法的装置,由以下设备部件组装而成。其主要包括有:
至少一个反应槽或者其与至少一个固体加热装置,至少一个固液分离器,至少一个暂存槽。其中,所述反应槽、固液分离器和暂存槽之中的至少两者之间通过管道或者设有泵浦和/或阀门的管道连通;
所述的反应槽用于进行线路板氯化铜刻废液与pH调整剂混合发生反应令反应液析出沉淀铜泥,和/或沉淀铜泥与脱氨氧化剂进行步骤(3)中采用方式(i)的脱氨氧化反应使用。
所述的固体加热装置用于步骤(3)中采用方式(ii)中对从所述固液分离器中分离得到的铜泥或铜渣直接进行高温加热氧化除氨处理。
所述的固液分离器用于固液混合物的固液分离。
所述的暂存槽用于溶液的存储和/或配制蚀刻子液使用。
所述的固体加热装置可以选用电加热装置,也可以选用氧化燃烧反应加热装置。
优选地,所述的固液分离器可采用过滤机、或旋转离心机、或压滤机。
优选地,在所述的反应槽、固液分离器、暂存槽和所连接的管道中及生产车间场所空间中分别安装上检测装置。所述的检测装置包括有比重计、比色计、pH计、酸度计、氧化还原电位计、温度计、液位计、流量计、氯气检测仪、氢气检测仪中能根据工艺控制需求的任意一种或它们的任意组合。
优选地,在所述的反应槽和/或暂存槽里安装搅拌装置,所述的搅拌装置可采用液体回流搅拌装置、旋转叶轮搅拌装置、气动搅拌装置中能根据工艺要求作搅拌作用的任一种搅拌装置或它们的任意组合。
优选地,在所述的反应槽和/或暂存槽中安装冷热温度交换器,对反应槽和/或暂存槽中的溶液进行制冷或放热。同时作工艺控制对反应液进行冷析固体盐份处理,使反应液在过滤后其溶液更适合配制循环回用的蚀刻液。
优选地,在所述的反应槽和/或暂存槽中设置有投料口、出料口、溢流口和排气口,以令设备构造符合工艺多种技术要求,还使生产过程中产出的气体容易被收集处理。
本发明可以作以下改进:增设加温反应釜,对所述的碱性蚀刻废液作加热驱氨处理。
本发明还可以作以下改进:增设水溶液加热浓缩蒸发器,对所述的滤液A进行加热浓缩蒸发以减少滤液A的体积。
本发明可以作以下改进:增设粉碎设备,对经过高温加热处理的铜泥进行破碎和/或研磨。
本发明可以作以下改进:增设水油分离器和/或过滤装置,对所述的蚀刻废液或pH值调整液或循环回用溶液进行除杂处理。
本发明还可以作以下改进:增设尾气处理装置,其装置可采用真空射流气液混合处理装置和喷淋塔气液混合装置中能根据工艺要求作处理的任一种或其两种的组合。并且尾气处理装置会根据尾气的温度及其化学性质作分类处理。
本发明还可以作以下改进:增设带搅拌器的清洗槽设备,对所述的回收处理过程制出的铜泥或热处理后的铜渣进行水洗提纯。
本发明还可以作以下改进:采用电解工艺氯气发生器制取氯气作为脱氨氧化剂,以优化脱氨氧化过程中的安全控制和降低生产成本,同时减少污水排放量。
所述的电解工艺氯气发生器为设有电解阴阳极槽区作分隔的电解槽,通过对氯盐溶液或酸性氯化铜蚀刻废液进行电解反应制得氯气,并将氯气用于脱氨氧化反应。
优选地,采用所述的电解工艺氯气发生器制取脱氨氧化剂时,所述的进行脱氨氧化反应的反应槽上安装有真空射流气液混合处理装置和/或喷淋塔气液混合装置,以更好地从所述的电解工艺氯气发生器引流电解析出的氯气到反应槽中参加脱氨氧化反应。
本发明还可以作以下改进:增设自动检测投料控制器,通过各个检测装置所测得的现场数据送至自动检测投料控制器中处理,从而控制反应过程中物料的加投,和/或根据脱氨氧化反应状况对电解工艺氯气发生器中的电解电源工作输出电流进行调节来控制氯气析出量,对电解析氯作安全联锁。另对固体加热装置作温控式过程控制对固体加热装置的尾气作安全处理。以实现整套设备的生产工艺流程自动化安全控制。
本发明还可以作以下改进:增设溢流缓冲槽,所述的溢流缓冲槽通过管道与所述的反应槽、固液分离器、暂存槽、电解工艺氯气发生器中的至少一种作连接,或者置于所述的反应槽、固液分离器、暂存槽、电解工艺氯气发生器中的至少一种容器的溢流口下方,以解决本发明工艺设备中各容器之间的液位存在高低的条件下使溶液按工艺要求进行流动。
本发明还可以作以下改进:增设常压的密封槽盖,对需要的槽罐进行加盖密封以减少物料损耗和环境污染。
本发明还可以作以下改进:增设氢气消除器,用于消除使用有部分电解工艺氯气发生器电析出来的氢气,以解除生产中产生的危险源。
与现有技术相比,本发明具有以下有益效果:
1、本发明的回收处理方法工艺安全简单可靠,能单独对酸性氯化铜蚀刻废液或碱性氯化铜氨蚀刻废液作现场实时处理,也能同时对酸性氯化铜蚀刻废液和碱性氯化铜氨蚀刻废液作混合后现场回收循环再用处理;
2、本发明的回收处理方法工艺仅需要简单的混合设备、固液分离设备、反应槽和/或加热槽便可实现本发明的目的,这些设备结构简单、易于维修养护,造价远低于昂贵的电解设备,因此设备投资规模小、日常维护费用低、经济效益高;
3、本发明的回收处理方法工艺处理过程中,废液中铜氨络合物被破坏后生成的是铵盐,没有大量游离氨的产生,因此有效避免了大量氨气挥发,环境污染少;
4、本发明的回收处理工艺过程能耗低,无新增污染源,取铜后的溶液能循环回用而不影响蚀刻生产的效率和质量,从而有效提高生产收益甚至实现100%回收利用,符合现今环保法规和减排政策要求;
5、对于含有氯化铵的酸性氯化铜蚀刻废液而言,本发明的回收处理工艺既避免了采用碱化法时所得含铜沉淀物中含有铵盐杂质,有避免了采用电解法时产生三氯化氮的安全问题;
6、当蚀刻废液中含有铁成分时,本发明的回收处理工艺能够将废液中的铜化合物与铁化合物作分离收取。
7、本发明工艺中回收所得的氢氧化铜和/或氧化铜产物在线路板生产中可代替磷铜回用于酸性铜电镀工序中,使生产企业对含铜蚀刻废液的处理实现变废为宝的同时能解决重金属、氨氮和磷的三大污染源,对环境保护有着积极的意义。
附图说明
图1为本发明基础实施例1的一种线路板氯化铜蚀刻废液沉淀处理回用方法及其装置的示意图;
图2为本发明实施例2的一种线路板氯化铜蚀刻废液沉淀处理回用方法及其装置的示意图;
图2.1是图2中2-A的放大示意图;
图2.2是图2中2-B的放大示意图;
图2.3是图2中2-C的放大示意图;
图2.4是图2中2-D的放大示意图;
图2.5是图2中2-E的放大示意图;
图3为本发明实施例3的一种线路板氯化铜蚀刻废液沉淀处理回用方法及其装置的示意图;
图3.1是图3中3-A的放大示意图;
图3.2是图3中3-B的放大示意图;
图3.3是图3中3-C的放大示意图;
图3.4是图3中3-D的放大示意图;
图3.5是图3中3-E的放大示意图;
图3.6是图3中3-F的放大示意图;
图4为本发明实施例4的一种线路板氯化铜蚀刻废液沉淀处理回用方法及其装置的示意图;
图4.1是图4中4-A的放大示意图;
图4.2是图4中4-B的放大示意图;
图4.3是图4中4-C的放大示意图;
图5为本发明实施例5的一种线路板氯化铜蚀刻废液沉淀处理回用方法及其装置的示意图;
图5.1是图5中5-A的放大示意图;
图5.2是图5中5-B的放大示意图;
图6为本发明实施例6的一种线路板氯化铜蚀刻废液沉淀处理回用方法及其装置的示意图;
图6.1是图6中6-A的放大示意图;
图6.2是图6中6-B的放大示意图;
图6.3是图6中6-C的放大示意图;
图6.4是图6中6-D的放大示意图;
图6.5是图6中6-E的放大示意图;
图6.6是图6中6-F的放大示意图;
图7为本发明实施例7的一种线路板氯化铜蚀刻废液沉淀处理回用方法及其装置的示意图;
图7.1是图7中7-A的放大示意图;
图7.2是图7中7-B的放大示意图;
图7.3是图7中7-C的放大示意图;
图8为本发明实施例8的一种线路板氯化铜蚀刻废液沉淀处理回用方法及其装置的示意图;
图8.1是图8中8-A的放大示意图;
图8.2是图8中8-B的放大示意图;
图8.3是图8中8-C的放大示意图;
图8.4是图8中8-D的放大示意图;
图8.5是图8中8-E的放大示意图。
附图标记:1(一个以上时按1-1和1-2标记)-反应槽,2(一个以上时按2-1和2-2标记)-固体加热装置,3(一个以上时按3-1至3-5标记)-固液分离器,8~18-暂存槽,19~20-水油分离器,21~23-真空射流气液混合装置,24~26-喷淋塔气液混合装置,27~28-叶轮搅拌装置,29-液体回流搅拌装置,30-气动搅拌器,31~32-冷热温度交换器,33-电解工艺氯气发生器,34-电解阳极槽区,35-电解阴极槽区,36-电解电源,37-电解槽区分隔物,38-自动检测投料控制器,39~55-检测装置,56~84-阀门,85-氢氧化钠,86-氢氧化钠溶液,87-氢氧化钾,88-氢氧化钾溶液,89-碳酸钾,90-碳酸钠,91-碳酸氢钠,92-碳酸氢钾,93-次氯酸钠溶液,94-次氯酸钾溶液,95-氯气,96-氢氧化铜,97-滤液A,98-滤液B,99-滤渣C,100-滤渣D,101-氯化铵,102-氨水,103-添加剂,104-清水,105-酸性蚀刻再生子液,106-碱性蚀刻再生子液,107-酸性蚀刻生产线,108-碱性蚀刻生产线,109~110-带叶轮搅拌铜泥铜渣清洗槽,111-盐酸,112-酸性氯化铜蚀刻废液,113-碱性氯化铜氨蚀刻废液,114~117-密封槽盖,118-氯化钠溶液,119-氯化钾溶液,120~126-带泵阀溢流缓冲槽,127~130-固体投料机,131-输送带,132-液氨,133-硫酸溶液,136~139-过滤装置,140~141-机械粉碎装置,142-甲酸,143-空气,144-氯酸钠,145-氯酸钾,146-酸性蚀刻氧化剂溶液,147-可燃气体,148~150-热处理后铜渣,151-硫酸铜溶液,152-氧化铁粉,153-氯化钠固体,154-碳酸铵,155-碳酸氢铵,156-化学反应釜,157-双氧水,158-亚硫酸钠溶液,159-亚硫酸氢钠,160-氢气消除器,161-氧化铜,162~163-尾气处理装置,164-碱性蚀刻废液驱氨加热反应釜,165-水溶液加热浓缩蒸发器,166-电镀铜光亮剂,167~169-液体回流搅拌装置,170~200-泵浦,201-二氧化碳源,202-二氧化碳。
具体实施方式
以下通过具体实施方式对本发明作进一步说明。
本发明在所述的实施例中所使用的1立方米反应槽、暂存槽、搅拌装置、真空射流气液混合装置、喷淋塔气液混合装置、驱氨加热反应釜、水溶液加热浓缩蒸发器、电解工艺氯气发生器均为广东省佛山市业高环保设备制造有限公司的产品。检测传感器、固体加热装置、泵浦、阀门、PLC控制器为市售商品。所使用的化工原料均为市售化工原料。除上述列举的之外,本领域技术人员根据常规选择,也可以选择其它具有与本发明列举的上述产品具相似性能的产品,均可以实现本发明的目的。
实施例1
如图1所示,为本发明一种线路板氯化铜蚀刻废液沉淀处理回收方法及其装置的基础实施例,其包括有:反应槽1、固液分离器3、暂存槽8~13、冷热温度交换器31。
所述的反应槽1中安装有叶轮搅拌器27、冷热温度交换器31、分别安装有pH计和氧化还原电位计的检测装置39和40,其通过设有阀门71和泵浦56的管道与所述的固液分离器3连接;
所述的固液分离器3采用普通的压滤机;
所述的暂存槽8用于装储酸性氯化铜蚀刻废液112,暂存槽9用于装储次氯酸钠溶液93和次氯酸钾溶液94的混合液作为脱氨氧化剂,暂存槽10用于装储氢氧化钠溶液86,暂存槽11用于装储来自固液分离器3的滤液A97,暂存槽12用于装载来自固液分离器3所分离的滤渣C99,暂存槽13装储来自固液分离器3的滤液D98。
另外还采用固体投料机128,其中装有氢氧化钠85、氢氧化钾87、碳酸钾89、碳酸钠90、碳酸铵154、碳酸氢铵155的固体混合物。
所述的清水104管道安装在反应槽1上方。
需要处理的蚀刻废液为所述的酸性氯化铜蚀刻废液112其酸度为2M,主要成分为盐酸、氯化铜为主,并含有氯化铵和氯化钠添加剂的水溶液。其中步骤(3)中采用方式(i)。
处理过程是先开启泵浦170将暂存槽8中的酸性氯化铜蚀刻废液泵送入反应槽1中,启动叶轮搅拌器27和冷热温度交换器31。反应槽1中的反应液在过程中是由检测装置39的pH计控制其酸碱度,其步骤(1)中pH计的工艺设定值为pH5.5。即pH计控制固体投料机128加投碱性pH值调整剂氢氧化钠85、氢氧化钾87、碳酸钾89、碳酸钠90、碳酸铵154、碳酸氢铵155投向反应槽1中,使反应液的pH值达到pH5.5并析出沉淀物。反应液达到工艺指标后关停叶轮搅拌器27并通过冷热温度交换器31对中和反应液进行冷析处理。完成后开启阀门59和泵浦173将反应槽1中的固液混合物泵送往压滤机3中进行固液分离,滤液A被流引到暂存槽11中,当反应槽1中的混合物被抽取干净后关停阀门59和泵浦173。滤渣C通过打开压滤机3收取在暂存槽12中,其主要成分为氢氧化铜和碱式氯化铜,杂质中含有可溶性氯盐和氯化铜氨络合物。压滤机3完成收取滤渣C固体后重新合上板框等待下次工作。
将暂存槽12中的滤渣C氢氧化铜、碱式氯化铜固体重新投入回到反应槽1中,打开阀门60将清水104引进入反应槽1中。开启叶轮搅拌器27,检测装置39pH计和检测装置40氧化还原电位计同时工作,检测装置40的ORP计控制泵浦171将暂存槽9中的脱氨氧化剂溶液投入到反应槽1中。其ORP计工艺控制设定值为450mv以上。在投入脱氨氧化剂溶液之前先检测反应槽1中反应液的NH4 +含量,得检测浓度为5克/升。开启阀门57和58,泵浦171和172将槽10的氢氧化钠溶液86和脱氨氧化剂投到反应槽1中,其氢氧化钠溶液86的投入量是根据检测装置39的pH计在步骤(3)中的工艺设定值pH6.8来控制,加投所述的脱氨氧化剂使 反应的ORP值维持在450mv,反应液的温度通过冷热温度交换器控制在30℃。当反应液达到上叁个控制指标后并按工艺维持14小时的反应时间后经检测得到NH4 +离子浓度为80毫克/升则认为脱氨氧化反应完成,再次开启阀门59和泵浦173将反应槽1中的固液混合物泵送到压滤机3中进行固液分离,滤液B98引流到暂存槽13中,滤渣D100被截留在压滤机3中。滤渣D经过脱氨氧化反应处理已将滤渣C中大部分氯化钠、氯化铵及氯化铜氨络合物杂质去除,得到纯度较高的氢氧化铜。
取部分其滤液A97经调制pH值后投入氯酸钠和氯酸钾固体配制为酸性蚀刻氧化剂回用到酸性蚀刻生产线中。余下的滤液A97直接作为酸性蚀刻再生子液回用到酸性蚀刻生产线中。
滤液B经检验得其中仍残留氨氮物质80mg/L留待后续处理。
打开固液分离器3取出滤渣D氢氧化铜作回收利用。
一种线路板氯化铜蚀刻废液沉淀处理回用方法,其工艺操作步骤如下:
(1)将需要作处理的酸度为2M的线路板氯化铜蚀刻废液与碱性pH值调整剂氢氧化钠、氢氧化钾、碳酸钠、碳酸钾碳酸铵和碳酸氢铵固体混合物发生反应,直至反应溶液的pH值达到pH5.5并析有沉淀铜泥;
(2)对步骤(1)反应后所得固液混合物进行固液分离,得到滤液A和滤渣C;
(3)将滤渣C采用方式(i)的方法与次氯酸钾和次氯酸钠溶液混合进行脱氨氧化反应,期间通过投料泵加投氢氧化钠溶液86到反应槽中使反应液的pH值参数保持pH=6.8,氧化剂的加投直至反应液的氧化还原电位达到并保持在450mv以上并控温30℃反应14小时则为反应完成。反应完成后对反应槽1中的固液混合物进行再次固液分离,得到滤液B和主成分为氢氧化铜的滤渣D。
(4)取部分滤液A作调制pH值后并投入氯酸钠和氯酸钾配制得到酸性蚀刻氧化剂溶液回用于酸性蚀刻生产线中。余下的滤液A则作为酸性蚀刻再生子液回用到酸性蚀刻生产线中。
本实施例是说明采用本发明工艺对酸性氯化铜蚀刻废液在回收处理过程中投入氢氧化钠、氢氧化钾、碳酸钠、碳酸钾、碳酸铵、碳酸氢铵等碱性pH值调整剂发生中和化学反应产生铜泥沉淀。沉淀铜泥运用步骤(3)中采用方式(i)的脱氨氧化处理方法作回收。滤液A配制再生蚀刻子液和酸性蚀刻氧化剂实现100%循环回用。
实施例2
如图2所示,为本发明一种线路板氯化铜蚀刻废液沉淀处理回用方法装置的实施例2,其主要包括有2个反应槽、5个固液分离器、8个暂存槽、2个冷热温度交换器、2个水油分离器、1台固体投料机、1套电解工艺氯气发生器、1个带叶轮搅拌铜泥铜渣清洗槽、14个传感器和1台自动检测投料控制器、1台氢气消除器、1台化学反应釜156、1台水溶液加热浓缩蒸发器165。
所述的反应槽1-1里安装有叶轮搅拌器27、密封槽盖114、冷热温度交换器31、pH检测装置39、比重检测装置40、温度检测装置41、液位检测装置42。反应槽1-2中安装有密封槽盖115、液体回流搅拌器29、冷热温度交换器32、真空射流气液混合装置21和喷淋塔气液混合装置24及pH检测装置43、氧化还原电位(ORP)检测装置44、温度检测装置45、液位检测装置46。
所述的固液分离器3-1和3-2是选用普通以过滤介质结构的过滤机,而固液分离器3-3至3-5选用普通的板框压滤机。
所述的暂存槽如图2所示用于暂储不同的溶液。其中暂存槽10内安装有叶轮搅拌器28和传感器50的液位计。
所述的水油分离器19、20和固液分离器3-1、3-2对酸性pH值调整剂分别和需要处理的碱性氯化铜氨蚀刻废液进行除杂。除杂后分别引流到暂存槽8、9装储。
所述的酸性pH值调整剂成分为盐酸111、甲酸142的混合液。所述的需要处理的碱性氯化铜氨蚀刻废液113的pH值为pH8.3,主要成分为氨水、氯化铵和氯化铜氨的混合物。
所述的水溶液加热浓缩蒸发器165用于蒸发浓缩暂存槽11中的滤液A。
所述的固体投料机128里面装载有氢氧化钠85,以加投到反应槽1-2中作调整脱氨氧化反应溶液的pH值。
所述的电解工艺氯气发生器中的电解槽分隔物37为阳离子交换膜,通过电解氯化钠和氯化钾混合液得到氯气95、氢气、氢氧化钠溶液86和氢氧化钾溶液88的混合液。电析的氢气通过真空射流气液混合装置22被引到氢气消除器160中与氧化剂反应作安全处理。氯气95被引流到反应槽1-2中参加化学反应。
所述的自动检测投料控制器38通过多个检测装置获取现场数据用于对整套设备的生产工艺流程作自动化控制。
所述的带叶轮搅拌铜泥铜渣清洗槽110专用于水洗滤渣D,并且在槽中安装有pH值检测装置47和光电比色检测装置51,用于检测洗液中的酸碱度和铜盐浓度,对其中的氢氧化铜作除杂处理。
本方法的工艺流程在步骤(3)中采用方式(i)的工艺方法,其步骤是将酸性pH值调整剂泵送入水油分离器19,将需要处理的碱性氯化铜氨蚀刻废液113泵送入水油分离器20中,并通过各自的过滤机3和过滤机4作除杂处理后分别将酸性pH值调整剂泵进暂存槽8和将需要处理的碱性氯化铜氨蚀刻废液泵进暂存槽9中。开启泵浦173将碱性蚀刻废液定容泵进反应槽1-1中。开启搅拌器27和冷热温度交换器31。反应液的温度通过温度检测装置41、反应液的铜离子浓度通过比重检测装置40、检测装置39的pH计和检测装置42液位计均对反应液的温度、铜离子浓度、酸碱度、液位作采样检测,将其现场检测数据送传到自动检测投料控制器38中处理并作程序执行。按工艺程序开启控制泵浦171将酸性pH值调整剂投往反应槽1-1的溶液并在反应过程中将pH值调至而且保持在pH7.9,过程中冷热温度交换器31控制反应液的温度为常温。当检测装置40的比重计达到设定值后则沉淀反应完毕,打开阀门60和开启泵浦174将反应槽1-1中的固液混合物泵送到压滤机5中进行固液分离,当反应槽1-1里的溶液被抽空后则关闭阀门60和关停泵浦174。滤液A97被引流到暂存槽11中储存待用,滤渣C被截留在压滤机5中。完成反应槽1-1的处理工作后打开压滤机5板框取下滤渣C放到暂存槽10中,其滤渣C的主要成分为氯化铜氨络合物复盐。重新合上压滤机5板框准备下一流程工作。将暂存槽12中的氢氧化钠溶液86和氢氧化钾88的混合液根据液位检测装置50的控制加投到暂存槽10中,开启叶轮搅拌器28使沉淀物混溶为悬浊溶液。对槽10的悬浊液作含氨氮检测。得其NH4 +离子浓度为15克/升。通过开启阀门61和泵浦175将暂存槽10中悬浊液全部加投到反应槽1-2中,当抽空暂存槽10中的溶液后则关闭阀门61和关停泵浦175开启泵浦183、184和液体回流搅拌器29,开启氢气消除器160中的射流泵189使射流器22产生真空负压准备吸入所电析出来的氢气开启电解工艺氯气发生器,固体投料机128和冷热温度交换器32,使所述的脱氨氧化反应正常进行。过程中pH检测装置43、ORP检测 装置44、温度检测装置45、液位检测装置46及氢气消除器160中的ORP检测装置47的现场检测数据传送到自动检测投料控制机38中作处理,控制器38对电解电源输出电流的大小根据现场脱氨氧化反应状况其溶液的ORP值和pH值进行调节,以控制氯气的电解析出量和对固体投料机128执行投料控制。同时通过对检测装置47的数据对泵188作加投氧化剂到氢气消除器160中。按工艺反应槽1-2作业时其ORP值控制达到850mv以上、pH值控为pH7.5,反应液的温度控于常温并且维持36小时后测得含NH4 +离子浓度为70毫克/升为反应完毕。关停电解工艺的氯气发生器、泵浦183、184、搅拌器29和冷热温度交换器32,打开阀门72和泵浦185将反应槽1-2中的固液混合物泵进压滤机6中进行固液分离,滤液B被引流到暂存槽14中,滤渣D被截留在压滤机6中,其主要成分为氢氧化铜。反应槽1-2混合液被抽取完后即关闭阀门72和泵浦185。打开压滤机6的板框取出滤渣D100投到带叶轮搅拌器铜泥铜渣清洗槽110中,向清洗槽110加投清水104开启槽中叶轮搅拌器进行清洗,根据pH检测装置47和光电比色计检测装置51来判断洗液的酸碱度和溶液中的铜盐浓度,符合清洗要求后开启阀门73和泵浦186将槽110的固液混合物泵送入压滤机7中进行固液分离。其滤液被引流回暂存槽16中待处理,滤渣氢氧化铜96被截留在压滤机7中。当槽110中的固液混合物被抽取完后关闭阀门73和关停泵浦186。打开压滤机7的板框取出滤渣氢氧化铜96投放在暂存槽15中待回收处理,然后重新合上板框作下续工作准备。
抽取出暂存槽11的滤液A泵送到所述的水溶液加热浓缩蒸发器165作浓缩,其蒸馏水可收集回用。按工艺要求将滤液A作浓缩处理后的溶液通过泵浦177泵送到暂存槽18中暂储。取槽18中溶液到所述的化学反应釜156中作配制碱性蚀刻再生子液,向化学反应釜156中滤液A的浓缩液加投氯化铵固体补充氯离子浓度,通过加投液氨132和/或氨水102调配再生蚀刻子液106的氨含量,制得的碱性蚀刻再生子液回用到碱性蚀刻生产线108中。
滤液B经检测其氨氮杂质含量仍残留有70mg/L。暂存槽14中的溶液待后续处理。
作业过程中通过氢气检测装置48和氯气检测装置49将车间现场的检测数据传送自动检测投料控制器38中处理并作生产系统的安全联锁。
一种线路板碱性蚀刻废液酸化沉淀处理方法,其工艺操作步骤如下:
(1)将已作除杂前处理的pH8.3的线路板碱性氯化铜氨蚀刻废液与已作除杂前处理的酸性pH值调整剂混合反应作酸化,直至反应溶液的pH值达到pH7.9并析有沉淀铜泥。
(2)对步骤(1)反应后所得固液混合物进行固液分离,得到滤液A和滤渣C。
(3)将滤渣C与无机碱溶液混和后与氯气进行脱氨氧化反应,期间通过固体投料机加投氢氧化钠使反应液的pH值保持为pH7.5,氧化剂氯气的加投直至使反应液的氧化还原电位达到并保持在850mv以上的数值范围,反应液的温度为常温并且反应了36小时,反应后对所得固液混合物进行固液分离,得到滤液B和主要成分为氢氧化铜的滤渣D;
(4)对步骤(3)中所得的滤渣D进行清水水洗,得到被提纯的氢氧化铜回收物。
(5)取滤液A的浓缩液作调配为碱性蚀刻再生子液回用到碱性蚀刻生产线中。
本实施例是说明通过使用酸性pH值调整剂对所述的需要处理的碱性氯化铜氨蚀刻废液作中和反应沉淀得铜泥回收处理。并运用氯气氧化剂在碱性条件下对沉淀铜泥的悬浊液作脱氨氧化处理,从氧化氯化铜氨络合物的反应中得到氢氧化铜。电解制氯气过程中还将电解阴极 所电析出的氢气引到氢气消除器中作安全处理。另本实施例的另一特点是对中和沉淀铜泥反应的过程中所产出的滤液A作加热蒸发浓缩后按工艺要求配制得再生蚀刻子液回用于碱性蚀刻生产线中。
实施例3
如图3所示,为本发明一种线路板氯化铜蚀刻废液沉淀处理回用方法装置的实施例3,其主要包括有2个反应槽、3个固液分离器、12个暂存槽、4个固体投料机、14个检测装置、一条输送带、两套电解工艺氯气发生器(其中两个电解槽的分隔物37均为阴离子交换膜)、两个尾气处理槽、两条蚀刻生产线、1台自动检测投料控制器、1个固体加热装置。
所述的反应槽1-1里安装有叶轮搅拌器27、密封槽盖114、pH检测装置39、光电比色计检测装置40,并且反应槽1-1与固液分离器3的连通管道上安装有流量计43。反应槽1-2中安装有密封槽盖117、真空射流气液混合器21、冷热温度交换器32、pH检测装置45、ORP检测装置46、温度检测装置47、液位检测装置48。反应槽1-2与固液分离器4的连通管道上安装有流量计49。
所述的固液分离器3-1采用普通压滤机,固液分离器3-2选用钛金属带刮刀旋转式离心机。所述的固液分离器3-3为普通的过滤机。
所述的多个暂存槽如图3所示用于暂储不同的溶液。其中暂存槽11用于配制酸性蚀刻子液,故槽上安装有液体回流搅拌器29;暂存槽13用于配制碱性蚀刻子液,故槽上安装有叶轮搅拌器28和加热使用的冷热温度交换器31。暂存槽12装储着盐酸,暂存槽18装储着氯酸钠氧化剂溶液146。暂存槽15用于两个电解槽的阳极电解液与蚀刻线上的蚀刻工作液作溶液混合使用。
所述的固体投料机128装载着从输送带131运送来的滤渣C99,并在作业时投入到反应槽1-2中。
所述的反应槽1-2上安装有固体投料机129,其里面装载着固体氢氧化钠85和碳酸钠90。
所述的需要处理的酸性氯化铜蚀刻液其主要成分是氯化铜、氯化铁、氯化钠和盐酸,酸度为1M。所述的pH值碱性调整剂为碱性氯化铜氨蚀刻液其主要成分是氯化铜氨、氨水、氯化铵、添加剂,pH值为pH7.5。
所述的两个电解工艺氯气发生器A和B的阳极电解液均为酸性蚀刻工作液,同时酸性氯化铜蚀刻废液也作为A和B的阴极电解液。电解槽A的阴极槽区中安装有检测装置44比重计,其数据送自动检测投料控制器38处理并控制泵浦178向电解槽A阴极区加投酸性蚀刻废液使其阴极不断地电析出铜,使电解槽A的阳极电析出氯气而阴极电析出铜。而电解槽B的阴极槽区上安装有检测装置50酸度计和51的氧化还原电位计。酸度计50控制将暂存槽12的盐酸通过泵浦185投向电解槽B的阴极槽区,以确保其阴极电解液为酸性;另ORP计51则控制暂存槽18中的氧化剂通过泵浦186投向电解槽B的阴极槽区,以确保其阴极既不会电析出铜又不电析出氢气,使电解槽B的阳极发生产出氯气95和阴极发生与氧化剂作用的电化学反应。作业过程中除了利用两个电解槽的阳极电解液通过交换槽15来氧化再生酸性蚀刻线上蚀刻工作液,使酸性蚀刻过程中不用加投外来氧化剂。另将阳极槽区所逸出的部分氯气95被引流到反应槽1-2中参加化学反应。所引入的氯气反应量由反应槽1-2中检测装置46的ORP计控制所述的两个或其中一个的电解电源输出功率大小及作开启关停以达到控制脱氨氧化剂投入 量的目的。
所述的反应槽1-2其溶液在反应过程中由检测装置45的pH计控制加入氢氧化钠和碳酸钠混合物来调整反应液的pH值。
所述的尾气处理槽分有酸性尾气处理槽和氨碱性尾气处理槽。其酸性尾气处理槽162的反应液为氢氧化钠溶液86,氨碱性尾气处理槽163的反应液为硫酸溶液133。根据工艺设计的尾气处理槽可安装任一种或两种组合的气液混合器。如图3所示,各槽的酸性尾气引入槽162的S入口作处理,各槽的氨碱性尾气及固体加热装置所排出的尾气同被引入到槽163的J入口作处理。尾气处理槽中分别安装有pH检测装置52或53,作业时提示需要按工艺要求更换尾气处理反应液。其中装置163还安装有气动搅拌器30,向尾气处理反应液中打进空气以帮助氨气加速与硫酸反应。
所述的蚀刻生产线设置有酸性蚀刻生产线107和碱性蚀刻生产线108,使得所配制的酸性蚀刻再生子液105回用于酸性蚀刻线中作蚀刻使用。碱性蚀刻子液106则投入到碱性生产线108中进行蚀刻循环回用。
所述的自动检测投料控制器38从多个检测装置中获取采样数据并进行对整套设备的生产工艺流程作自动化控制。
配制亚硫酸钠溶液158和亚硫酸氢钠溶液159对滤渣D进行清洗,使滤渣D100的部分高铁酸钠、高铜酸钠被还原为氧化铜和氧化铁。
所述的固体加热装置2用于对滤渣D在进行还原反应后的氧化铜和氧化铁作高温热处理氧化加工,使氧化铁和氧化铜的结构重组和蒸发水分。
本方法是以处理所述的酸性氯化铜蚀刻废液,其碱性pH值调整剂为碱性氯化铜氨蚀刻废液。其工艺流程是开启两台尾气处理装置对尾气进行处理,然后将暂存槽8中的酸性蚀刻废液112通过泵浦170加投进到反应槽1-1中,开启叶轮搅拌器27,反应液的现场各样数据分别通过pH检测装置39、温度检测装置40传送到自动检测投料控制器38中处理。过程中pH计控制泵浦171将暂存槽9中的碱性蚀刻废液113加投到反应槽1-1中进行中和沉淀反应。反应液的pH值控为pH4.8,中和反应后有沉淀铜泥析出。反应槽1-1的析出尾气被引流到所述的尾气处理槽162中S入口处理。按工艺进行当反应槽1-1中的溶液反应完毕后打开阀门58和开启泵浦172将反应槽1-1中的固液混合物泵进入压滤机3中进行固液分离,过程中管道流量计检测装置43反映读数说明管中有液体流动。当检测装置43读数归零后则说明反应槽1-1中的物料已抽取完毕,关闭阀门58和关停泵浦172。从压滤机3中流出的滤液A97通过溢流缓冲槽120和过滤装置5被泵送入暂存槽10中。打开压滤机3中的板框取下滤渣C99投落在输送带131上并将其运送到固体投料机128中,压滤机完成后重新合上压滤机3的板框准备下一流程。将暂存槽10中的滤液A97按工艺要求作定量分配,分别通过泵浦175泵送入暂存槽11中,通过泵浦174泵送入暂存槽13中。向暂存槽11中按工艺要求投入氯化铵101、盐酸111、添加剂103,启动液体回流搅拌器29进行酸性蚀刻再生子液配制;向暂存槽13中按要求加投入氯化铵101、氨水102、添加剂103、液氨132,启动叶轮搅拌器28和冷热温度交换器31来配制碱性蚀刻再生子液。使用冷热温度交换器31进行温度调节,使碱性蚀刻再生子液减少氨气逸出又能顺利在配制过程使氯化铵吸热溶解。将暂存槽11中的酸性蚀刻再生子液105加投到所述的酸性蚀刻生产线107中作蚀刻循环回用;将暂存槽13中所配制出的碱性再生蚀刻子液106投到碱性蚀刻生产线中108作蚀刻循环回用。
向反应槽1-2通过液位检测装置48控制加投清水104的液位,同时开启固体投料机128作定量加投滤渣C99到反应槽1-2中。开启泵浦62使射流气液混合器21进行工作,开启冷热温度交换器32对反应液温度按工艺进行调节控制,其尾气被引流到尾气处理槽162中S入口吸气口作处理。对反应槽1-2中的溶液进行抽样作氨氮浓度检测,得NH4 +离子浓度为28克/升。开启所述的两台电解工艺氯气发生器,根据pH检测装置45控制固体投料机129将氢氧化钠85和碳酸钠90的混合物加投入反应槽1-2中。其中两个电解槽的阳极电解液均为酸性氯化铜蚀刻废液,电解过程中利用两个电解阳极槽、溢流缓冲槽124和126、暂存槽15通过泵浦和管道使阳极电解液作析出氯气流动并引到反应槽1-2中参与反应。另部分的氯气与蚀刻工作液中的亚铜离子和亚铁离子作氧化反应。而电解槽A的阴极电解液的铜离子浓度根据比重检测装置44的设定值来控制泵浦178往电解槽A的阴极区中补充加投酸性氯化铜蚀刻废液112并且其阴极电析出铜金属。电解槽A的阴极电解液在加投满槽后通过溢流缓冲槽123将所溢出槽外的阴极电解液泵送到暂存槽14中暂储或通过泵浦抽送到暂存槽8中。过程中pH检测装置45、ORP检测装置46、温度检测装置47、液位检测装置48将现场采样数据传送到自动检测投料控制器38作处理和控制。其中反应槽1-2的反应液其pH值控制为pH14,ORP值控制为10mv以上,反应液的温度控制在55℃,当反应槽1-2溶液按工艺要求反应18小时后经检测其氨氮浓度为40毫克/升,则定为完成并关停电解机、固体投料机128和129、泵浦191,打开阀门79、开启泵浦192和旋转式离心机4对反应槽1-2中的固液混合物进行固液分离,过程中流量计检测装置49反映读数。滤液B通过溢流缓冲槽125被泵送入暂存槽17中暂存,留待处理,其成分以氯盐和高铁酸钠溶液为主,经检测氨氮杂质为40毫克/升。而滤渣D被旋转式离心机4上的刮刀削落到暂存槽16中。当流量计检测装置49读数归零后说明反应槽1-2中的固液混合物被抽取完毕,即关闭阀门79、关停泵浦192和旋转式离心机4。其滤渣D100是以含高铜酸钠为主成分和杂质为氯盐的固体混合物。向暂存槽16加投亚硫酸氢钠159和亚硫酸钠溶液158与固体混合物反应,使高铜酸钠被还原为氧化铜和小量高铁酸钠被还原为氧化铁。再通过固液分离器3-2作固液分离得到固渣氧化铜和氧化铁。
将所述的已作还原反应后固渣氧化铜和氧化铁送入固体加热装置2中进行高温加热。其固体加热装置是一采用可燃性气体147与空气143发生燃烧放热反应式的燃烧加热装置。加热处理为650℃1个小时,将高温产出的氧化铜和氧化铁产品作回用。
一种线路板氯化铜蚀刻废液沉淀处理回用方法,其工艺操作步骤如下:
(1)将需要处理的含盐酸1M/L酸性蚀刻废液与碱性pH值调整剂其为pH7.5的线路板碱性蚀刻废液混合反应,直至反应溶液的pH值达到pH4.8并析有沉淀铜泥。
(2)对步骤(1)反应后所得固液混合物进行固液分离,得到滤液A和滤渣C;其中滤液A按工艺要求作两份定容分配来分别重新配制酸性蚀刻再生子液和碱性蚀刻再生子液,其酸性蚀刻再生子液投回到所述的酸性蚀刻生产线中作蚀刻循环回用,其碱性蚀刻再生子液投回到碱性蚀刻生产线中作蚀刻循环回用。
(3)将滤渣C投入水中与无机碱混成悬浊液,再与氯气进行脱氨氧化反应,过程中反应液的pH值控制为pH14,其氧化还原电位控制在10mv以上,反应液温度为55℃,反应时间长达18小时,反应后所得混合物进行固液分离,得到滤液B和主要成分为高铜酸钠的滤渣D。
(4)将作还原反应后的固渣放进固体加热装置中进行高温氧化处理,使固渣作高温反应 成为新的氧化铜和氧化铁的粉末混合物作产品回用。
本实施例特点是利用酸、碱性氯化铜蚀刻废液相混合的溶液作中和沉淀反应。得滤液A按工艺分为两份作蚀刻液回用。其滤渣C分别采用步骤(3)中的方式(i)的脱氨氧化反应和结合方式(ii)的加热氧化反应的两种除杂处理方式,使氧化铜和氧化铁的混合物在使用中容易分离,并且使其酸、碱性氯化铜蚀刻废液在生产厂区中同时处理时实现100%回收循环利用。
实施例4
如图4所示,为本发明一种线路板氯化铜蚀刻废液沉淀处理回用方法装置的实施例4,其包括有:反应槽1、5个固液分离器3-1至3-5、12个暂存槽8~19、5个检测装置、2个固体加热装置2-1和2-2、机械粉碎装置140、带叶轮搅拌器的铜泥铜渣清洗槽110、泵浦和阀门。
所述的反应槽1中安装有叶轮搅拌器27、pH计的检测装置39,其通过设有阀门58和泵浦172的管道与所述的固液分离器3-1连接;
所述的固液分离器3-1至3-3均采用普通的压滤机,固液分离器3-4是普通线绕式精密滤芯过滤机。
所述的暂存槽8用于装储酸性蚀刻废液,暂存槽9用于装储碱性蚀刻废液,暂存槽10用于装储来自固液分离器3-1的滤渣C99,暂存槽11装储滤液A97,暂存槽12配制酸性蚀刻子液,暂存槽13配制酸性蚀刻氧化剂溶液,暂存槽14配制碱性蚀刻再生子液,暂存槽15用于装载经过机械粉碎和水洗压滤分离后的氧化铜粉和氧化铁粉的混合物148,暂存槽16用来暂储水洗氧化铜、氧化铁粉混合物148的废液。
所述的机械粉碎机140用于经过固体加热装置2-1处理后的铜渣148对其进行机械加工粉碎。
所述的固体加热装置2-1用于对沉淀铜泥的滤渣C99进行加热氧化脱氨反应处理。
所述的固体加热装置2-2用于对已作加热、粉碎、水洗后的铜渣148再次进行高温氧化处理。
所述的带叶轮搅拌器铜泥铜渣清洗槽110用于使用硫酸溶解氧化铜使氧化铜与氧化铁和二氧化锰的混合物149作分离。
所述的需要处理的碱性氯化铜氨蚀刻废液为pH8.8含氨水、氯化铵、氯化铜氨和添加剂的水溶液。所述的酸性pH值调整剂为酸性氯化铜蚀刻废液,其主要成分含盐酸、氯化铜、氯化铁、氯化铵的酸性溶液,其酸度为3.5M/L。
本方法的工艺流程是开启泵浦171将暂存槽9中的碱性蚀刻废液泵送入一定容积溶液113到反应槽1中,启动叶轮搅拌器27。根据检测装置39的pH计控制泵浦170将暂存槽8中的酸性pH值调整剂加投到反应槽1中与碱性蚀刻废液113起反应,过程中当pH计达到设定值pH3.2后则关停泵浦53,反应液中析出沉淀物。开启阀门58和泵浦172,将反应槽1中的固液混合物泵送往压滤机3中进行固液分离,所得滤液A被流引到暂存槽11中,滤渣C截留在压滤机3中。当反应槽1中的固液混合物被抽取干净后关停阀门58和泵浦172。打开压滤机3取出滤渣C投放到暂存槽10中,随后合上滤板框准备下一流程工作。打开阀门60、61和泵浦174、175将暂存槽11中的滤液A97部分溶液分别泵往暂存槽12和13作酸性蚀刻再生子液和酸性蚀刻氧化剂溶液配制。同时取滤液A所剩下部分溶液通过泵浦173泵送入暂存槽 14中用于配制碱性蚀刻再生子液。其中所配制的碱性蚀刻再生子液106要经过过滤器7来滤除碱性蚀刻再生子液不溶性物质。
从暂存槽10中取出滤渣C99固体将其放入到固体加热装置2-1中。其加热装置采用电热式加热装置。开启固体加热装置2-1对滤渣C直接进行120℃加热处理3小时。按工艺要求在完成加热氧化除氨反应后,关停电加热装置134,取出其中的铜渣148产物转到机械粉碎装置140中作粉碎。经过粉碎后将此铜渣148投入到清洗槽109中加水清洗,以去除铜渣148中的可溶性盐杂质。水清洗完毕后开启泵浦179将清洗槽109中的固液混合物泵送到固液分离器3-2中作固液分离,其清洗废液引流到暂存槽16中待处理。从固液分离器3-2中分得到滤渣148并投放在暂存槽15中暂存。
将槽15中的铜渣148投入到电热式固体加热装置2-2中,对其进行850℃高温氧化处理。过程中作搅拌翻滚氧化反应两小时后取出冷却。
将铜渣149和硫酸溶液133投进清洗槽110中作硫酸铜溶液配制。反应完成后开启泵浦180将槽110中的固液混合物通过固液分离器3-3进行固液分离。制得粗品酸性硫酸铜溶液存放在暂存槽18中,再经过作为固液分离器3-4的精密滤器作精滤后得到较纯的酸性硫酸铜溶液151。其硫酸的不溶性物氧化铁和二氧化锰分别被固液分离器3-3和3-4所截留,随后打开固液分离器3-3取出氧化铁152存放在暂存槽17中。对氧化铁152中的二氧化锰作分离后将氧化铁回用于配制酸性蚀刻再生子液。
一种线路板氯化铜蚀刻废液沉淀处理回用方法,其工艺操作步骤如下:
(1)将需要处理的pH8.8的线路板碱性蚀刻废液与酸性pH值调整剂混合发生反应直至反应溶液的pH值达到pH3.2并析有沉淀铜泥;
(2)对步骤(1)反应后所得混合物进行固液分离,得到滤液A和滤渣C;
(3)对所述的滤渣C进行第一次的电加热120℃氧化除氨处理,反应过程中有氧化铜、氧化铁生成。
(4)取滤液A分别配制酸性蚀刻再生子液和酸性蚀刻氧化剂溶液回用于酸性蚀刻生产线中,配制碱性蚀刻再生子液回用于碱性蚀刻生产线中。
(5)经过第一次的电加热氧化方式的滤渣C在加热氧化处理后对铜渣进行机械粉碎和水洗除盐处理,并将处理后的铜渣再次进行电热高温850℃的脱氨和/或脱氯盐和/或脱铜以外的其它金属杂质的处理,得到氧化铜粉和氧化铁粉和微量的二氧化锰杂质产品。
(6)将氧化铜粉和氧化铁粉与硫酸溶液反应,经精滤后制得酸性硫酸铜溶液和氧化铁粉。其中氧化铁粉在分离二氧化锰杂质后回用于配制酸性蚀刻再生子液中。
本实施例的特点是在线路板生产企业厂区中将酸、碱性氯化铜蚀刻废液作混合中和沉淀反应。过程中采用步骤(3)中的方式(ii),此方式可减少使用脱氨氧化剂的工艺及设备,其操作安全简单并节省大量的设备投资资金。在无新增污染源的情况下轻松实现酸、碱性氯化铜蚀刻废液混合处理的同时又能达到100%的循环回用的理想效果。
实施例5
如图5所示,为本发明一种线路板氯化铜蚀刻废液沉淀处理回收方法及其装置的实施例,其包括有:反应槽1-1和1-2、固液分离器3-1和3-2、暂存槽8~14、喷淋塔气液混合装置24、冷热温度交换器31、化学反应釜156。
所述的反应槽1-1中安装有叶轮搅拌器27、冷热温度交换器31、分别安装有pH计和氧 化还原电位计的检测装置41和42。反应槽1-1通过设有阀门71和泵浦56的管道与所述的固液分离器3-1连接;反应槽1-2中安装有叶轮搅拌器28、检测装置43为pH计、检测装置44为氧化还原电位计。其反应槽1-2通过阀门75和泵浦59的管道与所述的固液分离器3-2连接。
所述的固液分离器3-1和3-2均采用普通的压滤机;
所述的化学反应釜156采用电热式反应釜,釜中安装有叶轮搅拌器,pH计和温度计的检测装置39和40用于对碱性蚀刻废液作加热除氨处理的过程控制。
所述的暂存槽8用于装储碱性氯化铜蚀刻废液113,暂存槽9用于装储盐酸111和甲酸142的混合液pH值调整剂,暂存槽10用于装储压滤机3挤出的滤渣C99,暂存槽11用于装储来自固液分离器3-1的滤液A97,暂存槽12用于装载来自固液分离器3-2所分离得到的滤渣D100,暂存槽13装储来自固液分离器3-2的滤液D98,暂存槽14装储着次氯酸钠溶液93。
另外还采用固体投料机128安装在反应槽1-2的顶部,其中装有氢氧化钠85。
所述的需要处理的碱性氯化铜蚀刻废液113其pH值为7.3,主要成分为氯化铵、碳酸铵、碳酸氢铵、氨水、氯化铜氨为主的水溶液。其铜离子浓度为90克/升。pH值酸性调整剂为盐酸。
回收再生处理过程是先开启泵浦170将暂存槽8中的碱性氯化铜蚀刻废液113泵送入化学反应釜156中。启动反应釜中叶轮搅拌器和加热器对碱性蚀刻废液113进行加热除氨,除氨过程通过检测装置39的pH计和检测装置40的温度计作控制。过程中反应釜内的工作温度控制在95℃,釜中加热反应液的pH值控制为pH6.8,从釜中逸出的含氨尾气被引流到喷淋塔气液混合装置24中配制再生蚀刻子液作吸收利用。当检测装置39、40的数值达到工艺设定值后关停化学反应釜中的加热器并进行对釜内溶液作降温处理。当釜内溶液降温后将其浓浆液通过泵浦171泵送到所述的反应槽1-1中作下一步的中和析铜盐化学反应。反应槽1-1中的反应液其过程中是由检测装置41的pH计控制泵浦172对槽9盐酸溶液的加投入。其步骤(1)中pH计的工艺设定值为pH5.0。当泵浦172投入酸性调整剂盐酸后使反应槽1-1中反应液的pH值达到pH5.0并析出沉淀物。反应液在中和放热反应中通过冷热温度交换器31对反应液进行冷却处理。当析有沉淀物反应完成后开启阀门59和泵浦173将反应槽1-1中的固液混合物泵送往压滤机3中进行固液分离,滤液A被流引到暂存槽11中。当反应槽1-1中的混合物被抽取干净后关停阀门59和泵浦173。滤渣C通过打开压滤机3的压板作收取并暂放在暂存槽10中,当压滤机3完成收取滤渣C固体后重新合上板框等待下次工作。
滤液A97被泵浦174泵送入喷淋塔气液混合器24中作配制碱性蚀刻再生子液。过程中通过吸收含氨尾气、加投碳酸铵盐、氯化铵、氨水原料的调制,通过化验员检测达到再生子液配制标准后回用于碱性蚀刻生产线中。
将暂存槽10中的滤渣C固体投入到反应槽1-2中,打开阀门64和开启泵浦177将次氯酸钠溶液93引进入反应槽1-2中。取样化验氨氮浓度为11克/升。开启叶轮搅拌器28,检测装置43的pH计和检测装置44的氧化还原电位计同时工作,检测装置44控制泵浦177将暂存槽14中的脱氨氧化剂溶液投入到反应槽1-2中。其ORP计工艺设定值为420mv。在投入脱氨氧化剂溶液的同时开启固体投料机128将氢氧化钠85投到反应槽1-2中,其氢氧化钠85的投入量是根据检测装置43的pH计在步骤(3)中的工艺设定值pH8.8来控制,反应液的温度为常温,当反应34小时后检测其氨氮浓度为140毫克/升,则定为脱氨氧化反应完成, 开启阀门63和泵浦176将反应槽1-2中的固液混合物泵送到压滤机4中进行固液分离,滤液B98被引流到暂存槽13中,滤渣D100被截留在压滤机4中。随后打开压滤机4对机内所截留的滤渣D进行收取并暂放在暂存槽12中。滤渣D在经过脱氨氧化反应处理其主要成分为氢氧化铜。
将滤渣D氢氧化钠回收利用。暂存槽13中的滤液B经当时检测后氨氮杂质仍残留140mg/L。
一种线路板氯化铜蚀刻废液沉淀处理回用方法,其工艺操作步骤如下:
(1)对pH值为7.3的碱性线路板氯化铜蚀刻废液通过化学反应釜作高温除氨后再与酸性物质混合发生反应,直至反应溶液的pH值达到pH5.0并析有沉淀铜泥;
(2)对步骤(1)反应后所得固液混合物进行固液分离,得到滤液A和滤渣C;
(3)将滤渣C与次氯酸钠混合进行脱氨氧化反应,期间通过固体投料机加投氢氧化钠85到反应槽中使反应液的pH值参数保持pH=8.8,氧化剂的加投直至反应液的氧化还原电位达到并保持在520mv以上并维持34小时则为反应完成。反应完成后对反应槽1-2中的固液混合物进行固液分离,得到滤液B和主成分为氢氧化铜的滤渣D。
(4)取滤液A作吸收化学反应釜所排出的含氨尾气并投入碳酸铵盐、氯化铵、氨水配制得到碱性蚀刻再生子液回用到碱性蚀刻生产线中。
其特点是在中和沉淀反应前将碱性蚀刻废液先进行加热除氨反应来降低原来的碱性氯化铜蚀刻废液的pH值,使所投入的酸性pH值调整剂投入量减少,得到中和沉淀反应后的滤液A97的容积不会大于需处理废液的容积。
本实施例是说明采用本发明工艺对碱性氯化铜蚀刻废液单独作回收处理过程中投入盐酸作为酸性pH值调整剂作中和沉淀反应。在加热除氨处理后投入酸性pH值调整剂使反应液中生成氯化铵来降低其溶液的pH值使溶液中析出铜盐沉淀物。随后对沉淀铜泥进行步骤(3)中采用方式(i)的脱氨氧化处理回收得到氢氧化铜。过程中通过使用反应釜对碱性蚀刻废液作加热除氨处理,实现废液处理后不会有多余的滤液A97无法回用,使整个回收系统没有产生新的污染源。
实施例6
如图6所示,为本发明一种线路板氯化铜蚀刻废液沉淀处理回用方法装置的实施例6,其主要包括有2个反应槽、3个固液分离器、10个暂存槽、2个固体投料机、14个检测装置、一条输送带、两套电解工艺氯气发生器33A和33B(其中电解槽33A的分隔物37A为阳离子交换膜,电解槽33B的分隔物37B为滤布)、两个尾气处理槽、两条蚀刻生产线、1台自动检测投料控制器。
所述的反应槽1-1里安装有叶轮搅拌器27、密封槽盖114、pH检测装置39、光电比色计检测装置40,并且反应槽1-1与固液分离器3-1的连通管道上安装有流量计43。反应槽1-2中安装有密封槽盖116、真空射流气液混合器21、冷热温度交换器32、pH检测装置45、ORP检测装置46、温度检测装置47、液位检测装置48。反应槽1-2与固液分离器3-2的连通管道上安装有流量计49。
所述的固液分离器3-1采用普通压滤机,固液分离器3-2选用钛金属带刮刀旋转式离心机。所述的固液分离器3-3为普通的过滤机。
所述的多个暂存槽如图6所示用于暂储不同的溶液。其中暂存槽11用于配制酸性蚀刻 子液,故槽上安装有液体回流搅拌器29;暂存槽14用于配制酸性蚀刻氧化剂溶液;暂存槽13用于配制碱性蚀刻子液,故槽13上安装有叶轮搅拌器28和作加热使用的冷热温度交换器31。
所述的固体投料机128装载着从输送带131运送来的滤渣C99,并在作业时投入到反应槽1-2中。
所述的反应槽1-2上安装有固体投料机129,其里面装载着固体氢氧化钠85和碳酸钠90。
所述的需要处理的酸性氯化铜蚀刻液其主要成分是氯化铜、氯化铵和盐酸,酸度为1.8M。所述的碱性pH值调整剂为碱性氯化铜氨蚀刻液其主要成分是氯化铜氨、氨水、氯化铵、添加剂,pH值为pH8.3。
处理工艺步骤(3)中采用方式(i)作脱氨氧化处理。
两套所述的电解工艺氯气发生器均采用酸性氯化铜蚀刻废液作阳极电解液和阴极电解液。电解槽33A的分隔物采用阳离子交换膜,电解槽33B的分隔物采用滤布。在电解作业时使两个阳极反应产出氯气95和阴极析铜的电化学反应。其中,电解过程酸性蚀刻废液不断添加投向两个电解槽的阳极槽区,并受阳极槽区中所安装的比重计44控制泵浦182执行加投和受比重计52控制泵浦183执行加投。电解过程中将两个阳极槽区所逸出的氯气95及缓冲槽124中逸出的氯气95被射流器21引流到反应槽1-2中参加化学反应。所引入的氯气反应量由反应槽1-2中检测装置46的ORP计控制两个所述的电解电源36A和36B输出功率大小及作开启关停来达到控制脱氨反应的氧化剂加投量。
所述的反应槽1-2其溶液在反应过程中由检测装置45的pH计控制加入氢氧化钠和碳酸钠混合物来调整反应液的pH值。
所述的尾气处理槽分有酸性尾气处理槽和氨碱性尾气处理槽。其酸性尾气处理槽的反应液为氢氧化钠溶液86,氨碱性尾气处理槽的反应液为硫酸溶液133。根据工艺设计的尾气处理槽可安装任一种或两种组合的气液混合器。如图6所示,各槽的酸性尾气引入槽162的S入口作处理,各槽的氨碱性尾气被引入到槽163的J入口作处理。尾气处理槽中分别安装有pH检测装置50和51,作业时提示需要按工艺要求更换尾气处理反应液。其中槽163还安装有气动搅拌器30,向尾气处理反应液中打进空气以帮助氨气加速与硫酸反应。
所述的蚀刻生产线设置有酸性蚀刻生产线107和碱性蚀刻生产线108。所配制的酸性蚀刻再生子液105和酸性蚀刻氧化剂146分别通过泵浦178和泵浦184回投到酸性蚀刻线中与线路铜板作蚀刻反应。碱性蚀刻子液106则通过泵浦180投入到碱性生产线108中进行循环回用与线路铜板起蚀刻反应。
所述的自动检测投料控制器38从多个检测装置中获取现场采样数据并进行对整套设备的生产工艺流程作自动化控制。
本方法是以处理所述的酸性氯化铜蚀刻废液,其碱性pH值调整剂为碱性氯化铜氨蚀刻废液。其工艺流程是开启两台尾气处理装置,将暂存槽8中的酸性蚀刻废液112通过泵浦170加投进到反应槽1-1中,开启叶轮搅拌器27,反应液的现场各种数据分别通过pH检测装置39、温度检测装置40传送到自动检测投料控制器38中处理。过程中pH计39控制泵浦171将暂存槽9中的碱性蚀刻废液113加投到反应槽1-1中进行中和沉淀反应。反应液的pH值控为pH5.2有沉淀铜泥析出。反应槽1-1的析出尾气被引流到所述的尾气处理槽162中S入口 处理。按工艺进行当反应槽1-1中的溶液反应完毕后打开阀门58和开启泵浦172将反应槽1-1中的固液混合物泵进入压滤机3中进行固液分离,过程中管道流量计检测装置43反映读数说明管中有液体流动。当检测装置43读数归零后则说明反应槽1-1中的物料已抽取完毕,关闭阀门58和关停泵浦172。从压滤机3中流出的滤液A97通过溢流缓冲槽120和过滤装置5被泵送入暂存槽10中。打开压滤机3中的板框取下滤渣C99投落在输送带131上并将其运送到固体投料机128中,压滤机3完成卸料后重新合上压滤机3的板框准备下一流程。将暂存槽10中的滤液A97按工艺要求作定量分配,分别通过泵浦176、175、174泵送入暂存槽11、暂存槽13和暂存槽14中。向暂存槽11中按工艺要求投入氯化铵101、盐酸111、添加剂103,启动液体回流搅拌器29进行酸性蚀刻再生子液配制;向暂存槽13中按要求加投入氯化铵101、氨水102、添加剂103,启动叶轮搅拌器28和冷热温度交换器32来配制碱性蚀刻再生子液。使用冷热温度交换器31进行温度调节,使碱性蚀刻再生子液减少氨气逸出又能顺利在配制过程使氯化铵吸热溶解。向暂存槽14加投氢氧化钠85作pH值调整使溶液达到中性后再加投氯酸钠144来配制酸性蚀刻氧化剂溶液146。
向反应槽1-2通过液位检测装置48控制加投清水104的液位,同时开启固体投料机128作定量加投滤渣C99到反应槽1-2中。开启泵浦62使射流气液混合器21进行工作,开启冷热温度交换器32对反应液温度按工艺进行调节控制,其尾气被引流到尾气处理槽162中S入口吸气口作处理。对反应槽1-2中的溶液作抽样检测其氨氮浓度,其结果为126克/升。开启两台所述的电解工艺氯气发生器,根据pH检测装置45控制固体投料机129将氢氧化钠85和碳酸钠90的混合物加投入反应槽1-2中。其中两台电解工艺氯气发生器中阳极电解液为酸性氯化铜蚀刻废液,利用阳极在作业时产出氯气对反应槽1-2中物料作脱氨氧化反应,而阴极电析出铜。其两台电解机的阳极电解液的铜离子浓度控制是根据比重检测装置44和52的设定值来控制泵浦182和183向两台电解槽阳极槽区中分别补充加投酸性氯化铜蚀刻废液112。其阴极电解液为酸性氯化铜蚀刻废液112和电镀铜光亮剂166的混合液,因所述的电解槽33A的分隔物为阳离子交换膜和电解槽33B的分隔物为滤布,故两个阳极槽区的铜离子在电场力作用下迁移到阴极槽区中并在阴极上电析出金属铜。过程中反应槽1-2上安装的pH检测装置45、ORP检测装置46、温度检测装置47、液位检测装置48将现场采样数据传送到自动检测投料控制器38作处理和控制。其中反应槽1-2的反应液其pH值控制为pH11,ORP值控制为1mv以上,反应液的温度为5℃反应52小时后抽样检测反应液的氨氮浓度,得结果为80毫克/升。在被定为完成后即关停电解机、固体投料机128和129、泵浦182、183、187,打开阀门73、开启泵浦188和旋转式离心机4对反应槽1-2中的固液混合物进行固液分离,过程中流量计检测装置49反映读数。滤液B通过溢流缓冲槽125被泵送入暂存槽17中暂存留待处理,经当时检测滤液B中仍含有氨氮物质80mg/L。而滤渣D被旋转式离心机4上的刮刀削落到暂存槽16中。当流量计检测装置49读数归零后说明反应槽1-2中的固液混合物被抽取完毕,即关闭阀门73、关停泵浦188和旋转式离心机4。其滤渣D100主要成分是氢氧化铜和碳酸铜的固体混合物。向暂存槽16加投清水104对固体铜的化合物作清洗以除去其中的可溶性盐。
一种线路板氯化铜蚀刻废液沉淀处理回用方法,其工艺操作步骤如下:
(1)将需要处理的含盐酸1.8M/L酸性蚀刻废液与碱性pH值调整剂其为pH8.3的线路板碱性蚀刻废液混合反应,直至反应溶液的pH值达到pH5.2并析有沉淀铜泥;
(2)对步骤(1)反应后所得固液混合物进行固液分离,得到滤液A和滤渣C;并将滤液A按工艺要求作叁份定容分配,分别用于重新配制酸性蚀刻再生子液、酸性蚀刻氧化剂溶液和碱性蚀刻再生子液,其酸性蚀刻再生子液和酸性蚀刻氧化剂溶液投回到所述的酸性蚀刻生产线中作蚀刻循环回用,其碱性蚀刻再生子液投回到碱性蚀刻生产线中作蚀刻循环回用。
(3)将滤渣C投入水中与无机碱混成悬浊液,再与氯气进行脱氨氧化反应,过程中反应液的pH值控制为pH11,其氧化还原电位控制在1mv以上,反应液温度控为5℃,反应进行52小时后将所得混合物进行固液分离,得到滤液B和主要成分为氢氧化铜和碳酸铜固体混合物的滤渣D。
(4)将铜的固体化合物作水洗除去可溶性盐。
本实施例特点是利用酸、碱性氯化铜蚀刻废液互相混合作中和沉淀反应。得滤液A按工艺分为叁份作蚀刻液回用。其滤渣C采用步骤(3)中的方式(i)的脱氨氧化反应后对滤渣D作水洗得到固体铜化合物。使其酸、碱性氯化铜蚀刻废液在生产厂区中得到环保处理并且实现废液100%回收循环利用。
实施例7
如图7所示,为本发明一种线路板氯化铜蚀刻废液沉淀处理回用方法装置的实施例7,其包括有:反应槽1、2个固液分离器3-1和3-2、10个暂存槽8~17、12个检测装置、1个固体加热装置2、机械粉碎装置140、带叶轮搅拌器的铜泥铜渣清洗槽110、喷淋塔气液混合装置的尾气处理器162、泵浦和阀门。
所述的反应槽1中安装有叶轮搅拌器27、检测装置39pH计和液位计40,其通过设有阀门57和泵浦171的管道与所述的固液分离器3-1连接;
所述的固液分离器3-1和3-2均采用普通的压滤机。
所述的暂存槽8用于装储酸性蚀刻废液,暂存槽9用于装储滤渣C99,暂存槽10用于装储来自固液分离器3-1的滤液A97,暂存槽11装储作为配制酸性蚀刻再生子液,暂存槽12配制酸性蚀刻氧化剂溶液,暂存槽13用于储存酸性蚀刻氧化剂溶液146,暂存槽14储存酸性蚀刻再生子液105,暂存槽15用于装载从压滤机4卸出的经过水洗后的氧化铜粉,暂存槽16装储从压滤机4流出的水洗氧化铜的废液。
所述的固体加热装置2用于对沉淀铜泥的滤渣C99进行加热氧化脱氨反应处理。
所述的机械粉碎机140用于经过固体加热装置2处理后的铜渣148对其进行机械加工粉碎。
所述的带叶轮搅拌器铜泥铜渣清洗槽110用于水洗铜渣148,将可溶性杂质除去。
所述的检测装置39为pH计、40为液位计、41为液位计、42为酸度计、43为pH计、44为比重计、45为酸度计、46为比重计、47为氧化还原电位计、48为液位计、49为比重计、50为温度计。
所述的需要处理的酸性氯化铜蚀刻废液其酸度为1.2M/L,铜离子浓度为140克/升,氯化铵浓度为7克/升。所述的碱性pH值调整剂为碳酸铵、碳酸氢铵、氨水、液氨。
本方法的工艺流程是开启泵浦170将暂存槽8中的酸性蚀刻废液泵送入一定容积溶液112到反应槽1中,启动叶轮搅拌器27。根据检测装置39的pH计控制外来的碱性pH值调整剂的加投,过程中当pH计达到设定值pH4.5后则关停所有外投的碱性pH值调整剂。反应液中 析出有碱性氯化铜和铜氨络合物的沉淀物。开启阀门57和泵浦171,将反应槽1中的固液混合物泵送往压滤机3中进行固液分离,所得滤液A被流引到暂存槽10中,滤渣C截留在压滤机3中。当反应槽1中的固液混合物被抽取干净后关停阀门57和泵浦171。打开压滤机3取出滤渣C99投放到暂存槽9中,随后合上压滤板框准备下一流程工作。打开阀门58、59和泵浦172、173将暂存槽10中的滤液A97部分溶液分别泵往暂存槽11和12作酸性蚀刻再生子液和酸性蚀刻氧化剂溶液配制。将按工艺配制完成的溶液分别泵送入暂存槽13和14中暂储。
从暂存槽9中取出滤渣C99固体将其放入到固体加热装置2中。其加热装置采用电热式加热装置。开启固体加热装置2对滤渣C直接进行400℃加热处理3小时。按工艺要求在完成加热氧化除氨反应后,关停电加热装置134,取出其中的铜渣148产物转到机械粉碎装置140中作粉碎。经过粉碎后将此铜渣148投入到清洗槽109中加水清洗,以去除铜渣148中的可溶性盐杂质。用水清洗完毕后开启泵浦180将清洗槽109中的固液混合物泵送到固液分离器3-2中作固液分离,其清洗废液引流到暂存槽16中待处理。从固液分离器3-2中分得到滤渣161氧化铜并投放在暂存槽15中暂存。
在加热除氨过程中,含氯化铵的酸性尾气从固体加热装置2中逸出后被引流到喷淋塔24中吸收处理,其尾气处理装置162的废液待留下一步处理。其中装置162安装有液位计48和比重计49,对尾气吸收液进行更换控制。
一种线路板氯化铜蚀刻废液沉淀处理回用方法,其工艺操作步骤如下:
(1)将需要处理的线路板酸性蚀刻废液与碱性pH值调整剂混合发生反应直至反应溶液的pH值达到pH4.5并析有沉淀铜泥;
(2)对步骤(1)反应后所得混合物进行固液分离,得到滤液A和滤渣C;
(3)对所述的滤渣C进行电加热400℃氧化除氨处理,反应过程中有氧化铜生成。
(4)取滤液A分别配制酸性蚀刻再生子液和酸性蚀刻氧化剂溶液回用于酸性蚀刻生产线中。
(5)将经过加热氧化处理后的铜渣进行机械粉碎和水洗除盐处理,在固液分离后得到氧化铜粉产品。
本实施例的特点是在线路板生产企业厂区中将酸性氯化铜蚀刻废液作混合中和沉淀反应。过程中采用步骤(3)中的方式(ii),此方式可减少使用脱氨氧化剂的工艺及设备,其操作安全简单并节省大量的设备投资资金。而对过程中所产生的含氨氮废水作进一步的环保处理后,实现酸性氯化铜蚀刻废液不采用电解提铜法也能达到100%的循环回用的理想效果。
实施例8
如图8所示,为本发明一种线路板氯化铜蚀刻废液沉淀处理回用方法装置的实施例8,其主要包括有2个反应槽、4个固液分离器、8个暂存槽、2个冷热温度交换器、1个水油分离器、1台固体投料机、1套电解工艺氯气发生器、1个带叶轮搅拌铜泥铜渣清洗槽、14个传感器、1台自动检测投料控制器、1台氢气消除器、1台化学反应釜156、1个二氧化碳源。
所述的反应槽1-1里安装有叶轮搅拌器27、密封槽盖114、冷热温度交换器31、pH检测装置39、比重检测装置40、温度检测装置41、液位检测装置42。反应槽1-2中安装有密封槽盖115、液体回流搅拌器29、冷热温度交换器32、喷淋塔气液混合装置24及pH检测装置43、氧化还原电位(ORP)检测装置44、温度检测装置45、液位检测装置46。
所述的固液分离器3-1是选用普通以过滤介质结构的过滤机,而固液分离器3-2至3-4 选用普通的板框压滤机。
所述的暂存槽如图2所示用于暂储不同的溶液。其中暂存槽10内安装有叶轮搅拌器28和传感器50的液位计。
所述的水油分离器20和固液分离器3-1对需要处理的碱性氯化铜氨蚀刻废液进行除杂。除杂后分别引流到暂存槽9装储。
所述的酸性pH值调整剂成分别为二氧化碳气体202和盐酸111。所述的需要处理的碱性氯化铜氨蚀刻废液113的pH值为pH8.3,主要成分为氨水、氯化铵和氯化铜氨的混合物。
所述的固体投料机128里面装载有氢氧化钠85,以加投到反应槽1-2中作调整脱氨氧化反应溶液的pH值。
所述的电解工艺氯气发生器中的电解槽分隔物37为阳离子交换膜,通过电解氯化钠溶液得到氯气95、氢气、氢氧化钠溶液86溶液。电析的氢气通过真空射流气液混合装置22被引到氢气消除器160中与氧化剂反应作安全处理。氯气95通过喷淋塔24被引流到反应槽1-2中参加化学反应。
所述的自动检测投料控制器38通过多个检测装置获取现场数据用于对整套设备的生产工艺流程作自动化控制。
所述的带叶轮搅拌铜泥铜渣清洗槽110专用于水洗滤渣D,并且在槽中安装有pH值检测装置47和光电比色检测装置51,用于检测洗液中的酸碱度和铜盐浓度,对其中的氢氧化铜作除杂处理。
本方法的工艺流程在步骤(3)中采用方式(i)的工艺方法,将需要处理的碱性氯化铜氨蚀刻废液113泵送入水油分离器20中,并通过过滤机4作除杂处理后泵进暂存槽9中。开启泵浦172将碱性蚀刻废液定容泵进反应槽1-1中。开启搅拌器27和冷热温度交换器31。反应液通过检测装置41温度计、检测装置40比重计、检测装置39的pH计和检测装置42液位计均对反应液的温度、铜离子浓度、酸碱度、液位作采样检测,将其现场检测数据送传到自动检测投料控制器38中处理并作程序执行。按工艺程序对反应槽1-1溶液作处理是开启阀门63将二氧化碳气体202通过真空射流器21送进槽1溶液中进行气液混合反应,使反应液的pH值降低至pH7.2已出现有固体物沉淀,随后开启控制泵浦170将酸性pH值调整剂投往反应槽1-1的溶液使pH值调在pH7.0使反应液析出大量的沉淀物,过程中冷热温度交换器31控制反应液的温度为常温。当检测装置40的比重计降低达到设定值后则沉淀反应完毕,打开阀门60和开启泵浦174将反应槽1-1中的固液混合物泵送到压滤机5中进行固液分离,当反应槽1-1里的溶液被抽空后则关闭阀门60和关停泵浦174。滤液A97被引流到暂存槽11中储存待用,滤渣C被截留在压滤机5中。完成反应槽1的处理工作后打开压滤机5板框取下滤渣C放到暂存槽10中,其滤渣C的主要成分为氯化铜氨络合物复盐。重新合上压滤机5板框准备下一流程工作。将暂存槽12中的氢氧化钠溶液86溶液根据液位检测装置50的控制加投到暂存槽10中,开启叶轮搅拌器28使沉淀物混溶为悬浊溶液。对槽10的悬浊液通过操作员作含氨氮检测。得其NH4 +离子浓度为21克/升。通过开启阀门61和泵浦175将暂存槽10中悬浊液全部加投到反应槽1-2中,当抽空暂存槽10中的溶液后则关闭阀门61和关停泵浦175开启泵浦184和液体回流搅拌器29,开启氢气消除器160中的射流泵189使射流器22产生真空负压准备吸入所电析出来的氢气,开启电解工艺氯气发生器,固体投料机128和冷热温度交换器32,使所述的脱氨氧化反应正常进行。过程中pH检测装置43、ORP检测装置 44、温度检测装置45、液位检测装置46及氢气消除器160中的ORP检测装置47的现场检测数据传送到自动检测投料控制机38中作处理,控制器38对电解电源输出电流的大小根据现场脱氨氧化反应状况其溶液的ORP值和pH值进行调节,以控制氯气的电解析出量和对固体投料机128执行投料控制。同时通过对检测装置47的数据对泵188作加投氧化剂到氢气消除器160中。按工艺反应槽1-2作业时其ORP值控制达到950mv以上、pH值控为pH7.5,反应液的温度控于常温并且维持36小时后测得含NH4 +离子浓度为50毫克/升为反应完毕。关停电解工艺的氯气发生器、泵浦183、184、搅拌器29和冷热温度交换器32,打开阀门72和泵浦185将反应槽1-2中的固液混合物泵进压滤机6中进行固液分离,滤液B被引流到暂存槽14中,滤渣D被截留在压滤机6中,其主要成分为氢氧化铜。反应槽1-2混合液被抽取完后即关闭阀门72和泵浦185。打开压滤机6的板框取出滤渣D100投到带叶轮搅拌器铜泥铜渣清洗槽110中,向清洗槽110加投清水104开启槽中叶轮搅拌器进行清洗,根据pH检测装置47和光电比色计检测装置51来判断洗液的酸碱度和溶液中的铜盐浓度,符合清洗要求后开启阀门73和泵浦186将槽110的固液混合物泵送入压滤机7中进行固液分离。其滤液被引流回暂存槽16中待处理,滤渣氢氧化铜96被截留在压滤机7中。当槽110中的固液混合物被抽取完后关闭阀门73和关停泵浦186。打开压滤机7的板框取出滤渣氢氧化铜96投放在暂存槽15中待回收处理,然后重新合上板框作下续工作准备。
按工艺要求将滤液A作浓缩处理。取槽11中溶液泵送到所述的化学反应釜156中作配制碱性蚀刻再生子液,向化学反应釜156中滤液A的浓缩液加投氯化铵固体补充氯离子浓度,通过加投液氨132和/或氨水102调配再生蚀刻子液106的氨含量,制得的碱性蚀刻再生子液回用到碱性蚀刻生产线108中。
滤液B经检测其氨氮杂质含量仍残留有50mg/L,。并引流至暂存槽14中待后续作为氧化剂使用处理。
作业过程中通过氢气检测装置48和氯气检测装置49将车间现场的检测数据传送自动检测投料控制器38中处理并与生产系统作安全联锁。
一种线路板碱性蚀刻废液酸化沉淀处理方法,其工艺操作步骤如下:
(1)将已作除杂前处理的pH8.3的线路板碱性氯化铜氨蚀刻废液与酸性pH值调整剂二氧化碳气体作气液混合反应作酸化,使反应液pH值降低到pH7.2,随后继续加投盐酸直至反应溶液的pH值达到pH7.0并析有沉淀铜泥。
(2)对步骤(1)反应后所得固液混合物进行固液分离,得到滤液A和滤渣C。
(3)将滤渣C与无机碱溶液混和后与氯气进行脱氨氧化反应,期间通过固体投料机加投氢氧化钠使反应液的pH值保持为pH7.5,氧化剂氯气的加投直至使反应液的氧化还原电位达到并保持在950mv以上的数值范围,反应液的温度为常温并且反应了36小时,反应后对所得固液混合物进行固液分离,得到滤液B和主要成分为氢氧化铜的滤渣D;
(4)对步骤(3)中所得的滤渣D进行清水水洗,得到被提纯的氢氧化铜回收物。
(5)取滤液A的浓缩液作调配为碱性蚀刻再生子液回用到碱性蚀刻生产线中。
本实施例是说明通过使用酸性pH值调整剂二氧化碳气体和盐酸一起并用对所述的需要处理的碱性氯化铜氨蚀刻废液作中和反应沉淀得铜泥回收处理。其中首先利用二氧化碳与废液中的游离氨反应生成碳酸氢铵来降低其pH值,能使中和反应溶液其体积没有明显增大,不 会做成滤液A97体积增多在无法回用的情况下作多余废液排放。运用氯气氧化剂在碱性条件下对沉淀铜泥的悬浊液作脱氨氧化处理,在脱氨氧化过程中因对反应液的pH值碱度控制较低,故在高氧化还原电位下都难生成高铜酸钠,故氧化氯化铜氨络合物的反应中得到氢氧化铜。电解制氯气过程中还将电解阴极所电析出的氢气引到氢气消除器中,并使用滤液D98氧化剂与氢气反应来作安全处理。本实施例对中和沉淀铜泥反应的过程中所产出的滤液A按工艺要求配制得再生蚀刻子液回用于碱性蚀刻生产线中。

Claims (10)

  1. 一种含有铵和/或氨的线路板氯化铜蚀刻废液沉淀处理回用方法,其特征在于:其工艺操作步骤如下:
    (1)将线路板氯化铜蚀刻废液与pH值调整剂混合发生反应,令溶液中析有铜盐沉淀,所述的线路板氯化铜蚀刻废液和pH值调整剂中的至少一种包含含有铵和/或氨的线路板氯化铜蚀刻废液;
    (2)对步骤(1)中反应后所得的固液混合物进行固液分离,得到滤液A和滤渣C;
    (3)对滤渣C进行脱氨处理,以生成回收的铜产品;
    (4)将滤液A全部或部分直接或者经调配后作为蚀刻再生子液和/或蚀刻氧化剂溶液回用于线路板氯化铜蚀刻系统中。
  2. 根据权利要求1所述的线路板氯化铜蚀刻废液沉淀处理回用方法,其特征在于:步骤(3)中所述的回收的铜产品的主成分为氢氧化铜、碳酸铜、碱式碳酸铜、氧化铜、高铜酸盐中的至少一种。
  3. 根据权利要求1所述的线路板氯化铜蚀刻废液沉淀处理回用方法,其特征在于:所述步骤(1)中的pH调整剂有酸性pH调整剂和碱性pH调整剂两种,所述的酸性pH调整剂为线路板酸性氯化铜蚀刻废液、盐酸、有机酸、二氧化碳中的至少一种,所述的碱性pH调整剂为选自线路板碱性氯化铜氨蚀刻废液、氢氧化钠、氢氧化钾、氨和/或氢氧化铵、碳酸钠、碳酸氢钠、碳酸氢钾、碳酸铵、碳酸氢铵中的至少一种;所述酸性pH值调整剂中的有机酸为甲酸。
  4. 根据权利要求3所述的线路板氯化铜蚀刻废液沉淀处理回用方法,其特征在于:所述的酸性pH值调整剂包含二氧化碳时,先采用二氧化碳对碱性的线路板氯化铜蚀刻废液向下调整pH值至有铜盐沉淀析出且令所得pH值大于7,再采用线路板酸性氯化铜蚀刻废液、盐酸、有机酸中至少一种的酸性pH调整剂进一步向下调整pH值;在采用线路板酸性氯化铜蚀刻废液、盐酸、有机酸中至少一种的酸性pH调整剂进一步向下调整pH值时,所得pH值不低于7,以便尽量多地生成铜盐沉淀并能避免大量释放二氧化碳。
  5. 根据权利要求1所述的线路板氯化铜蚀刻废液沉淀处理回用方法,其特征在于:所述步骤(3)中所述的脱氨处理选用以下方式中的至少一种:(i)将滤渣C与脱氨氧化剂混合进行脱氨氧化反应处理;(ii)直接对滤渣C进行加热氧化除氨处理。
  6. 根据权利要求5所述的线路板氯化铜蚀刻废液沉淀处理回用方法,其特征在于:所述的脱氨氧化剂为次氯酸盐和/或氯气,利用次氯酸根和/或氯气的氧化性对滤渣C中的铵盐和/或氨进行去除,反应过程中有氮气生成,所述的次氯酸盐具体为次氯酸钾和/或次氯酸钠;所述步骤(3)中采用脱氨氧化反应处理时,脱氨处理过程中向反应混合物加投补充无机碱以将反应液的pH值维持在≥6.8。
  7. 根据权利要求6所述的线路板氯化铜蚀刻废液沉淀处理回用方法,其特征在于:当滤渣C中含有铁的氢氧化物时,在较高的反应液碱度、反应液ORP值及反应温度下作脱氨氧化反应处理。
  8. 根据权利要求1所述的线路板氯化铜蚀刻废液沉淀处理回用方法,其特征在于:所述步骤(4)中,有以下几种实施方式:
    仅需回用于碱性蚀刻工序时,取滤液A按工艺要求与氨水、液氨、氯化铵、其他添加 剂中的至少一种配制得到碱性蚀刻再生子液,并将其回用到碱性蚀刻生产线上;
    仅需回用于酸性蚀刻工序时,取滤液A分别配制酸性蚀刻再生子液和/或酸性蚀刻氧化剂回用到酸性蚀刻生产线中,此时根据工艺情况对滤液A进行酸性再生蚀刻子液和酸性蚀刻氧化剂溶液的回用量作分配;配制过程中,滤液A按工艺要求调配后作为再生蚀刻子液回用到酸性蚀刻体系中,若滤液A为酸性,则直接或者调配后作为酸性再生蚀刻子液回用于酸性蚀刻体系中;采用滤液A配制酸性蚀刻氧化剂回用到酸性蚀刻体系中时,若滤液A为酸性,则将滤液A调节为中性或者碱性后再加投氯酸钠和/或氯酸钾以调配出化学性质稳定的混合液作为酸性蚀刻氧化剂;
    需回用于酸性蚀刻生产线和碱性蚀刻生产线时,按工艺要求分别对碱性再生蚀刻子液、酸性再生蚀刻子液和/或酸性蚀刻氧化剂的配制需求量对滤液A进行分配,再分别如同上述实施方式(1)和(2)按工艺要求直接或者经调配后回用于蚀刻工序中。
  9. 根据权利要求1所述的线路板氯化铜蚀刻废液沉淀处理回用方法,其特征在于:当步骤(1)中的线路板氯化铜蚀刻废液包含碱性蚀刻废液时,先对碱性蚀刻废液进行加热除氨处理;或者当步骤(1)中所述的线路板氯化铜蚀刻废液包含线路板碱性氯化铜氨蚀刻废液时,先将线路板碱性氯化铜氨蚀刻废液进行加热到≥55℃作驱氨处理;或者进行步骤(1)前,先对酸性蚀刻废液和/或碱性蚀刻废液分别作水油分离和/或固液分离处理,使酸性蚀刻废液中的油墨、菲林残渣和固体杂物得到清理,和/或使碱性蚀刻废液中的油墨、菲林渣、氢氧化亚锡沉淀物和其它固体杂质得到清理。
  10. 一种权利要求1至9任意一项所述的线路板氯化铜蚀刻废液沉淀处理回用方法的装置,其特征在于:主要包括有:
    至少一个反应槽(1)或者其与至少一个固体加热装置(2)、至少一个固液分离器(3)、至少一个暂存槽(8~18),其中,所述反应槽(1)、固液分离器(3)和暂存槽(8~18)之中的至少两者之间通过管道或者设有泵浦和/或阀门的管道连通;
    所述的反应槽(1)用于进行线路板氯化铜刻废液与pH调整剂混合发生反应令反应液析出沉淀铜泥,和/或用于沉淀铜泥与脱氨氧化剂进行步骤(3)的脱氨氧化反应使用。
PCT/CN2023/090931 2022-04-26 2023-04-26 一种线路板氯化铜蚀刻废液沉淀处理回用方法及其装置 WO2023208060A1 (zh)

Applications Claiming Priority (14)

Application Number Priority Date Filing Date Title
CN202210443317.7 2022-04-26
CN202210443317 2022-04-26
CN202210819818 2022-07-12
CN202210819818.0 2022-07-12
CN202210902464 2022-07-29
CN202210902464.6 2022-07-29
CN202211010847 2022-08-22
CN202211010847.9 2022-08-22
CN202211315698.7 2022-10-25
CN202211315698 2022-10-25
CN202211405046.2 2022-11-10
CN202211405046 2022-11-10
CN202211661840 2022-12-23
CN202211661840.3 2022-12-23

Publications (1)

Publication Number Publication Date
WO2023208060A1 true WO2023208060A1 (zh) 2023-11-02

Family

ID=88517828

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/090931 WO2023208060A1 (zh) 2022-04-26 2023-04-26 一种线路板氯化铜蚀刻废液沉淀处理回用方法及其装置

Country Status (1)

Country Link
WO (1) WO2023208060A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102730743A (zh) * 2012-07-04 2012-10-17 广州科城环保科技有限公司 一种碱式氯化铜的生产方法
CN105002500A (zh) * 2015-07-17 2015-10-28 中南大学 一种碱性CuCl2废蚀刻液脱铜再生方法
CN108149249A (zh) * 2017-07-05 2018-06-12 叶涛 一种线路板碱性蚀刻废液的蒸氨回收循环工艺
CN108249472A (zh) * 2018-02-07 2018-07-06 韶关鹏瑞环保科技有限公司 一种含铜蚀刻废液的综合回收利用工艺
CN109095642A (zh) * 2018-08-30 2018-12-28 惠州大亚湾亿田环保技术有限公司 一种零排放的碱性蚀铜废液环保回收工艺
CN110158089A (zh) * 2019-05-29 2019-08-23 惠州大亚湾亿田环保技术有限公司 零排放的碱性蚀铜废液回收工艺方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102730743A (zh) * 2012-07-04 2012-10-17 广州科城环保科技有限公司 一种碱式氯化铜的生产方法
CN105002500A (zh) * 2015-07-17 2015-10-28 中南大学 一种碱性CuCl2废蚀刻液脱铜再生方法
CN108149249A (zh) * 2017-07-05 2018-06-12 叶涛 一种线路板碱性蚀刻废液的蒸氨回收循环工艺
CN108249472A (zh) * 2018-02-07 2018-07-06 韶关鹏瑞环保科技有限公司 一种含铜蚀刻废液的综合回收利用工艺
CN109095642A (zh) * 2018-08-30 2018-12-28 惠州大亚湾亿田环保技术有限公司 一种零排放的碱性蚀铜废液环保回收工艺
CN110158089A (zh) * 2019-05-29 2019-08-23 惠州大亚湾亿田环保技术有限公司 零排放的碱性蚀铜废液回收工艺方法

Similar Documents

Publication Publication Date Title
CN102603097B (zh) 含重金属离子废水深度处理及回用工艺
CN101423309B (zh) 电镀废水及重金属双回收方法
AU2007261790A1 (en) Method and integral system for treating water for cooling towers and processess requiring removal of silica from the water
CN106868544B (zh) 一种从硫酸体系电解液中选择性去除一价阴离子杂质的方法
CN107630220B (zh) 酸性蚀刻液再生处理系统
CN103755082A (zh) 一种离子交换树脂再生废水资源回收系统及方法
CN101659487B (zh) 铅锌冶炼厂废水零排放方法
CN106495215B (zh) 一种含砷废液生产砷酸镁的方法
CN107475530A (zh) 湿法炼锌中的脱氯工艺
CN104438287A (zh) 一种硫化砷废渣的资源化处理方法及其装置
WO2015159810A1 (ja) 銅含有酸性廃液の処理方法
CN106186437A (zh) 一种生产粘胶纤维中制造除盐水产生的废水的处理工艺
CN110902898B (zh) 镁阳极电渗析法去除污水中氮磷的装置及其方法
CN102191378B (zh) 一种电解锰的制液工艺
WO2013176111A1 (ja) 塩化銅含有酸性廃液の処理方法及び装置
CN115135806B (zh) 碱性蚀刻废液再生回用的方法及其设备
CN102732725B (zh) 一种亚铜盐循环脱除硫酸锌液杂质氯的方法
CN104803530B (zh) 硫酸钠废水处理及盐提纯回用工艺
CN102153219A (zh) 纯化石墨后的废水处理方法
WO2023208060A1 (zh) 一种线路板氯化铜蚀刻废液沉淀处理回用方法及其装置
CN104120253A (zh) 一种复杂锌焙烧矿的浸出方法
KR101545245B1 (ko) 알지비 컬러센서와 오알피 센서를 이용한 에칭액 재생 및 구리 회수 장치
CN105273760A (zh) 一种废水零排放的乙炔生产工艺
CN214694375U (zh) 化学抛光用磷/硫混合酸的在线再生系统
CN110408938B (zh) 一种蚀刻液循环再利用工艺

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23795492

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)